WO2023182012A1 - Estimation device, estimation method, estimation program, and learning model generation device - Google Patents

Estimation device, estimation method, estimation program, and learning model generation device Download PDF

Info

Publication number
WO2023182012A1
WO2023182012A1 PCT/JP2023/009453 JP2023009453W WO2023182012A1 WO 2023182012 A1 WO2023182012 A1 WO 2023182012A1 JP 2023009453 W JP2023009453 W JP 2023009453W WO 2023182012 A1 WO2023182012 A1 WO 2023182012A1
Authority
WO
WIPO (PCT)
Prior art keywords
deformation
flexible material
electrical characteristics
state
conductive urethane
Prior art date
Application number
PCT/JP2023/009453
Other languages
French (fr)
Japanese (ja)
Inventor
創 北野
泰通 若尾
祐輔 藤沢
良彦 鬼木
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Publication of WO2023182012A1 publication Critical patent/WO2023182012A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress

Definitions

  • the present disclosure relates to an estimation device, an estimation method, an estimation program, and a learning model generation device.
  • the system including the camera and image analysis must be large-scale, and the equipment This is not preferable because it leads to an increase in size.
  • the amount of deformation changes depending on the magnitude of external stimulation.
  • the amount of restoration may change as the amount of deformation changes.
  • the amount of deformation is thought to depend on the flexibility, which indicates the softness of the flexible material, but evaluation of flexibility depends on the user's subjective sense of softness and hardness when the flexible material is deformed. This is not sufficient to determine the amount of deformation of a flexible material. Therefore, there is room for improvement in identifying the deformation state of flexible materials.
  • the present disclosure estimates the deformation state of a flexible material by using the electrical properties of the conductive flexible material without using a special detection device.
  • One aspect of the present disclosure includes: a detection unit that detects electrical characteristics between a plurality of predetermined detection points on a flexible material that has conductivity and whose electrical properties change according to deformation; Using the time-series electrical characteristics that change according to the deformation of the flexible material and deformation state information indicating the deformation state related to the deformation of the flexible material as learning data, the time-series electrical characteristics are input, and the The time-series electrical characteristics detected by the detection unit of the estimation target including the flexible material are input to the learning model that has been trained to output deformation state information, and the time-series electrical characteristics are matched to the input time-series electrical characteristics.
  • an estimating unit that estimates deformation state information indicating a deformation state; This is an estimation device including:
  • FIG. 1 is a diagram showing the configuration of an estimation device according to an embodiment.
  • FIG. 3 is a diagram showing the arrangement of conductive urethane.
  • 1 is a diagram showing a conceptual configuration of a learning model generation device. It is a figure showing a measuring device.
  • FIG. 3 is a diagram showing an example of electrical characteristics of conductive urethane.
  • FIG. 3 is a diagram showing an example of electrical characteristics of conductive urethane.
  • FIG. 2 is a conceptual diagram of electrical properties of conductive urethane from the viewpoint of value fluctuations.
  • FIG. 3 is a diagram showing the functional configuration of a learning processing section. It is a figure showing an example of the flow of learning processing.
  • FIG. 3 is a diagram showing another functional configuration of the learning processing section.
  • FIG. 3 is a diagram showing the arrangement of conductive urethane.
  • 1 is a diagram showing a conceptual configuration of a learning model generation device. It is a figure showing a measuring device.
  • FIG. 3 is
  • FIG. 3 is a diagram showing an electrical configuration of an estimation device. It is a flowchart which shows the flow of estimation processing.
  • FIG. 2 is a conceptual diagram showing an example of electrical characteristics of conductive urethane. It is a figure which shows the modification of an estimation part.
  • a person is a concept that includes at least one of a human body and an object that can provide stimulation to a target object using a physical quantity.
  • the term "person” will be used generically as a concept including humans and things, without distinguishing between at least one of a human body and an object. That is, a single human body and an object, as well as a combination of a human body and an object, are collectively referred to as a person.
  • a state estimation process is performed to estimate the deformation state of the flexible material that deforms depending on the state of the imparting side to the flexible material, using a flexible material to which conductivity is applied and the flexible material to which the technology of the present disclosure is applied. explain. It is not impossible to estimate the state of the application side of the flexible material using the estimation result of the deformation state of the flexible material.
  • the application side state for the flexible material is an example of the state in which the flexible material of the present disclosure is stressed.
  • flexible material is a concept that includes materials at least partially deformable such as bending, and includes a soft elastic body such as a rubber material, a structure having a skeleton of at least one of a fibrous and a mesh-like structure. It includes a body and a structure in which a plurality of micro air bubbles are scattered inside.
  • a flexible material imparted with conductivity is used.
  • Flexible material with electrical conductivity is a concept that includes materials that have electrical conductivity, such as materials in which a conductive material is added to a flexible material to impart electrical conductivity, and materials in which the flexible material has electrical conductivity. including.
  • the flexible material imparting conductivity is preferably a polymeric material such as urethane material.
  • a flexible material imparted with conductivity a member formed by blending (e.g., internal addition) and infiltration (e.g., impregnation) with a conductive material in all or part of a urethane material will be referred to as " It will be described as "conductive urethane”. In the figure, conductive urethane 22 is drawn.
  • the conductive urethane 22 can be formed by mixing a conductive material and infiltrating it, can be formed by combining or infiltrating a conductive material, or can be formed by combining a conductive material and infiltrating it. .
  • the conductive urethane 22 formed by infiltration has higher conductivity than the conductive urethane 22 formed by blending, it is preferable to form the conductive urethane 22 by infiltration.
  • Information indicating internal addition and impregnation is an example of information indicating physical properties of the flexible material of the present disclosure.
  • the conductive urethane 22 has the function of changing its electrical properties depending on the physical quantity given by the state of the supply side.
  • An example of the condition on the application side is a condition indicating a physical action by a person such as compression and expansion to expand and contract the conductive urethane 22, and corresponding examples are conditions such as pressing and pulling.
  • an example of a physical quantity that causes a function that changes electrical characteristics is a stimulus value based on a pressure value indicating a pressure stimulus (hereinafter referred to as pressure stimulus) that deforms a structure such as bending.
  • Pressure stimulation includes application of pressure to a predetermined region and pressure distribution in a predetermined range.
  • the physical quantity examples include stimulation values such as moisture content, which indicates a stimulus (hereinafter referred to as material stimulus) that changes (degrades) the properties of a material due to moisture content, moisture addition, and the like.
  • the conductive urethane 22 changes its deformation state and electrical properties depending on the given physical quantity.
  • An example of a physical quantity representing electrical characteristics is an electrical resistance value.
  • other examples include a voltage value or a current value.
  • An example of the deformed state is a stretched state in which the conductive urethane 22 expands and contracts.
  • the expanded/contracted state indicates a compressed state on the side where the conductive urethane 22 is compressed by applying a positive pressure stimulus, and an example of a physical quantity indicating the compressed state includes at least one of the amount of compression and the compression ratio.
  • the amount of compression may be the total amount of conductive urethane 22 to be compressed, or may be the maximum value of the amount of sinking when compressed in a predetermined direction.
  • the compression rate may be the ratio of the amount of compression to the total amount of conductive urethane 22, or the ratio of the amount of depression to the thickness of conductive urethane 22 when compressed in a predetermined direction.
  • the side surface where the conductive urethane is stretched by applying a negative pressure stimulus shows a compressed state
  • an example of the physical quantity thereof includes at least one of the amount of stretching and the stretching rate.
  • An example of the amount of elongation and the elongation rate is the length of the conductive urethane 22 that is elongated in a predetermined direction.
  • the elongation rate is the ratio of the amount of elongation to the total length of the conductive urethane 22 when it is elongated in a predetermined direction.
  • the deformed state according to the present embodiment is an example of a stretched state in which the conductive urethane 22 is stretched and contracted by applying stress.
  • the information indicating the compressed state (expansion/contraction state) of the conductive urethane 22 is an example of deformation state information indicating the deformation state of the present disclosure.
  • the conductive urethane 22 By imparting conductivity to a flexible material having a predetermined volume, the conductive urethane 22 exhibits electrical properties (i.e., changes in electrical resistance) when deformed (expanded and contracted) according to a given physical quantity, and its electrical
  • the resistance value can be regarded as a value based on the volume resistance (volume resistance value) of conductive urethane.
  • electric paths are interconnected in a complicated manner, and for example, the electric paths expand/contract or expand/contract in response to deformation.
  • the electrical path may be temporarily disconnected, or a connection may be different from the previous one.
  • the conductive urethane 22 can respond to the size and distribution of the applied physical quantity stimulation (pressure stimulation and material stimulation). It exhibits behavior with different electrical characteristics due to deformation and alteration. Therefore, the electrical characteristics change depending on the magnitude and distribution of the stimulus caused by the physical quantity applied to the conductive urethane 22.
  • Detection points such as electrodes may be provided at at least two arbitrary locations sandwiching the location where the conductive urethane 22 is compressed (for example, FIG. 1).
  • the conductive urethane of the present disclosure may be formed of a conductive urethane group formed by arranging a plurality of conductive urethane pieces, with the conductive urethane 22 shown in FIG. 1 being one conductive urethane piece.
  • the electrical characteristics may be detected for each of the plurality of conductive urethane pieces, or the electrical properties of the plurality of conductive urethane pieces may be combined and detected.
  • electrical properties such as electrical resistance can be detected for each location.
  • the detection range on the conductive urethane 22 may be divided, a detection point may be provided for each divided detection range, and the electrical characteristics may be detected for each detection range.
  • FIG. 1 shows an example of the configuration of an estimating device 1 that can perform an estimating process for estimating the compressed state of conductive urethane.
  • the estimating device 1 includes an estimating section 5 and is connected to the object 2 so that the electrical characteristics of the conductive urethane 22 are input.
  • the estimation device 1 estimates the compressed state of the conductive urethane 22 contained in the object 2.
  • the estimation device 1 can be realized by a computer equipped with a CPU as an execution device, which will be described later.
  • the conductive urethane 22 deforms in response to an applied physical quantity (here, pressure stimulation).
  • the pressure stimulus is applied in time series, and shows the compressed state of the conductive urethane 22 that deforms depending on the pressure stimulus (state on the application side). Therefore, the electrical characteristics of the conductive urethane 22 indicate the compressed state of the conductive urethane 22 corresponding to the state of the pressure stimulus (physical quantity) applied to the conductive urethane 22 . Therefore, it is possible to estimate the compressed state of the conductive urethane 22 from the electrical characteristics of the conductive urethane that change over time.
  • the estimation device 1 estimates and outputs the compression state of the unknown conductive urethane 22 using the learned learning model 51 through an estimation process that will be described later.
  • This makes it possible to estimate the compressed state of the conductive urethane 22 in the object 2 without using special or large equipment or directly measuring the deformation of the conductive urethane 22 contained in the object 2.
  • the learning model 51 is learned by inputting the compressed state of the conductive urethane 22 and the electrical characteristics of the object 2 (that is, the electrical characteristics such as the electrical resistance value of the conductive urethane 22 placed on the object 2). . Learning of the learning model 51 will be described later.
  • the conductive urethane 22 can be placed on the flexible member 21 to form the object 2 (FIG. 2).
  • the object 2 constituted by the member 21 on which the conductive urethane 22 is disposed includes an electrical property detection section 76 .
  • the conductive urethane 22 may be placed on at least a portion of the member 21, and may be placed inside or outside. Further, the conductive urethane 22 may be arranged so that its compressed state can be estimated, and for example, it may be arranged so that it can be contacted directly or indirectly with a person, or both.
  • the object 2 including the electrical property detection section 76 is an example of the detection section of the present disclosure.
  • the object 2 including the electrical property detecting section 76 has an electrical property that indicates a change in the volume resistance of the conductive urethane 22, which changes from the first tendency to the first tendency according to the compressed state (stretching state). It is possible to detect electrical characteristics that change in two trends.
  • FIG. 2 shows an example of the arrangement of the conductive urethane 22 on the object 2.
  • the conductive urethane 22 may be formed so as to completely fill the inside of the member 21, as shown in the AA cross section of the object 2 as the object cross section 2-1. Further, as shown in object cross section 2-2, the conductive urethane 22 may be formed on one side (surface side) inside the member 21, and as shown in object cross section 2-3, the conductive urethane 22 may be formed on one side (surface side) inside the member 21. The conductive urethane 22 may be formed on the other side (back side) inside. Furthermore, as shown in the object cross section 2-4, a conductive urethane 22 may be formed in a part of the inside of the member 21.
  • the conductive urethane 22 may be placed separately on the outside of the surface side of the member 21, and as shown in the object cross section 2-6, the conductive urethane 22 may be placed on the other side ( It may be placed outside the back side).
  • the conductive urethane 22 and the member 21 may be simply laminated, or the conductive urethane 22 and the member 21 may be integrated by bonding or the like. Note that even when the conductive urethane 22 is disposed outside the member 21, the flexibility of the member 21 is not inhibited because the conductive urethane 22 is a urethane member having conductivity.
  • the electrical properties of the electrically conductive urethane 22 are detected by signals from at least two detection points 75 placed apart from each other. ) is detected.
  • detection set #1 is shown, which detects electrical characteristics (time-series electrical resistance values) using signals from two detection points 75 placed diagonally on the conductive urethane 22. There is. Note that the number and arrangement of the detection points 75 are not limited to the positions shown in FIG. good.
  • the electrical properties of the conductive urethane 22 can be determined by connecting an electrical property detection section 76 that detects electrical properties (for example, a volume resistivity value, which is an electrical resistance value) to a detection point 75, and using the output thereof.
  • the conductive urethane 22 is used as a sensor, for example, when a person is present, the sense of discomfort given to the person is extremely small compared to conventional sensors. Therefore, it is possible to perform measurement and estimate the compressed state of the conductive urethane 22 at the same time without damaging the condition of the person on the application side (for example, contact with the person) during measurement. This is an advantage compared to conventional sensors that perform measurement and estimation separately, and is particularly advantageous in estimation based on long-term measurement and evaluation that follows time-series changes.
  • the conductive urethane 22 formed so that the inside of the member 21 is completely filled with conductive urethane will be applied to the object 2 (object cross section 2 in FIG. 2). -1). Therefore, although the conductive urethane 22 included in the object 2 will be described below, the object 2 and the conductive urethane 22 can be treated as the same thing.
  • the estimation unit 5 is connected to the conductive urethane 22 included in the object 2, and uses a learning model 51 to estimate the compressed state of the conductive urethane 22 based on the electrical characteristics that change according to the deformation of the conductive urethane 22.
  • This is a functional unit that estimates.
  • time-series input data 4 representing the magnitude of electrical resistance (electrical resistance value, etc.) in the conductive urethane 22 is input to the estimation unit 5 .
  • Input data 4 corresponds to state data 3 indicating the compressed state of conductive urethane 22 .
  • the estimation unit 5 outputs output data 6 representing the compressed state of the conductive urethane 22 corresponding to the electrical characteristics of the conductive urethane 22 that change over time as an estimation result using the trained learning model 51. .
  • the learning model 51 is a model that has undergone learning to derive output data 6 representing the compressed state of the conductive urethane 22 from the electrical resistance (input data 4) of the conductive urethane 22 that changes due to applied pressure stimulation.
  • the learning model 51 is, for example, a model that defines a trained neural network, and is expressed as a set of information on the weights (strengths) of connections between nodes (neurons) forming the neural network.
  • the conductive urethane 22 exhibits behavior in response to changes (deformations) such as expansion/contraction, expansion/contraction, temporary disconnection, new connections, etc. of the electrical paths, which are interconnected in a complex manner. .
  • changes deformations
  • the conductive urethane 22 behaves with electrical characteristics depending on the compressed state corresponding to the applied pressure stimulus.
  • deformations due to changes such as expansion/contraction, expansion/contraction, temporary disconnection, and new connections (recombinations) of electrical paths do not occur regularly.
  • the electrical properties (electrical resistance) of the conductive urethane 22 that change in response to pressure stimulation here, compression of the conductive urethane 22
  • a learning model 51 capable of estimating the compressed state of the conductive urethane 22 is generated by a learning process.
  • the estimation process in the estimation device 1 uses the trained learning model 51 to estimate and output the compression state of the unknown article (estimated object).
  • the learning model 51 is trained using learning data including the electrical properties of the conductive urethane 22 and the compressed state of the conductive urethane 22 contained in the object 2 .
  • ⁇ Learning process> Next, a learning process for generating the learning model 51 will be explained.
  • learning is performed using, as learning data, electrical characteristics of the conductive urethane 22 (input data 4) labeled with compressed state information (state data 3) indicating the compressed state of the conductive urethane 22.
  • input data 4 electrical characteristics of the conductive urethane 22
  • state data 3 compressed state information
  • a learning data collection process and a learning model generation process are executed.
  • FIG. 3 shows the conceptual configuration of a learning model generation device that generates the learning model 51.
  • the learning model generation device includes a learning processing section 52.
  • the learning model generation device can be configured to include a computer equipped with a CPU (not shown), and is executed as a learning processing unit 52 by learning data collection processing and learning model generation processing executed by the CPU to generate the learning model 51. .
  • the learning processing unit 52 measured the electrical characteristics (for example, electrical resistance value) of the conductive urethane 22 in time series using the state data 3 representing the compressed state (compression degree) of the conductive urethane 22 as a label.
  • a large amount of input data 4 is collected as learning data. Therefore, the learning data includes a large set of input data 4 indicating electrical characteristics and state data 3 indicating the compressed state of the conductive urethane 22 corresponding to the input data 4.
  • electrical characteristics for example, electrical resistance value
  • state data 3 is assigned as a label to the acquired time-series electrical characteristics (input data 4), and the set of state data 3 and input data 4 reaches a predetermined number or a predetermined time. Repeat the process until.
  • a set of these state data 3 and the electrical characteristics of the conductive urethane 22 in time series (input data 4) becomes learning data.
  • the state data 3 in the learning data is stored in a memory (not shown) so as to be treated as output data 6 indicating the compressed state of the conductive urethane 22 for which the estimation result is correct in the learning process described later.
  • the learning data may be associated with time series information by adding information indicating the measurement time to each of the electrical resistance values (input data 4) of the conductive urethane 22.
  • information indicating measurement time may be added to a set of time-series electrical resistance values in the conductive urethane 22 to associate the time-series information.
  • the electrical characteristics detected in the conductive urethane 22 can be regarded as a characteristic pattern related to the compressed state of the conductive urethane 22 (details will be described later).
  • FIG. 4 shows an example of a measuring device 8 that measures electrical characteristics used as learning data.
  • the measuring device 8 is an example of a measuring device that measures electrical characteristics that change depending on the deformation of the conductive urethane 22. Note that the measuring device 8 is capable of repeatedly applying pressure stimulation.
  • a pressure applying part 83 for applying pressure stimulation to the conductive urethane 22 is attached to a fixed part 82 fixed to a base 81.
  • the pressure application unit 83 includes a pressure application main body 83A, an arm 83B that is extendable and retractable from the pressure application main body 83A, and a distal end portion 83C attached to the distal end of the arm 83B.
  • the pressure application main body 83A is fixed to the fixed part 82, and the arm 83B is expanded and contracted in response to an input signal, and the tip 83C is moved in a predetermined direction (arrow Z direction and the opposite direction). This allows the pressing member 84 to come into contact with the conductive urethane 22 installed on the base 81, press it after contact, or separate from the conductive urethane 22.
  • Conductive urethane 22 is placed on base 81 .
  • a flexible member 21 such as urethane may be placed on the conductive urethane 22.
  • a pressing member 84 having a predetermined shape is attached to the tip portion 83C of the pressure applying portion 83.
  • the conductive urethane 22 is arranged so that the pressing member 84 attached to the tip 83C of the pressure applying part 83 can at least come into contact with the conductive urethane 22.
  • a pressing member 84 having a predetermined shape a pressing member 84 having a curved tip (for example, a part of a sphere) is used.
  • the pressing member 84 is a member that applies pressure stimulation to the conductive urethane 22 with a predetermined pressure.
  • the shape of the pressing member 84 may be any of a rectangular, trapezoidal, circular, elliptical, or polygonal cross-sectional shape, or may be any other shape.
  • the pressure applying section 83 operates to press (compress) the conductive urethane 22 with the pressing member 84 when the arm 83B extends.
  • the pressure applying main body 83A includes a force sensor 85 having a function of detecting force in six axial directions, for example.
  • the force sensor 85 has a function of detecting the pressing state of the pressing member 84 against the conductive urethane 22 and a function of detecting the pressure applied to the conductive urethane 22 from the detected force.
  • This force sensor 85 can detect the force (physical quantity) of the pressing member 84 against the conductive urethane 22 in a time series, and can detect the pressure applied to the conductive urethane 22 in a time series. Note that when testing only the compressed state (deformed state), the force sensor 85 can be omitted.
  • the measuring device 8 includes a pressure applying section 83 and a controller 80 connected to a force sensor 85.
  • the controller 80 includes a CPU (not shown), which controls the pressure applying unit 83, applies pressure stimulation to the object 2, and acquires time-series electrical characteristics due to the pressure stimulation to the conductive urethane 22. and remember.
  • the controller 80 controls the pressure application unit 83 to apply and release pressure stimulation to the conductive urethane 22 by reciprocating the arm 83B to extend and contract it. Further, the controller 80 acquires the electrical characteristics of the conductive urethane 22 in synchronization with the application and release of pressure stimulation to the conductive urethane 22. Therefore, the measuring device 8 can acquire, as one of the learning data, electrical characteristics related to the deformation of the conductive urethane 22 that is intermittently (for example, periodically) deformed in a time series.
  • the controller 80 can acquire data indicating the deformed state, that is, the compressed state, of the conductive urethane 22 in synchronization with the application and release of pressure stimulation to the conductive urethane 22.
  • An example of data indicating the compressed state is the distance that the pressing member 84 sinks after contacting the conductive urethane 22.
  • the controller 80 acquires data indicating the compressed state by measuring the distance that the pressing member 84 sinks into the conductive urethane 22 in response to pressure stimulation. Therefore, the measuring device 8 can acquire data indicating the compression state as other learning data.
  • the distance that the conductive urethane 22 sinks in response to pressure stimulation, which is data indicating the compressed state can be used as data indicating the degree of compression.
  • the data indicating the degree of compression includes at least one of the amount of compression and the compression ratio.
  • 5A and 5B show an example of electrical characteristics when the conductive urethane 22 is compressed (deformed).
  • 5A and 5B show electrical characteristics of the conductive urethane 22 corresponding to compressed states compressed by different pressure stimuli.
  • the conductive urethane 22 shown in FIGS. 5A and 5B is a flexible material in which at least a portion of the urethane material is infiltrated (for example, impregnated) with a conductive material. It has been confirmed that the following explanation is also applicable to a flexible material in which a conductive material is blended (for example, internally added) into at least a portion of a urethane material.
  • the electrical characteristics when the conductive urethane 22 is compressed with the first amount of sinking are shown as electrical characteristics 41, and in FIG.
  • the electrical properties when the polyurethane 22 is compressed are shown as electrical properties 44.
  • the time when the pressure stimulation is applied is shown as P1
  • the time when the applied pressure stimulation is canceled is shown as P2.
  • the electrical characteristics of the conductive urethane 22 vary depending on the magnitude of the applied pressure stimulus. These electrical characteristics include characteristics related to the compressed state indicated by the degree of compression (in this case, the amount of subsidence).
  • the electrical characteristics when the conductive urethane 22 is compressed change from an upward trend where the electrical resistance value gradually increases during the compression process to a downward trend where the electrical resistance value gradually decreases. It has the characteristic that the electrical resistance value converges to the value corresponding to the size of .
  • the first feature is that it has an electrical characteristic portion 42 that switches from an upward trend in which the electrical resistance value gradually increases to a downward trend in which the electrical resistance value gradually decreases when compressed.
  • the second feature is that there is a difference 43 in the electrical resistance value that is on a downward trend compared to the electrical resistance value at the beginning of compression.
  • the third feature is that the difference 43 in electrical resistance values increases as the degree of compression (in this case, the amount of sinking) increases.
  • the electrical characteristics when the conductive urethane 22 is compressed tend to have the first to third characteristics. These characteristics are due to the tendency of the electrical resistance value to increase due to the expansion and contraction of at least a part of the electrical path that forms conductivity due to compression, and the tendency for electrical resistance to increase due to the cutting and recombination of the electrical path in a certain compression state (compression degree). It is presumed that this is caused by a phenomenon in which the electrical resistance value switches to a downward trend. However, deformations of electrical paths (expansion/contraction, expansion/contraction, temporary disconnection, new connections (recombination), etc.) do not occur regularly. Therefore, in this embodiment, the degree of compression, which is the compressed state, is estimated from the first to third characteristics described above.
  • the physical quantity based on the third characteristic is quantified as a tendency for the difference in electrical resistance values to increase, and is defined as the degree of compression. That is, the degree of compression corresponds to the degree of tendency for the difference in electrical resistance values to increase.
  • the timing of the electrical characteristics when deriving the difference in electrical resistance values can be set to predetermined timings before and after the electrical characteristics portion 42.
  • the timing immediately before shifting to an upward trend such as at the beginning of compression, or when the electrical characteristics are stable before compression (for example, the rate of change in electrical resistance value is less than a predetermined value for an upward trend).
  • the following timings are applicable.
