WO2023182178A1 - Roughened copper foil, copper foil equipped with carrier, copper-clad laminate, and printed wiring board - Google Patents
Roughened copper foil, copper foil equipped with carrier, copper-clad laminate, and printed wiring board Download PDFInfo
- Publication number
- WO2023182178A1 WO2023182178A1 PCT/JP2023/010440 JP2023010440W WO2023182178A1 WO 2023182178 A1 WO2023182178 A1 WO 2023182178A1 JP 2023010440 W JP2023010440 W JP 2023010440W WO 2023182178 A1 WO2023182178 A1 WO 2023182178A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- roughened
- copper foil
- filter
- resin
- particles
- Prior art date
Links
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 179
- 239000011889 copper foil Substances 0.000 title claims abstract description 163
- 239000002245 particle Substances 0.000 claims description 86
- 238000007788 roughening Methods 0.000 claims description 46
- 239000006087 Silane Coupling Agent Substances 0.000 claims description 21
- 230000002265 prevention Effects 0.000 claims description 15
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 14
- 101100533725 Mus musculus Smr3a gene Proteins 0.000 claims description 13
- 101100149716 Rattus norvegicus Vcsa1 gene Proteins 0.000 claims description 13
- 238000004141 dimensional analysis Methods 0.000 claims description 7
- 229920005992 thermoplastic resin Polymers 0.000 abstract description 29
- 229920005989 resin Polymers 0.000 description 79
- 239000011347 resin Substances 0.000 description 79
- 239000010410 layer Substances 0.000 description 67
- 239000010949 copper Substances 0.000 description 39
- 238000000034 method Methods 0.000 description 29
- 239000000463 material Substances 0.000 description 26
- 230000011218 segmentation Effects 0.000 description 21
- 238000004458 analytical method Methods 0.000 description 20
- 238000007747 plating Methods 0.000 description 20
- 239000000243 solution Substances 0.000 description 20
- 229910052802 copper Inorganic materials 0.000 description 16
- 229920000106 Liquid crystal polymer Polymers 0.000 description 14
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 14
- 238000010801 machine learning Methods 0.000 description 13
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 11
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- 238000012545 processing Methods 0.000 description 10
- 229910000365 copper sulfate Inorganic materials 0.000 description 9
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- -1 nitrogen-containing organic compounds Chemical class 0.000 description 9
- 239000011701 zinc Substances 0.000 description 9
- 238000009826 distribution Methods 0.000 description 8
- 238000004070 electrodeposition Methods 0.000 description 8
- 238000009966 trimming Methods 0.000 description 8
- 230000000007 visual effect Effects 0.000 description 8
- 229910052725 zinc Inorganic materials 0.000 description 8
- 229910000990 Ni alloy Inorganic materials 0.000 description 7
- 230000002500 effect on skin Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- QELJHCBNGDEXLD-UHFFFAOYSA-N nickel zinc Chemical compound [Ni].[Zn] QELJHCBNGDEXLD-UHFFFAOYSA-N 0.000 description 7
- 238000003825 pressing Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 229920001187 thermosetting polymer Polymers 0.000 description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 6
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 6
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000010191 image analysis Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 229920002492 poly(sulfone) Polymers 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 229920001230 polyarylate Polymers 0.000 description 4
- 238000007637 random forest analysis Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000004696 Poly ether ether ketone Substances 0.000 description 3
- 238000004873 anchoring Methods 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 229960003280 cupric chloride Drugs 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920002530 polyetherether ketone Polymers 0.000 description 3
- 229920000139 polyethylene terephthalate Polymers 0.000 description 3
- 239000005020 polyethylene terephthalate Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- YXIWHUQXZSMYRE-UHFFFAOYSA-N 1,3-benzothiazole-2-thiol Chemical compound C1=CC=C2SC(S)=NC2=C1 YXIWHUQXZSMYRE-UHFFFAOYSA-N 0.000 description 2
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 2
- NSPMIYGKQJPBQR-UHFFFAOYSA-N 4H-1,2,4-triazole Chemical compound C=1N=CNN=1 NSPMIYGKQJPBQR-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 241000238633 Odonata Species 0.000 description 2
- 229920012266 Poly(ether sulfone) PES Polymers 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 229910001297 Zn alloy Inorganic materials 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000012790 adhesive layer Substances 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000012776 electronic material Substances 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000002346 layers by function Substances 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 229920002312 polyamide-imide Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 2
- 229920006259 thermoplastic polyimide Polymers 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- AZUHEGMJQWJCFQ-UHFFFAOYSA-N 1,1-bis(2h-benzotriazol-4-ylmethyl)urea Chemical compound C1=CC2=NNN=C2C(CN(CC=2C3=NNN=C3C=CC=2)C(=O)N)=C1 AZUHEGMJQWJCFQ-UHFFFAOYSA-N 0.000 description 1
- FYADHXFMURLYQI-UHFFFAOYSA-N 1,2,4-triazine Chemical compound C1=CN=NC=N1 FYADHXFMURLYQI-UHFFFAOYSA-N 0.000 description 1
- WZRRRFSJFQTGGB-UHFFFAOYSA-N 1,3,5-triazinane-2,4,6-trithione Chemical compound S=C1NC(=S)NC(=S)N1 WZRRRFSJFQTGGB-UHFFFAOYSA-N 0.000 description 1
- YHMYGUUIMTVXNW-UHFFFAOYSA-N 1,3-dihydrobenzimidazole-2-thione Chemical compound C1=CC=C2NC(S)=NC2=C1 YHMYGUUIMTVXNW-UHFFFAOYSA-N 0.000 description 1
- ZDDUSDYMEXVQNJ-UHFFFAOYSA-N 1H-imidazole silane Chemical compound [SiH4].N1C=NC=C1 ZDDUSDYMEXVQNJ-UHFFFAOYSA-N 0.000 description 1
- KFJDQPJLANOOOB-UHFFFAOYSA-N 2h-benzotriazole-4-carboxylic acid Chemical compound OC(=O)C1=CC=CC2=NNN=C12 KFJDQPJLANOOOB-UHFFFAOYSA-N 0.000 description 1
- ZOTOAABENXTRMA-UHFFFAOYSA-N 3-[4-[3-(3-trimethoxysilylpropylamino)propoxy]butoxy]propan-1-amine Chemical compound CO[Si](OC)(OC)CCCNCCCOCCCCOCCCN ZOTOAABENXTRMA-UHFFFAOYSA-N 0.000 description 1
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 1
- 102100023444 Centromere protein K Human genes 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 101000907931 Homo sapiens Centromere protein K Proteins 0.000 description 1
- 101001134276 Homo sapiens S-methyl-5'-thioadenosine phosphorylase Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 102100022050 Protein canopy homolog 2 Human genes 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 235000019013 Viburnum opulus Nutrition 0.000 description 1
- 244000071378 Viburnum opulus Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- BQJTUDIVKSVBDU-UHFFFAOYSA-L copper;sulfuric acid;sulfate Chemical compound [Cu+2].OS(O)(=O)=O.[O-]S([O-])(=O)=O BQJTUDIVKSVBDU-UHFFFAOYSA-L 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 150000001925 cycloalkenes Chemical class 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- PPTYNCJKYCGKEA-UHFFFAOYSA-N dimethoxy-phenyl-prop-2-enoxysilane Chemical compound C=CCO[Si](OC)(OC)C1=CC=CC=C1 PPTYNCJKYCGKEA-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 1
- KBJFYLLAMSZSOG-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)aniline Chemical compound CO[Si](OC)(OC)CCCNC1=CC=CC=C1 KBJFYLLAMSZSOG-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005464 sample preparation method Methods 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- XMVONEAAOPAGAO-UHFFFAOYSA-N sodium tungstate Chemical compound [Na+].[Na+].[O-][W]([O-])(=O)=O XMVONEAAOPAGAO-UHFFFAOYSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 1
- VMYXFDVIMUEKNP-UHFFFAOYSA-N trimethoxy-[5-(oxiran-2-yl)pentyl]silane Chemical compound CO[Si](OC)(OC)CCCCCC1CO1 VMYXFDVIMUEKNP-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/06—Wires; Strips; Foils
- C25D7/0614—Strips or foils
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D1/00—Electroforming
- C25D1/04—Wires; Strips; Foils
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/16—Electroplating with layers of varying thickness
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/06—Wires; Strips; Foils
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
Definitions
- the present invention relates to a roughened copper foil, a copper foil with a carrier, a copper-clad laminate, and a printed wiring board.
- thermoplastic resins with a low dielectric constant such as fluororesins and liquid crystal polymers (LCP) have low chemical activity and therefore have low adhesion to copper foil.
- the roughening particles have a ten-point average roughness Rzjis of 0.6 ⁇ m or more and 1.7 ⁇ m or less, and the half-width in the frequency distribution of the height of the roughening particles.
- a copper foil having a roughened surface having a roughness of 0.9 ⁇ m or less is disclosed. According to such a copper foil, it is possible to exhibit high peel strength even to an insulating resin base material, such as a liquid crystal polymer film, to which chemical adhesion cannot be expected.
- Patent Document 2 International Publication No. 2014/133164 discloses a copper foil having a particle size of 10 nm or more and 250 nm or less (for example, approximately spherical copper particles) attached to the copper foil to make it rough.
- a surface-treated copper foil is disclosed that has a black, roughened surface.
- Copper foils for high frequency applications are required to have finer roughening particles as described above, but such copper foils tend to have poor adhesion to resins (particularly thermoplastic resins).
- existing copper foils are not necessarily sufficient in terms of both high adhesion with thermoplastic resins and excellent high frequency properties, and there is room for improvement.
- the present inventors have recently discovered that by controlling the skewness Ssk and the peak density Sds within predetermined ranges on the surface of a roughened copper foil, the surface has high adhesion to thermoplastic resin and excellent high frequency properties. We found that it is possible to achieve both.
- an object of the present invention is to provide a roughened copper foil that is capable of achieving both high adhesion to a thermoplastic resin and excellent high frequency properties.
- a roughened copper foil having a roughened surface on at least one side has a skewness Ssk greater than 0.35 and a peak density Sds of 1.57 ⁇ m ⁇ 2 or more and 2.64 ⁇ m ⁇ 2 or less
- the Ssk is a value measured in accordance with JIS B0681-2:2018 without cutoff with an S filter and with a cutoff wavelength of 1.0 ⁇ m using an L filter
- the above-mentioned Sds is a value measured in accordance with EUR15178N without cutoff using an S filter and an L filter, and is a roughened copper foil.
- the roughened surface has a plurality of roughened particles, and the volume of the roughened particles per 1 ⁇ m 2 is 0.11 ⁇ m 3 or more and 0.25 ⁇ m 3 or less,
- Treated copper foil [Aspect 3]
- the roughened surface has a kurtosis Sku of 2.70 or more and 4.90 or less, The roughened copper foil according to aspect 1 or 2, wherein the Sku is a value measured in accordance with JIS B0681-2:2018 without cutoff by an S filter and an L filter.
- the roughened surface has a load area ratio Smr1 of 11.2% or more that separates the protruding peak portion and the core portion,
- the Smr1 is a value measured according to JIS B0681-2:2018 without cutoff with an S filter and with a cutoff wavelength of 1.0 ⁇ m using an L filter.
- the roughened copper foil described in .
- a copper-clad laminate comprising the roughened copper foil according to any one of aspects 1 to 5.
- a printed wiring board comprising the roughened copper foil according to any one of aspects 1 to 5.
- FIG. 3 is a diagram for explaining the skewness Ssk measured in accordance with JIS B0681-2:2018, and is a diagram showing the surface and its height distribution when Ssk ⁇ 0.
- FIG. 3 is a diagram for explaining the skewness Ssk measured in accordance with JIS B0681-2:2018, and is a diagram showing the surface and its height distribution when Ssk>0.
- FIG. 2 is a diagram for explaining a load curve and a load area ratio determined in accordance with JIS B0681-2:2018.
- FIG. 3 is a diagram for explaining the load area ratio Smr1 that separates the protruding peak portion and the core portion, which is measured in accordance with JIS B0681-2:2018. This is a resin replica image after binarization obtained in Example 3.
- FIG. 3 is a diagram for explaining the load area ratio Smr1 that separates the protruding peak portion and the core portion, which is measured in accordance with JIS B0681-2:2018.
- FIG. 4 is a diagram showing the x-axis, y-axis, z-axis, and slice plane S in FIB-SEM observation and three-dimensional image analysis in relation to the roughened copper foil. It is a slice image of the roughened copper foil of Example 9 after forming markings and a protective film. This is an image for explaining material assignment in three-dimensional image analysis. This is the first inference image generated by machine learning the image in FIG. This is an example of a slice image in which the roughened bottom surface of the roughened copper foil and the roughened particles are continuous. This is an example of a slice image in which the roughened bottom surface of the roughened copper foil and the roughened particles are discontinuous.
- skewness Ssk or “Ssk” is a parameter representing the symmetry of height distribution, measured in accordance with JIS B0681-2:2018.
- this value indicates that the height distribution is vertically symmetrical, in other words, it indicates that bumps (roughening particles, etc.) of uniform size are arranged on the surface.
- FIG. 1A if this value is smaller than 0, it indicates that the surface has many small valleys, or in other words, that thick rounded bumps are lined up on the surface.
- FIG. 1B if this value is greater than 0, it indicates that the surface has many fine mountains, or in other words, that the surface is dotted with elongated bumps.
- mountain peak density Sds or “Sds” is a parameter representing the number of peaks per unit area, measured in accordance with EUR15178N.
- Sds a point higher than the eight neighboring points N is regarded as the mountaintop S. The larger this value is, the denser the bumps are (see FIG. 2A). On the other hand, the smaller this value is, the more sparsely the bumps are present (see FIG. 2B).
- surface load curve refers to the height at which the load area ratio is from 0% to 100%, determined in accordance with JIS B0681-2:2018.
- the load area ratio at height c corresponds to Smr(c) in FIG.
- the secant line of the load curve drawn from the load area ratio of 0% along the load curve with the difference in the load area ratio of 40% is moved from the load area ratio of 0%, and the secant line The position where the slope of is the gentlest is called the center of the surface load curve.
- the straight line that minimizes the sum of squares of deviations in the vertical axis direction with respect to this central part is called an equivalent straight line.
- the portion included in the height range of 0% to 100% of the load area ratio of the equivalent straight line is called the core portion.
- the portion higher than the core portion is called a protruding peak portion, and the portion lower than the core portion is called a protruding trough portion.
- load area ratio Smr1 that separates the protruding mountain part and the core part refers to the core part measured in accordance with JIS B0681-2:2018, as shown in FIG. This is a parameter that represents the load area ratio at the intersection of the upper height of the surface and the surface load curve (i.e., the load area ratio that separates the core portion from the protruding peak portion).
- Sku is a parameter representing the sharpness of the height distribution, which is measured in accordance with JIS B0681-2:2018, and is also referred to as kurtosis.
- Sku>3 there are many sharp peaks and valleys on the surface, in other words, there are many fine bumps standing on the surface.
- Sku ⁇ 3 means that the surface is flat, in other words, thick rounded bumps are arranged on the surface.
- Ssk, Sds, Smr1 and Sku can be calculated by measuring the surface profile of a predetermined measurement area (for example, a two-dimensional area of 64.397 ⁇ m x 64.463 ⁇ m) on the roughened surface using a commercially available laser microscope. can.
- a predetermined measurement area for example, a two-dimensional area of 64.397 ⁇ m x 64.463 ⁇ m
- Ssk and Smr1 are measured under conditions of a cutoff wavelength of 1.0 ⁇ m using an L filter and no cutoff using an S filter.
- Sds and Sku are measured under conditions where no cutoff is performed using the S filter and the L filter.
- Other preferable measurement conditions and analysis conditions for the surface profile using a laser microscope will be shown in Examples below.
- volume of roughened particles per 1 ⁇ m 2 is a value calculated by three-dimensional analysis of an image obtained using FIB-SEM of a roughened surface.
- This three-dimensional analysis can be preferably performed by the following procedure using commercially available three-dimensional image processing software (for example, Dragonfly (version 2022.1.0.1259) manufactured by Object Research System).
- (1) Read the slice image of the roughened copper foil obtained by FIB-SEM and perform alignment.
- (2) Perform trimming of the slice image.
- Machine learning is performed to extract the Cu portion originating from the roughened copper foil, and a segmentation model is created.
- Apply the segmentation model to the slice image and extract the Cu portion.
- Trim a predetermined analysis area for example, 4.5 ⁇ m x 4.5 ⁇ m
- the "electrode surface" of the electrolytic copper foil refers to the surface that was in contact with the cathode during manufacture of the electrolytic copper foil.
- the "deposition surface" of an electrolytic copper foil refers to the surface on which electrolytic copper is deposited during production of the electrolytic copper foil, that is, the surface that is not in contact with the cathode.
- the copper foil according to the present invention is a roughened copper foil.
- This roughened copper foil has a roughened surface on at least one side.
- This roughened surface has a skewness Ssk greater than 0.35.
- this roughened surface has a peak density Sds of 1.57 ⁇ m ⁇ 2 or more and 2.64 ⁇ m ⁇ 2 or less.
- thermoplastic resins with a low dielectric constant such as fluororesins and liquid crystal polymers (LCP) have low chemical activity and therefore have low adhesion to copper foil, unlike thermosetting resins.
- copper foil with low roughness which is advantageous in terms of high frequency characteristics, tends to inherently have poor adhesion to resin.
- the roughened copper foil of the present invention it is possible to unexpectedly achieve both high adhesion with the thermoplastic resin and excellent high frequency characteristics (for example, reduction of skin effect).
- the skin effect can be reduced compared to roughening particles that are thick and large in shape (Ssk ⁇ 0).
- the roughened surface with a peak density Sds of 1.57 ⁇ m ⁇ 2 or more and 2.64 ⁇ m ⁇ 2 or less has a moderate density of bumps, and has high adhesion with thermoplastic resin and excellent high frequency characteristics. It can be achieved in a well-balanced manner. That is, the peak density Sds is a parameter representing the number of peaks per unit area as described above, and in other words, it can be said to be a parameter related to the size of the roughened particles on the roughened surface.
- the size of the roughened particles becomes fine, resulting in a surface shape that is effective in reducing the skin effect.
- the peak density Sds of the roughened surface is 2.64 ⁇ m -2 or less, the size of the roughened particles becomes appropriate, and the surface can exhibit a high anchoring effect with the thermoplastic resin base material. It becomes a shape. As a result, it is thought that it becomes possible to achieve both high adhesion with the thermoplastic resin and excellent high frequency properties.
- the Ssk of the roughened surface is greater than 0.35, preferably greater than 0.35 and less than or equal to 0.79, and more preferably greater than or equal to 0.36 and less than or equal to 0.57.
- the roughened copper foil has an Sds of 1.57 ⁇ m ⁇ 2 or more and 2.64 ⁇ m ⁇ 2 or less, preferably 1.57 ⁇ m ⁇ 2 or more and 2.57 ⁇ m ⁇ 2 or less, and more preferably 1. .62 ⁇ m -2 or more and 2.57 ⁇ m -2 or less.
- the roughened copper foil has a plurality of roughened particles on the roughened surface.
