WO2023181943A1 - Substrate-processing method and substrate-processing apparatus - Google Patents

Substrate-processing method and substrate-processing apparatus Download PDF

Info

Publication number
WO2023181943A1
WO2023181943A1 PCT/JP2023/008806 JP2023008806W WO2023181943A1 WO 2023181943 A1 WO2023181943 A1 WO 2023181943A1 JP 2023008806 W JP2023008806 W JP 2023008806W WO 2023181943 A1 WO2023181943 A1 WO 2023181943A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid
protective film
nozzle
film
Prior art date
Application number
PCT/JP2023/008806
Other languages
French (fr)
Japanese (ja)
Inventor
宗儒 林
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2023181943A1 publication Critical patent/WO2023181943A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/40Distributing applied liquids or other fluent materials by members moving relatively to surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/10Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Definitions

  • the present disclosure relates to a substrate processing method and a substrate processing apparatus.
  • Semiconductor devices are manufactured by forming various patterns on one main surface of a substrate. Various patterns are formed in the central region of one main surface of the substrate, and are not formed in the peripheral region.
  • a substrate processing apparatus that performs such bevel processing, for example, the substrate processing apparatus described in Patent Document 1 may be employed.
  • a substrate processing apparatus includes a substrate holding section and a nozzle.
  • the substrate holder holds the substrate in a horizontal position and rotates the substrate around a vertical axis of rotation passing through the center of the substrate.
  • the nozzle discharges the processing liquid toward the periphery of the rotating substrate, and supplies the processing liquid to the periphery of the substrate.
  • the peripheral edge of the substrate can be cleaned by the treatment liquid acting on the peripheral edge of the substrate.
  • Some residual films remaining on the peripheral edge of the substrate are strongly bonded to the substrate and cannot be easily removed with normal cleaning solutions or etching solutions.
  • Examples of such residual films that are difficult to remove include a resist residual film having a hardened layer, and a residual film of amorphous carbon, NiPt alloy, etc. formed on a substrate in a film forming process or the like.
  • Etching treatment using SPM is available as a means for removing such a difficult-to-remove residual film.
  • sulfuric acid and SPM have high viscosity, it is difficult to perform etching treatment only on the peripheral edge of the substrate using sulfuric acid or SPM. Further, since the vapor generated by the mixture of sulfuric acid and hydrogen peroxide flows to areas other than the periphery of the substrate, there is a risk that the pattern formed in the center of the substrate may be contaminated.
  • an object of the present disclosure is to provide a technique that can appropriately remove difficult-to-remove residues or residual films on the peripheral edge of a substrate by SPM processing.
  • a first aspect is a substrate processing method, which is a step of forming a protective film including an SOG film on a main surface of a substrate, wherein a peripheral portion of the main surface is not covered with the protective film; a first step of forming the protective film so that a region inside the peripheral edge of the main surface is covered with the protective film; and after the first step, a treatment including a mixed solution of sulfuric acid and hydrogen peroxide solution.
  • the method includes a second step of removing a residue or a remaining film on the peripheral edge portion with a liquid, and a third step of removing the protective film after the second step.
  • a second aspect is the substrate processing method according to the first aspect, wherein the residue or the remaining film includes at least one of a resist including a hardened layer, amorphous carbon, and a NiPt alloy.
  • a third aspect is the substrate processing method according to the first or second aspect, in which in the third step, the protective film is removed with a chemical solution containing hydrofluoric acid.
  • a fourth aspect is the substrate processing method according to any one of the first to third aspects, wherein the first step includes discharging a chemical solution containing hydrofluoric acid from a first nozzle toward the substrate; a protective bevel step of removing a peripheral portion of the SOG film formed on the entire surface of the main surface of the substrate using the chemical solution and forming the protective film on the inner region of the main surface; The processing liquid is discharged toward the substrate from a second nozzle having a discharge opening larger than the discharge opening of the first nozzle, and the residue or the remaining film is removed by the processing liquid.
  • a fifth aspect is the substrate processing method according to the fourth aspect, in which in the first step, from the first nozzle provided at a position facing the main surface of the substrate in a vertical direction, The peripheral edge portion of the SOG film is removed by discharging the chemical solution along a discharging direction facing the protective film. The processing liquid that has landed on the protective film is caused to flow from the protective film toward the peripheral edge of the substrate by rotating the substrate.
  • a sixth aspect is the substrate processing method according to the fourth or fifth aspect, wherein the first step is performed before the protective bevel step, and the first step is performed to apply a coating liquid to the main surface of the substrate. , further comprising a protective film forming step of drying the coating liquid to form the protective film.
  • a seventh aspect of the substrate processing apparatus is such that a peripheral portion of the main surface is not covered with a protective film including an SOG film, and a region inside the peripheral portion of the main surface is covered with the protective film.
  • a substrate holding unit that rotates the covered substrate while holding the covered substrate in a horizontal position; and a substrate holding unit that discharges a processing liquid containing a mixed solution of sulfuric acid and hydrogen peroxide solution to remove the peripheral edge of the main surface of the substrate. and a nozzle for removing residue or residual film on the part using a treatment liquid.
  • the residue or remaining film on the peripheral edge of the substrate is removed by SPM while covering the inner region of the main surface of the substrate with the SOG film. Since the SOG film is hardly removed by SPM, the residue or residual film can be properly removed while properly protecting the inner region of the substrate.
  • the protective film can be removed while suppressing damage to the peripheral edge of the substrate.
  • the protective peripheral portion can be removed with high positional accuracy. Further, although the viscosity of SPM is high, since the discharge port of the second nozzle is large, the second nozzle can discharge SPM more appropriately.
  • the end surface of the protective film in the protective bevel step, can be made into an inclined surface. Therefore, in the subsequent second step, the processing liquid flows smoothly from the slope of the protective film to the peripheral edge of the substrate. Therefore, the processing liquid tends to act on the boundary between the inclined surface and the peripheral edge of the substrate, so that the peripheral edge of the substrate can be treated more appropriately.
  • the protective film can be formed using an inexpensive wet processing unit.
  • FIG. 1 is a plan view schematically showing an example of the configuration of a substrate processing apparatus.
  • 1 is a vertical cross-sectional view schematically showing an example of the configuration of a substrate processing apparatus.
  • 2 is a diagram schematically showing an example of the configuration of a substrate W.
  • FIG. FIG. 2 is a functional block diagram schematically showing an example of an internal configuration of a control unit.
  • 3 is a flowchart illustrating an example of a substrate processing method executed by the substrate processing apparatus.
  • FIG. 3 is a diagram schematically showing an example of the state of the substrate W in each step.
  • FIG. 3 is a diagram schematically showing an example of the configuration of a coating unit. It is a flowchart which shows a specific example of a protective film formation process.
  • FIG. 1 is a plan view schematically showing an example of the configuration of a substrate processing apparatus.
  • 1 is a vertical cross-sectional view schematically showing an example of the configuration of a substrate processing apparatus.
  • 2 is a diagram schematic
  • FIG. 3 is a diagram schematically showing an example of the configuration of a bevel unit.
  • FIG. 2 is a plan view schematically showing an example of the configuration of a bevel unit.
  • FIG. 2 is a plan view schematically showing an example of the configuration of a heating section.
  • 7 is a flowchart showing a specific example of protection bevel processing.
  • FIG. 2 is a diagram schematically showing an example of the configuration of a cleaning unit. 2 is a flowchart showing a specific example of substrate bevel processing and protective film removal processing.
  • ordinal numbers such as “first” or “second” are used, these terms are used to make it easier to understand the content of the embodiments. These ordinal numbers are used for convenience and are not limited to the order that can occur based on these ordinal numbers.
  • FIG. 1 is a plan view schematically showing an example of the configuration of the substrate processing apparatus 100
  • FIG. 2 is a longitudinal sectional view schematically showing an example of the configuration of the substrate processing apparatus 100.
  • the substrate processing apparatus 100 is a single-wafer processing apparatus that processes substrates W one by one.
  • the substrate W is, for example, a semiconductor substrate, and here has a disk shape.
  • the diameter of the substrate W is not particularly limited, it is, for example, about 200 mm to 300 mm.
  • FIG. 3 is a diagram schematically showing an example of the configuration of the substrate W.
  • a cross-sectional view and a plan view of the substrate W are shown.
  • various circuit patterns are formed on one main surface of the substrate W.
  • one main surface of the substrate W will also be referred to as a device surface Wa.
  • the device surface Wa has a circular shape in plan view.
  • No circuit pattern is formed in the peripheral area Wa1 of the device surface Wa.
  • the peripheral area Wa1 is an annular area having a predetermined width from the peripheral edge of the substrate W.
  • the predetermined width is, for example, approximately several mm to several tens of mm.
  • a circuit pattern is formed in a circular central region Wa2 inside the peripheral region Wa1 of the device surface Wa.
  • the other main surface of the substrate W will also be referred to as the non-device surface Wb.
  • a portion including the peripheral region of the non-device surface Wb, the end surface of the substrate W, and the peripheral region Wa1 of the device surface Wa is also referred to as the substrate peripheral region VW1 of the substrate W.
  • the foreign matter may remain on the surface of the substrate peripheral portion VW1 of such a substrate W.
  • the foreign matter is, for example, residues or remaining films of various substances generated during various treatments for forming a circuit pattern on the device surface Wa.
  • the residue or the residual film includes at least one of a resist including a hardened layer, amorphous carbon, and an alloy (for example, an alloy of nickel and platinum).
  • Such foreign substances can be removed with a mixture of sulfuric acid and hydrogen peroxide (SPM).
  • the substrate processing apparatus 100 can remove foreign matter attached to the substrate peripheral portion VW1.
  • the configuration and operation of the substrate processing apparatus 100 will first be outlined, and then detailed.
  • the substrate processing apparatus 100 includes an indexer section 110, an apparatus main body 120, and a control section 90.
  • the indexer section 110 is provided between the device main body 120 and the outside.
  • the indexer section 110 is an interface section for loading and unloading the substrate W between the apparatus main body 120 and the outside.
  • a substrate container (hereinafter referred to as a carrier) C containing a plurality of substrates W is carried into the indexer section 110 from the outside.
  • the indexer unit 110 includes a plurality of load ports 111 and an indexer robot 112. Each load port 111 holds a carrier C brought in from the outside.
  • the indexer robot 112 is a transport unit that transports the substrate W between the carrier C and the apparatus main body 120. The indexer robot 112 sequentially takes out unprocessed substrates W from the carrier C, transports the substrates W to the apparatus main body 120, and sequentially receives processed substrates W processed by the apparatus main body 120 from the apparatus main body 120, The substrate W is stored in a carrier C. The carrier C containing the processed substrates W is carried out from the load port 111.
  • the apparatus main body 120 is a part that processes the substrate W, and includes a plurality of dry processing units 10, a plurality of wet processing units 20, and a transport unit 30.
  • the transport unit 30 transports the substrate W between the indexer robot 112, the dry processing unit 10, and the wet processing unit 20.
  • the transport unit 30 includes a shuttle transport unit 31 and a center robot 32.
  • the shuttle transport unit 31 transports the substrate W in the horizontal direction between a first delivery position and a second delivery position.
  • the shuttle transport unit 31 transfers the substrate W to the indexer robot 112 at the first transfer position, and transfers the substrate W to the center robot 32 at the second transfer position.
  • the center robot 32 is a transport unit that transports the substrate W between the shuttle transport unit 31, the dry processing unit 10, and the wet processing unit 20.
  • each dry processing unit 10 performs dry processing on the substrate W.
  • each dry processing unit 10 includes a heat processing unit 10A, a cooling unit 10B, and an indoor transport unit 10C.
  • the heat treatment unit 10A heats the substrate W.
  • the cooling unit 10B cools the substrate W.
  • the indoor transport unit 10C transports the substrate W between the heat treatment unit 10A and the cooling unit 10B.
  • the wet processing unit 20 supplies various processing liquids to the substrate W, and performs wet processing on the substrate W according to each processing liquid.
  • the plurality of wet processing units 20 include a coating unit 20A, a bevel unit 20B, and a cleaning unit 20C.
  • the coating unit 20A performs a coating process to form a coating film F2 on the entire device surface Wa of the substrate W (see also FIG. 6(a)). Specifically, the coating unit 20A applies a coating liquid to the entire device surface Wa of the substrate W, and dries the coating liquid to some extent to form the coating film F2.
  • the coating unit 20A includes a substrate holding section 21A and a coating nozzle 22A.
  • the substrate holder 21A holds the substrate W in a horizontal position with the device surface Wa facing vertically upward, and rotates the substrate W around the rotation axis Q1.
  • the horizontal position here is a position in which the thickness direction of the substrate W is along the vertical direction.
  • the rotation axis Q1 is an axis passing through the center of the substrate W and extending in the vertical direction.
  • the substrate holding section 21A may also be called a spin chuck.
  • the coating nozzle 22A is provided vertically above the substrate W held by the substrate holding section 21A.
  • the coating nozzle 22A discharges a predetermined amount of a coating liquid containing the material of the coating film F2 toward the center of the device surface Wa of the substrate W.
  • the coating liquid is, for example, SOG (Spin on Glass).
  • SOG Spin on Glass
  • the substrate holder 21A rotates the substrate W around the rotation axis Q1. As a result, the coating liquid spreads over the entire device surface Wa of the substrate W.
  • the coating liquid dries to some extent, and a coating film F2 is formed on the entire device surface Wa of the substrate W.
  • the substrate W after the coating process is transported to the dry processing unit 10 by the center robot 32, and is subjected to heat treatment by the heat treatment unit 10A of the dry processing unit 10. Thereby, the coating film F2 on the substrate W is dried, and the protective film F1 can be formed over the entire device surface Wa.
  • the protective film F1 is, for example, an SOG film (described later).
  • the heat treatment unit 10A may also be called a bake unit.
  • the substrate W is transported to the cooling unit 10B by the indoor transport unit 10C, and is cooled by the cooling unit 10B. Thereby, the temperature of the substrate W can be lowered quickly.
  • the bevel unit 20B performs a protective bevel process on the substrate W to remove the peripheral edge of the protective film F1 (hereinafter referred to as protective peripheral edge VF1) (see also FIG. 6(b)). More specifically, the bevel unit 20B supplies the first processing liquid to the protective peripheral portion VF1.
  • the first treatment liquid is a chemical liquid that can remove the protective film F1, and hereinafter also referred to as a film removal liquid.
  • the membrane removing liquid is, for example, hydrofluoric acid.
  • the bevel unit 20B includes a substrate holding section 21B and a bevel nozzle 22B (corresponding to the first nozzle).
  • the substrate holder 21B holds the substrate W in a horizontal position and rotates the substrate W around the rotation axis Q1.
  • This substrate holding section 21B may also be called a spin chuck.
  • the bevel nozzle 22B is provided vertically above the substrate W held by the substrate holding section 21B. As shown in FIG. 6(b), the bevel nozzle 22B discharges the film removal liquid toward the protective peripheral portion VF1 of the rotating substrate W at a position vertically facing the peripheral portion of the substrate W. .
  • the film removal liquid lands on the top surface of the protective film F1 at a landing position P1, flows radially outward under the centrifugal force of the substrate W, and scatters from the periphery of the substrate W.
  • the film removing liquid acts on the protective peripheral edge VF1 whose inner peripheral edge is a circle passing through the liquid landing position P1, and removes the protective peripheral edge VF1. Therefore, the peripheral region Wa1 of the device surface Wa that is lower than the protective peripheral portion VF1 is exposed. That is, while the central region Wa2 of the device surface Wa is covered by the protective film F1, the peripheral region Wa1 of the device surface Wa is exposed.
  • the opening area of the discharge port 22b of this bevel nozzle 22B is small.
  • the viscosity of the membrane removal liquid is low, and the flow rate of the membrane removal liquid is also set low in the protective bevel process. Therefore, the film removal liquid discharged from the bevel nozzle 22B can be made to land on the target liquid landing position on the protective film F1 with higher accuracy. In other words, the difference between the liquid landing position P1 and the target liquid landing position can be reduced. Therefore, the bevel unit 20B can remove the protective peripheral portion VF1 with higher positional accuracy.
  • the cleaning unit 20C performs a substrate bevel process on the substrate W after the protective bevel process to process the substrate peripheral edge VW1 (see also FIG. 6(c)). Specifically, the cleaning unit 20C supplies the second processing liquid to the substrate peripheral portion VW1 of the substrate W.
  • the second treatment liquid is a chemical liquid that can hardly remove the protective film F1 and can treat the peripheral edge portion VW1 of the substrate.
  • the second treatment liquid removes the foreign matter M1 on the substrate peripheral edge VW1. Therefore, hereinafter, the second treatment liquid will also be referred to as a foreign matter removal liquid.
  • the foreign matter removing liquid is, for example, a mixed solution of sulfuric acid and hydrogen peroxide (SPM).
  • SPM sulfuric acid and hydrogen peroxide
  • the cleaning unit 20C also performs a protective film removal process to remove the protective film F1 on the substrate W after the substrate bevel process (see also FIG. 6(d)). Specifically, the cleaning unit 20C supplies the film removal liquid to the protective film F1 of the substrate W. Thereby, the protective film F1 can be removed.
  • the cleaning unit 20C includes a substrate holding section 21C and a cleaning nozzle 22C (corresponding to a second nozzle).
  • the substrate holder 21C holds the substrate W in a horizontal position and rotates the substrate W around the rotation axis Q1.
  • This substrate holding section 21C may also be called a spin chuck.
  • the cleaning nozzle 22C is provided vertically above the substrate W held by the substrate holding section 21C.
  • the cleaning nozzle 22C has a discharge port 22c larger than the discharge port 22b of the bevel nozzle 22B, and can selectively discharge various processing liquids including a foreign matter removing liquid and a film removing liquid.
  • the cleaning nozzle 22C discharges a foreign matter removing liquid toward the protective film F1 of the rotating substrate W at a position vertically facing the center of the substrate W.
  • the foreign matter removal liquid that has landed on the upper surface of the protective film F1 of the substrate W flows radially outward on the upper surface of the protective film F1 under the centrifugal force accompanying the rotation of the substrate W, and continues to flow outward in the radial direction on the upper surface of the protective film F1. It flows through VW1. Thereby, the foreign matter M1 on the substrate peripheral portion VW1 can be removed.
  • the cleaning nozzle 22C discharges a film removal liquid toward the protective film F1 of the rotating substrate W after the substrate beveling process.
  • the film removal liquid that has landed on the upper surface of the protective film F1 of the substrate W receives centrifugal force due to the rotation of the substrate W, and flows radially outward on the upper surface of the protective film F1. Thereby, the protective film F1 can be removed.
  • Control unit 90 controls the substrate processing apparatus 100 in an integrated manner. Specifically, the control unit 90 controls the indexer robot 112, the dry processing unit 10, the wet processing unit 20, and the transport unit 30.
  • FIG. 4 is a functional block diagram schematically showing an example of the internal configuration of the control unit 90.
  • the control section 90 is an electronic circuit, and includes, for example, a data processing section 91 and a storage section 92. In the specific example of FIG. 3, the data processing section 91 and the storage section 92 are interconnected via a bus 93.
  • the data processing unit 91 may be, for example, an arithmetic processing device such as a CPU (Central Processor Unit).
  • the storage unit 92 may include a non-temporary storage unit (for example, a ROM (Read Only Memory) or a hard disk) 921 and a temporary storage unit (for example, a RAM (Random Access Memory)) 922.
  • the non-temporary storage unit 921 may store, for example, a program that defines the processing that the control unit 90 executes.
  • the control section 90 can execute the processing specified in the program.
  • part or all of the processing executed by the control unit 90 may be executed by hardware such as a dedicated logic circuit.
  • FIG. 5 is a flowchart illustrating an example of a substrate processing method executed by the substrate processing apparatus 100.
  • FIG. 6 is a diagram schematically showing an example of the state of the substrate W in each step. An overview of the operation of the substrate processing apparatus 100 will be described below, and then an example of the specific configuration and specific operation of each processing unit will be described.
  • the substrate processing apparatus 100 performs a protective film forming process to form a protective film F1 over the entire device surface Wa of the substrate W (step S1: protective film forming step).
  • FIG. 6(a) shows the state of the substrate W when the protective film F1 is formed.
  • the protective film F1 is a film for protecting particularly the central region Wa2 of the device surface Wa of the substrate W from the foreign matter removal liquid.
  • the protective film F1 is, for example, an SOG (Spin on Glass) film.
  • the SOG film is a glassy film containing siloxane, for example, siloxane and an organic group.
  • the SOG film may be, for example, silica glass, an alkylsiloxane polymer, an alkylsilsesquioxane polymer, a hydrogenated silsesquioxane polymer, or a hydrogenated alkylsilsesquioxane polymer.
  • the substrate processing apparatus 100 sequentially performs a coating process by the coating unit 20A and a heat treatment by the dry processing unit 10 on the substrate W to perform a protective film forming process. Specifically, first, the coating nozzle 22A discharges a predetermined amount of a coating liquid (for example, SOG) containing the material of the coating film F2 toward the upper surface of the device surface Wa of the substrate W, and the substrate holder 21A is rotated around the rotation axis Q1. As a result, the coating liquid spreads over the entire device surface Wa of the substrate W. Then, the substrate holder 21A rotates the substrate W at a higher speed, so that the coating liquid dries to some extent, and a coating film F2 is formed on the entire device surface Wa of the substrate W.
  • a coating liquid for example, SOG
  • the center robot 32 carries out the coated substrate W from the coating unit 20A and carries it into the heat treatment unit 10A of the dry processing unit 10.
  • the heat treatment unit 10A forms the protective film F1 by heating the substrate W and drying the coating film F2 on the device surface Wa.
  • the heated substrate W is transported to the cooling unit 10B by the indoor transport unit 10C, and is cooled by the cooling unit 10B.
  • the cooled substrate W is transferred to the central robot 32 via the heat treatment unit 10A.
  • the center robot 32 transports the substrate W on which the protective film F1 is formed to the bevel unit 20B.
  • the bevel unit 20B performs a protective bevel process on the substrate W (step S2: protective bevel process).
  • FIG. 6(b) shows the state of the substrate W when the protective peripheral portion VF1 is removed.
  • the bevel nozzle 22B discharges the film removal liquid toward the protective peripheral edge VF1 of the rotating substrate W.
  • the film removal liquid lands on the top surface of the protective film F1 at a landing position P1, flows radially outward on the top surface of the protective film F1, and scatters from the periphery of the substrate W.
  • the film removing liquid acts on the protective peripheral edge portion VF1 and removes the protective peripheral edge portion VF1.
  • the opening area of the discharge port 22b of this bevel nozzle 22B is small.
  • the viscosity of the membrane removal liquid is low, and the flow rate of the membrane removal liquid is also set low in the protective bevel process. Therefore, the film removal liquid discharged from the bevel nozzle 22B can be made to land on the target liquid landing position on the protective film F1 with higher accuracy.
  • the protective film F1 is removed further inside. Therefore, the outer peripheral area of the central area Wa2 of the substrate W is exposed. Therefore, the protective film F1 cannot protect the outer peripheral area of the central area Wa2. Furthermore, when the liquid landing position P1 shifts radially outward from the target liquid landing position, the width of the protective film F1 to be removed becomes narrower, and as a result, the inner peripheral area of the peripheral area Wa1 of the device surface Wa is not exposed. Therefore, the foreign matter M1 to be removed that has adhered to the inner peripheral region of the peripheral region Wa1 of the substrate W is covered by the protective film F1.
  • the film removal liquid can be applied to the liquid application position P1 with higher positional accuracy, so that the central area Wa2 of the device surface Wa can be appropriately protected by the protective film F1. , the peripheral area Wa1 can be appropriately exposed. In other words, the foreign matter M1 attached to the peripheral area Wa1 can be appropriately exposed.
  • the required positional accuracy for the landing position P1 of the film removal liquid is, for example, about several hundred ⁇ m or less. For this reason, it is desirable to make the opening area of the discharge port 22b of the bevel nozzle 22B smaller so that the film removal liquid with low viscosity can pinpoint the target liquid landing position.
  • an SOG film is used as the protective film F1
  • an acidic chemical solution containing fluorine (F) is used as the film removal liquid.
  • a chemical solution containing hydrofluoric acid (HF) can be used as the membrane removal liquid. Since hydrofluoric acid has a low viscosity, it is suitable for being discharged from the bevel nozzle 22B.
  • siloxane (Si 2 O) contained in the SOG film reacts with hydrogen (H) ions contained in hydrofluoric acid and changes to silanol (SiOH), and this silanol reacts with hydrofluoric acid (HF). , changes to liquid hexafluorosilicic acid (H 2 SiF 6 ). Due to such a chemical change, the SOG film is removed by hydrofluoric acid.
  • the bevel unit 20B After removing the protective peripheral portion VF1, the bevel unit 20B performs a rinsing process to remove the film removal liquid on the substrate W from the substrate W with a rinsing liquid, and a drying process to dry the substrate W in this order. These processes will be detailed later.
  • the center robot 32 carries out the processed substrate W from the bevel unit 20B, and carries the substrate W into the cleaning unit 20C.
  • the cleaning unit 20C performs substrate bevel processing on the substrate W (step S3: substrate bevel process).
  • FIG. 6(c) shows the state of the substrate W when the foreign matter M1 on the substrate peripheral portion VW1 is removed.
  • the substrate holding section 21C holds the substrate W in a horizontal position, the peripheral edge of the main surface of which is not covered with the protective film F1, and the inner region of the main surface is covered with the protective film F1, while holding the substrate W in a horizontal position.
  • Rotate W The cleaning nozzle 22C discharges a foreign matter removing liquid (SPM) toward the substrate W, and removes the residue or remaining film on the substrate peripheral portion VW1 with the foreign matter removing liquid.
  • SPM foreign matter removing liquid
  • the cleaning nozzle 22C discharges a foreign matter removal liquid toward the upper surface of the protective film F1 of the rotating substrate W, and the foreign matter removal liquid that has landed on the protective film F1 is removed from the protective film by the rotation of the substrate W. It flows from F1 toward the substrate peripheral edge VW1. As a result, the foreign matter M1 attached to the peripheral edge portion VW1 of the substrate is removed while maintaining the protective film F1.
  • the foreign matter removal liquid is, for example, an acidic chemical liquid that does not contain fluorine.
  • a chemical solution that does not contain fluorine and contains sulfuric acid can be used as the foreign matter removal liquid, and more specifically, high temperature SPM (a mixed solution of sulfuric acid and hydrogen peroxide solution) can be used.
  • the temperature of the SPM is, for example, about several hundred degrees.
  • the foreign matter removal solution is an acidic chemical solution that does not contain fluorine
  • the chemical reaction shown in equation (1) occurs on the SOG film, but the chemical reaction shown in equation (2) does not occur, so the SOG No membrane is removed.
  • the protective film F1 is not removed.
  • the foreign matter M1 can be removed using the acidic chemical solution. Specifically, foreign matter M1 such as a residual film of resist, amorphous carbon, and an alloy (an alloy of nickel and platinum) can be removed by high-temperature SPM.
  • the opening area of the discharge port 22c of the cleaning nozzle 22C is larger than the opening area of the discharge port 22b of the bevel nozzle 22B. Therefore, even a chemical liquid (SPM) containing high viscosity sulfuric acid can be easily discharged from the discharge port 22c of the cleaning nozzle 22C.
  • the cleaning nozzle 22C discharges the film removal liquid toward the liquid landing position (specifically, the central part) in a region radially inner than the substrate peripheral edge VW1 of the substrate W. . Therefore, the cleaning nozzle 22C can also be called a center nozzle, in contrast to the name of the bevel nozzle 22B.
  • the cleaning unit 20C After removing the foreign matter M1, the cleaning unit 20C performs a rinsing process to wash away the foreign matter removal liquid on the substrate W with a rinsing liquid.
  • the rinsing process will be detailed later.
  • FIG. 6(d) shows the state of the substrate W when the protective film F1 is removed.
  • the cleaning nozzle 22C discharges a film removing liquid (for example, hydrofluoric acid) toward the center of the rotating substrate W.
  • the film removal liquid lands on the center of the upper surface of the protective film F1, and spreads outward in the radial direction under the centrifugal force caused by the rotation of the substrate W.
  • the film removal liquid acts on the entire surface of the protective film F1 on the substrate W, and removes the protective film F1.
  • the cleaning unit 20C After removing the protective film F1, the cleaning unit 20C performs a rinsing process in which the film removal liquid on the substrate W is washed away with a rinsing liquid, and a drying process in which the substrate W is dried, in this order. These processes will be detailed later.
  • a low viscosity film removal liquid for example, hydrofluoric acid
  • the protective film F1 can protect the central region Wa2 of the substrate W with higher positional accuracy.
  • a foreign matter removal liquid (SPM) is applied to the exposed substrate peripheral portion VW1 from the discharge port 22c of the cleaning nozzle 22C. is supplied (step S4).
  • the protective film F1 protects the central area Wa2 with high positional accuracy, so even if the position where the foreign matter removing liquid lands varies somewhat, the foreign matter removing liquid cannot act on the central area Wa2.
  • the foreign matter removing liquid has a high viscosity
  • the foreign matter M1 on the substrate peripheral edge VW1 can be removed with high positional accuracy.
  • the opening area of the discharge port 22c of the cleaning nozzle 22C is larger than the opening area of the discharge port 22b of the bevel nozzle 22B, the foreign matter removal liquid with high viscosity can be discharged at a lower pressure, and the foreign matter removal liquid can be applied to the substrate W. Easy to supply.
  • the substrate bevel processing while covering the inner region of the device surface Wa of the substrate W with the protective film F1 (SOG film), It is possible to remove foreign matter M1 that is difficult to remove, such as a residual resist film containing a resist film, amorphous carbon, or a NiPt alloy, by SPM. Since this SOG film is hardly removed by SPM, the foreign matter M1 can be appropriately removed while appropriately protecting the inner region of the device surface Wa from SPM.
  • the protective film F1 which is the SOG film, is removed using a chemical solution containing hydrofluoric acid. Since hydrofluoric acid does not cause much damage to the substrate W, it is suitable for removing the protective film F1. In other words, the protective film F1 can be appropriately removed while suppressing damage to the substrate peripheral portion VW1.
  • the protective film F1 is formed by wet processing in the protective film forming process (step S1). Therefore, the protective film F1 can be formed using the inexpensive coating unit 20A and heat treatment unit 10A.
  • the protective film F1 is removed by wet processing. Therefore, the protective film F1 can be removed using the inexpensive cleaning unit 20C.
  • the bevel nozzle 22B discharges the film removing liquid along the diagonally outward discharge direction.
  • the discharge direction is determined, for example, by the shape of the internal flow path FP of the bevel nozzle 22B.
  • the internal flow path FP of the bevel nozzle 22B includes a vertical flow path FP1 and an inclined flow path FP2.
  • the vertical flow path FP1 is a flow path on the upstream side of the inclined flow path FP2, and extends along the vertical direction.
  • the upstream end of the inclined flow path FP2 is connected to the downstream end of the vertical flow path FP1, and is inclined so as to move away from the rotation axis Q1 as it goes vertically downward.
  • the inclined flow path FP2 extends diagonally outward.
  • the discharge port 22b is the downstream end of the inclined flow path FP2. Therefore, the film removing liquid that has flowed through the internal flow path FP of the bevel nozzle 22B flows out obliquely outward from the discharge port 22b.
  • the liquid landing position P1 on the protective film F1 in the protective bevel process changes in diameter as the protective peripheral edge VF1 of the protective film F1 is removed.
  • the direction is outward. That is, as the protective peripheral edge portion VF1 becomes thinner, the film removal liquid lands on the protective peripheral edge portion VF1 at a more radially outer liquid landing position P1. Therefore, the end surface FS1 of the protective film F1 is inclined radially outward from the upper surface toward the lower surface.
  • the cleaning unit 20C preferably discharges the foreign matter removal liquid from the cleaning nozzle 22C so that the foreign matter removal liquid lands on the upper surface of the protective film F1 (see FIG. 6). c).
  • the foreign matter removing liquid flows from the upper surface of the protective film F1 to the peripheral area Wa1 of the device surface Wa of the substrate W via the end surface FS1 (sloped surface). Therefore, the foreign matter removing liquid can smoothly flow through the peripheral area Wa1 from the end surface FS1, and can also act appropriately on the boundary between the end surface FS1 and the peripheral area Wa1. Therefore, the foreign matter removing liquid can appropriately remove the foreign matter M1 even at the boundary.
  • step S1 there is a possibility that a substance having the same composition as the protective film F1 may adhere to the peripheral region of the non-device surface Wb of the substrate W.
  • a substance having the same composition as the protective film F1 adheres to the non-device surface Wb.
  • the bevel unit 20B may include a bevel nozzle 26B for the back surface.
  • the bevel nozzle 26B is provided vertically below the substrate W held by the substrate holding section 21B, and faces the non-device surface Wb of the substrate W in the vertical direction.
  • the bevel nozzle 26B discharges the film removal liquid toward the peripheral region of the non-device surface Wb of the substrate W.
  • the film removal liquid is discharged toward the rotating substrate W from both the bevel nozzle 22B and the bevel nozzle 26B.
  • the film removal liquid discharged from the bevel nozzle 22B lands on the upper surface of the protective film F1 of the substrate W.
  • This film removal liquid flows radially outward under the influence of centrifugal force accompanying the rotation of the substrate W, and is scattered outward from the end surface of the substrate W.
  • the film removing liquid from the bevel nozzle 22B can remove the protective peripheral portion VF1 of the protective film F1.
  • the processing liquid discharged from the bevel nozzle 26B lands on the non-device surface Wb of the substrate W.
  • This film removal liquid flows radially outward on the non-device surface Wb under the influence of centrifugal force accompanying the rotation of the substrate W, and is scattered outward from the end surface of the substrate W.
  • the film removing liquid from the bevel nozzle 26B can remove the same substance as the protective film F1 attached to the non-device surface Wb.
  • FIG. 7 is a diagram schematically showing an example of the configuration of the coating unit 20A.
  • the coating unit 20A includes a substrate holding section 21A, a coating nozzle 22A, and a guard 23A.
  • the substrate holding unit 21A holds the substrate W in a horizontal position and rotates the substrate W around the rotation axis Q1.
  • the substrate holding section 21A includes a disk-shaped stage 211A and a rotation mechanism 212A.
  • the stage 211A is arranged with its thickness direction aligned in the vertical direction.
  • a substrate W is placed on the upper surface of the stage 211A. Since the diameter of the stage 211A is smaller than the diameter of the substrate W, the stage 211A faces only the central portion of the substrate W in the vertical direction.
  • a plurality of suction ports are formed on the upper surface of the stage 211A.
  • a suction channel (not shown) communicating with the suction port is formed inside the stage 211A, and the upstream end of the suction channel is connected to a suction mechanism (not shown).
  • the suction mechanism includes, for example, a pump, and suctions the gas in the suction channel.
  • the rotation mechanism 212A rotates the stage 211A around the rotation axis Q1.
  • the rotation mechanism 212A includes a shaft 213A and a motor 214A.
  • the upper end of the shaft 213A is connected to the lower surface of the stage 211A and extends along the rotation axis Q1.
  • the shaft 213A is, for example, a hollow shaft, and a part of the suction flow path is provided inside the shaft 213A.
  • Motor 214A rotates shaft 213A around rotation axis Q1. As a result, the stage 211A connected to the shaft 213A and the substrate W held by suction by the stage 211A rotate together around the rotation axis Q1.
  • the coating nozzle 22A is provided vertically above the substrate W held by the substrate holding section 21A.
  • the coating nozzle 22A is connected to the downstream end of the supply pipe 221A, and the upstream end of the supply pipe 221A is connected to the coating liquid supply source 223A. Therefore, the coating liquid from the coating liquid supply source 223A is supplied to the coating nozzle 22A through the supply pipe 221A, and is discharged from the discharge port 22a of the coating nozzle 22A.
  • a valve 222A is provided on the supply pipe 221A. The opening and closing of the valve 222A switches between discharging and stopping the discharging of the coating liquid from the coating nozzle 22A.
  • the coating nozzle 22A is provided movably between the coating position and the coating standby position by a nozzle moving mechanism 25A.
  • the coating position is a position where the coating nozzle 22A discharges the coating liquid toward the substrate W, and is, for example, a position facing the center of the substrate W in the vertical direction.
  • the coating nozzle 22A is shown stopping at the coating position.
  • the coating standby position is a position when the coating nozzle 22A does not discharge the coating liquid toward the substrate W, and is, for example, a position outside the end surface of the substrate W in the radial direction.
  • the nozzle moving mechanism 25A has, for example, an arm turning mechanism similar to the later-described nozzle moving mechanism 222B included in the bevel unit 20B.
  • the guard 23A is a member that catches the coating liquid scattered from the end surface of the substrate W held by the substrate holding section 21A.
  • the guard 23A has a shape that surrounds the substrate holding section 21A. In the example of FIG. 7, the guard 23A has a donut-like shape that opens radially inward, and the coating liquid splashed from the end surface of the substrate W flows into the inner space of the guard 23A.
  • a liquid recovery mechanism and an exhaust mechanism are provided at the lower part of the guard 23A. The liquid recovery mechanism recovers the coating liquid inside the guard 23A.
  • the guard 23A is provided so as to be movable up and down between the guard processing position and the guard standby position by a guard elevating mechanism 26A.
  • the guard processing position is a position where the upper edge of the guard 23A is vertically above the upper surface of the substrate W held by the substrate holding part 21A.
  • the guard 23A can receive the coating liquid scattered from the substrate W while being located at the guard processing position.
  • the guard standby position is a position where the upper edge of the guard 23A is vertically below the stage 211A. When the guard 23A is stopped at the guard standby position, a physical collision between the guard 23A and the center robot 32 can be avoided when loading and unloading the substrate W.
  • the guard elevating mechanism 26A includes, for example, a motor as a drive source and a ball screw mechanism as a drive mechanism that converts rotation of the motor into vertical movement.
  • the guard lifting mechanism 26A may include an air cylinder.
  • the heat treatment unit 10A includes a hot plate 11A, which is an example of a heating section, and three or more lift pins 12A.
  • the hot plate 11A includes a plate-like plate made of metal or the like, and a heating element such as a heating wire built into the plate-like plate.
  • the lift pin 12A passes through the hot plate 11A in the vertical direction and is provided so as to be movable up and down between a lift upper position and a lift lower position.
  • the upper lift position is a position where the tip of the lift pin 12A is vertically above the upper surface of the hot plate 11A (that is, the upper surface of the plate-like plate).
  • the lower lift position is a position where the tip of the lift pin 12A is vertically below the upper surface of the hot plate 11A.
  • a pin elevating mechanism (not shown) that raises and lowers the lift pin 12A may include, for example, a motor and a ball screw mechanism, or may include an air cylinder.
  • the substrate W is placed from the center robot 32 onto the tips of the lift pins 12A.
  • the substrate W is placed on the tips of the plurality of lift pins 12A with the device surface Wa of the substrate W facing vertically upward.
  • the substrate W is placed on the hot plate 11A.
  • the hot plate 11A heats the substrate W.
  • the coating film F2 on the device surface Wa of the substrate W is dried, and the protective film F1 is formed on the device surface Wa.
  • the cooling unit 10B includes a cooling plate 11B, which is an example of a cooling section, and three or more lift pins 12B.
  • the cooling plate 11B includes a plate-like plate made of metal or the like, and a cooling source such as a Peltier element built into the plate-like plate.
  • the lift pin 12B passes through the cooling plate 11B in the vertical direction and is provided so as to be movable up and down between the lift upper position and the lift lower position.