  • the electrical characteristics become stable (for example, the rate of change of the electrical resistance value is less than a predetermined value for a downward trend) after a predetermined time has elapsed from the electrical characteristic portion 42, or after switching to a downward trend. applicable timing.
  • the upward trend and downward trend described above are examples of the first trend and second trend of the present disclosure.
  • the electrical characteristic portion 42 is an example of a changed portion of the present disclosure.
  • the difference 43 in electrical resistance values is an example of the difference in electrical property values of the present disclosure.
  • the electrical properties of the conductive urethane 22 are an example of the changing properties of the present disclosure.
  • FIG. 6 is a conceptual diagram showing an example of electrical characteristics that exhibit complicated behavior depending on the compressed state of the conductive urethane 22.
  • the example shown in FIG. 6 shows characteristics that appear when applying and releasing pressure stimulation to the conductive urethane 22 in a compressed state is repeated while changing the degree of compression.
  • a curve Erx indicates the correspondence between the degree of compression in the compressed state and the value of electrical characteristics (electrical characteristic difference) indicating the difference in electrical resistance value at the degree of compression.
  • the electrical property difference (difference in electrical resistance value) Er1 and the degree of compression Pw1 have a corresponding relationship.
  • the degree of compression indicates the distance of pressure stimulation (the distance that the conductive urethane 22 sinks due to pressure) applied to the conductive urethane 22 in a predetermined direction (for example, the normal direction to the contact surface of the conductive urethane 22).
  • the difference in the value of electrical properties is the difference between the electrical resistance value at the beginning of compression and the electrical resistance value at a predetermined degree of compression, specifically, the difference between the electrical resistance value at the beginning of compression and the tendency of the electrical resistance value to increase. It shows the difference from the electrical resistance value when it switches to a downward trend and a predetermined period of time has elapsed.
  • the electrical properties of the conductive urethane 22 are such that the difference in electrical properties (difference in electrical resistance) of the conductive urethane 22 tends to increase as the degree of compression increases. . Therefore, using the above-mentioned first to third characteristics such as the difference in the electrical property values of the conductive urethane 22, the difference in the electrical property values (difference in the electrical resistance value) in time series can be used to determine the difference in the electrical property values of the conductive urethane 22. It is possible to estimate the degree of compression.
  • the compression state information (state data 3) indicating the compression state of the conductive urethane 22 can be set by the compression degree described above. Therefore, by deriving the above-mentioned characteristics shown in the electrical characteristics of the object 2, we can obtain the conductivity for the time-series electrical characteristics regarding the deformation (compression) of the conductive urethane 22 included in the object 2 as another learning data. It becomes possible to correlate the compressed states of the polyurethane 22.
  • Table 1 is a data set in which time-series electrical resistance value data (r) is associated with degree of compression (Pw) indicating state data (R) indicating the compressed state, as learning data regarding the compressed state of the conductive urethane 22. This is an example.
  • Table 1 shows the correspondence between the state data (R) and the degree of compression indicating the specific state of compression. That is, the state data (R) may be associated with the degree of compression (Pw), which is data indicating the characteristics appearing in the electrical characteristics described above. Therefore, since the compressed state of the conductive urethane 22 characteristically appears in the time-series electrical characteristics of the object 2 (conductive urethane 22), it functions effectively in the learning process.
  • Pw degree of compression
  • the learning model generation device shown in FIG. 3 generates a learning model 51 using the above-mentioned learning data through learning model generation processing in the learning processing unit 52.
  • FIG. 7 is a diagram showing the functional configuration of the learning processing unit 52, that is, the functional configuration of the CPU (not shown) regarding the learning model generation process executed by the learning processing unit 52.
  • a CPU (not shown) of the learning processing unit 52 operates as a functional unit of the generator 54 and the arithmetic unit 56.
  • the generator 54 has a function of generating an output in consideration of the context of the input electric resistance values acquired in time series.
  • the learning processing unit 52 uses, as learning data, the above-mentioned input data 4 (for example, electrical resistance value) and state data indicating the compressed state of the conductive urethane 22 when stimulation (compression) is applied to the conductive urethane 22.
  • a large number of sets of output data 6, which is 3, are held in a memory (not shown).
  • the generator 54 includes an input layer 540, an intermediate layer 542, and an output layer 544, and constitutes a known neural network (NN). Since the neural network itself is a well-known technology, a detailed explanation will be omitted, but the intermediate layer 542 includes a large number of node groups (neuron groups) having inter-node connections and feedback connections.
  • the data from the input layer 540 is input to the intermediate layer 542, and the data of the calculation result of the intermediate layer 542 is output to the output layer 544.
  • the generator 54 is a neural network that generates output data 6A as data representing the compressed state or data close to the compressed state from the input data 4 (for example, electrical resistance value).
  • the generated output data 6A is data obtained by estimating the compressed state in which the conductive urethane 22 is stimulated based on the input data 4.
  • the generator 54 generates output data representing a state close to a compressed state from the input data 4 inputted in time series. By learning using a large number of input data 4, the generator 54 can generate output data 6A that is close to the compressed state when the object 2, that is, the conductive urethane 22 is stimulated.
  • the electric characteristics that are the input data 4 inputted in time series are captured as a pattern, and by learning this pattern, when the object 2, that is, the conductive urethane 22 is stimulated and compressed, It becomes possible to generate output data 6A that is close to a compressed state.
  • the computing unit 56 is a computing unit that compares the generated output data 6A and the output data 6 of the learning data and computes an error in the comparison result.
  • the learning processing unit 52 inputs the generated output data 6A and the output data 6 of the learning data to the arithmetic unit 56.
  • the calculator 56 calculates the error between the generated output data 6A and the output data 6 of the learning data, and outputs a signal indicating the result of the calculation.
  • the learning processing unit 52 performs learning of the generator 54, which tunes the weight parameter of the connection between nodes, based on the error calculated by the calculator 56. Specifically, the weight parameter of the connection between the nodes of the input layer 540 and the hidden layer 542 in the generator 54, the weight parameter of the connection between the nodes in the hidden layer 542, and the node of the hidden layer 542 and the output layer 544. Each of the weight parameters of the connections between the two is fed back to the generator 54 using a method such as gradient descent or backpropagation. That is, with the output data 6 of the learning data as a target, the connections between all nodes are optimized so as to minimize the error between the generated output data 6A and the output data 6 of the learning data.
  • the generator 54 may use a recurrent neural network that has a function of generating an output by considering the context of the time-series input, or may use other methods.
  • the learning processing unit 52 generates the learning model 51 using the above-mentioned learning data through learning model generation processing.
  • the learning model 51 is expressed as a collection of information on weight parameters (weights or strengths) of connections between nodes as a learning result, and is stored in a memory (not shown).
  • FIG. 8 shows an example of the flow of the learning process executed in the learning processing section 52.
  • the learning process is performed by the CPU (not shown) in the learning processing section 52 described above.
  • step S110 the electrical characteristics (input data 4) of the conductive urethane 22 are acquired.
  • step S111 first, the electrical characteristics (input data 4) of the conductive urethane 22 are analyzed and the degree of compression representing the above-mentioned characteristics is derived, thereby obtaining state data 3 indicating the compressed state of the conductive urethane 22. get.
  • input data 4 representing the electrical characteristics of the conductive urethane 22 is associated with state data 3 indicating the compressed state of the conductive urethane 22 as a result of the analysis, and the state data 3 (degree of compression) is labeled.
  • a set of input data 4 (electrical resistance) is acquired as learning data.
  • a learning model 51 is generated using the acquired learning data. That is, a set of information on weight parameters (weights or strengths) of connections between nodes of the learning results learned using a large amount of learning data as described above is obtained. Then, in step S114, data expressed as a set of information on weight parameters (weights or strengths) of connections between nodes as a learning result is stored as a learning model 51.
  • the estimation device 1 uses a trained generator 54 (that is, data expressed as a set of information on weight parameters of connections between nodes as a result of learning) as a learning model 51.
  • a trained generator 54 that is, data expressed as a set of information on weight parameters of connections between nodes as a result of learning
  • the compressed state of the conductive urethane 22 (which may be the object 2) can be determined from the time-series electrical characteristics of the conductive urethane 22 (for example, the characteristics of the electrical resistance value that changes over time). It is not impossible to estimate.
  • the process in step S110 is an example of a process executed by the acquisition unit of the present disclosure.
  • Step S112 is an example of a process executed by the learning model generation unit of the present disclosure.
  • the conductive urethane 22 has electrical paths that are interconnected in a complicated manner, and changes (deformation) such as expansion and contraction of the electrical paths, expansion and contraction, temporary disconnection, and new connections, as well as changes in the properties of the material. (alteration).
  • the conductive urethane 22 behaves with different electrical properties depending on the applied stimulus (for example, pressure stimulus).
  • the conductive urethane 22 can be treated as a reservoir that stores data regarding the deformation of the conductive urethane 22. That is, the estimation device 1 can apply the conductive urethane 22 to a network model (hereinafter referred to as PRCN) called physical reservoir computing (PRC).
  • PRCN network model
  • PRC physical reservoir computing
  • the above-mentioned learning model 51 can be generated by learning using a network based on reservoir computing using the conductive urethane 22 as a reservoir. Since PRC and PRCN themselves are known techniques, a detailed explanation will be omitted, but PRC and PRCN are suitable for estimating information regarding deformation and deterioration of the conductive urethane 22.
  • FIG. 9 shows an example of the functional configuration of the learning processing unit 52 to which PRCN is applied.
  • the learning processing unit 52 to which PRCN is applied includes an input reservoir layer 541 and an estimation layer 545.
  • the input reservoir layer 541 corresponds to the conductive urethane 22 included in the object 2 . That is, the learning processing unit 52 applying PRCN handles the object 2 including the conductive urethane 22 as a reservoir for storing data regarding the deformation and alteration of the object 2 including the conductive urethane 22 for learning.
  • the conductive urethane 22 has electrical properties (electrical resistance values) that correspond to each of various stimuli, functions as an input layer for inputting electrical resistance values, and also provides data regarding the deformation (and alteration) of the conductive urethane 22.
  • the estimation layer 545 calculates the applied conductive urethane 22 It is possible to estimate the unknown compression state from the electrical resistance value. Therefore, in the learning process in the learning processing unit 52 to which PRCN is applied, the estimation layer 545 may be learned.
  • the estimation device 1 by using the trained learning model 51 generated by the method exemplified above, if the sufficiently learned learning model 51 is used, the conductive It is not impossible to estimate the compressed state of the polyurethane 22.
  • the estimation device 1 is an example of an estimation unit and an estimation device of the present disclosure.
  • the target object 2 and the conductive urethane 22 are examples of the detection unit of the present disclosure.
  • FIG. 10 shows an example of the electrical configuration of the estimation device 1.
  • the estimation device 1 shown in FIG. 10 is configured to include a computer as an execution device that executes processes to realize the various functions described above.
  • the estimation device 1 described above can be realized by causing a computer to execute a program representing each of the functions described above.
  • a computer functioning as the estimation device 1 includes a computer main body 100.
  • the computer main body 100 includes a CPU 102, a RAM 104 such as a volatile memory, a ROM 106, an auxiliary storage device 108 such as a hard disk drive (HDD), and an input/output interface (I/O) 110.
  • These CPU 102, RAM 104, ROM 106, auxiliary storage device 108, and input/output I/O 110 are connected via a bus 112 so as to be able to exchange data and commands with each other.
  • the input/output I/O 110 is connected to a communication section 114 for communicating with an external device, an operation display section 116 such as a display or a keyboard, and a detection section 118.
  • the detection unit 118 functions to acquire input data 4 (electrical characteristics such as electrical resistance values in time series) from the object 2 including the conductive urethane 22 . That is, the detection unit 118 can acquire the input data 4 from the electrical property detection unit 76 connected to the detection point 75 on the conductive urethane 22 . Note that the detection unit 118 may be connected via the communication unit 114.
  • the operation display section 116 is an example of an output section of the present disclosure.
  • a control program 108P for causing the computer main body 100 to function as the estimation device 1 as an example of the estimation device of the present disclosure is stored in the auxiliary storage device 108.
  • the CPU 102 reads the control program 108P from the auxiliary storage device 108, expands it to the RAM 104, and executes the process. Thereby, the computer main body 100 that has executed the control program 108P operates as the estimation device 1.
  • the auxiliary storage device 108 stores a learning model 108M including the learning model 51 and data 108D including various data.
  • the control program 108P may be provided on a recording medium such as a CD-ROM.
  • FIG. 11 shows an example of the flow of estimation processing by the control program 108P executed by the computer main body 100.
  • the estimation process shown in FIG. 11 is executed by the CPU 102 when the computer main body 100 is powered on.
  • the CPU 102 reads the control program 108P from the auxiliary storage device 108, expands it to the RAM 104, and executes processing.
  • the control program 108P is an example of the estimation program of the present disclosure.
  • the processing by the control program 108P executed by the CPU 102 is an example of the processing by the estimation method of the present disclosure.
  • the CPU 102 reads the learning model 51 from the learning model 108M in the auxiliary storage device 108, and develops it in the RAM 104, thereby acquiring the learning model 51 (step S200). Specifically, by deploying a network model (see FIGS. 7 and 9) representing connections between nodes using weight parameters expressed as a learning model 51 in the RAM 104, connections between nodes based on weight parameters are realized. A learning model 51 is constructed.
  • the CPU 102 acquires unknown input data 4 (electrical characteristics), which is a target for estimating the compressed state of the conductive urethane 22, in time series via the detection unit 118 (step S202).
  • the CPU 102 uses the learning model 51 to estimate the output data 6 (compression degree that is an unknown compression state) corresponding to the acquired input data 4 (step S204).
  • the CPU 102 outputs the estimation result output data 6 (compression degree, which is the compression state) via the communication unit 114 (step S206), and ends this processing routine.
  • the compressed state can be estimated from the electrical resistance value of the conductive urethane 22.
  • the estimation device 1 is capable of estimating the compressed state of the conductive urethane 22 from the input data 4 (electrical characteristics) that changes according to the pressure stimulation applied to the conductive urethane 22. That is, it becomes possible to estimate the compressed state of the conductive urethane 22 without using a special device or a large device or directly measuring the deformation of the flexible member.
  • step S206 it is also possible to output caution information indicating caution regarding the conductive urethane 22.
  • a message that is intuitive to the user may be output as a compressed state (degree of compression) to the communication unit 114 or the operation display unit 116.
  • the compression state (degree of compression) is less than or equal to a predetermined threshold value for determining the compression state (degree of compression)
  • a message indicating that the compression state of the conductive urethane 22 has a margin is output as caution information.
  • the threshold value is exceeded, a message indicating that there is no margin in the compression state and that it is preferable to return to the compression state below the threshold value is output as caution information.
  • This caution information may be obtained by measuring in advance the compression state (degree of compression) that indicates a destructive state that may lead to cutting of the electrical path in the conductive urethane 22, and using the measured value as a threshold value. Further, the compression state (degree of compression) in which the electrical resistance value changes from the upward trend to the downward trend described above may be used as the threshold value.
  • the caution information indicating the caution to the conductive urethane 22 can also be considered as information indicating the caution state of the conductive urethane 22, and the caution information functions as an example of the caution information of the present disclosure.
  • the estimation process shown in FIG. 11 described above is an example of the process executed by the estimation method of the present disclosure.
  • the present disclosure it is possible to estimate the compressed state of the conductive urethane 22 from the electrical characteristics of the conductive urethane 22 without using a special detection device. Furthermore, by outputting the estimation result of the compression state of the estimated object, that is, the conductive urethane 22, it is possible to estimate the compression state including the flexibility of the conductive urethane 22 that functions as a sensor included in the object 2. It becomes possible.
  • the compressed state that is, the deformed state in which the conductive urethane 22 is compressed by applying a positive pressure stimulus to the conductive urethane 22
  • the technology of the present disclosure is limited to the compressed state. It's not something you can do.
  • the technique of the present disclosure can also be applied to an elongated state in which the conductive urethane 22 is stimulated with negative pressure, for example, the conductive urethane 22 is stimulated to stretch by pulling or the like.
  • FIG. 12 shows an example of electrical characteristics when the conductive urethane 22 is expanded (deformed).
  • the electrical characteristics of the conductive urethane 22 in a stretched state in which the conductive urethane 22 is stretched by separating both ends of the conductive urethane 22 in opposite directions with a predetermined force are shown as electrical characteristics 45.
  • the example shown in FIG. 12 shows the relationship between the electrical characteristic value (electrical resistance value) and the time when both ends of the conductive urethane 22 are continuously separated by a predetermined force. Further, FIG.
  • a flexible material in which at least a portion of the urethane material is infiltrated (for example, impregnated) with a conductive material is used. It has been confirmed that the following explanation is also applicable to a flexible material in which a conductive material is blended (for example, internally added) into at least a portion of a urethane material.
  • the electrical property 45 is such that the electrical property (electrical resistance value) increases in accordance with the magnitude of the applied negative pressure stimulus (ie, extension). Therefore, the electrical characteristics include a characteristic 46 related to the state of elongation, which is indicated by the degree of elongation (in this case, the amount of elongation).
  • the electrical property 45 has a characteristic that the electrical resistance value switches from a first upward trend in which the electrical resistance value gradually increases during the elongation process to a second upward trend.
  • This characteristic is presumed to be due to the phenomenon that the degree of the tendency for the electrical resistance value to rise changes due to the cutting of at least a portion of the electrical path due to elongation. Such cutting of the electrical path may cause the conductive urethane 22 to be disconnected.
  • changes in the degree of increasing tendency of the electrical resistance value do not occur regularly. Therefore, as described above, the degree of elongation, which is the elongated state, can be estimated from the features included in the electrical characteristics.
  • the physical quantity at the time of elongation due to the feature is quantified and defined as the degree of elongation. That is, the degree of elongation corresponds to a degree that tends to increase as the amount or ratio of elongation of the conductive urethane 22 increases.
  • the characteristic at the time of elongation is switched from the first upward trend to the second upward trend
  • the degree of elongation indicating a state of elongation that may cause disconnection of the conductive urethane 22 is derived in advance through experiments (elongation degree Pu1 shown in FIG. 12), and the degree of elongation is set as a boundary from the first upward trend.
  • the electrical characteristics may switch to a second upward trend.
  • the estimation unit 1 described above can be configured according to functions corresponding to the features included in the electrical characteristics.
  • FIG. 13 shows a modification of the configuration of the estimation unit 1.
  • the estimation unit 1 includes a compression state analysis unit, a comparison determination unit, and a threshold storage unit.
  • the compression state analysis unit is a functional unit that analyzes the compression state of the object 2 including the conductive urethane 22 using time-series electrical characteristics (input data 4) that change according to the compression of the conductive urethane 22. .
  • the compression state analysis unit derives the degree of compression indicated by the characteristics included in the electrical characteristics according to the third characteristics from the first characteristics described above.
  • the comparison/judgment unit is connected to a threshold storage unit that stores a threshold for determining the compression state, and is a functional unit that compares the compression state of the analysis result with the compression state determination threshold, and outputs the comparison result as a degree of compression. It is.
  • the threshold value storage unit may store the above-mentioned threshold values in the ROM 106 or the auxiliary storage device 108.
  • the comparison/determination unit may determine the compressed state using, for example, a threshold value for determining the compressed state.
  • conductive urethane is used as an example of the flexible member, but the flexible member only needs to have flexibility, and is of course not limited to the above-mentioned conductive urethane.
  • estimation process and the learning process are realized by a software configuration using flowcharts, but the invention is not limited to this.
  • each process is realized by a hardware configuration. It may also be in the form of
  • a part of the estimation device for example, a neural network such as a learning model, may be configured as a hardware circuit.
  • the first aspect of the technology of the present disclosure described above is a detection unit that detects electrical characteristics between a plurality of predetermined detection points on a flexible material that has conductivity and whose electrical properties change according to deformation; Using the time-series electrical characteristics that change according to the deformation of the flexible material and deformation state information indicating the deformation state related to the deformation of the flexible material as learning data, the time-series electrical characteristics are input, and the The time-series electrical characteristics detected by the detection unit of the estimation target including the flexible material are input to the learning model that has been trained to output deformation state information, and the time-series electrical characteristics are matched to the input time-series electrical characteristics.
  • an estimating unit that estimates deformation state information indicating a deformation state This is an estimation device including:
  • the deformed state is a stretched state in which the flexible material is stretched and contracted by applying stress
  • the detection unit detects the electrical property indicating a change in volume resistance of the flexible material, which changes from a first tendency to a second tendency depending on the expansion/contraction state
  • the learning model is trained to output information indicating the expansion/contraction state as the deformation state information.
  • the elastic state is a compressed state indicated by a degree of compression that increases as the amount of compression increases when the flexible material is compressed
  • the estimation unit estimates the degree of compression of the flexible material.
  • a fourth aspect is the estimation device of the third aspect,
  • the detection unit is configured to detect a change from one of an upward trend and a downward trend to the other when the flexible material is compressed as a change from the first tendency to a second tendency, and as the degree of compression increases, the first tendency changes from one to the other. detecting the electrical property in which the difference between the value of the electrical property in one trend and the value of the electrical property in a second trend that has changed from the first trend is large; The estimating unit estimates the degree of compression based on a difference between the values of the electrical characteristics.
  • a fifth aspect is the estimation device according to the third aspect or the fourth aspect,
  • the flexible material has a structure having at least one of a fibrous and mesh-like skeleton, or a urethane material having a structure in which a plurality of micro air bubbles are scattered inside, and at least a part of the urethane material has a conductive material inside.
  • a member coated or impregnated with The learning model is learned using a physical quantity indicating a change point where the first trend changes to the second trend determined in response to internal addition or impregnation,
  • the estimation unit further estimates information indicating internal addition or impregnation as information indicating physical properties of the flexible material.
  • a sixth aspect is the estimation device of the second aspect,
  • the stretched state is a stretched state indicated by a degree of stretch that increases as the amount of stretch when the flexible material is stretched
  • the detection unit detects the electrical property that changes depending on the elongated state
  • the learning model is trained to output information indicating the caution state as the deformation state information using electrical characteristics based on a predetermined threshold value indicating the caution state with respect to the flexible material.
  • a seventh aspect is the estimation device according to any one of the first to sixth aspects,
  • the learning model includes a model generated by learning using a network based on reservoir computing using the flexible material as a reservoir.
  • An eighth aspect is the estimation device according to any one of the first to seventh aspects,
  • the apparatus further includes an output section that outputs the estimation result of the estimation section.
  • the ninth aspect is the computer acquires the electrical properties from a detection unit that detects electrical properties between a plurality of predetermined detection points on a flexible material that is conductive and whose electrical properties change according to deformation; Using the time-series electrical characteristics that change according to the deformation of the flexible material and deformation state information indicating the deformation state related to the deformation of the flexible material as learning data, the time-series electrical characteristics are input, and the The time-series electrical characteristics detected by the detection unit of the estimation target including the flexible material are input to the learning model that has been trained to output deformation state information, and the time-series electrical characteristics are matched to the input time-series electrical characteristics.
  • This estimation method estimates deformation state information indicating the deformation state.
  • the tenth aspect is acquiring the electrical properties from a detection unit that detects the electrical properties between a plurality of predetermined detection points on a flexible material that is conductive and whose electrical properties change according to deformation; Using the time-series electrical characteristics that change according to the deformation of the flexible material and deformation state information indicating the deformation state related to the deformation of the flexible material as learning data, the time-series electrical characteristics are input, and the The time-series electrical characteristics detected by the detection unit of the estimation target including the flexible material are input to the learning model that has been trained to output deformation state information, and the time-series electrical characteristics are matched to the input time-series electrical characteristics.
  • This is an estimation program for executing a process of estimating deformation state information indicating a deformation state.
  • the eleventh aspect is Time-series electrical properties detected between a plurality of predetermined detection points on a flexible material that has conductivity and whose electrical properties change according to deformation, and a deformation state regarding the deformation of the flexible material.
  • an acquisition unit that acquires deformation state information;
  • a learning model trained to use the time-series electrical characteristics acquired by the acquisition unit and the deformation state information as learning data, take the time-series electrical characteristics as input, and output the deformation state information.
  • a learning model generation unit that generates; This is a learning model generation device that includes:

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

This estimation device includes: a detection unit for detecting electrical characteristics between a plurality of detection points defined in advance on a flexible material that is electrically conductive and of which the electrical characteristics change in response to deformation; and an estimation unit for inputting, into a learning model trained using time-series electrical characteristics that change with deformation of the flexible material and deformation state information indicating the deformation state pertaining to the deformation of the flexible material as training data to use time-series electrical characteristics as input and to output deformation state information, time-series electrical characteristics, detected by the detection unit, of an object subject to estimation that includes the flexible material, and estimating deformation state information indicating the deformation state corresponding to the inputted time-series electrical characteristics.

Description

推定装置、推定方法、推定プログラム、及び学習モデル生成装置Estimation device, estimation method, estimation program, and learning model generation device
 本開示は、推定装置、推定方法、推定プログラム、及び学習モデル生成装置に関する。 The present disclosure relates to an estimation device, an estimation method, an estimation program, and a learning model generation device.
 従来より、物体に生じる形状変化を検出し、当該検出結果を用いて物体に変形を与える人や物の状態を推定することが行われている。物体に生じる形状変化を検出する側面では、物体の変形を阻害せずに変形を検出することは困難である。また、金属変形等の剛体の検出に用いられる歪センサは物品に利用困難なため、物体の変形を検出するためには、特殊な検出装置が要求される。例えば、カメラによる物体の変位と振動を測定して、変形画像を取得し、変形量を抽出する技術が知られている(例えば、国際公開第2017/029905号参照)。また、光の透過量から変形量を推定する柔軟触覚センサに関する技術も知られている(例えば、特開2013-101096号公報参照)。 Conventionally, changes in shape that occur in objects have been detected and the detection results have been used to estimate the state of the person or object that deforms the object. In terms of detecting changes in shape that occur in objects, it is difficult to detect deformation without inhibiting the deformation of the object. Furthermore, since strain sensors used to detect rigid bodies such as metal deformation are difficult to use for articles, a special detection device is required to detect deformation of an object. For example, a technique is known in which a camera measures the displacement and vibration of an object, obtains a deformation image, and extracts the amount of deformation (for example, see International Publication No. 2017/029905). Furthermore, a technique related to a flexible tactile sensor that estimates the amount of deformation from the amount of light transmitted is also known (for example, see Japanese Patent Application Laid-Open No. 2013-101096).
 しかしながら、物体に生じる形状変化を検出する側面では、カメラ及び画像解析手法を用いて物体の変位等の変形量を検出する場合、カメラ及び画像解析等を含むシステムは、大規模なものとなり、装置の大型化を招くので好ましくはない。また、一方では、物体として、変形可能な柔軟材料は、外部からの刺激の大きさに応じて変形量が変化する。また、変形量が変化することで、復元量が変化することもある。その変形量は、柔軟材料の柔らかさを示す柔軟性に依存すると考えられるが、柔軟性の評価は柔軟材料を変形させた際の柔らかさ及び硬さなどの感覚によるユーザの主観に依存しており、柔軟材料の変形量を特定するには充分ではない。従って、柔軟材料の変形状態を特定するのには改善の余地がある。 However, in terms of detecting changes in shape that occur in an object, when detecting the amount of deformation such as displacement of an object using a camera and image analysis method, the system including the camera and image analysis must be large-scale, and the equipment This is not preferable because it leads to an increase in size. On the other hand, when a flexible material is deformable as an object, the amount of deformation changes depending on the magnitude of external stimulation. Furthermore, the amount of restoration may change as the amount of deformation changes. The amount of deformation is thought to depend on the flexibility, which indicates the softness of the flexible material, but evaluation of flexibility depends on the user's subjective sense of softness and hardness when the flexible material is deformed. This is not sufficient to determine the amount of deformation of a flexible material. Therefore, there is room for improvement in identifying the deformation state of flexible materials.
 本開示は、特殊な検出装置を用いることなく、導電性を有する柔軟材料の電気特性を利用して、柔軟材料の変形状態を推定する。 The present disclosure estimates the deformation state of a flexible material by using the electrical properties of the conductive flexible material without using a special detection device.
 本開示の1態様は、
 導電性を有し、かつ変形に応じて電気特性が変化する柔軟材料に予め定められた複数の検出点の間の電気特性を検出する検出部と、
 前記柔軟材料の変形に応じて変化する時系列の電気特性と、前記柔軟材料の変形に関する変形状態を示す変形状態情報とを学習用データとして用いて、前記時系列の電気特性を入力とし、前記変形状態情報を出力するように学習された学習モデルに対して、柔軟材料を含む推定対象物の前記検出部で検出された時系列の電気特性を入力し、入力した時系列の電気特性に対応する変形状態を示す変形状態情報を推定する推定部と、
 を含む推定装置である。
One aspect of the present disclosure includes:
a detection unit that detects electrical characteristics between a plurality of predetermined detection points on a flexible material that has conductivity and whose electrical properties change according to deformation;
Using the time-series electrical characteristics that change according to the deformation of the flexible material and deformation state information indicating the deformation state related to the deformation of the flexible material as learning data, the time-series electrical characteristics are input, and the The time-series electrical characteristics detected by the detection unit of the estimation target including the flexible material are input to the learning model that has been trained to output deformation state information, and the time-series electrical characteristics are matched to the input time-series electrical characteristics. an estimating unit that estimates deformation state information indicating a deformation state;
This is an estimation device including:
実施形態に係る推定装置の構成を示す図である。FIG. 1 is a diagram showing the configuration of an estimation device according to an embodiment. 導電性ウレタンの配置を示す図である。FIG. 3 is a diagram showing the arrangement of conductive urethane. 学習モデル生成装置の概念構成を示す図である。1 is a diagram showing a conceptual configuration of a learning model generation device. 測定装置を示す図である。It is a figure showing a measuring device. 導電性ウレタンの電気特性の一例を示す図である。FIG. 3 is a diagram showing an example of electrical characteristics of conductive urethane. 導電性ウレタンの電気特性の一例を示す図である。FIG. 3 is a diagram showing an example of electrical characteristics of conductive urethane. 導電性ウレタンの電気特性について値の変動の観点で捉えた概念図である。FIG. 2 is a conceptual diagram of electrical properties of conductive urethane from the viewpoint of value fluctuations. 学習処理部の機能構成を示す図である。FIG. 3 is a diagram showing the functional configuration of a learning processing section. 学習処理の流れの一例を示す図である。It is a figure showing an example of the flow of learning processing. 学習処理部の他の機能構成を示す図である。FIG. 3 is a diagram showing another functional configuration of the learning processing section. 推定装置の電気的な構成を示す図である。FIG. 3 is a diagram showing an electrical configuration of an estimation device. 推定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of estimation processing. 導電性ウレタンの電気特性の一例を示す概念図である。FIG. 2 is a conceptual diagram showing an example of electrical characteristics of conductive urethane. 推定部の変形例を示す図である。It is a figure which shows the modification of an estimation part.
 以下、図面を参照して本開示の技術を実現する実施形態を詳細に説明する。なお、作用、機能が同じ働きを担う構成要素及び処理には、全図面を通して同じ符合を付与し、重複する説明を適宜省略する場合がある。また、本開示は、以下の実施形態に何ら限定されるものではなく、本開示の目的の範囲内において適宜変更を加えて実施することができる。 Hereinafter, embodiments that implement the technology of the present disclosure will be described in detail with reference to the drawings. Note that components and processes that have the same actions and functions are given the same reference numerals throughout the drawings, and overlapping explanations may be omitted as appropriate. Further, the present disclosure is not limited to the following embodiments, and can be implemented with appropriate changes within the scope of the purpose of the present disclosure.
 なお、本開示において人物とは、対象物に対して物理量により刺激を与えることが可能な人体及び物体の少なくとも一方を含む概念である。以下の説明では、人体及び物体の少なくとも一方を区別することなく、ヒトとモノとを含む概念として人物と総称して説明する。すなわち、人体及び物体のそれぞれの単体、及び人体と物体の組み合わせた組合せ体を総称して人物と称する。 Note that in the present disclosure, a person is a concept that includes at least one of a human body and an object that can provide stimulation to a target object using a physical quantity. In the following description, the term "person" will be used generically as a concept including humans and things, without distinguishing between at least one of a human body and an object. That is, a single human body and an object, as well as a combination of a human body and an object, are collectively referred to as a person.
 まず、本開示の技術を適用する導電性が付与された柔軟材料、及び当該柔軟材料を用いて、柔軟材料に対する付与側の状態に応じて変形する柔軟材料の変形状態を推定する状態推定処理を説明する。この柔軟材料の変形状態の推定結果を用いて柔軟材料に対する付与側の状態を推定することも不可能ではない。
 柔軟材料に対する付与側の状態は、本開示の柔軟材料が応力付与される状態の一例である。
First, a state estimation process is performed to estimate the deformation state of the flexible material that deforms depending on the state of the imparting side to the flexible material, using a flexible material to which conductivity is applied and the flexible material to which the technology of the present disclosure is applied. explain. It is not impossible to estimate the state of the application side of the flexible material using the estimation result of the deformation state of the flexible material.
The application side state for the flexible material is an example of the state in which the flexible material of the present disclosure is stressed.
<柔軟材料>
 本開示において「柔軟材料」とは、少なくとも一部が撓み等のように変形可能な材料を含む概念であり、ゴム材料等の柔らかい弾性体、繊維状及び網目状の少なくとも一方の骨格を有する構造体、及び内部に微小な空気泡が複数散在する構造体を含む。これらの構造体の一例には、ウレタン材などの高分子材料が挙げられる。また、本開示では、導電性が付与された柔軟材料を用いる。「導電性が付与された柔軟材料」とは、導電性を有する材料を含む概念であり、導電性を付与するために導電材を柔軟材料に付与した材料、及び柔軟材料が導電性を有する材料を含む。導電性を付与する柔軟材料はウレタン材などの高分子材料が好適である。以下の説明では、導電性が付与された柔軟材料の一例として、ウレタン材の全部または一部に導電材料を配合(例えば、内添)及び浸潤(例えば含浸)等により形成させた部材を、「導電性ウレタン」と称して説明する。図では、導電性ウレタン22と描画する。導電性ウレタン22は、導電材料を配合と浸潤との何れかの方法で形成可能であり、導電材料の配合又は浸潤で形成可能で、また導電材料の配合と浸潤とを組み合わせて形成可能である。例えば、浸潤(含浸)による導電性ウレタン22が、配合による導電性ウレタン22より導電性が高い場合には、浸潤により導電性ウレタン22を形成することが好ましい。
 内添および含浸を示す情報は、本開示の柔軟材料の物性を示す情報の一例である。
<Flexible material>
In the present disclosure, "flexible material" is a concept that includes materials at least partially deformable such as bending, and includes a soft elastic body such as a rubber material, a structure having a skeleton of at least one of a fibrous and a mesh-like structure. It includes a body and a structure in which a plurality of micro air bubbles are scattered inside. An example of these structures includes polymeric materials such as urethane materials. Further, in the present disclosure, a flexible material imparted with conductivity is used. "Flexible material with electrical conductivity" is a concept that includes materials that have electrical conductivity, such as materials in which a conductive material is added to a flexible material to impart electrical conductivity, and materials in which the flexible material has electrical conductivity. including. The flexible material imparting conductivity is preferably a polymeric material such as urethane material. In the following description, as an example of a flexible material imparted with conductivity, a member formed by blending (e.g., internal addition) and infiltration (e.g., impregnation) with a conductive material in all or part of a urethane material will be referred to as " It will be described as "conductive urethane". In the figure, conductive urethane 22 is drawn. The conductive urethane 22 can be formed by mixing a conductive material and infiltrating it, can be formed by combining or infiltrating a conductive material, or can be formed by combining a conductive material and infiltrating it. . For example, if the conductive urethane 22 formed by infiltration (impregnation) has higher conductivity than the conductive urethane 22 formed by blending, it is preferable to form the conductive urethane 22 by infiltration.
Information indicating internal addition and impregnation is an example of information indicating physical properties of the flexible material of the present disclosure.
 導電性ウレタン22は、付与側の状態により与えられた物理量に応じて電気特性が変化する機能を有する。付与側の状態の一例には、導電性ウレタン22を伸縮させる圧縮及び伸長する等の人物による物理的な行為を示す状態があり、押圧及び引っ張り等の状態が対応例である。また、電気特性が変化する機能を生じさせる物理量の一例には、撓み等のように構造を変形させる圧力による刺激(以下、圧力刺激という。)を示す圧力値による刺激値が挙げられる。圧力刺激は、所定部位への圧力及び所定範囲の圧力の分布による圧力付与を含む。また、当該物理量の他例には、含水率及び水分付与等によって素材の性質を変化(変質)させる刺激(以下、素材刺激という。)を示す水分量等の刺激値が挙げられる。導電性ウレタン22は、与えられた物理量に応じて変形状態及び電気特性が変化する。電気特性を表す物理量の一例には、電気抵抗値が挙げられる。また、他例には、電圧値、又は電流値が挙げられる。 The conductive urethane 22 has the function of changing its electrical properties depending on the physical quantity given by the state of the supply side. An example of the condition on the application side is a condition indicating a physical action by a person such as compression and expansion to expand and contract the conductive urethane 22, and corresponding examples are conditions such as pressing and pulling. Furthermore, an example of a physical quantity that causes a function that changes electrical characteristics is a stimulus value based on a pressure value indicating a pressure stimulus (hereinafter referred to as pressure stimulus) that deforms a structure such as bending. Pressure stimulation includes application of pressure to a predetermined region and pressure distribution in a predetermined range. In addition, other examples of the physical quantity include stimulation values such as moisture content, which indicates a stimulus (hereinafter referred to as material stimulus) that changes (degrades) the properties of a material due to moisture content, moisture addition, and the like. The conductive urethane 22 changes its deformation state and electrical properties depending on the given physical quantity. An example of a physical quantity representing electrical characteristics is an electrical resistance value. Further, other examples include a voltage value or a current value.
 変形状態の一例には、導電性ウレタン22の伸縮を示す伸縮状態が挙げられる。伸縮状態は、正の圧力刺激を与えて導電性ウレタン22を圧縮する側面では圧縮状態を示し、圧縮状態を示す物理量の一例には、圧縮量及び圧縮率の少なくとも一方が挙げられる。圧縮量は、圧縮される導電性ウレタン22の総量でもよく、所定方向に圧縮する際における沈み込み量の最大値でもよい。圧縮率は導電性ウレタン22の総量に対する圧縮量の比率でもよく、所定方向に圧縮する際における導電性ウレタン22の厚さに対する沈み込み量の比率でもよい。また、負の圧力刺激を与えて導電性ウレタンを伸長する側面では圧縮状態を示し、その物理量の一例には伸長量及び伸長率の少なくとも一方が挙げられる。伸長量及び伸長率は所定方向に伸長される導電性ウレタン22の長さが一例として挙げられる。伸長率は所定方向に伸長される際の導電性ウレタン22の全長に対する伸長量の比率が挙げられる。
 本実施形態に係る変形状態は、導電性ウレタン22への応力付与により伸縮される状態を示す伸縮状態の一例である。導電性ウレタン22の圧縮状態(伸縮状態)を示す情報は、本開示の変形状態を示す変形状態情報の一例である。
An example of the deformed state is a stretched state in which the conductive urethane 22 expands and contracts. The expanded/contracted state indicates a compressed state on the side where the conductive urethane 22 is compressed by applying a positive pressure stimulus, and an example of a physical quantity indicating the compressed state includes at least one of the amount of compression and the compression ratio. The amount of compression may be the total amount of conductive urethane 22 to be compressed, or may be the maximum value of the amount of sinking when compressed in a predetermined direction. The compression rate may be the ratio of the amount of compression to the total amount of conductive urethane 22, or the ratio of the amount of depression to the thickness of conductive urethane 22 when compressed in a predetermined direction. Further, the side surface where the conductive urethane is stretched by applying a negative pressure stimulus shows a compressed state, and an example of the physical quantity thereof includes at least one of the amount of stretching and the stretching rate. An example of the amount of elongation and the elongation rate is the length of the conductive urethane 22 that is elongated in a predetermined direction. The elongation rate is the ratio of the amount of elongation to the total length of the conductive urethane 22 when it is elongated in a predetermined direction.
The deformed state according to the present embodiment is an example of a stretched state in which the conductive urethane 22 is stretched and contracted by applying stress. The information indicating the compressed state (expansion/contraction state) of the conductive urethane 22 is an example of deformation state information indicating the deformation state of the present disclosure.
 導電性ウレタン22は、所定の体積を有する柔軟材料に導電性を与えることで、与えられた物理量に応じて変形(伸縮)した際の電気特性(すなわち電気抵抗値の変化)が現れ、その電気抵抗値は、導電性ウレタンの体積抵抗による値(体積抵抗値)と捉えることが可能である。導電性ウレタン22は、電気経路が複雑に連携し、例えば、変形に応じて電気経路が伸縮したり膨縮したりする。また、電気経路が一時的に切断される挙動、及び以前と異なる接続が生じる挙動を示す場合もある。従って、導電性ウレタン22は、所定距離を隔てた位置(例えば電極が配置された検出点の位置)の間では、与えられた物理量による刺激(圧力刺激及び素材刺激)の大きさや分布に応じた変形や変質で異なる電気特性を有する挙動を示す。このため、導電性ウレタン22に与えられた物理量による刺激の大きさや分布に応じて電気特性が変化する。 By imparting conductivity to a flexible material having a predetermined volume, the conductive urethane 22 exhibits electrical properties (i.e., changes in electrical resistance) when deformed (expanded and contracted) according to a given physical quantity, and its electrical The resistance value can be regarded as a value based on the volume resistance (volume resistance value) of conductive urethane. In the conductive urethane 22, electric paths are interconnected in a complicated manner, and for example, the electric paths expand/contract or expand/contract in response to deformation. In addition, the electrical path may be temporarily disconnected, or a connection may be different from the previous one. Therefore, between positions separated by a predetermined distance (for example, the position of a detection point where an electrode is placed), the conductive urethane 22 can respond to the size and distribution of the applied physical quantity stimulation (pressure stimulation and material stimulation). It exhibits behavior with different electrical characteristics due to deformation and alteration. Therefore, the electrical characteristics change depending on the magnitude and distribution of the stimulus caused by the physical quantity applied to the conductive urethane 22.
 以下、柔軟材料における電気特性が変化する機能を生じさせる刺激として、導電性ウレタン22に圧力刺激が与えられて圧縮される場合を一例として説明する。 Hereinafter, a case will be described as an example in which a pressure stimulus is applied to the conductive urethane 22 and the conductive urethane 22 is compressed as a stimulus that causes a function to change the electrical properties of the flexible material.
 なお、導電性ウレタンを用いることで、特定の箇所に電極等の検出点を設ける必要はない。導電性ウレタン22が圧縮される箇所を挟む任意の少なくとも2箇所に電極等の検出点を設ければよい(例えば図1)。 Note that by using conductive urethane, there is no need to provide detection points such as electrodes at specific locations. Detection points such as electrodes may be provided at at least two arbitrary locations sandwiching the location where the conductive urethane 22 is compressed (for example, FIG. 1).
 また、導電性ウレタンの電気特性の検出精度を向上するため、2個の検出点より多くの検出点を用いてもよい。また、本開示の導電性ウレタンは、図1に示す導電性ウレタン22を1導電性ウレタン片とし、複数の導電性ウレタン片を配列してなる導電性ウレタン群で形成してもよい。この場合、複数の導電性ウレタン片毎に電気特性を検出してもよいし、複数の導電性ウレタン片の電気特性を合成して検出してもよい。複数の導電性ウレタン片毎に電気特性を検出する場合、配置部位毎に電気抵抗値等の電気特性を検出できる。また、他例としては、導電性ウレタン22上における検出範囲を分割して分割した検出範囲毎に検出点を設けて検出範囲毎に電気特性を検出してもよい。 Furthermore, in order to improve the detection accuracy of the electrical properties of conductive urethane, more detection points than two detection points may be used. Further, the conductive urethane of the present disclosure may be formed of a conductive urethane group formed by arranging a plurality of conductive urethane pieces, with the conductive urethane 22 shown in FIG. 1 being one conductive urethane piece. In this case, the electrical characteristics may be detected for each of the plurality of conductive urethane pieces, or the electrical properties of the plurality of conductive urethane pieces may be combined and detected. When detecting electrical properties for each of a plurality of conductive urethane pieces, electrical properties such as electrical resistance can be detected for each location. Further, as another example, the detection range on the conductive urethane 22 may be divided, a detection point may be provided for each divided detection range, and the electrical characteristics may be detected for each detection range.
<推定装置>
 次に、導電性ウレタン22の圧縮、すなわち付与側の状態に応じて圧縮(変形)される導電性ウレタンの圧縮状態(変形状態)を推定する推定装置の一例を説明する。
<Estimation device>
Next, an example of an estimation device that estimates the compression state (deformed state) of the conductive urethane 22, that is, the compressed state (deformed state) of the conductive urethane that is compressed (deformed) depending on the state of the application side, will be described.
 図1に、導電性ウレタンの圧縮状態を推定する推定処理を実行可能な推定装置1の構成の一例を示す。推定装置1は、推定部5を備え、導電性ウレタン22における電気特性が入力されるように対象物2に接続されている。推定装置1では、対象物2に含まれる導電性ウレタン22の圧縮状態が推定される。推定装置1は、後述する実行装置としてのCPUを備えたコンピュータによって実現可能である。 FIG. 1 shows an example of the configuration of an estimating device 1 that can perform an estimating process for estimating the compressed state of conductive urethane. The estimating device 1 includes an estimating section 5 and is connected to the object 2 so that the electrical characteristics of the conductive urethane 22 are input. The estimation device 1 estimates the compressed state of the conductive urethane 22 contained in the object 2. The estimation device 1 can be realized by a computer equipped with a CPU as an execution device, which will be described later.
 導電性ウレタン22は、与えられた物理量(ここでは圧力刺激)に応じて変形する。圧力刺激は時系列に与えられ、圧力刺激(付与側の状態)に応じて変形する導電性ウレタン22の圧縮状態を示す。従って、導電性ウレタン22の電気特性は、導電性ウレタン22に与えられた圧力刺激(物理量)の付与側の状態に対応する導電性ウレタン22の圧縮状態を示す。よって、時系列に変化する導電性ウレタンの電気特性から導電性ウレタン22の圧縮状態を推定することが可能である。 The conductive urethane 22 deforms in response to an applied physical quantity (here, pressure stimulation). The pressure stimulus is applied in time series, and shows the compressed state of the conductive urethane 22 that deforms depending on the pressure stimulus (state on the application side). Therefore, the electrical characteristics of the conductive urethane 22 indicate the compressed state of the conductive urethane 22 corresponding to the state of the pressure stimulus (physical quantity) applied to the conductive urethane 22 . Therefore, it is possible to estimate the compressed state of the conductive urethane 22 from the electrical characteristics of the conductive urethane that change over time.
 推定装置1では、後述する推定処理によって、学習済みの学習モデル51を用いて、未知の導電性ウレタン22の圧縮状態を推定し、出力する。これにより、特殊な装置や大型の装置を用いたり対象物2に含まれる導電性ウレタン22の変形を直接計測することなく、対象物2における導電性ウレタン22の圧縮状態を推定することが可能となる。学習モデル51は、導電性ウレタン22の圧縮状態と、対象物2の電気特性(すなわち、対象物2に配置された導電性ウレタン22の電気抵抗値等の電気特性)とを入力として学習される。学習モデル51の学習については後述する。 The estimation device 1 estimates and outputs the compression state of the unknown conductive urethane 22 using the learned learning model 51 through an estimation process that will be described later. This makes it possible to estimate the compressed state of the conductive urethane 22 in the object 2 without using special or large equipment or directly measuring the deformation of the conductive urethane 22 contained in the object 2. Become. The learning model 51 is learned by inputting the compressed state of the conductive urethane 22 and the electrical characteristics of the object 2 (that is, the electrical characteristics such as the electrical resistance value of the conductive urethane 22 placed on the object 2). . Learning of the learning model 51 will be described later.
 なお、導電性ウレタン22は、柔軟性を有する部材21に配置して対象物2を構成することが可能である(図2)。導電性ウレタン22が配置された部材21により構成される対象物2は、電気特性検出部76を含む。導電性ウレタン22は、部材21の少なくとも一部に配置すればよく、内部に配置してもよいし外部に配置してもよい。また、導電性ウレタン22は、圧縮状態を推定可能に配置すればよく、例えば、人物に直接的又は間接的、或いはその両方で接触可能に配置すればよい。
 電気特性検出部76を含む対象物2は、本開示の検出部の一例である。よって、詳細は後述するが、電気特性検出部76を含む対象物2は、導電性ウレタン22の体積抵抗の変化特性を示す電気特性として、圧縮状態(伸縮状態)に応じて第1傾向から第2傾向に変化する電気特性を検出することが可能である。
Note that the conductive urethane 22 can be placed on the flexible member 21 to form the object 2 (FIG. 2). The object 2 constituted by the member 21 on which the conductive urethane 22 is disposed includes an electrical property detection section 76 . The conductive urethane 22 may be placed on at least a portion of the member 21, and may be placed inside or outside. Further, the conductive urethane 22 may be arranged so that its compressed state can be estimated, and for example, it may be arranged so that it can be contacted directly or indirectly with a person, or both.
The object 2 including the electrical property detection section 76 is an example of the detection section of the present disclosure. Therefore, although the details will be described later, the object 2 including the electrical property detecting section 76 has an electrical property that indicates a change in the volume resistance of the conductive urethane 22, which changes from the first tendency to the first tendency according to the compressed state (stretching state). It is possible to detect electrical characteristics that change in two trends.
