WO2023181893A1 - Separation membrane and method for manufacturing separation membrane - Google Patents

Separation membrane and method for manufacturing separation membrane Download PDF

Info

Publication number
WO2023181893A1
WO2023181893A1 PCT/JP2023/008429 JP2023008429W WO2023181893A1 WO 2023181893 A1 WO2023181893 A1 WO 2023181893A1 JP 2023008429 W JP2023008429 W JP 2023008429W WO 2023181893 A1 WO2023181893 A1 WO 2023181893A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate layer
separation
group
separation membrane
functional layer
Prior art date
Application number
PCT/JP2023/008429
Other languages
French (fr)
Japanese (ja)
Inventor
太一 坂巻
賢輔 谷
和也 吉村
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023181893A1 publication Critical patent/WO2023181893A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/70Polymers having silicon in the main chain, with or without sulfur, nitrogen, oxygen or carbon only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a separation membrane and a method for manufacturing a separation membrane.
  • Membrane separation methods have been developed as a method for separating acidic gases from mixed gases containing acidic gases such as carbon dioxide. Membrane separation methods can efficiently separate acidic gases while reducing operating costs, compared to absorption methods in which acidic gases contained in a gas mixture are absorbed by an absorbent and separated.
  • separation membranes used in membrane separation methods include composite membranes in which a separation functional layer is formed on a porous support.
  • the material for the separation functional layer include resins such as polyimide resin and polyether block amide resin.
  • Patent Documents 1 and 2 disclose separation membranes containing polyimide resin.
  • an intermediate layer is sometimes placed between the separation functional layer and the porous support. According to the intermediate layer, a separation functional layer with a small thickness can be easily formed. However, a separation membrane including an intermediate layer has room for improvement in terms of the permeation rate of the permeate fluid from the separation membrane.
  • the present invention provides a new separation membrane that is equipped with an intermediate layer and is suitable for improving the permeation rate of a permeate fluid.
  • the present invention a separation functional layer; a porous support supporting the separation functional layer; an intermediate layer disposed between the separation functional layer and the porous support; Equipped with The intermediate layer provides a separation membrane having a space in contact with both the separation functional layer and the porous support.
  • the present invention A method for producing a separation membrane comprising a separation functional layer, a porous support supporting the separation functional layer, and an intermediate layer disposed between the separation functional layer and the porous support.
  • the manufacturing method includes: A second laminate having the release liner, the separation functional layer, and the intermediate layer in this order is formed by forming the intermediate layer having a space on the first laminate having the release liner and the separation functional layer. to form a bonding the intermediate layer of the second laminate to the porous support so that the space contacts both the separation functional layer and the porous support to form a third laminate; removing the release liner from the third laminate;
  • a method for manufacturing a separation membrane including:
  • FIG. 2 is a schematic cross-sectional view of a separation membrane according to an embodiment of the present invention when cut in the thickness direction.
  • FIG. 3 is a schematic cross-sectional view of the intermediate layer included in the separation membrane, which is observed when the intermediate layer is cut parallel to the surface of the intermediate layer.
  • FIG. 7 is a schematic cross-sectional view of an intermediate layer included in a separation membrane according to a modified example, which is observed when the intermediate layer is cut parallel to the surface of the intermediate layer.
  • FIG. 7 is a schematic cross-sectional view of an intermediate layer included in a separation membrane according to another modified example, which is observed when the intermediate layer is cut parallel to the surface of the intermediate layer.
  • FIG. 7 is a plan view of an intermediate layer included in a separation membrane according to another modification.
  • FIG. 3 is a diagram for explaining a method for manufacturing a separation membrane.
  • FIG. 3 is a diagram for explaining a method for manufacturing a separation membrane.
  • FIG. 3 is a diagram for explaining a method for manufacturing a separation membrane.
  • 1 is a schematic cross-sectional view of a membrane separation device equipped with a separation membrane of the present invention.
  • FIG. 3 is a perspective view schematically showing a modified example of a membrane separation device equipped with the separation membrane of the present invention.
  • the separation membrane according to the first aspect of the present invention is a separation functional layer; a porous support supporting the separation functional layer; an intermediate layer disposed between the separation functional layer and the porous support; Equipped with The intermediate layer has a space in contact with both the separation functional layer and the porous support.
  • the intermediate layer has a main body portion that joins the separation functional layer and the porous support.
  • the main body portion has a stripe shape, a dot shape, a mesh shape, or a fibrous shape in plan view.
  • the main body portion includes an adhesive portion formed from an adhesive composition.
  • the adhesive composition is at least one selected from the group consisting of a silicone polymer, a (meth)acrylic polymer, and a rubber polymer. including.
  • the space exists on the surface of the intermediate layer.
  • the area ratio of the region is 40% or more.
  • the intermediate layer has a thickness of 0.1 ⁇ m or more.
  • the separation functional layer contains a polyimide resin.
  • the separation membrane according to any one of the first to eighth aspects is used to separate carbon dioxide from a mixed gas containing carbon dioxide and nitrogen.
  • the method for manufacturing a separation membrane according to the tenth aspect of the present invention includes: A method for producing a separation membrane comprising a separation functional layer, a porous support supporting the separation functional layer, and an intermediate layer disposed between the separation functional layer and the porous support. There it is, The manufacturing method includes: A second laminate having the release liner, the separation functional layer, and the intermediate layer in this order is formed by forming the intermediate layer having a space on the first laminate having the release liner and the separation functional layer. to form a bonding the intermediate layer of the second laminate to the porous support so that the space contacts both the separation functional layer and the porous support to form a third laminate; removing the release liner from the third laminate; including.
  • the separation membrane 10 of this embodiment includes a separation functional layer 1, an intermediate layer 2, and a porous support 3.
  • the porous support 3 supports the separation functional layer 1 via the intermediate layer 2.
  • the intermediate layer 2 is arranged between the separation functional layer 1 and the porous support 3 and is in direct contact with each of the separation functional layer 1 and the porous support 3.
  • the intermediate layer 2 has a space 6 in contact with both the separation functional layer 1 and the porous support 3.
  • the intermediate layer 2 further includes a main body portion 5 that joins the separation functional layer 1 and the porous support 3 together with the space 6 .
  • the separation functional layer 1 is, for example, a layer that can preferentially transmit an acidic gas contained in a mixed gas.
  • the separation functional layer 1 contains resin.
  • the resin contained in the separation functional layer 1 include polyether block amide resin, polyamide resin, polyether resin, polyimide resin, cellulose acetate resin, silicone resin, and fluororesin. Separation functional layer 1 preferably contains polyimide resin.
  • the polymer contained in the polyimide resin is not particularly limited, and includes, for example, polyimide P having a structural unit represented by the following formula (1).
  • X and Y are linking groups.
  • Examples of polyimide P include those described in Patent Document 1 or 2.
  • the structural unit of formula (1) may be a structural unit represented by the following formula (2).
  • X 1 and Y 1 are linking groups.
  • X 1 includes, for example, at least one selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom, and a silicon atom, preferably includes at least one selected from the group consisting of an oxygen atom and a nitrogen atom, and more preferably contains an oxygen atom.
  • X 1 contains, for example, at least one functional group selected from the group consisting of an ether group, an ester group, a ketone group, a hydroxyl group, an amide group, a thioether group, and a sulfonyl group, and preferably consists of an ether group and an ester group. At least one selected from the group.
  • X 1 may contain other groups, such as hydrocarbon groups, in addition to the above-mentioned functional groups.
  • the number of carbon atoms in the hydrocarbon group is not particularly limited, but is, for example, 1 to 15.
  • the number of carbon atoms may be 1 to 3 or 6 to 15.
  • a divalent hydrocarbon group is preferable. Examples of divalent hydrocarbon groups include methylene group, ethylene group, propane-1,3-diyl group, propane-2,2-diyl group, butane-1,4-diyl group, and pentane-1,5-diyl group.
  • Diyl group 2,2-dimethylpropane-1,3-diyl group, 1,4-phenylene group, 2,5-di-tert-butyl-1,4-phenylene group, 1-methyl-1,1-ethanediylbis (1,4-phenylene) group and biphenyl-4,4'-diyl group.
  • at least one hydrogen atom contained in these hydrocarbon groups may be substituted with a halogen atom.
  • X 1 is, for example, a linking group represented by the general formula -O-R 7 -O- or the general formula -COO-R 8 -OOC-.
  • R 7 and R 8 are divalent hydrocarbon groups having 1 to 15 carbon atoms. Examples of the divalent hydrocarbon group include those mentioned above.
  • X 1 does not need to contain the above-mentioned functional group.
  • Examples of such X 1 include an alkylene group.
  • the number of carbon atoms in the alkylene group is not particularly limited, and may be, for example, from 1 to 15, or from 1 to 5.
  • the alkylene group may be branched, it is preferably linear.
  • some of the hydrogen atoms of the alkylene group may be substituted with halogen atoms, it is preferable that the alkylene group is in an unsubstituted state, that is, it is a linear or branched alkylene group itself.
  • Y 1 includes, for example, at least one selected from the group consisting of oxygen atoms, nitrogen atoms, sulfur atoms, and silicon atoms, preferably includes at least one selected from the group consisting of oxygen atoms and nitrogen atoms, and more preferably contains an oxygen atom.
  • Y 1 contains, for example, at least one functional group selected from the group consisting of an ether group, an ester group, a ketone group, a hydroxyl group, an amide group, a thioether group, and a sulfonyl group, and preferably contains an ether group.
  • Y 1 may contain other groups, such as hydrocarbon groups, in addition to the above-mentioned functional groups. Examples of the hydrocarbon group include those mentioned above for X 1 . Y 1 may be the same as or different from X 1 .
  • R 1 to R 6 are each independently a hydrogen atom, a halogen atom, a hydroxyl group, a sulfonic acid group, an alkoxy group having 1 to 30 carbon atoms, or a hydrocarbon having 1 to 30 carbon atoms. It is the basis.
  • R 1 to R 6 are preferably hydrogen atoms.
  • the alkoxy group or hydrocarbon group of R 1 to R 6 may be either linear or branched.
  • the number of carbon atoms in the alkoxy group or hydrocarbon group is preferably 1 to 20, more preferably 1 to 10, particularly preferably 1 to 5.
  • Examples of the alkoxy group include a methoxy group, an ethoxy group, and a propoxy group.
  • the hydrocarbon group include a methyl group, an ethyl group, and a propyl group. At least one hydrogen atom contained in the alkoxy group or hydrocarbon group may be substituted with a halogen atom.
  • R 2 and R 3 and R 5 and R 6 may be bonded to each other to form a ring structure.
  • the ring structure is, for example, a benzene ring.
  • Ar 1 and Ar 2 are divalent aromatic groups. Divalent aromatic groups include aromatic rings.
  • the nitrogen atom of the phthalimide structure is preferably directly bonded to the aromatic ring contained in Ar 1 or the aromatic ring contained in Ar 2 .
  • Y 1 may be directly bonded to each of the aromatic ring contained in Ar 1 and the aromatic ring contained in Ar 2 .
  • the aromatic ring is preferably composed of carbon atoms.
  • the aromatic ring may be a heteroaromatic ring containing a heteroatom such as an oxygen atom, a nitrogen atom, or a sulfur atom.
  • the aromatic ring may be polycyclic, it is preferably monocyclic.
  • the number of carbon atoms in the aromatic ring is not particularly limited, and may be, for example, 4 to 14 or 6 to 10.
  • aromatic ring examples include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a furan ring, a pyrrole ring, a pyridine ring, and a thiophene ring.
  • the aromatic ring may have no substituent or may have a substituent.
  • substituents on the aromatic ring include halogen atoms, hydroxyl groups, sulfonic acid groups, alkoxy groups having 1 to 30 carbon atoms, and hydrocarbon groups having 1 to 30 carbon atoms. Examples of the alkoxy group and hydrocarbon group include those mentioned above for R 1 to R 6 .
  • the aromatic ring has a plurality of substituents, the plurality of substituents may be the same or different.
  • Ar 1 and Ar 2 are preferably a phenylene group which may have a substituent or a naphthalenediyl group which may have a substituent.
  • the separation functional layer 1 preferably consists essentially of resin.
  • "consisting essentially of” means to the exclusion of other components that alter the essential characteristics of the mentioned material, e.g. 95 wt% or more, even 99 wt% or more of the material It means that it is composed of.
  • the separation functional layer 1 may further contain additives such as a leveling agent in addition to the resin.
  • the separation functional layer 1 contains an ionic liquid.
  • the separation functional layer 1 has, for example, a double network gel containing an ionic liquid.
  • a double network gel is a gel that has two types of network structures that are independent of each other.
  • the double network gel includes, for example, a first network structure mainly composed of an organic material, a second network structure mainly composed of an inorganic material, and an ionic liquid.
  • "consisting primarily" means that 50 wt% or more, and further 70 wt% or more, of the material is comprised.
  • the organic material for forming the first network structure includes, for example, a polymer such as polyacrylamide (particularly polydialkyl acrylamide such as polydimethylacrylamide).
  • the polymer contained in the organic material has a structural unit derived from an acrylamide derivative, and may further include a crosslinked structure.
  • a polymer containing a crosslinked structure can be produced by a known method. For example, first, a prepolymer having a structural unit having an N-hydroxysuccinimide ester group is prepared. The structural unit having an N-hydroxysuccinimide ester group is derived from, for example, N-acryloxysuccinimide. Next, a polymer containing a crosslinked structure can be obtained by reacting the prepolymer with an amine crosslinking agent.
  • Amine-based crosslinking agents are compounds having two or more primary amino groups, such as ethylene glycol bis(3-aminopropyl) ether.
  • the second network structure may include a network of multiple particles.
  • a network of a plurality of particles is formed, for example, by a plurality of particles bonding to each other through hydrogen bonds.
  • the particles included in the second network structure may contain an inorganic material or an organic material. Examples of inorganic materials contained in the particles include silica, titania, and alumina. As an example, the particles included in the second network structure are silica particles.
  • examples of the ionic liquid include an ionic liquid having imidazolium, pyridinium, ammonium, or phosphonium and a substituent having 1 or more carbon atoms.
  • the substituent having 1 or more carbon atoms includes an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 14 carbon atoms, and a cycloalkyl group having 3 to 14 carbon atoms.
  • Examples include aryl groups having 6 to 20 carbon atoms, which may be further substituted with hydroxy groups, cyano groups, amino groups, monovalent ether groups, etc. (for example, hydroxyalkyl groups having 1 to 20 carbon atoms). etc).
  • alkyl group having 1 to 20 carbon atoms examples include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n- Nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n- Nonadecyl group, n-eicosadecyl group, i-propyl group, sec-butyl group, i-butyl group, 1-methylbutyl group, 1-ethylpropyl group, 2-methylbut
  • the above alkyl group may be substituted with a cycloalkyl group.
  • the number of carbon atoms in the alkyl group substituted with the cycloalkyl group is, for example, 1 or more and 20 or less.
  • Examples of the alkyl group substituted with a cycloalkyl group include a cyclopropylmethyl group, a cyclobutylmethyl group, a cyclohexylmethyl group, a cyclohexylpropyl group, etc., and these include a hydroxy group, a cyano group, an amino group, a monovalent ether It may be substituted with a group or the like.
  • Examples of the cycloalkyl group having 3 to 14 carbon atoms include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclododecyl group, norbornyl group, bornyl group, adamantyl group, etc. , these may be further substituted with a hydroxy group, a cyano group, an amino group, a monovalent ether group, etc.
  • aryl group having 6 to 20 carbon atoms examples include phenyl group, tolyl group, xylyl group, mesityl group, anisyl group, naphthyl group, benzyl group, etc. These include hydroxy group, cyano group, amino group, It may be substituted with a valent ether group or the like.
  • Imidazolium and a compound having a substituent having 1 or more carbon atoms may further have a substituent such as an alkyl group, and may form a salt with a counter anion.
  • Counter anions include alkyl sulfate, tosylate, methanesulfonate, acetate, bis(fluorosulfonyl)imide, bis(trifluoromethanesulfonyl)imide, thiocyanate, dicyanamide, tricyanomethanide, tetracyanoborate, hexafluorophosphate, tetrafluoro Examples include borates and halides, and from the viewpoint of gas separation performance, bis(fluorosulfonyl)imide, bis(trifluoromethanesulfonyl)imide, dicyanamide, tricyanomethanide, and tetracyanoborate are preferred.
  • imidazolium and ionic liquids having a substituent having one or more carbon atoms include 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide and 1-ethyl-3-methylimidazolium dicyanamide.
  • 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide [EMI][FSI]
  • 1-ethyl-3-methylimidazolium dicyanamide [EMI] [DCA]
  • 1-ethyl-3-methylimidazolium tricyanomethanide [EMI][TCM]
  • 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C 4 mim][ TF 2 N]
  • 1-(2-hydroxyethyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)imide [C 2 OHim][TF 2 N]
  • the method for producing the double network gel is not particularly limited, and for example, the method disclosed in E. Kamio et al., Adv. Mater, 29, 1704118 (2017) can be used.
  • the content of the ionic liquid in the double network gel is, for example, 50 wt% or more, preferably 60 wt% or more, more preferably 70 wt% or more, and still more preferably 80 wt% or more.
  • the upper limit of the ionic liquid content is not particularly limited, and is, for example, 95 wt%.
  • the content of the first network structure mainly composed of an organic material in the double network gel is, for example, 1 wt% or more, preferably 5 wt% or more, and more preferably 10 wt% or more.
  • the upper limit of the content of the first network structure is, for example, 15 wt%.
  • the content of the second network structure mainly composed of an inorganic material in the double network gel is, for example, 1 wt % or more from the viewpoint of improving the strength of the double network gel.
  • the upper limit of the content of the second network structure is, for example, 5 wt%.
  • the ratio of the total value of the weight of the first network structure and the weight of the second network structure to the weight of the double network gel is, for example, 2 wt% or more, preferably 5 wt% or more, and more preferably 10 wt% or more. . This ratio is preferably 20 wt% or less.
  • the separation functional layer 1 preferably consists essentially of a double network gel.
  • the thickness of the separation functional layer 1 is, for example, 50 ⁇ m or less, preferably 25 ⁇ m or less, and more preferably 15 ⁇ m or less. Depending on the case, the thickness of the separation functional layer 1 may be 10 ⁇ m or less, 5.0 ⁇ m or less, or 2.0 ⁇ m or less. The thickness of the separation functional layer 1 may be 0.05 ⁇ m or more, or 0.1 ⁇ m or more.
  • the intermediate layer 2 has the space 6 and may further include the main body portion 5.
  • the space 6 penetrates the intermediate layer 2 in the thickness direction and can function as a flow path for the fluid that has passed through the separation functional layer 1 (permeated fluid).
  • the main body part 5 includes, for example, an adhesive part formed from an adhesive composition, and joins the separation functional layer 1 and the porous support 3.
  • the intermediate layer 2 has a plurality of main body parts 5, and a space 6 as a void is formed between the plurality of main body parts 5.
  • the space 6 may be formed to surround the main body portion 5.
  • the space 6 may be a through hole formed in the main body portion 5.
  • the main body portion 5 may or may not be arranged in a predetermined pattern.
  • the main body portion 5 may have a stripe shape, a dot shape, a mesh shape (mesh shape), or a fibrous shape in plan view.
  • FIGS. 1 and 2A show an example of the separation membrane 10, and show the main body portions 5 arranged in a stripe shape in a plan view.
  • FIG. 2B shows a separation membrane 10 according to a modified example, and shows the main body portion 5 arranged in a dot shape in a plan view.
  • FIG. 2C shows a separation membrane 10 according to another modification, and shows the main body portion 5 arranged in a mesh shape in a plan view.
  • FIG. 2D shows a separation membrane 10 according to another modification, and shows a main body portion 5 that is fibrous.
  • the intermediate layer 2 having the main body portions 5 arranged in a striped shape in a plan view will be described.
  • the main body portion 5 has a band shape extending in the first direction X.
  • the main body portion 5 extends straight in the first direction X, for example.
  • the first direction X is, for example, a direction from one of the pair of end surfaces of the porous support 3 toward the other.
  • the cross-sectional shape of the main body portion 5 observed when the intermediate layer 2 is cut in the thickness direction is substantially rectangular (FIG. 1).
  • the cross-sectional shape of the main body portion 5 observed when the intermediate layer 2 is cut parallel to the surface of the intermediate layer 2 is also substantially rectangular (FIG. 2A).
  • substantially rectangular means that when the cross section of the main body 5 is observed, the ratio of the area of the main body 5 to the area of the smallest right-angled quadrangle surrounding the main body 5 is 70%. or more, preferably 90% or more.
  • the intermediate layer 2 has a plurality of main body parts 5.
  • the shapes and dimensions of the plurality of main bodies 5 may be different from each other or may be substantially the same.
  • the plurality of main bodies 5 each extend in the first direction X and are lined up in the second direction Y orthogonal to the first direction X.
  • the plurality of main body parts 5 may be lined up in the second direction Y at substantially equal intervals.
  • the second direction Y is, for example, a direction from one of the other pair of end surfaces of the porous support 3 to the other.
  • the third direction Z which is orthogonal to each of the first direction X and the second direction Y, is a direction from the intermediate layer 2 to the porous support 3 and coincides with the thickness direction of the separation membrane 10.
  • a space 6 as a void is formed between the two main body parts 5.
  • the space 6 extends in the direction in which the main body portion 5 extends (first direction X). Like the main body part 5, the space 6 extends straight in the first direction X, for example.
  • the cross-sectional shape of the space 6 observed when the intermediate layer 2 is cut in the thickness direction is substantially rectangular (FIG. 1).
  • the cross-sectional shape of the space 6 observed when the intermediate layer 2 is cut parallel to the surface of the intermediate layer 2 is also substantially rectangular (FIG. 2A).
  • a plurality of spaces 6 are formed in the intermediate layer 2.
  • the shapes and dimensions of the plurality of spaces 6 may be different from each other or may be substantially the same.
  • the plurality of spaces 6 each extend in the first direction X and are lined up in the second direction Y.
  • the plurality of spaces 6 may be lined up in the second direction Y at substantially equal intervals.
  • the plurality of main body parts 5 and the plurality of spaces 6 are arranged alternately in the second direction Y, for example.
  • FIGS. 1 and 2A show a plurality of main body parts 5a, 5b, 5c, 5d and 5e, and a plurality of spaces 6a, 6b, 6c and 6d, which the intermediate layer 2 has.
  • a plurality of main body portions 5a to 5e and a plurality of spaces 6a to 6d are arranged alternately in the second direction Y.
  • a plurality of main body portions 5a to 5e are lined up in the second direction Y at equal intervals.
  • the plurality of spaces 6a to 6d are also arranged at equal intervals in the second direction Y.
  • the dimensions of the main body 5 and the spaces 6 and the number of the main body 5 and the spaces 6 are not particularly limited, and can be adjusted as appropriate depending on the characteristics of the intended separation membrane 10. can do.
  • the intermediate layer 2 having the main body portions 5 arranged in a dot shape when viewed from above will be described.
  • the main body portion 5 has a cylindrical shape extending in the third direction Z.
  • the main body portion 5 may have a prismatic shape.
  • the intermediate layer 2 has a plurality of main body parts 5.
  • the shapes and dimensions of the plurality of main bodies 5 may be different from each other or may be substantially the same.
  • the plurality of main body parts 5 may be arranged randomly, or may be arranged in a matrix in the first direction X and the second direction Y.
  • matrix shape includes a lattice shape and a staggered shape.
  • a space 6 is formed to surround each of the plurality of main body parts 5.
  • the dimensions of the main body portions 5 and the number of the main body portions 5 are not particularly limited, and can be adjusted as appropriate depending on the intended characteristics of the separation membrane 10.
  • the intermediate layer 2 having the main body portion 5 arranged in a mesh shape in a plan view will be described.
  • the main body portion 5 has a first portion in the shape of a band extending in the first direction X and a second portion in the shape of a band extending in the second direction Y.
  • a mesh is formed by intersecting the first portion and the second portion. This mesh corresponds to the space 6.
  • the main body portion 5 has a plurality of first portions extending in the first direction X, and further has a plurality of second portions extending in the second direction Y.
  • the shapes and dimensions of the plurality of first portions and second portions may be different from each other or may be substantially the same.
  • the shape and dimensions of the main body 5 and the number of spaces 6 are not particularly limited, and can be adjusted as appropriate depending on the intended characteristics of the separation membrane 10.
  • the fibrous main body portion 5 may be in the form of short fibers or long fibers.
  • the fibrous main body portion 5 may have a branched structure.
  • the intermediate layer 2 has a plurality of main body parts 5.
  • the shape of the nonwoven fabric is formed by a plurality of main body parts 5 coming together.
  • spaces 6 are formed between the plurality of main body parts 5.
  • the space 6 is, for example, a continuous hole formed three-dimensionally.
  • the shape and dimensions of the main body portion 5 are not particularly limited, and can be adjusted as appropriate depending on the intended characteristics of the separation membrane 10.
  • the area ratio R of the region where the spaces 6 exist on the surface of the intermediate layer 2 is, for example, 20 % or more, and may be 40% or more, 50% or more, 60% or more, 70% or more, or even 80% or more.
  • the upper limit of the ratio R is, for example, 90% or less, from the viewpoint of the bonding strength between the separation functional layer 1 and the porous support 3 by the intermediate layer 2, and the ease of manufacturing the separation membrane 10 by the transfer method. In some cases, it may be 80% or less, or 70% or less.
  • the "ratio R" may be referred to as the aperture ratio.
  • the main body portion 5 includes, for example, an adhesive portion formed from an adhesive composition.
  • the main body part 5 including the adhesive part is suitable for joining the separation functional layer 1 and the porous support 3.
  • the main body part 5 may be comprised only of an adhesive part, or may further include other components (for example, a base material) other than the adhesive part.
  • the main body part 5 may be a double-sided tape including a base material and adhesive parts formed on each of two main surfaces of the base material.
  • the main body portion 5 does not need to include the adhesive portion as long as the separation functional layer 1 and the porous support 3 can be bonded together.
  • the main body portion 5 may include an adhesive portion made of adhesive.
  • the adhesive composition includes, for example, at least one selected from the group consisting of silicone polymers, (meth)acrylic polymers, and rubber polymers.
  • a silicone polymer means a polymer having a structural unit containing a siloxane bond.
  • an adhesive composition containing a silicone polymer may be referred to as a "silicone adhesive.”
  • silicone adhesives include peroxide-crosslinked silicone adhesives, addition reaction type silicone adhesives, and active energy ray-curable silicone adhesives.
  • the peroxide-crosslinked silicone adhesive contains an organic peroxide (eg, benzoyl peroxide). This organic peroxide causes radical crosslinking.
  • addition reaction type silicone adhesives include hydrosilylation type silicone adhesives.
  • the hydrosilylated silicone adhesive contains a SiH group-containing siloxane crosslinking agent and a platinum catalyst. Crosslinking occurs through the hydrosilylation reaction using this platinum-based catalyst.
  • active energy ray-curable silicone adhesives a crosslinking reaction progresses when exposed to light such as ultraviolet rays or electron beams.
  • addition reaction type silicone adhesives such as hydrosilylation type silicone adhesives, are preferred from the viewpoints of not leaving a residue in the intermediate layer 2, being able to react at low temperatures, and improving reaction speed.
  • the silicone-based pressure-sensitive adhesive preferably contains a silicone resin component and a silicone gum component as the silicone-based polymer, since the adhesiveness, peelability, and cohesiveness can be easily controlled.
  • the silicone resin component is not particularly limited, but is preferably a branched polyorganosiloxane containing a hydroxyl group bonded to a silicon atom in its molecule, and includes M units (R 3 SiO 1/2 ), Q units (SiO 2 ), More preferably, it is a polyorganosiloxane having at least one unit selected from the group consisting of T units (RSiO 3/2 ) and D units (R 2 SiO).
  • R are independently of each other a monovalent hydrocarbon group or a hydroxyl group.
  • the monovalent hydrocarbon group examples include an alkyl group (eg, methyl group, ethyl group, propyl group, etc.), an alkenyl group (eg, vinyl group, etc.), and an aryl group (eg, phenyl group, etc.).
  • the silicone resin component is preferably an MQ resin composed of M units (R 3 SiO 1/2 ) and Q units (SiO 2 ).
  • the silicone resin components may be used alone or in combination of two or more.
  • the silicone gum component is not particularly limited, but is preferably a linear polyorganosiloxane represented by the following formula (3).
  • R is independently a methyl group, a phenyl group, or an alkenyl group.
  • n is 100 to 10,000.
  • the silicone gum components may be used alone or in combination of two or more.
  • the silicone gum component described above preferably contains a methyl group.
  • the methyl groups of the silicone gum component are radically crosslinked.
  • the silicone gum component preferably contains an alkenyl group, particularly a vinyl group.
  • alkenyl groups in silicone gum components are crosslinked by a hydrosilylation reaction.
  • the silicone adhesive may further contain additives in addition to the silicone resin component and silicone gum component.
  • additives include materials for advancing the crosslinking reaction (organic peroxides, SiH group-containing siloxane crosslinking agents, platinum catalysts, etc.), adhesion improvers (for example, X-92- manufactured by Shin-Etsu Chemical Co., Ltd. 185), silane coupling agents, fillers, plasticizers, anti-aging agents, antistatic agents, colorants (pigments, dyes), fillers and tackifiers described below.
  • the additives may be used alone or in combination of two or more.
  • the silicone adhesive may further contain an organic solvent (for example, toluene, xylene, etc.).
  • an organic solvent for example, toluene, xylene, etc.
  • silicone adhesives include “KR-3700”, “KR-3701”, and “KR-3704" manufactured by Shin-Etsu Chemical Co., Ltd. These commercial products are provided as products containing both a silicone gum component and a silicone resin component.
  • the silicone adhesive may include a mixture of these commercially available products.
  • the (meth)acrylic polymer has, for example, a structural unit derived from alkyl (meth)acrylate as a main component.
  • (meth)acrylate means acrylate and/or methacrylate.
  • an adhesive composition containing a (meth)acrylic polymer may be referred to as a "(meth)acrylic adhesive.”
  • the alkyl group contained in the alkyl (meth)acrylate is not particularly limited, and is, for example, a linear, branched, or cyclic alkyl group having 2 to 14 carbon atoms.
  • alkyl (meth)acrylate examples include acrylic acid alkyl esters having an alkyl group having 2 to 14 carbon atoms, preferably acrylic acid alkyl esters having an alkyl group having 4 to 9 carbon atoms.
  • acrylic acid alkyl esters include n-butyl acrylate, isobutyl acrylate, s-butyl acrylate, isoamyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, and isooctyl acrylate. , nonyl acrylate, isononyl acrylate, and the like.
  • the alkyl (meth)acrylate may be, for example, a methacrylic acid alkyl ester having an alkyl group having 2 to 14 carbon atoms, preferably a methacrylic acid alkyl ester having an alkyl group having 2 to 10 carbon atoms.
  • methacrylic acid alkyl esters include ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, s-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, and methacrylate.
  • Examples include cyclohexyl acid, bornyl methacrylate, and isobornyl methacrylate.
  • the alkyl (meth)acrylates mentioned above can be used alone or in combination of two or more.
  • the content of structural units derived from alkyl (meth)acrylate in the (meth)acrylic polymer is not particularly limited, and is, for example, 70 to 100 wt%, preferably 85 to 99 wt%, more preferably 87 to 99 wt%. %.
  • the (meth)acrylic polymer may further contain a structural unit derived from a copolymerizable monomer copolymerizable with an alkyl (meth)acrylate.
  • copolymerizable monomers include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl (meth)acrylate, carboxypentyl (meth)acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; Alkyl (meth)acrylates having 15 or more alkyl groups; (meth)acrylic acid aryl esters such as phenyl (meth)acrylate; vinyl esters such as vinyl acetate and vinyl propionate; styrenic monomers such as styrene; (meth) Epoxy group-containing monomers such as glycidyl acrylate and methylglycidyl (meth)acrylate; (meth)acrylates containing hydroxyl groups such as 4-hydroxybut
  • the (meth)acrylic adhesive may further contain additives and organic solvents in addition to the (meth)acrylic polymer.
  • additives and organic solvents include those mentioned above for silicone adhesives.
  • a rubber-based polymer means a polymer that exhibits rubber elasticity in a temperature range around room temperature (25°C).
  • an adhesive composition containing a rubber-based polymer may be referred to as a "rubber-based adhesive.”
  • the rubber-based polymer includes, for example, at least one selected from the group consisting of natural rubber, synthetic rubber, and thermoplastic elastomer.
  • Synthetic rubbers include polyisobutylene (PIB), butadiene rubber (BR), butyl rubber (IIR), isoprene rubber (IR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), acrylonitrile-butadiene rubber (NBR), Examples include butadiene-isoprene-styrene random copolymer, isoprene-styrene random copolymer, EPR (binary ethylene-propylene rubber), EPT (ternary ethylene-propylene rubber), acrylic rubber, urethane rubber, and the like.
  • PIB polyisobutylene
  • BR butadiene rubber
  • IIR isoprene rubber
  • SBR styrene-butadiene rubber
  • CR chloroprene rubber
  • thermoplastic elastomers examples include styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-isoprene-styrene block copolymer (SIS), styrene-butadiene-styrene block copolymer (SBS), and styrene.
  • SEBS styrene-ethylene-butylene-styrene block copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • SBS styrene-butadiene-styrene block copolymer
  • styrene examples include styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-isoprene-styrene block copolymer (SIS), styrene-butadiene-sty
  • thermoplastic elastomers such as block copolymers (SIBS); polyurethane thermoplastic elastomers; polyester thermoplastic elastomers; polymer blends of polypropylene and EPT (ternary ethylene-propylene rubber), etc. Examples include thermoplastic elastomer blends.