  • the upper lift position is a position where the tip of the lift pin 12B is vertically above the upper surface of the cooling plate 11B.
  • the lower lift position is a position where the tip of the lift pin 12B is vertically below the upper surface of the cooling plate 11B.
  • the pin elevating mechanism for elevating and lowering the lift pin 12B is similar to the pin elevating and lowering mechanism for elevating and lowering the lift pin 12A.
  • the substrate W is placed from the center robot 32 on the tips of the lift pins 12B.
  • the substrate W is placed on the cooling plate 11B by lowering the plurality of lift pins 12B to the lower lift position.
  • the cooling plate 11B cools the substrate W. Thereby, the temperature of the substrate W can be lowered quickly.
  • FIG. 8 is a flowchart showing a specific example of the protective film forming process.
  • the central robot 32 carries the substrate W into the coating unit 20A (step S11).
  • the substrate holding section 21A holds the loaded substrate W.
  • the coating unit 20A supplies a coating liquid to the device surface Wa of the substrate W to form a coating film F2 (step S12). Specifically, first, the nozzle moving mechanism 25A moves the coating nozzle 22A to the coating position, and the guard raising/lowering mechanism 26A raises the guard 23A to the guard processing position. Next, the coating unit 20A (specifically, the control unit 90) opens the valve 222A to discharge a predetermined amount of the coating liquid onto the device surface Wa of the substrate W from the coating nozzle 22A.
  • the coating liquid is, for example, SOG. Note that when supplying the coating liquid, the substrate holding section 21A may rotate the substrate W or may keep the substrate W stationary. Next, the substrate holder 21A rotates the substrate W and spreads the coating liquid over the entire device surface Wa of the substrate W.
  • the substrate holding unit 21A continues to rotate the substrate W, and dries the coating liquid on the substrate W to form a coating film F2 (step S13).
  • the substrate holding section 21A stops the rotation of the substrate W and releases the holding of the substrate W.
  • the nozzle moving mechanism 25 moves the coating nozzle 22A to the coating standby position, and the guard lifting mechanism 26A lowers the guard 23A to the guard standby position.
  • the center robot 32 carries out the substrate W from the coating unit 20A and carries it into the dry processing unit 10 (step S14). Specifically, the lift pins 12A of the heat treatment unit 10A receive the substrate W from the center robot 32 while being raised to the upper lift position, and then lowered to the lower lift position. Thereby, the substrate W is placed on the hot plate 11A.
  • the hot plate 11A heats the substrate W (step S15).
  • the coating film F2 on the substrate W is heated to form the protective film F1.
  • the protective film F1 is, for example, an SOG film.
  • the indoor transport unit 10C transports the substrate W from the heat treatment unit 10A to the cooling unit 10B. Specifically, first, the lift pins 12A rise to lift the substrate W, and the indoor transport unit 10C takes out the substrate W. The indoor transport unit 10C places the substrate W on the tip of the lift pin 12B of the cooling unit 10B located at the upper position of the lift. The lift pins 12B descend to the lower lift position with the substrate W placed thereon, and place the substrate W on the cooling plate 11B.
  • the cooling unit 10B cools the substrate W (step S16). Thereby, the temperature of the substrate W can be lowered quickly.
  • the indoor transport unit 10C transports the substrate W from the cooling unit 10B to the heat treatment unit 10A, and the center robot 32 transports the substrate W from the dry processing unit 10 (step S17).
  • the center robot 32 carries the substrate W into the bevel unit 20B.
  • FIG. 9 is a diagram schematically showing an example of the configuration of the bevel unit 20B
  • FIG. 10 is a plan view schematically showing an example of the configuration of the bevel unit 20B.
  • the bevel unit 20B includes a substrate holding section 21B, a bevel nozzle 22B, and a guard 23B.
  • the substrate holder 21B holds the substrate W in a horizontal position and rotates the substrate W around the rotation axis Q1.
  • An example of a specific configuration of the substrate holding section 21B is the same as that of the substrate holding section 21A, so a repeated explanation will be avoided.
  • ⁇ Bevel nozzle 22B> In the examples of FIGS. 9 and 10, a plurality of bevel nozzles 22B are provided. In the illustrated example, the plurality of bevel nozzles 22B are held together by a holding member 221B. The plurality of bevel nozzles 22B are arranged side by side in the horizontal direction, and are held by the holding member 221B while penetrating the holding member 221B in the vertical direction.
  • the plurality of bevel nozzles 22B are provided movably between a bevel processing position and a bevel standby position by a nozzle moving mechanism 222B.
  • the bevel processing position is a position where the bevel nozzle 22B discharges fluid toward the substrate W, and is a position facing the substrate W in the vertical direction.
  • the bevel standby position is a position where the bevel nozzle 22B does not discharge fluid toward the substrate W, and is, for example, a position outside the end surface of the substrate W in the radial direction. In the example of FIG.
  • the bevel nozzle 22B located at the bevel processing position is shown by a solid line
  • the bevel nozzle 22B located at the bevel standby position is shown by a two-dot chain line.
  • the nozzle moving mechanism 222B moves the plurality of bevel nozzles 22B as one by moving the holding member 221B.
  • the nozzle moving mechanism 222B has an arm turning mechanism, and specifically includes an arm 223B, a support column 224B, and a drive section 225B.
  • the arm 223B has a rod-like shape extending in the horizontal direction, and its tip is connected to the holding member 221B, and its base end is connected to the support column 224B.
  • the support column 224B has a rod-like shape extending along the vertical direction, and is provided rotatably around its own central axis.
  • the drive unit 225B includes, for example, a motor, and rotates the support column 224B around the central axis. As a result, the arm 223B connected to the support column 224B pivots, and the plurality of bevel nozzles 22B connected to the arm 223B move together along an arcuate movement path.
  • the support column 224B is installed so that the bevel processing position and the standby position are located on the movement path of the bevel nozzle 22B.
  • the plurality of bevel nozzles 22B are arranged side by side in the circumferential direction along the periphery of the substrate W (see FIG. 10).
  • four bevel nozzles 22Ba to 22Bd are provided as the plurality of bevel nozzles 22B.
  • the four bevel nozzles 22Ba to 22Bd are provided in this order in the rotation direction of the substrate W. That is, the bevel nozzle 22Ba is located at the most upstream side, and the bevel nozzle 22Bd is located at the most downstream side.
  • the upstream side here refers to a position within at least half a circumference.
  • the bevel nozzle 22Ba is located upstream of at least a half turn from the bevel nozzle 22Bd, and preferably, is located upstream of the bevel nozzle 22Bd within a quarter of a turn. That is, the angle that bevel nozzle 22Ba and bevel nozzle 22Bd make with respect to rotation axis Q1 is preferably 90 degrees or less, for example.
  • the bevel nozzle 22Ba discharges an inert gas
  • the bevel nozzle 22Bb discharges a film removing liquid (specifically, an acidic chemical containing fluorine)
  • the bevel nozzle 22Bc discharges a rinsing liquid
  • the bevel nozzle 22Bd discharges an alkaline chemical. It shall be discharged.
  • the bevel nozzle 22Bb is connected to the downstream end of the supply pipe 221Bb, and the upstream end of the supply pipe 221Bb is connected to the membrane removal liquid supply source 223Bb.
  • the supply pipe 221Bb is provided with a valve 222Bb, and opening and closing of the valve 222Bb switches between discharging and stopping the discharge of the film removal liquid from the bevel nozzle 22Bb.
  • the membrane removing liquid is, for example, hydrofluoric acid.
  • the film removal liquid can remove the protective film F1.
  • the bevel nozzle 22Bc is connected to the downstream end of the supply pipe 221Bc, and the upstream end of the supply pipe 221Bc is connected to the rinse liquid supply source 223Bc.
  • the supply pipe 221Bc is provided with a valve 222Bc, and opening and closing of the valve 222Bc switches between discharging and stopping the discharge of the rinse liquid from the bevel nozzle 22Bc.
  • the rinsing liquid pure water, warm water, ozonated water, magnetic water, reduced water (hydrogen water), various organic solvents (for example, IPA (isopropyl alcohol)), functional water (carbon dioxide water, etc.), etc. are used. Good too.
  • the rinsing liquid washes away chemical liquids (for example, film removing liquid and alkaline chemical liquid) on the substrate W and removes them from the substrate W.
  • the bevel nozzle 22Bd is connected to the downstream end of the supply pipe 221Bd, and the upstream end of the supply pipe 221Bd is connected to the alkaline chemical liquid supply source 223Bd.
  • the supply pipe 221Bd is provided with a valve 222Bd, and opening and closing of the valve 222Bd switches between discharging and stopping the discharge of the alkaline chemical from the bevel nozzle 22Bd. Note that in this embodiment, it is assumed that no alkaline chemical solution is used.
  • the bevel nozzle 22Ba is connected to the downstream end of the supply pipe 221Ba, and the upstream end of the supply pipe 221Ba is connected to the gas supply source 223Ba.
  • the supply pipe 221Ba is provided with a valve 222Ba, and opening and closing of the valve 222Ba switches between discharging and stopping the discharge of the inert gas from the bevel nozzle 22Ba.
  • the inert gas includes, for example, at least one of a rare gas such as argon gas and nitrogen gas.
  • the inert gas from the bevel nozzle 22Ba blows away the chemical solution (for example, film removal solution) on the peripheral edge of the substrate W radially outward, as will be described later.
  • the guard 23B has a cylindrical shape surrounding the substrate holding part 21B, and receives the processing liquid scattered from the end surface of the substrate W.
  • the guard 23B includes a bottom member 231B, an inner guard 232B, and an outer guard 233B.
  • the inner guard 232B and the outer guard 233B have a cylindrical shape surrounding the substrate holding part 21B, and the outer guard 233B is provided radially outward than the inner guard 232B.
  • the upper part of the inner guard 232B (hereinafter referred to as the upper inclined part) extends diagonally upward toward the rotation axis Q1 as it goes vertically upward.
  • the lower part of the inner guard 232B includes a cylindrical inner peripheral wall part extending vertically downward from the inner part of the lower end of the upper inclined part, and a cylindrical inner peripheral wall part extending vertically downward from the outer part of the lower end of the upper inclined part. and a cylindrical outer circumferential wall.
  • the upper portion of the outer guard 233B (hereinafter referred to as the upper inclined portion) extends diagonally upward toward the rotation axis Q1 as it goes vertically upward.
  • the upper slope of the outer guard 233B is located vertically above the upper slope of the inner guard 232B, and faces the upper slope of the inner guard 232B in the vertical direction.
  • the lower portion of the outer guard 233B extends vertically downward from the lower end of the upper slope of the outer guard 233B, and is located radially outward than the outer circumferential wall of the inner guard 232B.
  • the inner guard 232B and the outer guard 233B are provided so that they can be raised and lowered between a guard processing position and a guard standby position, which will be described later, by a guard lifting mechanism 234B, which will be described later.
  • the guard raising/lowering mechanism 234B raises and lowers the inner guard 232B and the outer guard 233B so that the inner guard 232B and the outer guard 233B do not collide with each other.
  • An example of a specific configuration of the guard elevating mechanism 234B is the same as that of the guard elevating mechanism 26A.
  • the guard processing position is a position where the upper edge of each of the inner guard 232B and the outer guard 233B is vertically above the upper surface of the substrate W held by the substrate holder 21B.
  • the guard standby position is a position where the upper end periphery of each of the inner guard 232B and the outer guard 233B is, for example, vertically below the upper surface of the base 211B of the substrate holding section 21B.
  • the processing liquid splashed from the periphery of the substrate W is received by the inner peripheral surface of the inner guard 232B.
  • the processing liquid then flows down along the inner peripheral surface of the inner guard 232B.
  • the processing liquid is received by the bottom member 231B as described below.
  • the processing liquid is received by the inner peripheral surface of the outer guard 233B.
  • the processing liquid is then discharged from the gap between the lower part of the outer peripheral wall of the inner guard 232B and the lower part of the outer guard 233B.
  • the bottom member 231B is provided vertically below the inner guard 232B and the outer guard 233B.
  • the bottom member 231B is a member that receives the processing liquid flowing vertically downward on the inner peripheral surface of the inner guard 232B.
  • the bottom member 231B includes an inner peripheral wall, an outer peripheral wall provided outside the inner peripheral wall, and an annular bottom connecting the lower end of the inner peripheral wall and the lower end of the outer peripheral wall.
  • the outer circumferential wall of the bottom member 231B is accommodated between the inner circumferential wall and the outer circumferential wall of the inner guard 232B.
  • a drainage groove (not shown) is formed at the annular bottom of the bottom member 231B.
  • This drainage groove is connected to the factory drainage line.
  • an exhaust liquid mechanism is connected to this liquid drain groove for forcibly exhausting the inside of the groove to bring the space between the inner wall portion and the outer circumferential wall portion of the bottom member 231B into a negative pressure state.
  • the processing liquid discharged from the bevel nozzle 22B lands on the top surface of the substrate W at a liquid landing position P1 near the target liquid landing position, and receives centrifugal force due to the rotation of the substrate W, and mainly moves toward the outside in the radial direction. It flows. However, a portion of the processing liquid may swell and flow radially inward on the upper surface of the substrate W.
  • the protective bevel process step S2
  • the protective film F1 on the center side is also removed, and the device surface Wa of the substrate W is removed. A part of the central region Wa2 may be exposed. In this case, the protective film F1 cannot appropriately protect the central region Wa2 of the device surface Wa.
  • a surface protection portion 24B is provided in the bevel unit 20B in order to suppress movement of the processing liquid toward the center of the substrate W.
  • the surface protection unit 24B discharges gas toward the center of the protective film F1 of the substrate W.
  • the gas collides with the center of the substrate W and flows omnidirectionally from the center of the substrate W toward the outside in the radial direction.
  • the gas presses the processing liquid on the substrate W toward the outside in the radial direction. Therefore, movement of the processing liquid on the substrate W in the radial direction can be suppressed.
  • an inert gas can be used as the gas.
  • the inert gas includes, for example, at least one of a rare gas such as argon gas and nitrogen gas.
  • the surface protection part 24B is provided vertically above the substrate W held by the substrate holding part 21B, and includes a head 244B having a gas nozzle 241B, a cylindrical member 242B, and a blocking plate 243B, and a gas nozzle movement mechanism 27B.
  • the cylindrical member 242B is provided with its central axis extending along the vertical direction.
  • the blocking plate 243B is attached to the lower surface of the cylindrical member 242B.
  • the blocking plate 243B has a disk shape, and its lower surface runs along a horizontal plane. The diameter of the blocking plate 243B is larger than the diameter of the cylindrical member 242B.
  • the gas nozzle 241B vertically passes through the columnar member 242B and the blocking plate 243B, and the lower end of the gas nozzle 241B opens at the lower surface of the blocking plate 243B.
  • the opening is a discharge port of the gas nozzle 241B.
  • the upper opening of the gas nozzle 241B is connected to the downstream end of the supply pipe 245B, and the upstream end of the supply pipe 245B is connected to the gas supply source 248B.
  • Inert gas from the gas supply source 248B is supplied to the gas nozzle 241B through the supply pipe 245B, and is discharged from the gas nozzle 241B.
  • the supply pipe 245B is provided with a flow rate regulator 247B and a valve 246B in this order from the gas supply source 248B side.
  • the flow rate regulator 247B adjusts the flow rate of gas flowing through the supply pipe 245B. By opening and closing the valve 246B, discharge and stop of gas discharge from the gas nozzle 241B are switched.
  • the gas nozzle moving mechanism 27B moves the head 244B between the gas processing position and the gas standby position.
  • the gas processing position is a position when the gas nozzle 241B discharges gas, and is, for example, a position where the gas nozzle 241B faces the center of the substrate W in the vertical direction.
  • the gas standby position is a position when the gas nozzle 241B does not discharge gas, and is, for example, a position outside the end surface of the substrate W in the radial direction.
  • the gas nozzle moving mechanism 27B has, for example, an arm turning mechanism similar to the nozzle moving mechanism 222B.
  • the processing speed with the membrane removal solution may depend on the temperature.
  • a heating section 25B is provided in the bevel unit 20B.
  • the heating unit 25B is provided at a position facing the substrate peripheral edge VW1 of the substrate W held by the substrate holding unit 21B, and heats the substrate peripheral edge VW1.
  • the heating unit 25B may heat the substrate W using radiant heat, or may heat the substrate W by supplying high-temperature fluid (for example, high-temperature gas) to the substrate W.
  • the heating unit 25B heats the substrate W using both radiant heat and high temperature gas.
  • FIG. 11 is a plan view schematically showing an example of the configuration of the heating section 25B.
  • the heating section 25B includes a heater 251B and a gas supply section 255B that uses the inside of the heater 251B as part of a flow path.
  • the heater 251B has an annular plate shape. Referring also to FIG. 9, the heater 251B is mounted on the substrate holding portion 21B so as to face the portion of the lower surface of the substrate W (that is, the non-device surface Wb) that is not in contact with the upper surface of the substrate holding portion 21B in a non-contact manner. arranged in a ring around the The opposing surface (upper surface) of the heater 251B is parallel to the non-device surface Wb of the substrate W, for example. The facing surface of the heater 251B faces the non-device surface Wb of the substrate W with a distance of, for example, about 2 mm to 5 mm.
  • the heater 251B is, for example, a resistance type heater in which a heating element (for example, a resistance heating element such as a nichrome wire) 253B is built into a main body part 252B made of silicon carbide (SiC) or ceramics.
  • the main body 252B has an annular plate shape, and the upper surface of the main body 252B corresponds to the upper surface (opposing surface) of the heater 251B, and the lower surface of the main body 252B corresponds to the lower surface of the heater 251B.
  • the heating element 253B is provided within an annular and band-shaped arrangement region in plan view. When the heating element 253B generates heat, the main body portion 252B is heated and its temperature increases.
  • the high-temperature main body portion 252B can heat the substrate peripheral portion VW1 of the substrate W by radiant heat.
  • a heating flow path 254B is formed inside the main body portion 252B.
  • the heating channel 254B includes a horizontal channel arranged in a horizontal plane vertically below the heating element 253B. A portion of the horizontal flow path is also arranged in regions radially inside and radially outside of the heating element 253B in plan view.
  • the heating flow path 254B further includes an upstream flow path that extends vertically downward from the horizontal flow path and opens at the lower surface of the main body portion 252B, and a radially inner and outer side of the heating element 253B in the horizontal flow path. It has a plurality of downstream flow paths that branch and extend vertically upward from each of the main body portions 252B and open as a plurality of discharge ports 25Ba on the upper surface of the main body portion 252B.
  • heating channel 254B is connected to the downstream end of supply pipe 256B, and the upstream end of supply pipe 256B is connected to gas supply source 259B.
  • Gas for example, inert gas
  • Gas from the gas supply source 259B is discharged from the discharge port 25Ba through the supply pipe 256B and the heating channel 254B, and flows toward the peripheral region of the non-device surface Wb of the substrate W.
  • the gas flows through the heating channel 254B inside the main body 252B, the gas receives heat from the main body 252B and is heated.
  • the high temperature gas flows from the discharge port 25Ba toward the non-device surface Wb of the substrate W, and heats the substrate W.
  • the supply pipe 256B is provided with a valve 257B and a flow rate regulator 258B. By opening and closing the valve 257B, discharge and stop of the high temperature gas from the discharge port 25Ba of the heating flow path 254B are switched.
  • the flow rate regulator 258B adjusts the flow rate of gas.
  • the bevel unit 20B is also provided with a bevel nozzle 26B for the back surface.
  • the bevel nozzle 26B discharges the processing liquid toward the peripheral region of the non-device surface Wb of the substrate W.
  • the bevel nozzle 26B is provided at a position vertically below the non-device surface Wb of the substrate W held by the substrate holder 21B and facing the peripheral region of the non-device surface Wb of the substrate W in the vertical direction.
  • Such a bevel nozzle 26B is located radially outward from the substrate holding part 21B.
  • a recess 25Bb is formed in the heater 251B.
  • the recessed portion 25Bb is recessed inward in the radial direction and passes through the heater 251B along the vertical direction.
  • the bevel nozzle 26B is provided in the recess 25Bb.
  • two bevel nozzles 26B are provided.
  • One bevel nozzle 26B is connected to the downstream end of the supply pipe 261B, and the upstream end of the supply pipe 261B is connected to the membrane removal liquid supply source 263B.
  • the film removal liquid from the film removal liquid supply source 263B is supplied to the bevel nozzle 26B through the supply pipe 261B, and is discharged from the discharge port of the bevel nozzle 26B toward the peripheral region of the non-device surface Wb of the substrate W.
  • a valve 262B is provided in the supply pipe 261B. By opening and closing the valve 262B, discharge and stop of the film removal liquid from the bevel nozzle 26B are switched.
  • the other bevel nozzle 26B is connected to the downstream end of the supply pipe 265B, and the upstream end of the supply pipe 265B is connected to the rinse liquid supply source 268B.
  • the rinsing liquid from the rinsing liquid supply source 268B is supplied to the bevel nozzle 26B through the supply pipe 265B, and is discharged from the discharge port of the bevel nozzle 26B toward the peripheral region of the non-device surface Wb of the substrate W.
  • a valve 266B is provided in the supply pipe 265B. By opening and closing the valve 266B, discharge and stop of the rinse liquid from the bevel nozzle 26B are switched.
  • FIG. 12 is a flowchart showing a specific example of protection bevel processing.
  • the center robot 32 carries the substrate W into the bevel unit 20B (step S21).
  • the substrate holding section 21B holds the loaded substrate W.
  • the substrate holder 21B rotates the substrate W around the rotation axis Q1 (step S22). Further, the nozzle moving mechanism 222B moves the bevel nozzle 22B to the bevel processing position, and the bevel unit 20B (more specifically, the control unit 90) opens the valve 257B and the valve 222Ba to discharge gas from the gas nozzle 241B and the bevel nozzle 22Ba. Step S23). Further, the heating unit 25B heats the peripheral portion of the substrate W (step S24). Specifically, bevel unit 20B starts energizing the heating element and opens valve 257B. Moreover, the guard raising/lowering mechanism 234B raises the guard corresponding to the film removal liquid out of the inner guard 232B and the outer guard 233B to the guard processing position.
  • the bevel unit 20B opens the valve 222Bb and the valve 262B to discharge the film removal liquid from the bevel nozzle 22Bb and the bevel nozzle 26B (step S25).
  • the film removal liquid discharged from the bevel nozzle 22Bb lands on the top surface of the protective film F1 at the landing position P1, flows radially outward on the top surface of the protective film F1, and a part of it scatters from the periphery of the substrate W (Fig. 6(b)).
  • the film removal liquid acts on the protective peripheral edge portion VF1 of the protective film F1, allowing the protective peripheral edge portion VF1 to be removed.
  • the remaining part of the film removal liquid on the protective film F1 remains on the protective peripheral edge VF1 and rotates around the rotation axis Q1 as the substrate W rotates.
  • gas is discharged from a bevel nozzle 22Ba provided upstream of the bevel nozzle 22Bb.
  • the gas blows away the membrane removal liquid remaining on the protective peripheral portion VF1 and making almost one revolution toward the outside in the radial direction. That is, the old film removal liquid that has landed on the liquid landing position P1 and has made almost one revolution around the rotation axis Q1 is blown away by the gas from the bevel nozzle 22Ba. Therefore, almost no old film removal liquid reaches the liquid landing position P1.
  • the position where the gas from the bevel nozzle 22Ba collides with the upper surface of the substrate W is radially inner than the landing position P1 of the film removal liquid from the bevel nozzle 22Bb. Thereby, the gas flows from the inside in the radial direction to the outside in the radial direction relative to the membrane removal liquid, and the membrane removal liquid can be blown radially outward more reliably.
  • the film removal liquid discharged from the bevel nozzle 26B lands on the non-device surface Wb of the substrate W, flows radially outward on the non-device surface Wb, and scatters from the periphery of the substrate W (Fig. 6(b) ). At this time, the film removal liquid can remove the same substance as the protective film F1 attached to the non-device surface Wb.
  • a bevel nozzle 26B that discharges gas may be provided similarly to the bevel nozzle 22Ba.
  • the gas bevel nozzle 26B is provided upstream of the film removal liquid bevel nozzle 26B in the rotational direction of the substrate W, and discharges gas.
  • the gas blows away the old film removal liquid that remains on the non-device surface Wb and circulates radially outward. Therefore, it is possible to prevent the film removal liquid from becoming excessive at the liquid landing position on the non-device surface Wb.
  • the film removal liquid becomes excessive at the landing position on the non-device surface Wb, the film removal liquid goes around the end surface of the substrate W and reaches the upper surface of the protective film F1, and the film removal liquid on the protective film F1 is removed from the substrate. Although it could be pushed toward the center of W, such push-out can be suppressed.
  • the heating unit 25B heats the substrate peripheral portion VW1 of the substrate W, the temperature of the protective peripheral portion VF1 of the upper layer can also be increased. Therefore, it is possible to suppress a decrease in the temperature of the film removal liquid on the protective peripheral portion VF1, and the film removal liquid can remove the protective peripheral portion VF1 at a higher processing speed. Therefore, the protective peripheral portion VF1 can be removed at a high processing speed.
  • the position where the rinsing liquid from the bevel nozzle 22Bc lands is radially inner than the position P1 where the film removal liquid from the bevel nozzle 22Bb lands. Thereby, the rinsing liquid can appropriately wash away the membrane removal liquid. The same applies to the bevel nozzle 26B.
  • the bevel unit 20B closes the valve 222Bb and the valve 262B to stop supplying the membrane removal liquid. More specifically, when the elapsed time from the supply of the membrane removal liquid reaches a first predetermined time or more, the bevel unit 20B closes the valve 222Bb and the valve 262B. The elapsed time is measured by a known timer circuit within the control section 90.
  • the guard elevating mechanism 234B changes the elevating state of the guard 23B as necessary. That is, when the guard for the rinsing liquid is different from the guard for the membrane removal liquid, the guard raising/lowering mechanism 234B raises the guard corresponding to the rinsing liquid to the guard processing position.
  • the bevel unit 20B opens the valve 222Bc and the valve 266B to discharge the rinsing liquid from the bevel nozzle 22Bc and the bevel nozzle 26B (step S26).
  • the rinsing liquid that has landed on the surface of the substrate W flows outward in the radial direction under the centrifugal force caused by the rotation of the substrate W, and is scattered outward from the end surface of the substrate W.
  • the film removal liquid on the surface of the substrate W can be washed away radially outward with the rinsing liquid.
  • the film removing liquid on the surface of the substrate W can be replaced with the rinsing liquid.
  • the bevel unit 20B closes the valve 222Bc and the valve 266B to stop supplying the rinsing liquid. More specifically, when the elapsed time from the supply of the rinse liquid reaches a second predetermined time or more, the bevel unit 20B closes the valve 222Bc and the valve 266B.
  • the substrate W is dried (step S27).
  • the substrate holder 21B increases the rotational speed of the substrate W to rotate the substrate W at high speed (so-called spin drying).
  • the bevel unit 20B closes the valve 222Ba and the valve 257B, the nozzle moving mechanism 222B moves the plurality of bevel nozzles 22B to the bevel standby position, the heating section 25B stops the heating operation, and the substrate holding section 21B The rotation is stopped and the holding of the substrate W is released.
  • the center robot 32 carries out the substrate W from the bevel unit 20B (step S28). The center robot 32 carries the substrate W into the cleaning unit 20C.
  • FIG. 13 is a diagram schematically showing an example of the configuration of the cleaning unit 20C.
  • the cleaning unit 20C includes a substrate holding section 21C, a cleaning nozzle 22C, and a guard 23C.
  • the substrate holder 21C holds the substrate W in a horizontal position and rotates the substrate W around the rotation axis Q1.
  • the substrate holder 21C includes a spin base 211C, a plurality of (three or more) chuck pins 212C, and a rotation mechanism 213C.
  • the spin base 211C has a disk shape and is provided in a horizontal position with its thickness direction along the vertical direction.
  • the outer diameter of the disk-shaped spin base 211C is slightly larger than the diameter of the circular substrate W held by the substrate holder 21 (see FIG. 13). Therefore, the spin base 211C has an upper surface that faces the entire lower surface (ie, non-device surface Wb) of the substrate W to be held in the vertical direction.
  • a plurality of chuck pins 212C are erected on the peripheral edge of the upper surface of the spin base 211C.
  • the plurality of chuck pins 212C are arranged at equal intervals along a circumference corresponding to the periphery of the circular substrate W.
  • Each chuck pin 212C is provided so as to be movable between a holding position where it contacts the periphery of the substrate W and an open position where it is away from the periphery of the substrate W.
  • the plurality of chuck pins 212C are driven in conjunction with each other by a link mechanism (not shown) housed in the spin base 211C.
  • the substrate holding part 21C can hold the substrate W in a horizontal position above the spin base 211C and close to the upper surface, and the plurality of chuck pins By stopping 212C at each open position, the holding of the substrate W can be released.
  • the rotation mechanism 213C rotates the spin base 211C around the rotation axis Q1. As a result, the substrate W held by the plurality of chuck pins 212C also rotates around the rotation axis Q1.
  • An example of the configuration of the rotation mechanism 213C is the same as that of the rotation mechanism 212A.
  • the substrate holder 21C does not necessarily need to include the chuck pin 212C, and may hold the substrate W by suction, for example, like the substrate holders 21A and 21B.
  • the cleaning nozzle 22C discharges the processing liquid toward the substrate W to supply the processing liquid to the substrate W.
  • the cleaning nozzle 22C is connected to the downstream end of the supply pipe 221C, and the upstream end of the supply pipe 221C is connected to the processing liquid supply source 223C.
  • the processing liquid from the processing liquid supply source 223C is supplied to the cleaning nozzle 22C through the supply pipe 221C, and is discharged from the discharge port 22c of the cleaning nozzle 22C.
  • a valve 222C is provided on the supply pipe 221C. Opening and closing of the valve 222C switches between discharging and stopping the discharging of the processing liquid from the cleaning nozzle 22C.
  • the cleaning unit 20C is configured to be supplied with multiple types of processing liquids. More specifically, the cleaning unit 20C can selectively supply the foreign matter removal liquid and the membrane removal liquid. For example, two cleaning nozzles 22C may be provided that discharge the foreign matter removing liquid and the film removing liquid, respectively.
  • the cleaning nozzle 22C is provided movably between the cleaning processing position and the cleaning standby position by a nozzle moving mechanism 25C.
  • the cleaning processing position is a position where the cleaning nozzle 22C discharges a processing liquid toward the substrate W, and is, for example, a position facing the center of the substrate W in the vertical direction.
  • the cleaning standby position is a position when the cleaning nozzle 22C does not discharge the processing liquid toward the substrate W, and is, for example, a position outside the end surface of the substrate W in the radial direction.
  • the nozzle moving mechanism 25C has, for example, an arm turning mechanism similar to the nozzle moving mechanism 222B.
  • the cleaning unit 20C is also provided with a fixed nozzle 24C.
  • the fixed nozzle 24C is provided vertically above the substrate W held by the substrate holder 21C and radially outward from the end surface of the substrate W.
  • the fixed nozzle 24C is connected to the downstream end of the supply pipe 241C, and the upstream end of the supply pipe 241C is connected to the rinse liquid supply source 243C.
  • the rinsing liquid from the rinsing liquid supply source 243C is supplied to the fixed nozzle 24C through the supply pipe 241C, and is discharged from the discharge port of the fixed nozzle 24C toward the upper surface of the substrate W (that is, the device surface Wa).
  • a valve 242C is provided on the supply pipe 241C. By opening and closing the valve 242C, discharge and stop of the rinse liquid from the fixed nozzle 24C are switched.
  • the guard 23C is a member for catching the processing liquid splashed from the end surface of the substrate W.
  • the guard 23C has a cylindrical shape surrounding the substrate holding part 21C, and includes, for example, a plurality of guards that can be raised and lowered independently of each other.
  • an inner guard 231C, a middle guard 232C, and an outer guard 233C are shown as the plurality of guards 23C.
  • Each of the guards 231C to 233C surrounds the substrate holder 21C and has a shape that is approximately rotationally symmetrical with respect to the rotation axis Q1.
  • the function of the guard 23C is the same as that of the guard 23B, and the inner guard 231C, middle guard 232C, and outer guard 233C are members for receiving different types of processing liquids.
  • the specific shape of the guard 23C illustrated in FIG. 13 is different from the guard 23B, the shape itself of the guard 23C is not the essence of this embodiment, so a detailed explanation will be omitted here.
  • the guards 231C to 233C can be raised and lowered by a guard raising and lowering mechanism 26C.
  • the guard raising/lowering mechanism 26C raises and lowers the guards 231C to 233C between their respective guard processing positions and guard standby positions so that the guards 231C to 233C do not collide with each other.
  • the guards 231C to 233C located at the guard standby position are shown by solid lines, and some of the guards 231C to 233C located at the guard processing position are shown by two-dot chain lines.
  • An example of the configuration of the guard lifting mechanism 26C is the same as that of the guard lifting mechanism 234B.
  • FIG. 14 is a flowchart showing a specific example of the substrate bevel process (step S3) and the protective film removal process (step S4).
  • the central robot 32 carries the substrate W into the cleaning unit 20C (step S31).
  • the substrate holding section 21C holds the loaded substrate W.
  • the substrate holder 21C rotates the substrate W (step S32). Further, the guard lifting/lowering mechanism 26C raises the guard corresponding to the foreign matter removing liquid among the guards 231C to 233C to the guard processing position.
  • the cleaning unit 20C supplies a foreign matter removing liquid to the substrate peripheral portion VW1 of the substrate W (step S33). Specifically, the nozzle moving mechanism 25C moves the cleaning nozzle 22C to the cleaning processing position, and the cleaning unit 20C (more specifically, the control unit 90) opens the valve 222C corresponding to the foreign matter removal liquid, and the cleaning nozzle 22C moves to the cleaning processing position.
  • the foreign matter removing liquid is discharged from the discharge port 22c of 22C.
  • the foreign matter removing liquid is, for example, high temperature SPM.
  • the foreign matter removal liquid lands on the upper surface of the protective film F1, flows radially outward on the upper surface of the protective film F1 under the influence of centrifugal force caused by the rotation of the substrate W, and then flows through the peripheral area Wa1 of the substrate W (Fig. 6(c)).
  • the foreign matter removing liquid acts on the foreign matter M1 in the peripheral area Wa1 of the substrate W, and can remove the foreign matter M1.
  • the foreign matter removing liquid can go around the end surface of the substrate W and reach the peripheral region of the non-device surface Wb of the substrate W. In this case, the foreign matter removing liquid can also remove the foreign matter M1 on the end surface of the substrate W and the peripheral region of the non-device surface Wb.
  • the cleaning unit 20C closes the valve 222C corresponding to the foreign matter removal liquid. More specifically, when the elapsed time from the supply of the foreign matter removing liquid reaches a third predetermined time or more, the cleaning unit 20C closes the valve 222C corresponding to the foreign matter removing liquid.
  • the guard elevating mechanism 26C changes the elevating state of the guard 23C as necessary. That is, if the guard for the rinse liquid is different from the guard for the foreign matter removal liquid, the guard lifting mechanism 26C raises the guard corresponding to the rinse liquid to the guard processing position.
  • the cleaning unit 20C supplies a rinsing liquid to the substrate W (step S34).
  • the cleaning unit 20C opens the valve 242C and discharges the rinse liquid from the discharge port of the fixed nozzle 24C.
  • the rinsing liquid lands on the center of the upper surface of the protective film F1 and flows radially outward on the upper surface of the protective film F1.
  • the rinsing liquid continues to flow through the peripheral area Wa1 of the substrate W and scatters from the end surface of the substrate W.
  • the foreign matter removing liquid on the substrate W is washed away by the rinsing liquid. That is, the foreign matter removing liquid on the substrate W is replaced with the rinsing liquid.
  • the cleaning unit 20C closes the valve 242C. More specifically, the cleaning unit 20C closes the valve 242C when the elapsed time from the supply of the rinse liquid reaches a fourth predetermined time or more.
  • the guard elevating mechanism 26C changes the elevating state of the guard 23C as necessary. That is, when the guard for the membrane removal liquid is different from the guard for the rinsing liquid, the guard lifting/lowering mechanism 26C raises the guard corresponding to the membrane removal liquid to the guard processing position.
  • the cleaning unit 20C supplies the film removal liquid to the substrate W (step S41). Specifically, the cleaning unit 20C opens the valve 222C corresponding to the membrane removal liquid and causes the membrane removal liquid to be discharged from the discharge port 22c of the cleaning nozzle 22C.
  • the membrane removing liquid is, for example, hydrofluoric acid.
  • the film removal liquid lands on the center of the upper surface of the protective film F1, flows radially outward on the upper surface of the protective film F1, continues to flow through the peripheral area Wa1 of the substrate W, and scatters outward from the end surface of the substrate W. (See also Figure 6(d)). At this time, the film removing liquid acts on the protective film F1 on the substrate W to remove the protective film F1.
  • the cleaning unit 20C closes the valve 222C corresponding to the film removal liquid. More specifically, when the elapsed time from the supply of the membrane removal liquid reaches a fifth predetermined time or more, the cleaning unit 20C closes the valve 222C corresponding to the membrane removal liquid.
  • the guard elevating mechanism 26C changes the elevating state of the guard 23C as necessary. That is, when the guard for the rinsing liquid is different from the guard for the membrane removal liquid, the guard lifting mechanism 26C raises the guard corresponding to the rinsing liquid to the guard processing position.
  • the cleaning unit 20C supplies a rinsing liquid to the substrate W (step S42).
  • the cleaning unit 20C opens the valve 242C and discharges the rinse liquid from the discharge port of the fixed nozzle 24C.
  • the rinsing liquid lands on the center of the device surface Wa of the substrate W, flows radially outward on the device surface Wa, and scatters outward from the end surface of the substrate W.
  • the film removal liquid on the substrate W is washed away by the rinsing liquid. That is, the film removal liquid on the substrate W is replaced with the rinsing liquid.
  • the cleaning unit 20C closes the valve 242C. More specifically, the cleaning unit 20C closes the valve 242C when the elapsed time from the supply of the rinse liquid reaches a sixth predetermined time or more. Further, the nozzle moving mechanism 25C moves the cleaning nozzle 22C to the cleaning standby position.
  • the cleaning unit 20C dries the substrate W (step S43).
  • the substrate holder 21C increases the rotational speed of the substrate W to rotate the substrate W at high speed (so-called spin drying).
  • spin drying the substrate holder 21C stops the rotation of the substrate W.
  • the substrate holding section 21C releases the holding of the substrate W, and the center robot 32 carries out the substrate W from the cleaning unit 20C (step S44).
  • the substrate processing apparatus 100 can process the substrate peripheral portion VW1 of the substrate W.
  • the cleaning nozzle 22C discharges the foreign matter removal liquid toward the center of the substrate W, and causes the foreign matter removal liquid to land on the center of the protective film F1 on the substrate W. I'm letting you do it. However, this is not necessarily the case. As long as the foreign matter removing liquid is supplied to the peripheral area Wa1 of the substrate W, the landing position of the foreign matter removing liquid may be changed as appropriate. For example, the cleaning nozzle 22C may discharge the foreign matter removal liquid toward a landing position between the center of the protective film F1 and the periphery of the protective film F1.
  • the protective film F1 in the protective film forming process, the protective film F1 is formed by wet processing, and in the protective film removing process, the protective film F1 is removed by wet processing. Therefore, an inexpensive wet processing unit 20 can be used. However, for example, if cost reduction is not required, at least one of the formation and removal of the protective film F1 may be performed by dry processing.
  • the coating unit 20A, the heat treatment unit 10A, the bevel unit 20B, and the cleaning unit 20C are provided in the substrate processing apparatus 100, but these may be provided separately in different processing apparatuses.
  • the coating unit 20A and the heat treatment unit 10A may be provided in a coater/developer (first processing device), and the bevel unit 20B and the cleaning unit 20C may be provided in a second processing device separate from the coater/developer.
  • each of the first processing device and the second processing device includes a load port 111, and a transport device for transporting a carrier C containing a plurality of substrates W is provided between the first processing device and the second processing device. provided.
  • the first step of forming the protective film in such a manner corresponds to, for example, step S2 or a set of step S1 and step S2.
  • the second step of removing the residue or residual film on the peripheral portion using a treatment liquid containing a mixed solution of sulfuric acid and hydrogen peroxide corresponds to step S3.
  • the third step of removing the protective film corresponds to step S4.
  • the substrate processing apparatus 100 and the substrate processing method have been described in detail, but the above explanations are illustrative in all aspects, and are not limited thereto. It is understood that countless variations not illustrated can be envisioned without departing from the scope of this disclosure. The configurations described in each of the above embodiments and modifications can be appropriately combined or omitted as long as they do not contradict each other.