 図2に、対象物2における導電性ウレタン22の配置例を示す。対象物2のA-A断面を対象物断面2-1として示すように、導電性ウレタン22は、部材21の内部を全て満たすように形成しても良い。また、対象物断面2-2に示すように、導電性ウレタン22は、部材21の内部における一方側(表面側)に形成しても良く、対象物断面2-3に示すように、部材21の内部における他方側(裏面側)に導電性ウレタン22を形成しても良い。さらに、対象物断面2-4に示すように、部材21の内部の一部に導電性ウレタン22を形成しても良い。また、対象物断面2-5に示すように、導電性ウレタン22は、部材21の表面側の外側に分離して配置しても良く、対象物断面2-6に示すように、他方側(裏面側)の外部に配置しても良い。導電性ウレタン22を部材21の外部に配置する場合、導電性ウレタン22と部材21とを積層するのみでもよく、導電性ウレタン22と部材21とを接着等により一体化してもよい。なお、導電性ウレタン22を部材21の外部に配置する場合であっても、導電性ウレタン22が導電性を有するウレタン部材であるため、部材21の柔軟性は阻害されない。 FIG. 2 shows an example of the arrangement of the conductive urethane 22 on the object 2. The conductive urethane 22 may be formed so as to completely fill the inside of the member 21, as shown in the AA cross section of the object 2 as the object cross section 2-1. Further, as shown in object cross section 2-2, the conductive urethane 22 may be formed on one side (surface side) inside the member 21, and as shown in object cross section 2-3, the conductive urethane 22 may be formed on one side (surface side) inside the member 21. The conductive urethane 22 may be formed on the other side (back side) inside. Furthermore, as shown in the object cross section 2-4, a conductive urethane 22 may be formed in a part of the inside of the member 21. Further, as shown in the object cross section 2-5, the conductive urethane 22 may be placed separately on the outside of the surface side of the member 21, and as shown in the object cross section 2-6, the conductive urethane 22 may be placed on the other side ( It may be placed outside the back side). When the conductive urethane 22 is disposed outside the member 21, the conductive urethane 22 and the member 21 may be simply laminated, or the conductive urethane 22 and the member 21 may be integrated by bonding or the like. Note that even when the conductive urethane 22 is disposed outside the member 21, the flexibility of the member 21 is not inhibited because the conductive urethane 22 is a urethane member having conductivity.
 図1に示すように、導電性ウレタン22は、距離を隔てて配置された少なくとも2個の検出点75からの信号によって、導電性ウレタン22の電気特性(すなわち、電気抵抗値である体積抵抗値)を検出する。図1の例では、導電性ウレタン22上で対角位置に配置された2個の検出点75からの信号により電気特性(時系列の電気抵抗値)を検出する検出セット#1が示されている。なお、検出点75の個数及び配置は、図1に示す位置に限定されるものではなく、導電性ウレタン22の電気特性を検出可能な位置であれば3個以上の個数でもよく何れの位置でもよい。なお、導電性ウレタン22の電気特性は、電気特性(例えば、電気抵抗値である体積抵抗値)を検出する電気特性検出部76を検出点75に接続し、その出力を用いればよい。 As shown in FIG. 1, the electrical properties of the electrically conductive urethane 22 (i.e., the volume resistivity value, which is an electrical resistance value) are detected by signals from at least two detection points 75 placed apart from each other. ) is detected. In the example of FIG. 1, detection set #1 is shown, which detects electrical characteristics (time-series electrical resistance values) using signals from two detection points 75 placed diagonally on the conductive urethane 22. There is. Note that the number and arrangement of the detection points 75 are not limited to the positions shown in FIG. good. Note that the electrical properties of the conductive urethane 22 can be determined by connecting an electrical property detection section 76 that detects electrical properties (for example, a volume resistivity value, which is an electrical resistance value) to a detection point 75, and using the output thereof.
 本実施形態では、センサとして導電性ウレタン22を用いるため、例えば、人物が介在する場合に従来のセンサに比べて人物に与える違和感が極めて少ない。このため、計測中に人物に関する付与側の状態(例えば人物の接触等)を害することが無く、計測と導電性ウレタン22の圧縮状態の推定を同時に行うことが可能となる。これは計測と推定を別個に行っていた従来のセンサに比べて利点となり、とりわけ時系列変化を追う長時間の計測評価による推定においては、そのメリットは大きい。 In this embodiment, since the conductive urethane 22 is used as a sensor, for example, when a person is present, the sense of discomfort given to the person is extremely small compared to conventional sensors. Therefore, it is possible to perform measurement and estimate the compressed state of the conductive urethane 22 at the same time without damaging the condition of the person on the application side (for example, contact with the person) during measurement. This is an advantage compared to conventional sensors that perform measurement and estimation separately, and is particularly advantageous in estimation based on long-term measurement and evaluation that follows time-series changes.
 なお、以降では、説明を簡単にするため、部材21の内部を全て導電性ウレタンで満たすように形成される導電性ウレタン22を対象物2に適用して説明する(図2の対象物断面2-1)。よって、以降では、対象物2に含まれる導電性ウレタン22として説明するが、対象物2と導電性ウレタン22は共通のものとして扱うことが可能である。 In order to simplify the explanation, hereinafter, the conductive urethane 22 formed so that the inside of the member 21 is completely filled with conductive urethane will be applied to the object 2 (object cross section 2 in FIG. 2). -1). Therefore, although the conductive urethane 22 included in the object 2 will be described below, the object 2 and the conductive urethane 22 can be treated as the same thing.
 推定部5は、対象物2に含まれる導電性ウレタン22に接続され、導電性ウレタン22の変形に応じて変化する電気特性に基づき、学習モデル51を用いて、導電性ウレタン22の圧縮状態を推定する機能部である。具体的には、推定部5には、導電性ウレタン22における電気抵抗の大きさ(電気抵抗値等)を表す時系列の入力データ4が入力される。入力データ4は、導電性ウレタン22の圧縮状態を示す状態データ3に対応する。例えば、人物が対象物2に接触する際、姿勢等の所定の状態で接触し、当該状態に対応して、対象物2を構成する導電性ウレタン22には圧力刺激が物理量として与えられ、導電性ウレタン22の電気特性が変化する。従って、入力データ4により示される時系列に変化する導電性ウレタン22の電気特性は、導電性ウレタン22に対する付与側の状態に対応して変化する導電性ウレタン22の圧縮状態に対応する。また、推定部5は、学習済みの学習モデル51を用いた推定結果として、時系列に変化する導電性ウレタン22の電気特性に対応する導電性ウレタン22の圧縮状態を表す出力データ6を出力する。 The estimation unit 5 is connected to the conductive urethane 22 included in the object 2, and uses a learning model 51 to estimate the compressed state of the conductive urethane 22 based on the electrical characteristics that change according to the deformation of the conductive urethane 22. This is a functional unit that estimates. Specifically, time-series input data 4 representing the magnitude of electrical resistance (electrical resistance value, etc.) in the conductive urethane 22 is input to the estimation unit 5 . Input data 4 corresponds to state data 3 indicating the compressed state of conductive urethane 22 . For example, when a person contacts the object 2, the person contacts the object 2 in a predetermined state such as a posture, and corresponding to the state, a pressure stimulus is applied as a physical quantity to the conductive urethane 22 constituting the object 2, and the conductive urethane 22 is applied as a physical quantity. The electrical properties of the polyurethane 22 change. Therefore, the electrical characteristics of the conductive urethane 22 that change over time as indicated by the input data 4 correspond to the compressed state of the conductive urethane 22 that changes in accordance with the state of the application side to the conductive urethane 22. Furthermore, the estimation unit 5 outputs output data 6 representing the compressed state of the conductive urethane 22 corresponding to the electrical characteristics of the conductive urethane 22 that change over time as an estimation result using the trained learning model 51. .
 学習モデル51は、与えられる圧力刺激により変化する導電性ウレタン22の電気抵抗(入力データ4)から、導電性ウレタン22の圧縮状態を表す出力データ6を導出する学習を済ませたモデルである。学習モデル51は、例えば、学習済みのニューラルネットワークを規定するモデルであり、ニューラルネットワークを構成するノード(ニューロン)同士の間の結合の重み(強度)の情報の集合として表現される。 The learning model 51 is a model that has undergone learning to derive output data 6 representing the compressed state of the conductive urethane 22 from the electrical resistance (input data 4) of the conductive urethane 22 that changes due to applied pressure stimulation. The learning model 51 is, for example, a model that defines a trained neural network, and is expressed as a set of information on the weights (strengths) of connections between nodes (neurons) forming the neural network.
 ここで、上述したように導電性ウレタン22は、電気経路が複雑に連携し、電気経路の伸縮、膨縮、一時的な切断、及び新たな接続等の変化(変形)に応じた挙動を示す。結果的に、導電性ウレタン22は、与えられた圧力刺激に対応した圧縮状態に応じた電気特性を有する挙動を示す。ところが、電気経路の伸縮、膨縮、一時的な切断、及び新たな接続(再結合)等の変化による変形は、規則的に生じるものではない。このため、本実施形態では、導電性ウレタン22の変形(圧縮)に関するデータとして、圧力刺激(ここでは導電性ウレタン22の圧縮)に対応して変化する導電性ウレタン22の電気特性(電気抵抗)の挙動(電気特性の変化)を考慮し、そして、導電性ウレタン22の圧縮状態を推定可能な学習モデル51を学習処理によって生成する。 Here, as described above, the conductive urethane 22 exhibits behavior in response to changes (deformations) such as expansion/contraction, expansion/contraction, temporary disconnection, new connections, etc. of the electrical paths, which are interconnected in a complex manner. . As a result, the conductive urethane 22 behaves with electrical characteristics depending on the compressed state corresponding to the applied pressure stimulus. However, deformations due to changes such as expansion/contraction, expansion/contraction, temporary disconnection, and new connections (recombinations) of electrical paths do not occur regularly. Therefore, in this embodiment, as data regarding the deformation (compression) of the conductive urethane 22, the electrical properties (electrical resistance) of the conductive urethane 22 that change in response to pressure stimulation (here, compression of the conductive urethane 22) are used. A learning model 51 capable of estimating the compressed state of the conductive urethane 22 is generated by a learning process.
 推定装置1における推定処理は、学習済みの学習モデル51を用いて、未知の物品(推定対象物)の圧縮状態を推定し、出力する。学習モデル51は、導電性ウレタン22の電気特性及び対象物2に含まれる導電性ウレタン22の圧縮状態を含む学習データによって学習される。 The estimation process in the estimation device 1 uses the trained learning model 51 to estimate and output the compression state of the unknown article (estimated object). The learning model 51 is trained using learning data including the electrical properties of the conductive urethane 22 and the compressed state of the conductive urethane 22 contained in the object 2 .
<学習処理>
 次に、学習モデル51を生成する学習処理について説明する。学習処理では、導電性ウレタン22の圧縮状態を示す圧縮状態情報(状態データ3)をラベルとする導電性ウレタン22の電気特性(入力データ4)を学習データとして学習を行う。学習処理では、学習データ収集処理と、学習モデル生成処理が実行される。
<Learning process>
Next, a learning process for generating the learning model 51 will be explained. In the learning process, learning is performed using, as learning data, electrical characteristics of the conductive urethane 22 (input data 4) labeled with compressed state information (state data 3) indicating the compressed state of the conductive urethane 22. In the learning process, a learning data collection process and a learning model generation process are executed.
 図3に、学習モデル51を生成する学習モデル生成装置の概念構成を示す。学習モデル生成装置は、学習処理部52を備えている。学習モデル生成装置は、図示しないCPUを備えたコンピュータを含んで構成可能であり、CPUにより実行される学習データ収集処理及び学習モデル生成処理によって学習処理部52として実行されて学習モデル51を生成する。 FIG. 3 shows the conceptual configuration of a learning model generation device that generates the learning model 51. The learning model generation device includes a learning processing section 52. The learning model generation device can be configured to include a computer equipped with a CPU (not shown), and is executed as a learning processing unit 52 by learning data collection processing and learning model generation processing executed by the CPU to generate the learning model 51. .
<学習データ収集処理>
 次に、学習モデル51を生成する際に用いる学習データを収集する学習データ収集処理について説明する。学習処理部52は、学習データ収集処理において、導電性ウレタン22の圧縮状態(圧縮度)を表す状態データ3をラベルとして導電性ウレタン22における電気特性(例えば電気抵抗値)を時系列に測定した大量の入力データ4を学習データとして収集する。従って、学習データは、電気特性を示す入力データ4と、その入力データ4に対応する導電性ウレタン22の圧縮状態を示す状態データ3と、のセットを大量に含む。
<Learning data collection processing>
Next, a learning data collection process for collecting learning data used when generating the learning model 51 will be described. In the learning data collection process, the learning processing unit 52 measured the electrical characteristics (for example, electrical resistance value) of the conductive urethane 22 in time series using the state data 3 representing the compressed state (compression degree) of the conductive urethane 22 as a label. A large amount of input data 4 is collected as learning data. Therefore, the learning data includes a large set of input data 4 indicating electrical characteristics and state data 3 indicating the compressed state of the conductive urethane 22 corresponding to the input data 4.
 学習データ収集処理では、導電性ウレタン22の圧縮状態により変化する電気特性(例えば電気抵抗値)を時系列に取得する。次に、取得した時系列の電気特性(入力データ4)に状態データ3をラベルとして付与し、状態データ3と入力データ4とのセットが予め定めた所定数、又は予め定めた所定時間に達するまで処理を繰り返す。これらの状態データ3と、時系列の導電性ウレタン22の電気特性(入力データ4)とのセットが学習データとなる。なお、学習データにおける状態データ3は、後述する学習処理において推定結果が正解である導電性ウレタン22の圧縮状態を示す出力データ6として扱われるように図示しないメモリに記憶される。 In the learning data collection process, electrical characteristics (for example, electrical resistance value) that change depending on the compressed state of the conductive urethane 22 are acquired in time series. Next, state data 3 is assigned as a label to the acquired time-series electrical characteristics (input data 4), and the set of state data 3 and input data 4 reaches a predetermined number or a predetermined time. Repeat the process until. A set of these state data 3 and the electrical characteristics of the conductive urethane 22 in time series (input data 4) becomes learning data. The state data 3 in the learning data is stored in a memory (not shown) so as to be treated as output data 6 indicating the compressed state of the conductive urethane 22 for which the estimation result is correct in the learning process described later.
 なお、学習データは、導電性ウレタン22の電気抵抗値(入力データ4)の各々に測定時刻を示す情報を付与することで時系列情報を対応付けてもよい。この場合、導電性ウレタン22の圧縮状態として定まる期間について、導電性ウレタン22における時系列な電気抵抗値のセットに測定時刻を示す情報を付与して時系列情報を対応付けてもよい。 Note that the learning data may be associated with time series information by adding information indicating the measurement time to each of the electrical resistance values (input data 4) of the conductive urethane 22. In this case, for the period determined as the compressed state of the conductive urethane 22, information indicating measurement time may be added to a set of time-series electrical resistance values in the conductive urethane 22 to associate the time-series information.
 なお、導電性ウレタン22で検出される電気特性(時系列の電気抵抗値データによる時間特性)は、導電性ウレタン22に対する圧縮状態に関する特徴パターンとして捉えることが可能である(詳細は後述する)。 Note that the electrical characteristics detected in the conductive urethane 22 (temporal characteristics based on time-series electrical resistance value data) can be regarded as a characteristic pattern related to the compressed state of the conductive urethane 22 (details will be described later).
 図4に、学習データとして用いる電気特性を測定する測定装置8の一例を示す。測定装置8は、導電性ウレタン22の変形に応じて変化する電気特性を測定する測定装置の一例である。なお、測定装置8は圧力刺激を繰り返し与えることが可能である。 FIG. 4 shows an example of a measuring device 8 that measures electrical characteristics used as learning data. The measuring device 8 is an example of a measuring device that measures electrical characteristics that change depending on the deformation of the conductive urethane 22. Note that the measuring device 8 is capable of repeatedly applying pressure stimulation.
 測定装置8は、基台81に固定された固定部82に、導電性ウレタン22に圧力刺激を与えるための圧力付与部83が取り付けられる。圧力付与部83は、圧力付与本体83A、当該圧力付与本体83Aから伸縮可能なアーム83B、及びアーム83Bの先端に取り付けられた先端部83Cを備えている。圧力付与本体83Aは固定部82に固定され、入力信号に応じてアーム83Bが伸縮されて、先端部83Cが所定方向(矢印Z方向及び逆方向)に移動される。これによって、押圧部材84は基台81に設置される導電性ウレタン22に接触したり、接触後に押圧したり、導電性ウレタン22から離間したりすることが可能となる。 In the measuring device 8, a pressure applying part 83 for applying pressure stimulation to the conductive urethane 22 is attached to a fixed part 82 fixed to a base 81. The pressure application unit 83 includes a pressure application main body 83A, an arm 83B that is extendable and retractable from the pressure application main body 83A, and a distal end portion 83C attached to the distal end of the arm 83B. The pressure application main body 83A is fixed to the fixed part 82, and the arm 83B is expanded and contracted in response to an input signal, and the tip 83C is moved in a predetermined direction (arrow Z direction and the opposite direction). This allows the pressing member 84 to come into contact with the conductive urethane 22 installed on the base 81, press it after contact, or separate from the conductive urethane 22.
 導電性ウレタン22は、基台81上に配置される。なお、導電性ウレタン22上にウレタンなどの柔軟性を有する部材21が配置してもよい。圧力付与部83の先端部83Cには、所定形状の押圧部材84が取り付けられる。導電性ウレタン22は、圧力付与部83の先端部83Cに取り付けられた押圧部材84が、少なくとも接触可能に配置される。なお、本実施形態では、所定形状の押圧部材84の一例として、先端が曲面形状(例えば球体の一部)の押圧部材84を用いる。押圧部材84は、導電性ウレタン22に対して所定の圧力により圧力刺激を与える部材である。なお、押圧部材84の形状は断面形状として
四角形、台形、円形、楕円形、又は多角形の何れの形状でもよく、その他の形状でもよい。
Conductive urethane 22 is placed on base 81 . Note that a flexible member 21 such as urethane may be placed on the conductive urethane 22. A pressing member 84 having a predetermined shape is attached to the tip portion 83C of the pressure applying portion 83. The conductive urethane 22 is arranged so that the pressing member 84 attached to the tip 83C of the pressure applying part 83 can at least come into contact with the conductive urethane 22. In this embodiment, as an example of the pressing member 84 having a predetermined shape, a pressing member 84 having a curved tip (for example, a part of a sphere) is used. The pressing member 84 is a member that applies pressure stimulation to the conductive urethane 22 with a predetermined pressure. Note that the shape of the pressing member 84 may be any of a rectangular, trapezoidal, circular, elliptical, or polygonal cross-sectional shape, or may be any other shape.
 圧力付与部83は、アーム83Bが伸長することによって、押圧部材84で導電性ウレタン22を押圧(圧縮)するように作動する。 The pressure applying section 83 operates to press (compress) the conductive urethane 22 with the pressing member 84 when the arm 83B extends.
 圧力付与本体83Aは、例えば6軸方向の力を検出する機能を有するフォースセンサ85を備える。フォースセンサ85は、検出した力から、導電性ウレタン22に対する押圧部材84の押圧状態を検出する機能、及び導電性ウレタン22に付与される圧力を検出する機能を有する。このフォースセンサ85によって、押圧部材84の導電性ウレタン22への押圧状態における力(物理量)を時系列に検出可能であり、導電性ウレタン22に付与される圧力を時系列に検出可能である。なお、圧縮状態(変形状態)のみを試験する場合はフォースセンサ85は省略可能である。 The pressure applying main body 83A includes a force sensor 85 having a function of detecting force in six axial directions, for example. The force sensor 85 has a function of detecting the pressing state of the pressing member 84 against the conductive urethane 22 and a function of detecting the pressure applied to the conductive urethane 22 from the detected force. This force sensor 85 can detect the force (physical quantity) of the pressing member 84 against the conductive urethane 22 in a time series, and can detect the pressure applied to the conductive urethane 22 in a time series. Note that when testing only the compressed state (deformed state), the force sensor 85 can be omitted.
 測定装置8は、圧力付与部83、及びフォースセンサ85に接続されたコントローラ80を備えている。コントローラ80は、図示しないCPUを備え、図示しないCPUにより圧力付与部83の制御を行い、対象物2に対して圧力刺激を与え、導電性ウレタン22への圧力刺激による時系列の電気特性を取得し、記憶する。 The measuring device 8 includes a pressure applying section 83 and a controller 80 connected to a force sensor 85. The controller 80 includes a CPU (not shown), which controls the pressure applying unit 83, applies pressure stimulation to the object 2, and acquires time-series electrical characteristics due to the pressure stimulation to the conductive urethane 22. and remember.
 具体的には、コントローラ80は、アーム83Bを伸縮する往復運動を行って、導電性ウレタン22に対して圧力刺激の付与及び解除を行うように圧力付与部83の制御を行う。また、コントローラ80は、導電性ウレタン22に対する圧力刺激の付与及び解除に同期して、導電性ウレタン22における電気特性を取得する。従って、測定装置8は、学習データの1つとして、断続的(例えば周期的)に変形を与えた導電性ウレタン22の変形に関する電気特性を時系列に取得可能となる。 Specifically, the controller 80 controls the pressure application unit 83 to apply and release pressure stimulation to the conductive urethane 22 by reciprocating the arm 83B to extend and contract it. Further, the controller 80 acquires the electrical characteristics of the conductive urethane 22 in synchronization with the application and release of pressure stimulation to the conductive urethane 22. Therefore, the measuring device 8 can acquire, as one of the learning data, electrical characteristics related to the deformation of the conductive urethane 22 that is intermittently (for example, periodically) deformed in a time series.
 また、コントローラ80は、導電性ウレタン22に対する圧力刺激の付与及び解除に同期して、導電性ウレタン22の変形状態、すなわち、圧縮状態を示すデータを取得可能である。圧縮状態を示すデータの一例には、押圧部材84が導電性ウレタン22に接触してから沈み込む距離が挙げられる。具体的には、コントローラ80は、圧力刺激に応じた導電性ウレタン22に押圧部材84が沈み込む距離を測定することにより、圧縮状態を示すデータを取得する。従って、測定装置8は、他の学習データとして、圧縮状態を示すデータを取得可能となる。圧縮状態を示すデータである、導電性ウレタン22において圧力刺激に応じて沈み込む距離は、圧縮度を示すデータとして用いることが可能である。圧縮度を示すデータは、上述したように、圧縮量及び圧縮率の少なくとも一方が挙げられる。 Additionally, the controller 80 can acquire data indicating the deformed state, that is, the compressed state, of the conductive urethane 22 in synchronization with the application and release of pressure stimulation to the conductive urethane 22. An example of data indicating the compressed state is the distance that the pressing member 84 sinks after contacting the conductive urethane 22. Specifically, the controller 80 acquires data indicating the compressed state by measuring the distance that the pressing member 84 sinks into the conductive urethane 22 in response to pressure stimulation. Therefore, the measuring device 8 can acquire data indicating the compression state as other learning data. The distance that the conductive urethane 22 sinks in response to pressure stimulation, which is data indicating the compressed state, can be used as data indicating the degree of compression. As described above, the data indicating the degree of compression includes at least one of the amount of compression and the compression ratio.
 ここで、圧縮状態において複雑な挙動を示す導電性ウレタン22の電気特性を説明する。
 図5A及び図5Bに、導電性ウレタン22を圧縮(変形)させた際の電気特性の一例を示す。図5A及び図5Bは、異なる圧力刺激によって圧縮された圧縮状態に対応する導電性ウレタン22の電気特性を示す。なお、図5A及び図5Bに示す導電性ウレタン22は、導電性を有する材料をウレタン材の少なくとも一部に浸潤(例えば含浸)させた柔軟材料を用いている。なお、以下の説明は、ウレタン材の少なくとも一部に導電材料を配合(例えば、内添)させた柔軟材料にも適用可能であることを確認している。
Here, the electrical characteristics of the conductive urethane 22, which exhibits complicated behavior in a compressed state, will be explained.
5A and 5B show an example of electrical characteristics when the conductive urethane 22 is compressed (deformed). 5A and 5B show electrical characteristics of the conductive urethane 22 corresponding to compressed states compressed by different pressure stimuli. The conductive urethane 22 shown in FIGS. 5A and 5B is a flexible material in which at least a portion of the urethane material is infiltrated (for example, impregnated) with a conductive material. It has been confirmed that the following explanation is also applicable to a flexible material in which a conductive material is blended (for example, internally added) into at least a portion of a urethane material.
 図5Aでは、第1の沈み込み量で導電性ウレタン22を圧縮させた際の電気特性を電気特性41として示し、図5Bでは、第1の沈み込み量より大きい第2の沈み込み量で導電性ウレタン22を圧縮させた際の電気特性を電気特性44として示している。また、図5A及び図5Bでは、圧力刺激を付与した時期をP1として示し、付与した圧力刺激を解除した時期をP2として示している。図5A及び図5Bに示すように、導電性ウレタン22の電気特性は、与えられる圧力刺激の大きさに応じて異なる特性になっている。これらの電気特性には、圧縮度(ここでは、沈み込み量)で示される圧縮状態に関する特徴を含んでいる。 In FIG. 5A, the electrical characteristics when the conductive urethane 22 is compressed with the first amount of sinking are shown as electrical characteristics 41, and in FIG. The electrical properties when the polyurethane 22 is compressed are shown as electrical properties 44. Furthermore, in FIGS. 5A and 5B, the time when the pressure stimulation is applied is shown as P1, and the time when the applied pressure stimulation is canceled is shown as P2. As shown in FIGS. 5A and 5B, the electrical characteristics of the conductive urethane 22 vary depending on the magnitude of the applied pressure stimulus. These electrical characteristics include characteristics related to the compressed state indicated by the degree of compression (in this case, the amount of subsidence).
 図5A及び図5Bに示すように、導電性ウレタン22が圧縮された際の電気特性は、圧縮の過程で電気抵抗値が徐々に大きくなる上昇傾向から、徐々に小さくなる下降傾向に切り替わり、圧縮の大きさに対応した電気抵抗値に収束する特徴を有する。 As shown in FIGS. 5A and 5B, the electrical characteristics when the conductive urethane 22 is compressed change from an upward trend where the electrical resistance value gradually increases during the compression process to a downward trend where the electrical resistance value gradually decreases. It has the characteristic that the electrical resistance value converges to the value corresponding to the size of .
 具体的には、第1の特徴は、圧縮される際に電気抵抗値が徐々に大きくなる上昇傾向から電気抵抗値が徐々に小さくなる下降傾向に切り替わる電気特性部分42を有することである。第2の特徴は、圧縮当初の電気抵抗値に対して下降傾向の電気抵抗値に差43が生じることである。第3の特徴は、圧縮状態である圧縮度(ここでは、沈み込み量)の大きさが大きくなるに従って電気抵抗値の差43が大きくなることである。 Specifically, the first feature is that it has an electrical characteristic portion 42 that switches from an upward trend in which the electrical resistance value gradually increases to a downward trend in which the electrical resistance value gradually decreases when compressed. The second feature is that there is a difference 43 in the electrical resistance value that is on a downward trend compared to the electrical resistance value at the beginning of compression. The third feature is that the difference 43 in electrical resistance values increases as the degree of compression (in this case, the amount of sinking) increases.
 換言すれば、導電性ウレタン22を圧縮した際の電気特性は、第1から第3の特徴を有する傾向となって表れる。これらの特徴は、圧縮によって、導電性を形成する電気経路の少なくとも一部の伸縮や膨縮による電気抵抗値の上昇傾向から、或る圧縮状態(圧縮度)で電気経路の切断及び再結合による電気抵抗値の下降傾向に切り替わる現象に起因すると推察される。ところが、電気経路の変形(伸縮、膨縮、一時的な切断、及び新たな接続(再結合)等)は、規則的に生じるものではない。そこで、本実施形態では、上述した第1から第3の特徴から圧縮状態である圧縮度を推定する。具体的には、第1及び第2の特徴を条件とし、第3の特徴による物理量を、電気抵抗値の差が大きくなる傾向として定量化して圧縮度とする。すなわち、圧縮度は、電気抵抗値の差が大きくなる傾向の度合いに対応する。 In other words, the electrical characteristics when the conductive urethane 22 is compressed tend to have the first to third characteristics. These characteristics are due to the tendency of the electrical resistance value to increase due to the expansion and contraction of at least a part of the electrical path that forms conductivity due to compression, and the tendency for electrical resistance to increase due to the cutting and recombination of the electrical path in a certain compression state (compression degree). It is presumed that this is caused by a phenomenon in which the electrical resistance value switches to a downward trend. However, deformations of electrical paths (expansion/contraction, expansion/contraction, temporary disconnection, new connections (recombination), etc.) do not occur regularly. Therefore, in this embodiment, the degree of compression, which is the compressed state, is estimated from the first to third characteristics described above. Specifically, with the first and second characteristics as conditions, the physical quantity based on the third characteristic is quantified as a tendency for the difference in electrical resistance values to increase, and is defined as the degree of compression. That is, the degree of compression corresponds to the degree of tendency for the difference in electrical resistance values to increase.