  • the rubber-based adhesive may further contain additives and organic solvents in addition to the rubber-based polymer.
  • additives and organic solvents include those mentioned above for silicone adhesives.
  • the main body part 5 (or adhesive part) can be produced, for example, by removing the organic solvent from the adhesive composition. Therefore, the main body portion 5 contains components derived from the adhesive composition.
  • the main body portion 5 includes at least one selected from the group consisting of a silicone polymer, a (meth)acrylic polymer, and a rubber polymer.
  • the silicone-based polymer contained in the main body portion 5 may be a crosslinked product of a silicone-based polymer contained in the adhesive composition.
  • the (meth)acrylic polymer contained in the main body portion 5 may be a crosslinked product of (meth)acrylic polymer contained in the adhesive composition.
  • the content of the above polymers is not particularly limited, and is, for example, 60 wt% or more, preferably 70 wt%. % or more, more preferably 90 wt% or more.
  • the body portion 5 may consist essentially of the above-mentioned polymer.
  • the main body part 5 may further contain the above-mentioned additives, especially fillers.
  • the main body portion 5 containing the filler is suitable for improving the permeation rate of acid gas in the separation membrane 10.
  • the filler may contain an inorganic material or an organic material. Examples of inorganic materials contained in the filler include zeolite, silica, titania, and alumina. Examples of organic materials include (meth)acrylic polymers.
  • the filler may include a metal-organic-framework (MOF).
  • the metal-organic framework is also called a porous coordination polymer (PCP).
  • Metal-organic frameworks include, for example, metal ions and organic ligands. Examples of metal ions include Cu ions and Zn ions.
  • the organic ligand includes, for example, an aromatic ring. Examples of the aromatic ring contained in the organic ligand include a benzene ring and an imidazole ring. Examples of the organic ligand include trimesic acid and 2-methylimidazole. Specific examples of the metal-organic framework include HKUST-1 and ZIF-8.
  • the shape of the filler is typically particulate.
  • particulate includes spherical, ellipsoidal, scaly, fibrous, and the like.
  • the average particle diameter of the filler is not particularly limited, and may be, for example, 5 ⁇ m or less, 1 ⁇ m or less, 800 nm or less, 600 nm or less, 500 nm or less, 400 nm or less, 300 nm or less, 200 nm or less, or even 100 nm or less.
  • the lower limit of the average particle diameter of the filler is, for example, 1 nm.
  • the average particle size of the filler can be determined by the following method. First, a cross section of the main body portion 5 is observed using a transmission electron microscope. In the obtained electron microscope image, the area of a specific filler is calculated by image processing.
  • the diameter of a circle having the same area as the calculated area is regarded as the particle diameter (particle diameter) of that particular filler.
  • the particle diameter of an arbitrary number of fillers (at least 50) is calculated, and the average value of the calculated values is regarded as the average particle diameter of the filler.
  • the filler content in the main body portion 5 is, for example, 40 wt% or less, and may be 30 wt% or less, 20 wt% or less, or even 10 wt% or less.
  • the lower limit of the filler content in the main body portion 5 is not particularly limited, but from the viewpoint of improving the permeation rate of acidic gas, it is, for example, 1 wt%.
  • the thickness of the intermediate layer 2 (or the thickness of the main body portion 5) is, for example, 0.1 ⁇ m or more, 0.3 ⁇ m or more, 0.5 ⁇ m or more, 1 ⁇ m or more, 3 ⁇ m or more, 5 ⁇ m or more, 10 ⁇ m or more, 30 ⁇ m or more, It may be 50 ⁇ m or more, 80 ⁇ m or more, 100 ⁇ m or more, 150 ⁇ m or more, or even 200 ⁇ m or more.
  • the intermediate layer 2 having a large thickness tends to be able to bond the separation functional layer 1 and the porous support 3 with sufficient strength.
  • the upper limit of the thickness of the intermediate layer 2 is not particularly limited, and is, for example, 500 ⁇ m.
  • the thickness of the intermediate layer 2 is preferably 5 to 50 ⁇ m. Note that in conventional separation membranes, as the thickness of the intermediate layer increases, the permeation rate of the permeated fluid from the separation membrane tends to decrease. On the other hand, in the separation membrane 10 of this embodiment, since the intermediate layer 2 has the spaces 6, even if the thickness of the intermediate layer 2 increases, the permeation rate of the permeated fluid from the separation membrane 10 is unlikely to decrease.
  • the storage modulus of the intermediate layer 2 at 25° C. is, for example, 1.0 ⁇ 10 5 Pa or less, preferably 0.95 ⁇ 10 5 Pa or less, and may be 0.90 ⁇ 10 5 Pa or less. , 0.85 ⁇ 10 5 Pa or less.
  • the storage modulus of the intermediate layer 2 at 25° C. is preferably 0.1 ⁇ 10 5 Pa or more.
  • the storage modulus of the intermediate layer 2 at 25° C. can be determined by the following method. First, a measurement sample made of a material constituting the intermediate layer 2 is prepared. The shape of the sample for measurement is a disk. The measurement sample has a bottom diameter of 8 mm and a thickness of 2 mm. Next, dynamic viscoelasticity measurement is performed on the measurement sample. For dynamic viscoelasticity measurement, for example, "Advanced Rheometric Expansion System (ARES)" manufactured by Rheometric Scientific can be used. From the results of the dynamic viscoelasticity measurement, the storage modulus of the intermediate layer 2 at 25° C. can be determined. Note that the conditions for dynamic viscoelasticity measurement are as follows. ⁇ Measurement conditions Frequency: 1Hz Deformation mode: Torsion Measurement temperature: -70°C ⁇ 150°C Heating rate: 5°C/min
  • the porous support 3 supports the separation functional layer 1 via the intermediate layer 2.
  • the porous support 3 include nonwoven fabric; porous polytetrafluoroethylene; aromatic polyamide fiber; porous metal; sintered metal; porous ceramic; porous polyester; porous nylon; activated carbon fiber; latex silicone; silicone rubber; permeable material containing at least one selected from the group consisting of polyvinyl fluoride, polyvinylidene fluoride, polyurethane, polypropylene, polyethylene, polycarbonate, polysulfone, polyetheretherketone, polyacrylonitrile, polyimide, and polyphenylene oxide; Porous) polymers; metal foams with open cells or closed cells; polymer foams with open cells or closed cells; silica; porous glass; mesh screens and the like.
  • the porous support 3 may be a combination of two or more of these.
  • the porous support 3 contains at least one member selected from the group consisting of polyvinylidene fluoride (PVDF)
  • the porous support 3 has an average pore diameter of, for example, 0.01 to 0.4 ⁇ m.
  • the thickness of the porous support 3 is not particularly limited, and is, for example, 10 ⁇ m or more, preferably 20 ⁇ m or more, and more preferably 50 ⁇ m or more.
  • the thickness of the porous support 3 is, for example, 300 ⁇ m or less, preferably 200 ⁇ m or less, and more preferably 150 ⁇ m or less.
  • the separation membrane 10 of this embodiment is easily manufactured by a so-called transfer method.
  • 3A to 3C are diagrams for explaining a method for manufacturing the separation membrane 10 of this embodiment by a transfer method. As shown in FIGS. 3A to 3C, the manufacturing method of this embodiment includes forming an intermediate layer 2 having a space 6 on a first laminate 15 having a release liner 9 and a separation functional layer 1.
  • the first laminate 15 can be produced, for example, by the following method.
  • a coating liquid containing the material for the separation functional layer 1 is prepared.
  • the coating liquid may contain a highly polar organic solvent such as N-methyl-2-pyrrolidone (NMP) and dimethylacetamide (DMAc). Such organic solvents are suitable for dissolving polyimide resins.
  • the coating liquid may further contain a leveling agent for improving the coating properties of the coating liquid.
  • this coating liquid is applied onto the release liner 9 to obtain a coating film. By drying this coating film, the separation functional layer 1 can be formed. Thereby, the first laminate 15 having the release liner 9 and the separation functional layer 1 can be obtained (FIG. 3A).
  • the release liner 9 examples include a film containing resin; paper; and a sheet containing a metal material such as aluminum or stainless steel. Sheets containing metallic materials tend to have high heat resistance.
  • the release liner 9 is preferably a film containing resin because of its excellent surface smoothness.
  • polymers contained in the resin include polyolefins such as polyethylene, polypropylene, polybutene, polybutadiene, and polymethylpentene; polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyvinyl chloride, and vinyl chloride copolymer. Polyesters; polyurethanes; ethylene-vinyl acetate copolymers and the like; polyesters, particularly polyethylene terephthalate, are preferred.
  • the surface of the release liner 9 may be subjected to a release treatment.
  • the release treatment can be performed, for example, by applying a release treatment agent to the surface of the release liner 9.
  • the release agent include a silicone release agent, a long-chain alkyl release agent, a fluorine release agent, and a molybdenum sulfide release agent.
  • the release agent may be used alone or in combination of two or more.
  • the release liner 9 is preferably a release-treated polyethylene terephthalate (PET) film.
  • the thickness of the release liner 9 is not particularly limited, and is, for example, 5 to 300 ⁇ m, preferably 50 to 200 ⁇ m.
  • the method of applying the coating liquid onto the release liner 9 is not particularly limited, and for example, a spin coating method, a dip coating method, etc. can be used.
  • the coating liquid may be applied using a wire bar or the like.
  • the coating film can be dried, for example, under heating conditions.
  • the heating temperature of the coating film is, for example, 50°C or higher, preferably 130 to 150°C.
  • the heating time for the coating film is, for example, 1 minute or more, may be 5 minutes or more, or may be 30 minutes or more.
  • the second laminate 16 can be produced, for example, by the following method. First, a double-sided tape that can function as the intermediate layer 2 (specifically, the main body part 5) is prepared. The double-sided tape has, for example, an adhesive portion formed from an adhesive composition. Next, this double-sided tape is placed on the separation functional layer 1 in the first laminate 15. The double-sided tape is arranged so that a space 6 is formed. By placing the double-sided tape on the separation functional layer 1, a main body (double-sided tape) 5 and a space 6 are formed, and the intermediate layer 2 is obtained. Thereby, it is possible to obtain a second laminate 16 having the release liner 9, the separation functional layer 1, and the intermediate layer 2 in this order (FIG. 3B). In the second laminate 16 , the intermediate layer 2 is exposed to the outside of the second laminate 16 .
  • the method for manufacturing the second laminate 16 is not limited to the above method.
  • the intermediate layer 2 is formed by applying a coating liquid (for example, an adhesive composition) containing the material of the intermediate layer 2 (specifically, the main body part 5) onto the separation functional layer 1 and drying it.
  • the second laminate 16 may be manufactured.
  • the coating liquid is applied so that a space 6 is formed.
  • the coating liquid can be applied by a method using a mask having an opening at a position where the main body portion 5 is to be formed, a flexographic printing method, a screen printing method, a die coating method, a spray coating method, or the like.
  • the coating liquid can be dried, for example, under heating conditions.
  • the coating liquid when the coating liquid is an addition reaction type silicone adhesive, the coating liquid may be dried by heating at 100 to 130°C. Under the above-mentioned heating conditions, the coating liquid is dried and, for example, a crosslinking reaction of the silicone polymer proceeds to form a crosslinked product of the silicone polymer.
  • the heating time of the coating liquid is, for example, 1 minute or more, and may be 5 minutes or more.
  • the intermediate layer 2 of the second laminate 16 is bonded to the porous support 3 so that the space 6 of the intermediate layer 2 is in contact with both the separation functional layer 1 and the porous support 3, thereby forming a third laminate.
  • a body 17 can be obtained (FIG. 3C).
  • the method of bonding the intermediate layer 2 to the porous support 3 is not particularly limited, and any known method can be used.
  • the intermediate layer 2 and the porous support 3 can be bonded together by overlapping the intermediate layer 2 and the porous support 3 and pressing them together by moving a roller back and forth.
  • the separation membrane 10 can be obtained by removing the release liner 9 from the third laminate 17 (FIG. 1).
  • the method for producing the separation membrane 10 is not limited to the transfer method described with reference to FIGS. 3A to 3C, and the separation functional layer 1 can be directly produced on the laminate of the intermediate layer 2 and the porous support 3.
  • a coating liquid containing the material of the separation functional layer 1 is applied onto the laminate of the intermediate layer 2 and the porous support 3, and the resulting coating film is dried. Create. Therefore, depending on the solvent contained in the coating liquid, the intermediate layer 2 that comes into contact with the coating liquid may dissolve. When the intermediate layer 2 is dissolved, the coating liquid may also come into contact with the porous support 3 and further dissolve the porous support 3.
  • the permeation rate of the permeated fluid from the separation membrane 10 tends to decrease.
  • the separation functional layer 1 can be produced without applying a coating liquid onto the intermediate layer 2, it is possible to prevent the intermediate layer 2 and the porous support 3 from being dissolved by the coating liquid.
  • the separation membrane 10 is typically a flat membrane.
  • the separation membrane 10 may have a shape other than a flat membrane, for example, may be a hollow fiber membrane.
  • the intermediate layer 2 having the spaces 6 tends to improve the permeation rate of the permeate fluid.
  • the permeation rate T of carbon dioxide passing through the separation membrane 10 is, for example, 50 GPU or more, and may be 100 GPU or more, 150 GPU or more, 200 GPU or more, or even 250 GPU or more.
  • the upper limit of the transmission rate T is not particularly limited, and is, for example, 1000 GPU.
  • GPU means 10 ⁇ 6 ⁇ cm 3 (STP)/(sec ⁇ cm 2 ⁇ cmHg).
  • cm 3 (STP) means the volume of carbon dioxide at 1 atmosphere and 0°C.
  • the permeation rate T can be calculated by the following method. First, a mixed gas consisting of carbon dioxide and nitrogen is supplied to a space adjacent to one surface of the separation membrane 10 (for example, the main surface 11 on the separation functional layer side of the separation membrane 10), and the other surface of the separation membrane 10 is supplied with a gas mixture consisting of carbon dioxide and nitrogen. (For example, the space adjacent to the main surface 12 of the separation membrane 10 on the porous support side) is depressurized. Thereby, a permeated fluid that has passed through the separation membrane 10 is obtained. The weight of the permeate fluid and the volume proportions of carbon dioxide and nitrogen in the permeate fluid are determined. The transmission rate T can be calculated from the measurement results.
  • the concentration of carbon dioxide in the mixed gas is 50 vol% under standard conditions (0° C., 101 kPa).
  • the mixed gas supplied to the space adjacent to one surface of the separation membrane 10 has a temperature of 30° C. and a pressure of 0.1 MPa.
  • the space adjacent to the other surface of the separation membrane 10 is reduced in pressure so that the pressure in the space is 0.1 MPa lower than the atmospheric pressure in the measurement environment.
  • the permeation rate T of carbon dioxide that permeates through the separation membrane 10 relative to the permeation rate T 0 (GPU) of carbon dioxide that permeates the measurement separation membrane that has the same configuration as the separation membrane 10 except that it does not include the intermediate layer 2 (GPU) ratio T/T 0 is, for example, 20% or more, 40% or more, 50% or more, 70% or more, 80% or more, 90% or more, 95% or more, and even 99% or more. Good too.
  • the permeation rate T 0 can be measured by the method described above for the permeation rate T.
  • the measurement separation membrane can be produced by the method described in Reference Example 1 described later.
  • the separation coefficient ⁇ of carbon dioxide with respect to nitrogen of the separation membrane 10 is not particularly limited, and is, for example, 20 or more, preferably 25 or more.
  • the upper limit of the separation coefficient ⁇ is not particularly limited, and is, for example, 50.
  • Applications of the separation membrane 10 of this embodiment include applications for separating acidic gas from a mixed gas containing acidic gas.
  • the mixed acidic gas include carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxides (SOx), hydrogen cyanide, and nitrogen oxides (NOx), with carbon dioxide being preferred.
  • the mixed gas contains gases other than acidic gas.
  • gases include, for example, nonpolar gases such as hydrogen and nitrogen, and inert gases such as helium, with nitrogen being preferred.
  • the separation membrane 10 of this embodiment is suitable for use in separating carbon dioxide from a mixed gas containing carbon dioxide and nitrogen.
  • the use of the separation membrane 10 is not limited to the use of separating acidic gas from the above-mentioned mixed gas.
  • the membrane separation apparatus 100 of this embodiment includes a separation membrane 10 and a tank 20.
  • the tank 20 includes a first chamber 21 and a second chamber 22.
  • Separation membrane 10 is arranged inside tank 20. Inside the tank 20, the separation membrane 10 separates a first chamber 21 and a second chamber 22.
  • the separation membrane 10 extends from one of the pair of wall surfaces of the tank 20 to the other.
  • the first chamber 21 has an inlet 21a and an outlet 21b.
  • the second chamber 22 has an outlet 22a.
  • Each of the inlet 21a, the outlet 21b, and the outlet 22a is an opening formed in the wall surface of the tank 20, for example.
  • Membrane separation using the membrane separation device 100 is performed, for example, by the following method.
  • a mixed gas 30 containing an acidic gas is supplied to the first chamber 21 through the inlet 21a.
  • the concentration of acidic gas in the mixed gas 30 is not particularly limited, and in a standard state is, for example, 0.01 vol% (100 ppm) or more, preferably 1 vol% or more, more preferably 10 vol% or more, and even more preferably is 30 vol% or more, particularly preferably 50 vol% or more.
  • the upper limit of the concentration of acidic gas in the mixed gas 30 is not particularly limited, and is, for example, 90 vol% in a standard state.
  • the pressure inside the first chamber 21 may be increased by supplying the mixed gas 30.
  • the membrane separator 100 may further include a pump (not shown) for pressurizing the mixed gas 30.
  • the pressure of the mixed gas 30 supplied to the first chamber 21 is, for example, 0.1 MPa or more, preferably 0.3 MPa or more.
  • the pressure inside the second chamber 22 may be reduced while the mixed gas 30 is supplied to the first chamber 21.
  • the membrane separator 100 may further include a pump (not shown) for reducing the pressure inside the second chamber 22.
  • the pressure in the second chamber 22 may be reduced so that the space within the second chamber 22 is, for example, 10 kPa or more, preferably 50 kPa or more, more preferably 100 kPa or more smaller than the atmospheric pressure in the measurement environment.
  • the permeate fluid 35 By supplying the mixed gas 30 into the first chamber 21, it is possible to obtain a permeate fluid 35 having a higher content of acidic gas than the mixed gas 30 on the other side of the separation membrane 10. That is, the permeate fluid 35 is supplied to the second chamber 22 .
  • the permeate fluid 35 contains, for example, acidic gas as a main component. However, the permeate fluid 35 may contain a small amount of gas other than acidic gas. Permeate fluid 35 is discharged to the outside of tank 20 through outlet 22a.
  • the concentration of acidic gas in the mixed gas 30 gradually decreases from the inlet 21a of the first chamber 21 toward the outlet 21b.
  • the mixed gas 30 (non-permeable fluid 36) treated in the first chamber 21 is discharged to the outside of the tank 20 through the outlet 21b.
  • the membrane separation apparatus 100 of this embodiment is suitable for a flow type (continuous type) membrane separation method.
  • the membrane separation apparatus 100 of this embodiment may be used in a batch-type membrane separation method.
  • the membrane separation device 100 may be a spiral membrane element, a hollow fiber membrane element, or the like.
  • Figure 5 shows a spiral-shaped membrane element.
  • the membrane separation device 110 in FIG. 5 includes a central tube 41 and a stacked body 42.
  • the laminate 42 includes the separation membrane 10.
  • the central tube 41 has a cylindrical shape. A plurality of holes are formed on the surface of the center tube 41 to allow the permeate fluid 35 to flow into the center tube 41 .
  • Examples of materials for the center tube 41 include resins such as acrylonitrile-butadiene-styrene copolymer resin (ABS resin), polyphenylene ether resin (PPE resin), and polysulfone resin (PSF resin); metals such as stainless steel and titanium. It will be done.
  • the inner diameter of the central tube 41 is, for example, in the range of 20 to 100 mm.
  • the laminate 42 further includes a supply side channel material 43 and a permeate side channel material 44.
  • the laminate 42 is wound around the central tube 41.
  • the membrane separation device 110 may further include an exterior material (not shown).
  • a resin net made of polyphenylene sulfide (PPS) or ethylene-chlorotrifluoroethylene copolymer (ECTFE) can be used.
  • Membrane separation using the membrane separation device 110 is performed, for example, by the following method.
  • the permeated fluid 35 that has passed through the separation membrane 10 of the laminate 42 moves into the center tube 41 .
  • the permeate fluid 35 is discharged to the outside through the central pipe 41.
  • the mixed gas 30 (non-permeable fluid 36) processed by the membrane separator 110 is discharged to the outside from the other end of the wound stack 42. Thereby, the acidic gas can be separated from the mixed gas 30.
  • the polyamic acid was chemically imidized using triethylamine (1.56 g, 15.4 mmol) and acetic anhydride (9.44 g, 92.5 mmol). Chemical imidization was performed in N-methyl-2-pyrrolidone at 60°C. The obtained solution was added to a 50 vol% methanol aqueous solution. Thereby, polyimide P subjected to reprecipitation treatment was obtained.
  • the obtained polyimide P was dissolved in N-methyl-2-pyrrolidone to prepare a coating solution.
  • a leveling agent (Surflon S-243 (fluorosurfactant) manufactured by AGC Seimi Chemical Co., Ltd.) was added to the coating solution.
  • This coating solution was applied onto a release liner (TM-0 manufactured by Nipper Co., Ltd.) to obtain a coating film.
  • a separation functional layer was prepared by drying this coating film at 130 to 150° C. for 30 minutes.
  • the release liner (TM-0) used in Reference Example 1 is a heavy release film that has relatively high adhesive strength with the separation functional layer.
  • a double-sided adhesive tape No. 5603 manufactured by Nitto Denko Corporation was attached only to the peripheral edge of the separation functional layer.
  • the separation functional layer and the porous support were bonded together via this double-sided adhesive tape.
  • a nonwoven fabric manufactured by Awa Paper Industries Co., Ltd.
  • PSF polysulfone
  • the separation membrane of Reference Example 1 Separatation membrane for measurement was obtained by removing the release liner from the obtained laminate.
  • the double-sided adhesive tape was placed at a position where it would not interfere with the fluid that had passed through the separation functional layer when conducting a test to measure the permeation rate T 0 described later.
  • the carbon dioxide permeation rate T 0 was measured by the following method. First, a separation membrane was set in a metal cell and sealed with an O-ring to prevent leakage. Next, the mixed gas was injected into the metal cell so that the mixed gas came into contact with the main surface of the separation membrane on the separation functional layer side.
  • the gas mixture consisted essentially of carbon dioxide and nitrogen. The concentration of carbon dioxide in the gas mixture was 50 vol% under standard conditions.
  • the mixed gas injected into the metal cell had a temperature of 30° C. and a pressure of 0.1 MPa. Next, the pressure in the space within the metal cell adjacent to the main surface of the separation membrane on the porous support side was reduced using a vacuum pump.
  • the permeation rate T 0 of carbon dioxide passing through the separation membrane was determined based on the composition of the obtained permeate fluid, the weight of the permeate fluid, etc.
  • Example 1 a separation functional layer was produced on a release liner by the same method as in Reference Example 1.
  • a double-sided tape No. 5620A manufactured by Nitto Denko Corporation
  • the adhesive part of the double-sided tape was made of an acrylic adhesive.
  • An intermediate layer was formed by laminating a double-sided tape onto the separation functional layer. This intermediate layer had a space that could contact both the separation functional layer and the porous support. When the intermediate layer was viewed in plan, the area ratio R (aperture ratio) of the area where the space existed among the surfaces of the intermediate layer was 80%.
  • the thickness of the intermediate layer was 200 ⁇ m.
  • the separation functional layer and the porous support used in Reference Example 1 were bonded together via the intermediate layer.
  • the separation membrane of Example 1 was obtained by removing the release liner from the obtained laminate.
  • Examples 2-3 Separation membranes of Examples 2 and 3 were obtained in the same manner as in Example 1, except that the intermediate layer was prepared so that the aperture ratio would have the value shown in Table 1.
  • Comparative example 1 A separation membrane of Comparative Example 1 was obtained in the same manner as in Example 1, except that the double-sided tape was placed on the entire surface of the separation functional layer. In the separation membrane of Comparative Example 1, the intermediate layer had no space.
  • Example 4 a separation functional layer was produced on a release liner by the same method as in Reference Example 1. Next, a coating liquid (silicone adhesive (KR3700, manufactured by Shin-Etsu Chemical Co., Ltd.)) was applied onto the separation functional layer so that the main body portions were arranged in stripes in a plan view. Next, the coating liquid was dried under heating conditions to form a main body, thereby obtaining an intermediate layer. This intermediate layer had a space that could contact both the separation functional layer and the porous support. When the intermediate layer was viewed in plan, the area ratio R (aperture ratio) of the area where the space existed among the surfaces of the intermediate layer was 80%. The thickness of the intermediate layer was 200 ⁇ m.
  • the separation functional layer and the porous support used in Reference Example 1 were bonded together via the intermediate layer.
  • the separation membrane of Example 4 was obtained by removing the release liner from the obtained laminate.
  • Examples 5-6 Separation membranes of Examples 5 and 6 were obtained in the same manner as in Example 4, except that the intermediate layer was prepared so that the aperture ratio had the value shown in Table 1.
  • Comparative example 2 A separation membrane of Comparative Example 2 was obtained in the same manner as in Example 4, except that the coating liquid was uniformly applied onto the separation functional layer. In the separation membrane of Comparative Example 2, the intermediate layer had no space.
  • Example 7 a separation functional layer was produced on a release liner by the same method as in Reference Example 1. Next, a coating liquid (silicone adhesive (KR3700, manufactured by Shin-Etsu Chemical Co., Ltd.)) was applied onto the separation functional layer so that the main body portion was arranged in dots in a plan view. Next, the coating liquid was dried under heating conditions to form a main body, thereby obtaining an intermediate layer. This intermediate layer had a space that could contact both the separation functional layer and the porous support. When the intermediate layer was viewed in plan, the area ratio R (aperture ratio) of the area where the space existed among the surfaces of the intermediate layer was 80%. The thickness of the intermediate layer was 200 ⁇ m.
  • the separation functional layer and the porous support used in Reference Example 1 were bonded together via the intermediate layer.
  • the separation membrane of Example 7 was obtained by removing the release liner from the obtained laminate.
  • Example 8-9 Separation membranes of Examples 8 and 9 were obtained in the same manner as in Example 7, except that the intermediate layer was prepared so that the aperture ratio was as shown in Table 1.
  • Example 10 to 12 Separation membranes of Examples 10 to 12 were obtained in the same manner as in Example 4, except that the intermediate layer was prepared so that the aperture ratio and thickness had the values shown in Table 2.
  • Comparative example 3 A separation membrane of Comparative Example 3 was obtained by the same method as Comparative Example 2, except that the intermediate layer was prepared so that the thickness had the value shown in Table 2.
  • Example 13 to 15 As a double-sided tape, No. 1 manufactured by Nitto Denko Corporation is used. Separation membranes of Examples 13 to 15 were obtained in the same manner as in Example 1, except that 5601 was used and the intermediate layer was prepared so that the aperture ratio was as shown in Table 2.
  • the adhesive part of the double-sided tape was made of an acrylic adhesive.
  • the thickness of the intermediate layer formed by laminating the double-sided tape onto the separation functional layer was 10 ⁇ m.
  • Comparative example 4 A separation membrane of Comparative Example 4 was obtained in the same manner as in Example 13, except that the double-sided tape was placed on the entire surface of the separation functional layer. In the separation membrane of Comparative Example 4, the intermediate layer had no space.
  • Example 16 to 19 MRF38 manufactured by Mitsubishi Chemical Corporation was prepared as a release liner.
  • This release liner is a light release film that has relatively low adhesive strength with the separation functional layer.
  • the surface of this release liner was subjected to corona treatment under conditions of a discharge amount of 0.33 kW ⁇ min/m 2 or more.
  • Examples 16 to 19 were prepared by the same method as Example 4, except that the above release liner after corona treatment was used, and the intermediate layer was prepared so that the aperture ratio and thickness were as shown in Table 3. A separation membrane was obtained.
  • Comparative example 5 A separation membrane of Comparative Example 5 was obtained in the same manner as in Example 16, except that the coating liquid was uniformly applied onto the separation functional layer. In the separation membrane of Comparative Example 5, the intermediate layer had no space.
  • Example 20 First, a corona-treated release liner was prepared by the method described above for Example 16. Next, a separation functional layer was produced on the release liner by the same method as in Reference Example 1 except that the above release liner was used.
  • a (meth)acrylic adhesive (coating liquid) was prepared by the following method. First, 95 parts by weight of butyl acrylate, 5 parts by weight of 4-hydroxybutyl acrylate as a hydroxyl group-containing monomer, and 2 parts by weight of 4-hydroxybutyl acrylate as a polymerization initiator were placed in a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas inlet tube, and a condenser. , 0.2 parts by weight of 2'-azobisisobutyronitrile, and 300 parts by weight of ethyl acetate were charged, and nitrogen substitution was performed for 1 hour while stirring gently.
  • an ethyl acetate solution (solid content concentration: 25 wt%) of a (meth)acrylic polymer was prepared by performing a polymerization reaction for 7 hours while keeping the flask internal temperature at 60°C.
  • a trimethylolpropane adduct of tolylene diisocyanate (Coronate L) as a crosslinking agent and 1600 parts by weight of ethyl acetate as a diluent were added to the obtained solution, and the solid content was 5 wt%.
  • An acrylic adhesive was produced.
  • the above coating liquid was applied onto the separation functional layer using a screen printing plate so that main bodies arranged in stripes in plan view were formed.
  • This coating liquid was heated and dried at 130° C. for 10 minutes to form a main body, thereby obtaining an intermediate layer.
  • This intermediate layer had a space that could contact both the separation functional layer and the porous support.
  • the area ratio R aperture ratio
  • the thickness of the intermediate layer was 3 ⁇ m.
  • the separation membrane of Example 20 was obtained by removing the release liner from the obtained laminate.
  • Examples 21-23 Separation membranes of Examples 21 to 23 were obtained by the same method as Example 20, except that the intermediate layer was prepared so that the aperture ratio and thickness had the values shown in Table 3.
  • Comparative example 6 A separation membrane of Comparative Example 6 was obtained in the same manner as in Example 20, except that the coating liquid was uniformly applied onto the separation functional layer. In the separation membrane of Comparative Example 6, the intermediate layer had no space.
  • Example 24-25 Separation membranes of Examples 24 and 25 were obtained in the same manner as in Examples 17 and 19, respectively, except that the release liner of Reference Example 1 was used.
  • Comparative example 7 A separation membrane of Comparative Example 7 was obtained in the same manner as in Example 24, except that the coating liquid was uniformly applied onto the separation functional layer. In the separation membrane of Comparative Example 7, the intermediate layer had no space.
  • Example 26-27 Separation membranes of Examples 26 and 27 were obtained in the same manner as in Examples 21 and 23, respectively, except that the release liner of Reference Example 1 was used.
  • Comparative Example 8 A separation membrane of Comparative Example 8 was obtained in the same manner as in Example 26, except that the coating liquid was uniformly applied onto the separation functional layer. In the separation membrane of Comparative Example 8, the intermediate layer had no space.
  • a separation functional layer was produced on a release liner by the same method as in Reference Example 1.
  • a rubber adhesive solid adhesive
  • 100 parts by weight of styrene-isoprene-styrene block copolymer (SIS) as a base polymer, 55 parts by weight of isoprene rubber as a liquid component, and 45 parts by weight of terpene resin (YS Resin PX-1150) as a tackifier were blended. The mixture was kneaded at 150° C. for 30 minutes using a Laboplast Mill. In this way, a rubber adhesive was produced.
  • SIS styrene-isoprene-styrene block copolymer
  • YS Resin PX-1150 terpene resin
  • the solid adhesive was sprayed onto the separation functional layer using a hot melt applicator equipped with a spray coating nozzle.
  • a fibrous main body was formed and an intermediate layer was obtained.
  • This intermediate layer had a space that could contact both the separation functional layer and the porous support.
  • the area ratio R aperture ratio
  • the thickness of the intermediate layer was 55 ⁇ m.
  • the separation functional layer and the porous support used in Reference Example 1 were bonded together via the intermediate layer.
  • the separation membrane of Example 28 was obtained by removing the release liner from the obtained laminate.
  • Example 29-30 Separation membranes of Examples 29 and 30 were obtained in the same manner as in Example 28, except that the intermediate layer was prepared so that the aperture ratio had the value shown in Table 5.
  • Comparative example 9 A separation membrane of Comparative Example 9 was obtained in the same manner as in Example 28, except that the solid adhesive was uniformly applied on the separation functional layer. In the separation membrane of Comparative Example 9, the intermediate layer had no space.
  • Examples 31-32 Separation membranes of Examples 31 and 32 were obtained by the same method as Example 28, except that the intermediate layer was prepared so that the aperture ratio and thickness had the values shown in Table 5.
  • Permeation rate ratio T/T 0 For each of the separation membranes of Examples and Comparative Examples, the permeation rate T of carbon dioxide passing through the separation membrane was determined by the same method as in Reference Example 1. Based on the obtained results, we determined that the permeation rate T (GPU) of carbon dioxide permeating through the separation membranes of Examples and Comparative Examples with respect to the permeation rate T 0 (GPU) of carbon dioxide permeating through the measurement separation membrane of Reference Example 1. ) ratio T/T 0 was calculated.
  • the separation membrane of this embodiment is suitable for separating acidic gas from a mixed gas containing acidic gas.
  • the separation membrane of this embodiment is suitable for separating carbon dioxide from off-gas of chemical plants or thermal power generation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention provides a novel separation membrane that is equipped with an intermediate layer and suitable for improving the permeation speed of a permeating fluid. This separation membrane 10 comprises a separation function layer 1, a porous support body 3 supporting the separation function layer 1, and an intermediate layer 2 arranged between the separation function layer 1 and the porous support body 3. The intermediate layer 2 has spaces 6 that are in contact with both the separation function layer 1 and the porous support body 3. The intermediate layer 2 also has a body section 5 joining the separation function layer 1 and the porous support body 3, for example.