Abstract

Provided is a method that allows for appropriate removal by SPM processing of residue or a residual film that is difficult to remove on a peripheral portion of a substrate. This substrate-processing method comprises: a first step of forming a protective film including an SOG film on the main surface of a substrate, the peripheral portion of the main surface not being covered by the protective film, and the region of the main surface on the inside of the peripheral portion being covered by the protective film; a second step of, after the protective-film-forming step, removing residue or a residual film on the peripheral portion by a processing solution including a mixture of sulfuric acid and hydrogen peroxide; and a third step of, after the residual film removal step, removing the protective film.

Description

基板処理方法および基板処理装置Substrate processing method and substrate processing apparatus
 本開示は、基板処理方法および基板処理装置に関する。 The present disclosure relates to a substrate processing method and a substrate processing apparatus.
 半導体デバイスは、基板の一方の主面に各種のパターンを形成することにより、製造される。各種のパターンは、基板の一方の主面のうち中央領域に形成され、その周縁領域には形成されない。 Semiconductor devices are manufactured by forming various patterns on one main surface of a substrate. Various patterns are formed in the central region of one main surface of the substrate, and are not formed in the peripheral region.
 この基板の周縁部には、パターン形成の際に各種物質の残渣が付着したり、前工程で残った不要な膜が残ったりする場合がある。こうした残渣や残膜を除去するために、基板の周縁部を洗浄するベベル処理が行われることがある。このようなベベル処理を行う基板処理装置としては、例えば、特許文献1に記載の基板処理装置が採用され得る。特許文献1では、基板処理装置は、基板保持部と、ノズルとを含む。基板保持部は基板を水平姿勢で保持しつつ、該基板の中心を通る鉛直な回転軸線まわりで該基板を回転させる。ノズルは回転中の基板の周縁部に向かって処理液を吐出し、該処理液を基板の周縁部に供給する。処理液が基板の周縁部に作用することにより、基板の周縁部を洗浄することができる。 On the peripheral edge of this substrate, residues of various substances may adhere during pattern formation, or unnecessary films remaining from the previous process may remain. In order to remove such residues and remaining films, bevel processing is sometimes performed to clean the peripheral edge of the substrate. As a substrate processing apparatus that performs such bevel processing, for example, the substrate processing apparatus described in Patent Document 1 may be employed. In Patent Document 1, a substrate processing apparatus includes a substrate holding section and a nozzle. The substrate holder holds the substrate in a horizontal position and rotates the substrate around a vertical axis of rotation passing through the center of the substrate. The nozzle discharges the processing liquid toward the periphery of the rotating substrate, and supplies the processing liquid to the periphery of the substrate. The peripheral edge of the substrate can be cleaned by the treatment liquid acting on the peripheral edge of the substrate.
 基板の周縁部に残存する残膜は、基板と強固に結合し、通常の洗浄液やエッチング液では容易に除去できないものがある。こうした除去困難な残膜の例としては、硬化層を有するレジスト残膜や、成膜工程等で基板に成膜されたアモルファスカーボン、NiPt合金などの残膜がある。こうした除去困難な残膜を除去する手段として、SPM(硫酸と過酸化水素水との混合液)を用いたエッチング処理がある。 Some residual films remaining on the peripheral edge of the substrate are strongly bonded to the substrate and cannot be easily removed with normal cleaning solutions or etching solutions. Examples of such residual films that are difficult to remove include a resist residual film having a hardened layer, and a residual film of amorphous carbon, NiPt alloy, etc. formed on a substrate in a film forming process or the like. Etching treatment using SPM (a mixed solution of sulfuric acid and hydrogen peroxide solution) is available as a means for removing such a difficult-to-remove residual film.
特開2015-70023号公報JP 2015-70023 Publication
 硫酸やSPMは、粘度が高いため、硫酸やSPMを用いて基板の周縁部のみにエッチング処理を行うことが難しい。また、硫酸と過酸化水素水の混合により生じる蒸気は基板の周縁部以外にも流れていくため、基板の中央部に形成されたパターンが汚染されるおそれがある。 Because sulfuric acid and SPM have high viscosity, it is difficult to perform etching treatment only on the peripheral edge of the substrate using sulfuric acid or SPM. Further, since the vapor generated by the mixture of sulfuric acid and hydrogen peroxide flows to areas other than the periphery of the substrate, there is a risk that the pattern formed in the center of the substrate may be contaminated.
 そこで、本開示は、基板の周縁部上の除去困難な残渣または残膜をSPM処理によって適切に除去できる技術を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a technique that can appropriately remove difficult-to-remove residues or residual films on the peripheral edge of a substrate by SPM processing.
 第1の態様は、基板処理方法であって、基板の主面にSOG膜を含む保護膜を形成する工程であって、前記主面の周縁部が前記保護膜で覆われておらず、前記主面のうち前記周縁部より内側領域が前記保護膜で覆われるように前記保護膜を形成する第1工程と、前記第1工程の後、硫酸と過酸化水素水との混合液を含む処理液により前記周縁部上の残渣または残膜を除去する第2工程と、前記第2工程の後、前記保護膜を除去する第3工程と、を備える。 A first aspect is a substrate processing method, which is a step of forming a protective film including an SOG film on a main surface of a substrate, wherein a peripheral portion of the main surface is not covered with the protective film; a first step of forming the protective film so that a region inside the peripheral edge of the main surface is covered with the protective film; and after the first step, a treatment including a mixed solution of sulfuric acid and hydrogen peroxide solution. The method includes a second step of removing a residue or a remaining film on the peripheral edge portion with a liquid, and a third step of removing the protective film after the second step.
 第2の態様は、第1の態様にかかる基板処理方法であって、前記残渣または前記残膜は、硬化層を含むレジスト、アモルファスカーボンおよびNiPt合金の少なくともいずれか一つを含む。 A second aspect is the substrate processing method according to the first aspect, wherein the residue or the remaining film includes at least one of a resist including a hardened layer, amorphous carbon, and a NiPt alloy.
 第3の態様は、第1または第2の態様にかかる基板処理方法であって、前記第3工程において、フッ酸を含む薬液により前記保護膜を除去する。 A third aspect is the substrate processing method according to the first or second aspect, in which in the third step, the protective film is removed with a chemical solution containing hydrofluoric acid.
 第4の態様は、第1から第3のいずれか一つの態様にかかる基板処理方法であって、前記第1工程は、第1ノズルからフッ酸を含む薬液を前記基板に向けて吐出し、前記基板の前記主面の全面に形成されたSOG膜の周縁部を前記薬液により除去して、前記保護膜を前記主面の前記内側領域に形成する保護ベベル工程を含み、前記第2工程において、前記第1ノズルの吐出口よりも大きな吐出口を有する第2ノズルから前記処理液を前記基板に向けて吐出し、前記処理液により前記残渣または前記残膜を除去する。 A fourth aspect is the substrate processing method according to any one of the first to third aspects, wherein the first step includes discharging a chemical solution containing hydrofluoric acid from a first nozzle toward the substrate; a protective bevel step of removing a peripheral portion of the SOG film formed on the entire surface of the main surface of the substrate using the chemical solution and forming the protective film on the inner region of the main surface; The processing liquid is discharged toward the substrate from a second nozzle having a discharge opening larger than the discharge opening of the first nozzle, and the residue or the remaining film is removed by the processing liquid.
 第5の態様は、第4の態様にかかる基板処理方法であって、前記第1工程において、前記基板の前記主面と鉛直方向において向かい合う位置に設けられた前記第1ノズルから、斜め外方を向く吐出方向に沿って前記薬液を吐出させて、前記SOG膜の前記周縁部を除去し、前記第2工程において、前記第2ノズルが前記処理液を前記保護膜に向かって吐出し、前記保護膜に着液した前記処理液を、前記基板の回転により、前記保護膜から前記基板の前記周縁部に向かって流す。 A fifth aspect is the substrate processing method according to the fourth aspect, in which in the first step, from the first nozzle provided at a position facing the main surface of the substrate in a vertical direction, The peripheral edge portion of the SOG film is removed by discharging the chemical solution along a discharging direction facing the protective film. The processing liquid that has landed on the protective film is caused to flow from the protective film toward the peripheral edge of the substrate by rotating the substrate.
 第6の態様は、第4または第5の態様にかかる基板処理方法であって、前記第1工程は、前記保護ベベル工程の前に実行され、前記基板の前記主面に塗布液を塗布し、前記塗布液を乾燥させて前記保護膜を形成する保護膜形成工程をさらに備える。 A sixth aspect is the substrate processing method according to the fourth or fifth aspect, wherein the first step is performed before the protective bevel step, and the first step is performed to apply a coating liquid to the main surface of the substrate. , further comprising a protective film forming step of drying the coating liquid to form the protective film.
 第7の態様は、基板処理装置であって、主面の周縁部がSOG膜を含む保護膜で覆われておらず、かつ、前記主面のうち前記周縁部より内側領域が前記保護膜で覆われた基板を水平姿勢で保持しつつ、前記基板を回転させる基板保持部と、硫酸と過酸化水素水との混合液を含む処理液を吐出して、前記基板の前記主面の前記周縁部上の残渣または残膜を処理液により除去するノズルとを備える。 A seventh aspect of the substrate processing apparatus is such that a peripheral portion of the main surface is not covered with a protective film including an SOG film, and a region inside the peripheral portion of the main surface is covered with the protective film. a substrate holding unit that rotates the covered substrate while holding the covered substrate in a horizontal position; and a substrate holding unit that discharges a processing liquid containing a mixed solution of sulfuric acid and hydrogen peroxide solution to remove the peripheral edge of the main surface of the substrate. and a nozzle for removing residue or residual film on the part using a treatment liquid.
 第1および第7の態様によれば、基板の主面の内側領域をSOG膜で覆いつつSPMにより基板の周縁部上の残渣または残膜が除去される。SOG膜はSPMによってほとんど除去されないので、基板の内側領域を適切に保護しつつ、残渣または残膜を適切に除去することができる。 According to the first and seventh aspects, the residue or remaining film on the peripheral edge of the substrate is removed by SPM while covering the inner region of the main surface of the substrate with the SOG film. Since the SOG film is hardly removed by SPM, the residue or residual film can be properly removed while properly protecting the inner region of the substrate.
 第2の態様によれば、除去困難な残渣または残膜を除去することができる。 According to the second aspect, it is possible to remove residues or residual films that are difficult to remove.
 第3の態様によれば、基板の周縁部に対するダメージを抑制しつつ、保護膜を除去することができる。 According to the third aspect, the protective film can be removed while suppressing damage to the peripheral edge of the substrate.
 第4の態様によれば、薬液の粘度が低いので、高い位置精度で保護周縁部を除去することができる。また、SPMの粘度は高いものの、第2ノズルの吐出口は大きいので、第2ノズルはSPMをより適切に吐出することができる。 According to the fourth aspect, since the viscosity of the chemical solution is low, the protective peripheral portion can be removed with high positional accuracy. Further, although the viscosity of SPM is high, since the discharge port of the second nozzle is large, the second nozzle can discharge SPM more appropriately.
 第5の態様によれば、保護ベベル工程において、保護膜の端面を傾斜面とすることができる。このため、その後の第2工程において、処理液が保護膜の傾斜面から基板の周縁部に滑らかに流れる。よって、処理液が傾斜面と基板の周縁部との境界にも作用しやすく、基板の周縁部をより適切に処理することができる。 According to the fifth aspect, in the protective bevel step, the end surface of the protective film can be made into an inclined surface. Therefore, in the subsequent second step, the processing liquid flows smoothly from the slope of the protective film to the peripheral edge of the substrate. Therefore, the processing liquid tends to act on the boundary between the inclined surface and the peripheral edge of the substrate, so that the peripheral edge of the substrate can be treated more appropriately.
 第6の態様によれば、安価なウェット処理ユニットによって、保護膜を形成することができる。 According to the sixth aspect, the protective film can be formed using an inexpensive wet processing unit.
基板処理装置の構成の一例を概略的に示す平面図である。FIG. 1 is a plan view schematically showing an example of the configuration of a substrate processing apparatus. 基板処理装置の構成の一例を概略的に示す縦断面図である。1 is a vertical cross-sectional view schematically showing an example of the configuration of a substrate processing apparatus. 基板Wの構成の一例を概略的に示す図である。2 is a diagram schematically showing an example of the configuration of a substrate W. FIG. 制御部の内部構成の一例を概略的に示す機能ブロック図である。FIG. 2 is a functional block diagram schematically showing an example of an internal configuration of a control unit. 基板処理装置が実行する基板処理方法の一例を示すフローチャートである。3 is a flowchart illustrating an example of a substrate processing method executed by the substrate processing apparatus. 各工程における基板Wの様子の一例を概略的に示す図である。FIG. 3 is a diagram schematically showing an example of the state of the substrate W in each step. 塗布ユニットの構成の一例を概略的に示す図である。FIG. 3 is a diagram schematically showing an example of the configuration of a coating unit. 保護膜形成処理の具体的な一例を示すフローチャートである。It is a flowchart which shows a specific example of a protective film formation process. ベベルユニットの構成の一例を概略的に示す図である。FIG. 3 is a diagram schematically showing an example of the configuration of a bevel unit. ベベルユニットの構成の一例を概略的に示す平面図である。FIG. 2 is a plan view schematically showing an example of the configuration of a bevel unit. 加熱部の構成の一例を概略的に示す平面図である。FIG. 2 is a plan view schematically showing an example of the configuration of a heating section. 保護ベベル処理の具体的な一例を示すフローチャートである。7 is a flowchart showing a specific example of protection bevel processing. 洗浄ユニットの構成の一例を概略的に示す図である。FIG. 2 is a diagram schematically showing an example of the configuration of a cleaning unit. 基板ベベル処理および保護膜除去処理の具体的な一例を示すフローチャートである。2 is a flowchart showing a specific example of substrate bevel processing and protective film removal processing.
 以下、添付される図面を参照しながら実施の形態について説明する。なお、図面は概略的に示されるものであり、説明の便宜のため、適宜、構成の省略、または、構成の簡略化がなされるものである。また、図面に示される構成の大きさおよび位置の相互関係は、必ずしも正確に記載されるものではなく、適宜変更され得るものである。 Hereinafter, embodiments will be described with reference to the attached drawings. Note that the drawings are shown schematically, and for convenience of explanation, structures are omitted or simplified as appropriate. Further, the sizes and positional relationships of the structures shown in the drawings are not necessarily accurately described and may be changed as appropriate.
 また、以下に示される説明では、同様の構成要素には同じ符号を付して図示し、それらの名称と機能とについても同様のものとする。したがって、それらについての詳細な説明を、重複を避けるために省略する場合がある。 In addition, in the following description, similar components are shown with the same reference numerals, and their names and functions are also the same. Therefore, detailed descriptions thereof may be omitted to avoid duplication.
 また、以下に記載される説明において、「第1」または「第2」などの序数が用いられる場合があっても、これらの用語は、実施の形態の内容を理解することを容易にするために便宜上用いられるものであり、これらの序数によって生じ得る順序に限定されるものではない。 In addition, in the description below, even if ordinal numbers such as "first" or "second" are used, these terms are used to make it easier to understand the content of the embodiments. These ordinal numbers are used for convenience and are not limited to the order that can occur based on these ordinal numbers.
 相対的または絶対的な位置関係を示す表現(例えば「一方向に」「一方向に沿って」「平行」「直交」「中心」「同心」「同軸」など)が用いられる場合、該表現は、特に断らない限り、その位置関係を厳密に表すのみならず、公差もしくは同程度の機能が得られる範囲で相対的に角度または距離に関して変位された状態も表すものとする。等しい状態であることを示す表現(例えば「同一」「等しい」「均質」など)が用いられる場合、該表現は、特に断らない限り、定量的に厳密に等しい状態を表すのみならず、公差もしくは同程度の機能が得られる差が存在する状態も表すものとする。形状を示す表現(例えば、「四角形状」または「円筒形状」など)が用いられる場合、該表現は、特に断らない限り、幾何学的に厳密にその形状を表すのみならず、同程度の効果が得られる範囲で、例えば凹凸や面取りなどを有する形状も表すものとする。一の構成要素を「備える」「具える」「具備する」「含む」または「有する」という表現が用いられる場合、該表現は、他の構成要素の存在を除外する排他的表現ではない。「A,BおよびCの少なくともいずれか一つ」という表現が用いられる場合、該表現は、Aのみ、Bのみ、Cのみ、A,BおよびCのうち任意の2つ、ならびに、A,BおよびCの全てを含む。 When expressions indicating relative or absolute positional relationships are used (e.g., "in one direction," "along one direction," "parallel," "orthogonal," "centered," "concentric," "coaxial," etc.), the expressions , unless otherwise specified, not only strictly represents the positional relationship, but also represents a state in which they are relatively displaced in terms of angle or distance within a range where tolerance or the same level of function can be obtained. When expressions indicating equal conditions are used (e.g., "same," "equal," "homogeneous," etc.), unless otherwise specified, the expressions do not only express quantitatively strictly equal conditions, but also include tolerances or It also represents a state in which there is a difference in which the same level of functionality can be obtained. When an expression indicating a shape (for example, "square shape" or "cylindrical shape") is used, unless otherwise specified, the expression does not only represent the shape strictly geometrically, but also has the same effect. Shapes with unevenness, chamfering, etc., for example, are also expressed as long as the shape can be obtained. When the expressions "comprising," "comprising," "comprising," "containing," or "having" one component are used, the expressions are not exclusive expressions that exclude the presence of other components. When the expression "at least one of A, B, and C" is used, the expression includes only A, only B, only C, any two of A, B, and C, and A, B and C.
 <基板処理装置100の概要>
 図1は、基板処理装置100の構成の一例を概略的に示す平面図であり、図2は、基板処理装置100の構成の一例を概略的に示す縦断面図である。基板処理装置100は、基板Wを1枚ずつ処理する枚葉式の処理装置である。基板Wは例えば半導体基板であり、ここでは円板形状を有している。基板Wの直径は特に制限されないものの、例えば、200mmから300mm程度である。
<Overview of substrate processing apparatus 100>
FIG. 1 is a plan view schematically showing an example of the configuration of the substrate processing apparatus 100, and FIG. 2 is a longitudinal sectional view schematically showing an example of the configuration of the substrate processing apparatus 100. The substrate processing apparatus 100 is a single-wafer processing apparatus that processes substrates W one by one. The substrate W is, for example, a semiconductor substrate, and here has a disk shape. Although the diameter of the substrate W is not particularly limited, it is, for example, about 200 mm to 300 mm.
 図3は、基板Wの構成の一例を概略的に示す図である。図3の例では、基板Wの断面図および平面図が示されている。基板Wの一方の主面には、例えば、各種の回路パターンが形成される。以下では、基板Wの一方の主面をデバイス面Waとも呼ぶ。デバイス面Waは平面視において円形状を有している。デバイス面Waのうち周縁領域Wa1には、回路パターンは形成されない。周縁領域Wa1は、基板Wの周縁から所定幅を有する円環状の領域である。所定幅は、例えば、数mmから数十mm程度である。デバイス面Waのうち周縁領域Wa1よりも内側の円形状の中央領域Wa2には、回路パターンが形成される。 FIG. 3 is a diagram schematically showing an example of the configuration of the substrate W. In the example of FIG. 3, a cross-sectional view and a plan view of the substrate W are shown. For example, various circuit patterns are formed on one main surface of the substrate W. Hereinafter, one main surface of the substrate W will also be referred to as a device surface Wa. The device surface Wa has a circular shape in plan view. No circuit pattern is formed in the peripheral area Wa1 of the device surface Wa. The peripheral area Wa1 is an annular area having a predetermined width from the peripheral edge of the substrate W. The predetermined width is, for example, approximately several mm to several tens of mm. A circuit pattern is formed in a circular central region Wa2 inside the peripheral region Wa1 of the device surface Wa.
 ここでは、基板Wの他方の主面には回路パターンは形成されていないものとする。以下では、他方の主面を非デバイス面Wbとも呼ぶ。また、非デバイス面Wbの周縁領域と、基板Wの端面と、デバイス面Waの周縁領域Wa1とを有する部分を、基板Wの基板周縁部VW1とも呼ぶ。 Here, it is assumed that no circuit pattern is formed on the other main surface of the substrate W. Hereinafter, the other main surface will also be referred to as the non-device surface Wb. Further, a portion including the peripheral region of the non-device surface Wb, the end surface of the substrate W, and the peripheral region Wa1 of the device surface Wa is also referred to as the substrate peripheral region VW1 of the substrate W.
 このような基板Wの基板周縁部VW1の表面には、異物が残留し得る。該異物は、例えば、回路パターンをデバイス面Waに形成するための各種処理の際に生じた各種物質の残渣もしくは残膜である。より具体的な一例として、該残渣または該残膜は、硬化層を含むレジスト、アモルファスカーボンおよび合金(例えばニッケルと白金の合金)の少なくともいずれか一つを含む。このような異物は硫酸および過酸化水素水の混合液(SPM)によって除去することができる。 Foreign matter may remain on the surface of the substrate peripheral portion VW1 of such a substrate W. The foreign matter is, for example, residues or remaining films of various substances generated during various treatments for forming a circuit pattern on the device surface Wa. As a more specific example, the residue or the residual film includes at least one of a resist including a hardened layer, amorphous carbon, and an alloy (for example, an alloy of nickel and platinum). Such foreign substances can be removed with a mixture of sulfuric acid and hydrogen peroxide (SPM).
 本実施の形態にかかる基板処理装置100は、基板周縁部VW1に付着した異物を除去することができる。以下では、まず、基板処理装置100の構成および動作を概説し、その後、詳述する。 The substrate processing apparatus 100 according to the present embodiment can remove foreign matter attached to the substrate peripheral portion VW1. Below, the configuration and operation of the substrate processing apparatus 100 will first be outlined, and then detailed.
 図1および図2の例では、基板処理装置100は、インデクサ部110と、装置本体120と、制御部90とを含んでいる。 In the example of FIGS. 1 and 2, the substrate processing apparatus 100 includes an indexer section 110, an apparatus main body 120, and a control section 90.
 <インデクサ部110>
 インデクサ部110は装置本体120と外部との間に設けられている。インデクサ部110は、装置本体120と外部との間で基板Wを搬出入するためのインターフェース部である。ここでは、複数の基板Wを収納した基板収容器(以下、キャリアと呼ぶ)Cが外部からインデクサ部110に搬入される。
<Indexer section 110>
The indexer section 110 is provided between the device main body 120 and the outside. The indexer section 110 is an interface section for loading and unloading the substrate W between the apparatus main body 120 and the outside. Here, a substrate container (hereinafter referred to as a carrier) C containing a plurality of substrates W is carried into the indexer section 110 from the outside.
 インデクサ部110は、複数のロードポート111と、インデクサロボット112とを含む。各ロードポート111は、外部から搬入されたキャリアCを保持する。インデクサロボット112は、キャリアCと装置本体120との間で基板Wを搬送する搬送ユニットである。インデクサロボット112はキャリアCから未処理の基板Wを順次に取り出し、該基板Wを装置本体120に搬送するとともに、装置本体120によって処理された処理済みの基板Wを装置本体120から順次に受け取り、該基板WをキャリアCに収納する。処理済みの基板Wを収納したキャリアCはロードポート111から外部に搬出される。 The indexer unit 110 includes a plurality of load ports 111 and an indexer robot 112. Each load port 111 holds a carrier C brought in from the outside. The indexer robot 112 is a transport unit that transports the substrate W between the carrier C and the apparatus main body 120. The indexer robot 112 sequentially takes out unprocessed substrates W from the carrier C, transports the substrates W to the apparatus main body 120, and sequentially receives processed substrates W processed by the apparatus main body 120 from the apparatus main body 120, The substrate W is stored in a carrier C. The carrier C containing the processed substrates W is carried out from the load port 111.
 <装置本体120>
 装置本体120は、基板Wを処理する部分であり、複数のドライ処理ユニット10と、複数のウェット処理ユニット20と、搬送ユニット30とを含む。
<Device body 120>
The apparatus main body 120 is a part that processes the substrate W, and includes a plurality of dry processing units 10, a plurality of wet processing units 20, and a transport unit 30.
 <搬送ユニット30>
 搬送ユニット30はインデクサロボット112とドライ処理ユニット10とウェット処理ユニット20との相互間において基板Wを搬送する。図1の例では、搬送ユニット30は、シャトル搬送ユニット31と、センターロボット32とを含んでいる。シャトル搬送ユニット31は第1受渡位置と第2受渡位置との間で基板Wを水平方向に沿って搬送する。シャトル搬送ユニット31は第1受渡位置においてインデクサロボット112と基板Wの受け渡しを行い、第2受渡位置においてセンターロボット32と基板Wの受け渡しを行う。センターロボット32は、シャトル搬送ユニット31とドライ処理ユニット10とウェット処理ユニット20との相互間において基板Wを搬送する搬送ユニットである。
<Transport unit 30>
The transport unit 30 transports the substrate W between the indexer robot 112, the dry processing unit 10, and the wet processing unit 20. In the example of FIG. 1, the transport unit 30 includes a shuttle transport unit 31 and a center robot 32. The shuttle transport unit 31 transports the substrate W in the horizontal direction between a first delivery position and a second delivery position. The shuttle transport unit 31 transfers the substrate W to the indexer robot 112 at the first transfer position, and transfers the substrate W to the center robot 32 at the second transfer position. The center robot 32 is a transport unit that transports the substrate W between the shuttle transport unit 31, the dry processing unit 10, and the wet processing unit 20.
 <ドライ処理ユニット10の概要>
 ドライ処理ユニット10は基板Wに対してドライ処理を行う。図1に示されるように、各ドライ処理ユニット10は、熱処理ユニット10Aと、冷却ユニット10Bと、室内搬送ユニット10Cとを含んでいる。熱処理ユニット10Aは基板Wを加熱する。冷却ユニット10Bは基板Wを冷却する。室内搬送ユニット10Cは熱処理ユニット10Aと冷却ユニット10Bとの間で基板Wを搬送する。
<Overview of dry processing unit 10>
The dry processing unit 10 performs dry processing on the substrate W. As shown in FIG. 1, each dry processing unit 10 includes a heat processing unit 10A, a cooling unit 10B, and an indoor transport unit 10C. The heat treatment unit 10A heats the substrate W. The cooling unit 10B cools the substrate W. The indoor transport unit 10C transports the substrate W between the heat treatment unit 10A and the cooling unit 10B.
 <ウェット処理ユニット20の概要>
 ウェット処理ユニット20は基板Wに対して種々の処理液を供給し、各処理液に応じたウェット処理を基板Wに対して行う。複数のウェット処理ユニット20には、塗布ユニット20A、ベベルユニット20Bおよび洗浄ユニット20Cが含まれる。
<Overview of wet processing unit 20>
The wet processing unit 20 supplies various processing liquids to the substrate W, and performs wet processing on the substrate W according to each processing liquid. The plurality of wet processing units 20 include a coating unit 20A, a bevel unit 20B, and a cleaning unit 20C.
 塗布ユニット20Aは、基板Wのデバイス面Waの全面に塗膜F2を形成させる塗布処理を行う(図6(a)も参照)。具体的には、塗布ユニット20Aは基板Wのデバイス面Waの全面に塗布液を塗布し、該塗布液をある程度乾燥させて塗膜F2を形成する。 The coating unit 20A performs a coating process to form a coating film F2 on the entire device surface Wa of the substrate W (see also FIG. 6(a)). Specifically, the coating unit 20A applies a coating liquid to the entire device surface Wa of the substrate W, and dries the coating liquid to some extent to form the coating film F2.
 図6(a)の例では、塗布ユニット20Aは、基板保持部21Aと、塗布ノズル22Aとを含んでいる。基板保持部21Aは、デバイス面Waを鉛直上方に向けた水平姿勢で基板Wを保持しつつ、該基板Wを回転軸線Q1のまわりで回転させる。ここでいう水平姿勢とは、基板Wの厚み方向が鉛直方向に沿う姿勢である。回転軸線Q1は、基板Wの中心を通り、かつ、鉛直方向に沿う軸線である。なお、基板保持部21Aはスピンチャックとも呼ばれ得る。 In the example of FIG. 6(a), the coating unit 20A includes a substrate holding section 21A and a coating nozzle 22A. The substrate holder 21A holds the substrate W in a horizontal position with the device surface Wa facing vertically upward, and rotates the substrate W around the rotation axis Q1. The horizontal position here is a position in which the thickness direction of the substrate W is along the vertical direction. The rotation axis Q1 is an axis passing through the center of the substrate W and extending in the vertical direction. Note that the substrate holding section 21A may also be called a spin chuck.
 塗布ノズル22Aは、基板保持部21Aによって保持された基板Wよりも鉛直上方に設けられている。塗布ノズル22Aは、塗膜F2の材料を含む塗布液を基板Wのデバイス面Waの中央部に向かって所定量だけ吐出する。塗布液は、例えば、SOG(Spin on Glass)である。そして、基板保持部21Aが基板Wを回転軸線Q1のまわりで回転させる。これにより、塗布液が基板Wのデバイス面Waの全面に広がる。基板保持部21Aが基板Wを高速で回転させることにより、塗布液がある程度乾燥し、基板Wのデバイス面Waの全面に塗膜F2が形成される。 The coating nozzle 22A is provided vertically above the substrate W held by the substrate holding section 21A. The coating nozzle 22A discharges a predetermined amount of a coating liquid containing the material of the coating film F2 toward the center of the device surface Wa of the substrate W. The coating liquid is, for example, SOG (Spin on Glass). Then, the substrate holder 21A rotates the substrate W around the rotation axis Q1. As a result, the coating liquid spreads over the entire device surface Wa of the substrate W. When the substrate holder 21A rotates the substrate W at high speed, the coating liquid dries to some extent, and a coating film F2 is formed on the entire device surface Wa of the substrate W.
 塗布処理後の基板Wはセンターロボット32によってドライ処理ユニット10に搬送され、ドライ処理ユニット10の熱処理ユニット10Aによって熱処理を受ける。これにより、基板W上の塗膜F2が乾燥し、デバイス面Waの全面に保護膜F1を形成することができる。保護膜F1は、例えば、SOG膜(後述)である。熱処理ユニット10Aはベークユニットとも呼ばれ得る。該基板Wは室内搬送ユニット10Cによって冷却ユニット10Bに搬送され、冷却ユニット10Bによって冷却される。これにより、基板Wの温度を速やかに低下させることができる。 The substrate W after the coating process is transported to the dry processing unit 10 by the center robot 32, and is subjected to heat treatment by the heat treatment unit 10A of the dry processing unit 10. Thereby, the coating film F2 on the substrate W is dried, and the protective film F1 can be formed over the entire device surface Wa. The protective film F1 is, for example, an SOG film (described later). The heat treatment unit 10A may also be called a bake unit. The substrate W is transported to the cooling unit 10B by the indoor transport unit 10C, and is cooled by the cooling unit 10B. Thereby, the temperature of the substrate W can be lowered quickly.
 ベベルユニット20Bは、保護膜F1の周縁部(以下、保護周縁部VF1と呼ぶ)を除去する保護ベベル処理を、基板Wに対して行う(図6(b)も参照)。より具体的には、ベベルユニット20Bは保護周縁部VF1に第1処理液を供給する。第1処理液は、保護膜F1を除去することができる薬液であり、以下では、膜除去液とも呼ぶ。膜除去液は、例えば、フッ酸である。この保護ベベル処理により、保護周縁部VF1を除去してその下層の周縁領域Wa1を露出させることができる。つまり、保護ベベル処理により、基板Wのデバイス面Waの中央領域Wa2は保護膜F1によって覆われつつも、周縁領域Wa1が露出する。 The bevel unit 20B performs a protective bevel process on the substrate W to remove the peripheral edge of the protective film F1 (hereinafter referred to as protective peripheral edge VF1) (see also FIG. 6(b)). More specifically, the bevel unit 20B supplies the first processing liquid to the protective peripheral portion VF1. The first treatment liquid is a chemical liquid that can remove the protective film F1, and hereinafter also referred to as a film removal liquid. The membrane removing liquid is, for example, hydrofluoric acid. This protective bevel process allows the protective peripheral portion VF1 to be removed and the underlying peripheral region Wa1 to be exposed. That is, by the protective bevel treatment, the central region Wa2 of the device surface Wa of the substrate W is covered with the protective film F1, while the peripheral region Wa1 is exposed.
 図6(b)の例では、ベベルユニット20Bは、基板保持部21Bと、ベベルノズル22B(第1ノズルに相当)とを含んでいる。基板保持部21Bは基板Wを水平姿勢で保持しつつ、回転軸線Q1のまわりで基板Wを回転させる。この基板保持部21Bもスピンチャックと呼ばれ得る。 In the example of FIG. 6(b), the bevel unit 20B includes a substrate holding section 21B and a bevel nozzle 22B (corresponding to the first nozzle). The substrate holder 21B holds the substrate W in a horizontal position and rotates the substrate W around the rotation axis Q1. This substrate holding section 21B may also be called a spin chuck.