 なお、上記電気抵抗値の差を導出する場合の電気特性のタイミングは、電気特性部分42の前後において予め定めたタイミングを設定することが可能である。例えば、一方は、圧縮当初等の上昇傾向に移行する直前のタイミング、又は圧縮する以前に安定的な電気特性(例えば、電気抵抗値の変化率が予め定めた上昇傾向用の所定値未満)となっているタイミングを適用可能である。他方は、電気特性部分42から所定時間を経過したタイミング、又は下降傾向に切り替わってから安定的な電気特性(例えば、電気抵抗値の変化率が予め定めた下降傾向用の所定値未満)となっているタイミングを適用可能である。 Note that the timing of the electrical characteristics when deriving the difference in electrical resistance values can be set to predetermined timings before and after the electrical characteristics portion 42. For example, on the one hand, the timing immediately before shifting to an upward trend, such as at the beginning of compression, or when the electrical characteristics are stable before compression (for example, the rate of change in electrical resistance value is less than a predetermined value for an upward trend). The following timings are applicable. On the other hand, the electrical characteristics become stable (for example, the rate of change of the electrical resistance value is less than a predetermined value for a downward trend) after a predetermined time has elapsed from the electrical characteristic portion 42, or after switching to a downward trend. applicable timing.
 上述した上昇傾向及び下降傾向は、本開示の第1傾向及び第2傾向の一例である。電気特性部分42は、本開示の変化箇所の一例である。電気抵抗値の差43は、本開示の電気特性の値の差の一例である。また、導電性ウレタン22の電気特性は、本開示の変化特性の一例である。 The upward trend and downward trend described above are examples of the first trend and second trend of the present disclosure. The electrical characteristic portion 42 is an example of a changed portion of the present disclosure. The difference 43 in electrical resistance values is an example of the difference in electrical property values of the present disclosure. Further, the electrical properties of the conductive urethane 22 are an example of the changing properties of the present disclosure.
 図6に、導電性ウレタン22の圧縮状態に応じて複雑な挙動を示す電気特性の一例を概念図で示す。図6に示す例は、圧縮状態として、導電性ウレタン22に対する圧力刺激の付与及び解除を圧縮度を変化させて繰り返した場合に表れる特性を示す。図6では、圧縮状態である圧縮度と当該圧縮度における電気抵抗値の差を示す電気特性の値(電気特性差)との対応関係を曲線Erxで示している。例えば、電気特性差(電気抵抗値の差)Er1と圧縮度Pw1とは対応関係を有する。なお、圧縮度は、導電性ウレタン22に対して所定方向(例えば導電性ウレタン22の接触面に対する法線方向)に与える圧力刺激の距離(押圧により沈み込む距離)を示している。電気特性の値(電気抵抗値)の差は、圧縮当初の電気抵抗値と所定圧縮度での電気抵抗値との差、詳細には圧縮当初の電気抵抗値と、電気抵抗値が上昇傾向から下降傾向に切り替わり、所定時間を経過したときの電気抵抗値との差を示す。 FIG. 6 is a conceptual diagram showing an example of electrical characteristics that exhibit complicated behavior depending on the compressed state of the conductive urethane 22. The example shown in FIG. 6 shows characteristics that appear when applying and releasing pressure stimulation to the conductive urethane 22 in a compressed state is repeated while changing the degree of compression. In FIG. 6, a curve Erx indicates the correspondence between the degree of compression in the compressed state and the value of electrical characteristics (electrical characteristic difference) indicating the difference in electrical resistance value at the degree of compression. For example, the electrical property difference (difference in electrical resistance value) Er1 and the degree of compression Pw1 have a corresponding relationship. Note that the degree of compression indicates the distance of pressure stimulation (the distance that the conductive urethane 22 sinks due to pressure) applied to the conductive urethane 22 in a predetermined direction (for example, the normal direction to the contact surface of the conductive urethane 22). The difference in the value of electrical properties (electrical resistance value) is the difference between the electrical resistance value at the beginning of compression and the electrical resistance value at a predetermined degree of compression, specifically, the difference between the electrical resistance value at the beginning of compression and the tendency of the electrical resistance value to increase. It shows the difference from the electrical resistance value when it switches to a downward trend and a predetermined period of time has elapsed.
 図6に示すように、導電性ウレタン22の電気特性は、圧縮度が大きくなるに従って導電性ウレタン22の電気特性の値の差(電気抵抗値の差)が大きくなる傾向の特性となって表れる。よって、導電性ウレタン22の電気特性の値の差等の上述した第1から第3の特徴を用いて、時系列の電気特性の値の差(電気抵抗値の差)から導電性ウレタン22の圧縮度を推定することが可能である。 As shown in FIG. 6, the electrical properties of the conductive urethane 22 are such that the difference in electrical properties (difference in electrical resistance) of the conductive urethane 22 tends to increase as the degree of compression increases. . Therefore, using the above-mentioned first to third characteristics such as the difference in the electrical property values of the conductive urethane 22, the difference in the electrical property values (difference in the electrical resistance value) in time series can be used to determine the difference in the electrical property values of the conductive urethane 22. It is possible to estimate the degree of compression.
 上述した圧縮度によって、導電性ウレタン22の圧縮状態を示す圧縮状態情報(状態データ3)を設定することが可能となる。従って、対象物2の電気特性に示される上述した特徴を導出することで、もう1つの学習データとして、対象物2に含まれる導電性ウレタン22の変形(圧縮)に関する時系列の電気特性に対する導電性ウレタン22の圧縮状態を対応付けることが可能となる。 The compression state information (state data 3) indicating the compression state of the conductive urethane 22 can be set by the compression degree described above. Therefore, by deriving the above-mentioned characteristics shown in the electrical characteristics of the object 2, we can obtain the conductivity for the time-series electrical characteristics regarding the deformation (compression) of the conductive urethane 22 included in the object 2 as another learning data. It becomes possible to correlate the compressed states of the polyurethane 22.
 従って、対象物2(すなわち、導電性ウレタン22)における時系列の電気特性と、電気特性に対する導電性ウレタン22の圧縮状態との各々を示す情報によるセットが学習データとなる。当該学習データの一例を次の表1に示す。表1は、導電性ウレタン22の圧縮状態に関する学習データとして、時系列の電気抵抗値データ(r)と圧縮状態を示す状態データ(R)を示す圧縮度(Pw)とを対応付けたデータセットの一例である。 Therefore, a set of information indicating each of the time-series electrical characteristics of the object 2 (that is, the conductive urethane 22) and the compressed state of the conductive urethane 22 with respect to the electrical characteristics becomes the learning data. An example of the learning data is shown in Table 1 below. Table 1 is a data set in which time-series electrical resistance value data (r) is associated with degree of compression (Pw) indicating state data (R) indicating the compressed state, as learning data regarding the compressed state of the conductive urethane 22. This is an example.
 表1は、状態データ(R)を、具体的な圧縮状態を示す圧縮度に対応させたものである。すなわち、状態データ(R)は、上述した電気特性に表れる特徴を示すデータである圧縮度(Pw)を対応させればよい。従って、対象物2(導電性ウレタン22)の時系列の電気特性には、導電性ウレタン22の圧縮状態が特徴的に表れるので、学習処理において有効に機能する。 Table 1 shows the correspondence between the state data (R) and the degree of compression indicating the specific state of compression. That is, the state data (R) may be associated with the degree of compression (Pw), which is data indicating the characteristics appearing in the electrical characteristics described above. Therefore, since the compressed state of the conductive urethane 22 characteristically appears in the time-series electrical characteristics of the object 2 (conductive urethane 22), it functions effectively in the learning process.
<学習モデル生成処理>
 次に、学習モデル生成処理について説明する。図3に示す学習モデル生成装置は、学習処理部52における学習モデル生成処理によって、上述した学習データを用いて学習モデル51を生成する。
<Learning model generation process>
Next, learning model generation processing will be explained. The learning model generation device shown in FIG. 3 generates a learning model 51 using the above-mentioned learning data through learning model generation processing in the learning processing unit 52.
 図7は、学習処理部52の機能構成、すなわち学習処理部52で実行される学習モデル生成処理に関して、図示しないCPUの機能構成を示す図である。学習処理部52の図示しないCPUは、生成器54及び演算器56の機能部として動作する。生成器54は、入力である時系列に取得された電気抵抗値の前後関係を考慮して出力を生成する機能を有する。 FIG. 7 is a diagram showing the functional configuration of the learning processing unit 52, that is, the functional configuration of the CPU (not shown) regarding the learning model generation process executed by the learning processing unit 52. A CPU (not shown) of the learning processing unit 52 operates as a functional unit of the generator 54 and the arithmetic unit 56. The generator 54 has a function of generating an output in consideration of the context of the input electric resistance values acquired in time series.
 学習処理部52は、学習用データとして、上述した入力データ4(例えば、電気抵抗値)と、導電性ウレタン22に刺激(圧縮)を与えた際の導電性ウレタン22の圧縮状態を示す状態データ3である出力データ6とのセットを図示しないメモリに多数保持している
The learning processing unit 52 uses, as learning data, the above-mentioned input data 4 (for example, electrical resistance value) and state data indicating the compressed state of the conductive urethane 22 when stimulation (compression) is applied to the conductive urethane 22. A large number of sets of output data 6, which is 3, are held in a memory (not shown).
 生成器54は、入力層540、中間層542、および出力層544を含んで、公知のニューラルネットワーク(NN:Neural Network)を構成する。ニューラルネットワーク自体は公知の技術であるため詳細な説明は省略するが、中間層542は、ノード間結合およびフィードバック結合を有するノード群(ニューロン群)を多数含む。その中間層542には、入力層540からのデータが入力され、中間層542の演算結果のデータは、出力層544へ出力される。 The generator 54 includes an input layer 540, an intermediate layer 542, and an output layer 544, and constitutes a known neural network (NN). Since the neural network itself is a well-known technology, a detailed explanation will be omitted, but the intermediate layer 542 includes a large number of node groups (neuron groups) having inter-node connections and feedback connections. The data from the input layer 540 is input to the intermediate layer 542, and the data of the calculation result of the intermediate layer 542 is output to the output layer 544.
 生成器54は、入力された入力データ4(例えば、電気抵抗値)から圧縮状態を表すデータ又は圧縮状態に近いデータとしての生成出力データ6Aを生成するニューラルネットワークである。生成出力データ6Aは、入力データ4から導電性ウレタン22に刺激が与えられた圧縮状態を推定したデータである。生成器54は、時系列に入力された入力データ4から、圧縮状態に近い状態を示す生成出力データを生成する。生成器54は、多数の入力データ4を用いて学習することで、対象物2すなわち導電性ウレタン22に刺激が与えられた際の圧縮状態に近い生成出力データ6Aを生成できるようになる。他の側面では、時系列に入力された入力データ4である電気特性をパターンとして捉え、当該パターンを学習することで、対象物2すなわち導電性ウレタン22に刺激が与えられて圧縮された際の圧縮状態に近い生成出力データ6Aを生成できるようになる。 The generator 54 is a neural network that generates output data 6A as data representing the compressed state or data close to the compressed state from the input data 4 (for example, electrical resistance value). The generated output data 6A is data obtained by estimating the compressed state in which the conductive urethane 22 is stimulated based on the input data 4. The generator 54 generates output data representing a state close to a compressed state from the input data 4 inputted in time series. By learning using a large number of input data 4, the generator 54 can generate output data 6A that is close to the compressed state when the object 2, that is, the conductive urethane 22 is stimulated. In another aspect, the electric characteristics that are the input data 4 inputted in time series are captured as a pattern, and by learning this pattern, when the object 2, that is, the conductive urethane 22 is stimulated and compressed, It becomes possible to generate output data 6A that is close to a compressed state.
 演算器56は、生成出力データ6Aと、学習データの出力データ6とを比較し、その比較結果の誤差を演算する演算器である。学習処理部52は、生成出力データ6A、および学習データの出力データ6を演算器56に入力する。これに応じて、演算器56は、生成出力データ6Aと、学習データの出力データ6との誤差を演算し、その演算結果を示す信号を出力する。 The computing unit 56 is a computing unit that compares the generated output data 6A and the output data 6 of the learning data and computes an error in the comparison result. The learning processing unit 52 inputs the generated output data 6A and the output data 6 of the learning data to the arithmetic unit 56. In response to this, the calculator 56 calculates the error between the generated output data 6A and the output data 6 of the learning data, and outputs a signal indicating the result of the calculation.
 学習処理部52は、演算器56で演算された誤差に基づいて、ノード間の結合の重みパラメータをチューニングする、生成器54の学習を行う。具体的には、生成器54における入力層540と中間層542とのノード間の結合の重みパラメータ、中間層542内のノード間の結合の重みパラメータ、および中間層542と出力層544とのノード間の結合の重みパラメータの各々を例えば勾配降下法や誤差逆伝搬法等の手法を用いて、生成器54にフィードバックする。すなわち、学習データの出力データ6を目標として、生成出力データ6Aと学習データの出力データ6との誤差を最小化するように全てのノード間の結合を最適化する。 The learning processing unit 52 performs learning of the generator 54, which tunes the weight parameter of the connection between nodes, based on the error calculated by the calculator 56. Specifically, the weight parameter of the connection between the nodes of the input layer 540 and the hidden layer 542 in the generator 54, the weight parameter of the connection between the nodes in the hidden layer 542, and the node of the hidden layer 542 and the output layer 544. Each of the weight parameters of the connections between the two is fed back to the generator 54 using a method such as gradient descent or backpropagation. That is, with the output data 6 of the learning data as a target, the connections between all nodes are optimized so as to minimize the error between the generated output data 6A and the output data 6 of the learning data.
 なお、生成器54は、時系列入力の前後関係を考慮して出力を生成する機能を有する再帰型ニューラルネットワークを用いてもよく、他の手法を用いてもよい。 Note that the generator 54 may use a recurrent neural network that has a function of generating an output by considering the context of the time-series input, or may use other methods.
 学習処理部52は、学習モデル生成処理によって、上述した学習データを用いて学習モデル51を生成する。学習モデル51は、学習結果のノード間の結合の重みパラメータ(重み又は強度)の情報の集合として表現され、図示しないメモリに記憶される。 The learning processing unit 52 generates the learning model 51 using the above-mentioned learning data through learning model generation processing. The learning model 51 is expressed as a collection of information on weight parameters (weights or strengths) of connections between nodes as a learning result, and is stored in a memory (not shown).
 図8に、学習処理部52において実行される学習処理の流れの一例を示す。学習処理は、上述した学習処理部52における図示しないCPUの処理によって行われる。 FIG. 8 shows an example of the flow of the learning process executed in the learning processing section 52. The learning process is performed by the CPU (not shown) in the learning processing section 52 described above.
 ステップS110では、導電性ウレタン22の電気特性(入力データ4)を取得する。次のステップS111では、まず、導電性ウレタン22の電気特性(入力データ4)を解析し、上述した特徴を表す圧縮度を導出することで、導電性ウレタン22の圧縮状態を示す状態データ3を取得する。このステップS111では、導電性ウレタン22の電気特性である入力データ4と、解析結果の導電性ウレタン22の圧縮状態を示す状態データ3とを対応付け、状態データ3(圧縮度)をラベルとした入力データ4(電気抵抗)のセットを学習データとして取得する。次に、ステップS112では、取得した学習データを用いて学習モデル51を生成する。すなわち、上記のようにして多数の学習データを用いて学習した学習結果のノード間の結合の重みパラメータ(重み又は強度)の情報の集合を得る。そして、ステップS114で、学習結果のノード間の結合の重みパラメータ(重み又は強度)の情報の集合として表現されるデータを学習モデル51として記憶する。 In step S110, the electrical characteristics (input data 4) of the conductive urethane 22 are acquired. In the next step S111, first, the electrical characteristics (input data 4) of the conductive urethane 22 are analyzed and the degree of compression representing the above-mentioned characteristics is derived, thereby obtaining state data 3 indicating the compressed state of the conductive urethane 22. get. In this step S111, input data 4 representing the electrical characteristics of the conductive urethane 22 is associated with state data 3 indicating the compressed state of the conductive urethane 22 as a result of the analysis, and the state data 3 (degree of compression) is labeled. A set of input data 4 (electrical resistance) is acquired as learning data. Next, in step S112, a learning model 51 is generated using the acquired learning data. That is, a set of information on weight parameters (weights or strengths) of connections between nodes of the learning results learned using a large amount of learning data as described above is obtained. Then, in step S114, data expressed as a set of information on weight parameters (weights or strengths) of connections between nodes as a learning result is stored as a learning model 51.
 そして、上記推定装置1では、学習済みの生成器54(すなわち、学習結果のノード間の結合の重みパラメータの情報の集合として表現されるデータ)を学習モデル51として用いる。十分に学習した学習モデル51を用いれば、導電性ウレタン22の時系列の電気特性(例えば、時系列に変化する電気抵抗値の特性)から導電性ウレタン22(対象物2でもよい)の圧縮状態を推定することも不可能ではない。
 ステップS110の処理は、本開示の取得部で実行される処理の一例である。ステップS112は、本開示の学習モデル生成部で実行される処理の一例である。
The estimation device 1 uses a trained generator 54 (that is, data expressed as a set of information on weight parameters of connections between nodes as a result of learning) as a learning model 51. By using the sufficiently learned learning model 51, the compressed state of the conductive urethane 22 (which may be the object 2) can be determined from the time-series electrical characteristics of the conductive urethane 22 (for example, the characteristics of the electrical resistance value that changes over time). It is not impossible to estimate.
The process in step S110 is an example of a process executed by the acquisition unit of the present disclosure. Step S112 is an example of a process executed by the learning model generation unit of the present disclosure.
<PRC>
 ところで、導電性ウレタン22は、上述したように電気経路が複雑に連携し、電気経路の伸縮、膨縮、一時的な切断、及び新たな接続等の変化(変形)、並びに素材の性質の変化(変質)に応じた挙動を示す。結果的に、導電性ウレタン22は、与えられた刺激(例えば圧力刺激)に応じて異なる電気特性を有する挙動を示す。このことは、導電性ウレタン22を、導電性ウレタン22の変形に関するデータを貯留するリザバとして扱うことが可能である。すなわち、推定装置1は、物理的なリザバコンピューティング(PRC:Physical Reservoir Computing)と呼ばれるネットワークモデル(以下、PRCNという。)に、導電性ウレタン22を適用することが可能である。すなわち、上述した学習モデル51は、導電性ウレタン22をリザバとして当該リザバを用いたリザバコンピューティングによるネットワークを用いて学習させることで生成することが可能である。PRCおよびPRCN自体は公知の技術であるため、詳細な説明を省略するが、PRC、及びPRCNは、導電性ウレタン22の変形や変質に関する情報の推定に好適である。
<PRC>
By the way, as described above, the conductive urethane 22 has electrical paths that are interconnected in a complicated manner, and changes (deformation) such as expansion and contraction of the electrical paths, expansion and contraction, temporary disconnection, and new connections, as well as changes in the properties of the material. (alteration). As a result, the conductive urethane 22 behaves with different electrical properties depending on the applied stimulus (for example, pressure stimulus). This means that the conductive urethane 22 can be treated as a reservoir that stores data regarding the deformation of the conductive urethane 22. That is, the estimation device 1 can apply the conductive urethane 22 to a network model (hereinafter referred to as PRCN) called physical reservoir computing (PRC). That is, the above-mentioned learning model 51 can be generated by learning using a network based on reservoir computing using the conductive urethane 22 as a reservoir. Since PRC and PRCN themselves are known techniques, a detailed explanation will be omitted, but PRC and PRCN are suitable for estimating information regarding deformation and deterioration of the conductive urethane 22.
 図9に、PRCNを適用した学習処理部52の機能構成の一例を示す。PRCNを適用した学習処理部52は、入力リザバ層541と、推定層545とを含む。入力リザバ層541は、対象物2に含まれる導電性ウレタン22が対応する。すなわち、PRCNを適用した学習処理部52では、導電性ウレタン22を含む対象物2を、導電性ウレタン22を含む対象物2の変形及び変質に関するデータを貯留するリザバとして扱って学習する。導電性ウレタン22は、多様な刺激の各々に応じた電気特性(電気抵抗値)となり、電気抵抗値を入力する入力層として機能し、また、導電性ウレタン22の変形(及び変質)に関するデータを貯留するリザバ層として機能する。導電性ウレタン22は、付与側の状態により与えられた圧力刺激に応じて変形(圧縮)されて異なる電気特性(入力データ4)を出力するので、推定層545で、与えられた導電性ウレタン22の電気抵抗値から未知の圧縮状態を推定することが可能である。従って、PRCNを適用した学習処理部52における学習処理では、推定層545を学習すればよい。 FIG. 9 shows an example of the functional configuration of the learning processing unit 52 to which PRCN is applied. The learning processing unit 52 to which PRCN is applied includes an input reservoir layer 541 and an estimation layer 545. The input reservoir layer 541 corresponds to the conductive urethane 22 included in the object 2 . That is, the learning processing unit 52 applying PRCN handles the object 2 including the conductive urethane 22 as a reservoir for storing data regarding the deformation and alteration of the object 2 including the conductive urethane 22 for learning. The conductive urethane 22 has electrical properties (electrical resistance values) that correspond to each of various stimuli, functions as an input layer for inputting electrical resistance values, and also provides data regarding the deformation (and alteration) of the conductive urethane 22. It functions as a reservoir layer. Since the conductive urethane 22 is deformed (compressed) and outputs different electrical characteristics (input data 4) according to the applied pressure stimulus depending on the state of the application side, the estimation layer 545 calculates the applied conductive urethane 22 It is possible to estimate the unknown compression state from the electrical resistance value. Therefore, in the learning process in the learning processing unit 52 to which PRCN is applied, the estimation layer 545 may be learned.
 上述したように、推定装置1では、以上に例示した手法により生成した学習済みの学習モデル51を用いることで、十分に学習した学習モデル51を用いれば、導電性ウレタン22の電気特性から、導電性ウレタン22の圧縮状態を推定することも不可能ではない。
 なお、推定装置1は、本開示の推定部および推定装置の一例である。対象物2及び導電性ウレタン22は、本開示の検出部の一例である。
As described above, in the estimation device 1, by using the trained learning model 51 generated by the method exemplified above, if the sufficiently learned learning model 51 is used, the conductive It is not impossible to estimate the compressed state of the polyurethane 22.
Note that the estimation device 1 is an example of an estimation unit and an estimation device of the present disclosure. The target object 2 and the conductive urethane 22 are examples of the detection unit of the present disclosure.
<推定装置の構成>
 次に、上述した推定装置1の具体的な構成の一例についてさらに説明する。
 図10に、推定装置1の電気的な構成の一例を示す。図10に示す推定装置1は、上述した各種機能を実現する処理を実行する実行装置としてのコンピュータを含んで構成したものである。上述の推定装置1は、コンピュータに上述の各機能を表すプログラムを実行させることにより実現可能である。
<Configuration of estimation device>
Next, an example of a specific configuration of the estimation device 1 described above will be further explained.
FIG. 10 shows an example of the electrical configuration of the estimation device 1. The estimation device 1 shown in FIG. 10 is configured to include a computer as an execution device that executes processes to realize the various functions described above. The estimation device 1 described above can be realized by causing a computer to execute a program representing each of the functions described above.
 推定装置1として機能するコンピュータは、コンピュータ本体100を備えている。コンピュータ本体100は、CPU102、揮発性メモリ等のRAM104、ROM106、ハードディスク装置(HDD)等の補助記憶装置108、及び入出力インターフェース(I/O)110を備えている。これらのCPU102、RAM104、ROM106、補助記憶装置108、及び入出力I/O110は、相互にデータ及びコマンドを授受可能にバス112を介して接続された構成である。また、入出力I/O110には、外部装置と通信するための通信部114、ディスプレイやキーボード等の操作表示部116、及び検出部118が接続されている。検出部118は、導電性ウレタン22を含む対象物2から、入力データ4(時系列の電気抵抗値等の電気特性)を取得するように機能する。すなわち、検出部118は、導電性ウレタン22における検出点75に接続された電気特性検出部76から入力データ4を取得することが可能である。なお、検出部118は通信部114を介して接続してもよい。
 操作表示部116は、本開示の出力部の一例である。
A computer functioning as the estimation device 1 includes a computer main body 100. The computer main body 100 includes a CPU 102, a RAM 104 such as a volatile memory, a ROM 106, an auxiliary storage device 108 such as a hard disk drive (HDD), and an input/output interface (I/O) 110. These CPU 102, RAM 104, ROM 106, auxiliary storage device 108, and input/output I/O 110 are connected via a bus 112 so as to be able to exchange data and commands with each other. Further, the input/output I/O 110 is connected to a communication section 114 for communicating with an external device, an operation display section 116 such as a display or a keyboard, and a detection section 118. The detection unit 118 functions to acquire input data 4 (electrical characteristics such as electrical resistance values in time series) from the object 2 including the conductive urethane 22 . That is, the detection unit 118 can acquire the input data 4 from the electrical property detection unit 76 connected to the detection point 75 on the conductive urethane 22 . Note that the detection unit 118 may be connected via the communication unit 114.
The operation display section 116 is an example of an output section of the present disclosure.
 補助記憶装置108には、コンピュータ本体100を本開示の推定装置の一例として推定装置1として機能させるための制御プログラム108Pが記憶される。CPU102は、制御プログラム108Pを補助記憶装置108から読み出してRAM104に展開して処理を実行する。これにより、制御プログラム108Pを実行したコンピュータ本体100は、推定装置1として動作する。 A control program 108P for causing the computer main body 100 to function as the estimation device 1 as an example of the estimation device of the present disclosure is stored in the auxiliary storage device 108. The CPU 102 reads the control program 108P from the auxiliary storage device 108, expands it to the RAM 104, and executes the process. Thereby, the computer main body 100 that has executed the control program 108P operates as the estimation device 1.
 なお、補助記憶装置108には、学習モデル51を含む学習モデル108M、及び各種データを含むデータ108Dが記憶される。制御プログラム108Pは、CD-ROM等の記録媒体により提供するようにしても良い。 Note that the auxiliary storage device 108 stores a learning model 108M including the learning model 51 and data 108D including various data. The control program 108P may be provided on a recording medium such as a CD-ROM.
<推定処理>
 次に、コンピュータにより実現された推定装置1における推定処理についてさらに説明する。当該推定処理では、上述した学習モデル51を用いて導電性ウレタン22の圧縮状態が推定される。
<Estimation processing>
Next, the estimation processing in the estimation device 1 implemented by a computer will be further explained. In the estimation process, the compressed state of the conductive urethane 22 is estimated using the learning model 51 described above.
 図11に、コンピュータ本体100で実行される制御プログラム108Pによる推定処理の流れの一例を示す。図11に示す推定処理は、コンピュータ本体100に電源投入されると、CPU102により実行される。CPU102は、制御プログラム108Pを補助記憶装置108から読み出し、RAM104に展開して処理を実行する。
 制御プログラム108Pは、本開示の推定プログラムの一例である。また、CPU102により実行される制御プログラム108Pによる処理は、本開示の推定方法による処理の一例である。
FIG. 11 shows an example of the flow of estimation processing by the control program 108P executed by the computer main body 100. The estimation process shown in FIG. 11 is executed by the CPU 102 when the computer main body 100 is powered on. The CPU 102 reads the control program 108P from the auxiliary storage device 108, expands it to the RAM 104, and executes processing.
The control program 108P is an example of the estimation program of the present disclosure. Further, the processing by the control program 108P executed by the CPU 102 is an example of the processing by the estimation method of the present disclosure.