Description

分離膜及び分離膜の製造方法Separation membrane and separation membrane manufacturing method
 本発明は、分離膜及び分離膜の製造方法に関する。 The present invention relates to a separation membrane and a method for manufacturing a separation membrane.
 二酸化炭素などの酸性ガスを含む混合気体から酸性ガスを分離する方法として、膜分離法が開発されている。膜分離法は、混合気体に含まれる酸性ガスを吸収剤に吸収させて分離する吸収法と比べて、運転コストを抑えながら酸性ガスを効率的に分離することができる。 Membrane separation methods have been developed as a method for separating acidic gases from mixed gases containing acidic gases such as carbon dioxide. Membrane separation methods can efficiently separate acidic gases while reducing operating costs, compared to absorption methods in which acidic gases contained in a gas mixture are absorbed by an absorbent and separated.
 膜分離法に用いられる分離膜としては、分離機能層を多孔性支持体の上に形成した複合膜が挙げられる。分離機能層の材料としては、例えば、ポリイミド樹脂、ポリエーテルブロックアミド樹脂などの樹脂が挙げられる。例えば、特許文献1及び2には、ポリイミド樹脂を含む分離膜が開示されている。 Examples of separation membranes used in membrane separation methods include composite membranes in which a separation functional layer is formed on a porous support. Examples of the material for the separation functional layer include resins such as polyimide resin and polyether block amide resin. For example, Patent Documents 1 and 2 disclose separation membranes containing polyimide resin.
特開2014-184424号公報Japanese Patent Application Publication No. 2014-184424 特開2014-24004号公報JP 2014-24004 Publication
 分離膜の分野では、分離機能層と多孔性支持体との間に中間層が配置されることがある。中間層によれば、膜厚が小さい分離機能層を容易に形成することができる。しかし、中間層を備えた分離膜は、分離膜からの透過流体の透過速度について改善の余地がある。 In the field of separation membranes, an intermediate layer is sometimes placed between the separation functional layer and the porous support. According to the intermediate layer, a separation functional layer with a small thickness can be easily formed. However, a separation membrane including an intermediate layer has room for improvement in terms of the permeation rate of the permeate fluid from the separation membrane.
 そこで本発明は、中間層を備えるとともに、透過流体の透過速度を改善することに適した新たな分離膜を提供する。 Therefore, the present invention provides a new separation membrane that is equipped with an intermediate layer and is suitable for improving the permeation rate of a permeate fluid.
 本発明は、
 分離機能層と、
 前記分離機能層を支持している多孔性支持体と、
 前記分離機能層と前記多孔性支持体との間に配置された中間層と、
を備え、
 前記中間層は、前記分離機能層及び前記多孔性支持体の両方に接する空間を有する、分離膜を提供する。
The present invention
a separation functional layer;
a porous support supporting the separation functional layer;
an intermediate layer disposed between the separation functional layer and the porous support;
Equipped with
The intermediate layer provides a separation membrane having a space in contact with both the separation functional layer and the porous support.
 さらに本発明は、
 分離機能層と、前記分離機能層を支持している多孔性支持体と、前記分離機能層と前記多孔性支持体との間に配置された中間層と、を備えた分離膜の製造方法であって、
 前記製造方法は、
 はく離ライナー及び前記分離機能層を有する第1積層体の上に、空間を有する前記中間層を形成することによって、前記はく離ライナー、前記分離機能層及び前記中間層をこの順で有する第2積層体を形成することと、
 前記空間が前記分離機能層及び前記多孔性支持体の両方に接するように、前記第2積層体の前記中間層を前記多孔性支持体と貼り合わせて、第3積層体を形成することと、
 前記第3積層体から前記はく離ライナーを取り除くことと、
を含む、分離膜の製造方法を提供する。
Furthermore, the present invention
A method for producing a separation membrane comprising a separation functional layer, a porous support supporting the separation functional layer, and an intermediate layer disposed between the separation functional layer and the porous support. There it is,
The manufacturing method includes:
A second laminate having the release liner, the separation functional layer, and the intermediate layer in this order is formed by forming the intermediate layer having a space on the first laminate having the release liner and the separation functional layer. to form a
bonding the intermediate layer of the second laminate to the porous support so that the space contacts both the separation functional layer and the porous support to form a third laminate;
removing the release liner from the third laminate;
Provided is a method for manufacturing a separation membrane, including:
 本発明によれば、中間層を備えるとともに、透過流体の透過速度を改善することに適した新たな分離膜を提供できる。 According to the present invention, it is possible to provide a new separation membrane that includes an intermediate layer and is suitable for improving the permeation rate of a permeate fluid.
本発明の一実施形態にかかる分離膜を厚さ方向に切断したときに観察される模式的な断面図である。FIG. 2 is a schematic cross-sectional view of a separation membrane according to an embodiment of the present invention when cut in the thickness direction. 分離膜が備える中間層を、中間層の表面に平行に切断したときに観察される模式的な断面図である。FIG. 3 is a schematic cross-sectional view of the intermediate layer included in the separation membrane, which is observed when the intermediate layer is cut parallel to the surface of the intermediate layer. 変形例にかかる分離膜が備える中間層を、中間層の表面に平行に切断したときに観察される模式的な断面図である。FIG. 7 is a schematic cross-sectional view of an intermediate layer included in a separation membrane according to a modified example, which is observed when the intermediate layer is cut parallel to the surface of the intermediate layer. 別の変形例にかかる分離膜が備える中間層を、中間層の表面に平行に切断したときに観察される模式的な断面図である。FIG. 7 is a schematic cross-sectional view of an intermediate layer included in a separation membrane according to another modified example, which is observed when the intermediate layer is cut parallel to the surface of the intermediate layer. 別の変形例にかかる分離膜が備える中間層の平面図である。FIG. 7 is a plan view of an intermediate layer included in a separation membrane according to another modification. 分離膜の製造方法を説明するための図である。FIG. 3 is a diagram for explaining a method for manufacturing a separation membrane. 分離膜の製造方法を説明するための図である。FIG. 3 is a diagram for explaining a method for manufacturing a separation membrane. 分離膜の製造方法を説明するための図である。FIG. 3 is a diagram for explaining a method for manufacturing a separation membrane. 本発明の分離膜を備えた膜分離装置の概略断面図である。1 is a schematic cross-sectional view of a membrane separation device equipped with a separation membrane of the present invention. 本発明の分離膜を備えた膜分離装置の変形例を模式的に示す斜視図である。FIG. 3 is a perspective view schematically showing a modified example of a membrane separation device equipped with the separation membrane of the present invention.
 本発明の第1態様にかかる分離膜は、
 分離機能層と、
 前記分離機能層を支持している多孔性支持体と、
 前記分離機能層と前記多孔性支持体との間に配置された中間層と、
を備え、
 前記中間層は、前記分離機能層及び前記多孔性支持体の両方に接する空間を有する。
The separation membrane according to the first aspect of the present invention is
a separation functional layer;
a porous support supporting the separation functional layer;
an intermediate layer disposed between the separation functional layer and the porous support;
Equipped with
The intermediate layer has a space in contact with both the separation functional layer and the porous support.
 本発明の第2態様において、例えば、第1態様にかかる分離膜では、前記中間層は、前記分離機能層と前記多孔性支持体とを接合する本体部を有する。 In the second aspect of the present invention, for example, in the separation membrane according to the first aspect, the intermediate layer has a main body portion that joins the separation functional layer and the porous support.
 本発明の第3態様において、例えば、第2態様にかかる分離膜では、前記本体部は、平面視で、ストライプ状、ドット状、メッシュ状又は繊維状である。 In the third aspect of the present invention, for example, in the separation membrane according to the second aspect, the main body portion has a stripe shape, a dot shape, a mesh shape, or a fibrous shape in plan view.
 本発明の第4態様において、例えば、第2又は第3態様にかかる分離膜では、前記本体部は、粘着剤組成物から形成された粘着部を含む。 In the fourth aspect of the present invention, for example, in the separation membrane according to the second or third aspect, the main body portion includes an adhesive portion formed from an adhesive composition.
 本発明の第5態様において、例えば、第4態様にかかる分離膜では、前記粘着剤組成物は、シリコーン系ポリマー、(メタ)アクリル系ポリマー、及びゴム系ポリマーからなる群より選ばれる少なくとも1つを含む。 In the fifth aspect of the present invention, for example, in the separation membrane according to the fourth aspect, the adhesive composition is at least one selected from the group consisting of a silicone polymer, a (meth)acrylic polymer, and a rubber polymer. including.
 本発明の第6態様において、例えば、第1~第5態様のいずれか1つにかかる分離膜では、前記中間層を平面視したときに、前記中間層の表面のうち、前記空間が存在する領域の面積の割合が40%以上である。 In a sixth aspect of the present invention, for example, in the separation membrane according to any one of the first to fifth aspects, when the intermediate layer is viewed in plan, the space exists on the surface of the intermediate layer. The area ratio of the region is 40% or more.
 本発明の第7態様において、例えば、第1~第6態様のいずれか1つにかかる分離膜では、前記中間層の厚さが0.1μm以上である。 In the seventh aspect of the present invention, for example, in the separation membrane according to any one of the first to sixth aspects, the intermediate layer has a thickness of 0.1 μm or more.
 本発明の第8態様において、例えば、第1~第7態様のいずれか1つにかかる分離膜では、前記分離機能層がポリイミド樹脂を含む。 In the eighth aspect of the present invention, for example, in the separation membrane according to any one of the first to seventh aspects, the separation functional layer contains a polyimide resin.
 本発明の第9態様において、例えば、第1~第8態様のいずれか1つにかかる分離膜は、二酸化炭素及び窒素を含む混合気体から二酸化炭素を分離するために用いられる。 In the ninth aspect of the present invention, for example, the separation membrane according to any one of the first to eighth aspects is used to separate carbon dioxide from a mixed gas containing carbon dioxide and nitrogen.
 本発明の第10態様にかかる分離膜の製造方法は、
 分離機能層と、前記分離機能層を支持している多孔性支持体と、前記分離機能層と前記多孔性支持体との間に配置された中間層と、を備えた分離膜の製造方法であって、
 前記製造方法は、
 はく離ライナー及び前記分離機能層を有する第1積層体の上に、空間を有する前記中間層を形成することによって、前記はく離ライナー、前記分離機能層及び前記中間層をこの順で有する第2積層体を形成することと、
 前記空間が前記分離機能層及び前記多孔性支持体の両方に接するように、前記第2積層体の前記中間層を前記多孔性支持体と貼り合わせて、第3積層体を形成することと、
 前記第3積層体から前記はく離ライナーを取り除くことと、
を含む。
The method for manufacturing a separation membrane according to the tenth aspect of the present invention includes:
A method for producing a separation membrane comprising a separation functional layer, a porous support supporting the separation functional layer, and an intermediate layer disposed between the separation functional layer and the porous support. There it is,
The manufacturing method includes:
A second laminate having the release liner, the separation functional layer, and the intermediate layer in this order is formed by forming the intermediate layer having a space on the first laminate having the release liner and the separation functional layer. to form a
bonding the intermediate layer of the second laminate to the porous support so that the space contacts both the separation functional layer and the porous support to form a third laminate;
removing the release liner from the third laminate;
including.
 以下、本発明の詳細を説明するが、以下の説明は、本発明を特定の実施形態に制限する趣旨ではない。 The details of the present invention will be described below, but the following description is not intended to limit the present invention to specific embodiments.
<分離膜の実施形態>
 図1に示すように、本実施形態の分離膜10は、分離機能層1、中間層2及び多孔性支持体3を備えている。多孔性支持体3は、中間層2を介して、分離機能層1を支持している。中間層2は、分離機能層1と多孔性支持体3との間に配置されており、分離機能層1及び多孔性支持体3のそれぞれに直接接している。中間層2は、分離機能層1及び多孔性支持体3の両方に接する空間6を有する。中間層2は、例えば、空間6とともに、分離機能層1と多孔性支持体3とを接合する本体部5をさらに有する。
<Embodiment of separation membrane>
As shown in FIG. 1, the separation membrane 10 of this embodiment includes a separation functional layer 1, an intermediate layer 2, and a porous support 3. The porous support 3 supports the separation functional layer 1 via the intermediate layer 2. The intermediate layer 2 is arranged between the separation functional layer 1 and the porous support 3 and is in direct contact with each of the separation functional layer 1 and the porous support 3. The intermediate layer 2 has a space 6 in contact with both the separation functional layer 1 and the porous support 3. For example, the intermediate layer 2 further includes a main body portion 5 that joins the separation functional layer 1 and the porous support 3 together with the space 6 .
(分離機能層)
 分離機能層1は、例えば、混合気体に含まれる酸性ガスを優先的に透過させることができる層である。好ましい一形態では、分離機能層1は、樹脂を含む。分離機能層1に含まれる樹脂としては、例えば、ポリエーテルブロックアミド樹脂、ポリアミド樹脂、ポリエーテル樹脂、ポリイミド樹脂、酢酸セルロース樹脂、シリコーン樹脂及びフッ素樹脂が挙げられる。分離機能層1は、好ましくはポリイミド樹脂を含む。
(separation functional layer)
The separation functional layer 1 is, for example, a layer that can preferentially transmit an acidic gas contained in a mixed gas. In one preferred form, the separation functional layer 1 contains resin. Examples of the resin contained in the separation functional layer 1 include polyether block amide resin, polyamide resin, polyether resin, polyimide resin, cellulose acetate resin, silicone resin, and fluororesin. Separation functional layer 1 preferably contains polyimide resin.
 ポリイミド樹脂に含まれるポリマーとしては、特に限定されず、例えば下記式(1)で表される構成単位を有するポリイミドPが挙げられる。式(1)において、X及びYは、連結基である。ポリイミドPとしては、例えば、特許文献1又は2に記載されたものが挙げられる。
Figure JPOXMLDOC01-appb-C000001
The polymer contained in the polyimide resin is not particularly limited, and includes, for example, polyimide P having a structural unit represented by the following formula (1). In formula (1), X and Y are linking groups. Examples of polyimide P include those described in Patent Document 1 or 2.
Figure JPOXMLDOC01-appb-C000001
 式(1)の構成単位は、下記式(2)で表される構成単位であってもよい。
Figure JPOXMLDOC01-appb-C000002
The structural unit of formula (1) may be a structural unit represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000002
 式(2)において、X1及びY1は、連結基である。X1は、例えば、酸素原子、窒素原子、硫黄原子及びケイ素原子からなる群より選ばれる少なくとも1つを含み、好ましくは酸素原子及び窒素原子からなる群より選ばれる少なくとも1つを含み、より好ましくは酸素原子を含む。X1は、例えば、エーテル基、エステル基、ケトン基、ヒドロキシル基、アミド基、チオエーテル基及びスルホニル基からなる群より選ばれる少なくとも1つの官能基を含み、好ましくは、エーテル基及びエステル基からなる群より選ばれる少なくとも1つを含む。 In formula (2), X 1 and Y 1 are linking groups. X 1 includes, for example, at least one selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom, and a silicon atom, preferably includes at least one selected from the group consisting of an oxygen atom and a nitrogen atom, and more preferably contains an oxygen atom. X 1 contains, for example, at least one functional group selected from the group consisting of an ether group, an ester group, a ketone group, a hydroxyl group, an amide group, a thioether group, and a sulfonyl group, and preferably consists of an ether group and an ester group. At least one selected from the group.
 X1は、上記の官能基と共にその他の基、例えば炭化水素基を含んでいてもよい。炭化水素基の炭素数は、特に制限されないが、例えば1~15である。この炭素数は、1~3であってもよく、6~15であってもよい。炭化水素基の価数にも制限はないが、好ましくは2価の炭化水素基である。2価の炭化水素基としては、例えば、メチレン基、エチレン基、プロパン-1,3-ジイル基、プロパン-2,2-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、2,2-ジメチルプロパン-1,3-ジイル基、1,4-フェニレン基、2,5-ジ-tert-ブチル-1,4-フェニレン基、1-メチル-1,1-エタンジイルビス(1,4-フェニレン)基及びビフェニル-4,4’-ジイル基が挙げられる。さらに、これらの炭化水素基に含まれる少なくとも1つの水素原子は、ハロゲン原子によって置換されていてもよい。 X 1 may contain other groups, such as hydrocarbon groups, in addition to the above-mentioned functional groups. The number of carbon atoms in the hydrocarbon group is not particularly limited, but is, for example, 1 to 15. The number of carbon atoms may be 1 to 3 or 6 to 15. Although there is no restriction on the valence of the hydrocarbon group, a divalent hydrocarbon group is preferable. Examples of divalent hydrocarbon groups include methylene group, ethylene group, propane-1,3-diyl group, propane-2,2-diyl group, butane-1,4-diyl group, and pentane-1,5-diyl group. Diyl group, 2,2-dimethylpropane-1,3-diyl group, 1,4-phenylene group, 2,5-di-tert-butyl-1,4-phenylene group, 1-methyl-1,1-ethanediylbis (1,4-phenylene) group and biphenyl-4,4'-diyl group. Furthermore, at least one hydrogen atom contained in these hydrocarbon groups may be substituted with a halogen atom.
 X1は、例えば、一般式-O-R7-O-、又は、一般式-COO-R8-OOC-で表される連結基である。ここで、R7及びR8は、炭素数1~15の2価の炭化水素基である。2価の炭化水素基としては、上述したものが挙げられる。 X 1 is, for example, a linking group represented by the general formula -O-R 7 -O- or the general formula -COO-R 8 -OOC-. Here, R 7 and R 8 are divalent hydrocarbon groups having 1 to 15 carbon atoms. Examples of the divalent hydrocarbon group include those mentioned above.
 X1は、上述の官能基を含んでいなくてもよい。このようなX1としては、例えば、アルキレン基が挙げられる。アルキレン基の炭素数は、特に制限されないが、例えば1~15であってもよく、1~5であってもよい。アルキレン基は、分岐鎖状であってもよいが、直鎖状であることが好ましい。アルキレン基は、その水素原子の一部がハロゲン原子によって置換されていてもよいが、置換されていない状態、すなわち、直鎖の又は分岐を有するアルキレン基そのものであることが好ましい。 X 1 does not need to contain the above-mentioned functional group. Examples of such X 1 include an alkylene group. The number of carbon atoms in the alkylene group is not particularly limited, and may be, for example, from 1 to 15, or from 1 to 5. Although the alkylene group may be branched, it is preferably linear. Although some of the hydrogen atoms of the alkylene group may be substituted with halogen atoms, it is preferable that the alkylene group is in an unsubstituted state, that is, it is a linear or branched alkylene group itself.
 Y1は、例えば、酸素原子、窒素原子、硫黄原子及びケイ素原子からなる群より選ばれる少なくとも1つを含み、好ましくは酸素原子及び窒素原子からなる群より選ばれる少なくとも1つを含み、より好ましくは酸素原子を含む。Y1は、例えば、エーテル基、エステル基、ケトン基、ヒドロキシル基、アミド基、チオエーテル基及びスルホニル基からなる群より選ばれる少なくとも1つの官能基を含み、好ましくはエーテル基を含む。 Y 1 includes, for example, at least one selected from the group consisting of oxygen atoms, nitrogen atoms, sulfur atoms, and silicon atoms, preferably includes at least one selected from the group consisting of oxygen atoms and nitrogen atoms, and more preferably contains an oxygen atom. Y 1 contains, for example, at least one functional group selected from the group consisting of an ether group, an ester group, a ketone group, a hydroxyl group, an amide group, a thioether group, and a sulfonyl group, and preferably contains an ether group.
 Y1は、上記の官能基と共にその他の基、例えば炭化水素基を含んでいてもよい。炭化水素基としては、X1について上述したものが挙げられる。Y1は、X1と同じであってもよく、異なっていてもよい。 Y 1 may contain other groups, such as hydrocarbon groups, in addition to the above-mentioned functional groups. Examples of the hydrocarbon group include those mentioned above for X 1 . Y 1 may be the same as or different from X 1 .
 式(2)において、R1~R6は、互いに独立して、水素原子、ハロゲン原子、ヒドロキシル基、スルホン酸基、炭素数1~30のアルコキシ基、又は、炭素数1~30の炭化水素基である。R1~R6は、好ましくは水素原子である。R1~R6のアルコキシ基又は炭化水素基は、直鎖状、分岐鎖状のいずれであってもよい。アルコキシ基又は炭化水素基の炭素数は、好ましくは1~20であり、より好ましくは1~10であり、特に好ましくは1~5である。アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基などが挙げられる。炭化水素基としては、メチル基、エチル基、プロピル基などが挙げられる。アルコキシ基又は炭化水素基に含まれる少なくとも1つの水素原子は、ハロゲン原子によって置換されていてもよい。 In formula (2), R 1 to R 6 are each independently a hydrogen atom, a halogen atom, a hydroxyl group, a sulfonic acid group, an alkoxy group having 1 to 30 carbon atoms, or a hydrocarbon having 1 to 30 carbon atoms. It is the basis. R 1 to R 6 are preferably hydrogen atoms. The alkoxy group or hydrocarbon group of R 1 to R 6 may be either linear or branched. The number of carbon atoms in the alkoxy group or hydrocarbon group is preferably 1 to 20, more preferably 1 to 10, particularly preferably 1 to 5. Examples of the alkoxy group include a methoxy group, an ethoxy group, and a propoxy group. Examples of the hydrocarbon group include a methyl group, an ethyl group, and a propyl group. At least one hydrogen atom contained in the alkoxy group or hydrocarbon group may be substituted with a halogen atom.
 R2及びR3、並びに、R5及びR6は、互いに結合して環構造を形成していてもよい。環構造は、例えば、ベンゼン環である。 R 2 and R 3 and R 5 and R 6 may be bonded to each other to form a ring structure. The ring structure is, for example, a benzene ring.
 式(2)において、Ar1及びAr2は、2価の芳香族基である。2価の芳香族基は、芳香環を含む。式(2)において、フタルイミド構造の窒素原子は、Ar1に含まれる芳香環、又は、Ar2に含まれる芳香環と直接結合していることが好ましい。式(2)において、Y1は、Ar1に含まれる芳香環、及び、Ar2に含まれる芳香環のそれぞれと直接結合していてもよい。 In formula (2), Ar 1 and Ar 2 are divalent aromatic groups. Divalent aromatic groups include aromatic rings. In formula (2), the nitrogen atom of the phthalimide structure is preferably directly bonded to the aromatic ring contained in Ar 1 or the aromatic ring contained in Ar 2 . In formula (2), Y 1 may be directly bonded to each of the aromatic ring contained in Ar 1 and the aromatic ring contained in Ar 2 .
 Ar1及びAr2において、芳香環は、炭素原子から構成されていることが好ましい。ただし、芳香環は、酸素原子、窒素原子、硫黄原子などのヘテロ原子を含む複素芳香環であってもよい。芳香環は、多環式であってもよいが、単環式であることが好ましい。芳香環の炭素数は、特に限定されないが、例えば4~14であってもよく、6~10であってもよい。芳香環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フラン環、ピロール環、ピリジン環及びチオフェン環が挙げられる。 In Ar 1 and Ar 2 , the aromatic ring is preferably composed of carbon atoms. However, the aromatic ring may be a heteroaromatic ring containing a heteroatom such as an oxygen atom, a nitrogen atom, or a sulfur atom. Although the aromatic ring may be polycyclic, it is preferably monocyclic. The number of carbon atoms in the aromatic ring is not particularly limited, and may be, for example, 4 to 14 or 6 to 10. Examples of the aromatic ring include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a furan ring, a pyrrole ring, a pyridine ring, and a thiophene ring.
 Ar1及びAr2において、芳香環は、置換基を有していなくてもよく、置換基を有していてもよい。芳香環の置換基としては、例えば、ハロゲン原子、ヒドロキシル基、スルホン酸基、炭素数1~30のアルコキシ基、及び、炭素数1~30の炭化水素基が挙げられる。アルコキシ基及び炭化水素基としては、R1~R6について上述したものが挙げられる。芳香環が複数の置換基を有するとき、複数の置換基は、互いに同じであってもよく、異なっていてもよい。Ar1及びAr2は、置換基を有していてもよいフェニレン基、又は、置換基を有していてもよいナフタレンジイル基であることが好ましい。 In Ar 1 and Ar 2 , the aromatic ring may have no substituent or may have a substituent. Examples of substituents on the aromatic ring include halogen atoms, hydroxyl groups, sulfonic acid groups, alkoxy groups having 1 to 30 carbon atoms, and hydrocarbon groups having 1 to 30 carbon atoms. Examples of the alkoxy group and hydrocarbon group include those mentioned above for R 1 to R 6 . When the aromatic ring has a plurality of substituents, the plurality of substituents may be the same or different. Ar 1 and Ar 2 are preferably a phenylene group which may have a substituent or a naphthalenediyl group which may have a substituent.
 分離機能層1は、好ましくは、実質的に樹脂からなる。本明細書において、「実質的に~からなる」は、言及された材料の本質的特徴を変更する他の成分を排除することを意味し、例えば95wt%以上、さらには99wt%以上が当該材料により構成されていることを意味する。ただし、分離機能層1は、樹脂以外に、レベリング剤などの添加剤をさらに含んでいてもよい。 The separation functional layer 1 preferably consists essentially of resin. As used herein, "consisting essentially of" means to the exclusion of other components that alter the essential characteristics of the mentioned material, e.g. 95 wt% or more, even 99 wt% or more of the material It means that it is composed of. However, the separation functional layer 1 may further contain additives such as a leveling agent in addition to the resin.
 別の好ましい一形態では、分離機能層1は、イオン液体を含む。分離機能層1は、例えば、イオン液体を含むダブルネットワークゲルを有する。ダブルネットワークゲルは、互いに独立した2種類の網目構造を備えるゲルである。ダブルネットワークゲルは、例えば、主として有機材料により構成された第1網目構造、主として無機材料により構成された第2網目構造、及び、イオン液体を含む。本明細書において、「主として構成された」は、50wt%以上、さらには70wt%以上が当該材料により構成されていることを意味する。 In another preferred form, the separation functional layer 1 contains an ionic liquid. The separation functional layer 1 has, for example, a double network gel containing an ionic liquid. A double network gel is a gel that has two types of network structures that are independent of each other. The double network gel includes, for example, a first network structure mainly composed of an organic material, a second network structure mainly composed of an inorganic material, and an ionic liquid. As used herein, "consisting primarily" means that 50 wt% or more, and further 70 wt% or more, of the material is comprised.
 第1網目構造を構成するための有機材料は、例えば、ポリアクリルアミド(特に、ポリジメチルアクリルアミドなどのポリジアルキルアクリルアミド)などの重合体を含む。有機材料に含まれる重合体は、アクリルアミド誘導体に由来する構造単位を有し、さらに架橋構造を含んでいてもよい。架橋構造を含む重合体は、公知の方法によって作製することができる。例えば、まず、N-ヒドロキシスクシンイミドエステル基を有する構造単位を有するプレポリマーを準備する。N-ヒドロキシスクシンイミドエステル基を有する構造単位は、例えば、N-アクリルオキシスクシンイミドに由来する。次に、プレポリマーとアミン系架橋剤とを反応させることによって、架橋構造を含む重合体を得ることができる。アミン系架橋剤は、2つ以上の第一級アミノ基を有する化合物であり、例えばエチレングリコールビス(3-アミノプロピル)エーテルである。 The organic material for forming the first network structure includes, for example, a polymer such as polyacrylamide (particularly polydialkyl acrylamide such as polydimethylacrylamide). The polymer contained in the organic material has a structural unit derived from an acrylamide derivative, and may further include a crosslinked structure. A polymer containing a crosslinked structure can be produced by a known method. For example, first, a prepolymer having a structural unit having an N-hydroxysuccinimide ester group is prepared. The structural unit having an N-hydroxysuccinimide ester group is derived from, for example, N-acryloxysuccinimide. Next, a polymer containing a crosslinked structure can be obtained by reacting the prepolymer with an amine crosslinking agent. Amine-based crosslinking agents are compounds having two or more primary amino groups, such as ethylene glycol bis(3-aminopropyl) ether.
 第2網目構造は、複数の粒子のネットワークを含んでいてもよい。複数の粒子のネットワークは、例えば、複数の粒子が水素結合によって互いに結合することによって形成されている。第2網目構造に含まれる粒子は、無機材料を含んでいてもよく、有機材料を含んでいてもよい。この粒子に含まれる無機材料としては、例えば、シリカ、チタニア及びアルミナが挙げられる。一例として、第2網目構造に含まれる粒子は、シリカ粒子である。 The second network structure may include a network of multiple particles. A network of a plurality of particles is formed, for example, by a plurality of particles bonding to each other through hydrogen bonds. The particles included in the second network structure may contain an inorganic material or an organic material. Examples of inorganic materials contained in the particles include silica, titania, and alumina. As an example, the particles included in the second network structure are silica particles.
 本実施形態において、イオン液体としては、例えば、イミダゾリウム、ピリジニウム、アンモニウム又はホスホニウムと、炭素数1以上の置換基とを有するイオン液体等が挙げられる。 In this embodiment, examples of the ionic liquid include an ionic liquid having imidazolium, pyridinium, ammonium, or phosphonium and a substituent having 1 or more carbon atoms.
 イミダゾリウムと炭素数1以上の置換基とを有するイオン液体において、炭素数1以上の置換基としては、炭素数1以上20以下のアルキル基、炭素数3以上14以下のシクロアルキル基、炭素数6以上20以下のアリール基等が挙げられ、これらは更にヒドロキシ基、シアノ基、アミノ基、一価のエーテル基等で置換されていてもよい(例えば、炭素数1以上20以下のヒドロキシアルキル基等)。 In the ionic liquid having imidazolium and a substituent having 1 or more carbon atoms, the substituent having 1 or more carbon atoms includes an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 14 carbon atoms, and a cycloalkyl group having 3 to 14 carbon atoms. Examples include aryl groups having 6 to 20 carbon atoms, which may be further substituted with hydroxy groups, cyano groups, amino groups, monovalent ether groups, etc. (for example, hydroxyalkyl groups having 1 to 20 carbon atoms). etc).