 ベベルノズル22Bは、基板保持部21Bによって保持された基板Wよりも鉛直上方に設けられる。図6(b)に示されるように、ベベルノズル22Bは、基板Wの周縁側の部分と鉛直方向で対向する位置において、回転中の基板Wの保護周縁部VF1に向かって膜除去液を吐出する。膜除去液は保護膜F1の上面の着液位置P1で着液し、基板Wの遠心力を受けて径方向外側に向かって流れ、基板Wの周縁から飛散する。このとき、膜除去液は、着液位置P1を通る円を内周縁とする保護周縁部VF1に作用し、保護周縁部VF1を除去する。このため、保護周縁部VF1よりも下層のデバイス面Waの周縁領域Wa1が露出する。つまり、デバイス面Waの中央領域Wa2は保護膜F1によって覆われつつも、デバイス面Waの周縁領域Wa1が露出する。 The bevel nozzle 22B is provided vertically above the substrate W held by the substrate holding section 21B. As shown in FIG. 6(b), the bevel nozzle 22B discharges the film removal liquid toward the protective peripheral portion VF1 of the rotating substrate W at a position vertically facing the peripheral portion of the substrate W. . The film removal liquid lands on the top surface of the protective film F1 at a landing position P1, flows radially outward under the centrifugal force of the substrate W, and scatters from the periphery of the substrate W. At this time, the film removing liquid acts on the protective peripheral edge VF1 whose inner peripheral edge is a circle passing through the liquid landing position P1, and removes the protective peripheral edge VF1. Therefore, the peripheral region Wa1 of the device surface Wa that is lower than the protective peripheral portion VF1 is exposed. That is, while the central region Wa2 of the device surface Wa is covered by the protective film F1, the peripheral region Wa1 of the device surface Wa is exposed.
 このベベルノズル22Bの吐出口22bの開口面積は小さい。そして、膜除去液の粘度は小さく、保護ベベル処理において、膜除去液の流量も小さく設定される。このため、ベベルノズル22Bから吐出した膜除去液を、より高い精度で保護膜F1上の目標着液位置に着液させることができる。つまり、着液位置P1と目標着液位置との差を小さくすることができる。したがって、ベベルユニット20Bは、より高い位置精度で保護周縁部VF1を除去することができる。 The opening area of the discharge port 22b of this bevel nozzle 22B is small. The viscosity of the membrane removal liquid is low, and the flow rate of the membrane removal liquid is also set low in the protective bevel process. Therefore, the film removal liquid discharged from the bevel nozzle 22B can be made to land on the target liquid landing position on the protective film F1 with higher accuracy. In other words, the difference between the liquid landing position P1 and the target liquid landing position can be reduced. Therefore, the bevel unit 20B can remove the protective peripheral portion VF1 with higher positional accuracy.
 洗浄ユニット20Cは保護ベベル処理後の基板Wに対して、基板周縁部VW1を処理する基板ベベル処理を行う(図6(c)も参照)。具体的には、洗浄ユニット20Cは第2処理液を基板Wの基板周縁部VW1に供給する。第2処理液は、保護膜F1をほとんど除去できず、かつ、基板周縁部VW1を処理することができる薬液である。ここでは、第2処理液は基板周縁部VW1の異物M1を除去する。よって、以下では、第2処理液を異物除去液とも呼ぶ。異物除去液は、例えば、硫酸および過酸化水素水の混合液(SPM)である。この基板ベベル処理は、基板周縁部VW1を実質的に洗浄していることから、洗浄処理とも呼ばれ得る。 The cleaning unit 20C performs a substrate bevel process on the substrate W after the protective bevel process to process the substrate peripheral edge VW1 (see also FIG. 6(c)). Specifically, the cleaning unit 20C supplies the second processing liquid to the substrate peripheral portion VW1 of the substrate W. The second treatment liquid is a chemical liquid that can hardly remove the protective film F1 and can treat the peripheral edge portion VW1 of the substrate. Here, the second treatment liquid removes the foreign matter M1 on the substrate peripheral edge VW1. Therefore, hereinafter, the second treatment liquid will also be referred to as a foreign matter removal liquid. The foreign matter removing liquid is, for example, a mixed solution of sulfuric acid and hydrogen peroxide (SPM). This substrate bevel processing can also be referred to as a cleaning process because it substantially cleans the peripheral edge portion VW1 of the substrate.
 洗浄ユニット20Cは基板ベベル処理後の基板Wに対して、保護膜F1を除去する保護膜除去処理も行う(図6(d)も参照)。具体的には、洗浄ユニット20Cは膜除去液を基板Wの保護膜F1に供給する。これにより、保護膜F1を除去することができる。 The cleaning unit 20C also performs a protective film removal process to remove the protective film F1 on the substrate W after the substrate bevel process (see also FIG. 6(d)). Specifically, the cleaning unit 20C supplies the film removal liquid to the protective film F1 of the substrate W. Thereby, the protective film F1 can be removed.
 図6(c)および図6(d)の例では、洗浄ユニット20Cは、基板保持部21Cと、洗浄ノズル22C(第2ノズルに相当)とを含んでいる。基板保持部21Cは、基板Wを水平姿勢で保持して、回転軸線Q1のまわりで基板Wを回転させる。この基板保持部21Cもスピンチャックと呼ばれ得る。 In the examples of FIGS. 6(c) and 6(d), the cleaning unit 20C includes a substrate holding section 21C and a cleaning nozzle 22C (corresponding to a second nozzle). The substrate holder 21C holds the substrate W in a horizontal position and rotates the substrate W around the rotation axis Q1. This substrate holding section 21C may also be called a spin chuck.
 洗浄ノズル22Cは、基板保持部21Cによって保持された基板Wよりも鉛直上方に設けられる。洗浄ノズル22Cは、ベベルノズル22Bの吐出口22bよりも大きな吐出口22cを有しており、異物除去液および膜除去液を含む各種の処理液を選択的に吐出することができる。例えば、洗浄ノズル22Cは、基板Wの中央部と鉛直方向で対向する位置において、回転中の基板Wの保護膜F1に向かって異物除去液を吐出する。基板Wの保護膜F1の上面に着液した異物除去液は、基板Wの回転に伴う遠心力を受けて、保護膜F1の上面を径方向外側に流れ、続けて、基板Wの基板周縁部VW1を流れる。これにより、基板周縁部VW1の異物M1を除去することができる。 The cleaning nozzle 22C is provided vertically above the substrate W held by the substrate holding section 21C. The cleaning nozzle 22C has a discharge port 22c larger than the discharge port 22b of the bevel nozzle 22B, and can selectively discharge various processing liquids including a foreign matter removing liquid and a film removing liquid. For example, the cleaning nozzle 22C discharges a foreign matter removing liquid toward the protective film F1 of the rotating substrate W at a position vertically facing the center of the substrate W. The foreign matter removal liquid that has landed on the upper surface of the protective film F1 of the substrate W flows radially outward on the upper surface of the protective film F1 under the centrifugal force accompanying the rotation of the substrate W, and continues to flow outward in the radial direction on the upper surface of the protective film F1. It flows through VW1. Thereby, the foreign matter M1 on the substrate peripheral portion VW1 can be removed.
 また、洗浄ノズル22Cは、基板ベベル処理後において、回転中の基板Wの保護膜F1に向かって膜除去液を吐出する。基板Wの保護膜F1の上面に着液した膜除去液は、基板Wの回転に伴う遠心力を受けて、保護膜F1の上面を径方向外側に流れる。これにより、保護膜F1を除去することができる。 In addition, the cleaning nozzle 22C discharges a film removal liquid toward the protective film F1 of the rotating substrate W after the substrate beveling process. The film removal liquid that has landed on the upper surface of the protective film F1 of the substrate W receives centrifugal force due to the rotation of the substrate W, and flows radially outward on the upper surface of the protective film F1. Thereby, the protective film F1 can be removed.
 <制御部90>
 制御部90は基板処理装置100を統括的に制御する。具体的には、制御部90は、インデクサロボット112、ドライ処理ユニット10、ウェット処理ユニット20および搬送ユニット30を制御する。
<Control unit 90>
The control unit 90 controls the substrate processing apparatus 100 in an integrated manner. Specifically, the control unit 90 controls the indexer robot 112, the dry processing unit 10, the wet processing unit 20, and the transport unit 30.
 図4は、制御部90の内部構成の一例を概略的に示す機能ブロック図である。制御部90は電子回路であって、例えばデータ処理部91および記憶部92を有している。図3の具体例では、データ処理部91と記憶部92とはバス93を介して相互に接続されている。データ処理部91は例えばCPU(Central Processor Unit)などの演算処理装置であってもよい。記憶部92は非一時的な記憶部(例えばROM(Read Only Memory)またはハードディスク)921および一時的な記憶部(例えばRAM(Random Access Memory))922を有していてもよい。非一時的な記憶部921には、例えば制御部90が実行する処理を規定するプログラムが記憶されていてもよい。データ処理部91がこのプログラムを実行することにより、制御部90が、プログラムに規定された処理を実行することができる。もちろん、制御部90が実行する処理の一部または全部が専用の論理回路などのハードウェアによって実行されてもよい。 FIG. 4 is a functional block diagram schematically showing an example of the internal configuration of the control unit 90. The control section 90 is an electronic circuit, and includes, for example, a data processing section 91 and a storage section 92. In the specific example of FIG. 3, the data processing section 91 and the storage section 92 are interconnected via a bus 93. The data processing unit 91 may be, for example, an arithmetic processing device such as a CPU (Central Processor Unit). The storage unit 92 may include a non-temporary storage unit (for example, a ROM (Read Only Memory) or a hard disk) 921 and a temporary storage unit (for example, a RAM (Random Access Memory)) 922. The non-temporary storage unit 921 may store, for example, a program that defines the processing that the control unit 90 executes. When the data processing section 91 executes this program, the control section 90 can execute the processing specified in the program. Of course, part or all of the processing executed by the control unit 90 may be executed by hardware such as a dedicated logic circuit.
 <基板処理装置100の動作の概要>
 図5は、基板処理装置100が実行する基板処理方法の一例を示すフローチャートである。図6は、各工程における基板Wの様子の一例を概略的に示す図である。以下では、基板処理装置100の動作の概要を説明し、その後、各処理ユニットの具体的な構成および具体的な動作の一例について述べる。
<Overview of operation of substrate processing apparatus 100>
FIG. 5 is a flowchart illustrating an example of a substrate processing method executed by the substrate processing apparatus 100. FIG. 6 is a diagram schematically showing an example of the state of the substrate W in each step. An overview of the operation of the substrate processing apparatus 100 will be described below, and then an example of the specific configuration and specific operation of each processing unit will be described.
 まず、基板処理装置100は、基板Wのデバイス面Waの全面に保護膜F1を形成する保護膜形成処理を行う(ステップS1:保護膜形成工程)。図6(a)は、保護膜F1が形成されるときの基板Wの様子を示している。保護膜F1は、基板Wのデバイス面Waのうち特に中央領域Wa2を異物除去液から保護するための膜である。保護膜F1は、例えば、SOG(Spin on Glass)膜である。SOG膜は、シロキサンを含むガラス質の膜であり、例えば、シロキサンおよび有機基を含む。SOG膜は、例えば、シリカガラス、アルキルシロキサンポリマー、アルキルシルセスキオキサンポリマー、水素化シルセスキオキサンポリマー、または、水素化アルキルシルセスキオキサンポリマーであってもよい。 First, the substrate processing apparatus 100 performs a protective film forming process to form a protective film F1 over the entire device surface Wa of the substrate W (step S1: protective film forming step). FIG. 6(a) shows the state of the substrate W when the protective film F1 is formed. The protective film F1 is a film for protecting particularly the central region Wa2 of the device surface Wa of the substrate W from the foreign matter removal liquid. The protective film F1 is, for example, an SOG (Spin on Glass) film. The SOG film is a glassy film containing siloxane, for example, siloxane and an organic group. The SOG film may be, for example, silica glass, an alkylsiloxane polymer, an alkylsilsesquioxane polymer, a hydrogenated silsesquioxane polymer, or a hydrogenated alkylsilsesquioxane polymer.
 基板処理装置100は塗布ユニット20Aによる塗布処理およびドライ処理ユニット10による熱処理を基板Wに対して順次に行って、保護膜形成処理を行う。具体的には、まず、塗布ノズル22Aは塗膜F2の材料を含む塗布液(例えばSOG)を基板Wのデバイス面Waの上面部に向かって所定量だけ吐出し、基板保持部21Aが基板Wを回転軸線Q1のまわりで回転させる。これにより、塗布液が基板Wのデバイス面Waの全面に広がる。そして、基板保持部21Aが基板Wをより高速で回転させることにより、塗布液がある程度乾燥し、基板Wのデバイス面Waの全面に塗膜F2が形成される。 The substrate processing apparatus 100 sequentially performs a coating process by the coating unit 20A and a heat treatment by the dry processing unit 10 on the substrate W to perform a protective film forming process. Specifically, first, the coating nozzle 22A discharges a predetermined amount of a coating liquid (for example, SOG) containing the material of the coating film F2 toward the upper surface of the device surface Wa of the substrate W, and the substrate holder 21A is rotated around the rotation axis Q1. As a result, the coating liquid spreads over the entire device surface Wa of the substrate W. Then, the substrate holder 21A rotates the substrate W at a higher speed, so that the coating liquid dries to some extent, and a coating film F2 is formed on the entire device surface Wa of the substrate W.
 センターロボット32は塗布ユニット20Aから塗布処理済みの基板Wを搬出し、ドライ処理ユニット10の熱処理ユニット10Aに搬入する。熱処理ユニット10Aは基板Wを加熱してデバイス面Wa上の塗膜F2を乾燥させることで、保護膜F1を形成する。加熱後の基板Wは室内搬送ユニット10Cによって冷却ユニット10Bに搬送され、冷却ユニット10Bによって冷却される。冷却後の基板Wは熱処理ユニット10Aを経由してセンターロボット32に渡される。センターロボット32は、保護膜F1が形成された基板Wをベベルユニット20Bに搬送する。 The center robot 32 carries out the coated substrate W from the coating unit 20A and carries it into the heat treatment unit 10A of the dry processing unit 10. The heat treatment unit 10A forms the protective film F1 by heating the substrate W and drying the coating film F2 on the device surface Wa. The heated substrate W is transported to the cooling unit 10B by the indoor transport unit 10C, and is cooled by the cooling unit 10B. The cooled substrate W is transferred to the central robot 32 via the heat treatment unit 10A. The center robot 32 transports the substrate W on which the protective film F1 is formed to the bevel unit 20B.
 ベベルユニット20Bは保護ベベル処理を基板Wに対して行う(ステップS2:保護ベベル工程)。図6(b)は、保護周縁部VF1を除去するときの基板Wの様子を示している。ベベルノズル22Bは回転中の基板Wの保護周縁部VF1に向かって膜除去液を吐出する。膜除去液は保護膜F1の上面の着液位置P1で着液し、保護膜F1の上面を径方向外側に向かって流れ、基板Wの周縁から飛散する。このとき、膜除去液は保護周縁部VF1に作用し、保護周縁部VF1を除去する。 The bevel unit 20B performs a protective bevel process on the substrate W (step S2: protective bevel process). FIG. 6(b) shows the state of the substrate W when the protective peripheral portion VF1 is removed. The bevel nozzle 22B discharges the film removal liquid toward the protective peripheral edge VF1 of the rotating substrate W. The film removal liquid lands on the top surface of the protective film F1 at a landing position P1, flows radially outward on the top surface of the protective film F1, and scatters from the periphery of the substrate W. At this time, the film removing liquid acts on the protective peripheral edge portion VF1 and removes the protective peripheral edge portion VF1.
 このベベルノズル22Bの吐出口22bの開口面積は小さい。そして、膜除去液の粘度は小さく、保護ベベル処理において、膜除去液の流量も小さく設定される。このため、ベベルノズル22Bから吐出した膜除去液を、より高い精度で保護膜F1上の目標着液位置に着液させることができる。 The opening area of the discharge port 22b of this bevel nozzle 22B is small. The viscosity of the membrane removal liquid is low, and the flow rate of the membrane removal liquid is also set low in the protective bevel process. Therefore, the film removal liquid discharged from the bevel nozzle 22B can be made to land on the target liquid landing position on the protective film F1 with higher accuracy.
 ここで、着液位置P1が目標着液位置から大きくずれた場合について説明する。着液位置P1が目標着液位置から回転軸線Q1側(つまり、径方向内側)にずれると、保護膜F1がより内側まで除去される。このため、基板Wの中央領域Wa2のうちの外周領域が露出してしまう。したがって、保護膜F1は中央領域Wa2の外周領域を保護できなくなる。また、着液位置P1が目標着液位置から径方向外側にずれると、除去される保護膜F1の幅が狭くなり、その結果、デバイス面Waの周縁領域Wa1のうち内周領域が露出しない。このため、基板Wの周縁領域Wa1のうち内周領域に付着した除去対象の異物M1が保護膜F1によって覆われてしまう。 Here, a case where the liquid landing position P1 deviates significantly from the target liquid landing position will be described. When the liquid landing position P1 shifts from the target liquid landing position to the rotation axis Q1 side (that is, radially inward), the protective film F1 is removed further inside. Therefore, the outer peripheral area of the central area Wa2 of the substrate W is exposed. Therefore, the protective film F1 cannot protect the outer peripheral area of the central area Wa2. Furthermore, when the liquid landing position P1 shifts radially outward from the target liquid landing position, the width of the protective film F1 to be removed becomes narrower, and as a result, the inner peripheral area of the peripheral area Wa1 of the device surface Wa is not exposed. Therefore, the foreign matter M1 to be removed that has adhered to the inner peripheral region of the peripheral region Wa1 of the substrate W is covered by the protective film F1.
 これに対して、本実施の形態では、より高い位置精度で膜除去液を着液位置P1に着液させることができるので、デバイス面Waの中央領域Wa2を適切に保護膜F1で保護しつつ、周縁領域Wa1を適切に露出させることができる。言い換えれば、周縁領域Wa1に付着した異物M1を適切に露出させることができる。膜除去液の着液位置P1についての要求位置精度は、例えば、数百μm程度以下である。このため、ベベルノズル22Bの吐出口22bの開口面積をより小さくして、粘度の低い膜除去液をピンポイントで目標着液位置に着液させることが望ましい。 In contrast, in the present embodiment, the film removal liquid can be applied to the liquid application position P1 with higher positional accuracy, so that the central area Wa2 of the device surface Wa can be appropriately protected by the protective film F1. , the peripheral area Wa1 can be appropriately exposed. In other words, the foreign matter M1 attached to the peripheral area Wa1 can be appropriately exposed. The required positional accuracy for the landing position P1 of the film removal liquid is, for example, about several hundred μm or less. For this reason, it is desirable to make the opening area of the discharge port 22b of the bevel nozzle 22B smaller so that the film removal liquid with low viscosity can pinpoint the target liquid landing position.
 保護膜F1としてSOG膜が採用されるので、膜除去液として、フッ素(F)を含む酸性薬液を採用するとよい。例えば膜除去液には、フッ酸(HF)を含む薬液、より具体的な一例としてフッ酸そのものを採用することができる。フッ酸の粘度は低いので、ベベルノズル22Bからの吐出に適している。 Since an SOG film is used as the protective film F1, it is preferable to use an acidic chemical solution containing fluorine (F) as the film removal liquid. For example, a chemical solution containing hydrofluoric acid (HF), and as a more specific example, hydrofluoric acid itself can be used as the membrane removal liquid. Since hydrofluoric acid has a low viscosity, it is suitable for being discharged from the bevel nozzle 22B.
 このフッ酸がSOG膜に作用すると、以下の化学反応によってSOG膜が除去される。 When this hydrofluoric acid acts on the SOG film, the SOG film is removed by the following chemical reaction.
 ・・・Si-O-Si・・・+H→・・・Si-OH・・・ (1)
 ・・・Si-OH+HF→・・・SiF+2HF→HSiF(aq) (2)
 つまり、SOG膜に含まれるシロキサン(SiO)が、フッ酸に含まれる水素(H)イオンと反応して、シラノール(SiOH)に変化し、このシラノールがフッ酸(HF)と反応して、液体のヘキサフルオロケイ酸(HSiF)に変化する。このような化学変化によって、SOG膜がフッ酸により除去される。
...Si-O-Si...+H + →...Si-OH... (1)
...Si-OH+HF→...SiF 4 +2HF→H 2 SiF 6 (aq) (2)
In other words, siloxane (Si 2 O) contained in the SOG film reacts with hydrogen (H) ions contained in hydrofluoric acid and changes to silanol (SiOH), and this silanol reacts with hydrofluoric acid (HF). , changes to liquid hexafluorosilicic acid (H 2 SiF 6 ). Due to such a chemical change, the SOG film is removed by hydrofluoric acid.
 保護周縁部VF1を除去した後に、ベベルユニット20Bは、基板W上の膜除去液をリンス液で基板Wから流し去るリンス処理、および、基板Wを乾燥させる乾燥処理をこの順で行う。これらの処理については後に詳述する。 After removing the protective peripheral portion VF1, the bevel unit 20B performs a rinsing process to remove the film removal liquid on the substrate W from the substrate W with a rinsing liquid, and a drying process to dry the substrate W in this order. These processes will be detailed later.
 次に、センターロボット32は処理済みの基板Wをベベルユニット20Bから搬出し、該基板Wを洗浄ユニット20Cに搬入する。 Next, the center robot 32 carries out the processed substrate W from the bevel unit 20B, and carries the substrate W into the cleaning unit 20C.
 洗浄ユニット20Cは基板ベベル処理を基板Wに対して行う(ステップS3:基板ベベル工程)。図6(c)は、基板周縁部VW1上の異物M1を除去するときの基板Wの様子を示している。基板保持部21Cは、主面の周縁部が保護膜F1で覆われておらず、かつ、該主面のうち内側領域が保護膜F1で覆われた基板Wを水平姿勢で保持しつつ、基板Wを回転させる。洗浄ノズル22Cは異物除去液(SPM)を基板Wに向けて吐出して、基板周縁部VW1上の残渣または残膜を異物除去液により除去する。具体的には、洗浄ノズル22Cは回転中の基板Wの保護膜F1の上面に向かって異物除去液を吐出し、保護膜F1に着液した異物除去液を、基板Wの回転により、保護膜F1から基板周縁部VW1に向かって流す。これにより、保護膜F1を維持したまま、基板周縁部VW1に付着した異物M1が除去される。異物除去液は、例えば、フッ素を含まない酸性薬液である。異物除去液には、例えば、フッ素を含まず、硫酸を含む薬液を採用することができ、より具体的には、高温のSPM(硫酸および過酸化水素水の混合液)を採用できる。SPMの温度は、例えば、数百度程度である。 The cleaning unit 20C performs substrate bevel processing on the substrate W (step S3: substrate bevel process). FIG. 6(c) shows the state of the substrate W when the foreign matter M1 on the substrate peripheral portion VW1 is removed. The substrate holding section 21C holds the substrate W in a horizontal position, the peripheral edge of the main surface of which is not covered with the protective film F1, and the inner region of the main surface is covered with the protective film F1, while holding the substrate W in a horizontal position. Rotate W. The cleaning nozzle 22C discharges a foreign matter removing liquid (SPM) toward the substrate W, and removes the residue or remaining film on the substrate peripheral portion VW1 with the foreign matter removing liquid. Specifically, the cleaning nozzle 22C discharges a foreign matter removal liquid toward the upper surface of the protective film F1 of the rotating substrate W, and the foreign matter removal liquid that has landed on the protective film F1 is removed from the protective film by the rotation of the substrate W. It flows from F1 toward the substrate peripheral edge VW1. As a result, the foreign matter M1 attached to the peripheral edge portion VW1 of the substrate is removed while maintaining the protective film F1. The foreign matter removal liquid is, for example, an acidic chemical liquid that does not contain fluorine. For example, a chemical solution that does not contain fluorine and contains sulfuric acid can be used as the foreign matter removal liquid, and more specifically, high temperature SPM (a mixed solution of sulfuric acid and hydrogen peroxide solution) can be used. The temperature of the SPM is, for example, about several hundred degrees.
 異物除去液が、フッ素を含まない酸性薬液である場合、SOG膜に対して式(1)で示された化学反応は生じるものの、式(2)で示された化学反応が生じないので、SOG膜は除去されない。つまり、保護膜F1は除去されない。一方、酸性薬液により、異物M1を除去することができる。具体的には、高温のSPMによって、レジストの残膜、アモルファスカーボンおよび合金(ニッケルと白金の合金)などの異物M1を除去することができる。 When the foreign matter removal solution is an acidic chemical solution that does not contain fluorine, the chemical reaction shown in equation (1) occurs on the SOG film, but the chemical reaction shown in equation (2) does not occur, so the SOG No membrane is removed. In other words, the protective film F1 is not removed. On the other hand, the foreign matter M1 can be removed using the acidic chemical solution. Specifically, foreign matter M1 such as a residual film of resist, amorphous carbon, and an alloy (an alloy of nickel and platinum) can be removed by high-temperature SPM.
 また、ここでは、洗浄ノズル22Cの吐出口22cの開口面積はベベルノズル22Bの吐出口22bの開口面積よりも大きい。このため、粘度の高い硫酸を含む薬液(SPM)でも洗浄ノズル22Cの吐出口22cから吐出させやすい。なお、上述の例では、洗浄ノズル22Cは、基板Wの基板周縁部VW1よりも径方向内側の領域内の着液位置(具体的な位置として中央部)に向かって、膜除去液を吐出する。このため、洗浄ノズル22Cは、ベベルノズル22Bの名称と対比させて、中央ノズルと呼ぶこともできる。 Further, here, the opening area of the discharge port 22c of the cleaning nozzle 22C is larger than the opening area of the discharge port 22b of the bevel nozzle 22B. Therefore, even a chemical liquid (SPM) containing high viscosity sulfuric acid can be easily discharged from the discharge port 22c of the cleaning nozzle 22C. In the above example, the cleaning nozzle 22C discharges the film removal liquid toward the liquid landing position (specifically, the central part) in a region radially inner than the substrate peripheral edge VW1 of the substrate W. . Therefore, the cleaning nozzle 22C can also be called a center nozzle, in contrast to the name of the bevel nozzle 22B.
 異物M1を除去した後に、洗浄ユニット20Cは、基板W上の異物除去液をリンス液で流し去るリンス処理を行う。リンス処理については後に詳述する。 After removing the foreign matter M1, the cleaning unit 20C performs a rinsing process to wash away the foreign matter removal liquid on the substrate W with a rinsing liquid. The rinsing process will be detailed later.
 次に、洗浄ユニット20Cは保護膜除去処理を基板Wに対して行う(ステップS4:保護膜除去工程)。図6(d)は、保護膜F1を除去するときの基板Wの様子を示している。洗浄ノズル22Cは回転中の基板Wの中央部に向かって膜除去液(例えばフッ酸)を吐出する。膜除去液は保護膜F1の上面の中央部に着液し、基板Wの回転に伴う遠心力を受けて径方向外側に広がる。これにより、膜除去液が基板W上の保護膜F1の全面に作用し、保護膜F1を除去する。 Next, the cleaning unit 20C performs a protective film removal process on the substrate W (step S4: protective film removal process). FIG. 6(d) shows the state of the substrate W when the protective film F1 is removed. The cleaning nozzle 22C discharges a film removing liquid (for example, hydrofluoric acid) toward the center of the rotating substrate W. The film removal liquid lands on the center of the upper surface of the protective film F1, and spreads outward in the radial direction under the centrifugal force caused by the rotation of the substrate W. As a result, the film removal liquid acts on the entire surface of the protective film F1 on the substrate W, and removes the protective film F1.
 保護膜F1を除去した後に、洗浄ユニット20Cは、基板W上の膜除去液をリンス液で押し流すリンス処理、および、基板Wを乾燥させる乾燥処理をこの順に行う。これらの処理については後に詳述する。 After removing the protective film F1, the cleaning unit 20C performs a rinsing process in which the film removal liquid on the substrate W is washed away with a rinsing liquid, and a drying process in which the substrate W is dried, in this order. These processes will be detailed later.
 以上のように、本基板処理方法によれば、保護ベベル処理(ステップS2)において、ベベルノズル22Bの狭い吐出口22bから粘度の低い膜除去液(例えばフッ酸)を吐出して保護膜F1の保護周縁部VF1を高い位置精度で除去する。このため、より高い位置精度で、基板周縁部VW1を露出させることができる。逆に言えば、保護膜F1はより高い位置精度で、基板Wの中央領域Wa2を保護することができる。 As described above, according to the present substrate processing method, in the protective bevel treatment (step S2), a low viscosity film removal liquid (for example, hydrofluoric acid) is discharged from the narrow discharge port 22b of the bevel nozzle 22B to protect the protective film F1. To remove a peripheral portion VF1 with high positional accuracy. Therefore, the substrate peripheral portion VW1 can be exposed with higher positional accuracy. Conversely, the protective film F1 can protect the central region Wa2 of the substrate W with higher positional accuracy.
 そして、その後の基板ベベル処理(ステップS3)において、基板Wの中央領域Wa2を保護膜F1で保護しつつ、露出した基板周縁部VW1に、洗浄ノズル22Cの吐出口22cから異物除去液(SPM)を供給する(ステップS4)。基板ベベル処理においては、保護膜F1が高い位置精度で中央領域Wa2を保護しているので、異物除去液の着液位置が多少ばらついたとしても、異物除去液は中央領域Wa2に作用できない。そして、異物除去液の着液位置が多少ばらついたとしても、異物除去液が保護膜F1の上面から基板周縁部VW1へ流れさえすれば、基板周縁部VW1の異物M1を適切に除去することができる。 Then, in the subsequent substrate bevel processing (step S3), while protecting the central region Wa2 of the substrate W with the protective film F1, a foreign matter removal liquid (SPM) is applied to the exposed substrate peripheral portion VW1 from the discharge port 22c of the cleaning nozzle 22C. is supplied (step S4). In the substrate bevel process, the protective film F1 protects the central area Wa2 with high positional accuracy, so even if the position where the foreign matter removing liquid lands varies somewhat, the foreign matter removing liquid cannot act on the central area Wa2. Even if the landing position of the foreign matter removing liquid varies to some extent, as long as the foreign matter removing liquid flows from the upper surface of the protective film F1 to the substrate peripheral edge VW1, the foreign matter M1 on the substrate peripheral edge VW1 can be appropriately removed. can.
 よって、たとえ、異物除去液の粘度が高い場合であっても、高い位置精度で基板周縁部VW1の異物M1を除去することができる。また、洗浄ノズル22Cの吐出口22cの開口面積がベベルノズル22Bの吐出口22bの開口面積よりも大きいので、粘度が高い異物除去液をより低い圧力で吐出することができ、異物除去液の基板Wへの供給が容易である。 Therefore, even if the foreign matter removing liquid has a high viscosity, the foreign matter M1 on the substrate peripheral edge VW1 can be removed with high positional accuracy. Further, since the opening area of the discharge port 22c of the cleaning nozzle 22C is larger than the opening area of the discharge port 22b of the bevel nozzle 22B, the foreign matter removal liquid with high viscosity can be discharged at a lower pressure, and the foreign matter removal liquid can be applied to the substrate W. Easy to supply.
 以上のように、本実施の形態では、基板ベベル処理(ステップS3)において、基板Wのデバイス面Waの内側領域を保護膜F1(SOG膜)で覆いつつ、基板周縁部VW1上の、硬化層を含むレジスト残膜、アモルファスカーボンまたはNiPt合金に例示される除去困難な異物M1を、SPMによって除去することができる。このSOG膜はSPMによってほとんど除去されないので、デバイス面Waの内側領域をSPMから適切に保護しつつ、異物M1を適切に除去することができる。 As described above, in the present embodiment, in the substrate bevel processing (step S3), while covering the inner region of the device surface Wa of the substrate W with the protective film F1 (SOG film), It is possible to remove foreign matter M1 that is difficult to remove, such as a residual resist film containing a resist film, amorphous carbon, or a NiPt alloy, by SPM. Since this SOG film is hardly removed by SPM, the foreign matter M1 can be appropriately removed while appropriately protecting the inner region of the device surface Wa from SPM.
 しかも、上述の例では、保護膜除去処理(ステップS4)において、フッ酸を含む薬液により、SOG膜である保護膜F1を除去している。フッ酸は基板Wへあまりダメージを与えないので、保護膜F1の除去に適している。言い換えれば、基板周縁部VW1へのダメージを抑制しつつ、適切に保護膜F1を除去することができる。 Furthermore, in the above example, in the protective film removal process (step S4), the protective film F1, which is the SOG film, is removed using a chemical solution containing hydrofluoric acid. Since hydrofluoric acid does not cause much damage to the substrate W, it is suitable for removing the protective film F1. In other words, the protective film F1 can be appropriately removed while suppressing damage to the substrate peripheral portion VW1.
 しかも、上述の具体例では、保護膜形成処理(ステップS1)において、保護膜F1をウェット処理によって形成している。このため、安価な塗布ユニット20Aおよび熱処理ユニット10Aを用いて、保護膜F1を形成することができる。 Furthermore, in the specific example described above, the protective film F1 is formed by wet processing in the protective film forming process (step S1). Therefore, the protective film F1 can be formed using the inexpensive coating unit 20A and heat treatment unit 10A.
 また、上述の例では、保護膜除去処理(ステップS4)において、保護膜F1をウェット処理によって除去している。このため、安価な洗浄ユニット20Cを用いて、保護膜F1を除去することができる。 Furthermore, in the above example, in the protective film removal process (step S4), the protective film F1 is removed by wet processing. Therefore, the protective film F1 can be removed using the inexpensive cleaning unit 20C.
 <ベベルノズル22Bの吐出方向>
 図6(b)の例では、ベベルノズル22Bは斜め外方の吐出方向に沿って膜除去液を吐出している。吐出方向は、例えば、ベベルノズル22Bの内部流路FPの形状によって決定される。図6(b)の例では、ベベルノズル22Bの内部流路FPは、鉛直流路FP1と、傾斜流路FP2とを有している。鉛直流路FP1は、傾斜流路FP2よりも上流側の流路であり、鉛直方向に沿って延在している。傾斜流路FP2の上流端は鉛直流路FP1の下流端に接続されており、鉛直下方に向かうにつれて回転軸線Q1から遠ざかるように傾斜している。つまり、傾斜流路FP2は斜め外方に沿って延在している。吐出口22bは傾斜流路FP2の下流端である。このため、ベベルノズル22Bの内部流路FPを流れた膜除去液は吐出口22bから斜め外方に沿って流出する。
<Discharge direction of bevel nozzle 22B>
In the example shown in FIG. 6(b), the bevel nozzle 22B discharges the film removing liquid along the diagonally outward discharge direction. The discharge direction is determined, for example, by the shape of the internal flow path FP of the bevel nozzle 22B. In the example of FIG. 6(b), the internal flow path FP of the bevel nozzle 22B includes a vertical flow path FP1 and an inclined flow path FP2. The vertical flow path FP1 is a flow path on the upstream side of the inclined flow path FP2, and extends along the vertical direction. The upstream end of the inclined flow path FP2 is connected to the downstream end of the vertical flow path FP1, and is inclined so as to move away from the rotation axis Q1 as it goes vertically downward. In other words, the inclined flow path FP2 extends diagonally outward. The discharge port 22b is the downstream end of the inclined flow path FP2. Therefore, the film removing liquid that has flowed through the internal flow path FP of the bevel nozzle 22B flows out obliquely outward from the discharge port 22b.