 まず、CPU102は、補助記憶装置108の学習モデル108Mから学習モデル51を読み出し、RAM104に展開することで、学習モデル51を取得する(ステップS200)。具体的には、学習モデル51として表現された重みパラメータによるノード間の結合となるネットワークモデル(図7、図9参照)を、RAM104に展開することによって、重みパラメータによるノード間の結合が実現された学習モデル51が構築される。 First, the CPU 102 reads the learning model 51 from the learning model 108M in the auxiliary storage device 108, and develops it in the RAM 104, thereby acquiring the learning model 51 (step S200). Specifically, by deploying a network model (see FIGS. 7 and 9) representing connections between nodes using weight parameters expressed as a learning model 51 in the RAM 104, connections between nodes based on weight parameters are realized. A learning model 51 is constructed.
 次に、CPU102は、導電性ウレタン22の圧縮状態を推定する対象となる未知の入力データ4(電気特性)を、検出部118を介して時系列に取得する(ステップS202)。次に、CPU102は、学習モデル51を用いて、取得済みの入力データ4に対応する出力データ6(未知の圧縮状態である圧縮度)を推定する(ステップS204)。そして、CPU102は、推定結果の出力データ6(圧縮状態である圧縮度)を、通信部114を介して出力し(ステップS206)、本処理ルーチンを終了する。 Next, the CPU 102 acquires unknown input data 4 (electrical characteristics), which is a target for estimating the compressed state of the conductive urethane 22, in time series via the detection unit 118 (step S202). Next, the CPU 102 uses the learning model 51 to estimate the output data 6 (compression degree that is an unknown compression state) corresponding to the acquired input data 4 (step S204). Then, the CPU 102 outputs the estimation result output data 6 (compression degree, which is the compression state) via the communication unit 114 (step S206), and ends this processing routine.
 このように、推定装置1によれば、導電性ウレタン22の電気抵抗値から圧縮状態を推定可能である。具体的には、推定装置1では、導電性ウレタン22に与えられた圧力刺激に応じて変化する入力データ4(電気特性)から、導電性ウレタン22の圧縮状態を推定することが可能となる。すなわち、特殊な装置や大型の装置を用いたり柔軟部材の変形を直接計測することなく、導電性ウレタン22の圧縮状態を推定することが可能となる。 In this way, according to the estimation device 1, the compressed state can be estimated from the electrical resistance value of the conductive urethane 22. Specifically, the estimation device 1 is capable of estimating the compressed state of the conductive urethane 22 from the input data 4 (electrical characteristics) that changes according to the pressure stimulation applied to the conductive urethane 22. That is, it becomes possible to estimate the compressed state of the conductive urethane 22 without using a special device or a large device or directly measuring the deformation of the flexible member.
 なお、ステップS206では、導電性ウレタン22への注意を示す注意情報を出力することも可能である。例えば、ユーザに直感的なメッセージを圧縮状態(圧縮度)として通信部114又は操作表示部116へ出力してもよい。具体的には、圧縮状態(圧縮度)を判定する予め定めた閾値以下の場合は導電性ウレタン22の圧縮状態に余裕がある状態であること示すメッセージを注意情報として出力する。一方、閾値を越えた場合は圧縮状態に余裕がなく、閾値以下の圧縮状態に戻すことが好ましいことを示すメッセージを注意情報として出力する。このように注意情報を出力することで、ユーザは、導電性ウレタン22(対象物2)の柔軟性を確認しながら圧縮することなく、直感的な注意情報で圧縮状態の確認を行うことが可能となる。この注意情報は、導電性ウレタン22における電気経路の切断を招く破壊状態を示す圧縮状態(圧縮度)を予め計測しておき、当該計測値を閾値としてもよい。また、上述した上昇傾向から下降傾向に電気抵抗値の傾向が切り替わる圧縮状態(圧縮度)を閾値としてもよい。
 上記導電性ウレタン22への注意を示す注意情報は、導電性ウレタン22の注意状態を示す情報と捉えることもでき、当該注意情報は、本開示の注意情報の一例として機能する。
Note that in step S206, it is also possible to output caution information indicating caution regarding the conductive urethane 22. For example, a message that is intuitive to the user may be output as a compressed state (degree of compression) to the communication unit 114 or the operation display unit 116. Specifically, if the compression state (degree of compression) is less than or equal to a predetermined threshold value for determining the compression state (degree of compression), a message indicating that the compression state of the conductive urethane 22 has a margin is output as caution information. On the other hand, if the threshold value is exceeded, a message indicating that there is no margin in the compression state and that it is preferable to return to the compression state below the threshold value is output as caution information. By outputting the caution information in this way, the user can check the compressed state with intuitive caution information without compressing while checking the flexibility of the conductive urethane 22 (object 2). becomes. This caution information may be obtained by measuring in advance the compression state (degree of compression) that indicates a destructive state that may lead to cutting of the electrical path in the conductive urethane 22, and using the measured value as a threshold value. Further, the compression state (degree of compression) in which the electrical resistance value changes from the upward trend to the downward trend described above may be used as the threshold value.
The caution information indicating the caution to the conductive urethane 22 can also be considered as information indicating the caution state of the conductive urethane 22, and the caution information functions as an example of the caution information of the present disclosure.
 上述した図11に示す推定処理は、本開示の推定方法で実行される処理の一例である。 The estimation process shown in FIG. 11 described above is an example of the process executed by the estimation method of the present disclosure.
 以上説明したように、本開示によれば、特殊な検出装置を用いることなく、導電性ウレタン22の電気特性から、当該導電性ウレタン22の圧縮状態を推定することが可能となる。また、推定対象物、すなわち導電性ウレタン22の圧縮状態の推定結果を出力することによって、対象物2に含まれるセンサとして機能する導電性ウレタン22における柔軟性を含めて圧縮状態を推定することが可能となる。 As explained above, according to the present disclosure, it is possible to estimate the compressed state of the conductive urethane 22 from the electrical characteristics of the conductive urethane 22 without using a special detection device. Furthermore, by outputting the estimation result of the compression state of the estimated object, that is, the conductive urethane 22, it is possible to estimate the compression state including the flexibility of the conductive urethane 22 that functions as a sensor included in the object 2. It becomes possible.
<変形状態>
 上述した実施形態では、圧縮状態、すなわち、導電性ウレタン22に正の圧力刺激が与えられて導電性ウレタン22が圧縮される変形状態を説明したが、本開示の技術は、圧縮状態に限定されるものではない。本開示の技術は、導電性ウレタン22に負の圧力刺激、例えば、導電性ウレタン22を引っ張り等で伸長するように刺激を与える伸長状態にも適用可能である。
<Deformed state>
In the embodiment described above, the compressed state, that is, the deformed state in which the conductive urethane 22 is compressed by applying a positive pressure stimulus to the conductive urethane 22 has been described, but the technology of the present disclosure is limited to the compressed state. It's not something you can do. The technique of the present disclosure can also be applied to an elongated state in which the conductive urethane 22 is stimulated with negative pressure, for example, the conductive urethane 22 is stimulated to stretch by pulling or the like.
 図12に、導電性ウレタン22を伸長(変形)させた際の電気特性の一例を示す。
 図12では、導電性ウレタン22の両端を所定の力で逆方向に離間させて導電性ウレタン22が伸長された伸長状態における導電性ウレタン22の電気特性を電気特性45として示す。なお、図12に示す例では、導電性ウレタン22の両端を所定の力で継続的に離間させた際の時間に対する電気特性の値(電気抵抗値)の関係を示す。また、図12は、導電性ウレタン22として、導電性を有する材料をウレタン材の少なくとも一部に浸潤(例えば含浸)させた柔軟材料を用いた一例である。なお、以下の説明は、ウレタン材の少なくとも一部に導電材料を配合(例えば、内添)させた柔軟材料にも適用可能であること
を確認している。
FIG. 12 shows an example of electrical characteristics when the conductive urethane 22 is expanded (deformed).
In FIG. 12, the electrical characteristics of the conductive urethane 22 in a stretched state in which the conductive urethane 22 is stretched by separating both ends of the conductive urethane 22 in opposite directions with a predetermined force are shown as electrical characteristics 45. Note that the example shown in FIG. 12 shows the relationship between the electrical characteristic value (electrical resistance value) and the time when both ends of the conductive urethane 22 are continuously separated by a predetermined force. Further, FIG. 12 shows an example in which, as the conductive urethane 22, a flexible material in which at least a portion of the urethane material is infiltrated (for example, impregnated) with a conductive material is used. It has been confirmed that the following explanation is also applicable to a flexible material in which a conductive material is blended (for example, internally added) into at least a portion of a urethane material.
 電気特性45は、図12に示すように、与えられる負の圧力刺激(すなわち伸長)の大きさに応じて電気特性(電気抵抗値)が大きくなる特性になっている。従って、電気特性には、伸長度(ここでは、伸長量)で示される伸長状態に関する特徴46を含む。 As shown in FIG. 12, the electrical property 45 is such that the electrical property (electrical resistance value) increases in accordance with the magnitude of the applied negative pressure stimulus (ie, extension). Therefore, the electrical characteristics include a characteristic 46 related to the state of elongation, which is indicated by the degree of elongation (in this case, the amount of elongation).
 また、図12に示す例では、電気特性45は、伸長の過程で電気抵抗値が徐々に大きくなる第1の上昇傾向から、第2の上昇傾向に切り替わる特徴を有する。この特徴は、伸長によって、電気経路の少なくとも一部の切断等により電気抵抗値の上昇傾向の度合いが変化する現象に起因すると推察される。このような電気経路の切断等は、導電性ウレタン22の断絶を引き起こす虞を含む。ところが、電気抵抗値の上昇傾向の度合いの変化は、規則的に生じるものではない。そこで、上述したように、電気特性に含まれる特徴から伸長状態である伸長度を推定可能である。具体的には、特徴による伸長時の物理量を、定量化して伸長度とする。すなわち、伸長度は、導電性ウレタン22を伸長させた量や比率が大きくなるに従って大きくなる傾向を示す度合いに対応する。 Furthermore, in the example shown in FIG. 12, the electrical property 45 has a characteristic that the electrical resistance value switches from a first upward trend in which the electrical resistance value gradually increases during the elongation process to a second upward trend. This characteristic is presumed to be due to the phenomenon that the degree of the tendency for the electrical resistance value to rise changes due to the cutting of at least a portion of the electrical path due to elongation. Such cutting of the electrical path may cause the conductive urethane 22 to be disconnected. However, changes in the degree of increasing tendency of the electrical resistance value do not occur regularly. Therefore, as described above, the degree of elongation, which is the elongated state, can be estimated from the features included in the electrical characteristics. Specifically, the physical quantity at the time of elongation due to the feature is quantified and defined as the degree of elongation. That is, the degree of elongation corresponds to a degree that tends to increase as the amount or ratio of elongation of the conductive urethane 22 increases.
 伸長度は、導電性ウレタン22の断絶を引き起こす虞のある伸長状態を示す伸長度を予め実験等によって導出することも可能である。当該断絶を引き起こす虞のある伸長状態を示す伸長度を推定し、該当する場合に注意情報として出力することで、導電性ウレタン22の断絶等を回避することも可能となる。 It is also possible to derive the degree of elongation in advance through experiments or the like, which indicates a state of elongation that may cause disconnection of the conductive urethane 22. By estimating the degree of elongation indicating a state of elongation that may cause such discontinuity and outputting it as caution information if applicable, it is also possible to avoid discontinuity of the conductive urethane 22.
 なお、上記では、伸長時の特徴として、第1の上昇傾向から第2の上昇傾向に切り替わる場合を説明したが、電気特性に顕著に変化する部分を有することに限定されない。例えば、導電性ウレタン22の断絶を引き起こす虞のある伸長状態を示す伸長度を予め実験等によって導出しておき(図12に示す伸長度Pu1)、当該伸長度を境界として第1の上昇傾向から、第2の上昇傾向に切り替わる電気特性としてもよい。 In addition, although the case where the characteristic at the time of elongation is switched from the first upward trend to the second upward trend has been described above, it is not limited to having a portion where the electrical characteristics change significantly. For example, the degree of elongation indicating a state of elongation that may cause disconnection of the conductive urethane 22 is derived in advance through experiments (elongation degree Pu1 shown in FIG. 12), and the degree of elongation is set as a boundary from the first upward trend. , the electrical characteristics may switch to a second upward trend.
<変形例>
 上述した推定部1は、上記電気特性に含まれる特徴に対応して機能別に構成することが可能である。
<Modified example>
The estimation unit 1 described above can be configured according to functions corresponding to the features included in the electrical characteristics.
 図13に、推定部1の構成の変形例を示す。推定部1は、圧縮状態分析部、比較判定部、及び閾値記憶部とを含む。 FIG. 13 shows a modification of the configuration of the estimation unit 1. The estimation unit 1 includes a compression state analysis unit, a comparison determination unit, and a threshold storage unit.
 圧縮状態分析部は、導電性ウレタン22の圧縮に応じて変化する時系列の電気特性(入力データ4)を用いて、導電性ウレタン22を含む対象物2の圧縮状態を分析する機能部である。圧縮状態分析部は、上述した第1の特徴から第3の特徴による電気特性に含まれる特徴により示される圧縮度を導出する。比較判定部は、圧縮状態の判定用の閾値を記憶した閾値記憶部に接続され、分析結果の圧縮状態と圧縮状態の判定用閾値とを比較し、比較結果を圧縮度して出力する機能部である。閾値記憶部は、上述した閾値を、ROM106又は補助記憶装置108に記憶すればよい。また、比較判定部は、例えば、圧縮状態の判定のための閾値を用いて、圧縮状態と判定すればよい。このように、推定部1を電気特性に含まれる特徴に対応して機能別に構成することで、独立した装置構成及び電気回路構成等のハードウェア構成に容易に適用することができる。 The compression state analysis unit is a functional unit that analyzes the compression state of the object 2 including the conductive urethane 22 using time-series electrical characteristics (input data 4) that change according to the compression of the conductive urethane 22. . The compression state analysis unit derives the degree of compression indicated by the characteristics included in the electrical characteristics according to the third characteristics from the first characteristics described above. The comparison/judgment unit is connected to a threshold storage unit that stores a threshold for determining the compression state, and is a functional unit that compares the compression state of the analysis result with the compression state determination threshold, and outputs the comparison result as a degree of compression. It is. The threshold value storage unit may store the above-mentioned threshold values in the ROM 106 or the auxiliary storage device 108. Further, the comparison/determination unit may determine the compressed state using, for example, a threshold value for determining the compressed state. In this way, by configuring the estimator 1 according to functions in accordance with the features included in the electrical characteristics, it can be easily applied to independent device configurations and hardware configurations such as electric circuit configurations.
 本開示では、柔軟部材の一例として導電性ウレタンを適用した場合を説明したが、柔軟部材は柔軟性を有すればよく、上述した導電性ウレタンに限定されないことは勿論である。 In the present disclosure, a case has been described in which conductive urethane is used as an example of the flexible member, but the flexible member only needs to have flexibility, and is of course not limited to the above-mentioned conductive urethane.
 また、本開示の技術的範囲は上記実施形態に記載の範囲には限定されない。要旨を逸脱しない範囲で上記実施形態に多様な変更または改良を加えることができ、当該変更または改良を加えた形態も本開示の技術的範囲に含まれる。 Furthermore, the technical scope of the present disclosure is not limited to the scope described in the above embodiments. Various changes or improvements can be made to the embodiments described above without departing from the spirit thereof, and forms with such changes or improvements are also included within the technical scope of the present disclosure.
 また、上記実施形態では、推定処理及び学習処理を、フローチャートを用いた処理によるソフトウエア構成によって実現した場合について説明したが、これに限定されるものではなく、例えば各処理をハードウェア構成により実現する形態としてもよい。 Furthermore, in the above embodiment, the estimation process and the learning process are realized by a software configuration using flowcharts, but the invention is not limited to this. For example, each process is realized by a hardware configuration. It may also be in the form of
 また、推定装置の一部、例えば学習モデル等のニューラルネットワークを、ハードウェア回路として構成してもよい。 Also, a part of the estimation device, for example, a neural network such as a learning model, may be configured as a hardware circuit.
 以上説明した本開示の技術の第1態様は、
 導電性を有し、かつ変形に応じて電気特性が変化する柔軟材料に予め定められた複数の検出点の間の電気特性を検出する検出部と、
 前記柔軟材料の変形に応じて変化する時系列の電気特性と、前記柔軟材料の変形に関する変形状態を示す変形状態情報とを学習用データとして用いて、前記時系列の電気特性を入力とし、前記変形状態情報を出力するように学習された学習モデルに対して、柔軟材料を含む推定対象物の前記検出部で検出された時系列の電気特性を入力し、入力した時系列の電気特性に対応する変形状態を示す変形状態情報を推定する推定部と、
 を含む推定装置である。
The first aspect of the technology of the present disclosure described above is
a detection unit that detects electrical characteristics between a plurality of predetermined detection points on a flexible material that has conductivity and whose electrical properties change according to deformation;
Using the time-series electrical characteristics that change according to the deformation of the flexible material and deformation state information indicating the deformation state related to the deformation of the flexible material as learning data, the time-series electrical characteristics are input, and the The time-series electrical characteristics detected by the detection unit of the estimation target including the flexible material are input to the learning model that has been trained to output deformation state information, and the time-series electrical characteristics are matched to the input time-series electrical characteristics. an estimating unit that estimates deformation state information indicating a deformation state;
This is an estimation device including:
 第2態様は、第1態様の推定装置において、
 前記変形状態は、前記柔軟材料への応力付与により伸縮される状態を示す伸縮状態であり、
 前記検出部は、前記柔軟材料の体積抵抗の変化特性を示す前記電気特性であって、前記伸縮状態に応じて第1傾向から第2傾向に変化する前記電気特性を検出し、
 前記学習モデルは、前記伸縮状態を示す情報を前記変形状態情報として出力するように学習される。
In a second aspect, in the estimation device of the first aspect,
The deformed state is a stretched state in which the flexible material is stretched and contracted by applying stress,
The detection unit detects the electrical property indicating a change in volume resistance of the flexible material, which changes from a first tendency to a second tendency depending on the expansion/contraction state,
The learning model is trained to output information indicating the expansion/contraction state as the deformation state information.
 第3態様は、第2態様の推定装置において、
 前記伸縮状態は、前記柔軟材料が圧縮された際における圧縮量が大きくなるに従って大きくなる圧縮度で示される圧縮状態であり、
 前記推定部は、前記柔軟材料の圧縮度を推定する。
In a third aspect, in the estimation device of the second aspect,
The elastic state is a compressed state indicated by a degree of compression that increases as the amount of compression increases when the flexible material is compressed,
The estimation unit estimates the degree of compression of the flexible material.
 第4態様は、第3態様の推定装置において、
 前記検出部は、前記第1傾向から第2傾向への変化として、前記柔軟材料が圧縮された際に上昇傾向および下降傾向の一方から他方に変化し、かつ、前記圧縮度が大きくなるに従って第1傾向における電気特性の値と当該第1傾向から変化した第2傾向における電気特性の値との差が大きくなる前記電気特性を検出し、
 前記推定部は、前記電気特性の値の差に基づいて前記圧縮度を推定する。
A fourth aspect is the estimation device of the third aspect,
The detection unit is configured to detect a change from one of an upward trend and a downward trend to the other when the flexible material is compressed as a change from the first tendency to a second tendency, and as the degree of compression increases, the first tendency changes from one to the other. detecting the electrical property in which the difference between the value of the electrical property in one trend and the value of the electrical property in a second trend that has changed from the first trend is large;
The estimating unit estimates the degree of compression based on a difference between the values of the electrical characteristics.
 第5態様は、第3態様又は第4態様の推定装置において、
 前記柔軟材料は、繊維状及び網目状の少なくとも一方の骨格を有する構造、又は内部に微小な空気泡が複数散在する構造のウレタン材の少なくとも一部に対して導電性が付与された材料が内添又は含浸された部材であって、
 前記学習モデルは、内添又は含浸に対応して定められた前記第1傾向から第2傾向に変化する変化箇所を示す物理量を用いて、学習され、
 前記推定部は、前記柔軟材料の物性を示す情報として内添又は含浸を示す情報を、さらに推定する。
A fifth aspect is the estimation device according to the third aspect or the fourth aspect,
The flexible material has a structure having at least one of a fibrous and mesh-like skeleton, or a urethane material having a structure in which a plurality of micro air bubbles are scattered inside, and at least a part of the urethane material has a conductive material inside. A member coated or impregnated with
The learning model is learned using a physical quantity indicating a change point where the first trend changes to the second trend determined in response to internal addition or impregnation,
The estimation unit further estimates information indicating internal addition or impregnation as information indicating physical properties of the flexible material.
 第6態様は、第2態様の推定装置において、
 前記伸縮状態は、前記柔軟材料が伸長された際における伸長量が大きくなるに従って大きくなる伸長度で示される伸長状態であり、
 前記検出部は、前記伸長状態に応じて変化する前記電気特性を検出し、
 前記学習モデルは、前記柔軟材料に対する注意状態を示す予め定めた閾値による電気特性を用いて前記注意状態を示す情報を前記変形状態情報として出力するように学習される。
A sixth aspect is the estimation device of the second aspect,
The stretched state is a stretched state indicated by a degree of stretch that increases as the amount of stretch when the flexible material is stretched,
The detection unit detects the electrical property that changes depending on the elongated state,
The learning model is trained to output information indicating the caution state as the deformation state information using electrical characteristics based on a predetermined threshold value indicating the caution state with respect to the flexible material.
 第7態様は、第1態様から第6態様の何れか1態様の推定装置において、
 前記学習モデルは、前記柔軟材料をリザバとして当該リザバを用いたリザバコンピューティングによるネットワークを用いて学習させることで生成されたモデルを含む。
A seventh aspect is the estimation device according to any one of the first to sixth aspects,
The learning model includes a model generated by learning using a network based on reservoir computing using the flexible material as a reservoir.
 第8態様は、第1態様から第7態様の何れか1態様の推定装置において、
 前記推定部の推定結果を出力する出力部をさらに備える。
An eighth aspect is the estimation device according to any one of the first to seventh aspects,
The apparatus further includes an output section that outputs the estimation result of the estimation section.
 第9態様は、
 コンピュータが
 導電性を有し、かつ変形に応じて電気特性が変化する柔軟材料に予め定められた複数の検出点の間の電気特性を検出する検出部から、前記電気特性を取得し、
 前記柔軟材料の変形に応じて変化する時系列の電気特性と、前記柔軟材料の変形に関する変形状態を示す変形状態情報とを学習用データとして用いて、前記時系列の電気特性を入力とし、前記変形状態情報を出力するように学習された学習モデルに対して、柔軟材料を含む推定対象物の前記検出部で検出された時系列の電気特性を入力し、入力した時系列
の電気特性に対応する変形状態を示す変形状態情報を推定する
 推定方法である。
The ninth aspect is
the computer acquires the electrical properties from a detection unit that detects electrical properties between a plurality of predetermined detection points on a flexible material that is conductive and whose electrical properties change according to deformation;
Using the time-series electrical characteristics that change according to the deformation of the flexible material and deformation state information indicating the deformation state related to the deformation of the flexible material as learning data, the time-series electrical characteristics are input, and the The time-series electrical characteristics detected by the detection unit of the estimation target including the flexible material are input to the learning model that has been trained to output deformation state information, and the time-series electrical characteristics are matched to the input time-series electrical characteristics. This estimation method estimates deformation state information indicating the deformation state.
 第10態様は、
 コンピュータに
 導電性を有し、かつ変形に応じて電気特性が変化する柔軟材料に予め定められた複数の検出点の間の電気特性を検出する検出部から、前記電気特性を取得し、
 前記柔軟材料の変形に応じて変化する時系列の電気特性と、前記柔軟材料の変形に関する変形状態を示す変形状態情報とを学習用データとして用いて、前記時系列の電気特性を入力とし、前記変形状態情報を出力するように学習された学習モデルに対して、柔軟材料を含む推定対象物の前記検出部で検出された時系列の電気特性を入力し、入力した時系列の電気特性に対応する変形状態を示す変形状態情報を推定する
 処理を実行させるための推定プログラムである。
The tenth aspect is
acquiring the electrical properties from a detection unit that detects the electrical properties between a plurality of predetermined detection points on a flexible material that is conductive and whose electrical properties change according to deformation;
Using the time-series electrical characteristics that change according to the deformation of the flexible material and deformation state information indicating the deformation state related to the deformation of the flexible material as learning data, the time-series electrical characteristics are input, and the The time-series electrical characteristics detected by the detection unit of the estimation target including the flexible material are input to the learning model that has been trained to output deformation state information, and the time-series electrical characteristics are matched to the input time-series electrical characteristics. This is an estimation program for executing a process of estimating deformation state information indicating a deformation state.
 第11態様は、
 導電性を有し、かつ変形に応じて電気特性が変化する柔軟材料に予め定められた複数の検出点の間で検出された時系列の電気特性と、前記柔軟材料の変形に関する変形状態を示す変形状態情報とを取得する取得部と、
 前記取得部で取得された前記時系列の電気特性と、前記変形状態情報とを学習用データとして、前記時系列の電気特性を入力とし、前記変形状態情報を出力するように学習した学習モデルを生成する学習モデル生成部と、
 を含む学習モデル生成装置である。
The eleventh aspect is
Time-series electrical properties detected between a plurality of predetermined detection points on a flexible material that has conductivity and whose electrical properties change according to deformation, and a deformation state regarding the deformation of the flexible material. an acquisition unit that acquires deformation state information;
A learning model trained to use the time-series electrical characteristics acquired by the acquisition unit and the deformation state information as learning data, take the time-series electrical characteristics as input, and output the deformation state information. a learning model generation unit that generates;
This is a learning model generation device that includes:
 本開示によれば、特殊な検出装置を用いることなく、導電性を有する柔軟材料を備えた対象物の電気特性を利用して、対象物の変形状態を推定することができる、という効果を有する。 According to the present disclosure, it is possible to estimate the deformation state of an object by using the electrical characteristics of the object including a conductive flexible material without using a special detection device. .
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。また、2022年3月22日に出願された日本国出願番号第2022-045902号の開示は、その全体が参照により本明細書に取り込まれる。 All documents, patent applications, and technical standards mentioned herein are incorporated by reference to the same extent as if each individual document, patent application, and technical standard was specifically and individually indicated to be incorporated by reference. Incorporated herein by reference. Further, the disclosure of Japanese Application No. 2022-045902 filed on March 22, 2022 is incorporated herein by reference in its entirety.