 炭素数1以上20以下のアルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-エイコサデシル基、i-プロピル基、sec-ブチル基、i-ブチル基、1-メチルブチル基、1-エチルプロピル基、2-メチルブチル基、i-ペンチル基、ネオペンチル基、1,2-ジメチルプロピル基、1,1-ジメチルプロピル基、t-ペンチル基、2-エチルヘキシル基、1,5-ジメチルヘキシル基等が挙げられ、これらは更にヒドロキシ基、シアノ基、アミノ基、一価のエーテル基等で置換されていてもよい。 Examples of the alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n- Nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n- Nonadecyl group, n-eicosadecyl group, i-propyl group, sec-butyl group, i-butyl group, 1-methylbutyl group, 1-ethylpropyl group, 2-methylbutyl group, i-pentyl group, neopentyl group, 1,2 -dimethylpropyl group, 1,1-dimethylpropyl group, t-pentyl group, 2-ethylhexyl group, 1,5-dimethylhexyl group, etc., and these include hydroxyl group, cyano group, amino group, monovalent group, etc. It may be substituted with an ether group or the like.
 上述のアルキル基は、シクロアルキル基によって置換されていてもよい。シクロアルキル基によって置換されたアルキル基の炭素数は、例えば、1以上20以下である。シクロアルキル基によって置換されたアルキル基としては、シクロプロピルメチル基、シクロブチルメチル基、シクロヘキシルメチル基、シクロヘキシルプロピル基等が挙げられ、これらは更にヒドロキシ基、シアノ基、アミノ基、一価のエーテル基等で置換されていてもよい。 The above alkyl group may be substituted with a cycloalkyl group. The number of carbon atoms in the alkyl group substituted with the cycloalkyl group is, for example, 1 or more and 20 or less. Examples of the alkyl group substituted with a cycloalkyl group include a cyclopropylmethyl group, a cyclobutylmethyl group, a cyclohexylmethyl group, a cyclohexylpropyl group, etc., and these include a hydroxy group, a cyano group, an amino group, a monovalent ether It may be substituted with a group or the like.
 炭素数3以上14以下のシクロアルキル基としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロドデシル基、ノルボルニル基、ボルニル基、アダマンチル基等が挙げられ、これらは更にヒドロキシ基、シアノ基、アミノ基、一価のエーテル基等で置換されていてもよい。 Examples of the cycloalkyl group having 3 to 14 carbon atoms include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclododecyl group, norbornyl group, bornyl group, adamantyl group, etc. , these may be further substituted with a hydroxy group, a cyano group, an amino group, a monovalent ether group, etc.
 炭素数6以上20以下のアリール基としては、フェニル基、トルイル基、キシリル基、メシチル基、アニシル基、ナフチル基、ベンジル基等が挙げられ、これらは更にヒドロキシ基、シアノ基、アミノ基、一価のエーテル基等で置換されていてもよい。 Examples of the aryl group having 6 to 20 carbon atoms include phenyl group, tolyl group, xylyl group, mesityl group, anisyl group, naphthyl group, benzyl group, etc. These include hydroxy group, cyano group, amino group, It may be substituted with a valent ether group or the like.
 イミダゾリウムおよび炭素数1以上の置換基を有する化合物は、さらに、アルキル基等の置換基を有してもよく、対アニオンと塩を形成してもよい。対アニオンとしては、アルキルスルフェート、トシレート、メタンスルホネート、アセテート、ビス(フルオロスルホニル)イミド、ビス(トリフルオロメタンスルホニル)イミド、チオシアネート、ジシアンアミド、トリシアノメタニド、テトラシアノボレート、ヘキサフルオロホスフェート、テトラフルオロボレート、ハライド等が挙げられ、ガス分離性能の観点から、ビス(フルオロスルホニル)イミド、ビス(トリフルオロメタンスルホニル)イミド、ジシアンアミド、トリシアノメタニド、テトラシアノボレートが好ましい。 Imidazolium and a compound having a substituent having 1 or more carbon atoms may further have a substituent such as an alkyl group, and may form a salt with a counter anion. Counter anions include alkyl sulfate, tosylate, methanesulfonate, acetate, bis(fluorosulfonyl)imide, bis(trifluoromethanesulfonyl)imide, thiocyanate, dicyanamide, tricyanomethanide, tetracyanoborate, hexafluorophosphate, tetrafluoro Examples include borates and halides, and from the viewpoint of gas separation performance, bis(fluorosulfonyl)imide, bis(trifluoromethanesulfonyl)imide, dicyanamide, tricyanomethanide, and tetracyanoborate are preferred.
 イミダゾリウム及び炭素数1以上の置換基を有するイオン液体としては、具体的には、1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド、1-エチル-3-メチルイミダゾリウムジシアンアミド、1-ブチル-3-メチルイミダゾリウムブロミド、1-ブチル-3-メチルイミダゾリウムクロライド、1-ブチル-3-メチルイミダゾリウムテトラフルオロボレート、1-ブチル-3-メチルイミダゾリウムヘキサフルオロホスフェート、1-ブチル-3-メチルイミダゾリウムトリフルオロメタンスホネート、1-ブチル-3-メチルイミダゾリウムテトラクロロフェレート、1-ブチル-3-メチルイミダゾリウムヨーダイド、1-ブチル-2,3-ジメチルイミダゾリウムクロリド、1-ブチル-2,3-ジメチルイミダゾリウムヘキサフルオロホスフェート、1-ブチル-2,3-ジメチルイミダゾリウムテトラフルオロボレート、1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-ブチル-2,3-ジメチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド、1-ブチル-3-メチルイミダゾリウムトリフルオロ(トリフルオロメチル)ボレート、1-ブチル-3-メチルイミダゾリウムトリブロミド、1,3-ジメシチルイミダゾリウムクロライド、1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾリウムクロライド、1,3-ジイソプロピルイミダゾリウムテトラフルオロボレート、1,3-ジ-tert-ブチルイミダゾリウムテトラフルオロボレート、1,3-ジシクロヘキシルイミダゾリウムテトラフルオロボレート、1,3-ジシクロヘキシルイミダゾリウムクロライド、1,2-ジメチル-3-プロピルイミダゾリウムヨーダイド、1-ヘキシル-3-メチルイミダゾリウムクロライド、1-ヘキシル-3-メチルイミダゾリウムヘキサフルオロホスフェート、1-ヘキシル-3-メチルイミダゾリウムテトラフルオロボレート、1-ヘキシル-3-メチルイミダゾリウムブロミド、1-メチル-3-プロピルイミダゾリウムヨーダイド、1-メチル-3-n-オクチルイミダゾリウムブロミド、1-メチル-3-n-オクチルイミダゾリウムクロライド、1-メチル-3-n-オクチルイミダゾリウムヘキサフルオロホスフェート、1-メチル-3-[6-(メチルスルフィニル)ヘキシル]イミダゾリウムp-トルエンスルホネート、1-エチル-3-メチルイミダゾリウムトリシアノメタニド、1-(2-ヒドロキシエチル)-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド等が挙げられる。 Examples of imidazolium and ionic liquids having a substituent having one or more carbon atoms include 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide and 1-ethyl-3-methylimidazolium dicyanamide. , 1-butyl-3-methylimidazolium bromide, 1-butyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1 -Butyl-3-methylimidazolium trifluoromethanesphonate, 1-butyl-3-methylimidazolium tetrachloroferrate, 1-butyl-3-methylimidazolium iodide, 1-butyl-2,3-dimethylimidazolium Chloride, 1-butyl-2,3-dimethylimidazolium hexafluorophosphate, 1-butyl-2,3-dimethylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide, 1 -Butyl-2,3-dimethylimidazolium bis(trifluoromethanesulfonyl)imide, 1-butyl-3-methylimidazolium trifluoro(trifluoromethyl)borate, 1-butyl-3-methylimidazolium tribromide, 1, 3-dimesitylimidazolium chloride, 1,3-bis(2,6-diisopropylphenyl)imidazolium chloride, 1,3-diisopropylimidazolium tetrafluoroborate, 1,3-di-tert-butylimidazolium tetrafluoro Borate, 1,3-dicyclohexylimidazolium tetrafluoroborate, 1,3-dicyclohexylimidazolium chloride, 1,2-dimethyl-3-propylimidazolium iodide, 1-hexyl-3-methylimidazolium chloride, 1-hexyl -3-Methylimidazolium hexafluorophosphate, 1-hexyl-3-methylimidazolium tetrafluoroborate, 1-hexyl-3-methylimidazolium bromide, 1-methyl-3-propylimidazolium iodide, 1-methyl- 3-n-octylimidazolium bromide, 1-methyl-3-n-octylimidazolium chloride, 1-methyl-3-n-octylimidazolium hexafluorophosphate, 1-methyl-3-[6-(methylsulfinyl) Examples include hexyl]imidazolium p-toluenesulfonate, 1-ethyl-3-methylimidazolium tricyanomethanide, and 1-(2-hydroxyethyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)imide.
 なかでも、ガス分離性能の観点から、1-エチル-3-メチルイミダゾリウムビス(フルオロスルホニル)イミド([EMI][FSI])、1-エチル-3-メチルイミダゾリウムジシアンアミド([EMI][DCA])、1-エチル-3-メチルイミダゾリウムトリシアノメタニド([EMI][TCM])、1-ブチル-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド([C4mim][TF2N])、1-(2-ヒドロキシエチル)-3-メチルイミダゾリウムビス(トリフルオロメタンスルホニル)イミド([C2OHim][TF2N])が特に好ましい。 Among them, from the viewpoint of gas separation performance, 1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide ([EMI][FSI]), 1-ethyl-3-methylimidazolium dicyanamide ([EMI] [DCA]), 1-ethyl-3-methylimidazolium tricyanomethanide ([EMI][TCM]), 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C 4 mim][ TF 2 N]), 1-(2-hydroxyethyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C 2 OHim][TF 2 N]) is particularly preferred.
 ダブルネットワークゲルを作製する方法は、特に限定されず、例えば、E.Kamio et al.,Adv.Mater,29,1704118(2017)に開示された方法を利用することができる。 The method for producing the double network gel is not particularly limited, and for example, the method disclosed in E. Kamio et al., Adv. Mater, 29, 1704118 (2017) can be used.
 ダブルネットワークゲルにおけるイオン液体の含有率は、例えば50wt%以上であり、好ましくは60wt%以上であり、より好ましくは70wt%以上であり、さらに好ましくは80wt%以上である。イオン液体の含有率が高ければ高いほど、分離機能層1は、混合ガスに含まれる酸性ガスを優先的に透過させることができる。イオン液体の含有率の上限値は、特に限定されず、例えば95wt%である。 The content of the ionic liquid in the double network gel is, for example, 50 wt% or more, preferably 60 wt% or more, more preferably 70 wt% or more, and still more preferably 80 wt% or more. The higher the ionic liquid content, the more the separation functional layer 1 can preferentially transmit the acidic gas contained in the mixed gas. The upper limit of the ionic liquid content is not particularly limited, and is, for example, 95 wt%.
 ダブルネットワークゲルにおける主として有機材料により構成された第1網目構造の含有率は、例えば1wt%以上であり、好ましくは5wt%以上であり、より好ましくは10wt%以上である。第1網目構造の含有率の上限値は、例えば15wt%である。ダブルネットワークゲルにおける主として無機材料により構成された第2網目構造の含有率は、ダブルネットワークゲルの強度を向上させる観点から、例えば1wt%以上である。第2網目構造の含有率の上限値は、例えば5wt%である。ダブルネットワークゲルの重量に対する第1網目構造の重量と第2網目構造の重量との合計値の比率は、例えば2wt%以上であり、好ましくは5wt%以上であり、より好ましくは10wt%以上である。この比率は、好ましくは20wt%以下である。この形態において、分離機能層1は、好ましくは、実質的にダブルネットワークゲルからなる。 The content of the first network structure mainly composed of an organic material in the double network gel is, for example, 1 wt% or more, preferably 5 wt% or more, and more preferably 10 wt% or more. The upper limit of the content of the first network structure is, for example, 15 wt%. The content of the second network structure mainly composed of an inorganic material in the double network gel is, for example, 1 wt % or more from the viewpoint of improving the strength of the double network gel. The upper limit of the content of the second network structure is, for example, 5 wt%. The ratio of the total value of the weight of the first network structure and the weight of the second network structure to the weight of the double network gel is, for example, 2 wt% or more, preferably 5 wt% or more, and more preferably 10 wt% or more. . This ratio is preferably 20 wt% or less. In this form, the separation functional layer 1 preferably consists essentially of a double network gel.
 分離機能層1の厚さは、例えば50μm以下であり、好ましくは25μm以下であり、より好ましくは15μm以下である。分離機能層1の厚さは、場合によっては、10μm以下であってもよく、5.0μm以下であってもよく、2.0μm以下であってもよい。分離機能層1の厚さは、0.05μm以上であってもよく、0.1μm以上であってもよい。 The thickness of the separation functional layer 1 is, for example, 50 μm or less, preferably 25 μm or less, and more preferably 15 μm or less. Depending on the case, the thickness of the separation functional layer 1 may be 10 μm or less, 5.0 μm or less, or 2.0 μm or less. The thickness of the separation functional layer 1 may be 0.05 μm or more, or 0.1 μm or more.
(中間層)
 上述のとおり、中間層2は、空間6を有し、本体部5をさらに有していてもよい。空間6は、詳細には、中間層2を厚さ方向に貫通しており、分離機能層1を透過した流体(透過流体)の流路として機能することができる。本体部5は、例えば、粘着剤組成物から形成された粘着部を含み、分離機能層1と多孔性支持体3とを接合する。一例として、中間層2が複数の本体部5を有し、複数の本体部5の間に空隙としての空間6が形成されている。ただし、空間6は、本体部5を囲むように形成されていてもよい。空間6は、本体部5に形成された貫通孔であってもよい。
(middle class)
As described above, the intermediate layer 2 has the space 6 and may further include the main body portion 5. Specifically, the space 6 penetrates the intermediate layer 2 in the thickness direction and can function as a flow path for the fluid that has passed through the separation functional layer 1 (permeated fluid). The main body part 5 includes, for example, an adhesive part formed from an adhesive composition, and joins the separation functional layer 1 and the porous support 3. As an example, the intermediate layer 2 has a plurality of main body parts 5, and a space 6 as a void is formed between the plurality of main body parts 5. However, the space 6 may be formed to surround the main body portion 5. The space 6 may be a through hole formed in the main body portion 5.
 本体部5は、所定のパターンで配置されていてもよく、所定のパターンで配置されていなくてもよい。一例として、本体部5は、平面視で、ストライプ状、ドット状、メッシュ状(網目状)又は繊維状であってもよい。 The main body portion 5 may or may not be arranged in a predetermined pattern. As an example, the main body portion 5 may have a stripe shape, a dot shape, a mesh shape (mesh shape), or a fibrous shape in plan view.
 図2A~2Cは、分離膜10において、中間層2を、中間層2の表面に平行に切断し、その断面を中間層2から多孔性支持体3に向かう方向(後述する第3方向Z)に観察した場合に得られる断面図である。図2Dは、分離膜10から分離機能層1を取り除き、中間層2を第3方向Zに観察した場合に得られる平面図である。詳細には、図1及び2Aは、分離膜10の一例を示しており、平面視でストライプ状に配置された本体部5を示している。図2Bは、変形例にかかる分離膜10を示しており、平面視でドット状に配置された本体部5を示している。図2Cは、別の変形例にかかる分離膜10を示しており、平面視でメッシュ状に配置された本体部5を示している。図2Dは、別の変形例にかかる分離膜10を示しており、繊維状である本体部5を示している。 2A to 2C show that in the separation membrane 10, the intermediate layer 2 is cut parallel to the surface of the intermediate layer 2, and the cross section is taken in a direction from the intermediate layer 2 toward the porous support 3 (a third direction Z to be described later). FIG. FIG. 2D is a plan view obtained when the separation functional layer 1 is removed from the separation membrane 10 and the intermediate layer 2 is observed in the third direction Z. In detail, FIGS. 1 and 2A show an example of the separation membrane 10, and show the main body portions 5 arranged in a stripe shape in a plan view. FIG. 2B shows a separation membrane 10 according to a modified example, and shows the main body portion 5 arranged in a dot shape in a plan view. FIG. 2C shows a separation membrane 10 according to another modification, and shows the main body portion 5 arranged in a mesh shape in a plan view. FIG. 2D shows a separation membrane 10 according to another modification, and shows a main body portion 5 that is fibrous.
[ストライプ状の本体部]
 以下では、図1及び図2Aを参照して、平面視でストライプ状に配置された本体部5を有する中間層2について説明する。図1及び図2Aに示した例において、本体部5は、第1方向Xに延びる帯の形状を有する。本体部5は、例えば、第1方向Xにまっすぐ延びている。第1方向Xは、例えば、多孔性支持体3の1対の端面の一方から他方に向かう方向である。
[Striped main body]
Hereinafter, with reference to FIGS. 1 and 2A, the intermediate layer 2 having the main body portions 5 arranged in a striped shape in a plan view will be described. In the example shown in FIGS. 1 and 2A, the main body portion 5 has a band shape extending in the first direction X. In the example shown in FIGS. The main body portion 5 extends straight in the first direction X, for example. The first direction X is, for example, a direction from one of the pair of end surfaces of the porous support 3 toward the other.
 一例として、中間層2を厚さ方向に切断したときに観察される本体部5の断面の形状が実質的に矩形である(図1)。さらに、中間層2を、中間層2の表面に平行に切断したときに観察される本体部5の断面の形状も実質的に矩形である(図2A)。なお、本明細書において、「実質的に矩形」とは、本体部5の断面を観察した場合に、本体部5を囲む最小の直角四角形の面積に対する本体部5の面積の比率が、70%以上、好ましくは90%以上、であることを意味する。 As an example, the cross-sectional shape of the main body portion 5 observed when the intermediate layer 2 is cut in the thickness direction is substantially rectangular (FIG. 1). Furthermore, the cross-sectional shape of the main body portion 5 observed when the intermediate layer 2 is cut parallel to the surface of the intermediate layer 2 is also substantially rectangular (FIG. 2A). In this specification, "substantially rectangular" means that when the cross section of the main body 5 is observed, the ratio of the area of the main body 5 to the area of the smallest right-angled quadrangle surrounding the main body 5 is 70%. or more, preferably 90% or more.
 図1及び図2Aに示した例において、中間層2は、複数の本体部5を有する。複数の本体部5の形状及び寸法は、互いに異なっていてもよく、実質的に同じであってもよい。一例として、複数の本体部5は、それぞれ、第1方向Xに延びており、かつ第1方向Xに直交する第2方向Yに並んでいる。複数の本体部5は、第2方向Yに実質的に等間隔で並んでいてもよい。なお、第2方向Yは、例えば、多孔性支持体3の他の1対の端面の一方から他方に向かう方向である。なお、第1方向X及び第2方向Yのそれぞれに直交する第3方向Zは、中間層2から多孔性支持体3に向かう方向であり、分離膜10の厚さ方向と一致する。 In the example shown in FIGS. 1 and 2A, the intermediate layer 2 has a plurality of main body parts 5. The shapes and dimensions of the plurality of main bodies 5 may be different from each other or may be substantially the same. As an example, the plurality of main bodies 5 each extend in the first direction X and are lined up in the second direction Y orthogonal to the first direction X. The plurality of main body parts 5 may be lined up in the second direction Y at substantially equal intervals. Note that the second direction Y is, for example, a direction from one of the other pair of end surfaces of the porous support 3 to the other. Note that the third direction Z, which is orthogonal to each of the first direction X and the second direction Y, is a direction from the intermediate layer 2 to the porous support 3 and coincides with the thickness direction of the separation membrane 10.
 中間層2では、2つの本体部5の間に空隙としての空間6が形成されている。空間6は、本体部5が延びている方向(第1方向X)に延びている。本体部5と同様に、空間6は、例えば、第1方向Xにまっすぐ延びている。一例として、中間層2を厚さ方向に切断したときに観察される空間6の断面の形状が実質的に矩形である(図1)。さらに、中間層2を、中間層2の表面に平行に切断したときに観察される空間6の断面の形状も実質的に矩形である(図2A)。 In the intermediate layer 2, a space 6 as a void is formed between the two main body parts 5. The space 6 extends in the direction in which the main body portion 5 extends (first direction X). Like the main body part 5, the space 6 extends straight in the first direction X, for example. As an example, the cross-sectional shape of the space 6 observed when the intermediate layer 2 is cut in the thickness direction is substantially rectangular (FIG. 1). Furthermore, the cross-sectional shape of the space 6 observed when the intermediate layer 2 is cut parallel to the surface of the intermediate layer 2 is also substantially rectangular (FIG. 2A).
 中間層2では、複数の空間6が形成されている。複数の空間6の形状及び寸法は、互いに異なっていてもよく、実質的に同じであってもよい。一例として、複数の空間6は、それぞれ、第1方向Xに延びており、かつ第2方向Yに並んでいる。複数の空間6は、第2方向Yに実質的に等間隔で並んでいてもよい。複数の本体部5と複数の空間6とは、例えば、第2方向Yに交互に並んでいる。 A plurality of spaces 6 are formed in the intermediate layer 2. The shapes and dimensions of the plurality of spaces 6 may be different from each other or may be substantially the same. As an example, the plurality of spaces 6 each extend in the first direction X and are lined up in the second direction Y. The plurality of spaces 6 may be lined up in the second direction Y at substantially equal intervals. The plurality of main body parts 5 and the plurality of spaces 6 are arranged alternately in the second direction Y, for example.
 図1及び2Aは、中間層2が有する複数の本体部5a、5b、5c、5d及び5e、並びに、複数の空間6a、6b、6c及び6dを示している。複数の本体部5a~5eと、複数の空間6a~6dとが第2方向Yに交互に並んでいる。図1及び2Aでは、複数の本体部5a~5eが第2方向Yに等間隔で並んでいる。複数の空間6a~6dも第2方向Yに等間隔で並んでいる。 1 and 2A show a plurality of main body parts 5a, 5b, 5c, 5d and 5e, and a plurality of spaces 6a, 6b, 6c and 6d, which the intermediate layer 2 has. A plurality of main body portions 5a to 5e and a plurality of spaces 6a to 6d are arranged alternately in the second direction Y. In FIGS. 1 and 2A, a plurality of main body portions 5a to 5e are lined up in the second direction Y at equal intervals. The plurality of spaces 6a to 6d are also arranged at equal intervals in the second direction Y.
 図1及び2Aに示した例において、本体部5及び空間6の寸法、並びに、本体部5及び空間6の数は、特に限定されず、目的とする分離膜10の特性などに応じて適宜調整することができる。 In the examples shown in FIGS. 1 and 2A, the dimensions of the main body 5 and the spaces 6 and the number of the main body 5 and the spaces 6 are not particularly limited, and can be adjusted as appropriate depending on the characteristics of the intended separation membrane 10. can do.
[ドット状の本体部]
 以下では、図2Bを参照して、平面視でドット状に配置された本体部5を有する中間層2について説明する。図2Bに示した例において、本体部5は、第3方向Zに延びる円柱の形状を有する。ただし、本体部5は、角柱の形状を有していてもよい。
[Dot-shaped main body]
Below, with reference to FIG. 2B, the intermediate layer 2 having the main body portions 5 arranged in a dot shape when viewed from above will be described. In the example shown in FIG. 2B, the main body portion 5 has a cylindrical shape extending in the third direction Z. However, the main body portion 5 may have a prismatic shape.
 図2Bに示した例において、中間層2は、複数の本体部5を有する。複数の本体部5の形状及び寸法は、互いに異なっていてもよく、実質的に同じであってもよい。複数の本体部5は、ランダムに配置されていてもよく、第1方向Xと第2方向Yとにマトリクス状に配置されていてもよい。本明細書において、「マトリクス状」は、格子状及び千鳥状を含む。中間層2では、複数の本体部5のそれぞれを囲むように空間6が形成されている。 In the example shown in FIG. 2B, the intermediate layer 2 has a plurality of main body parts 5. The shapes and dimensions of the plurality of main bodies 5 may be different from each other or may be substantially the same. The plurality of main body parts 5 may be arranged randomly, or may be arranged in a matrix in the first direction X and the second direction Y. In this specification, "matrix shape" includes a lattice shape and a staggered shape. In the intermediate layer 2, a space 6 is formed to surround each of the plurality of main body parts 5.
 図2Bに示した例において、本体部5の寸法、及び本体部5の数は、特に限定されず、目的とする分離膜10の特性などに応じて適宜調整することができる。 In the example shown in FIG. 2B, the dimensions of the main body portions 5 and the number of the main body portions 5 are not particularly limited, and can be adjusted as appropriate depending on the intended characteristics of the separation membrane 10.
[メッシュ状の本体部]
 以下では、図2Cを参照して、平面視でメッシュ状に配置された本体部5を有する中間層2について説明する。図2Cに示した例において、本体部5は、第1方向Xに延びる帯の形状を有する第1部分と、第2方向Yに延びる帯の形状を有する第2部分とを有する。第1部分と第2部分とが交差することにより、網目が形成されている。この網目が空間6に相当する。
[Mesh-like main body]
Below, with reference to FIG. 2C, the intermediate layer 2 having the main body portion 5 arranged in a mesh shape in a plan view will be described. In the example shown in FIG. 2C, the main body portion 5 has a first portion in the shape of a band extending in the first direction X and a second portion in the shape of a band extending in the second direction Y. A mesh is formed by intersecting the first portion and the second portion. This mesh corresponds to the space 6.
 本体部5は、第1方向Xに延びる複数の第1部分を有し、さらに、第2方向Yに延びる複数の第2部分を有する。複数の第1部分及び第2部分の形状及び寸法は、互いに異なっていてもよく、実質的に同じであってもよい。 The main body portion 5 has a plurality of first portions extending in the first direction X, and further has a plurality of second portions extending in the second direction Y. The shapes and dimensions of the plurality of first portions and second portions may be different from each other or may be substantially the same.
 図2Cに示した例において、本体部5の形状や寸法、及び空間6の数は、特に限定されず、目的とする分離膜10の特性などに応じて適宜調整することができる。 In the example shown in FIG. 2C, the shape and dimensions of the main body 5 and the number of spaces 6 are not particularly limited, and can be adjusted as appropriate depending on the intended characteristics of the separation membrane 10.
[繊維状の本体部]
 以下では、図2Dを参照して、繊維状の本体部5を有する中間層2について説明する。繊維状の本体部5は、短繊維状であってもよく、長繊維状であってもよい。繊維状の本体部5は、分岐構造を有していてもよい。
[Fibrous main body]
In the following, the intermediate layer 2 having the fibrous main body portion 5 will be described with reference to FIG. 2D. The fibrous main body portion 5 may be in the form of short fibers or long fibers. The fibrous main body portion 5 may have a branched structure.
 図2Dに示した例において、中間層2は、複数の本体部5を有する。複数の本体部5が集合することによって、不織布の形状が形成されている。中間層2では、複数の本体部5の間に空間6が形成されている。空間6は、例えば、三次元状に連続して形成されている連続孔である。 In the example shown in FIG. 2D, the intermediate layer 2 has a plurality of main body parts 5. The shape of the nonwoven fabric is formed by a plurality of main body parts 5 coming together. In the intermediate layer 2, spaces 6 are formed between the plurality of main body parts 5. The space 6 is, for example, a continuous hole formed three-dimensionally.
 図2Dに示した例において、本体部5の形状や寸法は、特に限定されず、目的とする分離膜10の特性などに応じて適宜調整することができる。 In the example shown in FIG. 2D, the shape and dimensions of the main body portion 5 are not particularly limited, and can be adjusted as appropriate depending on the intended characteristics of the separation membrane 10.
[開口率]
 中間層2を平面視したときに(例えば、中間層2を第3方向Zに観察したときに)、中間層2の表面のうち、空間6が存在する領域の面積の割合Rは、例えば20%以上であり、40%以上、50%以上、60%以上、70%以上、さらには80%以上であってもよい。割合Rが高ければ高いほど、分離膜10からの透過流体の透過速度が向上する傾向がある。割合Rの上限は、中間層2による分離機能層1と多孔性支持体3との接合強度や、転写法での分離膜10の作製しやすさの観点から、例えば90%以下であり、場合によっては80%以下であってもよく、70%以下であってもよい。本明細書では、「割合R」を開口率と呼ぶことがある。
[Aperture ratio]
When the intermediate layer 2 is viewed in plan (for example, when the intermediate layer 2 is observed in the third direction Z), the area ratio R of the region where the spaces 6 exist on the surface of the intermediate layer 2 is, for example, 20 % or more, and may be 40% or more, 50% or more, 60% or more, 70% or more, or even 80% or more. The higher the ratio R is, the higher the permeation rate of the permeate fluid from the separation membrane 10 tends to be. The upper limit of the ratio R is, for example, 90% or less, from the viewpoint of the bonding strength between the separation functional layer 1 and the porous support 3 by the intermediate layer 2, and the ease of manufacturing the separation membrane 10 by the transfer method. In some cases, it may be 80% or less, or 70% or less. In this specification, the "ratio R" may be referred to as the aperture ratio.
[本体部の材料]
 上述のとおり、本体部5は、例えば、粘着剤組成物から形成された粘着部を含む。粘着部を含む本体部5は、分離機能層1と多孔性支持体3とを接合することに適している。本体部5は、粘着部のみから構成されていてもよく、粘着部以外の他の構成(例えば基材)をさらに含んでいてもよい。一例として、本体部5は、基材と、基材の2つの主面のそれぞれに形成された粘着部とを含む両面テープであってもよい。ただし、本体部5は、分離機能層1と多孔性支持体3とを接合できる限り、粘着部を含んでいなくてもよい。本体部5は、接着剤で構成された接着部を含んでいてもよい。
[Material of main body]
As described above, the main body portion 5 includes, for example, an adhesive portion formed from an adhesive composition. The main body part 5 including the adhesive part is suitable for joining the separation functional layer 1 and the porous support 3. The main body part 5 may be comprised only of an adhesive part, or may further include other components (for example, a base material) other than the adhesive part. As an example, the main body part 5 may be a double-sided tape including a base material and adhesive parts formed on each of two main surfaces of the base material. However, the main body portion 5 does not need to include the adhesive portion as long as the separation functional layer 1 and the porous support 3 can be bonded together. The main body portion 5 may include an adhesive portion made of adhesive.
 粘着剤組成物は、例えば、シリコーン系ポリマー、(メタ)アクリル系ポリマー、及びゴム系ポリマーからなる群より選ばれる少なくとも1つを含む。シリコーン系ポリマーとは、シロキサン結合を含む構成単位を有するポリマーを意味する。本明細書では、シリコーン系ポリマーを含む粘着剤組成物を「シリコーン系粘着剤」と呼ぶことがある。 The adhesive composition includes, for example, at least one selected from the group consisting of silicone polymers, (meth)acrylic polymers, and rubber polymers. A silicone polymer means a polymer having a structural unit containing a siloxane bond. In this specification, an adhesive composition containing a silicone polymer may be referred to as a "silicone adhesive."