 膜除去液は斜め外方に沿って吐出されるので、保護ベベル処理(ステップS2)における保護膜F1上の着液位置P1は、保護膜F1の保護周縁部VF1が除去されるにしたがって、径方向外側となる。つまり、保護周縁部VF1が薄くなるにしたがって、膜除去液はより径方向外側の着液位置P1で保護周縁部VF1上に着液する。このため、保護膜F1の端面FS1はその上面から下面に向かうにつれて径方向外側に向かうように傾斜する。 Since the film removal liquid is discharged obliquely outward, the liquid landing position P1 on the protective film F1 in the protective bevel process (step S2) changes in diameter as the protective peripheral edge VF1 of the protective film F1 is removed. The direction is outward. That is, as the protective peripheral edge portion VF1 becomes thinner, the film removal liquid lands on the protective peripheral edge portion VF1 at a more radially outer liquid landing position P1. Therefore, the end surface FS1 of the protective film F1 is inclined radially outward from the upper surface toward the lower surface.
 この場合、続く基板ベベル処理(ステップS3)において、洗浄ユニット20Cは、異物除去液が保護膜F1の上面に着液するように、洗浄ノズル22Cから異物除去液を吐出させるとよい(図6(c)参照)。これによれば、異物除去液は保護膜F1の上面から端面FS1(傾斜面)を経由して基板Wのデバイス面Waの周縁領域Wa1を流れる。よって、異物除去液は端面FS1から滑らかに周縁領域Wa1を流れることができ、端面FS1と周縁領域Wa1との境界にも適切に作用することができる。したがって、異物除去液は該境界においても異物M1を適切に除去することができる。 In this case, in the subsequent substrate bevel process (step S3), the cleaning unit 20C preferably discharges the foreign matter removal liquid from the cleaning nozzle 22C so that the foreign matter removal liquid lands on the upper surface of the protective film F1 (see FIG. 6). c). According to this, the foreign matter removing liquid flows from the upper surface of the protective film F1 to the peripheral area Wa1 of the device surface Wa of the substrate W via the end surface FS1 (sloped surface). Therefore, the foreign matter removing liquid can smoothly flow through the peripheral area Wa1 from the end surface FS1, and can also act appropriately on the boundary between the end surface FS1 and the peripheral area Wa1. Therefore, the foreign matter removing liquid can appropriately remove the foreign matter M1 even at the boundary.
 <バックサイドベベル>
 ところで、保護膜形成処理(ステップS1)において、保護膜F1と同じ成分の物質が基板Wの非デバイス面Wbの周縁領域に付着する可能性もある。例えば、塗布液が基板Wのデバイス面Waから端面を経由して非デバイス面Wbに回り込み、その一部が乾燥すると、非デバイス面Wbに保護膜F1と同じ成分の物質が付着する。
<Backside bevel>
By the way, in the protective film forming process (step S1), there is a possibility that a substance having the same composition as the protective film F1 may adhere to the peripheral region of the non-device surface Wb of the substrate W. For example, when the coating liquid flows from the device surface Wa of the substrate W to the non-device surface Wb via the end surface and partially dries, a substance having the same composition as the protective film F1 adheres to the non-device surface Wb.
 そこで、図6(b)に示されるように、ベベルユニット20Bは、裏面用のベベルノズル26Bを含んでいてもよい。ベベルノズル26Bは、基板保持部21Bによって保持された基板Wよりも鉛直下方に設けられており、鉛直方向において基板Wの非デバイス面Wbと対向する。ベベルノズル26Bは、基板Wの非デバイス面Wbの周縁領域に向かって、膜除去液を吐出する。 Therefore, as shown in FIG. 6(b), the bevel unit 20B may include a bevel nozzle 26B for the back surface. The bevel nozzle 26B is provided vertically below the substrate W held by the substrate holding section 21B, and faces the non-device surface Wb of the substrate W in the vertical direction. The bevel nozzle 26B discharges the film removal liquid toward the peripheral region of the non-device surface Wb of the substrate W.
 この場合、保護ベベル処理(ステップS2)において、ベベルノズル22Bおよびベベルノズル26Bの両方から回転中の基板Wに向かって膜除去液を吐出する。ベベルノズル22Bから吐出された膜除去液は、基板Wの保護膜F1の上面に着液する。この膜除去液は基板Wの回転に伴う遠心力を受けて径方向外側に流れて、基板Wの端面から外側に飛散する。このベベルノズル22Bからの膜除去液は保護膜F1の保護周縁部VF1を除去することができる。 In this case, in the protective bevel process (step S2), the film removal liquid is discharged toward the rotating substrate W from both the bevel nozzle 22B and the bevel nozzle 26B. The film removal liquid discharged from the bevel nozzle 22B lands on the upper surface of the protective film F1 of the substrate W. This film removal liquid flows radially outward under the influence of centrifugal force accompanying the rotation of the substrate W, and is scattered outward from the end surface of the substrate W. The film removing liquid from the bevel nozzle 22B can remove the protective peripheral portion VF1 of the protective film F1.
 一方で、ベベルノズル26Bから吐出された処理液は基板Wの非デバイス面Wbに着液する。この膜除去液は基板Wの回転に伴う遠心力を受けて非デバイス面Wbを径方向外側に流れ、基板Wの端面から外側に飛散する。このベベルノズル26Bからの膜除去液は非デバイス面Wbに付着した保護膜F1と同じ物質を除去することができる。 On the other hand, the processing liquid discharged from the bevel nozzle 26B lands on the non-device surface Wb of the substrate W. This film removal liquid flows radially outward on the non-device surface Wb under the influence of centrifugal force accompanying the rotation of the substrate W, and is scattered outward from the end surface of the substrate W. The film removing liquid from the bevel nozzle 26B can remove the same substance as the protective film F1 attached to the non-device surface Wb.
 <基板処理装置100の具体例>
 以下では、基板処理装置100の各処理ユニットの具体的な構成の一例および具体的な動作の一例について詳述する。
<Specific example of substrate processing apparatus 100>
Below, an example of a specific configuration and an example of a specific operation of each processing unit of the substrate processing apparatus 100 will be described in detail.
 <塗布ユニット20A>
 図7は、塗布ユニット20Aの構成の一例を概略的に示す図である。塗布ユニット20Aは、基板保持部21Aと、塗布ノズル22Aと、ガード23Aとを含んでいる。
<Coating unit 20A>
FIG. 7 is a diagram schematically showing an example of the configuration of the coating unit 20A. The coating unit 20A includes a substrate holding section 21A, a coating nozzle 22A, and a guard 23A.
 基板保持部21Aは基板Wを水平姿勢で保持し、基板Wを回転軸線Q1のまわりで回転させる。図7の例では、基板保持部21Aは、円板状のステージ211Aと、回転機構212Aとを含んでいる。 The substrate holding unit 21A holds the substrate W in a horizontal position and rotates the substrate W around the rotation axis Q1. In the example of FIG. 7, the substrate holding section 21A includes a disk-shaped stage 211A and a rotation mechanism 212A.
 ステージ211Aは、その厚み方向が鉛直方向に沿う姿勢で配置されている。ステージ211Aの上面には、基板Wが載置される。ステージ211Aの直径は基板Wの直径よりも小さいので、ステージ211Aは基板Wの中央部分のみと鉛直方向において対向する。ステージ211Aの上面には不図示の複数の吸引口が形成される。ステージ211Aの内部には、吸引口に連通する不図示の吸引流路が形成されており、該吸引流路の上流端は吸引機構(不図示)に接続される。吸引機構は例えばポンプを含んでおり、吸引流路内のガスを吸引する。これにより、基板Wの非デバイス面Wbがステージ211Aの複数の吸引口に吸引され、基板Wがステージ211Aによって吸着保持される。 The stage 211A is arranged with its thickness direction aligned in the vertical direction. A substrate W is placed on the upper surface of the stage 211A. Since the diameter of the stage 211A is smaller than the diameter of the substrate W, the stage 211A faces only the central portion of the substrate W in the vertical direction. A plurality of suction ports (not shown) are formed on the upper surface of the stage 211A. A suction channel (not shown) communicating with the suction port is formed inside the stage 211A, and the upstream end of the suction channel is connected to a suction mechanism (not shown). The suction mechanism includes, for example, a pump, and suctions the gas in the suction channel. As a result, the non-device surface Wb of the substrate W is attracted to the plurality of suction ports of the stage 211A, and the substrate W is suction-held by the stage 211A.
 回転機構212Aはステージ211Aを回転軸線Q1のまわりで回転させる。図7の例では、回転機構212Aは、シャフト213Aと、モータ214Aとを含んでいる。シャフト213Aの上端はステージ211Aの下面に連結され、回転軸線Q1に沿って延在している。シャフト213Aは例えば中空シャフトであり、シャフト213Aの内部には吸引流路の一部が設けられる。モータ214Aはシャフト213Aを回転軸線Q1のまわりで回転させる。これにより、シャフト213Aに連結されたステージ211A、および、ステージ211Aによって吸着保持された基板Wが、回転軸線Q1のまわりで一体に回転する。 The rotation mechanism 212A rotates the stage 211A around the rotation axis Q1. In the example of FIG. 7, the rotation mechanism 212A includes a shaft 213A and a motor 214A. The upper end of the shaft 213A is connected to the lower surface of the stage 211A and extends along the rotation axis Q1. The shaft 213A is, for example, a hollow shaft, and a part of the suction flow path is provided inside the shaft 213A. Motor 214A rotates shaft 213A around rotation axis Q1. As a result, the stage 211A connected to the shaft 213A and the substrate W held by suction by the stage 211A rotate together around the rotation axis Q1.
 <塗布ノズル22A>
 塗布ノズル22Aは、基板保持部21Aによって保持された基板Wよりも鉛直上方に設けられている。塗布ノズル22Aは供給管221Aの下流端に接続され、供給管221Aの上流端は塗布液供給源223Aに接続されている。このため、塗布液供給源223Aからの塗布液は供給管221Aを通じて塗布ノズル22Aに供給され、塗布ノズル22Aの吐出口22aから吐出される。供給管221Aにはバルブ222Aが設けられている。バルブ222Aの開閉により、塗布ノズル22Aからの塗布液の吐出および吐出停止が切り替えられる。
<Application nozzle 22A>
The coating nozzle 22A is provided vertically above the substrate W held by the substrate holding section 21A. The coating nozzle 22A is connected to the downstream end of the supply pipe 221A, and the upstream end of the supply pipe 221A is connected to the coating liquid supply source 223A. Therefore, the coating liquid from the coating liquid supply source 223A is supplied to the coating nozzle 22A through the supply pipe 221A, and is discharged from the discharge port 22a of the coating nozzle 22A. A valve 222A is provided on the supply pipe 221A. The opening and closing of the valve 222A switches between discharging and stopping the discharging of the coating liquid from the coating nozzle 22A.
 図7の例では、塗布ノズル22Aは、ノズル移動機構25Aによって、塗布位置と塗布待機位置との間で移動可能に設けられている。塗布位置は、塗布ノズル22Aが塗布液を基板Wに向かって吐出するときの位置であり、例えば、基板Wの中央部と鉛直方向において対向する位置である。図7の例では、塗布位置で停止する塗布ノズル22Aが示されている。塗布待機位置は、塗布ノズル22Aが塗布液を基板Wに向かって吐出しないときの位置であり、例えば、基板Wの端面よりも径方向外側の位置である。塗布ノズル22Aが塗布待機位置で停止した状態では、基板Wの搬出入時において、塗布ノズル22Aとセンターロボット32との物理的な衝突を回避することができる。ノズル移動機構25Aは、例えば、ベベルユニット20Bに含まれる後述のノズル移動機構222Bと同様のアーム旋回機構を有する。 In the example of FIG. 7, the coating nozzle 22A is provided movably between the coating position and the coating standby position by a nozzle moving mechanism 25A. The coating position is a position where the coating nozzle 22A discharges the coating liquid toward the substrate W, and is, for example, a position facing the center of the substrate W in the vertical direction. In the example of FIG. 7, the coating nozzle 22A is shown stopping at the coating position. The coating standby position is a position when the coating nozzle 22A does not discharge the coating liquid toward the substrate W, and is, for example, a position outside the end surface of the substrate W in the radial direction. When the coating nozzle 22A is stopped at the coating standby position, a physical collision between the coating nozzle 22A and the center robot 32 can be avoided when the substrate W is loaded or unloaded. The nozzle moving mechanism 25A has, for example, an arm turning mechanism similar to the later-described nozzle moving mechanism 222B included in the bevel unit 20B.
 ガード23Aは、基板保持部21Aによって保持された基板Wの端面から飛散した塗布液を受け止める部材である。ガード23Aは、基板保持部21Aを取り囲む形状を有している。図7の例では、ガード23Aは、径方向内側に開口するドーナツ状の形状を有しており、基板Wの端面から飛散した塗布液はガード23Aの内側空間に流入する。ガード23Aの下部には、不図示の液回収機構および排気機構が設けられている。液回収機構は、ガード23A内の塗布液を回収する。 The guard 23A is a member that catches the coating liquid scattered from the end surface of the substrate W held by the substrate holding section 21A. The guard 23A has a shape that surrounds the substrate holding section 21A. In the example of FIG. 7, the guard 23A has a donut-like shape that opens radially inward, and the coating liquid splashed from the end surface of the substrate W flows into the inner space of the guard 23A. A liquid recovery mechanism and an exhaust mechanism (not shown) are provided at the lower part of the guard 23A. The liquid recovery mechanism recovers the coating liquid inside the guard 23A.
 ガード23Aは、ガード昇降機構26Aによって、ガード処理位置とガード待機位置との間で昇降可能に設けられている。ガード処理位置は、ガード23Aの上端周縁が、基板保持部21Aによって保持された基板Wの上面よりも鉛直上方となる位置である。ガード23Aはガード処理位置に位置する状態で、基板Wから飛散した塗布液を受け止めることができる。ガード待機位置は、ガード23Aの上端周縁がステージ211Aよりも鉛直下方となる位置である。ガード23Aがガード待機位置で停止した状態では、基板Wの搬出入時において、ガード23Aとセンターロボット32との物理的な衝突を回避することができる。ガード昇降機構26Aは、例えば、駆動源としてのモータと、モータの回転を鉛直方向の移動に変換する駆動機構としてのボールねじ機構とを含む。あるいは、ガード昇降機構26Aはエアシリンダを含んでいてもよい。 The guard 23A is provided so as to be movable up and down between the guard processing position and the guard standby position by a guard elevating mechanism 26A. The guard processing position is a position where the upper edge of the guard 23A is vertically above the upper surface of the substrate W held by the substrate holding part 21A. The guard 23A can receive the coating liquid scattered from the substrate W while being located at the guard processing position. The guard standby position is a position where the upper edge of the guard 23A is vertically below the stage 211A. When the guard 23A is stopped at the guard standby position, a physical collision between the guard 23A and the center robot 32 can be avoided when loading and unloading the substrate W. The guard elevating mechanism 26A includes, for example, a motor as a drive source and a ball screw mechanism as a drive mechanism that converts rotation of the motor into vertical movement. Alternatively, the guard lifting mechanism 26A may include an air cylinder.
 <熱処理ユニット10A>
 図1を参照して、熱処理ユニット10Aは、加熱部の一例であるホットプレート11Aと、3つ以上のリフトピン12Aとを含んでいる。ホットプレート11Aは、金属などの板状プレートと、該板状プレートに内蔵された電熱線などの発熱体とを含む。リフトピン12Aはホットプレート11Aを鉛直方向に沿って貫通し、リフト上位置とリフト下位置との間で昇降可能に設けられている。リフト上位置は、リフトピン12Aの先端がホットプレート11Aの上面(つまり、板状プレートの上面)よりも鉛直上方となる位置である。リフト下位置は、リフトピン12Aの先端がホットプレート11Aの上面よりも鉛直下方となる位置である。リフトピン12Aを昇降させるピン昇降機構(不図示)は、例えば、モータおよびボールねじ機構を含んでいてもよく、あるいは、エアシリンダを含んでいてもよい。
<Heat treatment unit 10A>
Referring to FIG. 1, the heat treatment unit 10A includes a hot plate 11A, which is an example of a heating section, and three or more lift pins 12A. The hot plate 11A includes a plate-like plate made of metal or the like, and a heating element such as a heating wire built into the plate-like plate. The lift pin 12A passes through the hot plate 11A in the vertical direction and is provided so as to be movable up and down between a lift upper position and a lift lower position. The upper lift position is a position where the tip of the lift pin 12A is vertically above the upper surface of the hot plate 11A (that is, the upper surface of the plate-like plate). The lower lift position is a position where the tip of the lift pin 12A is vertically below the upper surface of the hot plate 11A. A pin elevating mechanism (not shown) that raises and lowers the lift pin 12A may include, for example, a motor and a ball screw mechanism, or may include an air cylinder.
 複数のリフトピン12Aがリフト上位置に位置する状態で、センターロボット32から基板Wがリフトピン12Aの先端に載置される。ここでは、基板Wのデバイス面Waが鉛直上方を向く姿勢で複数のリフトピン12Aの先端に載置される。複数のリフトピン12Aがリフト下位置に下降することで、基板Wがホットプレート11Aの上に載置される。ホットプレート11Aは基板Wを加熱する。これにより、基板Wのデバイス面Wa上の塗膜F2が乾燥し、デバイス面Wa上に保護膜F1が形成される。 With the plurality of lift pins 12A located at the upper lift position, the substrate W is placed from the center robot 32 onto the tips of the lift pins 12A. Here, the substrate W is placed on the tips of the plurality of lift pins 12A with the device surface Wa of the substrate W facing vertically upward. By lowering the plurality of lift pins 12A to the lower lift position, the substrate W is placed on the hot plate 11A. The hot plate 11A heats the substrate W. As a result, the coating film F2 on the device surface Wa of the substrate W is dried, and the protective film F1 is formed on the device surface Wa.
 <冷却ユニット10B>
 冷却ユニット10Bは、冷却部の一例である冷却プレート11Bと、3つ以上のリフトピン12Bとを含んでいる。冷却プレート11Bは、金属などの板状プレートと、該板状プレートに内蔵されたペルチェ素子などの冷却源とを含む。リフトピン12Bは冷却プレート11Bを鉛直方向に沿って貫通し、リフト上位置とリフト下位置との間で昇降可能に設けられている。リフト上位置は、リフトピン12Bの先端が冷却プレート11Bの上面よりも鉛直上方となる位置である。リフト下位置は、リフトピン12Bの先端が冷却プレート11Bの上面よりも鉛直下方となる位置である。リフトピン12Bを昇降させるピン昇降機構は、リフトピン12Aを昇降させるピン昇降機構と同様である。
<Cooling unit 10B>
The cooling unit 10B includes a cooling plate 11B, which is an example of a cooling section, and three or more lift pins 12B. The cooling plate 11B includes a plate-like plate made of metal or the like, and a cooling source such as a Peltier element built into the plate-like plate. The lift pin 12B passes through the cooling plate 11B in the vertical direction and is provided so as to be movable up and down between the lift upper position and the lift lower position. The upper lift position is a position where the tip of the lift pin 12B is vertically above the upper surface of the cooling plate 11B. The lower lift position is a position where the tip of the lift pin 12B is vertically below the upper surface of the cooling plate 11B. The pin elevating mechanism for elevating and lowering the lift pin 12B is similar to the pin elevating and lowering mechanism for elevating and lowering the lift pin 12A.
 複数のリフトピン12Bがリフト上位置に位置する状態で、センターロボット32から基板Wがリフトピン12Bの先端に載置される。複数のリフトピン12Bがリフト下位置に下降することで基板Wが冷却プレート11Bの上に載置される。冷却プレート11Bは基板Wを冷却する。これにより、基板Wの温度を速やかに低下させることができる。 With the plurality of lift pins 12B located at the upper lift position, the substrate W is placed from the center robot 32 on the tips of the lift pins 12B. The substrate W is placed on the cooling plate 11B by lowering the plurality of lift pins 12B to the lower lift position. The cooling plate 11B cools the substrate W. Thereby, the temperature of the substrate W can be lowered quickly.
 <保護膜形成処理>
 次に、塗布ユニット20Aおよびドライ処理ユニット10による保護膜形成処理の具体的な一例について述べる。図8は、保護膜形成処理の具体的な一例を示すフローチャートである。まず、センターロボット32が基板Wを塗布ユニット20Aに搬入する(ステップS11)。基板保持部21Aは、搬入された基板Wを保持する。
<Protective film formation treatment>
Next, a specific example of the protective film forming process by the coating unit 20A and the dry processing unit 10 will be described. FIG. 8 is a flowchart showing a specific example of the protective film forming process. First, the central robot 32 carries the substrate W into the coating unit 20A (step S11). The substrate holding section 21A holds the loaded substrate W.
 次に、塗布ユニット20Aが基板Wのデバイス面Waに塗布液を供給して、塗膜F2を形成する(ステップS12)。具体的には、まず、ノズル移動機構25Aが塗布ノズル22Aを塗布位置に移動させ、ガード昇降機構26Aがガード23Aをガード処理位置に上昇させる。次に、塗布ユニット20A(具体的には制御部90)は、バルブ222Aを開いて、塗布ノズル22Aから所定量の塗布液を基板Wのデバイス面Waに吐出させる。塗布液は例えばSOGである。なお、塗布液の供給時には、基板保持部21Aは基板Wを回転させてもよく、あるいは、基板Wを静止させていても良い。次に、基板保持部21Aは基板Wを回転させて、塗布液を基板Wのデバイス面Waの全面に広げる。 Next, the coating unit 20A supplies a coating liquid to the device surface Wa of the substrate W to form a coating film F2 (step S12). Specifically, first, the nozzle moving mechanism 25A moves the coating nozzle 22A to the coating position, and the guard raising/lowering mechanism 26A raises the guard 23A to the guard processing position. Next, the coating unit 20A (specifically, the control unit 90) opens the valve 222A to discharge a predetermined amount of the coating liquid onto the device surface Wa of the substrate W from the coating nozzle 22A. The coating liquid is, for example, SOG. Note that when supplying the coating liquid, the substrate holding section 21A may rotate the substrate W or may keep the substrate W stationary. Next, the substrate holder 21A rotates the substrate W and spreads the coating liquid over the entire device surface Wa of the substrate W.
 次に、基板保持部21Aは基板Wの回転を継続して、基板W上の塗布液を乾燥させて塗膜F2を形成する(ステップS13)。塗膜F2が形成されると、基板保持部21Aは基板Wの回転を停止させ、基板Wの保持を解除する。また、ノズル移動機構25は塗布ノズル22Aを塗布待機位置に移動させ、ガード昇降機構26Aはガード23Aをガード待機位置に下降させる。 Next, the substrate holding unit 21A continues to rotate the substrate W, and dries the coating liquid on the substrate W to form a coating film F2 (step S13). When the coating film F2 is formed, the substrate holding section 21A stops the rotation of the substrate W and releases the holding of the substrate W. Further, the nozzle moving mechanism 25 moves the coating nozzle 22A to the coating standby position, and the guard lifting mechanism 26A lowers the guard 23A to the guard standby position.
 次に、センターロボット32は基板Wを塗布ユニット20Aから搬出し、ドライ処理ユニット10に搬入する(ステップS14)。具体的には、熱処理ユニット10Aのリフトピン12Aは、リフト上位置に上昇した状態で、センターロボット32から基板Wを受け取り、リフト下位置に下降する。これにより、ホットプレート11Aの上に基板Wが載置される。 Next, the center robot 32 carries out the substrate W from the coating unit 20A and carries it into the dry processing unit 10 (step S14). Specifically, the lift pins 12A of the heat treatment unit 10A receive the substrate W from the center robot 32 while being raised to the upper lift position, and then lowered to the lower lift position. Thereby, the substrate W is placed on the hot plate 11A.
 次に、ホットプレート11Aは基板Wを加熱する(ステップS15)。これにより、基板Wの塗膜F2が加熱されて保護膜F1が形成される。保護膜F1は、例えば、SOG膜である。 Next, the hot plate 11A heats the substrate W (step S15). As a result, the coating film F2 on the substrate W is heated to form the protective film F1. The protective film F1 is, for example, an SOG film.
 次に、室内搬送ユニット10Cが基板Wを熱処理ユニット10Aから冷却ユニット10Bに搬送する。具体的には、まず、リフトピン12Aが上昇して基板Wを持ち上げ、室内搬送ユニット10Cが基板Wを取り出す。室内搬送ユニット10Cは、該基板Wを、リフト上位置に位置する冷却ユニット10Bのリフトピン12Bの先端に載置する。リフトピン12Bは基板Wを載置したままリフト下位置まで下降して、冷却プレート11Bの上に基板Wを載置する。 Next, the indoor transport unit 10C transports the substrate W from the heat treatment unit 10A to the cooling unit 10B. Specifically, first, the lift pins 12A rise to lift the substrate W, and the indoor transport unit 10C takes out the substrate W. The indoor transport unit 10C places the substrate W on the tip of the lift pin 12B of the cooling unit 10B located at the upper position of the lift. The lift pins 12B descend to the lower lift position with the substrate W placed thereon, and place the substrate W on the cooling plate 11B.
 次に、冷却ユニット10Bが基板Wを冷却する(ステップS16)。これにより、基板Wの温度を速やかに低下させることができる。次に、室内搬送ユニット10Cが基板Wを冷却ユニット10Bから熱処理ユニット10Aに搬送し、センターロボット32が基板Wをドライ処理ユニット10から搬出する(ステップS17)。センターロボット32は該基板Wをベベルユニット20Bに搬入する。 Next, the cooling unit 10B cools the substrate W (step S16). Thereby, the temperature of the substrate W can be lowered quickly. Next, the indoor transport unit 10C transports the substrate W from the cooling unit 10B to the heat treatment unit 10A, and the center robot 32 transports the substrate W from the dry processing unit 10 (step S17). The center robot 32 carries the substrate W into the bevel unit 20B.
 <ベベルユニット20B>
 図9は、ベベルユニット20Bの構成の一例を概略的に示す図であり、図10は、ベベルユニット20Bの構成の一例を概略的に示す平面図である。図9および図10の例では、ベベルユニット20Bは、基板保持部21Bと、ベベルノズル22Bと、ガード23Bとを含んでいる。
<Bevel unit 20B>
FIG. 9 is a diagram schematically showing an example of the configuration of the bevel unit 20B, and FIG. 10 is a plan view schematically showing an example of the configuration of the bevel unit 20B. In the example of FIGS. 9 and 10, the bevel unit 20B includes a substrate holding section 21B, a bevel nozzle 22B, and a guard 23B.
 <基板保持部21B>
 基板保持部21Bは基板Wを水平姿勢で保持しつつ、基板Wを回転軸線Q1のまわりで回転させる。基板保持部21Bの具体的な構成の一例は基板保持部21Aと同様であるので、繰り返しの説明を避ける。
<Substrate holding part 21B>
The substrate holder 21B holds the substrate W in a horizontal position and rotates the substrate W around the rotation axis Q1. An example of a specific configuration of the substrate holding section 21B is the same as that of the substrate holding section 21A, so a repeated explanation will be avoided.
 <ベベルノズル22B>
 図9および図10の例では、複数のベベルノズル22Bが設けられている。図示の例では、複数のベベルノズル22Bは保持部材221Bによって一体に保持されている。複数のベベルノズル22Bは水平方向に並んで配置されており、保持部材221Bを鉛直方向に貫通した状態で、保持部材221Bによって保持される。
<Bevel nozzle 22B>
In the examples of FIGS. 9 and 10, a plurality of bevel nozzles 22B are provided. In the illustrated example, the plurality of bevel nozzles 22B are held together by a holding member 221B. The plurality of bevel nozzles 22B are arranged side by side in the horizontal direction, and are held by the holding member 221B while penetrating the holding member 221B in the vertical direction.
 図示の例では、複数のベベルノズル22Bは、ノズル移動機構222Bによって、ベベル処理位置とベベル待機位置との間で移動可能に設けられている。ベベル処理位置は、ベベルノズル22Bが基板Wに向かって流体を吐出する位置であり、基板Wと鉛直方向において対向する位置である。ベベル待機位置は、ベベルノズル22Bが基板Wに向かって流体を吐出しない位置であり、例えば、基板Wの端面よりも径方向外側の位置である。図10の例では、ベベル処理位置で位置するベベルノズル22Bが実線で示され、ベベル待機位置で位置するベベルノズル22Bが二点鎖線で示されている。ベベルノズル22Bがベベル待機位置で停止した状態では、基板Wの搬出入時において、ベベルノズル22Bとセンターロボット32との物理的な衝突を回避することができる。 In the illustrated example, the plurality of bevel nozzles 22B are provided movably between a bevel processing position and a bevel standby position by a nozzle moving mechanism 222B. The bevel processing position is a position where the bevel nozzle 22B discharges fluid toward the substrate W, and is a position facing the substrate W in the vertical direction. The bevel standby position is a position where the bevel nozzle 22B does not discharge fluid toward the substrate W, and is, for example, a position outside the end surface of the substrate W in the radial direction. In the example of FIG. 10, the bevel nozzle 22B located at the bevel processing position is shown by a solid line, and the bevel nozzle 22B located at the bevel standby position is shown by a two-dot chain line. When the bevel nozzle 22B is stopped at the bevel standby position, a physical collision between the bevel nozzle 22B and the center robot 32 can be avoided when loading and unloading the substrate W.
 図示の例では、ノズル移動機構222Bは保持部材221Bを移動させることにより、複数のベベルノズル22Bを一体で移動させる。図示の例では、ノズル移動機構222Bはアーム旋回機構を有しており、具体的には、アーム223Bと、支持柱224Bと、駆動部225Bとを含んでいる。アーム223Bは、水平方向に沿って延在する棒状形状を有しており、その先端が保持部材221Bに連結され、その基端が支持柱224Bに連結されている。支持柱224Bは鉛直方向に沿って延在する棒状形状を有しており、自身の中心軸線のまわりで回転可能に設けられている。駆動部225Bは例えばモータを含み、支持柱224Bを中心軸線のまわりで回転させる。これにより、支持柱224Bに連結されたアーム223Bが旋回し、アーム223Bに連結された複数のベベルノズル22Bが円弧状の移動経路を一体で移動する。支持柱224Bは、ベベルノズル22Bの移動経路上にベベル処理位置および待機位置が位置するように、設置される。 In the illustrated example, the nozzle moving mechanism 222B moves the plurality of bevel nozzles 22B as one by moving the holding member 221B. In the illustrated example, the nozzle moving mechanism 222B has an arm turning mechanism, and specifically includes an arm 223B, a support column 224B, and a drive section 225B. The arm 223B has a rod-like shape extending in the horizontal direction, and its tip is connected to the holding member 221B, and its base end is connected to the support column 224B. The support column 224B has a rod-like shape extending along the vertical direction, and is provided rotatably around its own central axis. The drive unit 225B includes, for example, a motor, and rotates the support column 224B around the central axis. As a result, the arm 223B connected to the support column 224B pivots, and the plurality of bevel nozzles 22B connected to the arm 223B move together along an arcuate movement path. The support column 224B is installed so that the bevel processing position and the standby position are located on the movement path of the bevel nozzle 22B.
 複数のベベルノズル22Bがベベル処理位置で停止する状態では、複数のベベルノズル22Bは、基板Wの周縁に沿った周方向に並んで配列される(図10参照)。図10の例では、複数のベベルノズル22Bとして、4つのベベルノズル22Ba~22Bdが設けられている。4つのベベルノズル22Ba~22Bdは、基板Wの回転方向において、この順で設けられている。つまり、ベベルノズル22Baが最も上流側に位置し、ベベルノズル22Bdが最も下流側に位置する。なお、ここでいう上流側とは、少なくとも半周以内の位置をいう。つまり、ベベルノズル22Baは少なくともベベルノズル22Bdから半周以内の上流側に位置しており、好ましくは、4分の1周以内の上流側に位置しているとよい。つまり、ベベルノズル22Baおよびベベルノズル22Bdが回転軸線Q1に対してなす角度は、例えば、90度以下であるとよい。 When the plurality of bevel nozzles 22B are stopped at the bevel processing position, the plurality of bevel nozzles 22B are arranged side by side in the circumferential direction along the periphery of the substrate W (see FIG. 10). In the example of FIG. 10, four bevel nozzles 22Ba to 22Bd are provided as the plurality of bevel nozzles 22B. The four bevel nozzles 22Ba to 22Bd are provided in this order in the rotation direction of the substrate W. That is, the bevel nozzle 22Ba is located at the most upstream side, and the bevel nozzle 22Bd is located at the most downstream side. Note that the upstream side here refers to a position within at least half a circumference. In other words, the bevel nozzle 22Ba is located upstream of at least a half turn from the bevel nozzle 22Bd, and preferably, is located upstream of the bevel nozzle 22Bd within a quarter of a turn. That is, the angle that bevel nozzle 22Ba and bevel nozzle 22Bd make with respect to rotation axis Q1 is preferably 90 degrees or less, for example.
 ここでは、ベベルノズル22Baは不活性ガスを吐出し、ベベルノズル22Bbは膜除去液(具体的には、フッ素を含む酸性薬液)を吐出し、ベベルノズル22Bcはリンス液を吐出し、ベベルノズル22Bdはアルカリ性薬液を吐出するものとする。 Here, the bevel nozzle 22Ba discharges an inert gas, the bevel nozzle 22Bb discharges a film removing liquid (specifically, an acidic chemical containing fluorine), the bevel nozzle 22Bc discharges a rinsing liquid, and the bevel nozzle 22Bd discharges an alkaline chemical. It shall be discharged.
 ベベルノズル22Bbは供給管221Bbの下流端に接続され、供給管221Bbの上流端は膜除去液供給源223Bbに接続されている。供給管221Bbにはバルブ222Bbが設けられており、バルブ222Bbの開閉により、ベベルノズル22Bbからの膜除去液の吐出および吐出停止が切り替えられる。膜除去液は例えばフッ酸である。膜除去液は、保護膜F1を除去することができる。 The bevel nozzle 22Bb is connected to the downstream end of the supply pipe 221Bb, and the upstream end of the supply pipe 221Bb is connected to the membrane removal liquid supply source 223Bb. The supply pipe 221Bb is provided with a valve 222Bb, and opening and closing of the valve 222Bb switches between discharging and stopping the discharge of the film removal liquid from the bevel nozzle 22Bb. The membrane removing liquid is, for example, hydrofluoric acid. The film removal liquid can remove the protective film F1.
 ベベルノズル22Bcは供給管221Bcの下流端に接続され、供給管221Bcの上流端はリンス液供給源223Bcに接続されている。供給管221Bcにはバルブ222Bcが設けられており、バルブ222Bcの開閉により、ベベルノズル22Bcからのリンス液の吐出および吐出停止が切り替えられる。リンス液としては、純水、温水、オゾン水、磁気水、還元水(水素水)、各種の有機溶剤(例えばIPA(イソプロピルアルコール))、機能水(二酸化炭素水など)、などが用いられてもよい。リンス液は、基板W上の薬液(例えば、膜除去液およびアルカリ性薬液)を押し流して基板Wから除去する。 The bevel nozzle 22Bc is connected to the downstream end of the supply pipe 221Bc, and the upstream end of the supply pipe 221Bc is connected to the rinse liquid supply source 223Bc. The supply pipe 221Bc is provided with a valve 222Bc, and opening and closing of the valve 222Bc switches between discharging and stopping the discharge of the rinse liquid from the bevel nozzle 22Bc. As the rinsing liquid, pure water, warm water, ozonated water, magnetic water, reduced water (hydrogen water), various organic solvents (for example, IPA (isopropyl alcohol)), functional water (carbon dioxide water, etc.), etc. are used. Good too. The rinsing liquid washes away chemical liquids (for example, film removing liquid and alkaline chemical liquid) on the substrate W and removes them from the substrate W.