- the volume of the roughened particles per 1 ⁇ m 2 of the roughened surface is preferably 0.11 ⁇ m 3 or more and 0.25 ⁇ m 3 or less, more preferably 0.11 ⁇ m 3 or more and 0.18 ⁇ m 3 or less, and even more preferably 0.11 ⁇ m 3 or more and 0.16 ⁇ m 3 or less.
- the surface shape will have fine roughened particles that are effective in reducing the skin effect, and while ensuring high adhesion with the thermoplastic resin, Even better high frequency characteristics can be achieved.
- the roughened copper foil preferably has a Sku of 2.70 or more and 4.90 or less, more preferably 3.00 or more and 4.00 or less, and even more preferably 3.00 or more and 3.60. It is as follows. When Sku is within the above range, high adhesion to the thermoplastic resin and excellent high frequency properties can be achieved in a better balance.
- the roughened copper foil preferably has an Smr1 of 11.2% or more on the roughened surface, more preferably 11.2% or more and 13.4% or less, and even more preferably 11.3% or more and 12.4%. % or less.
- Smr1 is within the above range, high adhesion to the thermoplastic resin and excellent high frequency properties can be achieved in a better balance.
- the thickness of the roughened copper foil is not particularly limited, but is preferably 0.1 ⁇ m or more and 35 ⁇ m or less, more preferably 0.5 ⁇ m or more and 5.0 ⁇ m or less, and even more preferably 1.0 ⁇ m or more and 3.0 ⁇ m or less.
- the roughened copper foil is not limited to one in which the surface of a normal copper foil is roughened, but may be one in which the surface of a copper foil with a carrier is roughened.
- the thickness of the roughened copper foil is the thickness that does not include the height of the roughening particles formed on the surface of the roughened surface (the thickness of the copper foil itself that constitutes the roughened copper foil) It is.
- the roughened copper foil has a roughened surface on at least one side. That is, the roughened copper foil may have a roughened surface on both sides, or may have a roughened surface only on one side. As described above, the roughened surface preferably includes a plurality of roughened particles (preferably vertically elongated roughened particles), and each of these plurality of roughened particles is more preferably made of copper particles.
- the copper particles may be made of metallic copper or may be made of a copper alloy.
- the roughening treatment for forming the roughened surface can be preferably performed by forming roughening particles of copper or copper alloy on the copper foil.
- This roughening treatment is preferably performed according to a plating method that involves a two-step plating process.
- the copper concentration is 5 g/L or more and 9 g/L or less (more preferably 7 g/L or more and 9 g/L or less)
- the sulfuric acid concentration is 100 g/L or more and 150 g/L or less (more preferably 100 g/L or more and 150 g/L or less).
- Electrodeposition is preferably performed using a copper sulfate solution with a tungsten concentration of 5 mg/L or more and 20 mg/L or less (more preferably 10 mg/L or more and 20 mg/L or less). This electrodeposition is carried out at a liquid temperature of 20°C or more and 50°C or less (more preferably 30°C or more and 50°C or less) and a current density of 10 A/ dm2 or more and 40 A/dm2 or less (more preferably 20 A/ dm2 or more and 40 A/dm2 or less) . (below) and an electrical quantity of 50 A ⁇ s to 200 A ⁇ s (more preferably 50 A ⁇ s to 150 A ⁇ s).
- the copper concentration is 40 g/L or more and 70 g/L or less (more preferably 50 g/L or more and 70 g/L or less), and the sulfuric acid concentration is 100 g/L or more and 300 g/L or less (more preferably 150 g/L).
- Electrodeposition is preferably performed using a copper sulfate solution (250 g/L or less).
- This electrodeposition is performed at a liquid temperature of 30°C or more and 60°C or less (more preferably 40°C or more and 50°C or less) and a current density of 10 A/ dm2 or more and 40 A/dm2 or less (more preferably 20 A/dm2 or more and 40 A/dm2 or less) .
- the plating conditions are preferably 10 A ⁇ s or more and 250 A ⁇ s or less (more preferably 10 A ⁇ s or more and 150 A ⁇ s or less).
- the roughened copper foil may be subjected to rust prevention treatment and may have a rust prevention treatment layer formed thereon.
- the rust prevention treatment includes plating treatment using zinc.
- the plating treatment using zinc may be either a zinc plating treatment or a zinc alloy plating treatment, and the zinc alloy plating treatment is particularly preferably a zinc-nickel alloy treatment.
- the zinc-nickel alloy treatment may be a plating treatment that contains at least Ni and Zn, and may further contain other elements such as Sn, Cr, and Co.
- the Ni/Zn adhesion ratio in zinc-nickel alloy plating is preferably 1.2 or more and 10 or less, more preferably 2 or more and 7 or less, and even more preferably 2.7 or more and 4 or less, in terms of mass ratio.
- the rust prevention treatment further includes chromate treatment, and it is more preferable that this chromate treatment is performed on the surface of the plating containing zinc after the plating treatment using zinc.
- a particularly preferred anticorrosion treatment is a combination of zinc-nickel alloy plating treatment followed by chromate treatment.
- the surface of the roughened copper foil may be treated with a silane coupling agent to form a silane coupling agent layer.
- a silane coupling agent layer can be formed by appropriately diluting a silane coupling agent, applying it, and drying it.
- silane coupling agents include epoxy-functional silane coupling agents such as 4-glycidylbutyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, or 3-aminopropyltrimethoxysilane, N-(2- aminoethyl)-3-aminopropyltrimethoxysilane, N-3-(4-(3-aminopropoxy)butoxy)propyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, etc.
- epoxy-functional silane coupling agents such as 4-glycidylbutyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, or 3-aminopropyltrimethoxysilane, N-(2- aminoethyl)-3-aminopropyltrimethoxysilane, N-3-(4-(3-aminopropoxy)but
- Amino-functional silane coupling agents or mercapto-functional silane coupling agents such as 3-mercaptopropyltrimethoxysilane, or olefin-functional silane coupling agents such as vinyltrimethoxysilane, vinylphenyltrimethoxysilane, or 3-methacrylic Examples include acrylic-functional silane coupling agents such as roxypropyltrimethoxysilane, or imidazole-functional silane coupling agents such as imidazole silane, or triazine-functional silane coupling agents such as triazine silane.
- the roughened copper foil further includes a rust prevention treatment layer and/or a silane coupling agent layer on the roughening treatment surface, and more preferably, a rust prevention treatment layer and/or a silane coupling agent layer.
- a rust prevention treatment layer and/or a silane coupling agent layer are formed on the roughening treatment surface, the numerical values of various parameters of the roughening treatment surface in this specification are based on the rust prevention treatment layer and/or the silane coupling agent layer. It means the numerical value obtained by measuring and analyzing the roughened copper foil after the treatment layer has been formed.
- the rust prevention layer and the silane coupling agent layer may be formed not only on the roughened surface side of the roughened copper foil but also on the side where the roughened surface is not formed.
- the roughened copper foil of the present invention may be provided in the form of a copper foil with a carrier. That is, according to a preferred embodiment of the present invention, the method includes a carrier, a release layer provided on the carrier, and the roughened copper foil provided on the release layer with the roughened surface facing outward. A copper foil with a carrier is provided.
- the carrier-attached copper foil may have any known layer structure, except for using the roughened copper foil of the present invention.
- the carrier is a support for supporting the roughened copper foil to improve its handling properties, and a typical carrier includes a metal layer.
- a typical carrier includes a metal layer.
- Examples of such carriers include aluminum foil, copper foil, stainless steel (SUS) foil, resin films whose surfaces are metal-coated with copper or the like, glass, and the like, with copper foil being preferred.
- the copper foil may be either a rolled copper foil or an electrolytic copper foil, but preferably an electrolytic copper foil.
- the thickness of the carrier is typically 250 ⁇ m or less, preferably 9 ⁇ m or more and 200 ⁇ m or less.
- the peeling layer is a layer that has the function of weakening the peeling strength of the carrier, ensuring the stability of this strength, and further suppressing mutual diffusion that may occur between the carrier and the copper foil during press molding at high temperatures.
- the release layer may be either an organic release layer or an inorganic release layer.
- organic components used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, carboxylic acids, and the like.
- nitrogen-containing organic compound include triazole compounds, imidazole compounds, etc. Among them, triazole compounds are preferred because they have easy releasability.
- triazole compounds examples include 1,2,3-benzotriazole, carboxybenzotriazole, N',N'-bis(benzotriazolylmethyl)urea, 1H-1,2,4-triazole and 3-amino- Examples include 1H-1,2,4-triazole.
- sulfur-containing organic compounds examples include mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol, and the like.
- carboxylic acids include monocarboxylic acids, dicarboxylic acids, and the like.
- examples of inorganic components used in the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and a chromate-treated film.
- the release layer may be formed by, for example, bringing a release layer component-containing solution into contact with at least one surface of the carrier to fix the release layer component on the surface of the carrier.
- this contact may be carried out by dipping the carrier in the release layer component-containing solution, spraying the release layer component-containing solution, flowing down the release layer component-containing solution, or the like.
- a method of forming a film with the release layer component by a vapor phase method such as vapor deposition or sputtering.
- the release layer component may be fixed to the carrier surface by adsorption or drying of a solution containing the release layer component, or by electrodeposition of the release layer component in the solution containing the release layer component.
- the thickness of the release layer is typically 1 nm or more and 1 ⁇ m or less, preferably 5 nm or more and 500 nm or less.
- auxiliary metal layers may be provided between the release layer and the carrier and/or the roughened copper foil.
- other functional layers include auxiliary metal layers.
- the auxiliary metal layer consists of nickel and/or cobalt.
- the thickness of the auxiliary metal layer is preferably 0.001 ⁇ m or more and 3 ⁇ m or less.
- the roughened copper foil of the present invention is preferably used for producing a copper-clad laminate for printed wiring boards. That is, according to a preferred embodiment of the present invention, a copper-clad laminate including the roughened copper foil is provided.
- This copper-clad laminate includes the roughened copper foil of the present invention and a resin layer provided in close contact with the roughened surface of the roughened copper foil.
- the roughened copper foil may be provided on one side or both sides of the resin layer.
- the resin layer contains a resin, preferably an insulating resin.
- the resin layer is a prepreg and/or a resin sheet.
- Prepreg is a general term for composite materials in which a base material such as a synthetic resin plate, glass plate, glass woven fabric, glass nonwoven fabric, or paper is impregnated with synthetic resin.
- the resin layer may contain filler particles made of various inorganic particles such as silica and alumina from the viewpoint of improving insulation properties.
- the thickness of the resin layer is not particularly limited, but is preferably 1 ⁇ m or more and 1000 ⁇ m or less, more preferably 2 ⁇ m or more and 400 ⁇ m or less, and even more preferably 3 ⁇ m or more and 200 ⁇ m or less.
- the resin layer may be composed of multiple layers.
- a resin layer such as a prepreg and/or a resin sheet may be provided on the roughened copper foil via a primer resin layer that is previously applied to the surface of the copper foil.
- the resin layer preferably contains a thermoplastic resin, and more preferably most (for example, 50% by weight or more) or most ( For example, 80% by weight or more or 90% by weight or more) is thermoplastic resin.
- thermoplastic resins include polysulfone (PSF), polyethersulfone (PES), amorphous polyarylate (PAR), liquid crystal polymer (LCP), polyetheretherketone (PEEK), and thermoplastic polyimide (PI).
- thermoplastic resins include polysulfone (PSF), polyethersulfone (PES), amorphous polyarylate (PAR), liquid crystal polymer (LCP), and polysulfone.
- thermoplastic resins include liquid crystal polymers (LCP) and/or fluororesins.
- fluororesin include polytetrafluoroethylene (PTFE), tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene/hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-ethylene. copolymers (ETFE), and any combination thereof.
- the insulating resin base material it is preferable to attach to the roughened copper foil by pressing while heating. This softens the thermoplastic resin and allows it to penetrate into the fine irregularities of the roughened surface. can be set. As a result, the adhesion between the copper foil and the resin can be ensured due to the anchor effect caused by the fine irregularities (particularly the vertically elongated roughened particles) biting into the resin.
- the roughened copper foil of the present invention is preferably used for producing printed wiring boards. That is, according to a preferred embodiment of the present invention, a printed wiring board including the roughened copper foil is provided. By using the roughened copper foil of the present invention, it is possible to achieve both excellent high frequency characteristics and high circuit adhesion in the manufacture of printed wiring boards.
- the printed wiring board according to this embodiment includes a layered structure in which a resin layer and a copper layer are laminated.
- the copper layer is a layer derived from the roughened copper foil of the present invention. Further, the resin layer is as described above regarding the copper-clad laminate.
- the printed wiring board may have a known layer structure, except for using the roughened copper foil of the present invention.
- printed wiring boards include single-sided or double-sided printed wiring boards in which the roughened copper foil of the present invention is adhered to one or both sides of prepreg to form a cured laminate, and circuits are formed on the cured laminate, and multilayered versions of these. Examples include multilayer printed wiring boards. Further, other specific examples include flexible printed wiring boards, COF, TAB tapes, etc. in which a circuit is formed by forming the roughened copper foil of the present invention on a resin film. As another specific example, a resin-coated copper foil (RCC) is formed by applying the above-mentioned resin layer to the roughened copper foil of the present invention, and the resin layer is laminated on the above-mentioned printed circuit board as an insulating adhesive layer.
- RRCC resin-coated copper foil
- build-up wiring boards in which circuits are formed using methods such as modified semi-additive method (MSAP) or subtractive method using the roughened copper foil as all or part of the wiring layer, and the roughened copper foil are removed.
- MSAP modified semi-additive method
- Examples include a build-up wiring board in which a circuit is formed using a semi-additive method (SAP), and a direct build-up on wafer in which lamination of resin-coated copper foil and circuit formation are alternately repeated on a semiconductor integrated circuit.
- More advanced examples include antenna elements in which the resin-coated copper foil is laminated onto a base material to form a circuit, electronic materials for panels and displays, and windows in which patterns are formed by laminating the resin-coated copper foil onto glass or resin film via an adhesive layer.
- Examples include electronic materials for glass, electromagnetic shielding films made by applying a conductive adhesive to the roughened copper foil of the present invention, and the like.
- printed wiring boards equipped with the roughened copper foil of the present invention can be used in applications such as automotive antennas, mobile phone base station antennas, high-performance servers, and collision prevention radars used in high frequency bands of signal frequencies of 10 GHz or higher. It is suitably used as a high frequency substrate.
- Examples 1 to 11 The roughened copper foil of the present invention was manufactured as follows.
- the conditions for the roughening treatment at each stage were as follows. - In the first roughening treatment, sulfuric acid, copper sulfate, and optionally sodium tungstate as an inorganic additive (Examples 1 to 6, 8, and 9 Electroplating was carried out using an acidic copper sulfate solution containing ) under the electrodeposition conditions (liquid temperature, current density, and quantity of electricity) shown in Table 1. - In the second roughening treatment, an acidic copper sulfate solution containing sulfuric acid and copper sulfate was used under the electrodeposition conditions (liquid temperature, current Electroplating was carried out at the following density and electrical charge).
- the roughened surface of the electrolytic copper foil was subjected to rust prevention treatment consisting of zinc-nickel alloy plating treatment and chromate treatment.
- a zinc-nickel alloy plating treatment was performed using a solution containing a zinc concentration of 1 g/L, a nickel concentration of 2 g/L, and a potassium pyrophosphate concentration of 80 g/L under conditions of a liquid temperature of 40°C and a current density of 0.5 A/ dm2 . I did it.
- the surface subjected to the zinc-nickel alloy plating treatment was subjected to chromate treatment using an aqueous solution containing 1 g/L of chromic acid under conditions of pH 12 and current density of 1 A/dm 2 .
- Silane coupling agent treatment An aqueous solution of 3-aminopropyltrimethoxysilane with a concentration of 6 g/L is adsorbed on the roughened surface of the electrolytic copper foil, and the water is evaporated with an electric heater to form a silane cup. Ring agent treatment was performed. At this time, the silane coupling agent treatment was not performed on the surface of the electrolytic copper foil that had not been subjected to the roughening treatment.
- the roughened surface of the roughened copper foil was measured by surface roughness analysis using a laser microscope in accordance with JIS B0681-2:2018 (Ssk, Sku and Smr1) or EUR15178N (Sds).
- the specific measurement conditions were as shown in Table 2.
- the surface profile of the obtained roughened surface was analyzed according to the conditions shown in Table 2, and Ssk, Sku, and Smr1 were calculated.
- the above parameters were calculated in 10 different visual fields, and the average value in all the visual fields was adopted as the surface texture parameter of the roughened surface of the sample. The results were as shown in Table 3.
- Sds was calculated as follows. First, the measurement data obtained with the laser microscope described above is loaded into the analysis software (Olympus Corporation, "OLS5100 LEXT (version 2.1.2.215)”), and the unprocessed data is converted to the LEXT file format. Output was performed. This LEXT file was read and analyzed using another analysis software (Digital Surf, "MountainsMap (version 9.0.9878)”) (analysis area: 64.397 ⁇ m x 64.463 ⁇ m). Specifically, the "parameter table” and “default settings” were selected in this order from the analysis target tab to display the parameter analysis screen.
- Root diameter of roughening particles The root diameter of the roughening particles used in the three-dimensional analysis of slice images to be described later was calculated as follows. First, prepreg (manufactured by Panasonic Corporation, R-5670NF, 45 ⁇ m thick x 2 sheets) was prepared as a resin film. The obtained roughened copper foils were laminated so that their roughened surfaces were in contact with the resin film, and using a vacuum press machine, they were pressed at a pressure of 3.0 MPa, a temperature of 190°C, and a pressing time of 90 minutes. Pressing was performed to produce a copper-clad laminate. The roughened copper foil was removed from this copper-clad laminate using a cupric chloride etching solution.
- resin replica a resin film having a surface onto which the surface shape of the roughened surface was transferred was obtained.
- resin replica a resin film having a surface onto which the surface shape of the roughened surface was transferred was obtained.
- FE-SEM Schottky field emission scanning electron microscope
- Image analysis was performed on the obtained resin replica image using image analysis software (manufactured by Nireco Co., Ltd., "LUZEX (version 1.60.8.2)") as follows.
- a binarization process was performed on the resin replica image under the condition of a threshold value of 125.
- the resin replica image after binarization obtained in Example 3 is shown in FIG.
- the area displayed in black was regarded as the root portion R of the transferred roughening particles.
- Slice images were acquired under the following measurement conditions using a FIB-SEM device (Carl Zeiss, Crossbeam 540, SEM and FIB simultaneous control: Atlas Engine v5.5.3).
- FIG. 7 shows an example of a slice image of the roughened copper foil of Example 9 in which the treatment was performed.
- a thermosetting resin 14 epoxy (G-2), manufactured by Gatan, Inc.) was applied to the roughened surface of the roughened copper foil 10 so that the roughened particles 12 were completely buried ( Coating thickness: 2.0 ⁇ m or more and 4.5 ⁇ m or less).
- the thermosetting resin 14 was cured by heating the roughened copper foil 10 coated with the resin at 120° C.