 シリコーン系粘着剤としては、過酸化物架橋型のシリコーン系粘着剤、付加反応型のシリコーン系粘着剤、活性エネルギー線硬化型のシリコーン系粘着剤などが挙げられる。過酸化物架橋型のシリコーン系粘着剤は、有機過酸化物(例えば、過酸化ベンゾイルなど)を含む。この有機過酸化物により、ラジカル架橋が生じる。付加反応型のシリコーン系粘着剤としては、ヒドロシリル化型シリコーン系粘着剤などが挙げられる。ヒドロシリル化型シリコーン系粘着剤は、SiH基含有シロキサン架橋剤、及び、白金系触媒を含む。この白金系触媒を利用したヒドロシリル化反応により架橋が生じる。活性エネルギー線硬化型のシリコーン系粘着剤は、紫外線や電子線等の光によって架橋反応が進行する。特に、付加反応型のシリコーン系粘着剤、例えばヒドロシリル化型シリコーン系粘着剤、は、中間層2に残渣が残りにくい点、低温での反応が可能な点、反応速度の点から好ましい。 Examples of silicone adhesives include peroxide-crosslinked silicone adhesives, addition reaction type silicone adhesives, and active energy ray-curable silicone adhesives. The peroxide-crosslinked silicone adhesive contains an organic peroxide (eg, benzoyl peroxide). This organic peroxide causes radical crosslinking. Examples of addition reaction type silicone adhesives include hydrosilylation type silicone adhesives. The hydrosilylated silicone adhesive contains a SiH group-containing siloxane crosslinking agent and a platinum catalyst. Crosslinking occurs through the hydrosilylation reaction using this platinum-based catalyst. In active energy ray-curable silicone adhesives, a crosslinking reaction progresses when exposed to light such as ultraviolet rays or electron beams. Particularly, addition reaction type silicone adhesives, such as hydrosilylation type silicone adhesives, are preferred from the viewpoints of not leaving a residue in the intermediate layer 2, being able to react at low temperatures, and improving reaction speed.
 シリコーン系粘着剤は、粘着性、剥離性、凝集性のコントロールが容易である点より、シリコーン系ポリマーとして、シリコーンレジン成分とシリコーンガム成分とを含むことが好ましい。 The silicone-based pressure-sensitive adhesive preferably contains a silicone resin component and a silicone gum component as the silicone-based polymer, since the adhesiveness, peelability, and cohesiveness can be easily controlled.
 シリコーンレジン成分は、特に限定されないが、ケイ素原子に結合した水酸基を分子中に含む分岐状ポリオルガノシロキサンであることが好ましく、M単位(R3SiO1/2)、Q単位(SiO2)、T単位(RSiO3/2)及びD単位(R2SiO)からなる群より選ばれる少なくとも1種の単位を有するポリオルガノシロキサンであることがより好ましい。上述の単位において、Rは、互いに独立して、1価の炭化水素基又は水酸基である。1価の炭化水素基としては、アルキル基(例えば、メチル基、エチル基、プロピル基など)、アルケニル基(例えば、ビニル基など)、アリール基(例えば、フェニル基など)が挙げられる。特に、シリコーンレジン成分は、M単位(R3SiO1/2)及びQ単位(SiO2)から構成されるMQレジンであることが好ましい。シリコーンレジン成分は、単独又は2種以上組み合わせて用いられてもよい。 The silicone resin component is not particularly limited, but is preferably a branched polyorganosiloxane containing a hydroxyl group bonded to a silicon atom in its molecule, and includes M units (R 3 SiO 1/2 ), Q units (SiO 2 ), More preferably, it is a polyorganosiloxane having at least one unit selected from the group consisting of T units (RSiO 3/2 ) and D units (R 2 SiO). In the above-mentioned units, R are independently of each other a monovalent hydrocarbon group or a hydroxyl group. Examples of the monovalent hydrocarbon group include an alkyl group (eg, methyl group, ethyl group, propyl group, etc.), an alkenyl group (eg, vinyl group, etc.), and an aryl group (eg, phenyl group, etc.). In particular, the silicone resin component is preferably an MQ resin composed of M units (R 3 SiO 1/2 ) and Q units (SiO 2 ). The silicone resin components may be used alone or in combination of two or more.
 シリコーンガム成分は、特に限定されないが、下記式(3)で表される直鎖状のポリオルガノシロキサンであることが好ましい。
Figure JPOXMLDOC01-appb-C000003
The silicone gum component is not particularly limited, but is preferably a linear polyorganosiloxane represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000003
 式(3)において、Rは、互いに独立して、メチル基、フェニル基又はアルケニル基である。nは、100~10000である。シリコーンガム成分は、単独又は2種以上組み合わせて用いられてもよい。 In formula (3), R is independently a methyl group, a phenyl group, or an alkenyl group. n is 100 to 10,000. The silicone gum components may be used alone or in combination of two or more.
 過酸化物架橋型のシリコーン系粘着剤において、上記のシリコーンガム成分は、メチル基を含むことが好ましい。過酸化物架橋型のシリコーン系粘着剤では、シリコーンガム成分のメチル基がラジカル架橋される。ヒドロシリル化型シリコーン系粘着剤において、上記のシリコーンガム成分は、アルケニル基、特にビニル基、を含むことが好ましい。ヒドロシリル化型シリコーン系粘着剤では、シリコーンガム成分のアルケニル基がヒドロシリル化反応により架橋される。 In the peroxide-crosslinked silicone adhesive, the silicone gum component described above preferably contains a methyl group. In peroxide-crosslinked silicone adhesives, the methyl groups of the silicone gum component are radically crosslinked. In the hydrosilylated silicone adhesive, the silicone gum component preferably contains an alkenyl group, particularly a vinyl group. In hydrosilylation-type silicone pressure-sensitive adhesives, alkenyl groups in silicone gum components are crosslinked by a hydrosilylation reaction.
 シリコーン系粘着剤は、シリコーンレジン成分及びシリコーンガム成分以外に添加剤をさらに含んでいてもよい。添加剤としては、例えば、架橋反応を進行させるための材料(有機過酸化物、SiH基含有シロキサン架橋剤、白金系触媒など)、密着向上剤(例えば、信越化学工業社製のX-92-185)、シランカップリング剤、充填剤、可塑剤、老化防止剤、帯電防止剤、着色剤(顔料、染料)、後述するフィラー、粘着付与剤などが挙げられる。添加剤は、単独又は2種以上組み合わせて用いられてもよい。 The silicone adhesive may further contain additives in addition to the silicone resin component and silicone gum component. Examples of additives include materials for advancing the crosslinking reaction (organic peroxides, SiH group-containing siloxane crosslinking agents, platinum catalysts, etc.), adhesion improvers (for example, X-92- manufactured by Shin-Etsu Chemical Co., Ltd. 185), silane coupling agents, fillers, plasticizers, anti-aging agents, antistatic agents, colorants (pigments, dyes), fillers and tackifiers described below. The additives may be used alone or in combination of two or more.
 シリコーン系粘着剤は、有機溶剤(例えば、トルエン、キシレンなど)をさらに含んでいてもよい。 The silicone adhesive may further contain an organic solvent (for example, toluene, xylene, etc.).
 シリコーン系粘着剤の具体例としては、信越化学工業社製の「KR-3700」、「KR-3701」、「KR-3704」などが挙げられる。これらの市販品は、シリコーンガム成分とシリコーンレジン成分の両方を含む態様の製品として提供されている。シリコーン系粘着剤は、これらの市販品の混合物を含んでいてもよい。 Specific examples of silicone adhesives include "KR-3700", "KR-3701", and "KR-3704" manufactured by Shin-Etsu Chemical Co., Ltd. These commercial products are provided as products containing both a silicone gum component and a silicone resin component. The silicone adhesive may include a mixture of these commercially available products.
 (メタ)アクリル系ポリマーは、例えば、アルキル(メタ)アクリレートに由来する構成単位を主成分として有する。本明細書において、「(メタ)アクリレート」は、アクリレート及び/又はメタクリレートを意味する。本明細書では、(メタ)アクリル系ポリマーを含む粘着剤組成物を「(メタ)アクリル系粘着剤」と呼ぶことがある。 The (meth)acrylic polymer has, for example, a structural unit derived from alkyl (meth)acrylate as a main component. As used herein, "(meth)acrylate" means acrylate and/or methacrylate. In this specification, an adhesive composition containing a (meth)acrylic polymer may be referred to as a "(meth)acrylic adhesive."
 アルキル(メタ)アクリレートに含まれるアルキル基は、特に限定されず、例えば、炭素数2~14の直鎖状、分岐鎖状又は環状のアルキル基である。 The alkyl group contained in the alkyl (meth)acrylate is not particularly limited, and is, for example, a linear, branched, or cyclic alkyl group having 2 to 14 carbon atoms.
 アルキル(メタ)アクリレートとしては、例えば、炭素数2~14のアルキル基を有するアクリル酸アルキルエステル、好ましくは炭素数4~9のアルキル基を有するアクリル酸アルキルエステル、が挙げられる。アクリル酸アルキルエステルとしては、例えば、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸s-ブチル、アクリル酸イソアミル、アクリル酸ヘキシル、アクリル酸ヘプチル、アクリル酸オクチル、アクリル酸2-エチルヘキシル、アクリル酸イソオクチル、アクリル酸ノニル、アクリル酸イソノニルなどが挙げられる。 Examples of the alkyl (meth)acrylate include acrylic acid alkyl esters having an alkyl group having 2 to 14 carbon atoms, preferably acrylic acid alkyl esters having an alkyl group having 4 to 9 carbon atoms. Examples of acrylic acid alkyl esters include n-butyl acrylate, isobutyl acrylate, s-butyl acrylate, isoamyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, and isooctyl acrylate. , nonyl acrylate, isononyl acrylate, and the like.
 アルキル(メタ)アクリレートは、例えば、炭素数2~14のアルキル基を有するメタクリル酸アルキルエステル、好ましくは炭素数2~10のアルキル基を有するメタクリル酸アルキルエステル、であってもよい。メタクリル酸アルキルエステルとしては、例えば、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸s-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸シクロヘキシル、メタクリル酸ボルニル、メタクリル酸イソボルニルなどが挙げられる。 The alkyl (meth)acrylate may be, for example, a methacrylic acid alkyl ester having an alkyl group having 2 to 14 carbon atoms, preferably a methacrylic acid alkyl ester having an alkyl group having 2 to 10 carbon atoms. Examples of methacrylic acid alkyl esters include ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, s-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, and methacrylate. Examples include cyclohexyl acid, bornyl methacrylate, and isobornyl methacrylate.
 アルキル(メタ)アクリレートは、上述のものを単独又は2種以上組み合わせて使用できる。(メタ)アクリル系ポリマーにおけるアルキル(メタ)アクリレートに由来する構成単位の含有率は、特に限定されず、例えば70~100wt%であり、好ましくは85~99wt%であり、より好ましくは87~99wt%である。 The alkyl (meth)acrylates mentioned above can be used alone or in combination of two or more. The content of structural units derived from alkyl (meth)acrylate in the (meth)acrylic polymer is not particularly limited, and is, for example, 70 to 100 wt%, preferably 85 to 99 wt%, more preferably 87 to 99 wt%. %.
 (メタ)アクリル系ポリマーは、アルキル(メタ)アクリレートと共重合可能な共重合モノマーに由来する構成単位をさらに含んでいてもよい。共重合モノマーとしては、例えば、アクリル酸、メタクリル酸、カルボキシエチル(メタ)アクリレート、カルボキシペンチル(メタ)アクリレート、イタコン酸、マレイン酸、フマル酸、クロトン酸などのカルボキシル基含有モノマー;炭素数1又は15以上のアルキル基を有するアルキル(メタ)アクリレート;(メタ)アクリル酸フェニル等の(メタ)アクリル酸アリールエステル;酢酸ビニル、プロピオン酸ビニル等のビニルエステル;スチレン等のスチレン系モノマー;(メタ)アクリル酸グリシジル、(メタ)アクリル酸メチルグリシジル等のエポキシ基含有モノマー;4-ヒドロキシブチルアクリレート、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル等のヒドロキシル基含有(メタ)アクリレート;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-ブチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-メチロールプロパン(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、(メタ)アクリル酸アミノエチル、(メタ)アクリル酸N,N-ジメチルアミノエチル、(メタ)アクリル酸t-ブチルアミノエチル等の窒素原子含有モノマー;(メタ)アクリル酸メトキシエチル、(メタ)アクリル酸エトキシエチル等のアルコキシ基含有モノマー;アクリロニトリル、メタクリロニトリル等のシアノ基含有モノマー;2-メタクリロイルオキシエチルイソシアネート等の官能性モノマー;エチレン、プロピレン、イソプレン、ブタジエン、イソブチレン等のオレフィン系モノマー;ビニルエーテル等のビニルエーテル系モノマー;塩化ビニル等のハロゲン原子含有モノマー;N-ビニルピロリドン、N-(1-メチルビニル)ピロリドン、N-ビニルピリジン、N-ビニルピペリドン、N-ビニルピリミジン、N-ビニルピペラジン、N-ビニルピラジン、N-ビニルピロール、N-ビニルイミダゾール、N-ビニルオキサゾール、N-ビニルモルホリン等のビニル基含有複素環化合物;N-ビニルカルボン酸アミド;N-シクロヘキシルマレイミド、N-イソプロピルマレイミド、N-ラウリルマレイミド、N-フェニルマレイミド等のマレイミド系モノマー;N-メチルイタコンイミド、N-エチルイタコンイミド、N-ブチルイタコンイミド、N-オクチルイタコンイミド、N-2-エチルヘキシルイタコンイミド、N-シクロヘキシルイタコンイミド、N-ラウリルイタコンイミド等のイタコンイミド系モノマー;N-(メタ)アクリロイルオキシメチレンスクシンイミド、N-(メタ)アクリロイル-6-オキシヘキサメチレンスクシンイミド、N-(メタ)アクリロイル-8-オキシオクタメチレンスクシンイミド等のスクシンイミド系モノマー;スチレンスルホン酸、アリルスルホン酸、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル(メタ)アクリレート、(メタ)アクリロイルオキシナフタレンスルホン酸等のスルホン酸基含有モノマー;リン酸基含有モノマー;(メタ)アクリル酸ポリエチレングリコール、(メタ)アクリル酸ポリプロピレングリコール、(メタ)アクリル酸メトキシエチレングリコール、(メタ)アクリル酸メトキシポリプロピレングリコール等のグリコール系アクリルエステルモノマー;(メタ)アクリル酸テトラヒドロフルフリル、フッ素(メタ)アクリレート等の複素環又はハロゲン原子を含有するアクリル酸エステル系モノマー;エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート等の(モノ又はポリ)アルキレングリコールジ(メタ)アクリレート;ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の(メタ)アクリル酸と多価アルコールとのエステル化物;ジビニルベンゼン等の多官能ビニル化合物;(メタ)アクリル酸アリル、(メタ)アクリル酸ビニル等の反応性の不飽和二重結合を有する化合物が挙げられる。 The (meth)acrylic polymer may further contain a structural unit derived from a copolymerizable monomer copolymerizable with an alkyl (meth)acrylate. Examples of copolymerizable monomers include carboxyl group-containing monomers such as acrylic acid, methacrylic acid, carboxyethyl (meth)acrylate, carboxypentyl (meth)acrylate, itaconic acid, maleic acid, fumaric acid, and crotonic acid; Alkyl (meth)acrylates having 15 or more alkyl groups; (meth)acrylic acid aryl esters such as phenyl (meth)acrylate; vinyl esters such as vinyl acetate and vinyl propionate; styrenic monomers such as styrene; (meth) Epoxy group-containing monomers such as glycidyl acrylate and methylglycidyl (meth)acrylate; (meth)acrylates containing hydroxyl groups such as 4-hydroxybutyl acrylate, 2-hydroxyethyl acrylate, and 2-hydroxypropyl acrylate; (meth)acrylate; Acrylamide, N,N-dimethyl(meth)acrylamide, N,N-diethyl(meth)acrylamide, N-isopropyl(meth)acrylamide, N-butyl(meth)acrylamide, N-methylol(meth)acrylamide, N-methylolpropane Nitrogen-containing monomers such as (meth)acrylamide, (meth)acryloylmorpholine, aminoethyl (meth)acrylate, N,N-dimethylaminoethyl (meth)acrylate, and t-butylaminoethyl (meth)acrylate; ( Alkoxy group-containing monomers such as methoxyethyl meth)acrylate and ethoxyethyl (meth)acrylate; Cyano group-containing monomers such as acrylonitrile and methacrylonitrile; Functional monomers such as 2-methacryloyloxyethyl isocyanate; ethylene, propylene, isoprene , butadiene, isobutylene and other olefinic monomers; vinyl ether and other monomers; halogen atom-containing monomers such as vinyl chloride; N-vinylpyrrolidone, N-(1-methylvinyl)pyrrolidone, N-vinylpyridine, N-vinylpiperidone, Vinyl group-containing heterocyclic compounds such as N-vinylpyrimidine, N-vinylpiperazine, N-vinylpyrazine, N-vinylpyrrole, N-vinylimidazole, N-vinyloxazole, N-vinylmorpholine; N-vinylcarboxylic acid amide; Maleimide monomers such as N-cyclohexylmaleimide, N-isopropylmaleimide, N-laurylmaleimide, N-phenylmaleimide; N-methylitaconimide, N-ethylitaconimide, N-butylitaconimide, N-octylitaconimide, N- - Itaconimide monomers such as 2-ethylhexylitaconimide, N-cyclohexylitaconimide, N-laurylitaconimide; N-(meth)acryloyloxymethylene succinimide, N-(meth)acryloyl-6-oxyhexamethylene succinimide, N- Succinimide monomers such as (meth)acryloyl-8-oxyoctamethylene succinimide; styrene sulfonic acid, allylsulfonic acid, 2-(meth)acrylamido-2-methylpropanesulfonic acid, (meth)acrylamidopropanesulfonic acid, sulfopropyl ( Sulfonic acid group-containing monomers such as meth)acrylate and (meth)acryloyloxynaphthalene sulfonic acid; phosphoric acid group-containing monomers; polyethylene glycol (meth)acrylate, polypropylene glycol (meth)acrylate, methoxyethylene glycol (meth)acrylate , glycol-based acrylic ester monomers such as methoxypolypropylene glycol (meth)acrylate; acrylic ester monomers containing heterocycles or halogen atoms such as tetrahydrofurfuryl (meth)acrylate and fluorine (meth)acrylate; ethylene glycol di (meth)acrylate, diethylene glycol di(meth)acrylate, triethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, tetraethylene glycol di(meth)acrylate, propylene glycol di(meth)acrylate, etc. or poly)alkylene glycol di(meth)acrylate; neopentyl glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, pentaerythritol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, penta Esterified products of (meth)acrylic acid and polyhydric alcohols such as erythritol tri(meth)acrylate and dipentaerythritol hexa(meth)acrylate; polyfunctional vinyl compounds such as divinylbenzene; allyl (meth)acrylate, (meth)acrylate; Examples include compounds having reactive unsaturated double bonds such as vinyl acrylate.
 (メタ)アクリル系粘着剤は、(メタ)アクリル系ポリマー以外に添加剤や有機溶剤をさらに含んでいてもよい。添加剤や有機溶剤としては、シリコーン系粘着剤について上述したものが挙げられる。 The (meth)acrylic adhesive may further contain additives and organic solvents in addition to the (meth)acrylic polymer. Examples of additives and organic solvents include those mentioned above for silicone adhesives.
 ゴム系ポリマーとは、室温(25℃)付近の温度域においてゴム弾性を示すポリマーを意味する。本明細書では、ゴム系ポリマーを含む粘着剤組成物を「ゴム系粘着剤」と呼ぶことがある。 A rubber-based polymer means a polymer that exhibits rubber elasticity in a temperature range around room temperature (25°C). In this specification, an adhesive composition containing a rubber-based polymer may be referred to as a "rubber-based adhesive."
 ゴム系ポリマーは、例えば、天然ゴム、合成ゴム及び熱可塑性エラストマーからなる群より選ばれる少なくとも1つを含む。合成ゴムとしては、ポリイソブチレン(PIB)、ブタジエンゴム(BR)、ブチルゴム(IIR)、イソプレンゴム(IR)、スチレン-ブタジエンゴム(SBR)、クロロプレンゴム(CR)、アクリロニトリル-ブタジエンゴム(NBR)、ブタジエン-イソプレン-スチレンランダム共重合体、イソプレン-スチレンランダム共重合体、EPR(二元系エチレン-プロピレンゴム)、EPT(三元系エチレン-プロピレンゴム)、アクリルゴム、ウレタンゴムなどが挙げられる。 The rubber-based polymer includes, for example, at least one selected from the group consisting of natural rubber, synthetic rubber, and thermoplastic elastomer. Synthetic rubbers include polyisobutylene (PIB), butadiene rubber (BR), butyl rubber (IIR), isoprene rubber (IR), styrene-butadiene rubber (SBR), chloroprene rubber (CR), acrylonitrile-butadiene rubber (NBR), Examples include butadiene-isoprene-styrene random copolymer, isoprene-styrene random copolymer, EPR (binary ethylene-propylene rubber), EPT (ternary ethylene-propylene rubber), acrylic rubber, urethane rubber, and the like.
 熱可塑性エラストマーとしては、例えば、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-エチレン-プロピレン-スチレンブロック共重合体(SEPS、SISの水添物)、スチレン-エチレン-プロピレンブロック共重合体(SEP、スチレン-イソプレンブロック共重合体の水添物)、スチレン-イソブチレン-スチレンブロック共重合体(SIBS)などのスチレン系熱可塑性エラストマー(スチレン系ブロックコポリマー);ポリウレタン系熱可塑性エラストマー;ポリエステル系熱可塑性エラストマー;ポリプロピレンとEPT(三元系エチレン-プロピレンゴム)とのポリマーブレンドなどのブレンド系熱可塑性エラストマーなどが挙げられる。 Examples of thermoplastic elastomers include styrene-ethylene-butylene-styrene block copolymer (SEBS), styrene-isoprene-styrene block copolymer (SIS), styrene-butadiene-styrene block copolymer (SBS), and styrene. - Ethylene-propylene-styrene block copolymer (SEPS, hydrogenated product of SIS), styrene-ethylene-propylene block copolymer (SEP, hydrogenated product of styrene-isoprene block copolymer), styrene-isobutylene-styrene Styrenic thermoplastic elastomers (styrene block copolymers) such as block copolymers (SIBS); polyurethane thermoplastic elastomers; polyester thermoplastic elastomers; polymer blends of polypropylene and EPT (ternary ethylene-propylene rubber), etc. Examples include thermoplastic elastomer blends.
 ゴム系粘着剤は、ゴム系ポリマー以外に添加剤や有機溶剤をさらに含んでいてもよい。添加剤や有機溶剤としては、シリコーン系粘着剤について上述したものが挙げられる。 The rubber-based adhesive may further contain additives and organic solvents in addition to the rubber-based polymer. Examples of additives and organic solvents include those mentioned above for silicone adhesives.
 本体部5(又は粘着部)は、例えば、粘着剤組成物から有機溶剤を除去することによって作製できる。そのため、本体部5は、粘着剤組成物に由来する成分を含んでいる。一例として、本体部5は、シリコーン系ポリマー、(メタ)アクリル系ポリマー、及びゴム系ポリマーからなる群より選ばれる少なくとも1つを含む。なお、本体部5に含まれるシリコーン系ポリマーは、粘着剤組成物に含まれるシリコーン系ポリマーの架橋物であってもよい。同様に、本体部5に含まれる(メタ)アクリル系ポリマーは、粘着剤組成物に含まれる(メタ)アクリル系ポリマーの架橋物であってもよい。 The main body part 5 (or adhesive part) can be produced, for example, by removing the organic solvent from the adhesive composition. Therefore, the main body portion 5 contains components derived from the adhesive composition. As an example, the main body portion 5 includes at least one selected from the group consisting of a silicone polymer, a (meth)acrylic polymer, and a rubber polymer. Note that the silicone-based polymer contained in the main body portion 5 may be a crosslinked product of a silicone-based polymer contained in the adhesive composition. Similarly, the (meth)acrylic polymer contained in the main body portion 5 may be a crosslinked product of (meth)acrylic polymer contained in the adhesive composition.
 本体部5(又は粘着部)において、上記のポリマー(シリコーン系ポリマー、(メタ)アクリル系ポリマー、及びゴム系ポリマー)の含有率は、特に限定されず、例えば60wt%以上であり、好ましくは70wt%以上であり、より好ましくは90wt%以上である。本体部5は、実質的に上記のポリマーから構成されていてもよい。 In the main body part 5 (or adhesive part), the content of the above polymers (silicone polymer, (meth)acrylic polymer, and rubber polymer) is not particularly limited, and is, for example, 60 wt% or more, preferably 70 wt%. % or more, more preferably 90 wt% or more. The body portion 5 may consist essentially of the above-mentioned polymer.
 本体部5(又は粘着部)は、上述の添加剤、特にフィラー、をさらに含んでいてもよい。フィラーを含む本体部5は、分離膜10における酸性ガスの透過速度を向上させることに適している。フィラーは、無機材料を含んでいてもよく、有機材料を含んでいてもよい。フィラーに含まれる無機材料としては、ゼオライト、シリカ、チタニア、アルミナなどが挙げられる。有機材料としては、(メタ)アクリル系ポリマーなどが挙げられる。 The main body part 5 (or the adhesive part) may further contain the above-mentioned additives, especially fillers. The main body portion 5 containing the filler is suitable for improving the permeation rate of acid gas in the separation membrane 10. The filler may contain an inorganic material or an organic material. Examples of inorganic materials contained in the filler include zeolite, silica, titania, and alumina. Examples of organic materials include (meth)acrylic polymers.
 フィラーは、金属有機構造体(Metal-Organic-Framework:MOF)を含んでいてもよい。金属有機構造体は、多孔性配位高分子(Porous Coordination Polymer:PCP)とも呼ばれている。金属有機構造体は、例えば、金属イオン及び有機配位子を含んでいる。金属イオンとしては、Cuイオン、Znイオンなどが挙げられる。有機配位子は、例えば、芳香環を含んでいる。有機配位子に含まれる芳香環としては、ベンゼン環、イミダゾール環などが挙げられる。有機配位子としては、トリメシン酸、2-メチルイミダゾールなどが挙げられる。金属有機構造体の具体例としては、HKUST-1、ZIF-8などが挙げられる。 The filler may include a metal-organic-framework (MOF). The metal-organic framework is also called a porous coordination polymer (PCP). Metal-organic frameworks include, for example, metal ions and organic ligands. Examples of metal ions include Cu ions and Zn ions. The organic ligand includes, for example, an aromatic ring. Examples of the aromatic ring contained in the organic ligand include a benzene ring and an imidazole ring. Examples of the organic ligand include trimesic acid and 2-methylimidazole. Specific examples of the metal-organic framework include HKUST-1 and ZIF-8.
 フィラーの形状は、典型的には粒子状である。本明細書において、粒子状は、球状、楕円体状、鱗片状、繊維状などを含む。 The shape of the filler is typically particulate. In this specification, particulate includes spherical, ellipsoidal, scaly, fibrous, and the like.
 フィラーの平均粒子径は、特に限定されず、例えば5μm以下であり、1μm以下、800nm以下、600nm以下、500nm以下、400nm以下、300nm以下、200nm以下、さらには100nm以下であってもよい。フィラーの平均粒子径の下限値は、例えば1nmである。フィラーの平均粒子径は、次の方法によって特定することができる。まず、本体部5の断面を透過電子顕微鏡で観察する。得られた電子顕微鏡像において、特定のフィラーの面積を画像処理によって算出する。算出された面積と同じ面積を有する円の直径をその特定のフィラーの粒子径(粒子の直径)とみなす。任意の個数(少なくとも50個)のフィラーの粒子径をそれぞれ算出し、算出値の平均値をフィラーの平均粒子径とみなす。 The average particle diameter of the filler is not particularly limited, and may be, for example, 5 μm or less, 1 μm or less, 800 nm or less, 600 nm or less, 500 nm or less, 400 nm or less, 300 nm or less, 200 nm or less, or even 100 nm or less. The lower limit of the average particle diameter of the filler is, for example, 1 nm. The average particle size of the filler can be determined by the following method. First, a cross section of the main body portion 5 is observed using a transmission electron microscope. In the obtained electron microscope image, the area of a specific filler is calculated by image processing. The diameter of a circle having the same area as the calculated area is regarded as the particle diameter (particle diameter) of that particular filler. The particle diameter of an arbitrary number of fillers (at least 50) is calculated, and the average value of the calculated values is regarded as the average particle diameter of the filler.
 本体部5(又は粘着部)におけるフィラーの含有率は、例えば40wt%以下であり、30wt%以下、20wt%以下、さらには10wt%以下であってもよい。本体部5におけるフィラーの含有率の下限値は、特に限定されないが、酸性ガスの透過速度を向上させる観点から、例えば1wt%である。 The filler content in the main body portion 5 (or adhesive portion) is, for example, 40 wt% or less, and may be 30 wt% or less, 20 wt% or less, or even 10 wt% or less. The lower limit of the filler content in the main body portion 5 is not particularly limited, but from the viewpoint of improving the permeation rate of acidic gas, it is, for example, 1 wt%.
[中間層の物性]
 中間層2の厚さ(又は本体部5の厚さ)は、例えば0.1μm以上であり、0.3μm以上、0.5μm以上、1μm以上、3μm以上、5μm以上、10μm以上、30μm以上、50μm以上、80μm以上、100μm以上、150μm以上、さらには200μm以上であってもよい。厚さが大きい中間層2は、分離機能層1と多孔性支持体3とを十分な強度で接合できる傾向がある。中間層2の厚さの上限値は、特に限定されず、例えば500μmである。中間層2の厚さは、5~50μmであることが好ましい。なお、従来の分離膜では、中間層の厚さが増加するほど、分離膜からの透過流体の透過速度が低下する傾向がある。一方、本実施形態の分離膜10では、中間層2が空間6を有することによって、中間層2の厚さが増加しても分離膜10からの透過流体の透過速度が低下しにくい。
[Physical properties of intermediate layer]
The thickness of the intermediate layer 2 (or the thickness of the main body portion 5) is, for example, 0.1 μm or more, 0.3 μm or more, 0.5 μm or more, 1 μm or more, 3 μm or more, 5 μm or more, 10 μm or more, 30 μm or more, It may be 50 μm or more, 80 μm or more, 100 μm or more, 150 μm or more, or even 200 μm or more. The intermediate layer 2 having a large thickness tends to be able to bond the separation functional layer 1 and the porous support 3 with sufficient strength. The upper limit of the thickness of the intermediate layer 2 is not particularly limited, and is, for example, 500 μm. The thickness of the intermediate layer 2 is preferably 5 to 50 μm. Note that in conventional separation membranes, as the thickness of the intermediate layer increases, the permeation rate of the permeated fluid from the separation membrane tends to decrease. On the other hand, in the separation membrane 10 of this embodiment, since the intermediate layer 2 has the spaces 6, even if the thickness of the intermediate layer 2 increases, the permeation rate of the permeated fluid from the separation membrane 10 is unlikely to decrease.
 中間層2の25℃における貯蔵弾性率は、例えば1.0×105Pa以下であり、好ましくは0.95×105Pa以下であり、0.90×105Pa以下であってもよく、0.85×105Pa以下であってもよい。中間層2の貯蔵弾性率が低ければ低いほど、中間層2の接着強度が増加する傾向がある。中間層2の25℃における貯蔵弾性率は、0.1×105Pa以上であることが好ましい。 The storage modulus of the intermediate layer 2 at 25° C. is, for example, 1.0×10 5 Pa or less, preferably 0.95×10 5 Pa or less, and may be 0.90×10 5 Pa or less. , 0.85×10 5 Pa or less. The lower the storage modulus of the intermediate layer 2, the more the adhesive strength of the intermediate layer 2 tends to increase. The storage modulus of the intermediate layer 2 at 25° C. is preferably 0.1×10 5 Pa or more.
 中間層2の25℃における貯蔵弾性率は、以下の方法によって特定できる。まず、中間層2を構成する材料でできた測定用サンプルを準備する。測定用サンプルの形状は、円盤状である。測定用サンプルは、底面の直径が8mmであり、厚さが2mmである。次に、測定用サンプルについて動的粘弾性測定を行う。動的粘弾性測定には、例えば、Rheometric Scientific社製「Advanced Rheometric Expansion System(ARES)」を用いることができる。動的粘弾性測定の結果から、中間層2の25℃における貯蔵弾性率を特定することができる。なお、動的粘弾性測定の条件は、以下のとおりである。
・測定条件
 周波数:1Hz
 変形モード:ねじり
 測定温度:-70℃~150℃
 昇温速度:5℃/分
The storage modulus of the intermediate layer 2 at 25° C. can be determined by the following method. First, a measurement sample made of a material constituting the intermediate layer 2 is prepared. The shape of the sample for measurement is a disk. The measurement sample has a bottom diameter of 8 mm and a thickness of 2 mm. Next, dynamic viscoelasticity measurement is performed on the measurement sample. For dynamic viscoelasticity measurement, for example, "Advanced Rheometric Expansion System (ARES)" manufactured by Rheometric Scientific can be used. From the results of the dynamic viscoelasticity measurement, the storage modulus of the intermediate layer 2 at 25° C. can be determined. Note that the conditions for dynamic viscoelasticity measurement are as follows.