 ベベルノズル22Bdは供給管221Bdの下流端に接続され、供給管221Bdの上流端はアルカリ性薬液供給源223Bdに接続されている。供給管221Bdにはバルブ222Bdが設けられており、バルブ222Bdの開閉により、ベベルノズル22Bdからのアルカリ性薬液の吐出および吐出停止が切り替えられる。なお、本実施の形態では、アルカリ性薬液は用いられないものとする。 The bevel nozzle 22Bd is connected to the downstream end of the supply pipe 221Bd, and the upstream end of the supply pipe 221Bd is connected to the alkaline chemical liquid supply source 223Bd. The supply pipe 221Bd is provided with a valve 222Bd, and opening and closing of the valve 222Bd switches between discharging and stopping the discharge of the alkaline chemical from the bevel nozzle 22Bd. Note that in this embodiment, it is assumed that no alkaline chemical solution is used.
 ベベルノズル22Baは供給管221Baの下流端に接続され、供給管221Baの上流端はガス供給源223Baに接続されている。供給管221Baにはバルブ222Baが設けられており、バルブ222Baの開閉により、ベベルノズル22Baからの不活性ガスの吐出および吐出停止が切り替えられる。不活性ガスは、例えば、アルゴンガスなどの希ガスおよび窒素ガスの少なくともいずれか一方を含む。ベベルノズル22Baからの不活性ガスは、後に述べるように、基板Wの周縁部上の薬液(例えば膜除去液)を径方向外側に吹き飛ばす。 The bevel nozzle 22Ba is connected to the downstream end of the supply pipe 221Ba, and the upstream end of the supply pipe 221Ba is connected to the gas supply source 223Ba. The supply pipe 221Ba is provided with a valve 222Ba, and opening and closing of the valve 222Ba switches between discharging and stopping the discharge of the inert gas from the bevel nozzle 22Ba. The inert gas includes, for example, at least one of a rare gas such as argon gas and nitrogen gas. The inert gas from the bevel nozzle 22Ba blows away the chemical solution (for example, film removal solution) on the peripheral edge of the substrate W radially outward, as will be described later.
 <ガード23B>
 ガード23Bは、基板保持部21Bを囲む筒状の形状を有しており、基板Wの端面から飛散した処理液を受け止める。図9の例では、ガード23Bは、底部材231B、内ガード232B、および、外ガード233Bを含んでいる。
<Guard 23B>
The guard 23B has a cylindrical shape surrounding the substrate holding part 21B, and receives the processing liquid scattered from the end surface of the substrate W. In the example of FIG. 9, the guard 23B includes a bottom member 231B, an inner guard 232B, and an outer guard 233B.
 内ガード232Bおよび外ガード233Bは、基板保持部21Bを取り囲む筒状の形状を有しており、外ガード233Bは内ガード232Bよりも径方向外側に設けられる。 The inner guard 232B and the outer guard 233B have a cylindrical shape surrounding the substrate holding part 21B, and the outer guard 233B is provided radially outward than the inner guard 232B.
 内ガード232Bの上側部分(以下、上側傾斜部と呼ぶ)は、鉛直上方に向かうにつれて回転軸線Q1に向かう斜め上方に沿って延在する。内ガード232Bの下側部分は、上側傾斜部の下端のうち内側部分から鉛直下方に沿って延在する筒状の内周壁部と、上側傾斜部の下端の外側部分から鉛直下方に沿って延在する筒状の外周壁部とを含む。 The upper part of the inner guard 232B (hereinafter referred to as the upper inclined part) extends diagonally upward toward the rotation axis Q1 as it goes vertically upward. The lower part of the inner guard 232B includes a cylindrical inner peripheral wall part extending vertically downward from the inner part of the lower end of the upper inclined part, and a cylindrical inner peripheral wall part extending vertically downward from the outer part of the lower end of the upper inclined part. and a cylindrical outer circumferential wall.
 外ガード233Bの上側部分(以下、上側傾斜部と呼ぶ)は、鉛直上方に向かうにつれて回転軸線Q1に向かう斜め上方に沿って延在する。外ガード233Bの上側傾斜部は内ガード232Bの上側傾斜部よりも鉛直上方に位置し、内ガード232Bの上側傾斜部と鉛直方向において対向している。外ガード233Bの下側部分は、外ガード233Bの上側傾斜部の下端から鉛直下方に沿って延在しており、内ガード232Bの外周壁部よりも径方向外側に位置している。 The upper portion of the outer guard 233B (hereinafter referred to as the upper inclined portion) extends diagonally upward toward the rotation axis Q1 as it goes vertically upward. The upper slope of the outer guard 233B is located vertically above the upper slope of the inner guard 232B, and faces the upper slope of the inner guard 232B in the vertical direction. The lower portion of the outer guard 233B extends vertically downward from the lower end of the upper slope of the outer guard 233B, and is located radially outward than the outer circumferential wall of the inner guard 232B.
 内ガード232Bおよび外ガード233Bは後述のガード昇降機構234Bによって、後述のガード処理位置とガード待機位置との間で昇降可能に設けられる。ガード昇降機構234Bは、内ガード232Bと外ガード233Bとが互いにぶつからないように、内ガード232Bおよび外ガード233Bを昇降させる。ガード昇降機構234Bの具体的な構成の一例はガード昇降機構26Aと同様である。 The inner guard 232B and the outer guard 233B are provided so that they can be raised and lowered between a guard processing position and a guard standby position, which will be described later, by a guard lifting mechanism 234B, which will be described later. The guard raising/lowering mechanism 234B raises and lowers the inner guard 232B and the outer guard 233B so that the inner guard 232B and the outer guard 233B do not collide with each other. An example of a specific configuration of the guard elevating mechanism 234B is the same as that of the guard elevating mechanism 26A.
 ガード処理位置は、内ガード232Bおよび外ガード233Bの各々の上端周縁が、基板保持部21Bによって保持された基板Wの上面よりも鉛直上方となる位置である。図9の例では、ガード処理位置に位置する内ガード232Bおよび外ガード233Bが示されている。ガード待機位置は、内ガード232Bおよび外ガード233Bの各々の上端周縁が、例えば、基板保持部21Bのベース211Bの上面よりも鉛直下方となる位置である。内ガード232Bおよび外ガード233Bの両方がガード待機位置で停止した状態では、基板Wの搬出入時において、内ガード232Bおよび外ガード233Bと、センターロボット32との物理的な衝突を避けることができる。 The guard processing position is a position where the upper edge of each of the inner guard 232B and the outer guard 233B is vertically above the upper surface of the substrate W held by the substrate holder 21B. In the example of FIG. 9, the inner guard 232B and outer guard 233B are shown in the guard processing position. The guard standby position is a position where the upper end periphery of each of the inner guard 232B and the outer guard 233B is, for example, vertically below the upper surface of the base 211B of the substrate holding section 21B. When both the inner guard 232B and the outer guard 233B are stopped at the guard standby position, physical collision between the inner guard 232B and the outer guard 233B and the center robot 32 can be avoided when loading and unloading the substrate W. .
 内ガード232Bおよび外ガード233Bの両方がガード処理位置で停止している状態では、基板Wの周縁から飛散した処理液は内ガード232Bの内周面で受け止められる。そして、処理液は、内ガード232Bの内周面に沿って流下する。該処理液は後述のように底部材231Bによって受け止められる。外ガード233Bのみがガード処理位置で停止している状態では、処理液は外ガード233Bの内周面で受け止められる。そして、処理液は、内ガード232Bの外周壁部の下部と外ガード233Bの下部との隙間から排出される。 When both the inner guard 232B and the outer guard 233B are stopped at the guard processing position, the processing liquid splashed from the periphery of the substrate W is received by the inner peripheral surface of the inner guard 232B. The processing liquid then flows down along the inner peripheral surface of the inner guard 232B. The processing liquid is received by the bottom member 231B as described below. When only the outer guard 233B is stopped at the guard processing position, the processing liquid is received by the inner peripheral surface of the outer guard 233B. The processing liquid is then discharged from the gap between the lower part of the outer peripheral wall of the inner guard 232B and the lower part of the outer guard 233B.
 底部材231Bは、内ガード232Bおよび外ガード233Bよりも鉛直下方に設けられる。底部材231Bは、内ガード232Bの内周面を鉛直下方に流下する処理液を受け止める部材である。底部材231Bは、内周壁部と、内周壁部よりも外側に設けられた外周壁部と、内周壁部の下端と外周壁部の下端とを連結する円環底部とを含む。図9の例では、底部材231Bの外周壁部は、内ガード232Bの内周壁部と外周壁部との間に収容される。 The bottom member 231B is provided vertically below the inner guard 232B and the outer guard 233B. The bottom member 231B is a member that receives the processing liquid flowing vertically downward on the inner peripheral surface of the inner guard 232B. The bottom member 231B includes an inner peripheral wall, an outer peripheral wall provided outside the inner peripheral wall, and an annular bottom connecting the lower end of the inner peripheral wall and the lower end of the outer peripheral wall. In the example of FIG. 9, the outer circumferential wall of the bottom member 231B is accommodated between the inner circumferential wall and the outer circumferential wall of the inner guard 232B.
 底部材231Bの円環底部には、不図示の排液溝が形成される。この排液溝は、工場の排液ラインと接続される。また、この排液溝には、溝内を強制的に排気して、底部材231Bの内側壁部と外周壁部との間の空間を負圧状態とする排気液機構が接続される。 A drainage groove (not shown) is formed at the annular bottom of the bottom member 231B. This drainage groove is connected to the factory drainage line. Further, an exhaust liquid mechanism is connected to this liquid drain groove for forcibly exhausting the inside of the groove to bring the space between the inner wall portion and the outer circumferential wall portion of the bottom member 231B into a negative pressure state.
 <表面保護部24B>
 ところで、ベベルノズル22Bから吐出された処理液は、基板Wの上面の目標着液位置の近傍の着液位置P1で着液し、基板Wの回転による遠心力を受けて、主として径方向外側に向かって流れる。しかしながら、処理液の一部は基板Wの上面において径方向内側に膨らんで流れる可能性もある。保護ベベル処理(ステップS2)において、膜除去液の一部が保護膜F1の上面を基板Wの中心側に移動すると、中心側の保護膜F1も除去されてしまい、基板Wのデバイス面Waの中央領域Wa2の一部が露出し得る。この場合、保護膜F1は適切にデバイス面Waの中央領域Wa2を保護できない。
<Surface protection part 24B>
By the way, the processing liquid discharged from the bevel nozzle 22B lands on the top surface of the substrate W at a liquid landing position P1 near the target liquid landing position, and receives centrifugal force due to the rotation of the substrate W, and mainly moves toward the outside in the radial direction. It flows. However, a portion of the processing liquid may swell and flow radially inward on the upper surface of the substrate W. In the protective bevel process (step S2), when a part of the film removal liquid moves on the upper surface of the protective film F1 toward the center of the substrate W, the protective film F1 on the center side is also removed, and the device surface Wa of the substrate W is removed. A part of the central region Wa2 may be exposed. In this case, the protective film F1 cannot appropriately protect the central region Wa2 of the device surface Wa.
 そこで、図9および図10の例では、基板Wへの中心側への処理液の移動を抑制するために、ベベルユニット20Bに表面保護部24Bが設けられている。表面保護部24Bは、基板Wの保護膜F1の中央部に向かってガスを吐出する。該ガスは基板Wの中央部に衝突し、基板Wの中央部から径方向外側に向かって全方位的に流れる。このように、ガスが基板Wの中心部から径方向外側に向かって流れることにより、ガスは基板W上の処理液を径方向外側に押圧する。このため、基板W上での処理液の径方向内側への移動を抑制することができる。該ガスとしては、例えば、不活性ガスを採用することができる。不活性ガスは、例えば、アルゴンガスなどの希ガスおよび窒素ガスの少なくともいずれか一方を含む。 Therefore, in the examples of FIGS. 9 and 10, a surface protection portion 24B is provided in the bevel unit 20B in order to suppress movement of the processing liquid toward the center of the substrate W. The surface protection unit 24B discharges gas toward the center of the protective film F1 of the substrate W. The gas collides with the center of the substrate W and flows omnidirectionally from the center of the substrate W toward the outside in the radial direction. As the gas flows from the center of the substrate W toward the outside in the radial direction, the gas presses the processing liquid on the substrate W toward the outside in the radial direction. Therefore, movement of the processing liquid on the substrate W in the radial direction can be suppressed. As the gas, for example, an inert gas can be used. The inert gas includes, for example, at least one of a rare gas such as argon gas and nitrogen gas.
 図9の例では、表面保護部24Bは、基板保持部21Bによって保持された基板Wよりも鉛直上方に設けられており、ガスノズル241B、円柱部材242Bおよび遮断板243Bを有するヘッド244Bと、ガスノズル移動機構27Bとを含んでいる。円柱部材242Bは、その中心軸線が鉛直方向に沿う姿勢で設けられている。遮断板243Bは、円柱部材242Bの下面に取り付けられる。遮断板243Bは円板形状を有しており、その下面は水平面に沿う。遮断板243Bの直径は円柱部材242Bの直径よりも大きい。ガスノズル241Bは円柱部材242Bおよび遮断板243Bを鉛直方向に貫通しており、ガスノズル241Bの下端は遮断板243Bの下面において開口している。当該開口は、ガスノズル241Bの吐出口である。 In the example of FIG. 9, the surface protection part 24B is provided vertically above the substrate W held by the substrate holding part 21B, and includes a head 244B having a gas nozzle 241B, a cylindrical member 242B, and a blocking plate 243B, and a gas nozzle movement mechanism 27B. The cylindrical member 242B is provided with its central axis extending along the vertical direction. The blocking plate 243B is attached to the lower surface of the cylindrical member 242B. The blocking plate 243B has a disk shape, and its lower surface runs along a horizontal plane. The diameter of the blocking plate 243B is larger than the diameter of the cylindrical member 242B. The gas nozzle 241B vertically passes through the columnar member 242B and the blocking plate 243B, and the lower end of the gas nozzle 241B opens at the lower surface of the blocking plate 243B. The opening is a discharge port of the gas nozzle 241B.
 ガスノズル241Bの上側の開口は供給管245Bの下流端に接続され、供給管245Bの上流端はガス供給源248Bに接続されている。ガス供給源248Bからの不活性ガスは供給管245Bを通じてガスノズル241Bに供給され、ガスノズル241Bから吐出される。供給管245Bには、ガス供給源248B側から順に流量調整器247Bおよびバルブ246Bが設けられている。流量調整器247Bは供給管245Bを流れるガスの流量を調整する。バルブ246Bの開閉により、ガスノズル241Bからのガスの吐出および吐出停止が切り替えられる。 The upper opening of the gas nozzle 241B is connected to the downstream end of the supply pipe 245B, and the upstream end of the supply pipe 245B is connected to the gas supply source 248B. Inert gas from the gas supply source 248B is supplied to the gas nozzle 241B through the supply pipe 245B, and is discharged from the gas nozzle 241B. The supply pipe 245B is provided with a flow rate regulator 247B and a valve 246B in this order from the gas supply source 248B side. The flow rate regulator 247B adjusts the flow rate of gas flowing through the supply pipe 245B. By opening and closing the valve 246B, discharge and stop of gas discharge from the gas nozzle 241B are switched.
 ガスノズル移動機構27Bはヘッド244Bをガス処理位置とガス待機位置との間で移動させる。ガス処理位置は、ガスノズル241Bがガスを吐出するときの位置であり、例えば、ガスノズル241Bが基板Wの中心部と鉛直方向において対向する位置である。ガス待機位置は、ガスノズル241Bがガスを吐出しないときの位置であり、例えば、基板Wの端面よりも径方向外側の位置である。ヘッド244Bがガス待機位置で停止した状態では、基板Wの搬出入時において、ヘッド244Bとセンターロボット32との物理的な衝突を避けることができる。ガスノズル移動機構27Bは、例えば、ノズル移動機構222Bと同様のアーム旋回機構を有する。 The gas nozzle moving mechanism 27B moves the head 244B between the gas processing position and the gas standby position. The gas processing position is a position when the gas nozzle 241B discharges gas, and is, for example, a position where the gas nozzle 241B faces the center of the substrate W in the vertical direction. The gas standby position is a position when the gas nozzle 241B does not discharge gas, and is, for example, a position outside the end surface of the substrate W in the radial direction. When the head 244B is stopped at the gas standby position, a physical collision between the head 244B and the center robot 32 can be avoided when loading and unloading the substrate W. The gas nozzle moving mechanism 27B has, for example, an arm turning mechanism similar to the nozzle moving mechanism 222B.
 <加熱部25B>
 膜除去液による処理速度は温度に依存する場合がある。例えば、フッ素を含む酸性薬液である膜除去液に対しては、処理速度を高めるために、基板Wの温度をある程度上昇させることが望ましい。そこで、図9の例では、ベベルユニット20Bに加熱部25Bが設けられている。加熱部25Bは、基板保持部21Bによって保持された基板Wの基板周縁部VW1と対向する位置に設けられており、基板周縁部VW1を加熱する。これにより、膜除去液による処理速度を向上させることができる。加熱部25Bは輻射熱により基板Wを加熱してもよく、あるいは、高温流体(例えば高温ガス)を基板Wに供給して基板Wを加熱してもよい。ここでは、加熱部25Bは輻射熱および高温ガスの両方で基板Wを加熱する。
<Heating section 25B>
The processing speed with the membrane removal solution may depend on the temperature. For example, for a film removal liquid that is an acidic chemical containing fluorine, it is desirable to increase the temperature of the substrate W to some extent in order to increase the processing speed. Therefore, in the example of FIG. 9, a heating section 25B is provided in the bevel unit 20B. The heating unit 25B is provided at a position facing the substrate peripheral edge VW1 of the substrate W held by the substrate holding unit 21B, and heats the substrate peripheral edge VW1. Thereby, the processing speed with the membrane removal liquid can be improved. The heating unit 25B may heat the substrate W using radiant heat, or may heat the substrate W by supplying high-temperature fluid (for example, high-temperature gas) to the substrate W. Here, the heating unit 25B heats the substrate W using both radiant heat and high temperature gas.
 図11は、加熱部25Bの構成の一例を概略的に示す平面図である。図11の例では、加熱部25Bは、ヒーター251Bと、ヒーター251Bの内部を流路の一部とするガス供給部255Bとを含む。 FIG. 11 is a plan view schematically showing an example of the configuration of the heating section 25B. In the example of FIG. 11, the heating section 25B includes a heater 251B and a gas supply section 255B that uses the inside of the heater 251B as part of a flow path.
 ヒーター251Bは、円環状の板状形状を有している。図9も参照して、ヒーター251Bは、基板Wの下面(つまり、非デバイス面Wb)のうち基板保持部21Bの上面が当接していない部分と非接触で対向するように、基板保持部21Bのまわりに環状に配設されている。ヒーター251Bの対向面(上面)は、例えば、基板Wの非デバイス面Wbと平行である。ヒーター251Bの対向面は基板Wの非デバイス面Wbと、例えば、2mm~5mm程度の距離を隔てて対向している。 The heater 251B has an annular plate shape. Referring also to FIG. 9, the heater 251B is mounted on the substrate holding portion 21B so as to face the portion of the lower surface of the substrate W (that is, the non-device surface Wb) that is not in contact with the upper surface of the substrate holding portion 21B in a non-contact manner. arranged in a ring around the The opposing surface (upper surface) of the heater 251B is parallel to the non-device surface Wb of the substrate W, for example. The facing surface of the heater 251B faces the non-device surface Wb of the substrate W with a distance of, for example, about 2 mm to 5 mm.
 ヒーター251Bは、例えば、炭化ケイ素(SiC)またはセラミックス製の本体部252Bに、発熱体(例えば、ニクロム線などの抵抗発熱体)253Bが内蔵された抵抗式のヒーターである。本体部252Bは円環状の板状形状を有しており、本体部252Bの上面がヒーター251Bの上面(対向面)に相当し、本体部252Bの下面がヒーター251Bの下面に相当する。発熱体253Bは、平面視において、円環状かつ帯状の配列領域内に設けられる。発熱体253Bが発熱することにより、本体部252Bが加熱されて昇温する。高温の本体部252Bは輻射熱により基板Wの基板周縁部VW1を加熱することができる。 The heater 251B is, for example, a resistance type heater in which a heating element (for example, a resistance heating element such as a nichrome wire) 253B is built into a main body part 252B made of silicon carbide (SiC) or ceramics. The main body 252B has an annular plate shape, and the upper surface of the main body 252B corresponds to the upper surface (opposing surface) of the heater 251B, and the lower surface of the main body 252B corresponds to the lower surface of the heater 251B. The heating element 253B is provided within an annular and band-shaped arrangement region in plan view. When the heating element 253B generates heat, the main body portion 252B is heated and its temperature increases. The high-temperature main body portion 252B can heat the substrate peripheral portion VW1 of the substrate W by radiant heat.
 図11の例では、本体部252Bの内部には加熱用流路254Bが形成されている。加熱用流路254Bは、発熱体253Bよりも鉛直下方において水平面内で配策された水平流路を含んでいる。水平流路の一部は、平面視において、発熱体253Bよりも径方向内側および径方向外側の各々の領域にも配策される。加熱用流路254Bは、さらに、水平流路から鉛直下方に延在して本体部252Bの下面において開口する上流流路と、水平流路のうち発熱体253Bよりも径方向内側および径方向外側の各々から鉛直上方に分岐して延在し、本体部252Bの上面において複数の吐出口25Baとして開口する複数の下流流路とを有する。 In the example of FIG. 11, a heating flow path 254B is formed inside the main body portion 252B. The heating channel 254B includes a horizontal channel arranged in a horizontal plane vertically below the heating element 253B. A portion of the horizontal flow path is also arranged in regions radially inside and radially outside of the heating element 253B in plan view. The heating flow path 254B further includes an upstream flow path that extends vertically downward from the horizontal flow path and opens at the lower surface of the main body portion 252B, and a radially inner and outer side of the heating element 253B in the horizontal flow path. It has a plurality of downstream flow paths that branch and extend vertically upward from each of the main body portions 252B and open as a plurality of discharge ports 25Ba on the upper surface of the main body portion 252B.
 図9も参照して、加熱用流路254Bの上流口は供給管256Bの下流端に接続され、供給管256Bの上流端はガス供給源259Bに接続されている。ガス供給源259Bからのガス(例えば不活性ガス)は供給管256Bおよび加熱用流路254Bを通じて吐出口25Baから吐出され、基板Wの非デバイス面Wbの周縁領域に向かって流れる。ガスが本体部252Bの内部の加熱用流路254Bを流れることにより、ガスは本体部252Bから熱を受け取って加熱される。その高温ガスが吐出口25Baから基板Wの非デバイス面Wbに向かって流れ、高温ガスが基板Wを加熱する。供給管256Bには、バルブ257Bおよび流量調整器258Bが設けられている。バルブ257Bの開閉により、加熱用流路254Bの吐出口25Baからの高温ガスの吐出および吐出停止が切り替えられる。流量調整器258Bはガスの流量を調整する。 Referring also to FIG. 9, the upstream end of heating channel 254B is connected to the downstream end of supply pipe 256B, and the upstream end of supply pipe 256B is connected to gas supply source 259B. Gas (for example, inert gas) from the gas supply source 259B is discharged from the discharge port 25Ba through the supply pipe 256B and the heating channel 254B, and flows toward the peripheral region of the non-device surface Wb of the substrate W. As the gas flows through the heating channel 254B inside the main body 252B, the gas receives heat from the main body 252B and is heated. The high temperature gas flows from the discharge port 25Ba toward the non-device surface Wb of the substrate W, and heats the substrate W. The supply pipe 256B is provided with a valve 257B and a flow rate regulator 258B. By opening and closing the valve 257B, discharge and stop of the high temperature gas from the discharge port 25Ba of the heating flow path 254B are switched. The flow rate regulator 258B adjusts the flow rate of gas.
 <バックサイドベベル>
 図9および図11の例では、ベベルユニット20Bには、裏面用のベベルノズル26Bも設けられている。ベベルノズル26Bは、基板Wの非デバイス面Wbの周縁領域に向かって処理液を吐出する。ベベルノズル26Bは、基板保持部21Bによって保持された基板Wの非デバイス面Wbよりも鉛直下方において、基板Wの非デバイス面Wbの周縁領域と鉛直方向において対向する位置に設けられている。このようなベベルノズル26Bは、基板保持部21Bよりも径方向外側に位置している。
<Back side bevel>
In the examples of FIGS. 9 and 11, the bevel unit 20B is also provided with a bevel nozzle 26B for the back surface. The bevel nozzle 26B discharges the processing liquid toward the peripheral region of the non-device surface Wb of the substrate W. The bevel nozzle 26B is provided at a position vertically below the non-device surface Wb of the substrate W held by the substrate holder 21B and facing the peripheral region of the non-device surface Wb of the substrate W in the vertical direction. Such a bevel nozzle 26B is located radially outward from the substrate holding part 21B.
 図11の例では、ヒーター251Bには凹部25Bbが形成されている。凹部25Bbは径方向内側に凹み、かつ、鉛直方向に沿ってヒーター251Bを貫通している。ベベルノズル26Bは凹部25Bbに設けられている。 In the example of FIG. 11, a recess 25Bb is formed in the heater 251B. The recessed portion 25Bb is recessed inward in the radial direction and passes through the heater 251B along the vertical direction. The bevel nozzle 26B is provided in the recess 25Bb.
 図9および図11の例では、2つのベベルノズル26Bが設けられている。一方のベベルノズル26Bは供給管261Bの下流端に接続され、供給管261Bの上流端は膜除去液供給源263Bに接続されている。膜除去液供給源263Bからの膜除去液は供給管261Bを通じてベベルノズル26Bに供給され、ベベルノズル26Bの吐出口から基板Wの非デバイス面Wbの周縁領域に向かって吐出される。供給管261Bにはバルブ262Bが設けられている。バルブ262Bの開閉により、ベベルノズル26Bからの膜除去液の吐出および吐出停止が切り替えられる。 In the examples of FIGS. 9 and 11, two bevel nozzles 26B are provided. One bevel nozzle 26B is connected to the downstream end of the supply pipe 261B, and the upstream end of the supply pipe 261B is connected to the membrane removal liquid supply source 263B. The film removal liquid from the film removal liquid supply source 263B is supplied to the bevel nozzle 26B through the supply pipe 261B, and is discharged from the discharge port of the bevel nozzle 26B toward the peripheral region of the non-device surface Wb of the substrate W. A valve 262B is provided in the supply pipe 261B. By opening and closing the valve 262B, discharge and stop of the film removal liquid from the bevel nozzle 26B are switched.
 他方のベベルノズル26Bは供給管265Bの下流端に接続され、供給管265Bの上流端はリンス液供給源268Bに接続されている。リンス液供給源268Bからのリンス液は供給管265Bを通じてベベルノズル26Bに供給され、ベベルノズル26Bの吐出口から基板Wの非デバイス面Wbの周縁領域に向かって吐出される。供給管265Bにはバルブ266Bが設けられている。バルブ266Bの開閉により、ベベルノズル26Bからのリンス液の吐出および吐出停止が切り替えられる。 The other bevel nozzle 26B is connected to the downstream end of the supply pipe 265B, and the upstream end of the supply pipe 265B is connected to the rinse liquid supply source 268B. The rinsing liquid from the rinsing liquid supply source 268B is supplied to the bevel nozzle 26B through the supply pipe 265B, and is discharged from the discharge port of the bevel nozzle 26B toward the peripheral region of the non-device surface Wb of the substrate W. A valve 266B is provided in the supply pipe 265B. By opening and closing the valve 266B, discharge and stop of the rinse liquid from the bevel nozzle 26B are switched.
 <保護ベベル処理>
 図12は、保護ベベル処理の具体的な一例を示すフローチャートである。まず、センターロボット32が基板Wをベベルユニット20Bに搬入する(ステップS21)。基板保持部21Bは、搬入された基板Wを保持する。
<Protective bevel treatment>
FIG. 12 is a flowchart showing a specific example of protection bevel processing. First, the center robot 32 carries the substrate W into the bevel unit 20B (step S21). The substrate holding section 21B holds the loaded substrate W.
 次に、基板保持部21Bが基板Wを回転軸線Q1のまわりで回転させる(ステップS22)。また、ノズル移動機構222Bがベベルノズル22Bをベベル処理位置に移動させ、ベベルユニット20B(より具体的には制御部90)がバルブ257Bおよびバルブ222Baを開いてガスノズル241Bおよびベベルノズル22Baからガスを吐出させる(ステップS23)。また、加熱部25Bが基板Wの周縁部を加熱する(ステップS24)。具体的には、ベベルユニット20Bが発熱体への通電を開始し、バルブ257Bを開く。また、ガード昇降機構234Bは、内ガード232Bおよび外ガード233Bのうち膜除去液に対応したガードをガード処理位置に上昇させる。 Next, the substrate holder 21B rotates the substrate W around the rotation axis Q1 (step S22). Further, the nozzle moving mechanism 222B moves the bevel nozzle 22B to the bevel processing position, and the bevel unit 20B (more specifically, the control unit 90) opens the valve 257B and the valve 222Ba to discharge gas from the gas nozzle 241B and the bevel nozzle 22Ba. Step S23). Further, the heating unit 25B heats the peripheral portion of the substrate W (step S24). Specifically, bevel unit 20B starts energizing the heating element and opens valve 257B. Moreover, the guard raising/lowering mechanism 234B raises the guard corresponding to the film removal liquid out of the inner guard 232B and the outer guard 233B to the guard processing position.
 次に、ベベルユニット20Bはバルブ222Bbおよびバルブ262Bを開いて、ベベルノズル22Bbおよびベベルノズル26Bから膜除去液を吐出させる(ステップS25)。ベベルノズル22Bbから吐出された膜除去液は着液位置P1で保護膜F1の上面に着液し、保護膜F1の上面を径方向外側に流れ、その一部は基板Wの周縁から飛散する(図6(b)も参照)。このとき、膜除去液が保護膜F1の保護周縁部VF1に作用し、保護周縁部VF1を除去することができる。 Next, the bevel unit 20B opens the valve 222Bb and the valve 262B to discharge the film removal liquid from the bevel nozzle 22Bb and the bevel nozzle 26B (step S25). The film removal liquid discharged from the bevel nozzle 22Bb lands on the top surface of the protective film F1 at the landing position P1, flows radially outward on the top surface of the protective film F1, and a part of it scatters from the periphery of the substrate W (Fig. 6(b)). At this time, the film removal liquid acts on the protective peripheral edge portion VF1 of the protective film F1, allowing the protective peripheral edge portion VF1 to be removed.
 保護膜F1上の膜除去液の残りの一部は保護周縁部VF1上に残留し、基板Wの回転と共に回転軸線Q1のまわりを周回する。ここでは、ベベルノズル22Bbよりも上流側に設けられたベベルノズル22Baからガスが吐出されている。該ガスは、保護周縁部VF1上に残留してほぼ1周した膜除去液を、径方向外側に向かって吹き飛ばす。つまり、着液位置P1に着液して回転軸線Q1のまわりをほぼ1周した古い膜除去液は、ベベルノズル22Baからのガスによって吹き飛ばされる。したがって、着液位置P1には古い膜除去液はほとんど到達しない。このため、新しい膜除去液が着液位置P1において古い膜除去液と衝突することを抑制できる。したがって、着液位置P1において膜除去液が過剰となって径方向内側に膨らむことを抑制することができる。なお、ベベルノズル22Baからのガスが基板Wの上面に衝突する位置は、ベベルノズル22Bbからの膜除去液の着液位置P1よりも径方向内側である。これにより、ガスが膜除去液よりも径方向内側から径方向外側に流れて、膜除去液をより確実に径方向外側に吹き飛ばすことができる。 The remaining part of the film removal liquid on the protective film F1 remains on the protective peripheral edge VF1 and rotates around the rotation axis Q1 as the substrate W rotates. Here, gas is discharged from a bevel nozzle 22Ba provided upstream of the bevel nozzle 22Bb. The gas blows away the membrane removal liquid remaining on the protective peripheral portion VF1 and making almost one revolution toward the outside in the radial direction. That is, the old film removal liquid that has landed on the liquid landing position P1 and has made almost one revolution around the rotation axis Q1 is blown away by the gas from the bevel nozzle 22Ba. Therefore, almost no old film removal liquid reaches the liquid landing position P1. Therefore, it is possible to prevent the new film removing liquid from colliding with the old film removing liquid at the landing position P1. Therefore, it is possible to prevent the film removal liquid from becoming excessive at the liquid landing position P1 and expanding radially inward. Note that the position where the gas from the bevel nozzle 22Ba collides with the upper surface of the substrate W is radially inner than the landing position P1 of the film removal liquid from the bevel nozzle 22Bb. Thereby, the gas flows from the inside in the radial direction to the outside in the radial direction relative to the membrane removal liquid, and the membrane removal liquid can be blown radially outward more reliably.
 ベベルノズル26Bから吐出された膜除去液は基板Wの非デバイス面Wb上の着液位置に着液し、非デバイス面Wbを径方向外側に流れ、基板Wの周縁から飛散する(図6(b)も参照)。このとき、膜除去液は、非デバイス面Wbに付着した保護膜F1と同じ物質を除去することができる。 The film removal liquid discharged from the bevel nozzle 26B lands on the non-device surface Wb of the substrate W, flows radially outward on the non-device surface Wb, and scatters from the periphery of the substrate W (Fig. 6(b) ). At this time, the film removal liquid can remove the same substance as the protective film F1 attached to the non-device surface Wb.
 なお、図9および図11では省略しているものの、ベベルノズル22Baと同様に、ガスを吐出するベベルノズル26Bが設けられてもよい。ガス用のベベルノズル26Bは、膜除去液用のベベルノズル26Bよりも基板Wの回転方向の上流側に設けられており、ガスを吐出する。該ガスは、非デバイス面Wbに残留して周回した古い膜除去液を径方向外側に吹き飛ばす。このため、非デバイス面Wbの着液位置において膜除去液が過剰となることを抑制できる。もし非デバイス面Wbの着液位置において膜除去液が過剰になると、該膜除去液が基板Wの端面を回り込んで保護膜F1の上面に到達し、保護膜F1上の膜除去液を基板Wの中心側へと押し流し得るところ、そのような押し出しを抑制することができる。 Although not shown in FIGS. 9 and 11, a bevel nozzle 26B that discharges gas may be provided similarly to the bevel nozzle 22Ba. The gas bevel nozzle 26B is provided upstream of the film removal liquid bevel nozzle 26B in the rotational direction of the substrate W, and discharges gas. The gas blows away the old film removal liquid that remains on the non-device surface Wb and circulates radially outward. Therefore, it is possible to prevent the film removal liquid from becoming excessive at the liquid landing position on the non-device surface Wb. If the film removal liquid becomes excessive at the landing position on the non-device surface Wb, the film removal liquid goes around the end surface of the substrate W and reaches the upper surface of the protective film F1, and the film removal liquid on the protective film F1 is removed from the substrate. Although it could be pushed toward the center of W, such push-out can be suppressed.