- the roughened copper foil 10 after cooling is put into the above-mentioned FIB-SEM device, and using the deposition function of the FIB, a platinum film 16 (thickness 1 .0 ⁇ m or more and 1.5 ⁇ m or less). Then, using the etching function of the FIB, the surface (xz plane) of the platinum film 16 is etched in the z-axis direction so that the same markings (three wedge shapes) can be visually recognized in each slice image. Processing was performed along the line to form a marking M. At this time, the machining depth in the y-axis direction was set to two-thirds or less of the thickness of the formed platinum film 16.
- a carbon film 18 (about 1 ⁇ m thick) was formed on the surface of the platinum film 16 using the FIB deposition function.
- the platinum film 16 and the carbon film 18 will be collectively referred to as the "protective film 20.”
- ROI means "a partial region of interest in an image” to which filter processing or recognition processing is applied. If there are cavities (uncolored areas) in “Cu”, the roughening particles 12 cannot be extracted accurately, so select the generated “ROI” and select “Fill inner areas: 3D” in “ROI tools”. ” and clicked “Apply” to perform the process of filling the cavity.
- thermoplastic resin liquid crystal polymer
- LCP liquid crystal polymer
- the obtained roughened copper foil was laminated on this thermoplastic resin base material so that its roughened surface was in contact with the resin base material, and using a vacuum press machine, press pressure was 4 MPa, temperature was 330°C, Pressing was performed under conditions of a pressing time of 10 minutes to produce a copper-clad laminate.
- a circuit was formed on this copper-clad laminate by a subtractive method using a cupric chloride etching solution to produce a test board having a linear circuit with a width of 3 mm.
- the formed test board was tested using a tabletop precision universal testing machine (AGS-50NX, manufactured by Shimadzu Corporation) in accordance with JIS C 5016-1994 method A (90° peeling).
- the film was peeled off from the thermoplastic resin base material to measure normal peel strength (kgf/cm). When this peel strength was 0.60 kgf/cm or more, it was determined to be acceptable.
- the results were as shown in Table 3.
- High-frequency base materials (MEGTRON6N, manufactured by Panasonic Corporation, 45 ⁇ m thick x 2 sheets) were prepared as insulating resin base materials.
- the obtained roughened copper foil was laminated on both sides of this insulating resin base material so that the roughened surface was in contact with the insulating resin base material, and a vacuum press was used to press the foil at a pressure of 3 MPa and a temperature of 190°C. Pressing was performed under the conditions of 90 minutes of pressing time to obtain a copper-clad laminate.
- circuit height 18 ⁇ m, circuit width: 300 ⁇ m, circuit length: 300 mm
- circuit length 300 mm
- a substrate for transmission loss measurement was obtained in which a microstrip line was formed so that the characteristic impedance was 50 ⁇ 2 ⁇ .
- the obtained transmission loss measurement board was measured using a network analyzer (manufactured by Keysight Technologies, N5225B) under the following setting conditions, and the transmission loss L 1 (dB) at 50 GHz was measured.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Laminated Bodies (AREA)
Abstract
Description
本発明は、粗化処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板に関する。 The present invention relates to a roughened copper foil, a copper foil with a carrier, a copper-clad laminate, and a printed wiring board.
近年の携帯用電子機器等の高機能化に伴い、大量の情報の高速処理をすべく信号の高周波化が進んでおり、5G、ミリ波、基地局アンテナ等の高周波用途に適したプリント配線板が求められている。このような高周波用プリント配線板には、高周波信号を品質低下させずに伝送可能とするために、伝送損失の低減が望まれる。プリント配線板は配線パターンに加工された銅箔と絶縁樹脂基材とを備えたものであるが、伝送損失は、銅箔に起因する導体損失と、絶縁樹脂基材に起因する誘電体損失とから主としてなる。したがって、絶縁樹脂基材に起因する誘電体損失を低減すべく、低誘電率の熱可塑性樹脂を用いることができれば好都合である。しかしながら、フッ素樹脂や液晶ポリマー(LCP)に代表される低誘電率の熱可塑性樹脂は、熱硬化性樹脂とは異なり、化学的な活性が低く、それ故銅箔との密着力が低い。 With the increasing functionality of portable electronic devices in recent years, the frequency of signals is increasing in order to process large amounts of information at high speed, and printed wiring boards are suitable for high frequency applications such as 5G, millimeter waves, and base station antennas. is required. Such a high frequency printed wiring board is desired to reduce transmission loss in order to be able to transmit high frequency signals without deteriorating quality. A printed wiring board is equipped with copper foil processed into a wiring pattern and an insulating resin base material, but transmission loss is caused by conductor loss due to the copper foil and dielectric loss due to the insulating resin base material. becomes the main character. Therefore, it would be advantageous if a thermoplastic resin with a low dielectric constant could be used in order to reduce the dielectric loss caused by the insulating resin base material. However, unlike thermosetting resins, thermoplastic resins with a low dielectric constant, such as fluororesins and liquid crystal polymers (LCP), have low chemical activity and therefore have low adhesion to copper foil.
そこで、銅箔と熱可塑性樹脂との密着性を向上する技術が提案されている。例えば、特許文献1(国際公開第2016/174998号)には、0.6μm以上1.7μm以下の十点平均粗さRzjisを有し、かつ、粗化粒子の高さの頻度分布における半値幅が0.9μm以下である粗化処理面を備えた銅箔が開示されている。かかる銅箔によれば、液晶ポリマーフィルムのような化学密着が期待できない絶縁樹脂基材に対しても高い剥離強度を呈することが可能とされている。 Therefore, techniques have been proposed to improve the adhesion between copper foil and thermoplastic resin. For example, in Patent Document 1 (International Publication No. 2016/174998), the roughening particles have a ten-point average roughness Rzjis of 0.6 μm or more and 1.7 μm or less, and the half-width in the frequency distribution of the height of the roughening particles. A copper foil having a roughened surface having a roughness of 0.9 μm or less is disclosed. According to such a copper foil, it is possible to exhibit high peel strength even to an insulating resin base material, such as a liquid crystal polymer film, to which chemical adhesion cannot be expected.
一方、導体損失は、高周波になるほど顕著に現れる銅箔の表皮効果によって増大しうる。したがって、高周波用途における伝送損失を抑制するには、銅箔の表皮効果を低減すべく粗化粒子の微細化が求められる。かかる微細な粗化粒子を有する銅箔として、例えば、特許文献2(国際公開第2014/133164号)には、粒径10nm以上250nm以下の銅粒子(例えば略球状銅粒子)を付着させて粗化した黒色粗化面を備える表面処理銅箔が開示されている。 On the other hand, conductor loss can increase due to the skin effect of copper foil, which becomes more pronounced as the frequency increases. Therefore, in order to suppress transmission loss in high frequency applications, it is required to make the roughening particles finer in order to reduce the skin effect of copper foil. As a copper foil having such fine roughening particles, for example, Patent Document 2 (International Publication No. 2014/133164) discloses a copper foil having a particle size of 10 nm or more and 250 nm or less (for example, approximately spherical copper particles) attached to the copper foil to make it rough. A surface-treated copper foil is disclosed that has a black, roughened surface.
高周波用途の銅箔では、上述したとおり粗化粒子を微細化することが求められるものの、このような銅箔は樹脂(とりわけ熱可塑性樹脂)との密着性が低下しやすい。この点、既存の銅箔は、熱可塑性樹脂との高い密着性と優れた高周波特性との両立という観点で必ずしも十分なものとはいえず、改善の余地がある。 Copper foils for high frequency applications are required to have finer roughening particles as described above, but such copper foils tend to have poor adhesion to resins (particularly thermoplastic resins). In this regard, existing copper foils are not necessarily sufficient in terms of both high adhesion with thermoplastic resins and excellent high frequency properties, and there is room for improvement.
本発明者らは、今般、粗化処理銅箔の表面において、スキューネスSskと、山頂密度Sdsとをそれぞれ所定の範囲内に制御することにより、熱可塑性樹脂との高い密着性と優れた高周波特性とを両立できるとの知見を得た。 The present inventors have recently discovered that by controlling the skewness Ssk and the peak density Sds within predetermined ranges on the surface of a roughened copper foil, the surface has high adhesion to thermoplastic resin and excellent high frequency properties. We found that it is possible to achieve both.
したがって、本発明の目的は、熱可塑性樹脂との高い密着性と優れた高周波特性とを両立可能な粗化処理銅箔を提供することにある。 Therefore, an object of the present invention is to provide a roughened copper foil that is capable of achieving both high adhesion to a thermoplastic resin and excellent high frequency properties.
本発明によれば、以下の態様が提供される。
[態様1]
少なくとも一方の側に粗化処理面を有する粗化処理銅箔であって、
前記粗化処理面は、スキューネスSskが0.35より大きく、かつ、山頂密度Sdsが1.57μm-2以上2.64μm-2以下であり、
前記Sskは、JIS B0681-2:2018に準拠してSフィルターによるカットオフを行わず、Lフィルターによるカットオフ波長1.0μmの条件で測定される値であり、
前記Sdsは、EUR15178Nに準拠してSフィルター及びLフィルターによるカットオフを行わない条件で測定される値である、粗化処理銅箔。
[態様2]
前記粗化処理面は、複数の粗化粒子を有しており、1μm2当たりの前記粗化粒子の体積が0.11μm3以上0.25μm3以下であり、
前記1μm2当たりの粗化粒子の体積は、前記粗化処理面に対してFIB-SEMを用いて得られる画像を三次元解析することにより算出される値である、態様1に記載の粗化処理銅箔。
[態様3]
前記粗化処理面は、クルトシスSkuが2.70以上4.90以下であり、
前記Skuは、JIS B0681-2:2018に準拠してSフィルター及びLフィルターによるカットオフを行わない条件で測定される値である、態様1又は2に記載の粗化処理銅箔。
[態様4]
前記粗化処理面は、突出山部とコア部を分離する負荷面積率Smr1が11.2%以上であり、
前記Smr1は、JIS B0681-2:2018に準拠してSフィルターによるカットオフを行わず、Lフィルターによるカットオフ波長1.0μmの条件で測定される値である、態様1~3のいずれか一つに記載の粗化処理銅箔。
[態様5]
前記粗化処理面に防錆処理層及び/又はシランカップリング剤層をさらに備えた、態様1~4のいずれか一つに記載の粗化処理銅箔。
[態様6]
キャリアと、該キャリア上に設けられた剥離層と、該剥離層上に前記粗化処理面を外側にして設けられた態様1~5のいずれか一つに記載の粗化処理銅箔とを備えた、キャリア付銅箔。
[態様7]
態様1~5のいずれか一つに記載の粗化処理銅箔を備えた、銅張積層板。
[態様8]
態様1~5のいずれか一つに記載の粗化処理銅箔を備えた、プリント配線板。
According to the present invention, the following aspects are provided.
[Aspect 1]
A roughened copper foil having a roughened surface on at least one side,
The roughened surface has a skewness Ssk greater than 0.35 and a peak density Sds of 1.57 μm −2 or more and 2.64 μm −2 or less,
The Ssk is a value measured in accordance with JIS B0681-2:2018 without cutoff with an S filter and with a cutoff wavelength of 1.0 μm using an L filter,
The above-mentioned Sds is a value measured in accordance with EUR15178N without cutoff using an S filter and an L filter, and is a roughened copper foil.
[Aspect 2]
The roughened surface has a plurality of roughened particles, and the volume of the roughened particles per 1 μm 2 is 0.11 μm 3 or more and 0.25 μm 3 or less,
The roughening method according to aspect 1, wherein the volume of the roughened particles per 1 μm 2 is a value calculated by three-dimensional analysis of an image obtained using FIB-SEM for the roughened surface. Treated copper foil.
[Aspect 3]
The roughened surface has a kurtosis Sku of 2.70 or more and 4.90 or less,
The roughened copper foil according to aspect 1 or 2, wherein the Sku is a value measured in accordance with JIS B0681-2:2018 without cutoff by an S filter and an L filter.
[Aspect 4]
The roughened surface has a load area ratio Smr1 of 11.2% or more that separates the protruding peak portion and the core portion,
The Smr1 is a value measured according to JIS B0681-2:2018 without cutoff with an S filter and with a cutoff wavelength of 1.0 μm using an L filter. The roughened copper foil described in .
[Aspect 5]
The roughened copper foil according to any one of aspects 1 to 4, further comprising a rust prevention treatment layer and/or a silane coupling agent layer on the roughened surface.
[Aspect 6]
A carrier, a release layer provided on the carrier, and the roughened copper foil according to any one of aspects 1 to 5 provided on the release layer with the roughened surface facing outward. Copper foil with carrier.
[Aspect 7]
A copper-clad laminate comprising the roughened copper foil according to any one of aspects 1 to 5.
[Aspect 8]
A printed wiring board comprising the roughened copper foil according to any one of aspects 1 to 5.
定義
本発明を特定するために用いられる用語ないしパラメータの定義を以下に示す。
Definitions Definitions of terms and parameters used to specify the present invention are shown below.
本明細書において「スキューネスSsk」又は「Ssk」とは、JIS B0681-2:2018に準拠して測定される、高さ分布の対称性を表すパラメータである。この値が0の場合は、高さ分布が上下に対称であることを示し、換言すれば大きさの揃ったコブ(粗化粒子等)が表面に並んでいることを示す。また、図1Aに示されるように、この値が0より小さい場合は、細かい谷が多い表面であることを示し、換言すれば丸みを帯びた太いコブが表面に並んでいることを示す。一方、図1Bに示されるように、この値が0より大きい場合は、細かい山が多い表面であることを示し、換言すれば細長いコブが表面に点在していることを示す。 In this specification, "skewness Ssk" or "Ssk" is a parameter representing the symmetry of height distribution, measured in accordance with JIS B0681-2:2018. When this value is 0, it indicates that the height distribution is vertically symmetrical, in other words, it indicates that bumps (roughening particles, etc.) of uniform size are arranged on the surface. Further, as shown in FIG. 1A, if this value is smaller than 0, it indicates that the surface has many small valleys, or in other words, that thick rounded bumps are lined up on the surface. On the other hand, as shown in FIG. 1B, if this value is greater than 0, it indicates that the surface has many fine mountains, or in other words, that the surface is dotted with elongated bumps.
本明細書において「山頂密度Sds」又は「Sds」とは、EUR15178Nに準拠して測定される、単位面積当たりの山頂数を表すパラメータである。図2A及び2Bに示されるように、Sdsの算出では、8つの近隣点Nよりも高い点を山頂Sとみなす。この値が大きいほどコブが密に存在することを示す(図2A参照)。一方、この値が小さいほどコブがまばらに存在することを示す(図2B参照)。 In this specification, "mountain peak density Sds" or "Sds" is a parameter representing the number of peaks per unit area, measured in accordance with EUR15178N. As shown in FIGS. 2A and 2B, in calculating Sds, a point higher than the eight neighboring points N is regarded as the mountaintop S. The larger this value is, the denser the bumps are (see FIG. 2A). On the other hand, the smaller this value is, the more sparsely the bumps are present (see FIG. 2B).
本明細書において「面の負荷曲線」(以下、単に「負荷曲線」という)とは、JIS B0681-2:2018に準拠して決定される、負荷面積率が0%から100%となる高さを表した曲線をいう。負荷面積率とは、図3に示されるように、ある高さc以上の領域の面積を表すパラメータである。高さcでの負荷面積率は図3におけるSmr(c)に相当する。図4に示されるように、負荷面積率が0%から負荷曲線に沿って負荷面積率の差を40%にして引いた負荷曲線の割線を、負荷面積率0%から移動させていき、割線の傾斜が最も緩くなる位置を面の負荷曲線の中央部分という。この中央部分に対して、縦軸方向の偏差の二乗和が最小になる直線を等価直線という。等価直線の負荷面積率0%から100%の高さの範囲に含まれる部分をコア部という。コア部より高い部分を突出山部といい、コア部より低い部分は突出谷部という。 In this specification, "surface load curve" (hereinafter simply referred to as "load curve") refers to the height at which the load area ratio is from 0% to 100%, determined in accordance with JIS B0681-2:2018. A curve that represents As shown in FIG. 3, the load area ratio is a parameter representing the area of a region having a certain height c or more. The load area ratio at height c corresponds to Smr(c) in FIG. As shown in Figure 4, the secant line of the load curve drawn from the load area ratio of 0% along the load curve with the difference in the load area ratio of 40% is moved from the load area ratio of 0%, and the secant line The position where the slope of is the gentlest is called the center of the surface load curve. The straight line that minimizes the sum of squares of deviations in the vertical axis direction with respect to this central part is called an equivalent straight line. The portion included in the height range of 0% to 100% of the load area ratio of the equivalent straight line is called the core portion. The portion higher than the core portion is called a protruding peak portion, and the portion lower than the core portion is called a protruding trough portion.
本明細書において「突出山部とコア部を分離する負荷面積率Smr1」又は「Smr1」とは、図4に示されるように、JIS B0681-2:2018に準拠して測定される、コア部の上部の高さと面の負荷曲線の交点における負荷面積率(すなわちコア部と突出山部を分ける負荷面積率)を表すパラメータである。 In this specification, "load area ratio Smr1 that separates the protruding mountain part and the core part" or "Smr1" refers to the core part measured in accordance with JIS B0681-2:2018, as shown in FIG. This is a parameter that represents the load area ratio at the intersection of the upper height of the surface and the surface load curve (i.e., the load area ratio that separates the core portion from the protruding peak portion).
本明細書において、「クルトシスSku」とは、JIS B0681-2:2018に準拠して測定される、高さ分布の鋭さを表すパラメータであり、尖り度とも称される。Sku=3は高さ分布が正規分布であることを意味し、換言すれば大きさの揃ったコブが表面に並んでいることを示す。Sku>3であると表面に鋭い山や谷が多く、換言すれば表面に立っている微細なコブが多いことを示す。Sku<3であると表面が平坦であることを意味し、換言すれば丸みを帯びた太いコブが表面に並んでいることを示す。 In this specification, "kurtosis Sku" is a parameter representing the sharpness of the height distribution, which is measured in accordance with JIS B0681-2:2018, and is also referred to as kurtosis. Sku=3 means that the height distribution is a normal distribution, in other words, it shows that bumps of uniform size are lined up on the surface. When Sku>3, there are many sharp peaks and valleys on the surface, in other words, there are many fine bumps standing on the surface. Sku<3 means that the surface is flat, in other words, thick rounded bumps are arranged on the surface.
Ssk、Sds、Smr1及びSkuは、粗化処理面における所定の測定領域(例えば64.397μm×64.463μmの二次元領域)の表面プロファイルを市販のレーザー顕微鏡で測定することによりそれぞれ算出することができる。本明細書において、Ssk及びSmr1はSフィルターによるカットオフを行わず、Lフィルターによるカットオフ波長1.0μmの条件で測定されるものとする。一方、Sds及びSkuはSフィルター及びLフィルターによるカットオフを行わない条件で測定されるものとする。その他、レーザー顕微鏡による表面プロファイルの好ましい測定条件及び解析条件については後述の実施例に示すものとする。 Ssk, Sds, Smr1 and Sku can be calculated by measuring the surface profile of a predetermined measurement area (for example, a two-dimensional area of 64.397 μm x 64.463 μm) on the roughened surface using a commercially available laser microscope. can. In this specification, it is assumed that Ssk and Smr1 are measured under conditions of a cutoff wavelength of 1.0 μm using an L filter and no cutoff using an S filter. On the other hand, it is assumed that Sds and Sku are measured under conditions where no cutoff is performed using the S filter and the L filter. Other preferable measurement conditions and analysis conditions for the surface profile using a laser microscope will be shown in Examples below.