・Measurement conditions Frequency: 1Hz
Deformation mode: Torsion Measurement temperature: -70℃~150℃
Heating rate: 5℃/min
(多孔性支持体)
 多孔性支持体3は、中間層2を介して分離機能層1を支持する。多孔性支持体3としては、例えば、不織布;多孔質ポリテトラフルオロエチレン;芳香族ポリアミド繊維;多孔質金属;焼結金属;多孔質セラミック;多孔質ポリエステル;多孔質ナイロン;活性化炭素繊維;ラテックス;シリコーン;シリコーンゴム;ポリフッ化ビニル、ポリフッ化ビニリデン、ポリウレタン、ポリプロピレン、ポリエチレン、ポリカーボネート、ポリスルホン、ポリエーテルエーテルケトン、ポリアクリロニトリル、ポリイミド及びポリフェニレンオキシドからなる群より選ばれる少なくとも1つを含む透過性(多孔質)ポリマー;連続気泡又は独立気泡を有する金属発泡体;連続気泡又は独立気泡を有するポリマー発泡体;シリカ;多孔質ガラス;メッシュスクリーンなどが挙げられる。多孔性支持体3は、これらのうちの2種以上を組み合わせたものであってもよい。多孔性支持体3は、ポリフッ化ビニリデン(PVDF)及びポリスルホン(PSF)からなる群より選ばれる少なくとも1つを含むことが好ましい。
(Porous support)
The porous support 3 supports the separation functional layer 1 via the intermediate layer 2. Examples of the porous support 3 include nonwoven fabric; porous polytetrafluoroethylene; aromatic polyamide fiber; porous metal; sintered metal; porous ceramic; porous polyester; porous nylon; activated carbon fiber; latex silicone; silicone rubber; permeable material containing at least one selected from the group consisting of polyvinyl fluoride, polyvinylidene fluoride, polyurethane, polypropylene, polyethylene, polycarbonate, polysulfone, polyetheretherketone, polyacrylonitrile, polyimide, and polyphenylene oxide; Porous) polymers; metal foams with open cells or closed cells; polymer foams with open cells or closed cells; silica; porous glass; mesh screens and the like. The porous support 3 may be a combination of two or more of these. Preferably, the porous support 3 contains at least one member selected from the group consisting of polyvinylidene fluoride (PVDF) and polysulfone (PSF).
 多孔性支持体3は、例えば0.01~0.4μmの平均孔径を有する。多孔性支持体3の厚さは、特に限定されず、例えば10μm以上であり、好ましくは20μm以上であり、より好ましくは50μm以上である。多孔性支持体3の厚さは、例えば300μm以下であり、好ましくは200μm以下であり、より好ましくは150μm以下である。 The porous support 3 has an average pore diameter of, for example, 0.01 to 0.4 μm. The thickness of the porous support 3 is not particularly limited, and is, for example, 10 μm or more, preferably 20 μm or more, and more preferably 50 μm or more. The thickness of the porous support 3 is, for example, 300 μm or less, preferably 200 μm or less, and more preferably 150 μm or less.
(分離膜の製造方法)
 本実施形態の分離膜10は、いわゆる転写法によって製造しやすい。図3A~図3Cは、転写法によって、本実施形態の分離膜10を製造する方法を説明するための図である。図3A~図3Cに示すように、本実施形態の製造方法は、はく離ライナー9及び分離機能層1を有する第1積層体15の上に、空間6を有する中間層2を形成することによって、はく離ライナー9、分離機能層1及び中間層2をこの順で有する第2積層体16を形成することと、空間6が分離機能層1及び多孔性支持体3の両方に接するように、第2積層体16の中間層2を多孔性支持体3と貼り合わせて、第3積層体17を形成することと、第3積層体17からはく離ライナー9を取り除くことと、を含む。
(Separation membrane manufacturing method)
The separation membrane 10 of this embodiment is easily manufactured by a so-called transfer method. 3A to 3C are diagrams for explaining a method for manufacturing the separation membrane 10 of this embodiment by a transfer method. As shown in FIGS. 3A to 3C, the manufacturing method of this embodiment includes forming an intermediate layer 2 having a space 6 on a first laminate 15 having a release liner 9 and a separation functional layer 1. Forming a second laminate 16 having a release liner 9, a separation functional layer 1, and an intermediate layer 2 in this order, and forming a second laminate 16 having a release liner 9, a separation functional layer 1, and an intermediate layer 2 in this order; It includes laminating the intermediate layer 2 of the laminate 16 with the porous support 3 to form a third laminate 17 and removing the release liner 9 from the third laminate 17.
 第1積層体15は、例えば、次の方法によって作製できる。まず、分離機能層1の材料を含む塗布液を調製する。塗布液は、N-メチル-2-ピロリドン(NMP)、ジメチルアセトアミド(DMAc)などの高い極性を有する有機溶媒を含んでいてもよい。このような有機溶媒は、ポリイミド樹脂を溶解させることに適している。塗布液は、塗布液の塗工性を向上させるためのレベリング剤をさらに含んでいてもよい。次に、この塗布液をはく離ライナー9の上に塗布し、塗布膜を得る。この塗布膜を乾燥させることによって、分離機能層1を形成できる。これにより、はく離ライナー9及び分離機能層1を有する第1積層体15を得ることができる(図3A)。 The first laminate 15 can be produced, for example, by the following method. First, a coating liquid containing the material for the separation functional layer 1 is prepared. The coating liquid may contain a highly polar organic solvent such as N-methyl-2-pyrrolidone (NMP) and dimethylacetamide (DMAc). Such organic solvents are suitable for dissolving polyimide resins. The coating liquid may further contain a leveling agent for improving the coating properties of the coating liquid. Next, this coating liquid is applied onto the release liner 9 to obtain a coating film. By drying this coating film, the separation functional layer 1 can be formed. Thereby, the first laminate 15 having the release liner 9 and the separation functional layer 1 can be obtained (FIG. 3A).
 はく離ライナー9としては、例えば、樹脂を含むフィルム;紙;アルミニウムやステンレス鋼などの金属材料を含むシートなどが挙げられる。金属材料を含むシートは、耐熱性が高い傾向がある。はく離ライナー9は、表面平滑性に優れる点から、樹脂を含むフィルムであることが好ましい。はく離ライナー9において、樹脂に含まれるポリマーとしては、ポリエチレン、ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテンなどのポリオレフィン;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル;ポリ塩化ビニル、塩化ビニル共重合体;ポリウレタン;エチレン-酢酸ビニル共重合体などが挙げられ、ポリエステル、特にポリエチレンテレフタレート、が好ましい。 Examples of the release liner 9 include a film containing resin; paper; and a sheet containing a metal material such as aluminum or stainless steel. Sheets containing metallic materials tend to have high heat resistance. The release liner 9 is preferably a film containing resin because of its excellent surface smoothness. In the release liner 9, polymers contained in the resin include polyolefins such as polyethylene, polypropylene, polybutene, polybutadiene, and polymethylpentene; polyesters such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyvinyl chloride, and vinyl chloride copolymer. Polyesters; polyurethanes; ethylene-vinyl acetate copolymers and the like; polyesters, particularly polyethylene terephthalate, are preferred.
 はく離ライナー9の表面には、剥離処理が施されていてもよい。剥離処理は、例えば、はく離ライナー9の表面に剥離処理剤を付与することによって行うことができる。剥離処理剤としては、シリコーン系剥離処理剤、長鎖アルキル系剥離処理剤、フッ素剥離処理剤、硫化モリブデン系剥離処理剤などが挙げられる。剥離処理剤は、単独又は2種以上組み合わせて用いられてもよい。はく離ライナー9は、好ましくは、剥離処理が施されたポリエチレンテレフタレート(PET)製のフィルムである。 The surface of the release liner 9 may be subjected to a release treatment. The release treatment can be performed, for example, by applying a release treatment agent to the surface of the release liner 9. Examples of the release agent include a silicone release agent, a long-chain alkyl release agent, a fluorine release agent, and a molybdenum sulfide release agent. The release agent may be used alone or in combination of two or more. The release liner 9 is preferably a release-treated polyethylene terephthalate (PET) film.
 はく離ライナー9の厚さは、特に限定されず、例えば5~300μmであり、好ましくは50~200μmである。 The thickness of the release liner 9 is not particularly limited, and is, for example, 5 to 300 μm, preferably 50 to 200 μm.
 塗布液をはく離ライナー9の上に塗布する方法は、特に限定されず、例えば、スピンコート法、ディップコート法などを利用できる。ワイヤーバーなどを利用して塗布液を塗布してもよい。塗布膜の乾燥は、例えば、加熱条件下で行うことができる。塗布膜の加熱温度は、例えば50℃以上であり、好ましくは130~150℃である。塗布膜の加熱時間は、例えば1分以上であり、5分以上であってもよく、30分以上であってもよい。 The method of applying the coating liquid onto the release liner 9 is not particularly limited, and for example, a spin coating method, a dip coating method, etc. can be used. The coating liquid may be applied using a wire bar or the like. The coating film can be dried, for example, under heating conditions. The heating temperature of the coating film is, for example, 50°C or higher, preferably 130 to 150°C. The heating time for the coating film is, for example, 1 minute or more, may be 5 minutes or more, or may be 30 minutes or more.
 第2積層体16は、例えば、次の方法によって作製できる。まず、中間層2(詳細には本体部5)として機能することができる両面テープを準備する。両面テープは、例えば、粘着剤組成物から形成された粘着部を有する。次に、この両面テープを第1積層体15における分離機能層1の上に配置する。両面テープの配置は、空間6が形成されるように行う。両面テープを分離機能層1の上に配置することによって、本体部(両面テープ)5及び空間6が形成され、中間層2が得られる。これにより、はく離ライナー9、分離機能層1及び中間層2をこの順で有する第2積層体16を得ることができる(図3B)。第2積層体16において、中間層2は、第2積層体16の外部に露出している。 The second laminate 16 can be produced, for example, by the following method. First, a double-sided tape that can function as the intermediate layer 2 (specifically, the main body part 5) is prepared. The double-sided tape has, for example, an adhesive portion formed from an adhesive composition. Next, this double-sided tape is placed on the separation functional layer 1 in the first laminate 15. The double-sided tape is arranged so that a space 6 is formed. By placing the double-sided tape on the separation functional layer 1, a main body (double-sided tape) 5 and a space 6 are formed, and the intermediate layer 2 is obtained. Thereby, it is possible to obtain a second laminate 16 having the release liner 9, the separation functional layer 1, and the intermediate layer 2 in this order (FIG. 3B). In the second laminate 16 , the intermediate layer 2 is exposed to the outside of the second laminate 16 .
 なお、第2積層体16の作製方法は、上記の方法に限定されない。例えば、中間層2(詳細には本体部5)の材料を含む塗布液(例えば粘着剤組成物)を分離機能層1の上に塗布し、乾燥させることによって中間層2を形成し、これにより、第2積層体16を作製してもよい。この作製方法において、塗布液の塗布は、空間6が形成されるように行う。塗布液の塗布は、本体部5が形成されるべき位置に開口を有するマスクを用いる方法、フレキソ印刷法、スクリーン印刷法、ダイ塗工法、スプレー塗工法などを利用することができる。塗布液の乾燥は、例えば、加熱条件下で行うことができる。一例として、塗布液が付加反応型のシリコーン系粘着剤である場合、塗布液を100~130℃で加熱して乾燥させてもよい。上記の加熱条件によって、塗布液の乾燥とともに、例えば、シリコーン系ポリマーの架橋反応が進行し、シリコーン系ポリマーの架橋物が形成される。塗布液の加熱時間は、例えば1分以上であり、5分以上であってもよい。 Note that the method for manufacturing the second laminate 16 is not limited to the above method. For example, the intermediate layer 2 is formed by applying a coating liquid (for example, an adhesive composition) containing the material of the intermediate layer 2 (specifically, the main body part 5) onto the separation functional layer 1 and drying it. , the second laminate 16 may be manufactured. In this manufacturing method, the coating liquid is applied so that a space 6 is formed. The coating liquid can be applied by a method using a mask having an opening at a position where the main body portion 5 is to be formed, a flexographic printing method, a screen printing method, a die coating method, a spray coating method, or the like. The coating liquid can be dried, for example, under heating conditions. For example, when the coating liquid is an addition reaction type silicone adhesive, the coating liquid may be dried by heating at 100 to 130°C. Under the above-mentioned heating conditions, the coating liquid is dried and, for example, a crosslinking reaction of the silicone polymer proceeds to form a crosslinked product of the silicone polymer. The heating time of the coating liquid is, for example, 1 minute or more, and may be 5 minutes or more.
 次に、中間層2の空間6が分離機能層1及び多孔性支持体3の両方に接するように、第2積層体16の中間層2を多孔性支持体3と貼り合わせることによって第3積層体17を得ることができる(図3C)。中間層2を多孔性支持体3と貼り合わせる方法は、特に限定されず、公知の方法を利用できる。例えば、中間層2を多孔性支持体3と重ね合わせ、ローラを往復させてこれらを圧着させることによって、中間層2を多孔性支持体3と貼り合わせることができる。第3積層体17からはく離ライナー9を取り除くことによって分離膜10を得ることができる(図1)。 Next, the intermediate layer 2 of the second laminate 16 is bonded to the porous support 3 so that the space 6 of the intermediate layer 2 is in contact with both the separation functional layer 1 and the porous support 3, thereby forming a third laminate. A body 17 can be obtained (FIG. 3C). The method of bonding the intermediate layer 2 to the porous support 3 is not particularly limited, and any known method can be used. For example, the intermediate layer 2 and the porous support 3 can be bonded together by overlapping the intermediate layer 2 and the porous support 3 and pressing them together by moving a roller back and forth. The separation membrane 10 can be obtained by removing the release liner 9 from the third laminate 17 (FIG. 1).
 なお、分離膜10の作製方法は、図3A~図3Cを参照して説明した転写法に限定されず、中間層2及び多孔性支持体3の積層体の上に分離機能層1を直接作製する直接法を利用してもよい。ただし、直接法では、中間層2及び多孔性支持体3の積層体の上に、分離機能層1の材料を含む塗布液を塗布し、得られた塗布膜を乾燥させることによって分離機能層1を作製する。そのため、塗布液に含まれる溶媒によっては、塗布液と接触した中間層2が溶解することがある。中間層2が溶解すると、塗布液が多孔性支持体3にも接触し、多孔性支持体3をさらに溶解することもある。中間層2や多孔性支持体3が溶解すると、分離膜10からの透過流体の透過速度が低下する傾向がある。転写法では、塗布液を中間層2の上に塗布せずに分離機能層1を作製できるため、中間層2や多孔性支持体3が塗布液で溶解することを防ぐことができる。 Note that the method for producing the separation membrane 10 is not limited to the transfer method described with reference to FIGS. 3A to 3C, and the separation functional layer 1 can be directly produced on the laminate of the intermediate layer 2 and the porous support 3. You may also use the direct method. However, in the direct method, a coating liquid containing the material of the separation functional layer 1 is applied onto the laminate of the intermediate layer 2 and the porous support 3, and the resulting coating film is dried. Create. Therefore, depending on the solvent contained in the coating liquid, the intermediate layer 2 that comes into contact with the coating liquid may dissolve. When the intermediate layer 2 is dissolved, the coating liquid may also come into contact with the porous support 3 and further dissolve the porous support 3. When the intermediate layer 2 and the porous support 3 are dissolved, the permeation rate of the permeated fluid from the separation membrane 10 tends to decrease. In the transfer method, since the separation functional layer 1 can be produced without applying a coating liquid onto the intermediate layer 2, it is possible to prevent the intermediate layer 2 and the porous support 3 from being dissolved by the coating liquid.
(分離膜の形状)
 本実施形態において、分離膜10は、典型的には平膜である。ただし、分離膜10は、平膜以外の形状であってもよく、例えば、中空糸膜であってもよい。
(Shape of separation membrane)
In this embodiment, the separation membrane 10 is typically a flat membrane. However, the separation membrane 10 may have a shape other than a flat membrane, for example, may be a hollow fiber membrane.
(分離膜の特性)
 分離膜10では、中間層2が空間6を有することによって、透過流体の透過速度が改善される傾向がある。一例として、分離膜10を透過する二酸化炭素の透過速度Tは、例えば50GPU以上であり、100GPU以上、150GPU以上、200GPU以上、さらには250GPU以上であってもよい。透過速度Tの上限値は、特に限定されず、例えば1000GPUである。なお、GPUは、10-6・cm3(STP)/(sec・cm2・cmHg)を意味する。cm3(STP)は、1気圧、0℃での二酸化炭素の体積を意味する。
(Characteristics of separation membrane)
In the separation membrane 10, the intermediate layer 2 having the spaces 6 tends to improve the permeation rate of the permeate fluid. As an example, the permeation rate T of carbon dioxide passing through the separation membrane 10 is, for example, 50 GPU or more, and may be 100 GPU or more, 150 GPU or more, 200 GPU or more, or even 250 GPU or more. The upper limit of the transmission rate T is not particularly limited, and is, for example, 1000 GPU. Note that GPU means 10 −6 ·cm 3 (STP)/(sec·cm 2 ·cmHg). cm 3 (STP) means the volume of carbon dioxide at 1 atmosphere and 0°C.
 透過速度Tは、次の方法によって算出できる。まず、分離膜10の一方の面(例えば分離膜10の分離機能層側の主面11)に隣接する空間に、二酸化炭素及び窒素からなる混合気体を供給するとともに、分離膜10の他方の面(例えば分離膜10の多孔性支持体側の主面12)に隣接する空間を減圧する。これにより、分離膜10を透過した透過流体が得られる。透過流体の重量、並びに、透過流体における二酸化炭素の体積比率及び窒素の体積比率を測定する。測定結果から透過速度Tを算出できる。上記の操作において、混合気体における二酸化炭素の濃度は、標準状態(0℃、101kPa)で50vol%である。分離膜10の一方の面に隣接する空間に供給される混合気体は、温度が30℃であり、圧力が0.1MPaである。分離膜10の他方の面に隣接する空間は、空間内の圧力が測定環境における大気圧に対して0.1MPa小さくなるように減圧されている。 The permeation rate T can be calculated by the following method. First, a mixed gas consisting of carbon dioxide and nitrogen is supplied to a space adjacent to one surface of the separation membrane 10 (for example, the main surface 11 on the separation functional layer side of the separation membrane 10), and the other surface of the separation membrane 10 is supplied with a gas mixture consisting of carbon dioxide and nitrogen. (For example, the space adjacent to the main surface 12 of the separation membrane 10 on the porous support side) is depressurized. Thereby, a permeated fluid that has passed through the separation membrane 10 is obtained. The weight of the permeate fluid and the volume proportions of carbon dioxide and nitrogen in the permeate fluid are determined. The transmission rate T can be calculated from the measurement results. In the above operation, the concentration of carbon dioxide in the mixed gas is 50 vol% under standard conditions (0° C., 101 kPa). The mixed gas supplied to the space adjacent to one surface of the separation membrane 10 has a temperature of 30° C. and a pressure of 0.1 MPa. The space adjacent to the other surface of the separation membrane 10 is reduced in pressure so that the pressure in the space is 0.1 MPa lower than the atmospheric pressure in the measurement environment.
 中間層2を備えていないことを除き、分離膜10と同じ構成を有する測定用分離膜を透過する二酸化炭素の透過速度T0(GPU)に対する、分離膜10を透過する二酸化炭素の透過速度T(GPU)の比率T/T0は、例えば20%以上であり、40%以上、50%以上、70%以上、80%以上、90%以上、95%以上、さらには99%以上であってもよい。なお、透過速度T0は、透過速度Tについて上述した方法によって測定することができる。測定用分離膜は、後述する参考例1に記載の方法によって作製することができる。 The permeation rate T of carbon dioxide that permeates through the separation membrane 10 relative to the permeation rate T 0 (GPU) of carbon dioxide that permeates the measurement separation membrane that has the same configuration as the separation membrane 10 except that it does not include the intermediate layer 2 (GPU) ratio T/T 0 is, for example, 20% or more, 40% or more, 50% or more, 70% or more, 80% or more, 90% or more, 95% or more, and even 99% or more. Good too. Note that the permeation rate T 0 can be measured by the method described above for the permeation rate T. The measurement separation membrane can be produced by the method described in Reference Example 1 described later.
 上記の透過速度Tの測定条件において、分離膜10の窒素に対する二酸化炭素の分離係数αは、特に限定されず、例えば20以上であり、好ましくは25以上である。分離係数αの上限値は、特に限定されず、例えば50である。分離係数αは、以下の式から算出することができる。ただし、下記式において、XA及びXBは、それぞれ、混合気体における二酸化炭素の体積比率及び窒素の体積比率である。YA及びYBは、それぞれ、分離膜10を透過した透過流体における二酸化炭素の体積比率及び窒素の体積比率である。
分離係数α=(YA/YB)/(XA/XB
Under the above measurement conditions for the permeation rate T, the separation coefficient α of carbon dioxide with respect to nitrogen of the separation membrane 10 is not particularly limited, and is, for example, 20 or more, preferably 25 or more. The upper limit of the separation coefficient α is not particularly limited, and is, for example, 50. The separation coefficient α can be calculated from the following formula. However, in the following formula, X A and X B are the volume ratio of carbon dioxide and the volume ratio of nitrogen in the mixed gas, respectively. Y A and Y B are the volume ratio of carbon dioxide and the volume ratio of nitrogen in the permeate fluid that has passed through the separation membrane 10, respectively.
Separation coefficient α=(Y A /Y B )/(X A /X B )
(分離膜の用途)
 本実施形態の分離膜10の用途としては、酸性ガスを含む混合気体から酸性ガスを分離する用途が挙げられる。混合気体の酸性ガスとしては、二酸化炭素、硫化水素、硫化カルボニル、硫黄酸化物(SOx)、シアン化水素、窒素酸化物(NOx)などが挙げられ、好ましくは二酸化炭素である。混合気体は、酸性ガス以外の他のガスを含んでいる。他のガスとしては、例えば、水素、窒素などの非極性ガス、及び、ヘリウムなどの不活性ガスが挙げられ、好ましくは窒素である。特に、本実施形態の分離膜10は、二酸化炭素及び窒素を含む混合気体から二酸化炭素を分離する用途に適している。ただし、分離膜10の用途は、上記の混合気体から酸性ガスを分離する用途に限定されない。
(Applications of separation membrane)
Applications of the separation membrane 10 of this embodiment include applications for separating acidic gas from a mixed gas containing acidic gas. Examples of the mixed acidic gas include carbon dioxide, hydrogen sulfide, carbonyl sulfide, sulfur oxides (SOx), hydrogen cyanide, and nitrogen oxides (NOx), with carbon dioxide being preferred. The mixed gas contains gases other than acidic gas. Other gases include, for example, nonpolar gases such as hydrogen and nitrogen, and inert gases such as helium, with nitrogen being preferred. In particular, the separation membrane 10 of this embodiment is suitable for use in separating carbon dioxide from a mixed gas containing carbon dioxide and nitrogen. However, the use of the separation membrane 10 is not limited to the use of separating acidic gas from the above-mentioned mixed gas.
<膜分離装置の実施形態>
 図4に示すとおり、本実施形態の膜分離装置100は、分離膜10及びタンク20を備えている。タンク20は、第1室21及び第2室22を備えている。分離膜10は、タンク20の内部に配置されている。タンク20の内部において、分離膜10は、第1室21と第2室22とを隔てている。分離膜10は、タンク20の1対の壁面の一方から他方まで延びている。
<Embodiment of membrane separation device>
As shown in FIG. 4, the membrane separation apparatus 100 of this embodiment includes a separation membrane 10 and a tank 20. The tank 20 includes a first chamber 21 and a second chamber 22. Separation membrane 10 is arranged inside tank 20. Inside the tank 20, the separation membrane 10 separates a first chamber 21 and a second chamber 22. The separation membrane 10 extends from one of the pair of wall surfaces of the tank 20 to the other.
 第1室21は、入口21a及び出口21bを有する。第2室22は、出口22aを有する。入口21a、出口21b及び出口22aのそれぞれは、例えば、タンク20の壁面に形成された開口である。 The first chamber 21 has an inlet 21a and an outlet 21b. The second chamber 22 has an outlet 22a. Each of the inlet 21a, the outlet 21b, and the outlet 22a is an opening formed in the wall surface of the tank 20, for example.
 膜分離装置100を用いた膜分離は、例えば、次の方法によって行われる。まず、入口21aを通じて、酸性ガスを含む混合気体30を第1室21に供給する。混合気体30における酸性ガスの濃度は、特に限定されず、標準状態で、例えば0.01vol%(100ppm)以上であり、好ましくは1vol%以上であり、より好ましくは10vol%以上であり、さらに好ましくは30vol%以上であり、特に好ましくは50vol%以上である。混合気体30における酸性ガスの濃度の上限値は、特に限定されず、標準状態で、例えば90vol%である。 Membrane separation using the membrane separation device 100 is performed, for example, by the following method. First, a mixed gas 30 containing an acidic gas is supplied to the first chamber 21 through the inlet 21a. The concentration of acidic gas in the mixed gas 30 is not particularly limited, and in a standard state is, for example, 0.01 vol% (100 ppm) or more, preferably 1 vol% or more, more preferably 10 vol% or more, and even more preferably is 30 vol% or more, particularly preferably 50 vol% or more. The upper limit of the concentration of acidic gas in the mixed gas 30 is not particularly limited, and is, for example, 90 vol% in a standard state.
 混合気体30の供給によって、第1室21内が昇圧されてもよい。膜分離装置100は、混合気体30を昇圧するためのポンプ(図示せず)をさらに備えていてもよい。第1室21に供給される混合気体30の圧力は、例えば0.1MPa以上、好ましくは0.3MPa以上である。 The pressure inside the first chamber 21 may be increased by supplying the mixed gas 30. The membrane separator 100 may further include a pump (not shown) for pressurizing the mixed gas 30. The pressure of the mixed gas 30 supplied to the first chamber 21 is, for example, 0.1 MPa or more, preferably 0.3 MPa or more.
 第1室21に混合気体30を供給した状態で、第2室22内を減圧してもよい。膜分離装置100は、第2室22内を減圧するためのポンプ(図示せず)をさらに備えていてもよい。第2室22は、第2室22内の空間が測定環境における大気圧に対して、例えば10kPa以上、好ましくは50kPa以上、より好ましくは100kPa以上小さくなるように減圧されてもよい。 The pressure inside the second chamber 22 may be reduced while the mixed gas 30 is supplied to the first chamber 21. The membrane separator 100 may further include a pump (not shown) for reducing the pressure inside the second chamber 22. The pressure in the second chamber 22 may be reduced so that the space within the second chamber 22 is, for example, 10 kPa or more, preferably 50 kPa or more, more preferably 100 kPa or more smaller than the atmospheric pressure in the measurement environment.
 第1室21内に混合気体30が供給されることによって、分離膜10の他方の面側において混合気体30よりも酸性ガスの含有率が高い透過流体35を得ることができる。すなわち、透過流体35が第2室22に供給される。透過流体35は、例えば、酸性ガスを主成分として含んでいる。ただし、透過流体35は、酸性ガス以外の他のガスを少量含んでいてもよい。透過流体35は、出口22aを通じて、タンク20の外部に排出される。 By supplying the mixed gas 30 into the first chamber 21, it is possible to obtain a permeate fluid 35 having a higher content of acidic gas than the mixed gas 30 on the other side of the separation membrane 10. That is, the permeate fluid 35 is supplied to the second chamber 22 . The permeate fluid 35 contains, for example, acidic gas as a main component. However, the permeate fluid 35 may contain a small amount of gas other than acidic gas. Permeate fluid 35 is discharged to the outside of tank 20 through outlet 22a.
 混合気体30における酸性ガスの濃度は、第1室21の入口21aから出口21bに向かって徐々に低下する。第1室21で処理された混合気体30(非透過流体36)は、出口21bを通じて、タンク20の外部に排出される。 The concentration of acidic gas in the mixed gas 30 gradually decreases from the inlet 21a of the first chamber 21 toward the outlet 21b. The mixed gas 30 (non-permeable fluid 36) treated in the first chamber 21 is discharged to the outside of the tank 20 through the outlet 21b.
 本実施形態の膜分離装置100は、流通式(連続式)の膜分離方法に適している。ただし、本実施形態の膜分離装置100は、バッチ式の膜分離方法に用いられてもよい。 The membrane separation apparatus 100 of this embodiment is suitable for a flow type (continuous type) membrane separation method. However, the membrane separation apparatus 100 of this embodiment may be used in a batch-type membrane separation method.
<膜分離装置の変形例>
 膜分離装置100は、スパイラル型の膜エレメント、中空糸膜エレメントなどであってもよい。図5は、スパイラル型の膜エレメントを示している。図5の膜分離装置110は、中心管41及び積層体42を備えている。積層体42が分離膜10を含んでいる。
<Modified example of membrane separation device>
The membrane separation device 100 may be a spiral membrane element, a hollow fiber membrane element, or the like. Figure 5 shows a spiral-shaped membrane element. The membrane separation device 110 in FIG. 5 includes a central tube 41 and a stacked body 42. The laminate 42 includes the separation membrane 10.
 中心管41は、円筒形状を有している。中心管41の表面には、中心管41の内部に透過流体35を流入させるための複数の孔が形成されている。中心管41の材料としては、例えば、アクリロニトリル・ブタジエン・スチレン共重合樹脂(ABS樹脂)、ポリフェニレンエーテル樹脂(PPE樹脂)、ポリサルフォン樹脂(PSF樹脂)などの樹脂;ステンレス鋼、チタンなどの金属が挙げられる。中心管41の内径は、例えば20~100mmの範囲にある。 The central tube 41 has a cylindrical shape. A plurality of holes are formed on the surface of the center tube 41 to allow the permeate fluid 35 to flow into the center tube 41 . Examples of materials for the center tube 41 include resins such as acrylonitrile-butadiene-styrene copolymer resin (ABS resin), polyphenylene ether resin (PPE resin), and polysulfone resin (PSF resin); metals such as stainless steel and titanium. It will be done. The inner diameter of the central tube 41 is, for example, in the range of 20 to 100 mm.