 また、ここでは、加熱部25Bが基板Wの基板周縁部VW1を加熱しているので、その上層の保護周縁部VF1の温度も上昇させることができる。このため、保護周縁部VF1上の膜除去液の温度低下を抑制することができ、より高い処理速度で膜除去液が保護周縁部VF1を除去することができる。このため、高い処理速度で保護周縁部VF1を除去することができる。なお、ベベルノズル22Bcからのリンス液の着液位置は、ベベルノズル22Bbからの膜除去液の着液位置P1よりも径方向内側である。これにより、リンス液が膜除去液を適切に押し流すことができる。ベベルノズル26Bについても同様である。 Furthermore, here, since the heating unit 25B heats the substrate peripheral portion VW1 of the substrate W, the temperature of the protective peripheral portion VF1 of the upper layer can also be increased. Therefore, it is possible to suppress a decrease in the temperature of the film removal liquid on the protective peripheral portion VF1, and the film removal liquid can remove the protective peripheral portion VF1 at a higher processing speed. Therefore, the protective peripheral portion VF1 can be removed at a high processing speed. Note that the position where the rinsing liquid from the bevel nozzle 22Bc lands is radially inner than the position P1 where the film removal liquid from the bevel nozzle 22Bb lands. Thereby, the rinsing liquid can appropriately wash away the membrane removal liquid. The same applies to the bevel nozzle 26B.
 保護周縁部VF1が十分に除去されると、ベベルユニット20Bはバルブ222Bbおよびバルブ262Bを閉じて、膜除去液の供給を停止する。より具体的には、膜除去液の供給からの経過時間が第1所定時間以上となったときに、ベベルユニット20Bはバルブ222Bbおよびバルブ262Bを閉じる。経過時間は制御部90内の公知のタイマー回路によって測定される。 When the protective peripheral portion VF1 is sufficiently removed, the bevel unit 20B closes the valve 222Bb and the valve 262B to stop supplying the membrane removal liquid. More specifically, when the elapsed time from the supply of the membrane removal liquid reaches a first predetermined time or more, the bevel unit 20B closes the valve 222Bb and the valve 262B. The elapsed time is measured by a known timer circuit within the control section 90.
 次に、ガード昇降機構234Bが必要に応じてガード23Bの昇降状態を変更する。つまり、リンス液用のガードが膜除去液用のガードと相違するときには、ガード昇降機構234Bはリンス液に対応したガードをガード処理位置に上昇させる。 Next, the guard elevating mechanism 234B changes the elevating state of the guard 23B as necessary. That is, when the guard for the rinsing liquid is different from the guard for the membrane removal liquid, the guard raising/lowering mechanism 234B raises the guard corresponding to the rinsing liquid to the guard processing position.
 次に、ベベルユニット20Bはバルブ222Bcおよびバルブ266Bを開いて、ベベルノズル22Bcおよびベベルノズル26Bからリンス液を吐出させる(ステップS26)。基板Wの表面に着液したリンス液は、基板Wの回転に伴う遠心力を受けて、径方向外側に流れ、基板Wの端面から外側に飛散する。これにより、基板Wの表面の膜除去液をリンス液で径方向外側に押し流すことができる。つまり、基板Wの表面上の膜除去液をリンス液に置換することができる。 Next, the bevel unit 20B opens the valve 222Bc and the valve 266B to discharge the rinsing liquid from the bevel nozzle 22Bc and the bevel nozzle 26B (step S26). The rinsing liquid that has landed on the surface of the substrate W flows outward in the radial direction under the centrifugal force caused by the rotation of the substrate W, and is scattered outward from the end surface of the substrate W. Thereby, the film removal liquid on the surface of the substrate W can be washed away radially outward with the rinsing liquid. In other words, the film removing liquid on the surface of the substrate W can be replaced with the rinsing liquid.
 膜除去液が十分にリンス液に置換されると、ベベルユニット20Bはバルブ222Bcおよびバルブ266Bを閉じて、リンス液の供給を停止する。より具体的には、リンス液の供給からの経過時間が第2所定時間以上となったときに、ベベルユニット20Bはバルブ222Bcおよびバルブ266Bを閉じる。 When the membrane removal liquid is sufficiently replaced with the rinsing liquid, the bevel unit 20B closes the valve 222Bc and the valve 266B to stop supplying the rinsing liquid. More specifically, when the elapsed time from the supply of the rinse liquid reaches a second predetermined time or more, the bevel unit 20B closes the valve 222Bc and the valve 266B.
 次に、基板Wを乾燥させる(ステップS27)。具体的な一例として、基板保持部21Bは基板Wの回転速度を高めて、基板Wを高速で回転させる(いわゆるスピンドライ)。 Next, the substrate W is dried (step S27). As a specific example, the substrate holder 21B increases the rotational speed of the substrate W to rotate the substrate W at high speed (so-called spin drying).
 次に、ベベルユニット20Bがバルブ222Baおよびバルブ257Bを閉じ、ノズル移動機構222Bが複数のベベルノズル22Bをベベル待機位置に移動させ、加熱部25Bが加熱動作を停止し、基板保持部21Bが基板Wの回転を停止させ、基板Wの保持を解除する。次に、センターロボット32が基板Wをベベルユニット20Bから搬出する(ステップS28)。センターロボット32は該基板Wを洗浄ユニット20Cに搬入する。 Next, the bevel unit 20B closes the valve 222Ba and the valve 257B, the nozzle moving mechanism 222B moves the plurality of bevel nozzles 22B to the bevel standby position, the heating section 25B stops the heating operation, and the substrate holding section 21B The rotation is stopped and the holding of the substrate W is released. Next, the center robot 32 carries out the substrate W from the bevel unit 20B (step S28). The center robot 32 carries the substrate W into the cleaning unit 20C.
 <洗浄ユニット20C>
 図13は、洗浄ユニット20Cの構成の一例を概略的に示す図である。洗浄ユニット20Cは、基板保持部21Cと、洗浄ノズル22Cと、ガード23Cとを含んでいる。
<Cleaning unit 20C>
FIG. 13 is a diagram schematically showing an example of the configuration of the cleaning unit 20C. The cleaning unit 20C includes a substrate holding section 21C, a cleaning nozzle 22C, and a guard 23C.
 基板保持部21Cは基板Wを水平姿勢で保持し、基板Wを回転軸線Q1のまわりで回転させる。図13の例では、基板保持部21Cは、スピンベース211Cと、複数(3個以上)のチャックピン212Cと、回転機構213Cとを含む。スピンベース211Cは円板形状を有し、その厚み方向が鉛直方向に沿う水平姿勢で設けられている。円板形状のスピンベース211Cの外径は、基板保持部21に保持される円形の基板Wの径よりも若干大きい(図13を参照)。よって、スピンベース211Cは、保持すべき基板Wの下面(つまり、非デバイス面Wb)の全面と鉛直方向において対向する上面を有している。 The substrate holder 21C holds the substrate W in a horizontal position and rotates the substrate W around the rotation axis Q1. In the example of FIG. 13, the substrate holder 21C includes a spin base 211C, a plurality of (three or more) chuck pins 212C, and a rotation mechanism 213C. The spin base 211C has a disk shape and is provided in a horizontal position with its thickness direction along the vertical direction. The outer diameter of the disk-shaped spin base 211C is slightly larger than the diameter of the circular substrate W held by the substrate holder 21 (see FIG. 13). Therefore, the spin base 211C has an upper surface that faces the entire lower surface (ie, non-device surface Wb) of the substrate W to be held in the vertical direction.
 図13の例では、スピンベース211Cの上面の周縁部には複数のチャックピン212Cが立設されている。複数のチャックピン212Cは、円形の基板Wの周縁に対応する円周上に沿って等間隔に配置される。各チャックピン212Cは、基板Wの周縁に当接する保持位置と、基板Wの周縁から離れた開放位置との間で駆動可能に設けられている。複数のチャックピン212Cは、スピンベース211C内に収容された図示省略のリンク機構によって連動して駆動される。基板保持部21Cは、複数のチャックピン212Cをそれぞれの保持位置で停止させることにより、基板Wをスピンベース211Cの上方で上面に近接した水平姿勢にて保持することができるとともに、複数のチャックピン212Cをそれぞれの開放位置で停止させることにより、基板Wの保持を解除することができる。 In the example of FIG. 13, a plurality of chuck pins 212C are erected on the peripheral edge of the upper surface of the spin base 211C. The plurality of chuck pins 212C are arranged at equal intervals along a circumference corresponding to the periphery of the circular substrate W. Each chuck pin 212C is provided so as to be movable between a holding position where it contacts the periphery of the substrate W and an open position where it is away from the periphery of the substrate W. The plurality of chuck pins 212C are driven in conjunction with each other by a link mechanism (not shown) housed in the spin base 211C. By stopping the plurality of chuck pins 212C at their respective holding positions, the substrate holding part 21C can hold the substrate W in a horizontal position above the spin base 211C and close to the upper surface, and the plurality of chuck pins By stopping 212C at each open position, the holding of the substrate W can be released.
 回転機構213Cは、スピンベース211Cを回転軸線Q1のまわりで回転させる。これにより、複数のチャックピン212Cに保持された基板Wも回転軸線Q1のまわりで回転する。回転機構213Cの構成の一例は回転機構212Aと同様である。 The rotation mechanism 213C rotates the spin base 211C around the rotation axis Q1. As a result, the substrate W held by the plurality of chuck pins 212C also rotates around the rotation axis Q1. An example of the configuration of the rotation mechanism 213C is the same as that of the rotation mechanism 212A.
 なお、基板保持部21Cは必ずしもチャックピン212Cを含んでいる必要はなく、例えば、基板保持部21A,21Bと同様に、基板Wを吸着保持してもよい。 Note that the substrate holder 21C does not necessarily need to include the chuck pin 212C, and may hold the substrate W by suction, for example, like the substrate holders 21A and 21B.
 洗浄ノズル22Cは基板Wに向かって処理液を吐出して、基板Wに処理液を供給する。洗浄ノズル22Cは供給管221Cの下流端に接続され、供給管221Cの上流端は処理液供給源223Cに接続される。処理液供給源223Cからの処理液は供給管221Cを通じて洗浄ノズル22Cに供給され、洗浄ノズル22Cの吐出口22cから吐出される。供給管221Cにはバルブ222Cが設けられている。バルブ222Cの開閉は、洗浄ノズル22Cからの処理液の吐出および吐出停止を切り替える。 The cleaning nozzle 22C discharges the processing liquid toward the substrate W to supply the processing liquid to the substrate W. The cleaning nozzle 22C is connected to the downstream end of the supply pipe 221C, and the upstream end of the supply pipe 221C is connected to the processing liquid supply source 223C. The processing liquid from the processing liquid supply source 223C is supplied to the cleaning nozzle 22C through the supply pipe 221C, and is discharged from the discharge port 22c of the cleaning nozzle 22C. A valve 222C is provided on the supply pipe 221C. Opening and closing of the valve 222C switches between discharging and stopping the discharging of the processing liquid from the cleaning nozzle 22C.
 洗浄ユニット20Cは、複数種の処理液が供給されるように構成される。より具体的には、洗浄ユニット20Cは、異物除去液および膜除去液を選択的に供給可能である。例えば、異物除去液および膜除去液をそれぞれ吐出する2つの洗浄ノズル22Cが設けられてもよい。 The cleaning unit 20C is configured to be supplied with multiple types of processing liquids. More specifically, the cleaning unit 20C can selectively supply the foreign matter removal liquid and the membrane removal liquid. For example, two cleaning nozzles 22C may be provided that discharge the foreign matter removing liquid and the film removing liquid, respectively.
 図13の例では、洗浄ノズル22Cはノズル移動機構25Cによって洗浄処理位置と洗浄待機位置との間で移動可能に設けられている。洗浄処理位置は、洗浄ノズル22Cが基板Wに向かって処理液を吐出する位置であり、例えば、基板Wの中央部と鉛直方向において対向する位置である。洗浄待機位置は、洗浄ノズル22Cが処理液を基板Wに向かって吐出しないときの位置であり、例えば、基板Wの端面よりも径方向外側の位置である。洗浄ノズル22Cが処理待機位置で停止する状態では、基板Wの搬出入時において、洗浄ノズル22Cとセンターロボット32との物理的な衝突を回避することができる。ノズル移動機構25Cは、例えば、ノズル移動機構222Bと同様のアーム旋回機構を有する。 In the example of FIG. 13, the cleaning nozzle 22C is provided movably between the cleaning processing position and the cleaning standby position by a nozzle moving mechanism 25C. The cleaning processing position is a position where the cleaning nozzle 22C discharges a processing liquid toward the substrate W, and is, for example, a position facing the center of the substrate W in the vertical direction. The cleaning standby position is a position when the cleaning nozzle 22C does not discharge the processing liquid toward the substrate W, and is, for example, a position outside the end surface of the substrate W in the radial direction. When the cleaning nozzle 22C is stopped at the processing standby position, a physical collision between the cleaning nozzle 22C and the central robot 32 can be avoided when loading and unloading the substrate W. The nozzle moving mechanism 25C has, for example, an arm turning mechanism similar to the nozzle moving mechanism 222B.
 図13の例では、洗浄ユニット20Cには固定ノズル24Cも設けられている。固定ノズル24Cは、基板保持部21Cによって保持された基板Wよりも鉛直上方かつ基板Wの端面よりも径方向外側に設けられている。固定ノズル24Cは供給管241Cの下流端に接続され、供給管241Cの上流端はリンス液供給源243Cに接続されている。リンス液供給源243Cからのリンス液は供給管241Cを通じて固定ノズル24Cに供給され、固定ノズル24Cの吐出口から基板Wの上面(つまり、デバイス面Wa)に向かって吐出される。供給管241Cにはバルブ242Cが設けられている。バルブ242Cの開閉により、固定ノズル24Cからのリンス液の吐出および吐出停止が切り替えられる。 In the example of FIG. 13, the cleaning unit 20C is also provided with a fixed nozzle 24C. The fixed nozzle 24C is provided vertically above the substrate W held by the substrate holder 21C and radially outward from the end surface of the substrate W. The fixed nozzle 24C is connected to the downstream end of the supply pipe 241C, and the upstream end of the supply pipe 241C is connected to the rinse liquid supply source 243C. The rinsing liquid from the rinsing liquid supply source 243C is supplied to the fixed nozzle 24C through the supply pipe 241C, and is discharged from the discharge port of the fixed nozzle 24C toward the upper surface of the substrate W (that is, the device surface Wa). A valve 242C is provided on the supply pipe 241C. By opening and closing the valve 242C, discharge and stop of the rinse liquid from the fixed nozzle 24C are switched.
 ガード23Cは、基板Wの端面から飛散する処理液を受け止めるための部材である。ガード23Cは、基板保持部21Cを囲む筒状形状を有しており、例えば、互いに独立して昇降可能な複数のガードを含む。図13の例では、複数のガード23Cとして内ガード231C、中ガード232Cおよび外ガード233Cが示されている。各ガード231C~233Cは、基板保持部21Cの周囲を取り囲み、回転軸線Q1に対してほぼ回転対称となる形状を有する。 The guard 23C is a member for catching the processing liquid splashed from the end surface of the substrate W. The guard 23C has a cylindrical shape surrounding the substrate holding part 21C, and includes, for example, a plurality of guards that can be raised and lowered independently of each other. In the example of FIG. 13, an inner guard 231C, a middle guard 232C, and an outer guard 233C are shown as the plurality of guards 23C. Each of the guards 231C to 233C surrounds the substrate holder 21C and has a shape that is approximately rotationally symmetrical with respect to the rotation axis Q1.
 ガード23Cの機能はガード23Bと同様であり、内ガード231C、中ガード232Cおよび外ガード233Cは、互いに異なる種類の処理液を受け止めるための部材である。図13に例示されたガード23Cの具体的な形状はガード23Bと相違するものの、ガード23Cの形状自体は本実施の形態の本質ではないので、ここでは、詳細な説明を省略する。 The function of the guard 23C is the same as that of the guard 23B, and the inner guard 231C, middle guard 232C, and outer guard 233C are members for receiving different types of processing liquids. Although the specific shape of the guard 23C illustrated in FIG. 13 is different from the guard 23B, the shape itself of the guard 23C is not the essence of this embodiment, so a detailed explanation will be omitted here.
 ガード231C~233Cはガード昇降機構26Cによって昇降可能である。ガード昇降機構26Cはガード231C~233Cが互いに衝突しないように、それぞれのガード処理位置とガード待機位置との間でガード231C~233Cを昇降させる。図13の例では、ガード待機位置に位置しているガード231C~233Cが実線で示され、ガード処理位置に位置しているガード231C~233Cの一部が二点鎖線で示されている。ガード昇降機構26Cの構成の一例はガード昇降機構234Bと同様である。 The guards 231C to 233C can be raised and lowered by a guard raising and lowering mechanism 26C. The guard raising/lowering mechanism 26C raises and lowers the guards 231C to 233C between their respective guard processing positions and guard standby positions so that the guards 231C to 233C do not collide with each other. In the example of FIG. 13, the guards 231C to 233C located at the guard standby position are shown by solid lines, and some of the guards 231C to 233C located at the guard processing position are shown by two-dot chain lines. An example of the configuration of the guard lifting mechanism 26C is the same as that of the guard lifting mechanism 234B.
 <基板ベベル処理および保護膜除去処理>
 図14は、基板ベベル処理(ステップS3)および保護膜除去処理(ステップS4)の具体的な一例を示すフローチャートである。まず、センターロボット32が基板Wを洗浄ユニット20Cに搬入する(ステップS31)。基板保持部21Cは、搬入された基板Wを保持する。
<Substrate bevel treatment and protective film removal treatment>
FIG. 14 is a flowchart showing a specific example of the substrate bevel process (step S3) and the protective film removal process (step S4). First, the central robot 32 carries the substrate W into the cleaning unit 20C (step S31). The substrate holding section 21C holds the loaded substrate W.
 次に、基板保持部21Cは基板Wを回転させる(ステップS32)。また、ガード昇降機構26Cは、ガード231C~233Cのうち異物除去液に対応したガードをガード処理位置に上昇させる。 Next, the substrate holder 21C rotates the substrate W (step S32). Further, the guard lifting/lowering mechanism 26C raises the guard corresponding to the foreign matter removing liquid among the guards 231C to 233C to the guard processing position.
 次に、洗浄ユニット20Cは基板Wの基板周縁部VW1に異物除去液を供給する(ステップS33)。具体的には、ノズル移動機構25Cが洗浄ノズル22Cを洗浄処理位置に移動させ、洗浄ユニット20C(より具体的には、制御部90)が異物除去液に対応したバルブ222Cを開いて、洗浄ノズル22Cの吐出口22cから異物除去液を吐出させる。異物除去液は、例えば、高温のSPMである。異物除去液は保護膜F1の上面に着液し、基板Wの回転に伴う遠心力を受けて保護膜F1の上面を径方向外側に流れ、続けて、基板Wの周縁領域Wa1を流れる(図6(c)も参照)。これにより、異物除去液は基板Wの周縁領域Wa1の異物M1に作用し、異物M1を除去することができる。なお、異物除去液は基板Wの端面を回り込んで、基板Wの非デバイス面Wbの周縁領域にも到達し得る。この場合、異物除去液は、基板Wの端面および非デバイス面Wbの周縁領域の異物M1を除去することもできる。 Next, the cleaning unit 20C supplies a foreign matter removing liquid to the substrate peripheral portion VW1 of the substrate W (step S33). Specifically, the nozzle moving mechanism 25C moves the cleaning nozzle 22C to the cleaning processing position, and the cleaning unit 20C (more specifically, the control unit 90) opens the valve 222C corresponding to the foreign matter removal liquid, and the cleaning nozzle 22C moves to the cleaning processing position. The foreign matter removing liquid is discharged from the discharge port 22c of 22C. The foreign matter removing liquid is, for example, high temperature SPM. The foreign matter removal liquid lands on the upper surface of the protective film F1, flows radially outward on the upper surface of the protective film F1 under the influence of centrifugal force caused by the rotation of the substrate W, and then flows through the peripheral area Wa1 of the substrate W (Fig. 6(c)). Thereby, the foreign matter removing liquid acts on the foreign matter M1 in the peripheral area Wa1 of the substrate W, and can remove the foreign matter M1. Note that the foreign matter removing liquid can go around the end surface of the substrate W and reach the peripheral region of the non-device surface Wb of the substrate W. In this case, the foreign matter removing liquid can also remove the foreign matter M1 on the end surface of the substrate W and the peripheral region of the non-device surface Wb.
 異物M1が十分に除去されると、洗浄ユニット20Cは、異物除去液に対応したバルブ222Cを閉じる。より具体的には、異物除去液の供給からの経過時間が第3所定時間以上となったときに、洗浄ユニット20Cは、異物除去液に対応したバルブ222Cを閉じる。 When the foreign matter M1 is sufficiently removed, the cleaning unit 20C closes the valve 222C corresponding to the foreign matter removal liquid. More specifically, when the elapsed time from the supply of the foreign matter removing liquid reaches a third predetermined time or more, the cleaning unit 20C closes the valve 222C corresponding to the foreign matter removing liquid.
 次に、ガード昇降機構26Cが必要に応じて、ガード23Cの昇降状態を変更する。つまり、リンス液用のガードが異物除去液用のガードと異なる場合には、ガード昇降機構26Cがリンス液に対応したガードをガード処理位置に上昇させる。 Next, the guard elevating mechanism 26C changes the elevating state of the guard 23C as necessary. That is, if the guard for the rinse liquid is different from the guard for the foreign matter removal liquid, the guard lifting mechanism 26C raises the guard corresponding to the rinse liquid to the guard processing position.
 次に、洗浄ユニット20Cは基板Wにリンス液を供給する(ステップS34)。具体的な一例として、洗浄ユニット20Cはバルブ242Cを開いて固定ノズル24Cの吐出口からリンス液を吐出させる。リンス液は保護膜F1の上面の中央部に着液し、保護膜F1の上面を径方向外側に流れる。リンス液は、続けて基板Wの周縁領域Wa1を流れて、基板Wの端面から飛散する。これにより、基板W上の異物除去液がリンス液によって押し流される。つまり、基板W上の異物除去液がリンス液に置換される。 Next, the cleaning unit 20C supplies a rinsing liquid to the substrate W (step S34). As a specific example, the cleaning unit 20C opens the valve 242C and discharges the rinse liquid from the discharge port of the fixed nozzle 24C. The rinsing liquid lands on the center of the upper surface of the protective film F1 and flows radially outward on the upper surface of the protective film F1. The rinsing liquid continues to flow through the peripheral area Wa1 of the substrate W and scatters from the end surface of the substrate W. As a result, the foreign matter removing liquid on the substrate W is washed away by the rinsing liquid. That is, the foreign matter removing liquid on the substrate W is replaced with the rinsing liquid.
 異物除去液が十分にリンス液に置換されると、洗浄ユニット20Cはバルブ242Cを閉じる。より具体的には、リンス液の供給からの経過時間が第4所定時間以上となったときに、洗浄ユニット20Cはバルブ242Cを閉じる。 When the foreign matter removal liquid is sufficiently replaced with the rinsing liquid, the cleaning unit 20C closes the valve 242C. More specifically, the cleaning unit 20C closes the valve 242C when the elapsed time from the supply of the rinse liquid reaches a fourth predetermined time or more.
 次に、ガード昇降機構26Cが必要に応じて、ガード23Cの昇降状態を変更する。つまり、膜除去液用のガードがリンス液用のガードと異なる場合には、ガード昇降機構26Cは、膜除去液に対応したガードをガード処理位置に上昇させる。 Next, the guard elevating mechanism 26C changes the elevating state of the guard 23C as necessary. That is, when the guard for the membrane removal liquid is different from the guard for the rinsing liquid, the guard lifting/lowering mechanism 26C raises the guard corresponding to the membrane removal liquid to the guard processing position.
 次に、洗浄ユニット20Cは基板Wに膜除去液を供給する(ステップS41)。具体的には、洗浄ユニット20Cは、膜除去液に対応したバルブ222Cを開いて、洗浄ノズル22Cの吐出口22cから膜除去液を吐出させる。膜除去液は、例えば、フッ酸である。膜除去液は保護膜F1の上面の中央部に着液し、保護膜F1の上面を径方向外側に流れ、続けて基板Wの周縁領域Wa1を流れて、基板Wの端面から外側に飛散する(図6(d)も参照)。このとき、膜除去液は基板W上の保護膜F1に作用して保護膜F1を除去する。 Next, the cleaning unit 20C supplies the film removal liquid to the substrate W (step S41). Specifically, the cleaning unit 20C opens the valve 222C corresponding to the membrane removal liquid and causes the membrane removal liquid to be discharged from the discharge port 22c of the cleaning nozzle 22C. The membrane removing liquid is, for example, hydrofluoric acid. The film removal liquid lands on the center of the upper surface of the protective film F1, flows radially outward on the upper surface of the protective film F1, continues to flow through the peripheral area Wa1 of the substrate W, and scatters outward from the end surface of the substrate W. (See also Figure 6(d)). At this time, the film removing liquid acts on the protective film F1 on the substrate W to remove the protective film F1.
 保護膜F1が十分に除去されると、洗浄ユニット20Cは、膜除去液に対応したバルブ222Cを閉じる。より具体的には、膜除去液の供給からの経過時間が第5所定時間以上となったときに、洗浄ユニット20Cは、膜除去液に対応したバルブ222Cを閉じる。 When the protective film F1 is sufficiently removed, the cleaning unit 20C closes the valve 222C corresponding to the film removal liquid. More specifically, when the elapsed time from the supply of the membrane removal liquid reaches a fifth predetermined time or more, the cleaning unit 20C closes the valve 222C corresponding to the membrane removal liquid.
 次に、ガード昇降機構26Cが必要に応じて、ガード23Cの昇降状態を変更する。つまり、リンス液用のガードが膜除去液用のガードと異なる場合には、ガード昇降機構26Cは、リンス液に対応したガードをガード処理位置に上昇させる。 Next, the guard elevating mechanism 26C changes the elevating state of the guard 23C as necessary. That is, when the guard for the rinsing liquid is different from the guard for the membrane removal liquid, the guard lifting mechanism 26C raises the guard corresponding to the rinsing liquid to the guard processing position.
 次に、洗浄ユニット20Cは基板Wにリンス液を供給する(ステップS42)。具体的な一例として、洗浄ユニット20Cはバルブ242Cを開いて固定ノズル24Cの吐出口からリンス液を吐出させる。リンス液は基板Wのデバイス面Waの中央部に着液し、デバイス面Waを径方向外側に流れて、基板Wの端面から外側に飛散する。これにより、基板W上の膜除去液がリンス液によって押し流される。つまり、基板W上の膜除去液がリンス液に置換される。 Next, the cleaning unit 20C supplies a rinsing liquid to the substrate W (step S42). As a specific example, the cleaning unit 20C opens the valve 242C and discharges the rinse liquid from the discharge port of the fixed nozzle 24C. The rinsing liquid lands on the center of the device surface Wa of the substrate W, flows radially outward on the device surface Wa, and scatters outward from the end surface of the substrate W. As a result, the film removal liquid on the substrate W is washed away by the rinsing liquid. That is, the film removal liquid on the substrate W is replaced with the rinsing liquid.
 膜除去液が十分にリンス液に置換されると、洗浄ユニット20Cはバルブ242Cを閉じる。より具体的には、リンス液の供給からの経過時間が第6所定時間以上となったときに、洗浄ユニット20Cはバルブ242Cを閉じる。また、ノズル移動機構25Cが洗浄ノズル22Cを洗浄待機位置へ移動させる。 When the membrane removal liquid is sufficiently replaced with the rinsing liquid, the cleaning unit 20C closes the valve 242C. More specifically, the cleaning unit 20C closes the valve 242C when the elapsed time from the supply of the rinse liquid reaches a sixth predetermined time or more. Further, the nozzle moving mechanism 25C moves the cleaning nozzle 22C to the cleaning standby position.
 次に、洗浄ユニット20Cは基板Wを乾燥させる(ステップS43)。具体的な一例として、基板保持部21Cが基板Wの回転速度を高めて、基板Wを高速で回転させる(いわゆるスピンドライ)。基板Wが十分に乾燥すると、基板保持部21Cは基板Wの回転を停止させる。 Next, the cleaning unit 20C dries the substrate W (step S43). As a specific example, the substrate holder 21C increases the rotational speed of the substrate W to rotate the substrate W at high speed (so-called spin drying). When the substrate W is sufficiently dried, the substrate holder 21C stops the rotation of the substrate W.
 次に、基板保持部21Cが基板Wの保持を解除し、センターロボット32が基板Wを洗浄ユニット20Cから搬出する(ステップS44)。 Next, the substrate holding section 21C releases the holding of the substrate W, and the center robot 32 carries out the substrate W from the cleaning unit 20C (step S44).
 以上の動作により、基板処理装置100は基板Wの基板周縁部VW1を処理することができる。 Through the above operations, the substrate processing apparatus 100 can process the substrate peripheral portion VW1 of the substrate W.
 <変形例>
 上述の例では、基板ベベル処理(ステップS3)において、洗浄ノズル22Cは基板Wの中央部に向かって異物除去液を吐出し、異物除去液を基板W上の保護膜F1の中央部に着液させている。しかしながら、必ずしもこれに限らない。異物除去液が基板Wの周縁領域Wa1に供給される限りにおいて、異物除去液の着液位置は適宜に変更してもよい。例えば、洗浄ノズル22Cは、保護膜F1の中心と保護膜F1の周縁との間の着液位置に向かって異物除去液を吐出してもよい。
<Modified example>
In the above example, in the substrate bevel process (step S3), the cleaning nozzle 22C discharges the foreign matter removal liquid toward the center of the substrate W, and causes the foreign matter removal liquid to land on the center of the protective film F1 on the substrate W. I'm letting you do it. However, this is not necessarily the case. As long as the foreign matter removing liquid is supplied to the peripheral area Wa1 of the substrate W, the landing position of the foreign matter removing liquid may be changed as appropriate. For example, the cleaning nozzle 22C may discharge the foreign matter removal liquid toward a landing position between the center of the protective film F1 and the periphery of the protective film F1.
 また、上述の例では、保護膜形成処理では、ウェット処理により保護膜F1を形成し、保護膜除去処理では、ウェット処理により保護膜F1を除去している。このため、安価なウェット処理ユニット20を用いることができる。しかしながら、例えば、コスト低減が要求されていなければ、保護膜F1の形成および除去の少なくともいずれか一方をドライ処理によって行ってもよい。 Furthermore, in the above example, in the protective film forming process, the protective film F1 is formed by wet processing, and in the protective film removing process, the protective film F1 is removed by wet processing. Therefore, an inexpensive wet processing unit 20 can be used. However, for example, if cost reduction is not required, at least one of the formation and removal of the protective film F1 may be performed by dry processing.
 また、上述の例では、基板処理装置100に塗布ユニット20A、熱処理ユニット10A、ベベルユニット20Bおよび洗浄ユニット20Cが設けられているものの、これらが異なる処理装置に分散して設けられてもよい。例えば、塗布ユニット20Aおよび熱処理ユニット10Aがコータ・デベロッパ(第1処理装置)に設けられ、ベベルユニット20Bおよび洗浄ユニット20Cがコータ・デベロッパとは別の第2処理装置に設けられてもよい。この場合、第1処理装置および第2処理装置の各々はロードポート111を含み、第1処理装置と第2処理装置との間において、複数の基板Wを収納したキャリアCを搬送する搬送装置が設けられる。 Further, in the above example, the coating unit 20A, the heat treatment unit 10A, the bevel unit 20B, and the cleaning unit 20C are provided in the substrate processing apparatus 100, but these may be provided separately in different processing apparatuses. For example, the coating unit 20A and the heat treatment unit 10A may be provided in a coater/developer (first processing device), and the bevel unit 20B and the cleaning unit 20C may be provided in a second processing device separate from the coater/developer. In this case, each of the first processing device and the second processing device includes a load port 111, and a transport device for transporting a carrier C containing a plurality of substrates W is provided between the first processing device and the second processing device. provided.
 ここで、課題を解決するための手段の欄の用語と、発明を実施するための形態の欄の用語との対応を説明する。基板の主面にSOG膜を含む保護膜を形成する工程であって、該主面の周縁部が保護膜で覆われておらず、該主面のうち周縁部より内側領域が保護膜で覆われるように保護膜を形成する第1工程は、例えば、ステップS2、あるいは、ステップS1およびステップS2の一組に相当する。硫酸と過酸化水素水との混合液を含む処理液により該周縁部上の残渣または残膜を除去する第2工程は、ステップS3に相当する。保護膜を除去する第3工程は、ステップS4に相当する。 Here, the correspondence between the terms in the Means for Solving the Problems column and the terms in the Detailed Description column will be explained. A process of forming a protective film including an SOG film on the main surface of a substrate, the peripheral edge of the main surface is not covered with the protective film, and the area inside the peripheral edge of the main surface is covered with the protective film. The first step of forming the protective film in such a manner corresponds to, for example, step S2 or a set of step S1 and step S2. The second step of removing the residue or residual film on the peripheral portion using a treatment liquid containing a mixed solution of sulfuric acid and hydrogen peroxide corresponds to step S3. The third step of removing the protective film corresponds to step S4.
 以上のように、基板処理装置100および基板処理方法は詳細に説明されたが、上記の説明は、全ての局面において、例示であって、これらがそれに限定されるものではない。例示されていない無数の変形例が、この開示の範囲から外れることなく想定され得るものと解される。上記各実施形態および各変形例で説明した各構成は、相互に矛盾しない限り適宜組み合わせたり、省略したりすることができる。 As described above, the substrate processing apparatus 100 and the substrate processing method have been described in detail, but the above explanations are illustrative in all aspects, and are not limited thereto. It is understood that countless variations not illustrated can be envisioned without departing from the scope of this disclosure. The configurations described in each of the above embodiments and modifications can be appropriately combined or omitted as long as they do not contradict each other.
 100 基板処理装置
 21B,21C 基板保持部
 22b,22c 吐出口
 22B 第1ノズル(ベベルノズル)
 22C 第2ノズル(洗浄ノズル)
 W 基板
100 Substrate processing apparatus 21B, 21C Substrate holder 22b, 22c Discharge port 22B First nozzle (bevel nozzle)
22C 2nd nozzle (cleaning nozzle)
W board