本明細書において、「1μm2当たりの粗化粒子の体積」とは、粗化処理面に対してFIB-SEMを用いて得られる画像を三次元解析することにより算出される値である。この三次元解析は、市販の三次元画像処理ソフトウェア(例えばObject Research System社製、Dragonfly(バージョン2022.1.0.1259))を用いて、以下の手順により好ましく行うことができる。
(1)FIB-SEMにより取得した粗化処理銅箔のスライス画像を読み込み、位置合わせを行う。
(2)スライス画像のトリミングを実施する。
(3)粗化処理銅箔に由来するCu部分を抽出するための機械学習を行い、セグメンテーションモデルを作成する。
(4)セグメンテーションモデルをスライス画像に適用し、Cu部分の抽出を行う。
(5)粗化粒子の根元径に基づき、Cu部分から粗化粒子の抽出を行う。
(6)所定の解析領域(例えば4.5μm×4.5μm)のトリミングを行い、1μm2当たりの粗化粒子の体積を算出する。
In this specification, "volume of roughened particles per 1 μm 2 " is a value calculated by three-dimensional analysis of an image obtained using FIB-SEM of a roughened surface. This three-dimensional analysis can be preferably performed by the following procedure using commercially available three-dimensional image processing software (for example, Dragonfly (version 2022.1.0.1259) manufactured by Object Research System).
(1) Read the slice image of the roughened copper foil obtained by FIB-SEM and perform alignment.
(2) Perform trimming of the slice image.
(3) Machine learning is performed to extract the Cu portion originating from the roughened copper foil, and a segmentation model is created.
(4) Apply the segmentation model to the slice image and extract the Cu portion.
(5) Extract the roughened particles from the Cu portion based on the root diameter of the roughened particles.
(6) Trim a predetermined analysis area (for example, 4.5 μm x 4.5 μm) and calculate the volume of roughened particles per 1 μm 2 .
FIB-SEMの好ましい測定条件及び試料作製方法、上述した三次元画像処理ソフトウェアを用いた解析方法の詳細、並びに粗化粒子の根元径の具体的な算出方法については後述の実施例に示すものとする。 Preferred measurement conditions and sample preparation methods for FIB-SEM, details of the analysis method using the above-mentioned three-dimensional image processing software, and a specific method for calculating the root diameter of the roughening particles are shown in the Examples below. do.
本明細書において、電解銅箔の「電極面」とは、電解銅箔製造時に陰極と接していた側の面を指す。 In this specification, the "electrode surface" of the electrolytic copper foil refers to the surface that was in contact with the cathode during manufacture of the electrolytic copper foil.
本明細書において、電解銅箔の「析出面」とは、電解銅箔製造時に電解銅が析出されていく側の面、すなわち陰極と接していない側の面を指す。 As used herein, the "deposition surface" of an electrolytic copper foil refers to the surface on which electrolytic copper is deposited during production of the electrolytic copper foil, that is, the surface that is not in contact with the cathode.
粗化処理銅箔
本発明による銅箔は粗化処理銅箔である。この粗化処理銅箔は、少なくとも一方の側に粗化処理面を有する。この粗化処理面は、スキューネスSskが0.35より大きい。また、この粗化処理面は山頂密度Sdsが1.57μm-2以上2.64μm-2以下である。このように粗化処理銅箔の表面において、スキューネスSskと、山頂密度Sdsとをそれぞれ所定の範囲内に制御することにより、熱可塑性樹脂との高い密着性と優れた高周波特性とを両立できる。
Roughened Copper Foil The copper foil according to the present invention is a roughened copper foil. This roughened copper foil has a roughened surface on at least one side. This roughened surface has a skewness Ssk greater than 0.35. Further, this roughened surface has a peak density Sds of 1.57 μm −2 or more and 2.64 μm −2 or less. By controlling the skewness Ssk and the peak density Sds within predetermined ranges on the surface of the roughened copper foil in this way, it is possible to achieve both high adhesion with the thermoplastic resin and excellent high frequency characteristics.
上述したとおり、高周波用途における伝送損失を抑制するには、銅箔の表皮効果を低減すべく粗化粒子の微細化が求められる。しかしながら、かかる微細な粗化粒子を有する銅箔は樹脂基材とのアンカー効果(すなわち銅箔表面の凹凸を利用した物理的な密着性向上効果)が低減する結果、樹脂との密着性に劣るものとなりやすい。特に、フッ素樹脂や液晶ポリマー(LCP)に代表される低誘電率の熱可塑性樹脂は、熱硬化性樹脂とは異なり、化学的な活性が低く、それ故銅箔との密着力が低い。このように、高周波特性という点で有利な低粗度の銅箔は、本来的に樹脂との密着力に劣るものとなりやすい。これに対して、本発明の粗化処理銅箔によれば、熱可塑性樹脂との高い密着性と優れた高周波特性(例えば表皮効果の低減)とを予想外にも両立することができる。 As mentioned above, in order to suppress transmission loss in high frequency applications, it is required to make the roughening particles finer in order to reduce the skin effect of copper foil. However, copper foil with such fine roughening particles has poor adhesion with resin as a result of a reduced anchoring effect with the resin base material (i.e., the effect of improving physical adhesion using the unevenness of the surface of the copper foil). It's easy to become a thing. In particular, thermoplastic resins with a low dielectric constant, such as fluororesins and liquid crystal polymers (LCP), have low chemical activity and therefore have low adhesion to copper foil, unlike thermosetting resins. As described above, copper foil with low roughness, which is advantageous in terms of high frequency characteristics, tends to inherently have poor adhesion to resin. On the other hand, according to the roughened copper foil of the present invention, it is possible to unexpectedly achieve both high adhesion with the thermoplastic resin and excellent high frequency characteristics (for example, reduction of skin effect).
樹脂との高い密着性と、優れた高周波特性との両立を可能とするメカニズムは必ずしも定かではないが、例えば、以下のようなものと考えられる。すなわち、粗化処理面のSskは、その数値が大きいほど細かい山が多い、つまり細長い粗化粒子が点在しているものとなる。したがって、粗化処理面のSskが0.35より大きい値であると、粗化粒子が微細な縦長の形状を有するものとなる。これにより、従来の略球状の粗化粒子(Ssk=0.2~0.3程度)や、高さが極めて低く均一な粗化粒子(Ssk=0~0.1程度)等と比べて、熱可塑性樹脂基材との高いアンカー効果を発揮できる。また、形状が太く大きい粗化粒子(Ssk<0)と比べて、表皮効果を低減することができる。さらに、山頂密度Sdsが1.57μm-2以上2.64μm-2以下である粗化処理面は、コブの密度が適度なものとなり、熱可塑性樹脂との高い密着性と優れた高周波特性とをバランス良く実現することができる。すなわち、山頂密度Sdsは、上述のとおり単位面積当たりの山頂数を表すパラメータであり、換言すれば粗化処理面における粗化粒子の大きさに関係するパラメータといえる。この点、粗化処理面の山頂密度Sdsを1.57μm-2以上に制御することで、粗化粒子の大きさが微細なものとなり、表皮効果の低減に有効な表面形状となる。一方、粗化処理面の山頂密度Sdsを2.64μm-2以下に制御することで、粗化粒子の大きさが適度なものとなり、熱可塑性樹脂基材との高いアンカー効果を発揮可能な表面形状となる。その結果、熱可塑性樹脂との高い密着性と、優れた高周波特性とを両立することが可能となると考えられる。 Although the mechanism that makes it possible to achieve both high adhesion with resin and excellent high frequency properties is not necessarily clear, it is thought to be, for example, as follows. That is, the larger the value of Ssk of the roughened surface, the more fine peaks there are, that is, the more elongated roughening particles are scattered. Therefore, if the Ssk of the roughened surface is larger than 0.35, the roughened particles will have a fine vertically elongated shape. As a result, compared to conventional approximately spherical roughening particles (Ssk = about 0.2 to 0.3) and uniform roughening particles with extremely low height (Ssk = about 0 to 0.1), It can exhibit a high anchoring effect with thermoplastic resin base materials. Furthermore, the skin effect can be reduced compared to roughening particles that are thick and large in shape (Ssk<0). Furthermore, the roughened surface with a peak density Sds of 1.57 μm −2 or more and 2.64 μm −2 or less has a moderate density of bumps, and has high adhesion with thermoplastic resin and excellent high frequency characteristics. It can be achieved in a well-balanced manner. That is, the peak density Sds is a parameter representing the number of peaks per unit area as described above, and in other words, it can be said to be a parameter related to the size of the roughened particles on the roughened surface. In this regard, by controlling the peak density Sds of the roughened surface to 1.57 μm −2 or more, the size of the roughened particles becomes fine, resulting in a surface shape that is effective in reducing the skin effect. On the other hand, by controlling the peak density Sds of the roughened surface to 2.64 μm -2 or less, the size of the roughened particles becomes appropriate, and the surface can exhibit a high anchoring effect with the thermoplastic resin base material. It becomes a shape. As a result, it is thought that it becomes possible to achieve both high adhesion with the thermoplastic resin and excellent high frequency properties.
したがって、粗化処理銅箔は、粗化処理面のSskが0.35より大きく、好ましくは0.35より大きく0.79以下、より好ましくは0.36以上0.57以下である。 Therefore, in the roughened copper foil, the Ssk of the roughened surface is greater than 0.35, preferably greater than 0.35 and less than or equal to 0.79, and more preferably greater than or equal to 0.36 and less than or equal to 0.57.
また、粗化処理銅箔は、粗化処理面のSdsが1.57μm-2以上2.64μm-2以下であり、好ましくは1.57μm-2以上2.57μm-2以下、より好ましくは1.62μm-2以上2.57μm-2以下である。 In addition, the roughened copper foil has an Sds of 1.57 μm −2 or more and 2.64 μm −2 or less, preferably 1.57 μm −2 or more and 2.57 μm −2 or less, and more preferably 1. .62μm -2 or more and 2.57μm -2 or less.
粗化処理銅箔は、粗化処理面に複数の粗化粒子を有するのが好ましい。この場合、粗化処理面1μm2当たりの粗化粒子の体積は0.11μm3以上0.25μm3以下であるのが好ましく、より好ましくは0.11μm3以上0.18μm3以下、さらに好ましくは0.11μm3以上0.16μm3以下である。1μm2当たりの粗化粒子の体積が上記範囲内であると、表皮効果の低減に有効な微細な粗化粒子を有する表面形状となり、熱可塑性樹脂との高い密着性を確保しながらも、より一層優れた高周波特性を実現することができる。 It is preferable that the roughened copper foil has a plurality of roughened particles on the roughened surface. In this case, the volume of the roughened particles per 1 μm 2 of the roughened surface is preferably 0.11 μm 3 or more and 0.25 μm 3 or less, more preferably 0.11 μm 3 or more and 0.18 μm 3 or less, and even more preferably 0.11 μm 3 or more and 0.16 μm 3 or less. When the volume of the roughened particles per 1 μm2 is within the above range, the surface shape will have fine roughened particles that are effective in reducing the skin effect, and while ensuring high adhesion with the thermoplastic resin, Even better high frequency characteristics can be achieved.
粗化処理銅箔は、粗化処理面のSkuが2.70以上4.90以下であるのが好ましく、より好ましくは3.00以上4.00以下、さらに好ましくは3.00以上3.60以下である。Skuが上記範囲内であると、熱可塑性樹脂との高い密着性と、優れた高周波特性とをより一層バランス良く実現できる。 The roughened copper foil preferably has a Sku of 2.70 or more and 4.90 or less, more preferably 3.00 or more and 4.00 or less, and even more preferably 3.00 or more and 3.60. It is as follows. When Sku is within the above range, high adhesion to the thermoplastic resin and excellent high frequency properties can be achieved in a better balance.
粗化処理銅箔は、粗化処理面のSmr1が11.2%以上であるのが好ましく、より好ましくは11.2%以上13.4%以下、さらに好ましくは11.3%以上12.4%以下である。Smr1が上記範囲内であると、熱可塑性樹脂との高い密着性と、優れた高周波特性とをより一層バランス良く実現できる。 The roughened copper foil preferably has an Smr1 of 11.2% or more on the roughened surface, more preferably 11.2% or more and 13.4% or less, and even more preferably 11.3% or more and 12.4%. % or less. When Smr1 is within the above range, high adhesion to the thermoplastic resin and excellent high frequency properties can be achieved in a better balance.
粗化処理銅箔の厚さは特に限定されないが、0.1μm以上35μm以下が好ましく、より好ましくは0.5μm以上5.0μm以下、さらに好ましくは1.0μm以上3.0μm以下である。なお、粗化処理銅箔は、通常の銅箔の表面に粗化処理を行ったものに限らず、キャリア付銅箔の銅箔表面に粗化処理を行ったものであってもよい。ここで、粗化処理銅箔の厚さは、粗化処理面の表面に形成された粗化粒子の高さを含まない厚さ(粗化処理銅箔を構成する銅箔自体の厚さ)である。 The thickness of the roughened copper foil is not particularly limited, but is preferably 0.1 μm or more and 35 μm or less, more preferably 0.5 μm or more and 5.0 μm or less, and even more preferably 1.0 μm or more and 3.0 μm or less. Note that the roughened copper foil is not limited to one in which the surface of a normal copper foil is roughened, but may be one in which the surface of a copper foil with a carrier is roughened. Here, the thickness of the roughened copper foil is the thickness that does not include the height of the roughening particles formed on the surface of the roughened surface (the thickness of the copper foil itself that constitutes the roughened copper foil) It is.
粗化処理銅箔は、少なくとも一方の側に粗化処理面を有する。すなわち、粗化処理銅箔は両側に粗化処理面を有するものであってもよいし、一方の側にのみ粗化処理面を有するものであってもよい。上述したとおり粗化処理面は、複数の粗化粒子(好ましくは縦長形状の粗化粒子)を備えてなるのが好ましく、これら複数の粗化粒子はそれぞれ銅粒子からなるのがより好ましい。銅粒子は金属銅からなるものであってもよいし、銅合金からなるものであってもよい。 The roughened copper foil has a roughened surface on at least one side. That is, the roughened copper foil may have a roughened surface on both sides, or may have a roughened surface only on one side. As described above, the roughened surface preferably includes a plurality of roughened particles (preferably vertically elongated roughened particles), and each of these plurality of roughened particles is more preferably made of copper particles. The copper particles may be made of metallic copper or may be made of a copper alloy.
粗化処理面を形成するための粗化処理は、銅箔の上に銅又は銅合金で粗化粒子を形成することにより好ましく行うことができる。この粗化処理は、2段階のめっき工程を経るめっき手法に従って行われるのが好ましい。この場合、1段階目のめっき工程では、銅濃度5g/L以上9g/L以下(より好ましくは7g/L以上9g/L以下)、硫酸濃度100g/L以上150g/L以下(より好ましくは100g/L以上130g/L以下)及びタングステン濃度5mg/L以上20mg/L以下(より好ましくは10mg/L以上20mg/L以下)の硫酸銅溶液を用いて電着を行うのが好ましい。この電着は、液温20℃以上50℃以下(より好ましくは30℃以上50℃以下)、電流密度10A/dm2以上40A/dm2以下(より好ましくは20A/dm2以上40A/dm2以下)及び電気量50A・s以上200A・s以下(より好ましくは50A・s以上150A・s以下)のめっき条件で行うのが好ましい。とりわけ、1段階目のめっき工程において、銅濃度が従来の手法よりも低く、かつ、上記濃度範囲内の無機添加剤を含む硫酸銅溶液を用いることで、微細な縦長形状の粗化粒子を処理表面に形成しやすくなる。2段階目のめっき工程では、銅濃度40g/L以上70g/L以下(より好ましくは50g/L以上70g/L以下)、及び硫酸濃度100g/L以上300g/L以下(より好ましくは150g/L以上250g/L以下)の硫酸銅溶液を用いて電着を行うのが好ましい。この電着は、液温30℃以上60℃以下(より好ましくは40℃以上50℃以下)、電流密度10A/dm2以上40A/dm2以下(より好ましくは20A/dm2以上40A/dm2以下)、及び電気量10A・s以上250A・s以下(より好ましくは10A・s以上150A・s以下)のめっき条件で行うのが好ましい。このようなめっき工程を経ることで、上述した表面パラメータを満足するのに好都合な粗化粒子を処理表面に形成しやすくなる。 The roughening treatment for forming the roughened surface can be preferably performed by forming roughening particles of copper or copper alloy on the copper foil. This roughening treatment is preferably performed according to a plating method that involves a two-step plating process. In this case, in the first step plating process, the copper concentration is 5 g/L or more and 9 g/L or less (more preferably 7 g/L or more and 9 g/L or less), and the sulfuric acid concentration is 100 g/L or more and 150 g/L or less (more preferably 100 g/L or more and 150 g/L or less). Electrodeposition is preferably performed using a copper sulfate solution with a tungsten concentration of 5 mg/L or more and 20 mg/L or less (more preferably 10 mg/L or more and 20 mg/L or less). This electrodeposition is carried out at a liquid temperature of 20°C or more and 50°C or less (more preferably 30°C or more and 50°C or less) and a current density of 10 A/ dm2 or more and 40 A/dm2 or less (more preferably 20 A/ dm2 or more and 40 A/dm2 or less) . (below) and an electrical quantity of 50 A·s to 200 A·s (more preferably 50 A·s to 150 A·s). In particular, in the first step plating process, fine vertically shaped roughened particles are treated by using a copper sulfate solution that has a lower copper concentration than conventional methods and contains inorganic additives within the above concentration range. It becomes easier to form on the surface. In the second plating step, the copper concentration is 40 g/L or more and 70 g/L or less (more preferably 50 g/L or more and 70 g/L or less), and the sulfuric acid concentration is 100 g/L or more and 300 g/L or less (more preferably 150 g/L). Electrodeposition is preferably performed using a copper sulfate solution (250 g/L or less). This electrodeposition is performed at a liquid temperature of 30°C or more and 60°C or less (more preferably 40°C or more and 50°C or less) and a current density of 10 A/ dm2 or more and 40 A/dm2 or less (more preferably 20 A/dm2 or more and 40 A/dm2 or less) . (below), and the plating conditions are preferably 10 A·s or more and 250 A·s or less (more preferably 10 A·s or more and 150 A·s or less). By going through such a plating step, roughened particles convenient for satisfying the above-mentioned surface parameters can be easily formed on the treated surface.