 積層体42は、分離膜10の他に、供給側流路材43及び透過側流路材44をさらに含む。積層体42は、中心管41の周囲に巻回されている。膜分離装置110は、外装材(図示せず)をさらに備えていてもよい。 In addition to the separation membrane 10, the laminate 42 further includes a supply side channel material 43 and a permeate side channel material 44. The laminate 42 is wound around the central tube 41. The membrane separation device 110 may further include an exterior material (not shown).
 供給側流路材43及び透過側流路材44としては、例えばポリフェニレンサルファイド(PPS)又はエチレン-クロロトリフルオロエチレン共重合体(ECTFE)からなる樹脂製ネットを用いることができる。 As the supply side channel material 43 and the permeate side channel material 44, for example, a resin net made of polyphenylene sulfide (PPS) or ethylene-chlorotrifluoroethylene copolymer (ECTFE) can be used.
 膜分離装置110を用いた膜分離は、例えば、次の方法によって行われる。まず、巻回された積層体42の一端に混合気体30を供給する。積層体42の分離膜10を透過した透過流体35が中心管41の内部に移動する。透過流体35は、中心管41を通じて外部に排出される。膜分離装置110で処理された混合気体30(非透過流体36)は、巻回された積層体42の他端から外部に排出される。これにより、混合気体30から酸性ガスを分離することができる。 Membrane separation using the membrane separation device 110 is performed, for example, by the following method. First, the mixed gas 30 is supplied to one end of the wound laminate 42 . The permeated fluid 35 that has passed through the separation membrane 10 of the laminate 42 moves into the center tube 41 . The permeate fluid 35 is discharged to the outside through the central pipe 41. The mixed gas 30 (non-permeable fluid 36) processed by the membrane separator 110 is discharged to the outside from the other end of the wound stack 42. Thereby, the acidic gas can be separated from the mixed gas 30.
 以下に、実施例及び比較例により本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。 The present invention will be explained in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
(参考例1)
[分離膜の作製]
 まず、テトラカルボン酸二無水物として、ビス(1,3-ジオキソ-1,3-ジヒドロイソベンゾフラン-5-カルボン酸)エチレン(25.12g、60mmol)を準備し、ジアミン化合物として、4,4’-ジアミノジフェニルエーテル(12.26g、60mmol)を準備した。次に、ジアミン化合物をN-メチル-2-ピロリドンに溶解させ、溶液を得た。得られた溶液に、室温条件下でテトラカルボン酸二無水物を添加することによって、ポリアミド酸を得た。次に、トリエチルアミン(1.56g、15.4mmol)及び無水酢酸(9.44g、92.5mmol)を用いて、ポリアミド酸を化学イミド化した。化学イミド化は、N-メチル-2-ピロリドン中で60℃の条件下で行った。得られた溶液については、50vol%のメタノール水溶液に加えた。これにより、再沈殿処理されたポリイミドPを得た。
(Reference example 1)
[Preparation of separation membrane]
First, as a tetracarboxylic dianhydride, bis(1,3-dioxo-1,3-dihydroisobenzofuran-5-carboxylic acid)ethylene (25.12 g, 60 mmol) was prepared, and as a diamine compound, 4,4 '-Diamino diphenyl ether (12.26 g, 60 mmol) was prepared. Next, the diamine compound was dissolved in N-methyl-2-pyrrolidone to obtain a solution. Polyamic acid was obtained by adding tetracarboxylic dianhydride to the obtained solution under room temperature conditions. Next, the polyamic acid was chemically imidized using triethylamine (1.56 g, 15.4 mmol) and acetic anhydride (9.44 g, 92.5 mmol). Chemical imidization was performed in N-methyl-2-pyrrolidone at 60°C. The obtained solution was added to a 50 vol% methanol aqueous solution. Thereby, polyimide P subjected to reprecipitation treatment was obtained.
 次に、得られたポリイミドPをN-メチル-2-ピロリドンに溶解させて、塗布液を調製した。塗布液には、レベリング剤(AGCセイミケミカル株式会社製のサーフロンS-243(フッ素系界面活性剤))を添加した。この塗布液をはく離ライナー(ニッパ社製のTM-0)の上に塗布し、塗布膜を得た。この塗布膜を130~150℃で30分乾燥させることによって、分離機能層を作製した。なお、参考例1で用いたはく離ライナー(TM-0)は、分離機能層との接着強度が比較的大きい重剥離フィルムである。 Next, the obtained polyimide P was dissolved in N-methyl-2-pyrrolidone to prepare a coating solution. A leveling agent (Surflon S-243 (fluorosurfactant) manufactured by AGC Seimi Chemical Co., Ltd.) was added to the coating solution. This coating solution was applied onto a release liner (TM-0 manufactured by Nipper Co., Ltd.) to obtain a coating film. A separation functional layer was prepared by drying this coating film at 130 to 150° C. for 30 minutes. The release liner (TM-0) used in Reference Example 1 is a heavy release film that has relatively high adhesive strength with the separation functional layer.
 次に、両面粘着テープ(日東電工社製のNo.5603)を分離機能層の周縁部のみに貼り合せた。この両面粘着テープを介して分離機能層と多孔性支持体と貼り合わせた。多孔性支持体としては、分離機能層側の表面(両面粘着テープと接触する表面)にポリスルホン(PSF)がコーティングされた不織布(阿波製紙社製)を用いた。得られた積層体からはく離ライナーを取り除くことによって、参考例1の分離膜(測定用分離膜)を得た。なお、分離膜において、両面粘着テープは、後述する透過速度T0の測定試験を行うときに、分離機能層を透過した流体と干渉しない位置に配置されていた。 Next, a double-sided adhesive tape (No. 5603 manufactured by Nitto Denko Corporation) was attached only to the peripheral edge of the separation functional layer. The separation functional layer and the porous support were bonded together via this double-sided adhesive tape. As the porous support, a nonwoven fabric (manufactured by Awa Paper Industries Co., Ltd.) whose surface on the separation functional layer side (the surface in contact with the double-sided adhesive tape) was coated with polysulfone (PSF) was used. The separation membrane of Reference Example 1 (separation membrane for measurement) was obtained by removing the release liner from the obtained laminate. In addition, in the separation membrane, the double-sided adhesive tape was placed at a position where it would not interfere with the fluid that had passed through the separation functional layer when conducting a test to measure the permeation rate T 0 described later.
[透過速度T0
 参考例1の分離膜について、次の方法によって二酸化炭素の透過速度T0を測定した。まず、分離膜を金属セル中にセットし、リークが発生しないようにOリングでシールした。次に、分離膜の分離機能層側の主面に混合気体が接触するように、金属セル内に混合気体を注入した。混合気体は、実質的に二酸化炭素及び窒素からなっていた。混合気体における二酸化炭素の濃度は、標準状態で50vol%であった。金属セル内に注入された混合気体は、温度が30℃であり、圧力が0.1MPaであった。次に、分離膜の多孔性支持体側の主面に隣接する金属セル内の空間を真空ポンプで減圧した。このとき、この空間は、空間内の圧力が測定環境における大気圧に対して0.1MPa小さくなるように減圧されていた。これにより、透過流体が得られた。得られた透過流体の組成、透過流体の重量などに基づいて、分離膜を透過する二酸化炭素の透過速度T0を特定した。
[Transmission rate T 0 ]
Regarding the separation membrane of Reference Example 1, the carbon dioxide permeation rate T 0 was measured by the following method. First, a separation membrane was set in a metal cell and sealed with an O-ring to prevent leakage. Next, the mixed gas was injected into the metal cell so that the mixed gas came into contact with the main surface of the separation membrane on the separation functional layer side. The gas mixture consisted essentially of carbon dioxide and nitrogen. The concentration of carbon dioxide in the gas mixture was 50 vol% under standard conditions. The mixed gas injected into the metal cell had a temperature of 30° C. and a pressure of 0.1 MPa. Next, the pressure in the space within the metal cell adjacent to the main surface of the separation membrane on the porous support side was reduced using a vacuum pump. At this time, the pressure in this space was reduced so that the pressure in the space was 0.1 MPa lower than the atmospheric pressure in the measurement environment. This resulted in a permeate fluid. The permeation rate T 0 of carbon dioxide passing through the separation membrane was determined based on the composition of the obtained permeate fluid, the weight of the permeate fluid, etc.
(実施例1)
 まず、参考例1と同じ方法によって、はく離ライナーの上に分離機能層を作製した。次に、平面視でストライプ状に配置された本体部が形成されるように、両面テープ(日東電工社製のNo.5620A)を分離機能層の上に貼り合せた。両面テープの粘着部は、アクリル系粘着剤から形成されていた。両面テープを分離機能層の上に貼り合せることによって、中間層を形成した。この中間層は、分離機能層及び多孔性支持体の両方に接することができる空間を有していた。中間層を平面視したときに、中間層の表面のうち、空間が存在する領域の面積の割合R(開口率)は80%であった。中間層の厚さは、200μmであった。
(Example 1)
First, a separation functional layer was produced on a release liner by the same method as in Reference Example 1. Next, a double-sided tape (No. 5620A manufactured by Nitto Denko Corporation) was bonded onto the separation functional layer so that the main body portion was arranged in a striped pattern in a plan view. The adhesive part of the double-sided tape was made of an acrylic adhesive. An intermediate layer was formed by laminating a double-sided tape onto the separation functional layer. This intermediate layer had a space that could contact both the separation functional layer and the porous support. When the intermediate layer was viewed in plan, the area ratio R (aperture ratio) of the area where the space existed among the surfaces of the intermediate layer was 80%. The thickness of the intermediate layer was 200 μm.
 次に、中間層を介して、分離機能層と、参考例1で用いた多孔性支持体とを貼り合わせた。得られた積層体からはく離ライナーを取り除くことによって、実施例1の分離膜を得た。 Next, the separation functional layer and the porous support used in Reference Example 1 were bonded together via the intermediate layer. The separation membrane of Example 1 was obtained by removing the release liner from the obtained laminate.
(実施例2~3)
 開口率が表1に示す値となるように中間層を作製したことを除き、実施例1と同じ方法によって実施例2~3の分離膜を得た。
(Examples 2-3)
Separation membranes of Examples 2 and 3 were obtained in the same manner as in Example 1, except that the intermediate layer was prepared so that the aperture ratio would have the value shown in Table 1.
(比較例1)
 両面テープを分離機能層の表面全体に配置したことを除き、実施例1と同じ方法によって比較例1の分離膜を得た。比較例1の分離膜において、中間層は、空間を有していなかった。
(Comparative example 1)
A separation membrane of Comparative Example 1 was obtained in the same manner as in Example 1, except that the double-sided tape was placed on the entire surface of the separation functional layer. In the separation membrane of Comparative Example 1, the intermediate layer had no space.
(実施例4)
 まず、参考例1と同じ方法によって、はく離ライナーの上に分離機能層を作製した。次に、平面視でストライプ状に配置された本体部が形成されるように、塗布液(シリコーン系粘着剤(信越化学社製のKR3700))を分離機能層の上に塗布した。次に、塗布液を加熱条件で乾燥させて本体部を形成し、これにより中間層を得た。この中間層は、分離機能層及び多孔性支持体の両方に接することができる空間を有していた。中間層を平面視したときに、中間層の表面のうち、空間が存在する領域の面積の割合R(開口率)は80%であった。中間層の厚さは、200μmであった。
(Example 4)
First, a separation functional layer was produced on a release liner by the same method as in Reference Example 1. Next, a coating liquid (silicone adhesive (KR3700, manufactured by Shin-Etsu Chemical Co., Ltd.)) was applied onto the separation functional layer so that the main body portions were arranged in stripes in a plan view. Next, the coating liquid was dried under heating conditions to form a main body, thereby obtaining an intermediate layer. This intermediate layer had a space that could contact both the separation functional layer and the porous support. When the intermediate layer was viewed in plan, the area ratio R (aperture ratio) of the area where the space existed among the surfaces of the intermediate layer was 80%. The thickness of the intermediate layer was 200 μm.
 次に、中間層を介して、分離機能層と、参考例1で用いた多孔性支持体とを貼り合わせた。得られた積層体からはく離ライナーを取り除くことによって、実施例4の分離膜を得た。 Next, the separation functional layer and the porous support used in Reference Example 1 were bonded together via the intermediate layer. The separation membrane of Example 4 was obtained by removing the release liner from the obtained laminate.
(実施例5~6)
 開口率が表1に示す値となるように中間層を作製したことを除き、実施例4と同じ方法によって実施例5~6の分離膜を得た。
(Examples 5-6)
Separation membranes of Examples 5 and 6 were obtained in the same manner as in Example 4, except that the intermediate layer was prepared so that the aperture ratio had the value shown in Table 1.
(比較例2)
 塗布液を分離機能層の上に均一に塗布したことを除き、実施例4と同じ方法によって比較例2の分離膜を得た。比較例2の分離膜において、中間層は、空間を有していなかった。
(Comparative example 2)
A separation membrane of Comparative Example 2 was obtained in the same manner as in Example 4, except that the coating liquid was uniformly applied onto the separation functional layer. In the separation membrane of Comparative Example 2, the intermediate layer had no space.
(実施例7)
 まず、参考例1と同じ方法によって、はく離ライナーの上に分離機能層を作製した。次に、平面視でドット状に配置された本体部が形成されるように、塗布液(シリコーン系粘着剤(信越化学社製のKR3700))を分離機能層の上に塗布した。次に、塗布液を加熱条件で乾燥させて本体部を形成し、これにより中間層を得た。この中間層は、分離機能層及び多孔性支持体の両方に接することができる空間を有していた。中間層を平面視したときに、中間層の表面のうち、空間が存在する領域の面積の割合R(開口率)は80%であった。中間層の厚さは、200μmであった。
(Example 7)
First, a separation functional layer was produced on a release liner by the same method as in Reference Example 1. Next, a coating liquid (silicone adhesive (KR3700, manufactured by Shin-Etsu Chemical Co., Ltd.)) was applied onto the separation functional layer so that the main body portion was arranged in dots in a plan view. Next, the coating liquid was dried under heating conditions to form a main body, thereby obtaining an intermediate layer. This intermediate layer had a space that could contact both the separation functional layer and the porous support. When the intermediate layer was viewed in plan, the area ratio R (aperture ratio) of the area where the space existed among the surfaces of the intermediate layer was 80%. The thickness of the intermediate layer was 200 μm.
 次に、中間層を介して、分離機能層と、参考例1で用いた多孔性支持体とを貼り合わせた。得られた積層体からはく離ライナーを取り除くことによって、実施例7の分離膜を得た。 Next, the separation functional layer and the porous support used in Reference Example 1 were bonded together via the intermediate layer. The separation membrane of Example 7 was obtained by removing the release liner from the obtained laminate.
(実施例8~9)
 開口率が表1に示す値となるように中間層を作製したことを除き、実施例7と同じ方法によって実施例8~9の分離膜を得た。
(Examples 8-9)
Separation membranes of Examples 8 and 9 were obtained in the same manner as in Example 7, except that the intermediate layer was prepared so that the aperture ratio was as shown in Table 1.
(実施例10~12)
 開口率及び厚さが表2に示す値となるように中間層を作製したことを除き、実施例4と同じ方法によって実施例10~12の分離膜を得た。
(Examples 10 to 12)
Separation membranes of Examples 10 to 12 were obtained in the same manner as in Example 4, except that the intermediate layer was prepared so that the aperture ratio and thickness had the values shown in Table 2.
(比較例3)
 厚さが表2に示す値となるように中間層を作製したことを除き、比較例2と同じ方法によって比較例3の分離膜を得た。
(Comparative example 3)
A separation membrane of Comparative Example 3 was obtained by the same method as Comparative Example 2, except that the intermediate layer was prepared so that the thickness had the value shown in Table 2.
(実施例13~15)
 両面テープとして、日東電工社製のNo.5601を用いたこと、及び、開口率が表2に示す値となるように中間層を作製したことを除き、実施例1と同じ方法によって実施例13~15の分離膜を得た。両面テープの粘着部は、アクリル系粘着剤から形成されていた。両面テープを分離機能層の上に貼り合せることによって形成された中間層の厚さは、10μmであった。
(Examples 13 to 15)
As a double-sided tape, No. 1 manufactured by Nitto Denko Corporation is used. Separation membranes of Examples 13 to 15 were obtained in the same manner as in Example 1, except that 5601 was used and the intermediate layer was prepared so that the aperture ratio was as shown in Table 2. The adhesive part of the double-sided tape was made of an acrylic adhesive. The thickness of the intermediate layer formed by laminating the double-sided tape onto the separation functional layer was 10 μm.
(比較例4)
 両面テープを分離機能層の表面全体に配置したことを除き、実施例13と同じ方法によって比較例4の分離膜を得た。比較例4の分離膜において、中間層は、空間を有していなかった。
(Comparative example 4)
A separation membrane of Comparative Example 4 was obtained in the same manner as in Example 13, except that the double-sided tape was placed on the entire surface of the separation functional layer. In the separation membrane of Comparative Example 4, the intermediate layer had no space.
(実施例16~19)
 まず、はく離ライナーとして、三菱ケミカル社製のMRF38を準備した。このはく離ライナーは、分離機能層との接着強度が比較的小さい軽剥離フィルムである。次に、このはく離ライナーの表面に対して、放電量0.33kW・min/m2以上の条件でコロナ処理を行った。コロナ処理後の上記のはく離ライナーを用いたこと、開口率及び厚さが表3に示す値となるように中間層を作製したことを除き、実施例4と同じ方法によって実施例16~19の分離膜を得た。
(Examples 16 to 19)
First, MRF38 manufactured by Mitsubishi Chemical Corporation was prepared as a release liner. This release liner is a light release film that has relatively low adhesive strength with the separation functional layer. Next, the surface of this release liner was subjected to corona treatment under conditions of a discharge amount of 0.33 kW·min/m 2 or more. Examples 16 to 19 were prepared by the same method as Example 4, except that the above release liner after corona treatment was used, and the intermediate layer was prepared so that the aperture ratio and thickness were as shown in Table 3. A separation membrane was obtained.
(比較例5)
 塗布液を分離機能層の上に均一に塗布したことを除き、実施例16と同じ方法によって比較例5の分離膜を得た。比較例5の分離膜において、中間層は、空間を有していなかった。
(Comparative example 5)
A separation membrane of Comparative Example 5 was obtained in the same manner as in Example 16, except that the coating liquid was uniformly applied onto the separation functional layer. In the separation membrane of Comparative Example 5, the intermediate layer had no space.
(実施例20)
 まず、実施例16について上述した方法によって、コロナ処理を行ったはく離ライナーを準備した。次に、上記のはく離ライナーを用いたことを除き、参考例1と同じ方法によって、はく離ライナーの上に分離機能層を作製した。
(Example 20)
First, a corona-treated release liner was prepared by the method described above for Example 16. Next, a separation functional layer was produced on the release liner by the same method as in Reference Example 1 except that the above release liner was used.
 次に、以下の方法によって、(メタ)アクリル系粘着剤(塗布液)を作製した。まず、攪拌羽、温度計、窒素ガス導入管、冷却器を備えた4つ口フラスコに、ブチルアクリレート95重量部と、ヒドロキシル基含有モノマーとして4-ヒドロキシブチルアクリレート5重量部、重合開始剤として2,2’-アゾビスイソブチロニトリル0.2重量部、酢酸エチル300重量部を仕込み、緩やかに攪拌しながら窒素置換を1時間行った。そのあと、フラスコ内温を60℃に保ち7時間の重合反応を行うことによって、(メタ)アクリル系ポリマーの酢酸エチル溶液(固形分濃度:25wt%)を作製した。次に、得られた溶液に、架橋剤としてトリレンジイソシアネートのトリメチロールプロパン付加物(コロネートL)0.5重量部、希釈剤として酢酸エチル1600重量部を加え、固形分濃度5wt%の(メタ)アクリル系粘着剤を作製した。 Next, a (meth)acrylic adhesive (coating liquid) was prepared by the following method. First, 95 parts by weight of butyl acrylate, 5 parts by weight of 4-hydroxybutyl acrylate as a hydroxyl group-containing monomer, and 2 parts by weight of 4-hydroxybutyl acrylate as a polymerization initiator were placed in a four-necked flask equipped with a stirring blade, a thermometer, a nitrogen gas inlet tube, and a condenser. , 0.2 parts by weight of 2'-azobisisobutyronitrile, and 300 parts by weight of ethyl acetate were charged, and nitrogen substitution was performed for 1 hour while stirring gently. Thereafter, an ethyl acetate solution (solid content concentration: 25 wt%) of a (meth)acrylic polymer was prepared by performing a polymerization reaction for 7 hours while keeping the flask internal temperature at 60°C. Next, 0.5 parts by weight of a trimethylolpropane adduct of tolylene diisocyanate (Coronate L) as a crosslinking agent and 1600 parts by weight of ethyl acetate as a diluent were added to the obtained solution, and the solid content was 5 wt%. ) An acrylic adhesive was produced.
 次に、平面視でストライプ状に配置された本体部が形成されるように、スクリーン印刷版を用いて上記の塗布液を分離機能層の上に塗布した。この塗布液を130℃で10分加熱乾燥させて本体部を形成し、これにより中間層を得た。この中間層は、分離機能層及び多孔性支持体の両方に接することができる空間を有していた。中間層を平面視したときに、中間層の表面のうち、空間が存在する領域の面積の割合R(開口率)は80%であった。中間層の厚さは、3μmであった。 Next, the above coating liquid was applied onto the separation functional layer using a screen printing plate so that main bodies arranged in stripes in plan view were formed. This coating liquid was heated and dried at 130° C. for 10 minutes to form a main body, thereby obtaining an intermediate layer. This intermediate layer had a space that could contact both the separation functional layer and the porous support. When the intermediate layer was viewed in plan, the area ratio R (aperture ratio) of the area where the space existed among the surfaces of the intermediate layer was 80%. The thickness of the intermediate layer was 3 μm.
 次に、中間層を介して、分離機能層と、参考例1で用いた多孔性支持体とを貼り合わせた。得られた積層体からはく離ライナーを取り除くことによって、実施例20の分離膜を得た。 Next, the separation functional layer and the porous support used in Reference Example 1 were bonded together via the intermediate layer. The separation membrane of Example 20 was obtained by removing the release liner from the obtained laminate.
(実施例21~23)
 開口率及び厚さが表3に示す値となるように中間層を作製したことを除き、実施例20と同じ方法によって実施例21~23の分離膜を得た。
(Examples 21-23)
Separation membranes of Examples 21 to 23 were obtained by the same method as Example 20, except that the intermediate layer was prepared so that the aperture ratio and thickness had the values shown in Table 3.
(比較例6)
 塗布液を分離機能層の上に均一に塗布したことを除き、実施例20と同じ方法によって比較例6の分離膜を得た。比較例6の分離膜において、中間層は、空間を有していなかった。
(Comparative example 6)
A separation membrane of Comparative Example 6 was obtained in the same manner as in Example 20, except that the coating liquid was uniformly applied onto the separation functional layer. In the separation membrane of Comparative Example 6, the intermediate layer had no space.
(実施例24~25)
 参考例1のはく離ライナーを用いたことを除き、それぞれ、実施例17及び19と同じ方法によって、実施例24~25の分離膜を得た。
(Examples 24-25)
Separation membranes of Examples 24 and 25 were obtained in the same manner as in Examples 17 and 19, respectively, except that the release liner of Reference Example 1 was used.
(比較例7)
 塗布液を分離機能層の上に均一に塗布したことを除き、実施例24と同じ方法によって比較例7の分離膜を得た。比較例7の分離膜において、中間層は、空間を有していなかった。
(Comparative example 7)
A separation membrane of Comparative Example 7 was obtained in the same manner as in Example 24, except that the coating liquid was uniformly applied onto the separation functional layer. In the separation membrane of Comparative Example 7, the intermediate layer had no space.
(実施例26~27)
 参考例1のはく離ライナーを用いたことを除き、それぞれ、実施例21及び23と同じ方法によって、実施例26~27の分離膜を得た。
(Examples 26-27)
Separation membranes of Examples 26 and 27 were obtained in the same manner as in Examples 21 and 23, respectively, except that the release liner of Reference Example 1 was used.
(比較例8)
 塗布液を分離機能層の上に均一に塗布したことを除き、実施例26と同じ方法によって比較例8の分離膜を得た。比較例8の分離膜において、中間層は、空間を有していなかった。
(Comparative example 8)
A separation membrane of Comparative Example 8 was obtained in the same manner as in Example 26, except that the coating liquid was uniformly applied onto the separation functional layer. In the separation membrane of Comparative Example 8, the intermediate layer had no space.
(実施例28)
 まず、参考例1と同じ方法によって、はく離ライナーの上に分離機能層を作製した。次に、以下の方法によって、ゴム系粘着剤(固形粘着剤)を作製した。まず、ベースポリマーとしてスチレン-イソプレン-スチレンブロック共重合体(SIS)100重量部、液状成分としてイソプレンゴム55重量部、粘着付与剤としてテルペン樹脂(YSレジンPX-1150)45重量部を配合し、ラボプラストミルを用いて150℃で30分混練した。これにより、ゴム系粘着剤を作製した。
(Example 28)
First, a separation functional layer was produced on a release liner by the same method as in Reference Example 1. Next, a rubber adhesive (solid adhesive) was produced by the following method. First, 100 parts by weight of styrene-isoprene-styrene block copolymer (SIS) as a base polymer, 55 parts by weight of isoprene rubber as a liquid component, and 45 parts by weight of terpene resin (YS Resin PX-1150) as a tackifier were blended. The mixture was kneaded at 150° C. for 30 minutes using a Laboplast Mill. In this way, a rubber adhesive was produced.
 次に、スプレー塗布ノズルを取り付けたホットメルトアプリケーターを用いて、固形粘着剤を分離機能層の上に吹き付けた。これにより、繊維状の本体部が形成され、中間層が得られた。この中間層は、分離機能層及び多孔性支持体の両方に接することができる空間を有していた。中間層を平面視したときに、中間層の表面のうち、空間が存在する領域の面積の割合R(開口率)は73%であった。中間層の厚さは、55μmであった。 Next, the solid adhesive was sprayed onto the separation functional layer using a hot melt applicator equipped with a spray coating nozzle. As a result, a fibrous main body was formed and an intermediate layer was obtained. This intermediate layer had a space that could contact both the separation functional layer and the porous support. When the intermediate layer was viewed in plan, the area ratio R (aperture ratio) of the region where a space existed among the surfaces of the intermediate layer was 73%. The thickness of the intermediate layer was 55 μm.
 次に、中間層を介して、分離機能層と、参考例1で用いた多孔性支持体とを貼り合わせた。得られた積層体からはく離ライナーを取り除くことによって、実施例28の分離膜を得た。 Next, the separation functional layer and the porous support used in Reference Example 1 were bonded together via the intermediate layer. The separation membrane of Example 28 was obtained by removing the release liner from the obtained laminate.
(実施例29~30)
 開口率が表5に示す値となるように中間層を作製したことを除き、実施例28と同じ方法によって実施例29~30の分離膜を得た。
(Examples 29-30)
Separation membranes of Examples 29 and 30 were obtained in the same manner as in Example 28, except that the intermediate layer was prepared so that the aperture ratio had the value shown in Table 5.
(比較例9)
 固形粘着剤を分離機能層の上に均一に塗布したことを除き、実施例28と同じ方法によって比較例9の分離膜を得た。比較例9の分離膜において、中間層は、空間を有していなかった。
(Comparative example 9)
A separation membrane of Comparative Example 9 was obtained in the same manner as in Example 28, except that the solid adhesive was uniformly applied on the separation functional layer. In the separation membrane of Comparative Example 9, the intermediate layer had no space.
(実施例31~32)
 開口率及び厚さが表5に示す値となるように中間層を作製したことを除き、実施例28と同じ方法によって実施例31~32の分離膜を得た。
(Examples 31-32)
Separation membranes of Examples 31 and 32 were obtained by the same method as Example 28, except that the intermediate layer was prepared so that the aperture ratio and thickness had the values shown in Table 5.
[透過速度の比率T/T0
 実施例及び比較例のそれぞれの分離膜について、参考例1と同じ方法によって、分離膜を透過する二酸化炭素の透過速度Tを特定した。得られた結果に基づいて、参考例1の測定用分離膜を透過する二酸化炭素の透過速度T0(GPU)に対する、実施例及び比較例の分離膜を透過する二酸化炭素の透過速度T(GPU)の比率T/T0を算出した。
[Permeation rate ratio T/T 0 ]
For each of the separation membranes of Examples and Comparative Examples, the permeation rate T of carbon dioxide passing through the separation membrane was determined by the same method as in Reference Example 1. Based on the obtained results, we determined that the permeation rate T (GPU) of carbon dioxide permeating through the separation membranes of Examples and Comparative Examples with respect to the permeation rate T 0 (GPU) of carbon dioxide permeating through the measurement separation membrane of Reference Example 1. ) ratio T/T 0 was calculated.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表1~5からわかるとおり、分離機能層及び多孔性支持体の両方に接する空間を有する中間層を備えた実施例の分離膜では、比較例の分離膜と比べて、透過速度の比率T/T0が高く、透過流体の透過速度Tが改善されていた。さらに、実施例の分離膜では、いずれも、その作製時にはく離ライナーを容易に取り除くことができた。このことから、実施例の分離膜では、中間層を介して、分離機能層と多孔性支持体とが十分な強度で接合されていることがわかる。 As can be seen from Tables 1 to 5, in the separation membrane of the example equipped with the intermediate layer having a space in contact with both the separation functional layer and the porous support, the permeation rate ratio T/ T 0 was high, and the permeation rate T of the permeate fluid was improved. Furthermore, in all of the separation membranes of Examples, the release liner could be easily removed during their preparation. From this, it can be seen that in the separation membrane of the example, the separation functional layer and the porous support were bonded with sufficient strength via the intermediate layer.
 本実施形態の分離膜は、酸性ガスを含む混合気体から酸性ガスを分離することに適している。特に、本実施形態の分離膜は、化学プラント又は火力発電のオフガスから二酸化炭素を分離することに適している。
 