Claims (11)

  1.  導電性を有し、かつ変形に応じて電気特性が変化する柔軟材料に予め定められた複数の検出点の間の電気特性を検出する検出部と、
     前記柔軟材料の変形に応じて変化する時系列の電気特性と、前記柔軟材料の変形に関する変形状態を示す変形状態情報とを学習用データとして用いて、前記時系列の電気特性を入力とし、前記変形状態情報を出力するように学習された学習モデルに対して、柔軟材料を含む推定対象物の前記検出部で検出された時系列の電気特性を入力し、入力した時系列の電気特性に対応する変形状態を示す変形状態情報を推定する推定部と、
     を含む推定装置。
    a detection unit that detects electrical characteristics between a plurality of predetermined detection points on a flexible material that has conductivity and whose electrical properties change according to deformation;
    Using the time-series electrical characteristics that change according to the deformation of the flexible material and deformation state information indicating the deformation state related to the deformation of the flexible material as learning data, the time-series electrical characteristics are input, and the The time-series electrical characteristics detected by the detection unit of the estimation target including the flexible material are input to the learning model that has been trained to output deformation state information, and the time-series electrical characteristics are matched to the input time-series electrical characteristics. an estimating unit that estimates deformation state information indicating a deformation state;
    Estimation device including.
  2.  前記変形状態は、前記柔軟材料への応力付与により伸縮される状態を示す伸縮状態であり、
     前記検出部は、前記柔軟材料の体積抵抗の変化特性を示す前記電気特性であって、前記伸縮状態に応じて第1傾向から第2傾向に変化する前記電気特性を検出し、
     前記学習モデルは、前記伸縮状態を示す情報を前記変形状態情報として出力するように学習される
     請求項1に記載の推定装置。
    The deformed state is a stretched state in which the flexible material is stretched and contracted by applying stress,
    The detection unit detects the electrical property indicating a change in volume resistance of the flexible material, which changes from a first tendency to a second tendency depending on the expansion/contraction state,
    The estimation device according to claim 1, wherein the learning model is trained to output information indicating the expansion/contraction state as the deformation state information.
  3.  前記伸縮状態は、前記柔軟材料が圧縮された際における圧縮量が大きくなるに従って大きくなる圧縮度で示される圧縮状態であり、
     前記推定部は、前記柔軟材料の圧縮度を推定する
     請求項2に記載の推定装置。
    The elastic state is a compressed state indicated by a degree of compression that increases as the amount of compression increases when the flexible material is compressed,
    The estimating device according to claim 2, wherein the estimating unit estimates the degree of compression of the flexible material.
  4.  前記検出部は、前記第1傾向から第2傾向への変化として、前記柔軟材料が圧縮された際に上昇傾向および下降傾向の一方から他方に変化し、かつ、前記圧縮度が大きくなるに従って第1傾向における電気特性の値と当該第1傾向から変化した第2傾向における電気特性の値との差が大きくなる前記電気特性を検出し、
     前記推定部は、前記電気特性の値の差に基づいて前記圧縮度を推定する
     請求項3に記載の推定装置。
    The detection unit is configured to detect a change from one of an upward trend and a downward trend to the other when the flexible material is compressed as a change from the first tendency to a second tendency, and as the degree of compression increases, the first tendency changes from one to the other. detecting the electrical property in which the difference between the value of the electrical property in one trend and the value of the electrical property in a second trend that has changed from the first trend is large;
    The estimating device according to claim 3, wherein the estimating unit estimates the degree of compression based on a difference between the values of the electrical characteristics.
  5.  前記柔軟材料は、繊維状及び網目状の少なくとも一方の骨格を有する構造、又は内部に微小な空気泡が複数散在する構造のウレタン材の少なくとも一部に対して導電性が付与された材料が内添又は含浸された部材であって、
     前記学習モデルは、内添又は含浸に対応して定められた前記第1傾向から第2傾向に変化する変化箇所を示す物理量を用いて、学習され、
     前記推定部は、前記柔軟材料の物性を示す情報として内添又は含浸を示す情報を、さらに推定する
     請求項3又は請求項4に記載の推定装置。
    The flexible material has a structure having at least one of a fibrous and mesh-like skeleton, or a urethane material having a structure in which a plurality of micro air bubbles are scattered inside, and at least a part of the urethane material has a conductive material inside. A member coated or impregnated with
    The learning model is learned using a physical quantity indicating a change point where the first trend changes to the second trend determined in response to internal addition or impregnation,
    The estimating device according to claim 3 or 4, wherein the estimating unit further estimates information indicating internal addition or impregnation as information indicating physical properties of the flexible material.
  6.  前記伸縮状態は、前記柔軟材料が伸長された際における伸長量が大きくなるに従って大きくなる伸長度で示される伸長状態であり、
     前記検出部は、前記伸長状態に応じて変化する前記電気特性を検出し、
     前記学習モデルは、前記柔軟材料に対する注意状態を示す予め定めた閾値による電気特性を用いて前記注意状態を示す情報を前記変形状態情報として出力するように学習される
     請求項2に記載の推定装置。
    The stretched state is a stretched state indicated by a degree of stretch that increases as the amount of stretch when the flexible material is stretched,
    The detection unit detects the electrical property that changes depending on the elongated state,
    The estimation device according to claim 2, wherein the learning model is trained to output information indicating the caution state as the deformation state information using electrical characteristics based on a predetermined threshold value indicating the caution state with respect to the flexible material. .
  7.  前記学習モデルは、前記柔軟材料をリザバとして当該リザバを用いたリザバコンピューティングによるネットワークを用いて学習させることで生成されたモデルを含む
     請求項1から請求項6の何れか1項に記載の推定装置。
    The learning model includes a model generated by learning using a network using reservoir computing using the flexible material as a reservoir. Estimation device.
  8.  前記推定部の推定結果を出力する出力部をさらに備える
     請求項1から請求項7の何れか1項に記載の推定装置。
    The estimation device according to any one of claims 1 to 7, further comprising an output unit that outputs an estimation result of the estimation unit.
  9.  コンピュータが
     導電性を有し、かつ変形に応じて電気特性が変化する柔軟材料に予め定められた複数の検出点の間の電気特性を検出する検出部から、前記電気特性を取得し、
     前記柔軟材料の変形に応じて変化する時系列の電気特性と、前記柔軟材料の変形に関する変形状態を示す変形状態情報とを学習用データとして用いて、前記時系列の電気特性を入力とし、前記変形状態情報を出力するように学習された学習モデルに対して、柔軟材料を含む推定対象物の前記検出部で検出された時系列の電気特性を入力し、入力した時系列の電気特性に対応する変形状態を示す変形状態情報を推定する
     推定方法。
    the computer acquires the electrical properties from a detection unit that detects electrical properties between a plurality of predetermined detection points on a flexible material that is conductive and whose electrical properties change according to deformation;
    Using the time-series electrical characteristics that change according to the deformation of the flexible material and deformation state information indicating the deformation state related to the deformation of the flexible material as learning data, the time-series electrical characteristics are input, and the The time-series electrical characteristics detected by the detection unit of the estimation target including the flexible material are input to the learning model that has been trained to output deformation state information, and the time-series electrical characteristics are matched to the input time-series electrical characteristics. An estimation method for estimating deformation state information indicating a deformation state.
  10.  コンピュータに
     導電性を有し、かつ変形に応じて電気特性が変化する柔軟材料に予め定められた複数の検出点の間の電気特性を検出する検出部から、前記電気特性を取得し、
     前記柔軟材料の変形に応じて変化する時系列の電気特性と、前記柔軟材料の変形に関する変形状態を示す変形状態情報とを学習用データとして用いて、前記時系列の電気特性を入力とし、前記変形状態情報を出力するように学習された学習モデルに対して、柔軟材料を含む推定対象物の前記検出部で検出された時系列の電気特性を入力し、入力した時系列の電気特性に対応する変形状態を示す変形状態情報を推定する
     処理を実行させるための推定プログラム。
    acquiring the electrical properties from a detection unit that detects the electrical properties between a plurality of predetermined detection points on a flexible material that is conductive and whose electrical properties change according to deformation;
    Using the time-series electrical characteristics that change according to the deformation of the flexible material and deformation state information indicating the deformation state related to the deformation of the flexible material as learning data, the time-series electrical characteristics are input, and the The time-series electrical characteristics detected by the detection unit of the estimation target including the flexible material are input to the learning model that has been trained to output deformation state information, and the time-series electrical characteristics are matched to the input time-series electrical characteristics. An estimation program for executing a process of estimating deformation state information indicating a deformation state.
  11.  導電性を有し、かつ変形に応じて電気特性が変化する柔軟材料に予め定められた複数の検出点の間で検出された時系列の電気特性と、前記柔軟材料の変形に関する変形状態を示す変形状態情報とを取得する取得部と、
     前記取得部で取得された前記時系列の電気特性と、前記変形状態情報とを学習用データとして、前記時系列の電気特性を入力とし、前記変形状態情報を出力するように学習した学習モデルを生成する学習モデル生成部と、
     を含む学習モデル生成装置。
    Time-series electrical properties detected between a plurality of predetermined detection points on a flexible material that has conductivity and whose electrical properties change according to deformation, and a deformation state regarding the deformation of the flexible material. an acquisition unit that acquires deformation state information;
    A learning model trained to use the time-series electrical characteristics acquired by the acquisition unit and the deformation state information as learning data, take the time-series electrical characteristics as input, and output the deformation state information. a learning model generation unit that generates;
    A learning model generation device including:
PCT/JP2023/009453 2022-03-22 2023-03-10 Estimation device, estimation method, estimation program, and learning model generation device WO2023182012A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-045902 2022-03-22
JP2022045902A JP2023140059A (en) 2022-03-22 2022-03-22 Estimation device, estimation method, estimation program, and learning model generator