所望により、粗化処理銅箔は防錆処理が施され、防錆処理層が形成されたものであってもよい。防錆処理は、亜鉛を用いためっき処理を含むのが好ましい。亜鉛を用いためっき処理は、亜鉛めっき処理及び亜鉛合金めっき処理のいずれであってもよく、亜鉛合金めっき処理は亜鉛-ニッケル合金処理が特に好ましい。亜鉛-ニッケル合金処理は少なくともNi及びZnを含むめっき処理であればよく、Sn、Cr、Co等の他の元素をさらに含んでいてもよい。亜鉛-ニッケル合金めっきにおけるNi/Zn付着比率は、質量比で、1.2以上10以下が好ましく、より好ましくは2以上7以下、さらに好ましくは2.7以上4以下である。また、防錆処理はクロメート処理をさらに含むのが好ましく、このクロメート処理は亜鉛を用いためっき処理の後に、亜鉛を含むめっきの表面に行われるのがより好ましい。こうすることで防錆性をさらに向上させることができる。特に好ましい防錆処理は、亜鉛-ニッケル合金めっき処理とその後のクロメート処理との組合せである。 If desired, the roughened copper foil may be subjected to rust prevention treatment and may have a rust prevention treatment layer formed thereon. Preferably, the rust prevention treatment includes plating treatment using zinc. The plating treatment using zinc may be either a zinc plating treatment or a zinc alloy plating treatment, and the zinc alloy plating treatment is particularly preferably a zinc-nickel alloy treatment. The zinc-nickel alloy treatment may be a plating treatment that contains at least Ni and Zn, and may further contain other elements such as Sn, Cr, and Co. The Ni/Zn adhesion ratio in zinc-nickel alloy plating is preferably 1.2 or more and 10 or less, more preferably 2 or more and 7 or less, and even more preferably 2.7 or more and 4 or less, in terms of mass ratio. Moreover, it is preferable that the rust prevention treatment further includes chromate treatment, and it is more preferable that this chromate treatment is performed on the surface of the plating containing zinc after the plating treatment using zinc. By doing so, the rust prevention properties can be further improved. A particularly preferred anticorrosion treatment is a combination of zinc-nickel alloy plating treatment followed by chromate treatment.
所望により、粗化処理銅箔は表面にシランカップリング剤処理が施され、シランカップリング剤層が形成されたものであってもよい。これにより耐湿性、耐薬品性及び接着剤等との密着性等を向上することができる。シランカップリング剤層は、シランカップリング剤を適宜希釈して塗布し、乾燥させることにより形成することができる。シランカップリング剤の例としては、4-グリシジルブチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン等のエポキシ官能性シランカップリング剤、又は3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-3-(4-(3-アミノプロポキシ)ブトキシ)プロピル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン等のアミノ官能性シランカップリング剤、又は3-メルカプトプロピルトリメトキシシラン等のメルカプト官能性シランカップリング剤又はビニルトリメトキシシラン、ビニルフェニルトリメトキシシラン等のオレフィン官能性シランカップリング剤、又は3-メタクリロキシプロピルトリメトキシシラン等のアクリル官能性シランカップリング剤、又はイミダゾールシラン等のイミダゾール官能性シランカップリング剤、又はトリアジンシラン等のトリアジン官能性シランカップリング剤等が挙げられる。 If desired, the surface of the roughened copper foil may be treated with a silane coupling agent to form a silane coupling agent layer. This makes it possible to improve moisture resistance, chemical resistance, adhesion to adhesives, and the like. The silane coupling agent layer can be formed by appropriately diluting a silane coupling agent, applying it, and drying it. Examples of silane coupling agents include epoxy-functional silane coupling agents such as 4-glycidylbutyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, or 3-aminopropyltrimethoxysilane, N-(2- aminoethyl)-3-aminopropyltrimethoxysilane, N-3-(4-(3-aminopropoxy)butoxy)propyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, etc. Amino-functional silane coupling agents, or mercapto-functional silane coupling agents such as 3-mercaptopropyltrimethoxysilane, or olefin-functional silane coupling agents such as vinyltrimethoxysilane, vinylphenyltrimethoxysilane, or 3-methacrylic Examples include acrylic-functional silane coupling agents such as roxypropyltrimethoxysilane, or imidazole-functional silane coupling agents such as imidazole silane, or triazine-functional silane coupling agents such as triazine silane.
上述した理由から、粗化処理銅箔は、粗化処理面に防錆処理層及び/又はシランカップリング剤層をさらに備えることが好ましく、より好ましくは防錆処理層及びシランカップリング剤層の両方を備える。粗化処理面に防錆処理層及び/又はシランカップリング剤層が形成されている場合、本明細書における粗化処理面の各種パラメータの数値は、防錆処理層及び/又はシランカップリング剤処理層が形成された後の粗化処理銅箔を測定及び解析して得られる数値を意味するものとする。防錆処理層及びシランカップリング剤層は、粗化処理銅箔の粗化処理面側のみならず、粗化処理面が形成されていない側に形成されてもよい。 For the reasons mentioned above, it is preferable that the roughened copper foil further includes a rust prevention treatment layer and/or a silane coupling agent layer on the roughening treatment surface, and more preferably, a rust prevention treatment layer and/or a silane coupling agent layer. Have both. When a rust prevention treatment layer and/or a silane coupling agent layer are formed on the roughening treatment surface, the numerical values of various parameters of the roughening treatment surface in this specification are based on the rust prevention treatment layer and/or the silane coupling agent layer. It means the numerical value obtained by measuring and analyzing the roughened copper foil after the treatment layer has been formed. The rust prevention layer and the silane coupling agent layer may be formed not only on the roughened surface side of the roughened copper foil but also on the side where the roughened surface is not formed.
キャリア付銅箔
上述したように、本発明の粗化処理銅箔はキャリア付銅箔の形態で提供されてもよい。すなわち、本発明の好ましい態様によれば、キャリアと、キャリア上に設けられた剥離層と、剥離層上に粗化処理面を外側にして設けられた上記粗化処理銅箔とを備えた、キャリア付銅箔が提供される。もっとも、キャリア付銅箔は、本発明の粗化処理銅箔を用いること以外は、公知の層構成が採用可能である。
Copper Foil with Carrier As mentioned above, the roughened copper foil of the present invention may be provided in the form of a copper foil with a carrier. That is, according to a preferred embodiment of the present invention, the method includes a carrier, a release layer provided on the carrier, and the roughened copper foil provided on the release layer with the roughened surface facing outward. A copper foil with a carrier is provided. However, the carrier-attached copper foil may have any known layer structure, except for using the roughened copper foil of the present invention.
キャリアは、粗化処理銅箔を支持してそのハンドリング性を向上させるための支持体であり、典型的なキャリアは金属層を含む。このようなキャリアの例としては、アルミニウム箔、銅箔、ステンレス(SUS)箔、表面を銅等でメタルコーティングした樹脂フィルムやガラス等が挙げられ、好ましくは、銅箔である。銅箔は圧延銅箔及び電解銅箔のいずれであってもよいが、好ましくは電解銅箔である。キャリアの厚さは典型的には250μm以下であり、好ましくは9μm以上200μm以下である。 The carrier is a support for supporting the roughened copper foil to improve its handling properties, and a typical carrier includes a metal layer. Examples of such carriers include aluminum foil, copper foil, stainless steel (SUS) foil, resin films whose surfaces are metal-coated with copper or the like, glass, and the like, with copper foil being preferred. The copper foil may be either a rolled copper foil or an electrolytic copper foil, but preferably an electrolytic copper foil. The thickness of the carrier is typically 250 μm or less, preferably 9 μm or more and 200 μm or less.
剥離層は、キャリアの引き剥がし強度を弱くし、該強度の安定性を担保し、さらには高温でのプレス成形時にキャリアと銅箔の間で起こりうる相互拡散を抑制する機能を有する層である。剥離層は、キャリアの一方の面に形成されるのが一般的であるが、両面に形成されてもよい。剥離層は、有機剥離層及び無機剥離層のいずれであってもよい。有機剥離層に用いられる有機成分の例としては、窒素含有有機化合物、硫黄含有有機化合物、カルボン酸等が挙げられる。窒素含有有機化合物の例としては、トリアゾール化合物、イミダゾール化合物等が挙げられ、中でもトリアゾール化合物は剥離性が安定し易い点で好ましい。トリアゾール化合物の例としては、1,2,3-ベンゾトリアゾール、カルボキシベンゾトリアゾール、N’,N’-ビス(ベンゾトリアゾリルメチル)ユリア、1H-1,2,4-トリアゾール及び3-アミノ-1H-1,2,4-トリアゾール等が挙げられる。硫黄含有有機化合物の例としては、メルカプトベンゾチアゾール、チオシアヌル酸、2-ベンズイミダゾールチオール等が挙げられる。カルボン酸の例としては、モノカルボン酸、ジカルボン酸等が挙げられる。一方、無機剥離層に用いられる無機成分の例としては、Ni、Mo、Co、Cr、Fe、Ti、W、P、Zn、クロメート処理膜等が挙げられる。なお、剥離層の形成はキャリアの少なくとも一方の表面に剥離層成分含有溶液を接触させ、剥離層成分をキャリアの表面に固定させること等により行えばよい。キャリアを剥離層成分含有溶液に接触させる場合、この接触は、剥離層成分含有溶液への浸漬、剥離層成分含有溶液の噴霧、剥離層成分含有溶液の流下等により行えばよい。その他、蒸着やスパッタリング等による気相法で剥離層成分を被膜形成する方法も採用可能である。また、剥離層成分のキャリア表面への固定は、剥離層成分含有溶液の吸着や乾燥、剥離層成分含有溶液中の剥離層成分の電着等により行えばよい。剥離層の厚さは、典型的には1nm以上1μm以下であり、好ましくは5nm以上500nm以下である。 The peeling layer is a layer that has the function of weakening the peeling strength of the carrier, ensuring the stability of this strength, and further suppressing mutual diffusion that may occur between the carrier and the copper foil during press molding at high temperatures. . Although the release layer is generally formed on one side of the carrier, it may be formed on both sides. The release layer may be either an organic release layer or an inorganic release layer. Examples of organic components used in the organic release layer include nitrogen-containing organic compounds, sulfur-containing organic compounds, carboxylic acids, and the like. Examples of the nitrogen-containing organic compound include triazole compounds, imidazole compounds, etc. Among them, triazole compounds are preferred because they have easy releasability. Examples of triazole compounds include 1,2,3-benzotriazole, carboxybenzotriazole, N',N'-bis(benzotriazolylmethyl)urea, 1H-1,2,4-triazole and 3-amino- Examples include 1H-1,2,4-triazole. Examples of sulfur-containing organic compounds include mercaptobenzothiazole, thiocyanuric acid, 2-benzimidazolethiol, and the like. Examples of carboxylic acids include monocarboxylic acids, dicarboxylic acids, and the like. On the other hand, examples of inorganic components used in the inorganic release layer include Ni, Mo, Co, Cr, Fe, Ti, W, P, Zn, and a chromate-treated film. The release layer may be formed by, for example, bringing a release layer component-containing solution into contact with at least one surface of the carrier to fix the release layer component on the surface of the carrier. When the carrier is brought into contact with the release layer component-containing solution, this contact may be carried out by dipping the carrier in the release layer component-containing solution, spraying the release layer component-containing solution, flowing down the release layer component-containing solution, or the like. In addition, it is also possible to adopt a method of forming a film with the release layer component by a vapor phase method such as vapor deposition or sputtering. Further, the release layer component may be fixed to the carrier surface by adsorption or drying of a solution containing the release layer component, or by electrodeposition of the release layer component in the solution containing the release layer component. The thickness of the release layer is typically 1 nm or more and 1 μm or less, preferably 5 nm or more and 500 nm or less.
所望により、剥離層とキャリア及び/又は粗化処理銅箔の間に他の機能層を設けてもよい。そのような他の機能層の例としては補助金属層が挙げられる。補助金属層はニッケル及び/又はコバルトからなるのが好ましい。このような補助金属層をキャリアの表面側及び/又は粗化処理銅箔の表面側に形成することで、高温又は長時間の熱間プレス成形時にキャリアと粗化処理銅箔の間で起こりうる相互拡散を抑制し、キャリアの引き剥がし強度の安定性を担保することができる。補助金属層の厚さは、0.001μm以上3μm以下とするのが好ましい。 If desired, other functional layers may be provided between the release layer and the carrier and/or the roughened copper foil. Examples of such other functional layers include auxiliary metal layers. Preferably, the auxiliary metal layer consists of nickel and/or cobalt. By forming such an auxiliary metal layer on the surface side of the carrier and/or the surface side of the roughened copper foil, it is possible to reduce the risk of problems occurring between the carrier and the roughened copper foil during hot press forming at high temperatures or for long periods of time. Mutual diffusion can be suppressed and the stability of carrier peel strength can be ensured. The thickness of the auxiliary metal layer is preferably 0.001 μm or more and 3 μm or less.
銅張積層板
本発明の粗化処理銅箔はプリント配線板用銅張積層板の作製に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、上記粗化処理銅箔を備えた銅張積層板が提供される。本発明の粗化処理銅箔を用いることで、銅張積層板の加工において、熱可塑性樹脂基材との高い密着性と優れた高周波特性とを両立することができる。この銅張積層板は、本発明の粗化処理銅箔と、粗化処理銅箔の粗化処理面に密着して設けられる樹脂層とを備えてなる。粗化処理銅箔は樹脂層の片面に設けられてもよいし、両面に設けられてもよい。樹脂層は、樹脂、好ましくは絶縁性樹脂を含んでなる。樹脂層はプリプレグ及び/又は樹脂シートであるのが好ましい。プリプレグとは、合成樹脂板、ガラス板、ガラス織布、ガラス不織布、紙等の基材に合成樹脂を含浸させた複合材料の総称である。また、樹脂層には絶縁性を向上する等の観点からシリカ、アルミナ等の各種無機粒子からなるフィラー粒子等が含有されていてもよい。樹脂層の厚さは特に限定されないが、1μm以上1000μm以下が好ましく、より好ましくは2μm以上400μm以下であり、さらに好ましくは3μm以上200μm以下である。樹脂層は複数の層で構成されていてよい。プリプレグ及び/又は樹脂シート等の樹脂層は予め銅箔表面に塗布されるプライマー樹脂層を介して粗化処理銅箔に設けられていてもよい。
Copper-clad laminate The roughened copper foil of the present invention is preferably used for producing a copper-clad laminate for printed wiring boards. That is, according to a preferred embodiment of the present invention, a copper-clad laminate including the roughened copper foil is provided. By using the roughened copper foil of the present invention, it is possible to achieve both high adhesion to the thermoplastic resin base material and excellent high frequency characteristics in the processing of copper-clad laminates. This copper-clad laminate includes the roughened copper foil of the present invention and a resin layer provided in close contact with the roughened surface of the roughened copper foil. The roughened copper foil may be provided on one side or both sides of the resin layer. The resin layer contains a resin, preferably an insulating resin. Preferably, the resin layer is a prepreg and/or a resin sheet. Prepreg is a general term for composite materials in which a base material such as a synthetic resin plate, glass plate, glass woven fabric, glass nonwoven fabric, or paper is impregnated with synthetic resin. Further, the resin layer may contain filler particles made of various inorganic particles such as silica and alumina from the viewpoint of improving insulation properties. The thickness of the resin layer is not particularly limited, but is preferably 1 μm or more and 1000 μm or less, more preferably 2 μm or more and 400 μm or less, and even more preferably 3 μm or more and 200 μm or less. The resin layer may be composed of multiple layers. A resin layer such as a prepreg and/or a resin sheet may be provided on the roughened copper foil via a primer resin layer that is previously applied to the surface of the copper foil.
高周波用途に適した銅張積層板を提供する観点から、樹脂層は熱可塑性樹脂を含むのが好ましく、より好ましくは、樹脂層に含まれる樹脂成分の大半(例えば50重量%以上)又は殆ど(例えば80重量%以上若しくは90重量%以上)が熱可塑性樹脂である。熱可塑性樹脂の好ましい例としては、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、非晶ポリアリレート(PAR)、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、熱可塑性ポリイミド(PI)、ポリアミドイミド(PAI)、フッ素樹脂、ポリアミド(PA)、ナイロン、ポリアセタール(POM)、変性ポリフェニレンエーテル(m-PPE)、ポリエチレンテレフタレート(PET)、グラスファイバー強化ポリエチレンテレフタレート(GF-PET)、シクロオレフィン(COP)、及びこれらの任意の組合せが挙げられる。望ましい誘電正接及び優れた耐熱性の観点から、熱可塑性樹脂のより好ましい例としては、ポリサルフォン(PSF)、ポリエーテルサルフォン(PES)、非晶ポリアリレート(PAR)、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)、熱可塑性ポリイミド(PI)、ポリアミドイミド(PAI)、フッ素樹脂、及びそれらの任意の組合せが挙げられる。低誘電率の観点から、特に好ましい熱可塑性樹脂は液晶ポリマー(LCP)及び/又はフッ素樹脂である。フッ素樹脂の好ましい例としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-エチレン共重合体(ETFE)、及びそれらの任意の組合せが挙げられる。なお、絶縁樹脂基材の粗化処理銅箔への貼り付けは、加熱しながらプレスすることにより行うのが好ましく、こうすることで熱可塑性樹脂を軟化させて粗化処理面の微細凹凸に入り込ませることができる。その結果、微細凹凸(特に縦長状の粗化粒子)の樹脂への食い込みによるアンカー効果により、銅箔と樹脂との密着性を確保することができる。 From the viewpoint of providing a copper-clad laminate suitable for high frequency applications, the resin layer preferably contains a thermoplastic resin, and more preferably most (for example, 50% by weight or more) or most ( For example, 80% by weight or more or 90% by weight or more) is thermoplastic resin. Preferred examples of thermoplastic resins include polysulfone (PSF), polyethersulfone (PES), amorphous polyarylate (PAR), liquid crystal polymer (LCP), polyetheretherketone (PEEK), and thermoplastic polyimide (PI). , polyamideimide (PAI), fluororesin, polyamide (PA), nylon, polyacetal (POM), modified polyphenylene ether (m-PPE), polyethylene terephthalate (PET), glass fiber reinforced polyethylene terephthalate (GF-PET), cycloolefin (COP), and any combination thereof. From the viewpoint of desirable dielectric loss tangent and excellent heat resistance, more preferable examples of thermoplastic resins include polysulfone (PSF), polyethersulfone (PES), amorphous polyarylate (PAR), liquid crystal polymer (LCP), and polysulfone. Examples include etheretherketone (PEEK), thermoplastic polyimide (PI), polyamideimide (PAI), fluororesin, and any combination thereof. From the viewpoint of low dielectric constant, particularly preferred thermoplastic resins are liquid crystal polymers (LCP) and/or fluororesins. Preferred examples of the fluororesin include polytetrafluoroethylene (PTFE), tetrafluoroethylene/perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene/hexafluoropropylene copolymer (FEP), and tetrafluoroethylene-ethylene. copolymers (ETFE), and any combination thereof. In addition, it is preferable to attach the insulating resin base material to the roughened copper foil by pressing while heating.This softens the thermoplastic resin and allows it to penetrate into the fine irregularities of the roughened surface. can be set. As a result, the adhesion between the copper foil and the resin can be ensured due to the anchor effect caused by the fine irregularities (particularly the vertically elongated roughened particles) biting into the resin.