Claims (7)

  1.  基板の主面にSOG膜を含む保護膜を形成する工程であって、前記主面の周縁部が前記保護膜で覆われておらず、前記主面のうち前記周縁部より内側領域が前記保護膜で覆われるように前記保護膜を形成する第1工程と、
     前記第1工程の後、硫酸と過酸化水素水との混合液を含む処理液により前記周縁部上の残渣または残膜を除去する第2工程と、
     前記第2工程の後、前記保護膜を除去する第3工程と、を備える、基板処理方法。
    A step of forming a protective film including an SOG film on a main surface of a substrate, wherein a peripheral portion of the main surface is not covered with the protective film, and a region inside the peripheral portion of the main surface is covered with the protective film. a first step of forming the protective film so as to be covered with a film;
    After the first step, a second step of removing the residue or residual film on the peripheral portion with a treatment liquid containing a mixed solution of sulfuric acid and hydrogen peroxide;
    A substrate processing method, comprising a third step of removing the protective film after the second step.
  2.  請求項1に記載の基板処理方法であって、
     前記残膜または前記残膜は、硬化層を含むレジスト、アモルファスカーボンおよびNiPt合金の少なくともいずれか一つを含む、基板処理方法。
    The substrate processing method according to claim 1,
    The substrate processing method, wherein the remaining film or the remaining film includes at least one of a resist including a hardened layer, amorphous carbon, and a NiPt alloy.
  3.  請求項1または請求項2に記載の基板処理方法であって、
     前記第3工程において、フッ酸を含む薬液により前記保護膜を除去する、基板処理方法。
    The substrate processing method according to claim 1 or 2,
    In the third step, the protective film is removed using a chemical solution containing hydrofluoric acid.
  4.  請求項1から請求項3のいずれか一つに記載の基板処理方法であって、
     前記第1工程は、第1ノズルからフッ酸を含む薬液を前記基板に向けて吐出し、前記基板の前記主面の全面に形成されたSOG膜の周縁部を前記薬液により除去して、前記保護膜を前記主面の前記内側領域に形成する保護ベベル工程を含み、
     前記第2工程において、前記第1ノズルの吐出口よりも大きな吐出口を有する第2ノズルから前記処理液を前記基板に向けて吐出し、前記処理液により前記残渣または前記残膜を除去する、基板処理方法。
    The substrate processing method according to any one of claims 1 to 3,
    In the first step, a chemical solution containing hydrofluoric acid is discharged from a first nozzle toward the substrate, and a peripheral portion of the SOG film formed on the entire main surface of the substrate is removed by the chemical solution. a protective bevel step of forming a protective film on the inner region of the main surface;
    In the second step, the treatment liquid is discharged toward the substrate from a second nozzle having a discharge opening larger than the discharge opening of the first nozzle, and the residue or the remaining film is removed by the treatment liquid. Substrate processing method.
  5.  請求項4に記載の基板処理方法であって、
     前記第1工程において、前記基板の前記主面と鉛直方向において向かい合う位置に設けられた前記第1ノズルから、斜め外方を向く吐出方向に沿って前記薬液を吐出させて、前記SOG膜の前記周縁部を除去し、
     前記第2工程において、前記第2ノズルが前記処理液を前記保護膜に向かって吐出し、前記保護膜に着液した前記処理液を、前記基板の回転により、前記保護膜から前記基板の前記周縁部に向かって流す、基板処理方法。
    5. The substrate processing method according to claim 4,
    In the first step, the chemical liquid is discharged from the first nozzle provided at a position facing the main surface of the substrate in the vertical direction along a discharge direction facing diagonally outward, so that the chemical liquid is discharged from the SOG film. remove the periphery,
    In the second step, the second nozzle discharges the processing liquid toward the protective film, and the processing liquid that has landed on the protective film is transferred from the protective film to the substrate by rotation of the substrate. A substrate processing method that flows toward the periphery.
  6.  請求項4または請求項5に記載の基板処理方法であって、
     前記第1工程は、前記保護ベベル工程の前に実行され、前記基板の前記主面に塗布液を塗布し、前記塗布液を乾燥させて前記保護膜を形成する保護膜形成工程をさらに備える、基板処理方法。
    The substrate processing method according to claim 4 or 5,
    The first step is performed before the protective bevel step, and further includes a protective film forming step of applying a coating liquid to the main surface of the substrate and drying the coating liquid to form the protective film. Substrate processing method.
  7.  主面の周縁部がSOG膜を含む保護膜で覆われておらず、かつ、前記主面のうち前記周縁部より内側領域が前記保護膜で覆われた基板を水平姿勢で保持しつつ、前記基板を回転させる基板保持部と、
     硫酸と過酸化水素水との混合液を含む処理液を前記基板に向けて吐出して、前記基板の前記主面の周縁部上の残渣または残膜を前記処理液により除去するノズルと
    を備える、基板処理装置。
    While holding a substrate in a horizontal position in which a peripheral edge of the main surface is not covered with a protective film including an SOG film and a region of the main surface inside the peripheral edge is covered with the protective film, a substrate holder that rotates the substrate;
    a nozzle that discharges a processing liquid containing a mixed solution of sulfuric acid and hydrogen peroxide toward the substrate, and removes a residue or a remaining film on the peripheral edge of the main surface of the substrate with the processing liquid. , substrate processing equipment.
PCT/JP2023/008806 2022-03-22 2023-03-08 Substrate-processing method and substrate-processing apparatus WO2023181943A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022045210A JP2023139604A (en) 2022-03-22 2022-03-22 Substrate processing method and substrate processing apparatus
JP2022-045210 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023181943A1 true WO2023181943A1 (en) 2023-09-28

Family

ID=88100747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008806 WO2023181943A1 (en) 2022-03-22 2023-03-08 Substrate-processing method and substrate-processing apparatus

Country Status (3)

Country Link
JP (1) JP2023139604A (en)
TW (1) TW202343557A (en)
WO (1) WO2023181943A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263429A (en) * 1991-02-18 1992-09-18 Sharp Corp Manufacturing method of semiconductor device
JPH08264412A (en) * 1995-03-20 1996-10-11 Nittetsu Semiconductor Kk Application of application liquid in semiconductor device manufacture process
JPH11186218A (en) * 1997-12-19 1999-07-09 Sharp Corp Low temperature removal of copper, copper removing system and semiconductor wafer
JP2000269178A (en) * 1999-03-15 2000-09-29 Nec Corp Method and apparatus for etching removal as well as method and apparatus for cleaning
JP2001118824A (en) * 1999-08-10 2001-04-27 Dainippon Screen Mfg Co Ltd Substrate treating device and method
JP2008177471A (en) * 2007-01-22 2008-07-31 Tokyo Electron Ltd Processing method of substrate, coater and substrate treatment system
JP2010118519A (en) * 2008-11-13 2010-05-27 Tokyo Electron Ltd Method for cleaning wafer, and storage medium
JP2015018220A (en) * 2013-06-11 2015-01-29 信越化学工業株式会社 Underlayer film material and pattern forming method
JP2015056448A (en) * 2013-09-10 2015-03-23 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
JP2017005142A (en) * 2015-06-11 2017-01-05 インターユニバーシティ マイクロエレクトロニクス センター CLEANING METHOD FOR Ge, SiGe OR GERMANIDE
JP2017117938A (en) * 2015-12-24 2017-06-29 東京エレクトロン株式会社 Substrate liquid processing apparatus and substrate liquid processing method
JP2020178087A (en) * 2019-04-22 2020-10-29 東京エレクトロン株式会社 Substrate processing method and substrate processing device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263429A (en) * 1991-02-18 1992-09-18 Sharp Corp Manufacturing method of semiconductor device
JPH08264412A (en) * 1995-03-20 1996-10-11 Nittetsu Semiconductor Kk Application of application liquid in semiconductor device manufacture process
JPH11186218A (en) * 1997-12-19 1999-07-09 Sharp Corp Low temperature removal of copper, copper removing system and semiconductor wafer
JP2000269178A (en) * 1999-03-15 2000-09-29 Nec Corp Method and apparatus for etching removal as well as method and apparatus for cleaning
JP2001118824A (en) * 1999-08-10 2001-04-27 Dainippon Screen Mfg Co Ltd Substrate treating device and method
JP2008177471A (en) * 2007-01-22 2008-07-31 Tokyo Electron Ltd Processing method of substrate, coater and substrate treatment system
JP2010118519A (en) * 2008-11-13 2010-05-27 Tokyo Electron Ltd Method for cleaning wafer, and storage medium
JP2015018220A (en) * 2013-06-11 2015-01-29 信越化学工業株式会社 Underlayer film material and pattern forming method
JP2015056448A (en) * 2013-09-10 2015-03-23 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
JP2017005142A (en) * 2015-06-11 2017-01-05 インターユニバーシティ マイクロエレクトロニクス センター CLEANING METHOD FOR Ge, SiGe OR GERMANIDE
JP2017117938A (en) * 2015-12-24 2017-06-29 東京エレクトロン株式会社 Substrate liquid processing apparatus and substrate liquid processing method
JP2020178087A (en) * 2019-04-22 2020-10-29 東京エレクトロン株式会社 Substrate processing method and substrate processing device

Also Published As

Publication number Publication date
JP2023139604A (en) 2023-10-04
TW202343557A (en) 2023-11-01

Similar Documents

Publication Publication Date Title
CN107871691B (en) Substrate processing method and substrate processing apparatus
TWI656570B (en) Substrate liquid processing device, substrate liquid processing method, and memory medium
JP6671217B2 (en) Substrate processing method and substrate processing apparatus
US11465167B2 (en) Substrate treatment apparatus
JP2006310733A (en) Substrate processing equipment and method
JP6688112B2 (en) Substrate processing equipment
JP2018113354A (en) Substrate processing method and substrate processing apparatus
CN108604546B (en) Substrate processing method and substrate processing apparatus
KR102197758B1 (en) Substrate processing method and substrate processing apparatus
KR20050035318A (en) Method and apparatus for wafer cleaning dry
JP5451037B2 (en) Substrate processing method and substrate processing apparatus
TWI814177B (en) Substrate processing apparatus and substrate processing method
WO2023181943A1 (en) Substrate-processing method and substrate-processing apparatus
JP2019062018A (en) Substrate processing method, substrate processing apparatus and storage medium
KR20210043665A (en) Substrate processing apparatus, processing liquid, and substrate processing method
JP2004319990A (en) Substrate processing method and substrate processing equipment
TWI667076B (en) Substrate processing method and substrate processing apparatus
JP5270183B2 (en) Polymer removal method and polymer removal apparatus
JP3754334B2 (en) Substrate processing apparatus and substrate processing method
KR20100048407A (en) Substrate support member and apparatus for treating substrate with the same
JP6771080B2 (en) Substrate processing equipment and substrate processing method
TWI819538B (en) Substrate treating apparatus and substrate treating method
WO2024009849A1 (en) Substrate processing method, substrate processing device, and storage medium
TW202309988A (en) Substrate processing method and substrate processing apparatus
JP2023048696A (en) Substrate processing apparatus and substrate processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774542

Country of ref document: EP

Kind code of ref document: A1