Publications (1)

Publication Number Publication Date
WO2023182012A1 true WO2023182012A1 (en) 2023-09-28

Family

ID=88101364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009453 WO2023182012A1 (en) 2022-03-22 2023-03-10 Estimation device, estimation method, estimation program, and learning model generation device

Country Status (2)

Country Link
JP (1) JP2023140059A (en)
WO (1) WO2023182012A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032661A1 (en) * 2006-09-12 2008-03-20 National Institute Of Advanced Industrial Science And Technology Distribution value measuring method and measuring system using distribution value sensor therefore
JP2019219395A (en) * 2018-06-14 2019-12-26 鳥光 慶一 Force sensing element and sensor
JP2021099552A (en) * 2019-12-19 2021-07-01 株式会社ブリヂストン Estimation apparatus, estimation method, program, and learning model generation apparatus
CN113176022A (en) * 2021-05-12 2021-07-27 南京邮电大学 Segmented neural network pressure sensor pressure detection method and system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008032661A1 (en) * 2006-09-12 2008-03-20 National Institute Of Advanced Industrial Science And Technology Distribution value measuring method and measuring system using distribution value sensor therefore
JP2019219395A (en) * 2018-06-14 2019-12-26 鳥光 慶一 Force sensing element and sensor
JP2021099552A (en) * 2019-12-19 2021-07-01 株式会社ブリヂストン Estimation apparatus, estimation method, program, and learning model generation apparatus
CN113176022A (en) * 2021-05-12 2021-07-27 南京邮电大学 Segmented neural network pressure sensor pressure detection method and system

Also Published As

Publication number Publication date
JP2023140059A (en) 2023-10-04

Similar Documents

Publication Publication Date Title
US10928283B2 (en) Surface analysis device and method for analysing elasticity of a receiving surface
Cabibihan et al. Towards humanlike social touch for sociable robotics and prosthetics: Comparisons on the compliance, conformance and hysteresis of synthetic and human fingertip skins
CN106441073A (en) Dielectric flexible sensor for big deformation and touch pressure measurement
Makikawa et al. Flexible fabric Sensor toward a humanoid robot's skin: fabrication, characterization, and perceptions
CN114829870A (en) Estimation device, estimation method, program, and learning model generation device
WO2023182012A1 (en) Estimation device, estimation method, estimation program, and learning model generation device
WO2023112368A1 (en) Estimation device, estimation method, estimation program, and learning model generation device
Yahud et al. Experimental validation of a polyvinylidene fluoride sensing element in a tactile sensor
Cabibihan et al. The conformance test for robotic/prosthetic fingertip skins
JP2023017634A (en) Estimation device, estimation method, estimation program, and learning model generation device
KR102240611B1 (en) Apparatus and method of imaging pressure distribution by using multi-layered pressure sensor
Hu et al. Dependence of tactile sensation on deformations within soft tissues of fingertip
Petković et al. Electrical properties estimation of conductive silicone rubber for tactile sensing structure
JP2023017631A (en) Estimation device, estimation method, estimation program, and learning model generation device
JP2023017590A (en) Estimation device, estimation method, estimation program, and learning model generation device
JP2023088195A (en) Estimation device, estimation method, estimation program, and learning model generation device
JP2023017633A (en) Estimation device, estimation method, estimation program, and learning model generation device
US20240104374A1 (en) Estimation device, estimation method, estimation program, and learning model generation device
JP2006047145A (en) Measurement system, measurement method, and grip device control system
JP2023017637A (en) Control device, control method, and control program
JP2023088196A (en) Estimation device, estimation method, estimation program, and learning model creation device
AU2021102841A4 (en) Fabrication process of textile fabric with multimodal tactile sensor
JP2023088197A (en) Estimation device, estimation method, estimation program, and learning model generation device
JP2023088188A (en) Estimation device, estimation method, estimation program, and learning model generation device
JP2023017638A (en) Control device, control method, and control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774611

Country of ref document: EP

Kind code of ref document: A1