プリント配線板
本発明の粗化処理銅箔はプリント配線板の作製に用いられるのが好ましい。すなわち、本発明の好ましい態様によれば、上記粗化処理銅箔を備えたプリント配線板が提供される。本発明の粗化処理銅箔を用いることで、プリント配線板の製造において、優れた高周波特性と高い回路密着性とを両立することができる。本態様によるプリント配線板は、樹脂層と、銅層とが積層された層構成を含んでなる。銅層は本発明の粗化処理銅箔に由来する層である。また、樹脂層については銅張積層板に関して上述したとおりである。いずれにしても、プリント配線板は、本発明の粗化処理銅箔を用いること以外は、公知の層構成が採用可能である。プリント配線板に関する具体例としては、プリプレグの片面又は両面に本発明の粗化処理銅箔を接着させ硬化した積層体とした上で回路形成した片面又は両面プリント配線板や、これらを多層化した多層プリント配線板等が挙げられる。また、他の具体例としては、樹脂フィルム上に本発明の粗化処理銅箔を形成して回路を形成するフレキシブルプリント配線板、COF、TABテープ等も挙げられる。さらに他の具体例としては、本発明の粗化処理銅箔に上述の樹脂層を塗布した樹脂付銅箔(RCC)を形成し、樹脂層を絶縁接着材層として上述のプリント基板に積層した後、粗化処理銅箔を配線層の全部又は一部としてモディファイド・セミ・アディティブ法(MSAP)、サブトラクティブ法等の手法で回路を形成したビルドアップ配線板や、粗化処理銅箔を除去してセミ・アディティブ法(SAP)で回路を形成したビルドアップ配線板、半導体集積回路上へ樹脂付銅箔の積層と回路形成を交互に繰りかえすダイレクト・ビルドアップ・オン・ウェハー等が挙げられる。より発展的な具体例として、上記樹脂付銅箔を基材に積層し回路形成したアンテナ素子、接着剤層を介してガラスや樹脂フィルムに積層しパターンを形成したパネル・ディスプレイ用電子材料や窓ガラス用電子材料、本発明の粗化処理銅箔に導電性接着剤を塗布した電磁波シールド・フィルム等も挙げられる。とりわけ、本発明の粗化処理銅箔を備えたプリント配線板は、信号周波数10GHz以上の高周波帯域で用いられる自動車用アンテナ、携帯電話基地局アンテナ、高性能サーバー、衝突防止用レーダー等の用途で用いられる高周波基板として好適に用いられる。
Printed Wiring Board The roughened copper foil of the present invention is preferably used for producing printed wiring boards. That is, according to a preferred embodiment of the present invention, a printed wiring board including the roughened copper foil is provided. By using the roughened copper foil of the present invention, it is possible to achieve both excellent high frequency characteristics and high circuit adhesion in the manufacture of printed wiring boards. The printed wiring board according to this embodiment includes a layered structure in which a resin layer and a copper layer are laminated. The copper layer is a layer derived from the roughened copper foil of the present invention. Further, the resin layer is as described above regarding the copper-clad laminate. In any case, the printed wiring board may have a known layer structure, except for using the roughened copper foil of the present invention. Specific examples of printed wiring boards include single-sided or double-sided printed wiring boards in which the roughened copper foil of the present invention is adhered to one or both sides of prepreg to form a cured laminate, and circuits are formed on the cured laminate, and multilayered versions of these. Examples include multilayer printed wiring boards. Further, other specific examples include flexible printed wiring boards, COF, TAB tapes, etc. in which a circuit is formed by forming the roughened copper foil of the present invention on a resin film. As another specific example, a resin-coated copper foil (RCC) is formed by applying the above-mentioned resin layer to the roughened copper foil of the present invention, and the resin layer is laminated on the above-mentioned printed circuit board as an insulating adhesive layer. After that, build-up wiring boards in which circuits are formed using methods such as modified semi-additive method (MSAP) or subtractive method using the roughened copper foil as all or part of the wiring layer, and the roughened copper foil are removed. Examples include a build-up wiring board in which a circuit is formed using a semi-additive method (SAP), and a direct build-up on wafer in which lamination of resin-coated copper foil and circuit formation are alternately repeated on a semiconductor integrated circuit. More advanced examples include antenna elements in which the resin-coated copper foil is laminated onto a base material to form a circuit, electronic materials for panels and displays, and windows in which patterns are formed by laminating the resin-coated copper foil onto glass or resin film via an adhesive layer. Examples include electronic materials for glass, electromagnetic shielding films made by applying a conductive adhesive to the roughened copper foil of the present invention, and the like. In particular, printed wiring boards equipped with the roughened copper foil of the present invention can be used in applications such as automotive antennas, mobile phone base station antennas, high-performance servers, and collision prevention radars used in high frequency bands of signal frequencies of 10 GHz or higher. It is suitably used as a high frequency substrate.
本発明を以下の例によってさらに具体的に説明する。 The present invention will be explained in more detail with reference to the following examples.
例1~11
本発明の粗化処理銅箔の製造を以下のようにして行った。
Examples 1 to 11
The roughened copper foil of the present invention was manufactured as follows.
(1)電解銅箔の準備
銅電解液として以下に示される組成の硫酸酸性硫酸銅溶液を用い、陰極に表面粗さRaが0.20μmのチタン製の電極を用い、陽極にはDSA(寸法安定性陽極)を用いて、溶液温度45℃、電流密度55A/dm2で電解し、厚さ18μmの電解銅箔を得た。
<硫酸酸性硫酸銅溶液の組成>
‐ 銅濃度:80g/L
‐ 硫酸濃度:260g/L
‐ ビス(3-スルホプロピル)ジスルフィド濃度:30mg/L
‐ ジアリルジメチルアンモニウムクロライド重合体濃度:50mg/L
‐ 塩素濃度:40mg/L
(1) Preparation of electrolytic copper foil A sulfuric acid copper sulfate solution with the composition shown below is used as the copper electrolyte, a titanium electrode with a surface roughness Ra of 0.20 μm is used as the cathode, and a DSA (dimensions: Using a stable anode), electrolysis was carried out at a solution temperature of 45° C. and a current density of 55 A/dm 2 to obtain an electrolytic copper foil with a thickness of 18 μm.
<Composition of sulfuric acid acidic copper sulfate solution>
- Copper concentration: 80g/L
- Sulfuric acid concentration: 260g/L
- Bis(3-sulfopropyl) disulfide concentration: 30mg/L
- Diallyldimethylammonium chloride polymer concentration: 50mg/L
- Chlorine concentration: 40mg/L
(2)粗化処理
得られた電解銅箔の析出面に対して、粗化処理を行った。この粗化処理は、表1に示すとおり、例1~6及び8~11については2段階の粗化処理(第一粗化処理及び第二粗化処理)とし、例7については1段階の粗化処理(第一粗化処理)とした。このとき、酸性硫酸銅溶液の組成、及び電着条件を表1に示されるように適宜変えることで、粗化処理表面の特徴が異なる様々なサンプルを作製した。
(2) Roughening treatment The deposition surface of the obtained electrolytic copper foil was subjected to a roughening treatment. As shown in Table 1, this roughening treatment is a two-stage roughening treatment (first roughening treatment and second roughening treatment) for Examples 1 to 6 and 8 to 11, and a one-stage roughening treatment for Example 7. A roughening treatment (first roughening treatment) was performed. At this time, by appropriately changing the composition of the acidic copper sulfate solution and the electrodeposition conditions as shown in Table 1, various samples with different characteristics of the roughened surface were prepared.
具体的には、各段階における粗化処理の条件は以下のとおりとした。
‐ 第一粗化処理では、表1に示されるCu濃度、硫酸濃度及びW濃度となるように、硫酸、硫酸銅、及び所望により無機添加剤としてタングステン酸ナトリウム(例1~6、8及び9)を含む酸性硫酸銅溶液を用いて、表1に示される電着条件(液温、電流密度及び電気量)にて電気メッキを実施した。
‐ 第二粗化処理では、表1に示されるCu濃度及び硫酸濃度となるように、硫酸及び硫酸銅を含む酸性硫酸銅溶液を用いて、表1に示される電着条件(液温、電流密度及び電気量)にて電気メッキを実施した。
Specifically, the conditions for the roughening treatment at each stage were as follows.
- In the first roughening treatment, sulfuric acid, copper sulfate, and optionally sodium tungstate as an inorganic additive (Examples 1 to 6, 8, and 9 Electroplating was carried out using an acidic copper sulfate solution containing ) under the electrodeposition conditions (liquid temperature, current density, and quantity of electricity) shown in Table 1.
- In the second roughening treatment, an acidic copper sulfate solution containing sulfuric acid and copper sulfate was used under the electrodeposition conditions (liquid temperature, current Electroplating was carried out at the following density and electrical charge).
(3)防錆処理
電解銅箔の粗化処理を行った面に、亜鉛-ニッケル合金めっき処理及びクロメート処理からなる防錆処理を行った。まず、亜鉛濃度1g/L、ニッケル濃度2g/L及びピロリン酸カリウム濃度80g/Lを含む溶液を用い、液温40℃、電流密度0.5A/dm2の条件で、亜鉛-ニッケル合金めっき処理を行った。次いで、クロム酸1g/Lを含む水溶液を用い、pH12、電流密度1A/dm2の条件で、亜鉛-ニッケル合金めっき処理を行った表面にクロメート処理を行った。
(3) Rust prevention treatment The roughened surface of the electrolytic copper foil was subjected to rust prevention treatment consisting of zinc-nickel alloy plating treatment and chromate treatment. First, a zinc-nickel alloy plating treatment was performed using a solution containing a zinc concentration of 1 g/L, a nickel concentration of 2 g/L, and a potassium pyrophosphate concentration of 80 g/L under conditions of a liquid temperature of 40°C and a current density of 0.5 A/ dm2 . I did it. Next, the surface subjected to the zinc-nickel alloy plating treatment was subjected to chromate treatment using an aqueous solution containing 1 g/L of chromic acid under conditions of pH 12 and current density of 1 A/dm 2 .
(4)シランカップリング剤処理
3-アミノプロピルトリメトキシシラン濃度が6g/Lの水溶液を電解銅箔の粗化処理を行った面に吸着させ、電熱器により水分を蒸発させることにより、シランカップリング剤処理を行った。このとき、電解銅箔の粗化処理を行っていない面にはシランカップリング剤処理を行わなかった。
(4) Silane coupling agent treatment An aqueous solution of 3-aminopropyltrimethoxysilane with a concentration of 6 g/L is adsorbed on the roughened surface of the electrolytic copper foil, and the water is evaporated with an electric heater to form a silane cup. Ring agent treatment was performed. At this time, the silane coupling agent treatment was not performed on the surface of the electrolytic copper foil that had not been subjected to the roughening treatment.
評価
例1~11で作製された粗化処理銅箔について、以下に示される各種評価を行った。
The roughened copper foils produced in Evaluation Examples 1 to 11 were subjected to various evaluations as shown below.
<粗化処理面の表面性状パラメータ>
レーザー顕微鏡を用いた表面粗さ解析により、粗化処理銅箔の粗化処理面の測定をJIS B0681-2:2018(Ssk、Sku及びSmr1)又はEUR15178N(Sds)に準拠して行った。具体的な測定条件は表2に示されるとおりとした。得られた粗化処理面の表面プロファイルに対して、表2に示される条件に従って解析を行い、Ssk、Sku及びSmr1を算出した。各例につき上記パラメータの算出を異なる10視野にて実施し、全視野における平均値を当該サンプルにおける粗化処理面の表面性状パラメータとしてそれぞれ採用した。結果は表3に示されるとおりであった。
<Surface quality parameters of roughened surface>
The roughened surface of the roughened copper foil was measured by surface roughness analysis using a laser microscope in accordance with JIS B0681-2:2018 (Ssk, Sku and Smr1) or EUR15178N (Sds). The specific measurement conditions were as shown in Table 2. The surface profile of the obtained roughened surface was analyzed according to the conditions shown in Table 2, and Ssk, Sku, and Smr1 were calculated. For each example, the above parameters were calculated in 10 different visual fields, and the average value in all the visual fields was adopted as the surface texture parameter of the roughened surface of the sample. The results were as shown in Table 3.
一方、Sdsの算出は以下のようにして行った。まず、上記レーザー顕微鏡で取得した測定データを解析ソフトウェア(オリンパス株式会社製、「OLS5100 LEXT(バージョン2.1.2.215)」)にて読み込み、未処理データのままLEXTファイル形式に変換して出力を行った。このLEXTファイルを別の解析ソフトウェア(Digital Surf社製、「MountainsMap(バージョン9.0.9878)」)にて読み込み、解析を行った(解析領域:64.397μm×64.463μm)。具体的には、解析対象タブから「パラメータ表」、「デフォルトの設定」の順に選択して、パラメータ解析画面を表示させた。パラメータ解析画面において、規格として「EUR15178N」、波長処理として「一次曲面」、形状除去のためのF演算(Fオペレーション)として「最小二乗面」、パラメータとして「Sds」及び「Sa」をそれぞれ選択した。一方、この画面において、Sフィルター及びLフィルターは選択しなかった(つまりSフィルター及びLフィルターによるカットオフ無し)。その後、「解析結果をエクスポート」を選択して解析結果を保存し、この解析結果から山頂密度Sds及び算術平均高さSaをそれぞれ読み取った。各例につき上記パラメータの算出を異なる10視野にて実施した。ノイズを除去するため、10視野のうち、算術平均高さSaが最大値であった1視野、及び算術平均高さSaが最小値であった1視野の計2視野を除外し、残りの8視野におけるSdsの平均値を当該サンプルにおける粗化処理面のSdsとして採用した。結果は表3に示されるとおりであった。 On the other hand, Sds was calculated as follows. First, the measurement data obtained with the laser microscope described above is loaded into the analysis software (Olympus Corporation, "OLS5100 LEXT (version 2.1.2.215)"), and the unprocessed data is converted to the LEXT file format. Output was performed. This LEXT file was read and analyzed using another analysis software (Digital Surf, "MountainsMap (version 9.0.9878)") (analysis area: 64.397 μm x 64.463 μm). Specifically, the "parameter table" and "default settings" were selected in this order from the analysis target tab to display the parameter analysis screen. On the parameter analysis screen, we selected "EUR15178N" as the standard, "linear surface" as the wavelength processing, "least squares surface" as the F operation for shape removal, and "Sds" and "Sa" as the parameters. . On the other hand, in this screen, the S filter and the L filter were not selected (that is, there was no cutoff by the S filter and the L filter). Thereafter, "Export analysis results" was selected to save the analysis results, and the mountaintop density Sds and arithmetic mean height Sa were read from the analysis results, respectively. For each example, the above parameters were calculated in 10 different fields of view. To remove noise, out of the 10 visual fields, we excluded two visual fields, one visual field where the arithmetic average height Sa was the maximum value, and one visual field where the arithmetic average height Sa was the minimum value, and the remaining 8 visual fields. The average value of Sds in the visual field was adopted as the Sds of the roughened surface of the sample. The results were as shown in Table 3.
<粗化粒子の根元径>
後述するスライス画像の三次元解析の際に用いる粗化粒子の根元径を以下のとおり算出した。まず、樹脂フィルムとしてプリプレグ(パナソニック株式会社製、R-5670NF、45μm厚×2枚)を用意した。得られた粗化処理銅箔をその粗化処理面が樹脂フィルムと当接するように積層し、真空プレス機を使用して、プレス圧3.0MPa、温度190℃、プレス時間90分の条件でプレスを行い、銅張積層板を作製した。この銅張積層板に対して、塩化第二銅エッチング液を用いて、粗化処理銅箔を除去した。こうして、粗化処理面の表面形状が転写された表面を有する樹脂フィルム(以下、「樹脂レプリカ」と称する)を得た。その後、ショットキー電界放出形走査電子顕微鏡(FE-SEM、日本電子株式会社製、JSM-7900F)を用いて、加速電圧5.0kV、観察倍率30000倍の条件で、上記樹脂レプリカの転写表面に対して垂直方向(Tilt:0°)から観察を行い、樹脂レプリカ像(画像サイズ:1280画素×1024画素)を取得した。
<Root diameter of roughening particles>
The root diameter of the roughening particles used in the three-dimensional analysis of slice images to be described later was calculated as follows. First, prepreg (manufactured by Panasonic Corporation, R-5670NF, 45 μm thick x 2 sheets) was prepared as a resin film. The obtained roughened copper foils were laminated so that their roughened surfaces were in contact with the resin film, and using a vacuum press machine, they were pressed at a pressure of 3.0 MPa, a temperature of 190°C, and a pressing time of 90 minutes. Pressing was performed to produce a copper-clad laminate. The roughened copper foil was removed from this copper-clad laminate using a cupric chloride etching solution. In this way, a resin film (hereinafter referred to as "resin replica") having a surface onto which the surface shape of the roughened surface was transferred was obtained. Thereafter, using a Schottky field emission scanning electron microscope (FE-SEM, manufactured by JEOL Ltd., JSM-7900F), the transfer surface of the resin replica was Observation was performed from the vertical direction (Tilt: 0°), and a resin replica image (image size: 1280 pixels x 1024 pixels) was obtained.
取得した樹脂レプリカ像に対して、画像解析ソフトウェア(株式会社ニレコ製、「LUZEX(バージョン1.60.8.2)」)を用いて以下のとおり画像解析を行った。この画像解析では、取得した樹脂レプリカ像から撮影情報領域を除外した1260画素×940画素の領域(=10.25μm2)を解析対象とした。まず、樹脂レプリカ像に対して、二値化処理を閾値125の条件で実行した。参考のため、例3で取得した二値化後の樹脂レプリカ像を図5に示す。図5に示されるように、二値化後の樹脂レプリカ像において、黒色で表示される領域を転写された粗化粒子の根元部分Rとみなした。次いで、二値化後の樹脂レプリカ像に対して、下記(1)~(5)に示すフィルター処理をこの順に実施した。
(1)スノーボールフィルター DILATE 強度2
(2)ロジカルフィルター SHRINK 強度1
(3)ロジカルフィルター FILLHOLES
(4)ロジカルフィルター THIN 強度1
(5)ロジカルフィルター CIRCLE 強度3
Image analysis was performed on the obtained resin replica image using image analysis software (manufactured by Nireco Co., Ltd., "LUZEX (version 1.60.8.2)") as follows. In this image analysis, an area of 1260 pixels x 940 pixels (=10.25 μm 2 ) excluding the imaging information area from the obtained resin replica image was targeted for analysis. First, a binarization process was performed on the resin replica image under the condition of a threshold value of 125. For reference, the resin replica image after binarization obtained in Example 3 is shown in FIG. As shown in FIG. 5, in the resin replica image after binarization, the area displayed in black was regarded as the root portion R of the transferred roughening particles. Next, the following filtering processes (1) to (5) were performed in this order on the binarized resin replica image.
(1) Snowball filter DILATE strength 2
(2) Logical filter SHRINK strength 1
(3) Logical filter FILLHOLES
(4) Logical filter THIN strength 1
(5) Logical filter CIRCLE strength 3
フィルター処理後の樹脂レプリカ像において、粗化粒子の根元部分Rのうち、円相当径が0.05μm未満のものをノイズとして除去した。以上の操作を異なる3視野で行い、上記ノイズを除いて観察された全ての粗化粒子の根元部分Rにおける円相当径の箱ひげ図を作成した。この箱ひげ図において、外れ値を除外した最大値(ひげの端)を粗化粒子の根元径とした。なお、箱ひげ図における外れ値とは、第1四分位数をQ1、第3四分位数をQ3、四分位範囲(=Q3-Q1)をIQRとしたとき、Q3+1.5×IQRよりも大きい、又はQ1-1.5×IQRよりも小さい数値として定義される。 In the resin replica image after filter processing, among the root portions R of the roughened particles, those having an equivalent circle diameter of less than 0.05 μm were removed as noise. The above operation was performed in three different fields of view, and a boxplot of equivalent circle diameters at the root portions R of all the observed roughened particles excluding the noise was created. In this boxplot, the maximum value (the edge of the whiskers) after excluding outliers was taken as the root diameter of the roughened particles. Note that an outlier in a boxplot is defined as Q, where Q 1 is the first quartile, Q 3 is the third quartile, and IQR is the interquartile range (=Q 3 - Q 1 ). It is defined as a number greater than 3 + 1.5 x IQR or less than Q 1 - 1.5 x IQR.