The separation membrane of this embodiment is suitable for separating acidic gas from a mixed gas containing acidic gas. In particular, the separation membrane of this embodiment is suitable for separating carbon dioxide from off-gas of chemical plants or thermal power generation.

Claims (10)

  1.  分離機能層と、
     前記分離機能層を支持している多孔性支持体と、
     前記分離機能層と前記多孔性支持体との間に配置された中間層と、
    を備え、
     前記中間層は、前記分離機能層及び前記多孔性支持体の両方に接する空間を有する、分離膜。
    a separation functional layer;
    a porous support supporting the separation functional layer;
    an intermediate layer disposed between the separation functional layer and the porous support;
    Equipped with
    The intermediate layer is a separation membrane having a space in contact with both the separation functional layer and the porous support.
  2.  前記中間層は、前記分離機能層と前記多孔性支持体とを接合する本体部を有する、請求項1に記載の分離膜。 The separation membrane according to claim 1, wherein the intermediate layer has a main body portion that joins the separation functional layer and the porous support.
  3.  前記本体部は、平面視で、ストライプ状、ドット状、メッシュ状又は繊維状である、請求項2に記載の分離膜。 The separation membrane according to claim 2, wherein the main body has a stripe shape, a dot shape, a mesh shape, or a fibrous shape in plan view.
  4.  前記本体部は、粘着剤組成物から形成された粘着部を含む、請求項2に記載の分離膜。 The separation membrane according to claim 2, wherein the main body portion includes an adhesive portion formed from an adhesive composition.
  5.  前記粘着剤組成物は、シリコーン系ポリマー、(メタ)アクリル系ポリマー、及びゴム系ポリマーからなる群より選ばれる少なくとも1つを含む、請求項4に記載の分離膜。 The separation membrane according to claim 4, wherein the adhesive composition contains at least one selected from the group consisting of a silicone polymer, a (meth)acrylic polymer, and a rubber polymer.
  6.  前記中間層を平面視したときに、前記中間層の表面のうち、前記空間が存在する領域の面積の割合が40%以上である、請求項1~5のいずれか1項に記載の分離膜。 The separation membrane according to any one of claims 1 to 5, wherein when the intermediate layer is viewed in plan, the area of the region where the space exists accounts for 40% or more of the surface of the intermediate layer. .
  7.  前記中間層の厚さが0.1μm以上である、請求項1に記載の分離膜。 The separation membrane according to claim 1, wherein the intermediate layer has a thickness of 0.1 μm or more.
  8.  前記分離機能層がポリイミド樹脂を含む、請求項1に記載の分離膜。 The separation membrane according to claim 1, wherein the separation functional layer contains a polyimide resin.
  9.  二酸化炭素及び窒素を含む混合気体から二酸化炭素を分離するために用いられる、請求項1に記載の分離膜。 The separation membrane according to claim 1, which is used to separate carbon dioxide from a mixed gas containing carbon dioxide and nitrogen.
  10.  分離機能層と、前記分離機能層を支持している多孔性支持体と、前記分離機能層と前記多孔性支持体との間に配置された中間層と、を備えた分離膜の製造方法であって、
     前記製造方法は、
     はく離ライナー及び前記分離機能層を有する第1積層体の上に、空間を有する前記中間層を形成することによって、前記はく離ライナー、前記分離機能層及び前記中間層をこの順で有する第2積層体を形成することと、
     前記空間が前記分離機能層及び前記多孔性支持体の両方に接するように、前記第2積層体の前記中間層を前記多孔性支持体と貼り合わせて、第3積層体を形成することと、
     前記第3積層体から前記はく離ライナーを取り除くことと、
    を含む、分離膜の製造方法。
    A method for producing a separation membrane comprising a separation functional layer, a porous support supporting the separation functional layer, and an intermediate layer disposed between the separation functional layer and the porous support. There it is,
    The manufacturing method includes:
    A second laminate having the release liner, the separation functional layer, and the intermediate layer in this order is formed by forming the intermediate layer having a space on the first laminate having the release liner and the separation functional layer. to form a
    bonding the intermediate layer of the second laminate to the porous support so that the space contacts both the separation functional layer and the porous support to form a third laminate;
    removing the release liner from the third laminate;
    A method for producing a separation membrane, including:
PCT/JP2023/008429 2022-03-22 2023-03-06 Separation membrane and method for manufacturing separation membrane WO2023181893A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022045176 2022-03-22
JP2022-045176 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023181893A1 true WO2023181893A1 (en) 2023-09-28

Family

ID=88100731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008429 WO2023181893A1 (en) 2022-03-22 2023-03-06 Separation membrane and method for manufacturing separation membrane

Country Status (1)

Country Link
WO (1) WO2023181893A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09896A (en) * 1995-06-15 1997-01-07 Nitto Denko Corp Fluorine-containing polyimide type gas separating membrane and its manufacture and module
JP2014028331A (en) * 2012-07-31 2014-02-13 Toray Ind Inc Separation membrane element and membrane module
WO2014156162A1 (en) * 2013-03-29 2014-10-02 富士フイルム株式会社 Production method for acid gas separation complex
JP2019018167A (en) * 2017-07-19 2019-02-07 旭化成株式会社 Gas separation membrane
WO2020195911A1 (en) * 2019-03-26 2020-10-01 日東電工株式会社 Separation membrane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09896A (en) * 1995-06-15 1997-01-07 Nitto Denko Corp Fluorine-containing polyimide type gas separating membrane and its manufacture and module
JP2014028331A (en) * 2012-07-31 2014-02-13 Toray Ind Inc Separation membrane element and membrane module
WO2014156162A1 (en) * 2013-03-29 2014-10-02 富士フイルム株式会社 Production method for acid gas separation complex
JP2019018167A (en) * 2017-07-19 2019-02-07 旭化成株式会社 Gas separation membrane
WO2020195911A1 (en) * 2019-03-26 2020-10-01 日東電工株式会社 Separation membrane

Similar Documents

Publication Publication Date Title
JP6181958B2 (en) Antistatic adhesive sheet and optical film
WO2018092904A1 (en) Adhesive sheet
TWI409313B (en) Adhesive composition, adhesive optical film and image display device
JP5700466B2 (en) Re-peeling adhesive composition, adhesive sheet and tape
JP5820619B2 (en) Adhesive tape
JP6263379B2 (en) Antistatic layer, antistatic adhesive sheet, and optical film
TWI781102B (en) Back Grinding Belt
CN105008481A (en) Adhesive sheet, and production method for processed device-related members
TW202016252A (en) Optical pressure-sensitive adhesive composition and use thereof
JP2018090793A (en) Adhesive composition, adhesive layer and pressure sensitive adhesive sheet
TW202112541A (en) Layered article and peeling method
CN109749640A (en) Bonding sheet
WO2020213675A1 (en) Waterproof cover
WO2023181893A1 (en) Separation membrane and method for manufacturing separation membrane
TW201527095A (en) Resin sheet
TWI832875B (en) Gas adsorption sheets for secondary batteries
TWI814998B (en) Adhesive composition, adhesive layer and adhesive sheet
WO2022196306A1 (en) Manufacturing method for separation film and separation film
CN112119134A (en) Stripping method for stripping film
JP2015034302A (en) Re-releasable adhesive composition, adhesive sheet and tape
WO2020158414A1 (en) Surface protective film
TWI758484B (en) Adhesive composition, adhesive sheet and seal
CN110461976A (en) The manufacturing method of adhesive sheet and laminated body
WO2024057853A1 (en) Manufacturing method for separation membrane, and laminate body
WO2019225048A1 (en) Release film and adhesive tape

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774492

Country of ref document: EP

Kind code of ref document: A1