<スライス画像の取得>
FIB-SEM装置(カールツァイス社製、Crossbeam540、SEM及びFIB同時制御:Atlas Engine v5.5.3)を用いて、下記測定条件にてスライス画像の取得を行った。このスライス画像の取得は、図6に示されるように、x軸及びz軸を粗化処理銅箔10の面内方向とし、かつ、y軸を粗化処理銅箔10の厚さ方向と規定した上で、x-y面と平行なスライス面Sでの粗化処理銅箔10の断面画像を取得し、このスライス面をz軸方向に10nmずつ平行移動させながら断面画像を取得することにより行った。観察領域はx:y:z=19.5μm:19.5μm:9.5μmとした。
<Acquisition of slice images>
Slice images were acquired under the following measurement conditions using a FIB-SEM device (Carl Zeiss, Crossbeam 540, SEM and FIB simultaneous control: Atlas Engine v5.5.3). This slice image is acquired by defining the x-axis and z-axis as in-plane directions of the roughened
(FIB加工条件)
‐ 加速電圧:30kV
‐ スライス厚:10nm(スライス面Sの間隔)
(SEM観察条件)
‐ 加速電圧:1.0kV
‐ Working distance:5mm
‐ Tilt:54°(SEM像のTilt補正あり)
‐ 画素サイズ:5nm×5nm
‐ 検出器:INLENSE検出器
(FIB processing conditions)
- Acceleration voltage: 30kV
- Slice thickness: 10 nm (distance between slice surfaces S)
(SEM observation conditions)
- Accelerating voltage: 1.0kV
- Working distance: 5mm
- Tilt: 54° (with SEM image tilt correction)
- Pixel size: 5nm x 5nm
- Detector: INLENSE detector
また、後述する三次元画像解析において、スライス画像を三次元画像に再構築するための位置合わせを行いやすくする観点から、上記スライス画像取得前に、粗化処理銅箔10に対して以下の処理を行った。参考のため、当該処理を行った例9の粗化処理銅箔におけるスライス画像の一例を図7に示す。まず、粗化処理銅箔10の粗化処理面に対して、粗化粒子12が完全に埋まるように熱硬化性樹脂14(エポキシ(G-2)、Gatan,Inc.製)を塗布した(塗布厚さ:2.0μm以上4.5μm以下)。樹脂塗布後の粗化処理銅箔10を120℃で20分間真空加熱することで熱硬化性樹脂14を硬化させた後、常温になるまで冷却した。冷却後の粗化処理銅箔10を上述したFIB-SEM装置に投入し、FIBのデポジション機能を用いて、硬化した熱硬化性樹脂14の表面にマーキング形成用の白金膜16(厚さ1.0μm以上1.5μm以下)を形成した。そして、各スライス画像で同一形状のマーキング(3本のくさび形状)が視認できるように、FIBのエッチング機能を用いて、白金膜16の表面(x-z面)に対して、z軸方向に沿って加工を行い、マーキングMを形成した。このとき、y軸方向の加工深さは、形成した白金膜16の厚さの3分の2以下とした。その後、形成したマーキングMを保護するため、FIBのデポジション機能を用いて、白金膜16表面に対してカーボン膜18(厚さ約1μm)を形成した。以下、白金膜16及びカーボン膜18を「保護膜20」と総称する。
In addition, in the three-dimensional image analysis described below, from the viewpoint of facilitating alignment for reconstructing slice images into three-dimensional images, the following processing is performed on the roughened
<スライス画像の三次元解析>
三次元画像処理ソフトウェア「Dragonfly(バージョン2022.1.0.1259)」(Object Research System社製)を用いて、FIB-SEMにより取得した粗化処理銅箔のスライス画像データを三次元解析し、1μm2当たりの粗化粒子の体積を算出した。このとき、解析領域はx:z=4.5μm:4.5μmとし、yは任意(粗化粒子の大きさに依存)とした。また、解析視野数は1とした。この三次元解析は、以下に詳述するように、下記(1)~(6)の各工程をこの順に行った。
(1)スライス画像の読み込み及び位置合わせ
(2)スライス画像のトリミング
(3)機械学習によるセグメンテーションモデルの作成
(4)粗化処理銅箔由来のCu部分の抽出
(5)粗化粒子の抽出
(6)解析領域のトリミング及び粗化粒子の体積算出
<Three-dimensional analysis of slice images>
Using the three-dimensional image processing software "Dragonfly (version 2022.1.0.1259)" (manufactured by Object Research System), three-dimensionally analyzed the slice image data of the roughened copper foil obtained by FIB-SEM, The volume of roughened particles per 1 μm 2 was calculated. At this time, the analysis area was set to x:z=4.5 μm:4.5 μm, and y was set to be arbitrary (depending on the size of the roughened particles). In addition, the number of fields of view for analysis was set to 1. In this three-dimensional analysis, the following steps (1) to (6) were performed in this order, as detailed below.
(1) Loading and aligning slice images (2) Trimming slice images (3) Creating a segmentation model using machine learning (4) Extracting the Cu portion from roughened copper foil (5) Extracting roughened particles ( 6) Trimming the analysis area and calculating the volume of roughening particles
(1)スライス画像の読み込み及び位置合わせ
FIB-SEMにより取得した粗化処理銅箔のスライス画像データを上記三次元画像処理ソフトウェアに読み込んだ。このとき、「Image Spacing(in μm)」にボクセルサイズとして「X:Y:Z=0.005:0.005:0.01」を入力した。
(1) Reading and positioning of slice images The slice image data of the roughened copper foil obtained by FIB-SEM was read into the three-dimensional image processing software. At this time, "X:Y:Z=0.005:0.005:0.01" was input as the voxel size in "Image Spacing (in μm)".
三次元再構築のための位置合わせを行うべく、読み込んだ画像データ上で「Slice Registration」を選択した。そして、「Registration method」の「Template Matching」を選択し、保護膜20のマーキングMが形成された部分(図7中の破線部分)のみが含まれるようにテンプレート範囲を指定した。「Apply」を選択して、位置合わせを自動で行った後、全画像を確認して、大幅に位置がずれている箇所のみ手動で位置合わせを行った。手動による位置合わせは、上述した「Registration method」を「Manual」に変更した後、表示されているスライス画像データに向かって、赤色で表示される次のスライス画像を移動することにより行った。 In order to perform positioning for three-dimensional reconstruction, "Slice Registration" was selected on the loaded image data. Then, "Template Matching" of the "Registration method" was selected, and the template range was specified so as to include only the portion where the marking M of the protective film 20 was formed (the broken line portion in FIG. 7). After selecting "Apply" and automatically aligning, all images were checked, and only those areas where the positions were significantly shifted were manually aligned. Manual alignment was performed by changing the above-mentioned "Registration method" to "Manual" and then moving the next slice image displayed in red toward the displayed slice image data.
(2)スライス画像のトリミング
処理時間短縮のため、粗化粒子12の体積算出に不要な保護膜20部分をトリミングにより除去した。このトリミングは、「Modify and Transform」の「Crop...」を選択した後、三次元再構築画像において、表示されるXY断面及びYZ断面の枠を、保護膜20部分が範囲から除外されるように移動することにより行った。「Create new」のチェックボックスを選択し、「Apply」及び「Close」をこの順で選択することにより、不要部分の削除を完了させた。
(2) Trimming of slice image In order to shorten processing time, the portion of the protective film 20 that is unnecessary for calculating the volume of the roughened particles 12 was removed by trimming. This trimming is performed by selecting "Crop..." under "Modify and Transform" and then removing the protective film 20 from the frame of the displayed XY section and YZ section in the three-dimensional reconstructed image. This was done by moving like this. By selecting the "Create new" checkbox and selecting "Apply" and "Close" in this order, deletion of the unnecessary portion was completed.
(3)機械学習によるセグメンテーションモデルの作成
後述する粗化処理銅箔由来のCu部分の抽出を行うために、以下のとおり機械学習によるセグメンテーションモデルを作成した。なお、後述するとおり、この機械学習によるセグメンテーションモデルの作成は、解析を行うサンプルのうち、代表的なサンプルについて実施すればよい。
(3) Creating a segmentation model using machine learning In order to extract the Cu portion derived from the roughened copper foil, which will be described later, a segmentation model was created using machine learning as described below. Note that, as described later, this creation of a segmentation model using machine learning may be performed for a representative sample among the samples to be analyzed.
(3-1)材質の割り当て
トリミング後の画像データ上で「Segmentation Wizard」及び「Continue」を順に選択し、粗化処理銅箔10、粗化粒子12及びその他の部分(熱硬化性樹脂14等)の一部が表示されるようにスライス画像を拡大した。「Add new frame」から、上記拡大表示した画像を機械学習の対象領域として選択した。「Classes and labels」において、材質が銅(粗化処理銅箔10及び粗化粒子12)である領域の名称として「Cu」を入力するとともに、材質が銅以外(例えば樹脂)である領域の名称として「Resin」を入力した。なお、各領域の区別を行いやすくするため「Cu」領域と「Resin」領域の色は異系色(例えば桃色と緑色)を指定した。
(3-1) Assigning materials Select "Segmentation Wizard" and "Continue" in order on the image data after trimming, and select the roughened
(3-2)機械学習
各材質の領域を以下のとおり機械学習させた。参考のため、材質の割り当て後の表示画面の一例を図8に示す。まず、「2D view tools」から「Round Brush」を選択した。このとき、「Brush type」は「Full」とした。「Resin」の領域をソフトウェアに認識させるため、熱硬化性樹脂14から逸脱しないように、○印(図8中の「14a」)で大まかに範囲を指定した。次いで、「Cu」の領域をソフトウェアに認識させるため、粗化処理銅箔10又は粗化粒子12から逸脱しないように、○印(図8中の「10a」)で大まかに範囲を指定した。なお、本工程では、各材質の領域から逸脱しないように範囲を指定しさえすれば、「Brush」の太さ(○印の大きさ)は機械学習に影響を及ぼさない。その後、「Train」を選択して、機械学習を開始した。表示された「Model Generation Strategy」において、「High Accuracy」を選択した。画像処理のセグメンテーションモデルは「Random Forest」、「U-net」及び「Sensor 3D」の3種類を選択した。「Continue」を選択して、初回の推論画像生成を行った。なお、初回の推論画像生成において、「U-net」及び「Sensor 3D」はスキップされる。
(3-2) Machine learning Machine learning was performed for each material area as follows. For reference, an example of the display screen after material assignment is shown in FIG. First, "Round Brush" was selected from "2D view tools". At this time, "Brush type" was set to "Full". In order to have the software recognize the "Resin" region, a rough range was designated with ○ marks ("14a" in FIG. 8) so as not to deviate from the thermosetting resin 14. Next, in order to make the software recognize the "Cu" region, a rough range was designated with ○ marks ("10a" in FIG. 8) so as not to deviate from the roughened
(3-3)教師画像の作成
「Random Forest」で生成された「Cu」及び「Resin」の推論画像を選択した。参考のため、初回の推論画像の一例を図9に示す。この推論画像と元のスライス画像とを比較し、「Cu」領域及び「Resin」領域にずれが生じている箇所について、当該箇所を1pixelが確認できるまで拡大した。そして、領域を手動で補正することで、教師画像を作成した。この補正方法は、上記「Cu」及び「Resin」領域の範囲指定方法と同様であるが、今回は1pixel単位で正確に補正を行った。その後、「Train」を選択し、3種類のセグメンテーションモデル「Random Forest」、「U-net」及び「Sensor 3D」で再度機械学習を行った。
(3-3) Creation of teacher images The inference images of "Cu" and "Resin" generated by "Random Forest" were selected. For reference, an example of the first inference image is shown in FIG. This inferred image and the original slice image were compared, and the areas where the "Cu" and "Resin" areas were misaligned were enlarged until 1 pixel could be confirmed. A teacher image was then created by manually correcting the area. This correction method is similar to the range specification method for the "Cu" and "Resin" regions, but this time correction was performed accurately in units of 1 pixel. After that, we selected "Train" and performed machine learning again using three types of segmentation models: "Random Forest,""U-net," and "Sensor 3D."
(3-4)セグメンテーションモデルの作成
「Models」タブの「Score」を確認し、「Random Forest」、「U-net」及び「Sensor 3D」のうち、最も「Score」の高い推論画像を選択した。この推論画像を元のスライス画像と比較し、「Cu」領域及び「Resin」領域にずれが生じている箇所について、当該箇所を1pixelが確認できるまで拡大した。そして、領域を再度手動で補正することで、新たな教師画像を作成した。その後、別のスライス画像に移動して、粗化処理銅箔10、粗化粒子12及びその他の部分(熱硬化性樹脂14等)の一部が表示されるようにスライス画像を拡大した後、「Add new frame」から、上記拡大表示した画像を機械学習の対象領域として選択した。そして、「Predict」を選択して、上述した新たな教師画像の結果を反映して推論画像を生成した。以上の操作を推論画像の「Score」が0.98以上になるまで繰り返すことで、セグメンテーションモデルを作成した。今回は、図10Aに示すように、粗化処理銅箔10の粗化底面Bと粗化粒子12とが連続的である(繋がっている)スライス画像と、図10Bに示すように、粗化処理銅箔10の粗化底面Bと粗化粒子12とが不連続的である(繋がっていない)スライス画像とを使用して、セグメンテーションモデルを作成した。そして、最終的な推論画像であるセグメンテーションモデルとして、「U-net」及び「Sensor 3D」のうち、「Score」が高いものを採用した。
(3-4) Creating a segmentation model Check the “Score” on the “Models” tab and select the inference image with the highest “Score” from among “Random Forest”, “U-net” and “Sensor 3D”. . This inference image was compared with the original slice image, and the locations where the "Cu" and "Resin" regions were misaligned were enlarged until 1 pixel could be confirmed. A new teacher image was then created by manually correcting the area again. After that, after moving to another slice image and enlarging the slice image so that a part of the roughened
(4)粗化処理銅箔由来のCu部分の抽出
粗化処理銅箔10及び粗化粒子12に由来する「Cu」領域の抽出を以下のとおり行った。作成したセグメンテーションモデル、及び当該セグメンテーションモデルを反映するスライス画像データを選択した。「Preview」を選択して、生成される画像が「Cu」領域及び「Resin」領域の識別が適切に行われているか確認した。その後、「Segment」から「All Slices」を選択して、全スライス画像データにセグメンテーションモデルを適用した。なお、セグメンテーションモデルが適切な場合には、「Cu」領域と「Resin」領域とが指定した異系色(例えば桃色及び緑色)で着色される。セグメンテーションモデルが不適切な場合は、当該サンプルの画像データに対して上記(3)と同様にしてセグメンテーションモデルを再度作成する。今回は例1、例5、例7及び例11についてセグメンテーションモデルを作成した。
(4) Extraction of Cu portion derived from roughened copper foil The “Cu” region derived from roughened
三次元再構築した画像を確認し、「Resin」領域に「Cu」と誤認識した箇所がある場合には、手動で「Resin」領域と識別させた。この領域の識別方法は、上記(3-1)における「Cu」領域及び「Resin」領域の範囲指定方法と同様であるが、今回は1pixel単位で識別を行った。その後、「2D view tools」内の「Classes and labels」から「Resin」を選択し、「Remove」により「Resin」を削除した。「Data Properties and Settings」において、「Resin」を削除した画像上で「New ROI」を選択して、「Cu」部分のみを抽出した「ROI」を生成した。ここで、「ROI」とは、フィルタ処理又は認識処理を適用する「画像中の部分的な関心領域(Region of Interest)」を意味する。「Cu」内に空洞(着色されていない箇所)がある場合、粗化粒子12の正確な抽出が行えないため、生成した「ROI」を選択し、「ROI tools」における「Fill inner areas:3D」の「Apply」を選択し、空洞を埋める処理を行った。 The three-dimensionally reconstructed image was checked, and if there was a part in the "Resin" area that was incorrectly recognized as "Cu", it was manually identified as a "Resin" area. The method for identifying this area is the same as the range specification method for the "Cu" area and "Resin" area in (3-1) above, but this time identification was performed in units of 1 pixel. Thereafter, "Resin" was selected from "Classes and labels" in "2D view tools" and "Resin" was deleted by "Remove". In "Data Properties and Settings", "New ROI" was selected on the image from which "Resin" was deleted, and "ROI" was generated by extracting only the "Cu" portion. Here, "ROI" means "a partial region of interest in an image" to which filter processing or recognition processing is applied. If there are cavities (uncolored areas) in "Cu", the roughening particles 12 cannot be extracted accurately, so select the generated "ROI" and select "Fill inner areas: 3D" in "ROI tools". ” and clicked “Apply” to perform the process of filling the cavity.
(5)粗化粒子の抽出
「Cu」内の空洞を埋めた「ROI」を選択した。「Segment」タブ内の「ROI Tools」から「Invert」を選択して、測定対象を「Cu」部分から空間部分に反転させることで、「Air」(「Resin」を除いた「Cu」以外の空間部分)の「ROI」を生成した。生成した「Air」の「ROI」上で「Refine Region of Interest」内の「Fill Connected Pores with a Diameter Smaller Than...」を選択した。表示されたウィンドウ内に、上述した粗化粒子12の根元径を閾値として入力し、粗化処理銅箔10の粗化底面Bと粗化粒子12とを切り分けた。こうして、「Air」を含む粗化粒子12の「ROI」を生成した。なお、上記閾値が大きすぎる場合、粗化処理銅箔10の粗化底面Bを含んだ状態で粗化粒子12が切り分けられてしまい、適切ではない。一方、閾値が小さすぎる場合、切り分ける箇所が粗化粒子12の内部まで入り込んでしまい、適切ではない。このため、上述のとおり、粗化粒子12の根元径として、箱ひげ図における外れ値を除外した最大値を採用した。生成した「Air」を含む粗化粒子12の「ROI」の空洞を埋めるため、「Fill inner areas:3D」の「Apply」を選択した。
(5) Extraction of roughened particles "ROI" that filled the cavities in "Cu" was selected. By selecting "Invert" from "ROI Tools" in the "Segment" tab and inverting the measurement target from the "Cu" part to the spatial part, "Air" (other than "Cu" excluding "Resin") A "ROI" of the spatial part) was generated. On the generated "ROI" of "Air", "Fill Connected Pores with a Diameter Smaller Than..." in "Refine Region of Interest" was selected. The root diameter of the roughened particles 12 described above was entered as a threshold value in the displayed window, and the roughened bottom surface B of the roughened
「Air」を含む粗化粒子12から、粗化粒子12のみを以下のとおり抽出した。「Segment」タブにおける「ROI Tools」から「Morphological operations」の「Erode」を選択し、粗化粒子12と粗化底面Bとの切り分けの微調整を行った。このとき、条件は以下のとおりとした。
(切り分け条件)
‐ Dimensionality:2D(Z)
‐ Shape:Square
‐ Range:未入力
‐ Kernel size:3
なお、上記条件における「2D(Z)」とは、選択した「ROI」をz軸に沿って処理することを意味する。
Only the roughened particles 12 were extracted from the roughened particles 12 containing "Air" as follows. "Erode" of "Morphological operations" was selected from "ROI Tools" in the "Segment" tab, and fine adjustments were made to the separation of the roughened particles 12 and the roughened bottom surface B. At this time, the conditions were as follows.
(Separation conditions)
- Dimensionality: 2D (Z)
- Shape: Square
- Range: Not input - Kernel size: 3
Note that "2D (Z)" in the above conditions means that the selected "ROI" is processed along the z-axis.
上記切り分け後、1pixel分の空洞を埋めるため、「Fill inner areas:3D」の「Apply」を選択した。上記切り分け操作及び空洞埋め操作を繰り返し、粗化粒子12と粗化底面Bとの微調整を合計2回行った。この微調整は各例につき常に合計2回とした。当該調整後に生成された「ROI」を「(A)」として選択するとともに、「Air」の「ROI」を「(B)」として選択し、その後「A-B」を選択することにより、粗化粒子12部分のみを抽出した「ROI」を作成した。 After the above segmentation, "Apply" of "Fill inner areas: 3D" was selected to fill the cavity of 1 pixel. The above cutting operation and cavity filling operation were repeated, and the roughening particles 12 and the roughening bottom surface B were finely adjusted twice in total. This fine-tuning was always done a total of two times for each example. Select the "ROI" generated after the adjustment as "(A)", select the "ROI" of "Air" as "(B)", and then select "A-B" to roughly An "ROI" was created by extracting only 12 portions of the particles.
(6)解析領域のトリミング及び粗化粒子の体積算出
粗化粒子12部分のみを抽出した「ROI」において、「Modify and Transform」内の「Crop...」を選択した。そして「X」の「Size」が900(=4.5μm)となり、「Z」の「Size」が450(=4.5μm)となるように、「Min」及び「Max」に数値を入力し、解析領域(X:Z=4.5μm:4.5μm)を決定した。このとき、解析領域が端部を含まないように「Min」及び「Max」を設定した。「Create new」のチェックボックスを選択した後、「Apply」を選択して解析領域をトリミングした。そして、「Statistical properties」内の「Volume(Labeled voxels)」に表示される数値(μm3)を粗化粒子の総体積Vとして読み取った。この粗化粒子の総体積Vを解析領域の面積A(=20.25μm2)で除することにより(=V/A)、1μm2当たりの粗化粒子の体積を算出した。結果は表3に示されるとおりであった。
(6) Trimming of analysis region and calculation of volume of roughened particles In "ROI" where only 12 portions of roughened particles were extracted, "Crop..." in "Modify and Transform" was selected. Then, enter the values in "Min" and "Max" so that "Size" of "X" becomes 900 (=4.5 μm) and "Size" of "Z" becomes 450 (=4.5 μm). , an analysis area (X:Z=4.5 μm:4.5 μm) was determined. At this time, "Min" and "Max" were set so that the analysis region did not include the edges. After selecting the "Create new" checkbox, "Apply" was selected to trim the analysis area. Then, the value (μm 3 ) displayed in “Volume (Labeled voxels)” in “Statistical properties” was read as the total volume V of the roughening particles. The volume of the roughened particles per 1 μm 2 was calculated by dividing the total volume V of the roughened particles by the area A (=20.25 μm 2 ) of the analysis region (=V/A). The results were as shown in Table 3.
<熱可塑性樹脂(液晶ポリマー)に対する剥離強度>
熱可塑性樹脂基材として液晶ポリマー(LCP)フィルム(株式会社クラレ製、ベクスターCT-Q、厚さ50μm×1枚)を用意した。この熱可塑性樹脂基材に、得られた粗化処理銅箔をその粗化処理面が樹脂基材と当接するように積層し、真空プレス機を使用して、プレス圧4MPa、温度330℃、プレス時間10分の条件でプレスを行い、銅張積層板を作製した。この銅張積層板に対して、塩化第二銅エッチング液を用いて、サブトラクティブ法による回路形成を行い、3mm幅の直線回路を備えた試験基板を作製した。作製した試験基板に対して、卓上型精密万能試験機(株式会社島津製作所製、AGS-50NX)を用いて、形成した直線回路をJIS C 5016-1994のA法(90°剥離)に準拠して熱可塑性樹脂基材から引き剥がして、常態剥離強度(kgf/cm)を測定した。この剥離強度が0.60kgf/cm以上である場合に合格と判定した。結果は表3に示されるとおりであった。
<Peel strength against thermoplastic resin (liquid crystal polymer)>
A liquid crystal polymer (LCP) film (manufactured by Kuraray Co., Ltd., Vector CT-Q, thickness 50 μm x 1 sheet) was prepared as a thermoplastic resin base material. The obtained roughened copper foil was laminated on this thermoplastic resin base material so that its roughened surface was in contact with the resin base material, and using a vacuum press machine, press pressure was 4 MPa, temperature was 330°C, Pressing was performed under conditions of a pressing time of 10 minutes to produce a copper-clad laminate. A circuit was formed on this copper-clad laminate by a subtractive method using a cupric chloride etching solution to produce a test board having a linear circuit with a width of 3 mm. The formed test board was tested using a tabletop precision universal testing machine (AGS-50NX, manufactured by Shimadzu Corporation) in accordance with JIS C 5016-1994 method A (90° peeling). The film was peeled off from the thermoplastic resin base material to measure normal peel strength (kgf/cm). When this peel strength was 0.60 kgf/cm or more, it was determined to be acceptable. The results were as shown in Table 3.
<伝送特性の評価>
絶縁樹脂基材として高周波用基材(パナソニック株式会社製、MEGTRON6N、厚さ45μm×2枚)を用意した。この絶縁樹脂基材の両面に得られた粗化処理銅箔をその粗化処理面が絶縁樹脂基材と当接するように積層し、真空プレス機を使用して、プレス圧3MPa、温度190℃、プレス時間90分の条件でプレスを行い、銅張積層板を得た。その後、銅張積層板に対して、塩化第二銅エッチング液を用いて、サブトラクティブ法による回路形成(回路高さ:18μm、回路幅300μm、回路長:300mm)を行った。こうして、特性インピーダンスが50Ω±2Ωになるようマイクロストリップラインを形成した伝送損失測定用基板を得た。得られた伝送損失測定用基板に対して、ネットワークアナライザー(キーサイト・テクノロジー社製、N5225B)を用いて、以下の設定条件で測定を行い、50GHzにおける伝送損失L1(dB)を計測した。そして、例7(比較例)の50GHzにおける伝送損失L0(dB)に対する、伝送損失L1の増加率(=L1/L0)を算出した。この伝送損失増加率が1.10以下である場合に合格と判定した。結果は表3に示されるとおりであった。
(設定条件)
‐ IF Bandwidth:100Hz
‐ Frequency:10MHz~50GHz
‐ Data points:501point
‐ Average:Off
‐ 校正方法:SOLT(e-cal)
<Evaluation of transmission characteristics>
High-frequency base materials (MEGTRON6N, manufactured by Panasonic Corporation, 45 μm thick x 2 sheets) were prepared as insulating resin base materials. The obtained roughened copper foil was laminated on both sides of this insulating resin base material so that the roughened surface was in contact with the insulating resin base material, and a vacuum press was used to press the foil at a pressure of 3 MPa and a temperature of 190°C. Pressing was performed under the conditions of 90 minutes of pressing time to obtain a copper-clad laminate. Thereafter, a circuit was formed on the copper-clad laminate by a subtractive method (circuit height: 18 μm, circuit width: 300 μm, circuit length: 300 mm) using a cupric chloride etching solution. In this way, a substrate for transmission loss measurement was obtained in which a microstrip line was formed so that the characteristic impedance was 50Ω±2Ω. The obtained transmission loss measurement board was measured using a network analyzer (manufactured by Keysight Technologies, N5225B) under the following setting conditions, and the transmission loss L 1 (dB) at 50 GHz was measured. Then, the rate of increase in transmission loss L 1 (=L 1 /L 0 ) with respect to transmission loss L 0 (dB) at 50 GHz in Example 7 (comparative example) was calculated. When this transmission loss increase rate was 1.10 or less, it was determined to be acceptable. The results were as shown in Table 3.
(Setting conditions)
-IF Bandwidth: 100Hz
-Frequency: 10MHz ~ 50GHz
-Data points: 501 points
- Average: Off
- Calibration method: SOLT (e-cal)
Claims (8)
前記粗化処理面は、スキューネスSskが0.35より大きく、かつ、山頂密度Sdsが1.57μm-2以上2.64μm-2以下であり、
前記Sskは、JIS B0681-2:2018に準拠してSフィルターによるカットオフを行わず、Lフィルターによるカットオフ波長1.0μmの条件で測定される値であり、
前記Sdsは、EUR15178Nに準拠してSフィルター及びLフィルターによるカットオフを行わない条件で測定される値である、粗化処理銅箔。 A roughened copper foil having a roughened surface on at least one side,
The roughened surface has a skewness Ssk greater than 0.35 and a peak density Sds of 1.57 μm −2 or more and 2.64 μm −2 or less,
The Ssk is a value measured in accordance with JIS B0681-2:2018 without cutoff with an S filter and with a cutoff wavelength of 1.0 μm using an L filter,
The above-mentioned Sds is a value measured in accordance with EUR15178N without cutoff using an S filter and an L filter, and is a roughened copper foil.
前記1μm2当たりの粗化粒子の体積は、前記粗化処理面に対してFIB-SEMを用いて得られる画像を三次元解析することにより算出される値である、請求項1に記載の粗化処理銅箔。 The roughened surface has a plurality of roughened particles, and the volume of the roughened particles per 1 μm 2 is 0.11 μm 3 or more and 0.25 μm 3 or less,
The roughening particle according to claim 1, wherein the volume of the roughened particles per 1 μm 2 is a value calculated by three-dimensional analysis of an image obtained using FIB-SEM of the roughened surface. Chemically treated copper foil.
前記Skuは、JIS B0681-2:2018に準拠してSフィルター及びLフィルターによるカットオフを行わない条件で測定される値である、請求項1又は2に記載の粗化処理銅箔。 The roughened surface has a kurtosis Sku of 2.70 or more and 4.90 or less,
The roughened copper foil according to claim 1 or 2, wherein the Sku is a value measured in accordance with JIS B0681-2:2018 without cutoff by an S filter and an L filter.
前記Smr1は、JIS B0681-2:2018に準拠してSフィルターによるカットオフを行わず、Lフィルターによるカットオフ波長1.0μmの条件で測定される値である、請求項1又は2に記載の粗化処理銅箔。 The roughened surface has a load area ratio Smr1 of 11.2% or more that separates the protruding peak portion and the core portion,
The Smr1 according to claim 1 or 2 is a value measured under conditions of a cutoff wavelength of 1.0 μm using an L filter and no cutoff using an S filter in accordance with JIS B0681-2:2018. Roughened copper foil.
A printed wiring board comprising the roughened copper foil according to claim 1 or 2.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380026029.4A CN118843719A (en) | 2022-03-24 | 2023-03-16 | Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board |
JP2024510109A JPWO2023182178A1 (en) | 2022-03-24 | 2023-03-16 | |
KR1020247029258A KR20240166993A (en) | 2022-03-24 | 2023-03-16 | Copper foil with harmonic treatment, copper foil with carrier, copper-clad laminate and printed wiring board |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022048444 | 2022-03-24 | ||
JP2022048445 | 2022-03-24 | ||
JP2022-048445 | 2022-03-24 | ||
JP2022-048443 | 2022-03-24 | ||
JP2022048443 | 2022-03-24 | ||
JP2022-048444 | 2022-03-24 | ||
JP2023017149 | 2023-02-07 | ||
JP2023-017149 | 2023-02-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023182178A1 true WO2023182178A1 (en) | 2023-09-28 |
Family
ID=88100875
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/010439 WO2023182177A1 (en) | 2022-03-24 | 2023-03-16 | Roughened copper foil, copper foil with carrier, copper-clad laminate and printed wiring board |
PCT/JP2023/010441 WO2023182179A1 (en) | 2022-03-24 | 2023-03-16 | Roughened copper foil, copper foil having carrier, copper-clad laminate, and printed wiring board |
PCT/JP2023/010440 WO2023182178A1 (en) | 2022-03-24 | 2023-03-16 | Roughened copper foil, copper foil equipped with carrier, copper-clad laminate, and printed wiring board |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/010439 WO2023182177A1 (en) | 2022-03-24 | 2023-03-16 | Roughened copper foil, copper foil with carrier, copper-clad laminate and printed wiring board |
PCT/JP2023/010441 WO2023182179A1 (en) | 2022-03-24 | 2023-03-16 | Roughened copper foil, copper foil having carrier, copper-clad laminate, and printed wiring board |
Country Status (4)
Country | Link |
---|---|
JP (3) | JPWO2023182178A1 (en) |
KR (3) | KR20240166993A (en) |
TW (3) | TW202407159A (en) |
WO (3) | WO2023182177A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011219790A (en) * | 2010-04-06 | 2011-11-04 | Fukuda Metal Foil & Powder Co Ltd | Treated copper foil for copper-clad laminated board and copper-clad laminated board obtained by adhering the treated copper foil onto insulating resin substrate, and printed circuit board using the copper-clad laminated board |
JP2011219789A (en) * | 2010-04-06 | 2011-11-04 | Fukuda Metal Foil & Powder Co Ltd | Treated copper foil for copper-clad laminate, copper-clad laminate obtained by sticking the treated copper foil to insulating resin substrate, and printed wiring board obtained by using the copper-clad laminate |
JP2013199082A (en) * | 2012-03-26 | 2013-10-03 | Jx Nippon Mining & Metals Corp | Copper foil with carrier, method of manufacturing the same, copper foil with carrier for printed wiring board, and printed wiring board |
WO2021193246A1 (en) * | 2020-03-23 | 2021-09-30 | 三井金属鉱業株式会社 | Roughened copper foil, copper-cladded laminate board, and printed wiring board |
WO2022255420A1 (en) * | 2021-06-03 | 2022-12-08 | 三井金属鉱業株式会社 | Roughened copper foil, copper-clad laminated board, and printed wiring board |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5705381B2 (en) | 2013-02-28 | 2015-04-22 | 三井金属鉱業株式会社 | Blackened surface-treated copper foil, method for producing blackened surface-treated copper foil, copper-clad laminate and flexible printed wiring board |
CN107532322B (en) | 2015-04-28 | 2019-07-16 | 三井金属矿业株式会社 | Roughening treatment copper foil and printed circuit board |
-
2023
- 2023-03-16 KR KR1020247029258A patent/KR20240166993A/en unknown
- 2023-03-16 WO PCT/JP2023/010439 patent/WO2023182177A1/en active Application Filing
- 2023-03-16 JP JP2024510109A patent/JPWO2023182178A1/ja active Pending
- 2023-03-16 WO PCT/JP2023/010441 patent/WO2023182179A1/en active Application Filing
- 2023-03-16 WO PCT/JP2023/010440 patent/WO2023182178A1/en active Application Filing
- 2023-03-16 JP JP2024510110A patent/JPWO2023182179A1/ja active Pending
- 2023-03-16 KR KR1020247028885A patent/KR20240166990A/en unknown
- 2023-03-16 KR KR1020247030372A patent/KR20240166997A/en unknown
- 2023-03-16 JP JP2024510108A patent/JPWO2023182177A1/ja active Pending
- 2023-03-23 TW TW112110836A patent/TW202407159A/en unknown
- 2023-03-23 TW TW112110835A patent/TW202344718A/en unknown
- 2023-03-23 TW TW112110834A patent/TW202407158A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011219790A (en) * | 2010-04-06 | 2011-11-04 | Fukuda Metal Foil & Powder Co Ltd | Treated copper foil for copper-clad laminated board and copper-clad laminated board obtained by adhering the treated copper foil onto insulating resin substrate, and printed circuit board using the copper-clad laminated board |
JP2011219789A (en) * | 2010-04-06 | 2011-11-04 | Fukuda Metal Foil & Powder Co Ltd | Treated copper foil for copper-clad laminate, copper-clad laminate obtained by sticking the treated copper foil to insulating resin substrate, and printed wiring board obtained by using the copper-clad laminate |
JP2013199082A (en) * | 2012-03-26 | 2013-10-03 | Jx Nippon Mining & Metals Corp | Copper foil with carrier, method of manufacturing the same, copper foil with carrier for printed wiring board, and printed wiring board |
WO2021193246A1 (en) * | 2020-03-23 | 2021-09-30 | 三井金属鉱業株式会社 | Roughened copper foil, copper-cladded laminate board, and printed wiring board |
WO2022255420A1 (en) * | 2021-06-03 | 2022-12-08 | 三井金属鉱業株式会社 | Roughened copper foil, copper-clad laminated board, and printed wiring board |
Also Published As
Publication number | Publication date |
---|---|
KR20240166997A (en) | 2024-11-26 |
JPWO2023182177A1 (en) | 2023-09-28 |
WO2023182179A1 (en) | 2023-09-28 |
TW202344718A (en) | 2023-11-16 |
KR20240166990A (en) | 2024-11-26 |
KR20240166993A (en) | 2024-11-26 |
TW202407158A (en) | 2024-02-16 |
TW202407159A (en) | 2024-02-16 |
JPWO2023182179A1 (en) | 2023-09-28 |
JPWO2023182178A1 (en) | 2023-09-28 |
WO2023182177A1 (en) | 2023-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6682516B2 (en) | Roughened copper foil and printed wiring board | |
TWI620662B (en) | Roughening copper foil, copper foil with carrier, copper clad laminate and printed wiring board | |
WO2023182178A1 (en) | Roughened copper foil, copper foil equipped with carrier, copper-clad laminate, and printed wiring board | |
TW202242153A (en) | Roughened copper foil, copper-clad laminate and printed wiring board | |
CN118922588A (en) | Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board | |
TW202403110A (en) | Roughened copper foil, copper foil with carrier, copper foil laminated board and printed wiring board | |
WO2023182176A1 (en) | Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board | |
WO2022202540A1 (en) | Roughened copper foil, copper foil equipped with carrier, copper-cladded laminate board, and printed wiring board | |
TW202305188A (en) | Roughened copper foil, copper foil with carrier, copper-cladded laminate board, and printed wiring board | |
TW202344716A (en) | Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board | |
WO2022244826A1 (en) | Roughened copper foil, copper foil with carrier, copper-cladded laminate board, and printed wiring board | |
WO2022244827A1 (en) | Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board | |
TWI808765B (en) | Roughened copper foil, copper foil with carrier, copper foil laminate and printed wiring board | |
CN117337344A (en) | Roughened copper foil, copper foil with carrier, copper-clad laminate, and printed wiring board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23774774 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024510109 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202380026029.4 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |