WO2023181789A1 - Layered body - Google Patents

Layered body Download PDF

Info

Publication number
WO2023181789A1
WO2023181789A1 PCT/JP2023/006976 JP2023006976W WO2023181789A1 WO 2023181789 A1 WO2023181789 A1 WO 2023181789A1 JP 2023006976 W JP2023006976 W JP 2023006976W WO 2023181789 A1 WO2023181789 A1 WO 2023181789A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminate
resin
skin layer
less
layer
Prior art date
Application number
PCT/JP2023/006976
Other languages
French (fr)
Japanese (ja)
Inventor
孝樹 石井
貴大 土本
幸司 北村
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2023514403A priority Critical patent/JPWO2023181789A1/ja
Publication of WO2023181789A1 publication Critical patent/WO2023181789A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof

Definitions

  • the present invention relates to a laminate consisting of a skin layer and a lining layer, which are artificial leathers containing a fiber entangled body made of ultrafine fibers and a polymeric elastic body.
  • Artificial leather with raised naps has superior characteristics compared to natural leather, such as high durability and uniform quality, and is used in various fields such as vehicle interior materials, furniture, miscellaneous goods, and clothing.
  • artificial leather is used as the outer skin of vehicle interior materials, furniture, miscellaneous goods, etc., fabrics etc. are pasted on the back side of the artificial leather for reinforcement or cushioning purposes. (lined) to form a laminate.
  • laminates lined with artificial leather have problems such as the fibers of the laminate being strongly restricted by the resin used for adhesion, resulting in a hard texture, and the adhesive strength decreasing at high temperatures due to lack of heat resistance. .
  • the adhesive strength at high temperatures is strongly restricted by the resin used for adhesion, resulting in a hard texture, and the adhesive strength decreasing at high temperatures due to lack of heat resistance.
  • Patent Document 1 a method is disclosed in which a thermoplastic elastomer is injection molded on the back side of artificial leather to form a laminate. Further, in a technique as disclosed in Patent Document 2, a method is disclosed in which a foamed resin layer and a fiber aggregate layer are overlapped and a laminate is formed by needle punching. In the technique disclosed in Patent Document 3, a method is disclosed in which a reactive hot melt adhesive is spray coated and a polyurethane foam and a skin layer are laminated.
  • JP2017-61051A Japanese Patent Application Publication No. 2002-103496 Japanese Patent Application Publication No. 2017-136735
  • thermoplastic elastomer is injection molded on the back side of the artificial leather at high pressure, so the thermoplastic elastomer penetrates into the inside of the artificial leather, resulting in a decrease in flexibility. is the issue.
  • the laminate can be made flexible to some extent, but the problem is that the adhesive strength is weak at room temperature and at high temperature.
  • Patent Document 3 it is possible to improve the adhesive force while maintaining flexibility to some extent, but the adhesive strength is still not sufficient and it easily peels off at high temperatures. The issue is that this occurs.
  • the present invention has been made in view of the above circumstances, and its purpose is to improve adhesive strength, flexibility, and surface quality at high temperatures in a laminate consisting of a skin material and a lining material. Our goal is to provide an excellent laminate.
  • a laminate in which a layer of skin material (skin layer) and a layer of lining material (backing layer) are laminated with an adhesive resin interposed therebetween It has been found that a laminate with excellent adhesive strength at high temperatures can be obtained by forming a specific structure between the adhesive resin and the skin layer in a cross section parallel to the thickness direction of the body.
  • the resin constituting the lining layer and the skin layer are identified. It has been found that a laminate with excellent adhesive strength at high temperatures can also be obtained by forming a structure of Furthermore, it has been found that these laminates have excellent flexibility and surface quality.
  • the present invention refers to the embodiment according to [1] below (hereinafter sometimes referred to as the "first embodiment”), and [2] ] (hereinafter sometimes referred to as the "second embodiment").
  • the skin layer is an artificial leather containing a fiber entangled body containing as a component a nonwoven fabric made of ultrafine fibers with an average single fiber diameter of 0.1 ⁇ m or more and 10.0 ⁇ m or less, and a polymeric elastic body
  • the lining layer is at least one selected from the group consisting of woven fabric, knitted fabric, nonwoven fabric, felt, and foamed resin sheet, In a 500 ⁇ m x 500 ⁇ m area including at least the adhesive resin and 500 or more ultrafine fibers of the skin layer in a cross section parallel to the thickness direction of the laminate, 15 or more and 240 or less of the A laminate in which the entire outer periphery of the ultrafine fibers of the skin layer is covered with the adhesive resin.
  • a laminate in which a skin layer and a lining layer made of resin A are laminated The skin layer is an artificial leather containing a fiber entangled body containing as a component a nonwoven fabric made of ultrafine fibers with an average single fiber diameter of 0.1 ⁇ m or more and 10.0 ⁇ m or less, and a polymeric elastic body,
  • the lining layer is at least one selected from the group consisting of woven fabric, knitted fabric, nonwoven fabric, felt, and foamed resin sheet, In a 500 ⁇ m x 500 ⁇ m area including at least the resin A and 500 or more microfibers in the skin layer in a cross section parallel to the thickness direction of the laminate, 15 or more and 240 or less of the A laminate in which the entire outer periphery of the ultrafine fibers of the skin layer is covered with the resin A.
  • the adhesive resin includes an intermediate layer having a thickness of 1 ⁇ m or more and 400 ⁇ m or less, The laminate according to [1] above, wherein the intermediate layer is at least one selected from the group consisting of a woven fabric, a knitted fabric, a nonwoven fabric, a felt, a film, a foamed sheet, and a metal film.
  • the present invention it is possible to obtain a laminate that has excellent adhesive strength, flexibility, and surface quality at high temperatures in a laminate in which artificial leather as a skin layer and a backing layer are laminated. can.
  • FIG. 1 is a cross-sectional view (electron micrograph) of artificial leather, illustrating and explaining the ultrafine fiber bundle according to the present invention.
  • FIG. 2 is a conceptual cross-sectional view illustrating and explaining a state in which a skin layer and a lining layer are adhered to each other in an embodiment of the laminate according to the present invention.
  • FIG. 3 is a conceptual cross-sectional view illustrating and explaining a state in which a skin layer and a lining layer are adhered to each other in another embodiment of the laminate according to the present invention.
  • FIG. 4 is a conceptual cross-sectional view illustrating and explaining a state in which the skin layer and the lining layer are adhered to each other in still another embodiment of the laminate according to the present invention.
  • FIG. 1 is a cross-sectional view (electron micrograph) of artificial leather, illustrating and explaining the ultrafine fiber bundle according to the present invention.
  • FIG. 2 is a conceptual cross-sectional view illustrating and explaining a state in which a skin
  • FIG. 5 is a conceptual perspective view illustrating and explaining a method for evaluating the surface quality of a laminate according to the present invention.
  • FIG. 6 is a cross-sectional conceptual diagram illustrating and explaining a method for evaluating vacuum formability of a laminate according to the present invention.
  • a first aspect of the laminate of the present invention is a laminate in which a skin layer and a backing layer made of resin A are laminated via an adhesive resin.
  • a second aspect of the laminate of the present invention is a laminate in which a skin layer and a backing layer made of resin A are (directly) laminated.
  • the skin layer in the laminate of the present invention is artificial leather. This skin layer is then used as the outermost layer of the laminate.
  • the artificial leather includes a fiber entangled body containing as a component a nonwoven fabric made of ultrafine fibers with an average single fiber diameter of 0.1 ⁇ m or more and 10.0 ⁇ m or less, and a polymeric elastic body.
  • the ultrafine fibers are preferably made of polyester resin from the viewpoint of durability, particularly mechanical strength, heat resistance, etc.
  • the polyester resin refers to each polyester resin exemplified below, as well as copolymers and mixtures thereof.
  • polyester resin examples include polyethylene terephthalate, polytrimethylene terephthalate, polytetramethylene terephthalate, polycyclohexylene dimethylene terephthalate, polyethylene-2,6-naphthalene dicarboxylate, and polyethylene-1,2- Examples include bis(2-chlorophenoxy)ethane-4,4'-dicarboxylate.
  • polyethylene terephthalate which is most commonly used, or a polyester copolymer mainly containing ethylene terephthalate units is preferably used.
  • the polyester resin a single polyester or two or more different polyesters may be used, but when two or more different polyesters are used, a phase difference between the two or more components may be used.
  • the difference in intrinsic viscosity (IV value) of the polyesters used is preferably 0.50 or less, more preferably 0.30 or less.
  • the intrinsic viscosity is calculated by the following method. (1) Dissolve 0.8 g of sample polymer in 10 mL of orthochlorophenol. (2) The relative viscosity ⁇ r is calculated using the following formula using an Ostwald viscometer at a temperature of 25° C., and rounded to the second decimal place.
  • IV value 0.0242 ⁇ r +0.2634
  • is the viscosity of the polymer solution
  • ⁇ 0 is the viscosity of orthochlorophenol
  • t is the falling time of the solution (seconds)
  • d is the density of the solution (g/cm 3 )
  • t0 is the falling time of orthochlorophenol ( seconds)
  • d 0 represent the density (g/cm 3 ) of orthochlorophenol, respectively.
  • the cross-sectional shape of the ultrafine fibers is preferably round from the viewpoint of processing operability, but polygons such as ellipse, flat and triangular shapes, sector shapes, cross shapes, hollow shapes, Y-shape, T-shape, and U-shape are also suitable. It is also possible to adopt a cross-sectional shape with an irregular cross-section such as a mold. In this case, the average single fiber diameter of the ultrafine fibers is determined by first measuring the cross-sectional area of the single fibers and calculating the diameter when the cross section is assumed to be circular.
  • the average single fiber diameter of the ultrafine fibers is 0.1 ⁇ m or more and 10.0 ⁇ m or less.
  • the average single fiber diameter of the ultrafine fibers is 0.1 ⁇ m or more, preferably 0.5 ⁇ m or more, excellent effects are achieved in color development after dyeing, light fastness and abrasion fastness, and stability during spinning.
  • the average single fiber diameter of the ultrafine fibers is 10.0 ⁇ m or less, preferably 6.0 ⁇ m or less, more preferably 4.5 ⁇ m or less, artificial leather with excellent surface quality that is dense and soft to the touch can be obtained.
  • the average single fiber diameter of ultrafine fibers refers to the scanning electron microscope (SEM) of a cross section of the artificial leather, which is the skin layer of the laminate, such as the "VE-7800" model manufactured by Keyence Corporation. Unless otherwise specified, this measuring device is exemplified as a preferred one.) Take a photograph, measure the diameter of a circular or nearly circular single fiber, and find that the diameter is 0.05 ⁇ m or more. It shall be calculated by randomly selecting 10 fibers with a diameter of .00 ⁇ m or less, calculating the arithmetic mean value of the 10 fibers, and rounding the value to the second decimal place. However, when ultrafine fibers with an irregular cross section are adopted, the diameter of the single fibers shall be determined by first measuring the cross-sectional area of the single fibers and calculating the diameter when the cross section is assumed to be circular.
  • SEM scanning electron microscope
  • the means for obtaining the ultrafine fibers used in the present invention is characterized by the use of ultrafine fiber expression type fibers.
  • the ultra-fine fiber development type fiber is a sea-island type fiber in which two thermoplastic resin components with different solubility in solvents are used as a sea component and an island component, and the island component is made into ultra-fine fiber by dissolving and removing only the sea component using a solvent, etc.
  • Adopt peelable composite fibers or multilayer composite fibers, etc. in which composite fibers or two-component thermoplastic resins are arranged alternately in a radial or layered fiber cross section, and each component is separated and split into ultra-fine fibers.
  • sea-island composite fibers are preferably used because they can easily make the surface quality of the sheet-like article uniform.
  • the fiber entangled body of the skin layer preferably comprises an ultrafine fiber bundle consisting of 3 or more and 40 or less ultrafine fibers.
  • the number of ultrafine fibers constituting the ultrafine fiber bundle is preferably 3 or more, more preferably 8 or more, the ultrafine fibers tend to have sufficient density, and mechanical properties such as abrasion tend to improve, for example.
  • the number of ultrafine fibers constituting the ultrafine fiber bundle is preferably 40 or less, more preferably 36 or less, the flexibility after adhesion to the backing layer will be good.
  • an "ultrafine fiber bundle” is an aggregate of a plurality of ultrafine fibers that can be considered to be oriented in the same direction, and when a cross section of artificial leather is observed with an SEM at an arbitrary magnification, the fiber bundle is Refers to an aggregate of ultrafine fibers surrounded by a circle with a degree of irregularity of 1.5 or less.
  • the "fiber bundle irregularity” is defined by drawing a line (1) encircling the outer periphery of an aggregate of ultrafine fibers on a SEM image, as shown in Figure 1. It refers to the value obtained by dividing the diameter of the circumscribed circle of the line (1) surrounding the periphery by the diameter of the inscribed circle of the line surrounding the outer periphery.
  • a black pigment or pigment having an average particle size of 0.05 ⁇ m or more and 0.20 ⁇ m or less is added to the polyester resin constituting the ultrafine fibers.
  • it contains a colored fine particle oxide pigment.
  • the particle size here refers to the particle size when the black pigment or chromatic fine particle oxide pigment is present in the ultrafine fibers, and is generally referred to as the secondary particle size.
  • chromatic colors refer to colors with tints such as red, blue, green, and yellow.
  • chroma C * ) Refers to colors with a number of 10 or more.
  • the average particle diameter of the black pigment or the chromatic fine particle oxide pigment is 0.05 ⁇ m or more, preferably 0.07 ⁇ m or more, the black pigment or the chromatic fine particle oxide pigment is held inside the ultrafine fibers. Falling off from ultrafine fibers is suppressed.
  • the average particle diameter is 0.20 ⁇ m or less, preferably 0.18 ⁇ m or less, and more preferably 0.16 ⁇ m or less, the yarn has excellent stability and yarn strength during spinning.
  • the content (A) of black pigment or chromatic fine particle oxide pigment contained in the polyester resin forming the ultrafine fibers shall be 0.5% by mass or more and 2.0% by mass or less based on the mass of the ultrafine fibers. is preferred.
  • the content of the black pigment or chromatic fine particle oxide pigment is 0.5% by mass or more, preferably 0.7% by mass or more, more preferably 0.9% by mass or more, so that it has excellent deep color development. becomes.
  • the proportion of black pigment or chromatic fine particle oxide pigment to 2.0% by mass or less, preferably 1.8% by mass or less, more preferably 1.6% by mass or less, strength, elongation, etc. It can be made into artificial leather with high physical properties.
  • the black pigment in the present invention carbon-based black pigments such as carbon black and graphite, and oxide-based black pigments such as triiron tetroxide and composite oxides of copper and chromium can be used. It is preferable that the black pigment is carbon black because it is easy to obtain particles with a fine particle size and has excellent dispersibility in polymers.
  • chromatic fine particle oxide pigment known pigments close to the target color can be used, such as iron oxyhydroxide (e.g. "TM Yellow 8170” manufactured by Dainichiseika Kaisha, Ltd.), iron oxide ( Examples include “TM Red 8270” manufactured by Dainichiseika Chemical Co., Ltd.), cobalt aluminate (eg "TM Blue 3490E” manufactured by Dainichiseika Chemical Co., Ltd.), and the like. Further, the above-mentioned white oxide pigments that are not "chromatic", such as zinc oxide and titanium oxide, are not included in the chromatic fine particle oxide pigments referred to in the present invention.
  • iron oxyhydroxide e.g. "TM Yellow 8170” manufactured by Dainichiseika Kaisha, Ltd.
  • iron oxide examples include “TM Red 8270” manufactured by Dainichiseika Chemical Co., Ltd.
  • cobalt aluminate eg "TM Blue 3490E” manufactured by Dainichiseika
  • thermoplastic resin forming the ultrafine fibers may include inorganic particles such as titanium oxide particles, lubricants, heat stabilizers, ultraviolet absorbers, conductive agents, heat storage agents, etc., as necessary and within the range that does not impede the purpose of the present invention. agents, antibacterial agents, etc. can be added.
  • the fiber entangled body according to the present invention includes the nonwoven fabric made of the above-mentioned ultrafine fibers as a constituent element.
  • the nonwoven fabric By including the nonwoven fabric as a component, a uniform and elegant appearance and texture can be obtained when the surface is raised.
  • the forms of nonwoven fabrics include long fiber nonwoven fabrics mainly composed of filaments and short fiber nonwoven fabrics mainly composed of fibers of 100 mm or less.
  • the nonwoven fabric is a long fiber nonwoven fabric, it is preferable because a skin layer with excellent strength can be obtained.
  • more fibers can be oriented in the thickness direction of the epidermis layer than in the case of a long fiber nonwoven fabric, giving a high density feeling to the surface of the epidermis layer when raised. can be made to have
  • the average fiber length of the ultrafine fibers is preferably 25 mm or more and 90 mm or less.
  • the average fiber length is 90 mm or less, more preferably 80 mm or less, and even more preferably 70 mm or less, good quality and texture are achieved.
  • the average fiber length is 25 mm or more, more preferably 35 mm or more, and still more preferably 40 mm or more, the skin layer can have excellent abrasion resistance.
  • the basis weight of the nonwoven fabric constituting the artificial leather that is the skin layer according to the present invention is measured according to "6.2 Mass per unit area (ISO method)" of JIS L1913:2010 "General nonwoven fabric testing method", and is 50 g/m It is preferably in the range of 2 or more and 400 g/m 2 or less.
  • the basis weight of the nonwoven fabric is 50 g/m 2 or more, more preferably 80 g/m 2 or more, it is possible to obtain artificial leather with a full feeling and excellent texture.
  • the basis weight of the nonwoven fabric is 400 g/m 2 or less, more preferably 300 g/m 2 or less, a flexible skin layer (artificial leather) with excellent moldability can be obtained, and the laminate can be made into a flexible skin layer (artificial leather) with excellent moldability. can also be made more flexible.
  • the laminate of the present invention for the purpose of improving its strength and morphological stability, it is also preferable to laminate a woven fabric between the above-mentioned nonwoven fabrics and entangle and integrate them.
  • filament yarns As for the types of fibers constituting the above-mentioned fabrics, filament yarns, spun yarns, mixed composite yarns of filament yarns and spun yarns, etc. can be used, but spun yarns have a large amount of fuzz on their surface due to their structure, making them difficult to match with non-woven fabrics.
  • spun yarns When the woven fabric is entangled, if the fuzz falls off and is exposed on the surface, it may be a drawback with ordinary artificial leather, so it is more preferable to use filaments, and it is preferable to use multifilaments as the filaments.
  • the fiber diameter of the single fibers constituting the fabric is preferably 1 ⁇ m or more and 50 ⁇ m or less.
  • the fiber diameter of the single fiber is 50 ⁇ m or less, artificial leather with excellent flexibility can be obtained, and when the fiber diameter of the single fiber is 1 ⁇ m or more, the morphological stability of the product as an artificial leather is improved.
  • the total fineness of the yarns constituting the above-mentioned fabric is determined by method B (simplified method) of "8.3 Fineness” in “8.3 Fineness” of JIS L1013:2010 “Chemical Fiber Filament Yarn Test Method” (8.3.1 Positive Fineness b) ”, and preferably 30 dtex or more and 170 dtex or less.
  • the fineness is 170 dtex or less, artificial leather with excellent flexibility can be obtained, and when the total fineness is 30 dtex or more, the shape stability of the product as an artificial leather is improved.
  • it is preferable that the warp and weft multifilaments have the same total fineness.
  • the number of twists of the threads constituting the fabric is preferably 1000 T/m or more and 4000 T/m or less.
  • the number of twists is 4000 T/m or less, more preferably 3500 T/m or less, and even more preferably 3000 T/m or less, artificial leather with excellent flexibility can be obtained, and the number of twists is 1000 T/m or more, more preferably By being 1500 T/m or more, more preferably 2000 T/m or more, it is possible to prevent damage to the fibers constituting the woven fabric when the nonwoven fabric and the woven fabric are intertwined and integrated with a needle punch, etc., and can be used in artificial leather machines. This is preferable because it provides excellent mechanical strength.
  • the skin layer according to the laminate of the present invention is an artificial leather containing the aforementioned fiber entangled body and an elastic polymer. Since this polymeric elastic body is a binder that holds the ultrafine fibers that make up the artificial leather, in consideration of the soft texture of the laminate of the present invention, the polymeric elastic body to be used should be a polyurethane resin. is preferred.
  • polyurethane-based resin examples include organic solvent-based polyurethane, which is used in a state dissolved in an organic solvent, and water-dispersed polyurethane, which is used in a state dispersed in water, both of which can be employed.
  • a polyurethane resin obtained by reacting a polymer diol, an organic diisocyanate, and a chain extender is preferably used.
  • polycarbonate diol for example, a polycarbonate diol, a polyester diol, a polyether diol, a silicone diol, and a fluorine diol can be used, and a copolymer of a combination of these can also be used.
  • polycarbonate diols from the viewpoint of hydrolysis resistance and abrasion resistance, it is preferable to use polycarbonate diols.
  • the polycarbonate diol mentioned above is a diol having a carbonate structure, and can be produced, for example, by transesterification of alkylene glycol and carbonate ester, or reaction of phosgene or chloroformate with alkylene glycol.
  • alkylene glycol examples include ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, 1,10-decanediol, etc.
  • linear alkylene glycols and branched alkylene glycols such as neopentyl glycol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, and 2-methyl-1,8-octanediol.
  • alicyclic diols such as 1,4-cyclohexanediol
  • aromatic diols such as bisphenol A, glycerin, trimethylolpropane, and pentaerythritol.
  • polycarbonate diols obtained from a single alkylene glycol and copolymerized polycarbonate diols obtained from two or more types of alkylene glycols can be employed.
  • polyester diols refer to diols having ester bonds, and specific examples include polyester diols obtained by condensing various low molecular weight polyols and polybasic acids.
  • low molecular weight polyols examples include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4-butanediol, 2,2-dimethyl-1,3-propane. diol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,8-octanediol, diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, cyclohexane-1,4-diol, and One or more selected from cyclohexane-1,4-dimethanol can be used.
  • adducts obtained by adding various alkylene oxides to bisphenol A can also be used.
  • polybasic acids examples include succinic acid, maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, and hexahydrocarbonic acid.
  • succinic acid maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, and hexahydrocarbonic acid.
  • isophthalic acid can be mentioned.
  • polyether diol examples include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and copolymer diols that are a combination thereof.
  • the number average molecular weight of the polymer diol is preferably in the range of 500 or more and 4000 or less when the molecular weight of the polyurethane resin is constant.
  • the number average molecular weight of preferably 500 or more, more preferably 1500 or more it is possible to prevent the artificial leather from becoming hard.
  • a number average molecular weight of 4000 or less, more preferably 3000 or less the strength as a polyurethane resin can be maintained.
  • organic diisocyanate used in the present invention examples include aliphatic diisocyanates such as hexamethylene diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate, and xylylene diisocyanate, and aromatic diisocyanates such as diphenylmethane diisocyanate and tolylene diisocyanate. Moreover, these can also be used in combination.
  • chain extender preferably amine chain extenders such as ethylenediamine and methylenebisaniline, and diol chain extenders such as ethylene glycol can be used.
  • amine chain extenders such as ethylenediamine and methylenebisaniline
  • diol chain extenders such as ethylene glycol
  • a polyamine obtained by reacting polyisocyanate and water can also be used as a chain extender.
  • the above-mentioned polyurethane resin can be used in combination with a crosslinking agent for the purpose of improving water resistance, abrasion resistance, hydrolysis resistance, etc.
  • the crosslinking agent may be an external crosslinking agent that is added as a third component to the polyurethane resin, or an internal crosslinking agent that introduces reactive points that form a crosslinked structure into the polyurethane molecular structure in advance. It is preferable to use an internal crosslinking agent from the viewpoint that crosslinking points can be formed more uniformly within the polyurethane molecular structure and reduction in flexibility can be alleviated.
  • crosslinking agent compounds having isocyanate groups, oxazoline groups, carbodiimide groups, epoxy groups, melamine resins, silanol groups, etc. can be used.
  • additives may be added to the polymer elastomer, such as Phosphorus-based, halogen-based and inorganic flame retardants, Antioxidants such as phenol, sulfur and phosphorus, UV absorbers such as benzotriazole type, benzophenone type, salicylate type, cyanoacrylate type and oxalic acid anilide type, Light stabilizers such as hindered amines and benzoates, Hydrolysis stabilizers such as polycarbodiimide, Plasticizers, antistatic agents, surfactants, coagulation regulators, dyes, and the like can be included.
  • Phosphorus-based, halogen-based and inorganic flame retardants such as phenol, sulfur and phosphorus
  • UV absorbers such as benzotriazole type, benzophenone type, salicylate type, cyanoacrylate type and oxalic acid anilide type
  • Light stabilizers such as hindered amines and benzoates
  • Hydrolysis stabilizers such as polycarbod
  • the content of the elastic polymer in artificial leather can be adjusted as appropriate, taking into account the type of elastic polymer used, the method of manufacturing the elastic polymer, and the texture and physical properties.
  • the content of the polymeric elastic body is preferably 10% by mass or more and 60% by mass or less based on the mass of the fiber entangled body.
  • the content of the elastic polymer is 10% by mass or more, more preferably 15% by mass or more, even more preferably 20% by mass or more, the bond between the fibers by the elastic polymer can be strengthened, The wear resistance of artificial leather can be improved.
  • the content of the polymeric elastomer is 60% by mass or less, more preferably 45% by mass or less, still more preferably 40% by mass or less, the artificial leather can be made more flexible. can.
  • At least one surface of the artificial leather has, from the viewpoint of a design effect, a nape length and directional flexibility to the extent that so-called finger marks are left when traced with a finger due to changes in the direction of the nape. It is preferable to have a raised part.
  • the length of the raised hair in the raised portion is preferably 200 ⁇ m or more and 1000 ⁇ m or less, and more preferably 250 ⁇ m or more and 800 ⁇ m or less.
  • the nap on the surface covers the polymeric elastic material and suppresses exposure of the polymeric elastic material to the surface of the artificial leather, thereby obtaining a laminate with uniform color development. be able to.
  • the length of the raised portion of the raised portion on the surface is set within the above range, so that the fibers of the woven fabric near the surface of the artificial leather are This is preferable because it can sufficiently cover the area.
  • the nap length is 800 ⁇ m or less, a laminate having excellent design effects and wear resistance can be obtained.
  • the length of the nap of the nap on the surface of the artificial leather is calculated by the following method. (1) Using a lint brush or the like, prepare a thin section with a thickness of 1 mm in the cross-sectional direction of a plane perpendicular to the longitudinal direction of the artificial leather, with the napped portions on the surface of the artificial leather standing on end. (2) Observe the cross section of the raised portion on the surface of the artificial leather at 90x magnification using SEM. (3) In the photographed SEM image, the height of the layer consisting only of ultrafine fibers is measured at 10 points at 200 ⁇ m intervals in the width direction of the cross section of the raised portion on the surface of the artificial leather. (4) Calculate the average value (arithmetic mean) of the height of the layer consisting only of ultrafine fibers at the 10 measured points.
  • the thickness of the skin layer is preferably 0.3 mm or more and 1.5 mm or less.
  • the thickness of the skin layer is preferably 0.3 mm or more, more preferably 0.4 mm or more, and even more preferably 0.5 mm or more, the adhesive resin becomes difficult to see from the surface, resulting in good quality.
  • the thickness of the skin layer shall be measured and calculated by the following method.
  • the backing layer is at least one selected from the group consisting of woven fabrics, knitted fabrics, nonwoven fabrics, felts, and foamed resin sheets.
  • Resin A is appropriately selected depending on the aspect of the above-mentioned backing layer.
  • thermoplastic resin either a thermoplastic resin or a thermosetting resin can be preferably employed.
  • thermoplastic resin it is preferable to employ thermoplastic resin.
  • the resin A is Polyethylene terephthalate, polytrimethylene terephthalate, polytetramethylene terephthalate, polycyclohexylene dimethylene terephthalate, polyethylene-2,6-naphthalene dicarboxylate, and polyethylene-1,2-bis(2-chlorophenoxy)ethane-4 , 4'-dicarboxylate, etc., as well as copolymers and mixtures thereof, polyester resins; Polyamides such as polyamide 6, polyamide 11, polyamide 12, polyamide 6,6, polyamide 6,10, polyamide 6,T, polyamide 6,I, polyamide 9,T, polyamide 5M,T, and copolymers thereof , a polyamide resin, which is a mixture; Polyolefins such as polyethylene, polypropylene, polystyrene, and polyvinyl chloride, as well as copoly
  • Examples of the knitted fabrics include warp knitting, weft knitting typified by tricot knitting, lace knitting, and various knitted fabrics based on these knitting structures.
  • Examples of resin A in this case include resins such as polyester, polyamide, and polyolefin, various copolymers containing these components, mixtures thereof, and resins that form natural fibers such as cotton and wool. The fibers constituting this knitted fabric are made of this resin A.
  • the nonwoven fabric examples include dry nonwoven fabric, wet nonwoven fabric, spunbond nonwoven fabric, burst fiber nonwoven fabric, and the like.
  • the resin A may be a resin such as the above-mentioned polyester resin, polyamide resin, or polyolefin resin, or various copolymers thereof, or a mixture thereof, or a natural fiber such as cotton or wool.
  • the fibers constituting this nonwoven fabric are made of this resin A.
  • the felt examples include resin cotton and needle-punched nonwoven fabric.
  • the resin A may be resins such as the above-mentioned polyester resins, polyamide resins, or polyolefin resins, various copolymers containing these components, or mixtures thereof, or resins such as cotton and wool.
  • examples include resins that form natural fibers, and the fibers that make up this felt are made of resin A.
  • the resin A of the woven fabric, knitted fabric, nonwoven fabric, and felt may be the aforementioned polyester resin, polyamide resin, polyolefin resin, or various copolymers containing these components, or , and mixtures thereof.
  • the above-mentioned foamed resin sheets include those formed by molding a resin with air bubbles inside into a sheet shape, and those formed by encapsulating a foaming agent in a resin sheet and foaming them.
  • the resin A includes the above-mentioned polyolefin resins, polyester-based resins, polyurethane-based resins described in the above [polymer elastomer], polyphenylene sulfide, polycarbonate, polyether ketone, polyether imide, etc. Examples include resins, various copolymers containing these components, and mixtures thereof, and the resin constituting this foamed resin sheet is resin A.
  • the backing layer is a foamed resin sheet.
  • the main component of the foamed resin sheet is a polyolefin resin.
  • the foaming ratio of the foamed resin sheet is preferably 2 times or more and 40 times or less.
  • the expansion ratio is preferably 2 times or more, more preferably 5 times or more, a flexible laminate can be obtained.
  • the expansion ratio is preferably 40 times or less, more preferably 30 times or less, a laminate with high adhesive strength and material strength can be obtained.
  • the thickness of the backing layer is preferably 0.1 mm or more and 5.0 mm or less.
  • the thickness of the skin layer is preferably 0.1 mm or more, more preferably 0.3 mm or more, and still more preferably 0.5 mm or more, the adhesive strength and material strength are excellent, and the shape retention after molding is excellent.
  • the thickness of the lining layer is preferably 5.0 mm or less, more preferably 4.5 mm or less, and even more preferably 4.0 mm or less, it is possible to obtain a flexible artificial leather with excellent moldability. .
  • the thickness of the backing layer shall be measured and calculated by the following method. (1) A thin section with a thickness of 1 mm is prepared in the cross-sectional direction of a plane perpendicular to the longitudinal direction of the laminate. (2) Observe the cross section of the backing layer of the laminate using SEM at 50x magnification. (3) In the photographed SEM image, the length is measured at 10 points from the adhesive resin to the back surface at 200 ⁇ m intervals in the width direction of the cross section of the backing layer. (4) Calculate the average value (arithmetic mean) of the lengths of the 10 measured points.
  • the adhesive resin in the first aspect is selected depending on the material and form of the backing layer, for example, Polyacrylics such as polymethyl methacrylate, polyethyl methacrylate, polypropyl methacrylate, polybutyl methacrylate, poly 2-ethylhexyl methacrylate, poly 2-dimethylaminoethyl methacrylate, poly 2-hydroxyethyl methacrylate, and Acrylic resin, which is a copolymer or mixture of these,
  • the material can be appropriately selected from polyurethane resins, polyester resins, polyolefin resins, polyamide resins, silicones, epoxy resins, and the like. Among these, in consideration of flexibility and adhesive strength at high temperatures, polyurethane resins or acrylic resins are preferred. In particular, it is more preferable to use a polyurethane resin that provides high adhesive strength and high flexibility.
  • polyurethane resin examples include moisture-curable reactive hot melt adhesives and two-component adhesives containing isocyanates and chain extenders, but two-component adhesives are more preferred from the viewpoint of operability. .
  • the thickness of the adhesive resin is preferably 5 ⁇ m or more and 500 ⁇ m or less.
  • the thickness of the adhesive resin is preferably 5 ⁇ m or more, more preferably 75 ⁇ m or more, and still more preferably 125 ⁇ m or more, it is possible to suppress wrinkles during vacuum forming, improve sealing performance during vacuum forming, and follow the mold. can improve sex.
  • the thickness of the adhesive resin is preferably 500 ⁇ m or less, more preferably 400 ⁇ m or less, and even more preferably 300 ⁇ m or less, a more flexible laminate can be obtained.
  • the thickness of the adhesive resin shall be measured and calculated by the following method.
  • Three 3 cm square test pieces are taken from any location on the laminate at equal intervals of 4 cm in the longitudinal direction.
  • the area containing 500 or more ultrafine fibers in the cross section is an area where the number of ultrafine fibers whose cut cross section can be observed in the cross section observed in (3) above is 500 or more. represents.
  • the thickness of the adhesive resin here refers to the length of the perpendicular line 16 to the boundary between the backing layer and the adhesive resin and the interface of the adhesive resin on the skin layer side (area with a gap of 1 ⁇ m or more). means the maximum value of
  • the first aspect includes an intermediate layer in which the adhesive resin has a thickness of 1 ⁇ m or more and 400 ⁇ m or less, and the intermediate layer is made of at least one material selected from the group consisting of woven fabric, knitted fabric, nonwoven fabric, felt, film, foam sheet, and metal film. Preferably it is a seed.
  • 3 and 4 are cross-sectional conceptual diagrams of a laminate when the adhesive resin includes an intermediate layer, and FIG. 3 shows a case where a woven fabric (the fibers constituting the woven fabric are (19a)) is used as the intermediate layer (19).
  • FIG. 4 is a cross-sectional conceptual diagram when a film (19b) is used as the intermediate layer (19).
  • the laminate has a high sealing property, so that the conformability to the mold can be greatly improved, and a molded product with high dimensional accuracy can be obtained.
  • a non-porous intermediate layer can be used when particularly sealing performance is required, but an intermediate layer with holes can also be used depending on the required use and purpose.
  • further functions can be imparted to the laminate of the present invention by, for example, using one provided with an electronic circuit or a sensor.
  • the thickness of the intermediate layer is preferably 1 ⁇ m or more and 400 ⁇ m or less.
  • the lower limit of the above range is preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, and still more preferably 20 ⁇ m or more, resulting in a laminate with higher sealing properties, so it has better conformability to the mold. can be greatly improved.
  • the upper limit of the above range is preferably 400 ⁇ m or less, more preferably 350 ⁇ m or less, and even more preferably 300 ⁇ m or less, the laminate becomes more flexible, which also greatly improves the conformability to the mold. can be improved.
  • the intermediate layer is preferably at least one selected from the group consisting of woven fabrics, knitted fabrics, nonwoven fabrics, felts, films, foam sheets, and metal films.
  • these materials are Polyethylene terephthalate, polytrimethylene terephthalate, polytetramethylene terephthalate, polycyclohexylene dimethylene terephthalate, polyethylene-2,6-naphthalene dicarboxylate, and polyethylene-1,2-bis(2-chlorophenoxy)ethane-4 , 4'-dicarboxylate and other polyester resins, as well as copolymers and mixtures thereof;
  • Polyamides such as polyamide 6, polyamide 11, polyamide 12, polyamide 6,6, polyamide 6,10, polyamide 6,T, polyamide 6,I, polyamide 9,T, polyamide 5M,T, and copolymers thereof, polyamide resin, which is a mixture
  • Polyolefins such as polyethylene, polypropylene, polystyrene, and polyvinyl chloride, as well as copolymers and mixtures thereof, such as polyolefin resins;
  • the material is preferably polyurethane resin, acrylic resin, polyester resin, polyamide resin, polyolefin resin, more preferably silicone, epoxy resin, etc. .
  • the materials include the polyolefin resins, polyurethane resins, and polyester resins, as well as resins such as polyphenylene sulfide, polycarbonate, polyether ketone, and polyetherimide. Alternatively, various copolymers containing these components or a mixture thereof are more preferable.
  • the material is a metal such as platinum, gold, palladium, silver, chromium, copper, iron, tungsten, titanium, tantalum, niobium, manganese, molybdenum, aluminum, or hafnium.
  • a metal such as platinum, gold, palladium, silver, chromium, copper, iron, tungsten, titanium, tantalum, niobium, manganese, molybdenum, aluminum, or hafnium.
  • the skin layer and the backing layer are laminated (directly) without using an adhesive resin.
  • a structure can be formed, for example, by a method called a flame lamination method, in which one surface of the backing layer is heated to melt the resin A and fused to the skin layer, as will be described later.
  • the adhesive resin or the resin A in the laminate of the present invention, at least the adhesive resin or the resin A (hereinafter referred to as “the adhesive resin or the resin A”) in a cross section parallel to the thickness direction. 15 to 240 ultrafine fibers in the skin layer in an area of 500 ⁇ m x 500 ⁇ m including 500 or more microfine fibers in the skin layer (sometimes abbreviated as "resin, etc.") The entire outer periphery of the fibers is covered with the above-mentioned adhesive resin or the like.
  • the number of ultrafine fibers covered with the adhesive resin etc. is 15 or more, preferably 30 or more, more preferably 45 or more, so that the adhesive strength at high temperatures is good. can do.
  • the number of the ultrafine fibers is 240 or less, preferably 220 or less, more preferably 200 or less, the laminate can have good flexibility.
  • the number of ultrafine fibers whose entire outer periphery is covered with the adhesive resin or the like described above shall be measured and calculated by the following method.
  • 500 or more ultrafine fibers in cross section means that the number of ultrafine fibers whose cut cross section can be observed in the above cross section is 500 or more.
  • the number of microfibers whose entire periphery is covered with the adhesive resin, etc. means that the entire periphery of the microfiber is surrounded by the adhesive resin, etc., and the microfiber and its adhesive resin, etc. It means the number of ultrafine fibers that do not have a gap of 1 ⁇ m or more between them.
  • the number of ultrafine fibers whose entire outer periphery is covered with the adhesive resin, etc. depends on the viscosity of the adhesive resin before hardening, the pressure and temperature when bonding the skin layer and the lining layer, etc. It can be adjusted by adjusting.
  • the ultrafine fiber bundles made of the ultrafine fibers in the fiber entanglement of the skin layer
  • the ultrafine fiber bundles of 1 to 15 bundles in the area Preferably, the entire outer periphery of the fiber bundle is covered with the adhesive resin, etc., and the inside of the ultrafine fiber bundle is also filled with the adhesive resin, etc.
  • the number of the ultrafine fiber bundles is preferably one or more, more preferably three or more, and still more preferably five or more, so that a laminate with excellent adhesive strength at high temperatures can be obtained. Furthermore, by setting the number of bundles to preferably 15 or less, more preferably 13 or less, and even more preferably 10 or less, a laminate with excellent flexibility can be obtained.
  • the ultrafine fiber bundle whose entire outer periphery is covered with the adhesive resin, etc. means that in all of the outermost ultrafine fibers in the ultrafine fiber bundle, the outer periphery of the ultrafine fibers is entirely covered with the adhesive resin, etc. , etc., and there are no voids of 1 ⁇ m or more between the ultrafine fibers and their adhesive resin, etc.
  • the number of ultrafine fiber bundles whose entire outer periphery is covered with the above adhesive resin etc. shall be measured and calculated by the following method.
  • 500 or more ultrafine fibers in cross section means that the number of ultrafine fibers whose cut cross section can be observed in the above cross section is 500 or more.
  • the ultrafine fiber bundles are densely packed, making it difficult to confirm the boundaries of the ultrafine fiber bundles and making it difficult to calculate the number
  • the filling depth of the adhesive resin or the like into the skin layer is 5 ⁇ m or more and less than 95 ⁇ m.
  • the filling depth is preferably 5 ⁇ m or more, more preferably 15 ⁇ m or more, and even more preferably 25 ⁇ m or more, a laminate with excellent adhesive strength at high temperatures can be obtained.
  • the thickness is preferably less than 95 ⁇ m, more preferably 85 ⁇ m or less, and even more preferably 75 ⁇ m or less, a laminate with excellent flexibility can be obtained.
  • This filling depth shall be measured and calculated by the following method.
  • Three 3 cm square test pieces are taken from any location on the laminate at equal intervals of 4 cm in the longitudinal direction.
  • the area containing 500 or more ultrafine fibers in the cross section is an area where the number of ultrafine fibers whose cut cross section can be observed in the cross section observed in (3) above is 500 or more. represents.
  • the filling depth here means, as illustrated in FIG. It means the maximum value of the distance 18 along the direction perpendicular to the layer side surface to the point where there is a void of 1 ⁇ m or more.
  • the laminate of the present invention can be used as a surface material for furniture, chairs, wall materials, seats, ceilings, and interior interiors of vehicles such as automobiles, trains, and airplanes, interior materials having a very elegant appearance, shirts, jackets, and casual wear.
  • the laminate of the present invention which is suitable for use in such applications, preferably has a peel strength between the skin layer and the backing layer of 10 N/25 mm or more, more preferably 20 N/25 mm or more. By doing so, it is possible to prevent delamination between the skin layer and the lining layer over time during actual use.
  • the peel strength between the skin layer and the backing layer was measured according to JIS K6854-2:1999 "Adhesives - Peeling adhesive strength test method", and the peel strength between the skin layer and the backing layer was measured when peeled at 180°. Refers to the peel strength between
  • the thermal creep resistance between the skin layer and the lining layer is preferably 15 mm/24 h or less, more preferably 10 mm/24 h or less. By doing so, it is possible to prevent delamination between the skin layer and the lining layer over time at high temperatures such as inside an automobile.
  • the heat creep resistance of the skin layer and the backing layer is the creep resistance at high temperatures measured according to JIS K6859:1994 "Creep rupture test method for adhesives", and when peeled at 180° This refers to the length of peeling between the skin layer and the lining layer per unit time.
  • the skin layer of the laminate has a bending strength after peeling in the longitudinal direction of 40 mm or more and 300 mm or less.
  • the longitudinal stiffness of the skin layer after peeling is preferably 40 mm or more, more preferably 50 mm or more, and still more preferably 55 mm or more, the skin layer of the laminate can have higher strength.
  • the longitudinal bending resistance of the skin layer after peeling is preferably 300 mm or less, more preferably 250 mm or less, and even more preferably 200 mm or less, a more flexible laminate can be obtained.
  • the bending strength after peeling in the vertical direction of the skin layer of the laminate is measured and calculated by the following method.
  • the "longitudinal direction" in the skin layer of the present invention refers to the direction in which the napping treatment is performed on the skin layer in the manufacturing process of the skin layer.
  • the vertical direction is the direction in which the napped fibers can be laid down or stood up when traced with a finger.
  • the direction in which the lying napped fibers are most oriented is determined to be the longitudinal direction.
  • the skin layer of the present invention is the above-mentioned artificial leather, and it is preferable to form this artificial leather so as to include the following steps.
  • Step (1-4) of forming ultrafine fibers Step (1-5) of applying a polymeric elastic body: Step (1-6) of cutting the sheet-like material in half and polishing it: Step (1-6) of dyeing the gray fabric.
  • This step is to produce ultrafine fiber-expressing fibers having a sea-island composite structure in which island portions are formed from a thermoplastic resin and sea portions are formed from an easily soluble polymer.
  • the ultra-fine fiber-expressing fiber is made by using thermoplastic resins with different solvent solubility as a sea part (easily soluble polymer) and an island part (slightly soluble polymer), and by dissolving and removing the sea part using a solvent or the like.
  • a sea-island type composite fiber is used in which the island portions are ultrafine fibers.
  • a method for spinning ultrafine fiber-generating fibers having a sea-island composite structure a method using a polymer mutual array in which a sea-island composite spinneret is used and spun by arranging sea parts and island parts mutually is a method that produces uniform fibers. This is preferable from the viewpoint that ultrafine fibers with a fineness of fibers can be obtained.
  • polyethylene, polypropylene, polystyrene, copolymerized polyester copolymerized with sodium sulfoisophthalic acid, polyethylene glycol, etc., and polylactic acid can be used. From this point of view, polystyrene and copolymerized polyester are preferably used.
  • a sea-island composite fiber when using a sea-island composite fiber, it is preferable to use a sea-island composite fiber whose island portion has a strength of 2.5 cN/dtex or more.
  • the strength of the island portion By setting the strength of the island portion to 2.5 cN/dtex or more, more preferably 2.8 cN/dtex or more, and still more preferably 3.0 cN/dtex or more, the wear resistance of the laminate is improved and fibers are prevented from falling off. It is possible to suppress the accompanying decrease in fastness to friction.
  • the strength of the island portion of the sea-island composite fiber is calculated by the following method.
  • (iii) JIS L1013:2010 "Chemical Fiber Filament Yarn Test Methods”"8.5 Tensile Strength and Elongation”"8.5.1 Standard Time Test” with a grip length of 5 cm and a tensile speed of 5 cm/min. , the test is carried out 10 times under the condition of a load of 2N (N 10).
  • (iv) The value obtained by rounding off the arithmetic mean value (cN/dtex) of the test results obtained in (iii) to the second decimal place is the strength of the island portion of the sea-island composite fiber.
  • the fibers are made into a fiber web using a cross wrapper or the like, and the fibers are entangled to obtain a nonwoven fabric.
  • a method of entangling fiber webs to obtain a nonwoven fabric needle punching, water jet punching, or the like can be used.
  • short fiber nonwoven fabric As mentioned above, either short fiber nonwoven fabric or long fiber nonwoven fabric can be used, but short fiber nonwoven fabric has more fibers oriented in the thickness direction of the laminate than long fiber nonwoven fabric. A highly dense feeling can be obtained on the surface of the skin layer of the laminate when raised.
  • the obtained microfiber-expressing fiber is preferably crimped and cut into a predetermined length to obtain raw cotton, which is then spread, laminated, and entangled. By doing this, a short fiber nonwoven fabric is obtained.
  • a known method can be used for crimping and cutting.
  • the obtained nonwoven fabric and woven fabric are laminated and entangled to be integrated.
  • the woven fabric is laminated on one or both sides of the nonwoven fabric, or the woven fabric is sandwiched between multiple nonwoven fabric webs, and then the nonwoven fabric is separated by a needle punching process, a water jet punching process, etc. It can entangle the fibers of textiles.
  • the apparent density of the nonwoven fabric made of microfiber-developed fibers after needle punching or water jet punching is 0.15 g/cm 3 or more and 0.45 g/cm 3 or less.
  • the apparent density is 0.15 g/cm 3 or more and 0.45 g/cm 3 or less.
  • the artificial leather can have sufficient morphological stability and dimensional stability.
  • the apparent density is set to preferably 0.45 g/cm 3 or less, sufficient space for providing the polymer elastic body can be maintained.
  • nonwoven fabric it is also a preferable embodiment to subject the nonwoven fabric to a heat shrinkage treatment using hot water or steam in order to improve the dense feel of the fibers.
  • the water-soluble resin can be applied by impregnating the nonwoven fabric with an aqueous solution of the water-soluble resin and drying it.
  • a water-soluble resin By adding a water-soluble resin to the nonwoven fabric, fibers are fixed and dimensional stability is improved.
  • the obtained fibrous base material is treated with a solvent to develop ultrafine fibers having an average single fiber diameter of 1 ⁇ m or more and 10 ⁇ m or less.
  • the ultrafine fiber development treatment can be performed by immersing a nonwoven fabric made of sea-island composite fibers in a solvent and dissolving and removing the sea portion of the sea-island composite fibers.
  • the solvent for dissolving and removing the sea portion can be an organic solvent such as toluene or trichloroethylene when the sea portion is polyethylene, polypropylene, or polystyrene.
  • an alkaline aqueous solution such as sodium hydroxide can be used.
  • the sea part is a water-soluble thermoplastic polyvinyl alcohol resin, hot water can be used.
  • a fibrous base material containing ultrafine fibers or ultrafine fiber-expressing fibers as a main component is impregnated with a solution of an elastomer polymer and solidified to provide an elastomer polymer.
  • Methods for fixing an elastic polymer to a nonwoven fabric include a method of impregnating a solution of the elastic polymer into a nonwoven fabric (fiber entangled body) and then wet coagulation or dry coagulation. These methods can be selected as appropriate.
  • N,N'-dimethylformamide, dimethyl sulfoxide, etc. are preferably used.
  • a water-dispersed polyurethane liquid in which polyurethane is dispersed in water as an emulsion may be used.
  • the polymer elastic material may be applied to the fibrous base material before generating ultrafine fibers from ultrafine fiber generation type fibers, or after generating ultrafine fibers from ultrafine fiber generation type fibers. It's okay.
  • the surface of the sheet-like article or the sheet-like article cut in half to which the above-described polymeric elastic body is applied can be subjected to a napping treatment.
  • the raising treatment can be performed by grinding using sandpaper, a roll sander, etc. to obtain a gray fabric.
  • the napping treatment can be applied to only one surface of this sheet-like material or to both surfaces.
  • a lubricant such as a silicone emulsion can be applied to the surface of the sheet-like article before the napping treatment. Further, by applying an antistatic agent before the napping treatment, grinding powder generated from the sheet material during grinding becomes difficult to accumulate on the sandpaper.
  • ⁇ Process of dyeing gray fabric> In the method for producing artificial leather of the present invention, it is more preferable to dye the gray fabric.
  • this dyeing process include jet dyeing using a jigger dyeing machine or jet dyeing machine, thermosol dyeing using a continuous dyeing machine, roller printing, screen printing, inkjet printing, and sublimation. Printing treatment on the raised surface by printing, vacuum sublimation printing, etc. can be used.
  • a jet dyeing machine from the viewpoint of quality and elegance, since a soft texture can be obtained.
  • various resin finishing treatments such as coating can be applied as necessary.
  • the skin layer in the present invention preferably has a bending resistance in the longitudinal direction of 40 mm or more and 300 mm or less.
  • a bending resistance in the longitudinal direction of 40 mm or more and 300 mm or less.
  • the longitudinal bending resistance of the epidermis layer shall be measured and calculated by the following method.
  • the skin layer was measured based on method A (45° cantilever method) described in 8.21.1 of 8.21 “Bending resistance” of JIS L1096: 2010 "Testing methods for woven and knitted fabrics", Calculate the average value of 5 sheets.
  • the method of laminating the skin layer and the backing layer is preferably such that the backing layer is coated with a liquid adhesive or pressure-sensitive adhesive that serves as an adhesive resin, and the skin layer and the backing layer are bonded together.
  • a liquid adhesive or pressure-sensitive adhesive that serves as an adhesive resin
  • the adhesive strength at high temperatures is improved.
  • a method may be adopted in which a sheet-like adhesive material serving as an adhesive resin is placed on the backing layer and pressed against the skin layer. In this case, the thickness of the adhesive resin can be made more uniform, and a laminate that does not undergo deformation in a specific direction during molding, that is, has less anisotropy, can be obtained.
  • the adhesive resin includes the above-mentioned intermediate layer
  • the intermediate layer is laminated, and the adhesive is applied again to form the skin layer.
  • a laminate can be obtained by laminating these and pressing them together.
  • Methods for applying liquid adhesives or adhesives that serve as adhesive resin include gravure coating, knife coating, screen methods such as flat screen and rotary screen, spray coating, and release paper.
  • a method may be used in which a pressure-sensitive adhesive sheet is formed by applying an adhesive or a pressure-sensitive adhesive to a material, and then the pressure-sensitive adhesive sheet is transferred to a backing layer.
  • the gravure coating method it is possible to improve the adhesive strength at high temperatures between the skin layer and the backing layer while maintaining good operability and good quality.
  • the viscosity of the liquid adhesive or pressure-sensitive adhesive when applied to the backing layer is preferably 1.5 Pa ⁇ s or more, more preferably 3.0 Pa ⁇ s or more, so that it can penetrate into the inside of the skin layer.
  • the filling depth can be controlled.
  • the pressure to preferably 20.0 Pa ⁇ s or less, more preferably 15.0 Pa ⁇ s or less, the adhesive resin can easily penetrate into the inside of the ultrafine fiber bundle, and at high temperatures between the skin layer and the lining layer. Improves adhesive strength.
  • the coating amount of the liquid adhesive or pressure-sensitive adhesive when coating the backing layer, or the basis weight of the adhesive when placing a sheet-like adhesive is preferably 15 g/m 2 or more, More preferably, by setting it as 20 g/m 2 or more, the adhesive strength at high temperature becomes good. On the other hand, the flexibility of the laminate is improved by preferably setting it to 500 g/m 2 or less, more preferably 400 g/m 2 or less.
  • a laminate can be obtained by overlapping the adhesive-coated side of the backing layer and the back side of the skin material and pressing them together.
  • crimping with a press dry heat crimping with a calendar roll, or wet heat crimping is preferable, as it allows continuous production of a laminate, loosens the structure of the microfibers, and allows the adhesive resin to penetrate into the microfiber bundles.
  • wet heat pressure bonding using a calendar roll is more preferable because it facilitates bonding.
  • the temperature of the mold surface is preferably 40°C or more and 200°C or less.
  • the temperature is preferably 40°C, more preferably 60°C or higher, the adhesive resin can easily penetrate into the inside of the microfiber bundle, and the adhesive strength at high temperatures can be improved.
  • the temperature is preferably 200°C or lower, more preferably 140°C or lower, a laminate of good quality can be obtained.
  • the pressure of the press at this time is preferably 0.1 MPa or more and 10 MPa or less.
  • the pressure is preferably 0.2 MPa or more, more preferably 0.3 MPa or more, the adhesive resin can easily penetrate into the inside of the ultrafine fiber bundle, and the adhesive strength at high temperatures can be improved.
  • the pressure is preferably 9 MPa or less, more preferably 8 MPa or less, a flexible and high-quality laminate can be obtained.
  • the temperature of the calender roll when performing dry heat compression bonding is preferably 40°C or more and 200°C or less.
  • the temperature is preferably 40°C, more preferably 60°C or higher, the adhesive resin can easily penetrate into the inside of the microfiber bundle, and the adhesive strength at high temperatures can be improved.
  • the temperature is preferably 200°C or lower, more preferably 140°C or lower, a laminate of good quality can be obtained.
  • the pressure of the calender roll at this time is preferably 10 N/cm or more and 1000 N/cm or less.
  • the pressure is preferably 20 N/cm or more, more preferably 30 N/cm or more, the adhesive resin can easily penetrate into the inside of the ultrafine fiber bundle, and the adhesive strength at high temperatures can be improved.
  • the pressure is preferably 900 N/cm or less, more preferably 800 N/cm or less, a flexible and high-quality laminate can be obtained.
  • the steam temperature is preferably 40°C or higher, more preferably 60°C or higher, so that the adhesive resin can easily penetrate into the inside of the microfiber bundle, improving adhesive strength at high temperatures.
  • the steam temperature is preferably 100°C or lower, more preferably 90°C or lower, a laminate of good quality can be obtained.
  • the pressure of the calender roll at this time is the same as that for dry heat compression bonding.
  • Step 2 of forming a laminate when manufacturing the laminate of the second invention of the present application, the method of laminating the skin layer and the lining layer is to heat one surface of the lining layer to melt the resin A, A method called flame lamination, which fuses it with the skin layer, can be used.
  • one surface of the lining layer is melted by burning it with the flame of a gas burner using city gas, propane gas, etc., and the molten lining layer and skin layer are pressed and laminated using a calendar roll.
  • the flame of the gas burner can easily melt the backing layer by setting it to 600°C or higher, and can prevent carbonization of the backing layer by setting the flame to 4000°C or lower.
  • dry heat pressure bonding using a calendar roll or wet heat pressure bonding is preferable, since the structure of the ultrafine fibers becomes loose and the adhesive resin easily penetrates into the inside of the ultrafine fiber bundle. From this point of view, wet heat compression bonding is more preferable.
  • the preferable temperature and pressure conditions when performing dry heat compression bonding and wet heat compression bonding using a calendar roll are preferably the same as those in ⁇ Step 1 of forming a laminate>.
  • Average single fiber diameter of ultrafine fibers ( ⁇ m) The average single fiber diameter of the ultrafine fibers was measured and calculated by the method described above using a scanning electron microscope ("VE-7800" manufactured by Keyence Corporation).
  • Coating amount of adhesive resin (g/m 2 )
  • the amount of adhesive resin applied was determined by measuring the mass of the backing layer before and after applying the adhesive resin when manufacturing the laminate. Specifically, the following are (3-1) to (3-3). (3-1) Take a total of three test pieces of 10 cm x 10 cm from the center of the width direction and 10 cm from the right and left ends of the backing layer before applying the adhesive resin at any position in the longitudinal direction. The basis weight (g/m 2 ) of the backing layer before coating with the adhesive resin was calculated from the number average value of the mass. (3-2) Next, after coating the lining layer with adhesive resin, apply the adhesive resin to the lining layer before adhering it to the skin layer.
  • Viscosity of adhesive resin (Pa ⁇ s)
  • the adhesive resin before coating was measured using a "B-type viscosity tester manufactured by Tokyo Keiki Co., Ltd.” according to "Plastics - Liquid, emulsion or dispersion resin - Measuring method of apparent viscosity using a Brookfield rotational viscometer” in JIS K7117:1999. The viscosity was measured while the temperature was maintained at 25°C.
  • composition of backing layer and adhesive resin was analyzed by infrared spectroscopy using a Fourier transform infrared spectrophotometer (“FT/IR 4000 series” manufactured by JASCO Corporation). The composition was identified by
  • grades 4 to 5 were considered good.
  • Grade 5 Uniform fiber napping, good fiber dispersion, and good appearance.
  • Grade 4 Rated between grade 5 and grade 3.
  • Grade 3 Although there were some parts where the nap of the fibers was not good, the fibers were dispersed and the appearance was reasonably good.
  • 2nd grade An evaluation between 3rd grade and 1st grade.
  • Grade 1 Overall, the fibers were in a very poor state of napping and dispersion, and the appearance was poor.
  • Thickness of adhesive resin ( ⁇ m) The thickness of the adhesive resin was measured and calculated by the method described above using a scanning electron microscope ("VE-7800" manufactured by Keyence Corporation).
  • FIG. 6 is a conceptual cross-sectional diagram of a mold used for evaluating vacuum formability.
  • the mold (32) has a top (32a) width (horizontal length in FIG. 6) of 25 mm, a corner (32b) of the top (32a), a radius (corner R) of 1 mm, and a bottom (32c) corner.
  • the recess (32d) has a roundness (corner R) of 6 mm and is approximately cylindrical in shape, the width of the recess (approximate diameter of the cylinder, 32e) is 50 mm, and the depth (32f) is 14 mm.
  • a laminate (31) cut into a square of 10 mm x 10 mm is placed on the mold (32) with the skin layer side facing the mold (32), and the surface temperature of the laminate is 160°C.
  • Grade 5 The gap between the laminate and the mold during vacuum forming was less than 2 mm, and no wrinkles were observed in the obtained molded product.
  • Grade 4 The gap between the laminate and the mold during vacuum forming was 2 mm or more and less than 5 mm, and no wrinkles were observed in the obtained molded product.
  • Grade 3 The gap between the laminate and the mold during vacuum forming was 5 mm or more and less than 10 mm, or the resulting molded product had slight wrinkles.
  • Grade 2 The gap between the laminate and the mold during vacuum forming was 10 mm or more, or obvious wrinkles were observed in the obtained molded product.
  • Grade 1 The laminate did not have a top hat shape.
  • Example 1 Formation of skin layer (process of manufacturing fibrous base material) Using polystyrene as the sea component and polyethylene terephthalate with an intrinsic viscosity (IV value) of 0.72 as the island component, the composite ratio is 20% by mass for the sea component and 80% by mass for the island component, and the number of islands is 16.
  • a sea-island type conjugate fiber having a /1 filament and an average single fiber diameter of 20 ⁇ m was obtained.
  • the obtained sea-island composite fibers were cut into staples with a fiber length of 51 mm, passed through a card and a cross wrapper to form a fiber web, and needle punched to produce a fiber structure.
  • a sheet made of ultrafine fibers obtained as described above was prepared using N,N-dimethylformamide (DMF), a polyurethane whose main component is organic solvent-based polyurethane and whose solid content was adjusted to a solid content of 13% by mass. ) solution, and then the polyurethane resin was coagulated in an aqueous solution with a DMF concentration of 30% by mass. Thereafter, a polyurethane resin-applied sheet was obtained by drying with hot air at a temperature of 110° C. for 10 minutes.
  • DMF N,N-dimethylformamide
  • Adhesive resin A two-component polyurethane adhesive (abbreviated as "PU-2" in Tables 1 to 4) with a viscosity adjusted to 5 Pa s was used as the adhesive resin, and a coating amount of 60 g/m 2 was obtained using a gravure roll. It was coated on top of the above-mentioned backing layer.
  • PU-2 polyurethane adhesive
  • Step of forming a laminate After the half-cut surface of the skin layer and the surface coated with the adhesive resin of the backing layer were overlapped, moist heat compression bonding was performed using a calendar roll. Specifically, it was nipped using calender rolls at 80° C. while being subjected to moist heat treatment with 80° C. steam. Thereafter, it was dried in a dryer at 90°C to obtain a laminate. The results are shown in Table 1.
  • Example 2 A laminate was obtained in the same manner as in Example 1, except that a polyurethane foam (thickness: 2.0 mm, basis weight: 40 g/m 2 , foaming ratio: 15 times) was used as the backing layer. The results are shown in Table 1.
  • Example 3 A laminate was obtained in the same manner as in Example 1 except that tricot knitted from polyester fibers was used as the backing layer. The results are shown in Table 1.
  • Example 4 A laminate was obtained in the same manner as in Example 1, except that an acrylic pressure-sensitive adhesive (abbreviated as "AC” in Table 1) having a viscosity of 5 Pa ⁇ s was used as the adhesive resin. The results are shown in Table 1.
  • AC acrylic pressure-sensitive adhesive
  • Example 5 A laminate was obtained in the same manner as in Example 1 except that the viscosity of the adhesive resin was adjusted to 16 Pa ⁇ s. The results are shown in Table 2.
  • Example 6 A laminate was obtained in the same manner as in Example 1 except that the viscosity of the adhesive resin was adjusted to 2 Pa ⁇ s. The results are shown in Table 2.
  • Example 7 A laminate was obtained in the same manner as in Example 1 except that the coating amount of the adhesive resin was 100 g/m 2 . The results are shown in Table 2.
  • Example 8 A laminate was obtained in the same manner as in Example 1 except that the coating amount of the adhesive resin was 20 g/m 2 . The results are shown in Table 2.
  • Example 9 A laminate was obtained in the same manner as in Example 1, except that in the step of forming the laminate, it was subjected to wet heat treatment with 100°C steam and nipped with calender rolls at 150°C. The results are shown in Table 3.
  • Example 10 A laminate was obtained in the same manner as in Example 1, except that in the step of forming the laminate, it was subjected to wet heat treatment with 50°C steam and nipped with calender rolls at 50°C. The results are shown in Table 3.
  • Example 11 Formation of skin layer Artificial leather was obtained in the same manner as in Example 1 to form a skin layer.
  • Adhesive resin No adhesive resin was used.
  • Step of forming a laminate A flame lamination method was performed in which the backing layer was melted with a gas burner at 1800° C., and the half-cut surface of the skin layer and the melted surface of the backing layer were superimposed. Subsequently, it was subjected to moist heat compression bonding using a calendar roll (in Table 3, it was described as "moist heat compression bonding after flerami"). Specifically, a laminate was obtained by nipping with calender rolls at 80° C. while performing a wet heat treatment with steam at 80° C. The results are shown in Table 3.
  • Example 12 Formation of skin layer Artificial leather was obtained in the same manner as in Example 1 to form a skin layer.
  • Adhesive resin An acrylic adhesive (abbreviated as “AC” in Table 1) with a viscosity adjusted to 5 Pa s was applied onto the above backing layer using a gravure roll to a coating amount of 50 g/ m2 . Coated. Thereafter, a film made of polyurethane resin having a thickness of 50 ⁇ m (abbreviated as “50 ⁇ m PU-F” in Table 1) was laminated. Then, an acrylic adhesive (abbreviated as “AC” in Table 1) whose viscosity was adjusted to 5 Pa ⁇ s was applied onto the above film using a gravure roll in a coating amount of 50 g/ m2 . I worked on it.
  • AC acrylic adhesive
  • Example 1 A laminate was obtained in the same manner as in Example 1 except that the coating amount of the adhesive resin was adjusted to 10 g/m 2 . The results are shown in Table 4.
  • Example 4 A laminate was obtained in the same manner as in Example 1 except that the coating amount of the adhesive resin was adjusted to 100 g/m 2 . The results are shown in Table 4.
  • the entire outer periphery is covered with the adhesive resin, etc. by adjusting the viscosity of the adhesive resin etc. before curing, the temperature when bonding the skin layer and the lining layer, etc.
  • the number of ultrafine fibers By setting the number of ultrafine fibers to 15 or more and 240 or less, it was possible to obtain a laminate that has both adhesive strength at high temperatures and a flexible texture.
  • the laminate of Example 1 further includes a case in which the entire outer periphery is covered with adhesive resin, etc., the number of ultrafine fiber bundles is 1 bundle or more and 15 bundles or less, and the filling depth of the adhesive resin into the skin layer is 5 ⁇ m. Since the thickness is less than 95 ⁇ m, it was possible to obtain a laminate that exhibits both adhesive strength and soft texture especially at high temperatures.
  • the temperature of the calender roll during the process of forming the laminate was high, and the adhesive resin penetrated into the inside of the skin layer, resulting in a large number of ultrafine fibers whose entire outer periphery was covered with adhesive resin, etc.
  • the laminate had a hard texture and a deteriorated appearance quality.

Abstract

The purpose of the present invention is to provide a layered body comprising a front skin material and a back lining material, the layered body having excellent adhesive strength at high temperature, flexibility, and surface quality. Provided is a layered body formed by layering a front skin layer and a back lining layer constituted by a resin A, with an adhesive resin therebetween. The front skin layer is an artificial leather comprising: a fiber-interlaced body including, as a constituent element, a nonwoven fabric made of ultrafine fibers having an average single fiber diameter of 0.1-10.0 μm; and a polymeric elastomer. The back lining layer is at least one type selected from the group consisting of a woven fabric, a knit fabric, a nonwoven fabric, felt, and a foamed resin sheet. In a 500 μm × 500 μm region including, in a cross-section parallel to the thickness direction of the layered body, at least the adhesive resin and 500 or more cross-sections of the ultrafine fibers of the front skin layer, the entire outer circumference of 15-240 ultrafine fibers of the front skin layer is covered by the adhesive resin.

Description

積層体laminate
 本発明は、極細繊維からなる繊維絡合体と高分子弾性体を含む人工皮革である表皮層と裏張り層とからなる積層体に関する。 The present invention relates to a laminate consisting of a skin layer and a lining layer, which are artificial leathers containing a fiber entangled body made of ultrafine fibers and a polymeric elastic body.
 立毛を有する人工皮革は、耐久性の高さや品質の均一性等の天然皮革対比で優れた特徴を有しており、車両内装材、家具や雑貨および衣料等様々な分野で使用されている。その中でも、人工皮革が車両内装材や家具、雑貨等の表皮として使用される際には、補強のためやクッション性が発現するため等の目的で人工皮革の裏面に織物等を貼り付ける等して(裏張りして)、積層体とすることがある。 Artificial leather with raised naps has superior characteristics compared to natural leather, such as high durability and uniform quality, and is used in various fields such as vehicle interior materials, furniture, miscellaneous goods, and clothing. Among these, when artificial leather is used as the outer skin of vehicle interior materials, furniture, miscellaneous goods, etc., fabrics etc. are pasted on the back side of the artificial leather for reinforcement or cushioning purposes. (lined) to form a laminate.
 しかしながら、人工皮革に裏張りした積層体は、接着に用いた樹脂により積層体の繊維が強く拘束され、硬い風合いとなるという課題や、耐熱性不足により高温時に接着強度が低下するといった課題がある。これに対し、高温時の接着強度、および、裏張り後の柔軟性、表面品位をも兼ねそろえた積層体がかねてより求められている。 However, laminates lined with artificial leather have problems such as the fibers of the laminate being strongly restricted by the resin used for adhesion, resulting in a hard texture, and the adhesive strength decreasing at high temperatures due to lack of heat resistance. . In response, there has long been a demand for a laminate that has adhesive strength at high temperatures, flexibility after backing, and surface quality.
 例えば、特許文献1に開示されるような技術においては、人工皮革裏面に熱可塑性エラストマーを射出成形し、積層体を形成する手法が開示されている。また、特許文献2に開示されるような技術においては、発泡樹脂層と繊維集合体層とを重ね合わせ、ニードルパンチングにより積層体を形成する手法が開示されている。そして、特許文献3に開示されるような技術においては、反応型ホットメルト接着剤をスプレー塗工し、ポリウレタン発泡体と表皮層を積層する手法が開示されている。 For example, in a technique as disclosed in Patent Document 1, a method is disclosed in which a thermoplastic elastomer is injection molded on the back side of artificial leather to form a laminate. Further, in a technique as disclosed in Patent Document 2, a method is disclosed in which a foamed resin layer and a fiber aggregate layer are overlapped and a laminate is formed by needle punching. In the technique disclosed in Patent Document 3, a method is disclosed in which a reactive hot melt adhesive is spray coated and a polyurethane foam and a skin layer are laminated.
特開2017-61051号公報JP2017-61051A 特開2002-103496号公報Japanese Patent Application Publication No. 2002-103496 特開2017-136735号公報Japanese Patent Application Publication No. 2017-136735
 しかしながら、特許文献1に開示されるような技術においては、人工皮革裏面に高圧で熱可塑性エラストマーを射出成形するため、人工皮革の内部まで熱可塑性エラストマーが浸透してしまい、柔軟性が低下することが課題である。 However, in the technology disclosed in Patent Document 1, the thermoplastic elastomer is injection molded on the back side of the artificial leather at high pressure, so the thermoplastic elastomer penetrates into the inside of the artificial leather, resulting in a decrease in flexibility. is the issue.
 また、特許文献2に開示されるような技術においては、積層体をある程度柔軟なものにすることができるが、常温、および、高温時の接着強度が弱いことが課題である。 Further, in the technique disclosed in Patent Document 2, the laminate can be made flexible to some extent, but the problem is that the adhesive strength is weak at room temperature and at high temperature.
 そして、特許文献3に開示されるような技術においては、ある程度、柔軟性を維持しつつも接着力を向上させることができるが、依然として接着強度は十分なものではなく、高温時には、容易に剥離が生じることが課題である。 In the technology disclosed in Patent Document 3, it is possible to improve the adhesive force while maintaining flexibility to some extent, but the adhesive strength is still not sufficient and it easily peels off at high temperatures. The issue is that this occurs.
 そこで、本発明は、上記の事情に鑑みてなされたものであって、その目的は、表皮材と裏張り材とからなる積層体において、高温時の接着強度、柔軟性、そして、表面品位に優れた積層体を提供することにある。 Therefore, the present invention has been made in view of the above circumstances, and its purpose is to improve adhesive strength, flexibility, and surface quality at high temperatures in a laminate consisting of a skin material and a lining material. Our goal is to provide an excellent laminate.
 本発明者らは、上記目的を達成するべく鋭意検討を重ねた結果、表皮材の層(表皮層)と裏張り材の層(裏張り層)とが接着樹脂を介して積層されてなる積層体の厚み方向に平行な断面中において、接着樹脂と、前記の表皮層とが特定の構造を形成することにより高温時の接着強度に優れた積層体を得られることを見出した。また、この別態様として、表皮層と裏張り層とが直接積層されてなる積層体の厚み方向に平行な断面中において、前記の裏張り層を構成する樹脂と、前記の表皮層とが特定の構造を形成することによっても、高温時の接着強度に優れた積層体を得られることを見出した。さらに、これらの積層体が、柔軟性、表面品位に優れることも判明した。 As a result of intensive studies to achieve the above object, the inventors of the present invention discovered that a laminate in which a layer of skin material (skin layer) and a layer of lining material (backing layer) are laminated with an adhesive resin interposed therebetween. It has been found that a laminate with excellent adhesive strength at high temperatures can be obtained by forming a specific structure between the adhesive resin and the skin layer in a cross section parallel to the thickness direction of the body. In addition, as another aspect of this, in a cross section parallel to the thickness direction of a laminate in which a skin layer and a lining layer are directly laminated, the resin constituting the lining layer and the skin layer are identified. It has been found that a laminate with excellent adhesive strength at high temperatures can also be obtained by forming a structure of Furthermore, it has been found that these laminates have excellent flexibility and surface quality.
 本発明は、これら知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。本願において、「本発明」と表記した場合は、特記しない限り、以下の[1]に係る態様(以降、「第1態様」(the first embodiment)と記載することがある)、および、[2]に係る態様(以降、「第2態様」(the second embodiment)と記載することがある)の両方を含むものとする。 The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided. In this application, unless otherwise specified, the term "the present invention" refers to the embodiment according to [1] below (hereinafter sometimes referred to as the "first embodiment"), and [2] ] (hereinafter sometimes referred to as the "second embodiment").
 [1] 表皮層と、樹脂Aで構成される裏張り層と、が接着樹脂を介して積層されてなる積層体であって、
 前記表皮層は、平均単繊維直径が0.1μm以上10.0μm以下の極細繊維からなる不織布を構成要素として含む繊維絡合体と、高分子弾性体と、を含む人工皮革であり、
 前記裏張り層は、織物、編物、不織布、フェルト、および、発泡樹脂シートからなる群から選ばれる少なくとも1種であり、
 前記積層体の厚み方向に平行な断面中の、少なくとも前記接着樹脂と、前記表皮層の極細繊維の断面を500本以上と、を含む500μm×500μmの領域において、15本以上240本以下の前記表皮層の極細繊維の外周全てが前記接着樹脂で覆われている、積層体。
[1] A laminate in which a skin layer and a backing layer made of resin A are laminated via an adhesive resin,
The skin layer is an artificial leather containing a fiber entangled body containing as a component a nonwoven fabric made of ultrafine fibers with an average single fiber diameter of 0.1 μm or more and 10.0 μm or less, and a polymeric elastic body,
The lining layer is at least one selected from the group consisting of woven fabric, knitted fabric, nonwoven fabric, felt, and foamed resin sheet,
In a 500 μm x 500 μm area including at least the adhesive resin and 500 or more ultrafine fibers of the skin layer in a cross section parallel to the thickness direction of the laminate, 15 or more and 240 or less of the A laminate in which the entire outer periphery of the ultrafine fibers of the skin layer is covered with the adhesive resin.
 [2] 表皮層と、樹脂Aで構成される裏張り層と、が積層されてなる積層体であって、
 前記表皮層は、平均単繊維直径が0.1μm以上10.0μm以下の極細繊維からなる不織布を構成要素として含む繊維絡合体と、高分子弾性体と、を含む人工皮革であり、
 前記裏張り層は、織物、編物、不織布、フェルト、および、発泡樹脂シートからなる群から選ばれる少なくとも1種であり、
 前記積層体の厚み方向に平行な断面中の、少なくとも前記樹脂Aと、前記表皮層の極細繊維の断面を500本以上と、を含む500μm×500μmの領域において、15本以上240本以下の前記表皮層の極細繊維の外周全てが前記樹脂Aで覆われている、積層体。
[2] A laminate in which a skin layer and a lining layer made of resin A are laminated,
The skin layer is an artificial leather containing a fiber entangled body containing as a component a nonwoven fabric made of ultrafine fibers with an average single fiber diameter of 0.1 μm or more and 10.0 μm or less, and a polymeric elastic body,
The lining layer is at least one selected from the group consisting of woven fabric, knitted fabric, nonwoven fabric, felt, and foamed resin sheet,
In a 500 μm x 500 μm area including at least the resin A and 500 or more microfibers in the skin layer in a cross section parallel to the thickness direction of the laminate, 15 or more and 240 or less of the A laminate in which the entire outer periphery of the ultrafine fibers of the skin layer is covered with the resin A.
 [3] 前記接着樹脂が、厚み1μm以上400μm以下である中間層を含み、
 該中間層は、織物、編物、不織布、フェルト、フィルム、発泡シート、および、金属膜からなる群から選ばれる少なくとも1種である、前記[1]に記載の積層体。
[3] The adhesive resin includes an intermediate layer having a thickness of 1 μm or more and 400 μm or less,
The laminate according to [1] above, wherein the intermediate layer is at least one selected from the group consisting of a woven fabric, a knitted fabric, a nonwoven fabric, a felt, a film, a foamed sheet, and a metal film.
 [4] 前記表皮層の繊維絡合体において、3本以上40本以下の極細繊維からなる極細繊維束を構成してなる、前記[1]~[3]のいずれかに記載の積層体。 [4] The laminate according to any one of [1] to [3], wherein the fiber entanglement of the skin layer comprises an ultrafine fiber bundle consisting of 3 or more and 40 or less ultrafine fibers.
 [5] 前記領域において、1束以上15束以下の前記極細繊維束の外周全てが前記接着樹脂または前記樹脂Aで覆われており、かつ、該極細繊維束内も前記接着樹脂または前記樹脂Aで充填されてなる、前記[4]に記載の積層体。 [5] In the area, the entire outer periphery of the 1 to 15 ultrafine fiber bundles is covered with the adhesive resin or the resin A, and the inside of the ultrafine fiber bundle is also covered with the adhesive resin or the resin A. The laminate according to the above [4], wherein the laminate is filled with.
 [6] 前記接着樹脂または前記樹脂Aの、前記表皮層への充填深さが5μm以上95μm未満である、前記[1]~[5]のいずれかに記載の積層体。 [6] The laminate according to any one of [1] to [5], wherein the adhesive resin or the resin A has a filling depth in the skin layer of 5 μm or more and less than 95 μm.
 [7] 前記裏張り層が発泡樹脂シートである、前記[1]~[6]のいずれかに記載の積層体。 [7] The laminate according to any one of [1] to [6] above, wherein the backing layer is a foamed resin sheet.
 [8] 前記発泡樹脂シートの主成分がポリオレフィン系樹脂である、前記[7]に記載の積層体。 [8] The laminate according to [7] above, wherein the main component of the foamed resin sheet is a polyolefin resin.
 [9] 前記接着樹脂の厚みが5μm以上500μm以下である、前記[1]、[3]~[6]のいずれかに記載の積層体。 [9] The laminate according to any one of [1], [3] to [6], wherein the adhesive resin has a thickness of 5 μm or more and 500 μm or less.
 本発明によれば、表皮層である人工皮革と、裏張り層と、が積層されてなる積層体において、高温時の接着強度、柔軟性、そして、表面品位に優れた積層体を得ることができる。 According to the present invention, it is possible to obtain a laminate that has excellent adhesive strength, flexibility, and surface quality at high temperatures in a laminate in which artificial leather as a skin layer and a backing layer are laminated. can.
図1は、本発明に係る極細繊維束について例示・説明する、人工皮革の断面図(電子顕微鏡写真)である。FIG. 1 is a cross-sectional view (electron micrograph) of artificial leather, illustrating and explaining the ultrafine fiber bundle according to the present invention. 図2は、本発明に係る積層体の一実施態様において、表皮層と裏張り層とが接着している状態を例示・説明する、断面概念図である。FIG. 2 is a conceptual cross-sectional view illustrating and explaining a state in which a skin layer and a lining layer are adhered to each other in an embodiment of the laminate according to the present invention. 図3は、本発明に係る積層体の別の一実施態様において、表皮層と裏張り層とが接着している状態を例示・説明する、断面概念図である。FIG. 3 is a conceptual cross-sectional view illustrating and explaining a state in which a skin layer and a lining layer are adhered to each other in another embodiment of the laminate according to the present invention. 図4は、本発明に係る積層体のさらに別の一実施態様において、表皮層と裏張り層とが接着している状態を例示・説明する、断面概念図である。FIG. 4 is a conceptual cross-sectional view illustrating and explaining a state in which the skin layer and the lining layer are adhered to each other in still another embodiment of the laminate according to the present invention. 図5は、本発明に係る積層体の表面品位の評価方法を例示・説明する概念斜視図である。FIG. 5 is a conceptual perspective view illustrating and explaining a method for evaluating the surface quality of a laminate according to the present invention. 図6は、本発明に係る積層体の真空成形性の評価方法を例示・説明する断面概念図である。FIG. 6 is a cross-sectional conceptual diagram illustrating and explaining a method for evaluating vacuum formability of a laminate according to the present invention.
 以下に本発明について詳細に説明する。ただし、本発明は以下に説明する詳細な態様のみに限定されるものではない。 The present invention will be explained in detail below. However, the present invention is not limited only to the detailed embodiments described below.
 本発明の積層体の第1態様は、表皮層と、樹脂Aで構成される裏張り層と、が接着樹脂を介して積層されてなる積層体である。
本発明の積層体の第2態様は、表皮層と、樹脂Aで構成される裏張り層と、が(直接)積層されてなる積層体である。これらの構成要素について、順に説明する。
A first aspect of the laminate of the present invention is a laminate in which a skin layer and a backing layer made of resin A are laminated via an adhesive resin.
A second aspect of the laminate of the present invention is a laminate in which a skin layer and a backing layer made of resin A are (directly) laminated. These components will be explained in order.
 本発明の積層体における表皮層は、人工皮革である。そして、この表皮層が積層体の最外層となって用いられることとなる。 The skin layer in the laminate of the present invention is artificial leather. This skin layer is then used as the outermost layer of the laminate.
 前記人工皮革は、平均単繊維直径が0.1μm以上10.0μm以下の極細繊維からなる不織布を構成要素として含む繊維絡合体と、高分子弾性体と、を含む。 The artificial leather includes a fiber entangled body containing as a component a nonwoven fabric made of ultrafine fibers with an average single fiber diameter of 0.1 μm or more and 10.0 μm or less, and a polymeric elastic body.
 [繊維絡合体]
 前記極細繊維は、耐久性、特には機械的強度、耐熱性等の観点から、ポリエステル系樹脂からなることが好ましい。ここで、本発明においてポリエステル系樹脂とは、下記に例示される各ポリエステル樹脂、ならびに、これらの共重合体、混合物を指すものである。
[Fiber entangled body]
The ultrafine fibers are preferably made of polyester resin from the viewpoint of durability, particularly mechanical strength, heat resistance, etc. Here, in the present invention, the polyester resin refers to each polyester resin exemplified below, as well as copolymers and mixtures thereof.
 前記のポリエステル系樹脂としては、例えば、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリテトラメチレンテレフタレート、ポリシクロヘキシレンジメチレンテレフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレ-ト、およびポリエチレン-1,2-ビス(2-クロロフェノキシ)エタン-4,4’-ジカルボキシレート等が挙げられる。中でも最も汎用的に用いられているポリエチレンテレフタレート、または主としてエチレンテレフタレート単位を含むポリエステル共重合体が好適に使用される。 Examples of the polyester resin include polyethylene terephthalate, polytrimethylene terephthalate, polytetramethylene terephthalate, polycyclohexylene dimethylene terephthalate, polyethylene-2,6-naphthalene dicarboxylate, and polyethylene-1,2- Examples include bis(2-chlorophenoxy)ethane-4,4'-dicarboxylate. Among them, polyethylene terephthalate, which is most commonly used, or a polyester copolymer mainly containing ethylene terephthalate units is preferably used.
 また、前記のポリエステル系樹脂として、単一のポリエステルを用いても、異なる2種以上のポリエステルを用いてもよいが、異なる2種以上のポリエステルを用いる場合には、2種以上の成分の相溶性の観点から、用いるポリエステルの固有粘度(IV値)差は0.50以下であることが好ましく、0.30以下であることがより好ましい。 In addition, as the polyester resin, a single polyester or two or more different polyesters may be used, but when two or more different polyesters are used, a phase difference between the two or more components may be used. From the viewpoint of solubility, the difference in intrinsic viscosity (IV value) of the polyesters used is preferably 0.50 or less, more preferably 0.30 or less.
 本発明において、固有粘度は以下の方法により算出されるものとする。
(1)オルソクロロフェノール10mL中に試料ポリマーを0.8g溶かす。
(2)25℃の温度においてオストワルド粘度計を用いて相対粘度ηrを下式により算出し、小数点以下第三位で四捨五入する。
η=η/η=(t×d)/(t×d
固有粘度(IV値)=0.0242η+0.2634
ここで、ηはポリマー溶液の粘度、ηはオルソクロロフェノールの粘度、tは溶液の落下時間(秒)、dは溶液の密度(g/cm)、t0はオルソクロロフェノールの落下時間(秒)、dはオルソクロロフェノールの密度(g/cm)を、それぞれ表す。
In the present invention, the intrinsic viscosity is calculated by the following method.
(1) Dissolve 0.8 g of sample polymer in 10 mL of orthochlorophenol.
(2) The relative viscosity ηr is calculated using the following formula using an Ostwald viscometer at a temperature of 25° C., and rounded to the second decimal place.
η r = η/η 0 = (t×d)/(t 0 ×d 0 )
Intrinsic viscosity (IV value) = 0.0242η r +0.2634
Here, η is the viscosity of the polymer solution, η 0 is the viscosity of orthochlorophenol, t is the falling time of the solution (seconds), d is the density of the solution (g/cm 3 ), and t0 is the falling time of orthochlorophenol ( seconds) and d 0 represent the density (g/cm 3 ) of orthochlorophenol, respectively.
 極細繊維の断面形状としては、加工操業性の観点から、丸断面にすることが好ましいが、楕円、扁平および三角等の多角形、扇形および十字型、中空型、Y型、T型、およびU型等の異形断面の断面形状を採用することもできる。この場合、極細繊維の平均単繊維直径は、まず単繊維の断面積を測定し、当該断面を円形と見立てた場合の直径を算出することによって単繊維の直径を求めることとする。 The cross-sectional shape of the ultrafine fibers is preferably round from the viewpoint of processing operability, but polygons such as ellipse, flat and triangular shapes, sector shapes, cross shapes, hollow shapes, Y-shape, T-shape, and U-shape are also suitable. It is also possible to adopt a cross-sectional shape with an irregular cross-section such as a mold. In this case, the average single fiber diameter of the ultrafine fibers is determined by first measuring the cross-sectional area of the single fibers and calculating the diameter when the cross section is assumed to be circular.
 極細繊維の平均単繊維直径は、0.1μm以上10.0μm以下である。極細繊維の平均単繊維直径が、0.1μm以上、好ましくは0.5μm以上であることにより、染色後の発色性や耐光および摩擦堅牢性、紡糸時の安定性に優れた効果を奏する。一方、極細繊維の平均単繊維直径が10.0μm以下、好ましくは6.0μm以下、より好ましくは4.5μm以下であることにより、緻密でタッチの柔らかい表面品位に優れた人工皮革が得られる。 The average single fiber diameter of the ultrafine fibers is 0.1 μm or more and 10.0 μm or less. When the average single fiber diameter of the ultrafine fibers is 0.1 μm or more, preferably 0.5 μm or more, excellent effects are achieved in color development after dyeing, light fastness and abrasion fastness, and stability during spinning. On the other hand, when the average single fiber diameter of the ultrafine fibers is 10.0 μm or less, preferably 6.0 μm or less, more preferably 4.5 μm or less, artificial leather with excellent surface quality that is dense and soft to the touch can be obtained.
 本発明において極細繊維の平均単繊維直径とは、積層体のうち、表皮層である人工皮革の断面の走査型電子顕微鏡(SEM、例えば、株式会社キーエンス製「VE-7800」型等。以下、特段の断りがない限り、この測定装置が好ましいものとして例示されることとする。)写真を撮影し、円形または円形に近い楕円形の単繊維直径を測定して、直径が0.05μm以上12.00μm以下の繊維をランダムに10本選び、その10本の算術平均値を計算して、小数点以下第二位で四捨五入することにより算出されるものとする。ただし、異型断面の極細繊維を採用した場合には、まず単繊維の断面積を測定し、当該断面を円形と見立てた場合の直径を算出することによって単繊維の直径を求めるものとする。 In the present invention, the average single fiber diameter of ultrafine fibers refers to the scanning electron microscope (SEM) of a cross section of the artificial leather, which is the skin layer of the laminate, such as the "VE-7800" model manufactured by Keyence Corporation. Unless otherwise specified, this measuring device is exemplified as a preferred one.) Take a photograph, measure the diameter of a circular or nearly circular single fiber, and find that the diameter is 0.05 μm or more. It shall be calculated by randomly selecting 10 fibers with a diameter of .00 μm or less, calculating the arithmetic mean value of the 10 fibers, and rounding the value to the second decimal place. However, when ultrafine fibers with an irregular cross section are adopted, the diameter of the single fibers shall be determined by first measuring the cross-sectional area of the single fibers and calculating the diameter when the cross section is assumed to be circular.
 本発明で用いられる極細繊維を得る手段としては、極細繊維発現型繊維を用いることが特徴である。極細繊維発現型繊維は、溶剤に対する溶解性が異なる2成分の熱可塑性樹脂を海成分と島成分とし、海成分だけを溶剤等を用いて溶解除去することによって島成分を極細繊維とする海島型複合繊維や、2成分の熱可塑性樹脂を繊維断面放射状あるいは層状に交互に配置し、各成分を剥離分割することによって極細繊維に割繊する剥離型複合繊維や多層型複合繊維等を採用することができるが、シート状物の表面品位を均一にしやすいことから、海島型複合繊維が好ましく用いられる。 The means for obtaining the ultrafine fibers used in the present invention is characterized by the use of ultrafine fiber expression type fibers. The ultra-fine fiber development type fiber is a sea-island type fiber in which two thermoplastic resin components with different solubility in solvents are used as a sea component and an island component, and the island component is made into ultra-fine fiber by dissolving and removing only the sea component using a solvent, etc. Adopt peelable composite fibers or multilayer composite fibers, etc., in which composite fibers or two-component thermoplastic resins are arranged alternately in a radial or layered fiber cross section, and each component is separated and split into ultra-fine fibers. However, sea-island composite fibers are preferably used because they can easily make the surface quality of the sheet-like article uniform.
 本発明の積層体では、前記の表皮層の繊維絡合体において、3本以上40本以下の極細繊維からなる極細繊維束を構成してなることが好ましい。極細繊維束を構成する極細繊維の数が好ましくは3本以上、より好ましくは8本以上であると、極細繊維が十分な緻密性を有しやすく、例えば、摩耗等の機械物性が向上しやすくなる傾向がある。また、極細繊維束を構成する極細繊維の数が好ましくは40本以下、より好ましくは36本以下であると、裏張り層との接着後の柔軟性が良好なものとなる。 In the laminate of the present invention, the fiber entangled body of the skin layer preferably comprises an ultrafine fiber bundle consisting of 3 or more and 40 or less ultrafine fibers. When the number of ultrafine fibers constituting the ultrafine fiber bundle is preferably 3 or more, more preferably 8 or more, the ultrafine fibers tend to have sufficient density, and mechanical properties such as abrasion tend to improve, for example. There is a tendency to Further, when the number of ultrafine fibers constituting the ultrafine fiber bundle is preferably 40 or less, more preferably 36 or less, the flexibility after adhesion to the backing layer will be good.
 本発明において、「極細繊維束」とは、同一の方向を向いていると見なせる複数の極細繊維の集合体であって、人工皮革断面をSEMにて任意の倍率で観察した際に、繊維束異形度が1.5以下の円で囲まれる極細繊維の集合体を指す。ここで、「繊維束異形度」とは、図1に示すように、極細繊維の集合体について、その集合体に沿うように外周を囲んだ線(1)をSEM画像上で引き、その外周を囲んだ線(1)の外接円直径を、外周を囲んだ線の内接円直径で除した値を指すものとする。 In the present invention, an "ultrafine fiber bundle" is an aggregate of a plurality of ultrafine fibers that can be considered to be oriented in the same direction, and when a cross section of artificial leather is observed with an SEM at an arbitrary magnification, the fiber bundle is Refers to an aggregate of ultrafine fibers surrounded by a circle with a degree of irregularity of 1.5 or less. Here, the "fiber bundle irregularity" is defined by drawing a line (1) encircling the outer periphery of an aggregate of ultrafine fibers on a SEM image, as shown in Figure 1. It refers to the value obtained by dividing the diameter of the circumscribed circle of the line (1) surrounding the periphery by the diameter of the inscribed circle of the line surrounding the outer periphery.
 本発明において、特に表皮層である人工皮革を濃色に発色させる場合等には、極細繊維を構成するポリエステル系樹脂に、粒子径の平均が0.05μm以上0.20μm以下の黒色顔料または有彩色微粒子酸化物顔料を含むことが好ましい。 In the present invention, when the artificial leather, which is the skin layer, is to be colored in a deep color, a black pigment or pigment having an average particle size of 0.05 μm or more and 0.20 μm or less is added to the polyester resin constituting the ultrafine fibers. Preferably, it contains a colored fine particle oxide pigment.
 ここでいう粒子径とは、黒色顔料または有彩色微粒子酸化物顔料が極細繊維中に存在している状態での粒子径のことであり、一般に二次粒子径とよばれるもののことをいう。また、「有彩色」とは、赤、青、緑、黄色等の色味のある色のことを言い、具体的には、CIE1976L色空間において、彩度(C)が10以上である色のことをいう。 The particle size here refers to the particle size when the black pigment or chromatic fine particle oxide pigment is present in the ultrafine fibers, and is generally referred to as the secondary particle size. In addition, "chromatic colors" refer to colors with tints such as red, blue, green, and yellow. Specifically, in the CIE1976L * a * b * color space, chroma (C * ) Refers to colors with a number of 10 or more.
 黒色顔料または有彩色微粒子酸化物顔料の粒子径の平均が0.05μm以上、好ましくは0.07μm以上であることにより、黒色顔料または有彩色微粒子酸化物顔料が極細繊維の内部に把持されるため極細繊維からの脱落が抑制される。また、前記の粒子径の平均が0.20μm以下、好ましくは0.18μm以下、より好ましくは0.16μm以下であることにより、紡糸時の安定性と糸強度に優れたものとなる。 Since the average particle diameter of the black pigment or the chromatic fine particle oxide pigment is 0.05 μm or more, preferably 0.07 μm or more, the black pigment or the chromatic fine particle oxide pigment is held inside the ultrafine fibers. Falling off from ultrafine fibers is suppressed. In addition, when the average particle diameter is 0.20 μm or less, preferably 0.18 μm or less, and more preferably 0.16 μm or less, the yarn has excellent stability and yarn strength during spinning.
 極細繊維を形成するポリエステル系樹脂に含まれる黒色顔料または有彩色微粒子酸化物顔料の含有量(A)は、極細繊維の質量に対して0.5質量%以上2.0質量%以下であることが好ましい。黒色顔料または有彩色微粒子酸化物顔料の割合が0.5質量%以上、好ましくは0.7質量%以上、より好ましくは0.9質量%以上であることにより、濃色の発色性に優れるものとなる。一方、黒色顔料または有彩色微粒子酸化物顔料の割合が2.0質量%以下、好ましくは1.8質量%以下、より好ましくは1.6質量%以下であることにより、強度や伸度等の物理特性の高い人工皮革とすることができる。 The content (A) of black pigment or chromatic fine particle oxide pigment contained in the polyester resin forming the ultrafine fibers shall be 0.5% by mass or more and 2.0% by mass or less based on the mass of the ultrafine fibers. is preferred. The content of the black pigment or chromatic fine particle oxide pigment is 0.5% by mass or more, preferably 0.7% by mass or more, more preferably 0.9% by mass or more, so that it has excellent deep color development. becomes. On the other hand, by setting the proportion of black pigment or chromatic fine particle oxide pigment to 2.0% by mass or less, preferably 1.8% by mass or less, more preferably 1.6% by mass or less, strength, elongation, etc. It can be made into artificial leather with high physical properties.
 本発明における黒色顔料としては、カーボンブラックや黒鉛等の炭素系黒色顔料や四酸化三鉄、銅・クロムの複合酸化物等の酸化物系黒色顔料を用いることができる。細かい粒子径のものが得られやすく、またポリマーへの分散性に優れる観点から、黒色顔料がカーボンブラックであることが好ましい。 As the black pigment in the present invention, carbon-based black pigments such as carbon black and graphite, and oxide-based black pigments such as triiron tetroxide and composite oxides of copper and chromium can be used. It is preferable that the black pigment is carbon black because it is easy to obtain particles with a fine particle size and has excellent dispersibility in polymers.
 有彩色微粒子酸化物顔料としては、目標とする色彩に近い公知の顔料を使用することができ、例えば、オキシ水酸化鉄(例:大日精化株式会社製“TM イエロー 8170”)、酸化鉄(例:大日精化株式会社製“TM レッド 8270”)、アルミン酸コバルト(例:大日精化株式会社製“TM ブルー 3490E”)等が挙げられる。また、前記の「有彩色」ではない白色の酸化物顔料、例えば、酸化亜鉛や酸化チタン等は、本発明で言う有彩色微粒子酸化物顔料には含まれないものとする。 As the chromatic fine particle oxide pigment, known pigments close to the target color can be used, such as iron oxyhydroxide (e.g. "TM Yellow 8170" manufactured by Dainichiseika Kaisha, Ltd.), iron oxide ( Examples include "TM Red 8270" manufactured by Dainichiseika Chemical Co., Ltd.), cobalt aluminate (eg "TM Blue 3490E" manufactured by Dainichiseika Chemical Co., Ltd.), and the like. Further, the above-mentioned white oxide pigments that are not "chromatic", such as zinc oxide and titanium oxide, are not included in the chromatic fine particle oxide pigments referred to in the present invention.
 また、極細繊維を形成する熱可塑性樹脂には、必要に応じ、本発明の目的を阻害しない範囲で、酸化チタン粒子等の無機粒子、潤滑剤、熱安定剤、紫外線吸収剤、導電剤、蓄熱剤および抗菌剤等を添加することができる。 In addition, the thermoplastic resin forming the ultrafine fibers may include inorganic particles such as titanium oxide particles, lubricants, heat stabilizers, ultraviolet absorbers, conductive agents, heat storage agents, etc., as necessary and within the range that does not impede the purpose of the present invention. agents, antibacterial agents, etc. can be added.
 本発明に係る繊維絡合体は、前記の極細繊維からなる不織布を構成要素として含む。不織布を構成要素として含むことにより、表面を立毛させた際に均一で優美な外観や風合いを得ることができる。 The fiber entangled body according to the present invention includes the nonwoven fabric made of the above-mentioned ultrafine fibers as a constituent element. By including the nonwoven fabric as a component, a uniform and elegant appearance and texture can be obtained when the surface is raised.
 不織布の形態としては、主としてフィラメントから構成される長繊維不織布と、主として100mm以下の繊維から構成される短繊維不織布がある。不織布が長繊維不織布である場合においては、強度に優れる表皮層を得られるため、好ましい。一方、短繊維不織布である場合においては、長繊維不織布の場合に比べて表皮層の厚さ方向に配向する繊維を多くすることができ、立毛させた際の表皮層の表面に高い緻密感を有させることができる。 The forms of nonwoven fabrics include long fiber nonwoven fabrics mainly composed of filaments and short fiber nonwoven fabrics mainly composed of fibers of 100 mm or less. When the nonwoven fabric is a long fiber nonwoven fabric, it is preferable because a skin layer with excellent strength can be obtained. On the other hand, in the case of a short fiber nonwoven fabric, more fibers can be oriented in the thickness direction of the epidermis layer than in the case of a long fiber nonwoven fabric, giving a high density feeling to the surface of the epidermis layer when raised. can be made to have
 短繊維不織布を用いる場合の極細繊維の平均繊維長は、好ましくは25mm以上90mm以下である。平均繊維長が90mm以下、より好ましくは80mm以下、さらに好ましくは70mm以下であることにより、良好な品位と風合いとなる。他方、平均繊維長が25mm以上、より好ましくは35mm以上、さらに好ましくは40mm以上であることにより、耐摩耗性に優れた表皮層とすることができる。 When a short fiber nonwoven fabric is used, the average fiber length of the ultrafine fibers is preferably 25 mm or more and 90 mm or less. When the average fiber length is 90 mm or less, more preferably 80 mm or less, and even more preferably 70 mm or less, good quality and texture are achieved. On the other hand, when the average fiber length is 25 mm or more, more preferably 35 mm or more, and still more preferably 40 mm or more, the skin layer can have excellent abrasion resistance.
 本発明に係る表皮層である人工皮革を構成する不織布の目付は、JIS L1913:2010「一般不織布試験方法」の「6.2 単位面積当たりの質量(ISO法)」で測定され、50g/m以上400g/m以下の範囲であることが好ましい。前記の不織布の目付が、50g/m以上、より好ましくは80g/m以上であることで、充実感のある、風合いの優れた人工皮革とすることができる。一方、前記の不織布の目付が400g/m以下、より好ましくは300g/m以下であることで成形性に優れた、柔軟な表皮層(人工皮革)とすることができ、そして、積層体もより柔軟なものとすることができる。 The basis weight of the nonwoven fabric constituting the artificial leather that is the skin layer according to the present invention is measured according to "6.2 Mass per unit area (ISO method)" of JIS L1913:2010 "General nonwoven fabric testing method", and is 50 g/m It is preferably in the range of 2 or more and 400 g/m 2 or less. When the basis weight of the nonwoven fabric is 50 g/m 2 or more, more preferably 80 g/m 2 or more, it is possible to obtain artificial leather with a full feeling and excellent texture. On the other hand, when the basis weight of the nonwoven fabric is 400 g/m 2 or less, more preferably 300 g/m 2 or less, a flexible skin layer (artificial leather) with excellent moldability can be obtained, and the laminate can be made into a flexible skin layer (artificial leather) with excellent moldability. can also be made more flexible.
 本発明の積層体においては、その強度や形態安定性を向上させる目的で、前記の不織布と不織布との間に織物を積層して絡合一体化させることも好ましい。 In the laminate of the present invention, for the purpose of improving its strength and morphological stability, it is also preferable to laminate a woven fabric between the above-mentioned nonwoven fabrics and entangle and integrate them.
 前記の織物を構成する繊維の種類としては、フィラメントヤーン、紡績糸、フィラメントヤーンと紡績糸の混合複合糸等を用いることができるが、紡績糸はその構造上表面に毛羽が多数存在し不織布と織物を絡合する際、その毛羽が脱落し表面に露出すると通常の人工皮革では欠点となってしまうことがあるため、フィラメントを用いることがより好ましく、フィラメントとしてはマルチフィラメントを用いることが好ましい。 As for the types of fibers constituting the above-mentioned fabrics, filament yarns, spun yarns, mixed composite yarns of filament yarns and spun yarns, etc. can be used, but spun yarns have a large amount of fuzz on their surface due to their structure, making them difficult to match with non-woven fabrics. When the woven fabric is entangled, if the fuzz falls off and is exposed on the surface, it may be a drawback with ordinary artificial leather, so it is more preferable to use filaments, and it is preferable to use multifilaments as the filaments.
 前記の織物を構成する繊維の単繊維の繊維径は、1μm以上50μm以下であることが好ましい。単繊維の繊維径が50μm以下であることにより、柔軟性に優れた人工皮革が得られ、単繊維の繊維径が1μm以上であることにより、人工皮革としての製品の形態安定性が向上する。 The fiber diameter of the single fibers constituting the fabric is preferably 1 μm or more and 50 μm or less. When the fiber diameter of the single fiber is 50 μm or less, artificial leather with excellent flexibility can be obtained, and when the fiber diameter of the single fiber is 1 μm or more, the morphological stability of the product as an artificial leather is improved.
 前記の織物を構成する糸条の総繊度は、JIS L1013:2010「化学繊維フィラメント糸試験方法」の「8.3 繊度」の「8.3.1 正量繊度 b) B法(簡便法)」で測定され、30dtex以上170dtex以下が好ましい。繊度が170dtex以下であることにより、柔軟性に優れた人工皮革が得られ、総繊度が30dtex以上であることにより、人工皮革としての製品の形態安定性が向上する。このとき、経糸と緯糸のマルチフィラメントの総繊度は同じ総繊度とすることが好ましい。 The total fineness of the yarns constituting the above-mentioned fabric is determined by method B (simplified method) of "8.3 Fineness" in "8.3 Fineness" of JIS L1013:2010 "Chemical Fiber Filament Yarn Test Method" (8.3.1 Positive Fineness b) ”, and preferably 30 dtex or more and 170 dtex or less. When the fineness is 170 dtex or less, artificial leather with excellent flexibility can be obtained, and when the total fineness is 30 dtex or more, the shape stability of the product as an artificial leather is improved. At this time, it is preferable that the warp and weft multifilaments have the same total fineness.
 さらに、前記の織物を構成する糸条の撚数は、1000T/m以上4000T/m以下であることが好ましい。撚数が4000T/m以下、より好ましくは3500T/m以下、さらに好ましくは3000T/m以下であることにより、柔軟性に優れた人工皮革が得られ、撚数が1000T/m以上、より好ましくは1500T/m以上、さらに好ましくは2000T/m以上であることにより、不織布と織物をニードルパンチ等で絡合一体化させる際に、織物を構成する繊維の損傷を防ぐことができ、人工皮革の機械的強度が優れたものとなるため好ましい。 Further, the number of twists of the threads constituting the fabric is preferably 1000 T/m or more and 4000 T/m or less. When the number of twists is 4000 T/m or less, more preferably 3500 T/m or less, and even more preferably 3000 T/m or less, artificial leather with excellent flexibility can be obtained, and the number of twists is 1000 T/m or more, more preferably By being 1500 T/m or more, more preferably 2000 T/m or more, it is possible to prevent damage to the fibers constituting the woven fabric when the nonwoven fabric and the woven fabric are intertwined and integrated with a needle punch, etc., and can be used in artificial leather machines. This is preferable because it provides excellent mechanical strength.
 [高分子弾性体]
 本発明の積層体に係る表皮層は、前記の繊維絡合体と、高分子弾性体とを含む人工皮革である。この高分子弾性体は、人工皮革を構成する極細繊維を把持するバインダーであるため、本発明の積層体の柔軟な風合いを考慮すると、用いられる高分子弾性体としては、ポリウレタン系樹脂であることが好ましい。
[Elastic polymer]
The skin layer according to the laminate of the present invention is an artificial leather containing the aforementioned fiber entangled body and an elastic polymer. Since this polymeric elastic body is a binder that holds the ultrafine fibers that make up the artificial leather, in consideration of the soft texture of the laminate of the present invention, the polymeric elastic body to be used should be a polyurethane resin. is preferred.
 前記のポリウレタン系樹脂としては、有機溶剤に溶解した状態で使用する有機溶剤系ポリウレタンと、水に分散した状態で使用する水分散型ポリウレタンとが挙げられるが、そのどちらも採用することができる。また、本発明で用いられるポリウレタン系樹脂としては、ポリマージオールと有機ジイソシアネートと鎖伸長剤との反応により得られるポリウレタン系樹脂が好ましく用いられる。 Examples of the polyurethane-based resin include organic solvent-based polyurethane, which is used in a state dissolved in an organic solvent, and water-dispersed polyurethane, which is used in a state dispersed in water, both of which can be employed. Furthermore, as the polyurethane resin used in the present invention, a polyurethane resin obtained by reacting a polymer diol, an organic diisocyanate, and a chain extender is preferably used.
 前記のポリマージオールとしては、例えば、ポリカーボネート系ジオール、ポリエステル系ジオール、ポリエーテル系ジオール、シリコーン系ジオールおよびフッ素系ジオールを採用することができ、これらを組み合わせた共重合体を用いることもできる。中でも、耐加水分解性、耐摩耗性の観点からは、ポリカーボネート系ジオールを用いることが好ましい。 As the polymer diol, for example, a polycarbonate diol, a polyester diol, a polyether diol, a silicone diol, and a fluorine diol can be used, and a copolymer of a combination of these can also be used. Among these, from the viewpoint of hydrolysis resistance and abrasion resistance, it is preferable to use polycarbonate diols.
 前記のポリカーボネート系ジオールとは、カーボネート構造を有するジオールのことであり、例えば、アルキレングリコールと炭酸エステルのエステル交換反応、あるいはホスゲンまたはクロル蟻酸エステルとアルキレングリコールとの反応等によって製造することができる。 The polycarbonate diol mentioned above is a diol having a carbonate structure, and can be produced, for example, by transesterification of alkylene glycol and carbonate ester, or reaction of phosgene or chloroformate with alkylene glycol.
 また、アルキレングリコールとしては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,9-ノナンジオール、1,10-デカンジオール等の直鎖アルキレングリコールや、ネオペンチルグリコール、3-メチル-1,5-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオールおよび2-メチル-1,8-オクタンジオール等の分岐アルキレングリコール、1,4-シクロヘキサンジオール等の脂環族ジオール、ビスフェノールA等の芳香族ジオール、グリセリン、トリメチロールプロパン、およびペンタエリスリトール等が挙げられる。本発明では、それぞれ単独のアルキレングリコールから得られるポリカーボネート系ジオールでも、2種類以上のアルキレングリコールから得られる共重合ポリカーボネート系ジオールのいずれも採用することができる。 Examples of alkylene glycol include ethylene glycol, propylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,9-nonanediol, 1,10-decanediol, etc. linear alkylene glycols and branched alkylene glycols such as neopentyl glycol, 3-methyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol, and 2-methyl-1,8-octanediol. , alicyclic diols such as 1,4-cyclohexanediol, aromatic diols such as bisphenol A, glycerin, trimethylolpropane, and pentaerythritol. In the present invention, both polycarbonate diols obtained from a single alkylene glycol and copolymerized polycarbonate diols obtained from two or more types of alkylene glycols can be employed.
 また、ポリエステル系ジオールとは、エステル結合を有するジオールのことであり、具体的な例としては、各種低分子量ポリオールと多塩基酸とを縮合させて得られるポリエステルジオールを挙げることができる。 Furthermore, polyester diols refer to diols having ester bonds, and specific examples include polyester diols obtained by condensing various low molecular weight polyols and polybasic acids.
 低分子量ポリオールとしては、例えば、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,3-ブタンジオール、1,4-ブタンジオール、2,2-ジメチル-1,3-プロパンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,8-オクタンジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、シクロヘキサン-1,4-ジオール、およびシクロヘキサン-1,4-ジメタノールから選ばれる一種または二種以上を使用することができる。 Examples of low molecular weight polyols include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,4-butanediol, 2,2-dimethyl-1,3-propane. diol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,8-octanediol, diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, cyclohexane-1,4-diol, and One or more selected from cyclohexane-1,4-dimethanol can be used.
 また、ビスフェノールAに各種アルキレンオキサイドを付加させた付加物も使用可能である。 Additionally, adducts obtained by adding various alkylene oxides to bisphenol A can also be used.
 また、多塩基酸としては、例えば、コハク酸、マレイン酸、アジピン酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、フタル酸、イソフタル酸、テレフタル酸、およびヘキサヒドロイソフタル酸から選ばれる一種または二種以上が挙げられる。 Examples of polybasic acids include succinic acid, maleic acid, adipic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid, and hexahydrocarbonic acid. One or more types selected from isophthalic acid can be mentioned.
 本発明で用いられるポリエーテル系ジオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、およびそれらを組み合わせた共重合ジオールを挙げることができる。 Examples of the polyether diol used in the present invention include polyethylene glycol, polypropylene glycol, polytetramethylene glycol, and copolymer diols that are a combination thereof.
 前記のポリマージオールの数平均分子量は、ポリウレタン系樹脂の分子量が一定の場合、500以上4000以下の範囲であることが好ましい。数平均分子量が好ましくは500以上、より好ましくは1500以上であることにより、人工皮革が硬くなることを防ぐことができる。また、数平均分子量が4000以下、より好ましくは3000以下であることにより、ポリウレタン系樹脂としての強度を維持することができる。 The number average molecular weight of the polymer diol is preferably in the range of 500 or more and 4000 or less when the molecular weight of the polyurethane resin is constant. By having a number average molecular weight of preferably 500 or more, more preferably 1500 or more, it is possible to prevent the artificial leather from becoming hard. Further, by having a number average molecular weight of 4000 or less, more preferably 3000 or less, the strength as a polyurethane resin can be maintained.
 本発明で用いられる有機ジイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、イソフォロンジイソシアネート、キシリレンジイソシアネート等の脂肪族ジイソシアネートや、ジフェニルメタンジイソシアネート、およびトリレンジイソシアネート等の芳香族ジイソシアネートが挙げられ、またこれらを組み合わせて用いることもできる。 Examples of the organic diisocyanate used in the present invention include aliphatic diisocyanates such as hexamethylene diisocyanate, dicyclohexylmethane diisocyanate, isophorone diisocyanate, and xylylene diisocyanate, and aromatic diisocyanates such as diphenylmethane diisocyanate and tolylene diisocyanate. Moreover, these can also be used in combination.
 鎖伸長剤としては、好ましくはエチレンジアミンやメチレンビスアニリン等のアミン系の鎖伸長剤、およびエチレングリコール等のジオール系の鎖伸長剤を用いることができる。また、ポリイソシアネートと水を反応させて得られるポリアミンを鎖伸長剤として用いることもできる。 As the chain extender, preferably amine chain extenders such as ethylenediamine and methylenebisaniline, and diol chain extenders such as ethylene glycol can be used. Moreover, a polyamine obtained by reacting polyisocyanate and water can also be used as a chain extender.
 前記のポリウレタン系樹脂は、耐水性、耐摩耗性および耐加水分解性等を向上させる目的で架橋剤を併用することができる。架橋剤は、ポリウレタン系樹脂に対し、第3成分として添加する外部架橋剤でもよく、またポリウレタン分子構造内に予め架橋構造となる反応点を導入する内部架橋剤も用いることができる。ポリウレタン分子構造内により均一に架橋点を形成することができ、柔軟性の減少を軽減できるという観点から、内部架橋剤を用いることが好ましい。 The above-mentioned polyurethane resin can be used in combination with a crosslinking agent for the purpose of improving water resistance, abrasion resistance, hydrolysis resistance, etc. The crosslinking agent may be an external crosslinking agent that is added as a third component to the polyurethane resin, or an internal crosslinking agent that introduces reactive points that form a crosslinked structure into the polyurethane molecular structure in advance. It is preferable to use an internal crosslinking agent from the viewpoint that crosslinking points can be formed more uniformly within the polyurethane molecular structure and reduction in flexibility can be alleviated.
 架橋剤としては、イソシアネート基、オキサゾリン基、カルボジイミド基、エポキシ基、メラミン樹脂、およびシラノール基等を有する化合物を用いることができる。 As the crosslinking agent, compounds having isocyanate groups, oxazoline groups, carbodiimide groups, epoxy groups, melamine resins, silanol groups, etc. can be used.
 また、前記の高分子弾性体には、目的に応じて各種の添加剤、例えば、
リン系、ハロゲン系および無機系等の難燃剤、
フェノール系、イオウ系およびリン系等の酸化防止剤、
ベンゾトリアゾール系、ベンゾフェノン系、サリシレート系、シアノアクリレート系およびオキザリックアシッドアニリド系等の紫外線吸収剤、
ヒンダードアミン系やベンゾエート系等の光安定剤、
ポリカルボジイミド等の耐加水分解安定剤、
可塑剤、耐電防止剤、界面活性剤、凝固調整剤および染料等を含有させることができる。
In addition, depending on the purpose, various additives may be added to the polymer elastomer, such as
Phosphorus-based, halogen-based and inorganic flame retardants,
Antioxidants such as phenol, sulfur and phosphorus,
UV absorbers such as benzotriazole type, benzophenone type, salicylate type, cyanoacrylate type and oxalic acid anilide type,
Light stabilizers such as hindered amines and benzoates,
Hydrolysis stabilizers such as polycarbodiimide,
Plasticizers, antistatic agents, surfactants, coagulation regulators, dyes, and the like can be included.
 一般に、人工皮革における高分子弾性体の含有量は、使用する高分子弾性体の種類、高分子弾性体の製造方法および風合や物性を考慮して、適宜調整することができるが、本発明においては、高分子弾性体の含有量は、繊維絡合体の質量に対して10質量%以上60質量%以下であることが好ましい。前記の高分子弾性体の含有量が10質量%以上、より好ましくは15質量%以上、さらに好ましくは20質量%以上であることで、繊維間の高分子弾性体による結合を強めることができ、人工皮革の耐摩耗性を向上させることができる。一方、前記の高分子弾性体の含有量が60質量%以下、より好ましくは45質量%以下、さらに好ましくは40質量%以下であることで、人工皮革をより柔軟性の高いものとすることができる。 Generally, the content of the elastic polymer in artificial leather can be adjusted as appropriate, taking into account the type of elastic polymer used, the method of manufacturing the elastic polymer, and the texture and physical properties. In the above, the content of the polymeric elastic body is preferably 10% by mass or more and 60% by mass or less based on the mass of the fiber entangled body. When the content of the elastic polymer is 10% by mass or more, more preferably 15% by mass or more, even more preferably 20% by mass or more, the bond between the fibers by the elastic polymer can be strengthened, The wear resistance of artificial leather can be improved. On the other hand, when the content of the polymeric elastomer is 60% by mass or less, more preferably 45% by mass or less, still more preferably 40% by mass or less, the artificial leather can be made more flexible. can.
 [人工皮革]
 前記人工皮革は、その少なくとも一方の表面において、意匠効果の観点から、指でなぞったときに立毛の方向が変わることで跡が残る、いわゆる、フィンガーマークが発する程度の立毛長と方向柔軟性を備えている、立毛部を有することが好ましい。
[Artificial leather]
At least one surface of the artificial leather has, from the viewpoint of a design effect, a nape length and directional flexibility to the extent that so-called finger marks are left when traced with a finger due to changes in the direction of the nape. It is preferable to have a raised part.
 より具体的には、前記の立毛部における立毛長は200μm以上1000μm以下であることが好ましく、250μm以上800μm以下であることがより好ましい。立毛長が200μm以上であることで、表面の立毛が高分子弾性体を被覆し、人工皮革の表面への高分子弾性体の露出を抑制することで、均一な発色性を有する積層体を得ることができる。また、人工皮革を構成する不織布に織物が絡合一体化されている場合には、前記の表面の立毛部の立毛長を上記の範囲内とすることで人工皮革の表面付近にある織物の繊維を十分覆うことができるため好ましい。一方、立毛長が800μm以下であることで、意匠効果と耐摩耗性に優れる積層体を得ることができる。 More specifically, the length of the raised hair in the raised portion is preferably 200 μm or more and 1000 μm or less, and more preferably 250 μm or more and 800 μm or less. By having a nap length of 200 μm or more, the nap on the surface covers the polymeric elastic material and suppresses exposure of the polymeric elastic material to the surface of the artificial leather, thereby obtaining a laminate with uniform color development. be able to. In addition, when the woven fabric is entangled and integrated with the nonwoven fabric that constitutes the artificial leather, the length of the raised portion of the raised portion on the surface is set within the above range, so that the fibers of the woven fabric near the surface of the artificial leather are This is preferable because it can sufficiently cover the area. On the other hand, when the nap length is 800 μm or less, a laminate having excellent design effects and wear resistance can be obtained.
 本発明において、人工皮革の表面の立毛部の立毛長は以下の方法により算出されるものとする。
(1) リントブラシ等を用いて人工皮革の前記の表面の立毛部の立毛を逆立てた状態で人工皮革の長手方向に垂直な面の断面方向に厚み1mmの薄切片を作製する。
(2) SEMにて人工皮革の前記の表面の立毛部の断面を90倍で観察する。
(3) 撮影したSEM画像において、人工皮革の前記の表面の立毛部の断面の幅方向に200μm間隔で極細繊維のみからなる層の高さを10点測定する。
(4) 測定した10点の極細繊維のみからなる層の高さについて、平均値(算術平均)を算出する。
In the present invention, the length of the nap of the nap on the surface of the artificial leather is calculated by the following method.
(1) Using a lint brush or the like, prepare a thin section with a thickness of 1 mm in the cross-sectional direction of a plane perpendicular to the longitudinal direction of the artificial leather, with the napped portions on the surface of the artificial leather standing on end.
(2) Observe the cross section of the raised portion on the surface of the artificial leather at 90x magnification using SEM.
(3) In the photographed SEM image, the height of the layer consisting only of ultrafine fibers is measured at 10 points at 200 μm intervals in the width direction of the cross section of the raised portion on the surface of the artificial leather.
(4) Calculate the average value (arithmetic mean) of the height of the layer consisting only of ultrafine fibers at the 10 measured points.
 [表皮層]
 前記表皮層の厚みは、0.3mm以上1.5mm以下であることが好ましい。表皮層の厚みが好ましくは0.3mm以上、より好ましくは0.4mm以上、さらに好ましくは0.5mm以上であることで、接着樹脂が表面から見えにくくなり、良好な品位となる。また、表皮層の厚みが好ましくは1.5mm以下、より好ましくは1.4mm以下、さらに好ましくは1.3mm以下であることで、成形性に優れた、柔軟な人工皮革とすることができる。表皮層の厚みは、以下の方法によって測定・算出されるものとする。
(1) 積層体が立毛を持つ場合は、リントブラシ等を用いて表皮層の表面の立毛部の立毛を寝かせた状態で積層体の長手方向に垂直な面の断面方向に厚み1mmの薄切片を作製する。
(2) SEMにて積層体の表皮層の断面を90倍で観察する。
(3) 撮影したSEM画像において、表皮層の断面の幅方向に200μm間隔で接着樹脂から表面までに長さを10点測定する。
(4) 測定した10点の長さについて、平均値(算術平均)を算出する。
[Epidermal layer]
The thickness of the skin layer is preferably 0.3 mm or more and 1.5 mm or less. When the thickness of the skin layer is preferably 0.3 mm or more, more preferably 0.4 mm or more, and even more preferably 0.5 mm or more, the adhesive resin becomes difficult to see from the surface, resulting in good quality. Further, by setting the thickness of the skin layer to preferably 1.5 mm or less, more preferably 1.4 mm or less, and still more preferably 1.3 mm or less, a flexible artificial leather with excellent moldability can be obtained. The thickness of the epidermal layer shall be measured and calculated by the following method.
(1) If the laminate has naps, use a lint brush or the like to lay down the naps on the surface of the epidermal layer, and then cut a thin section with a thickness of 1 mm in the cross-sectional direction of the plane perpendicular to the longitudinal direction of the laminate. Create.
(2) Observe the cross section of the epidermal layer of the laminate using a SEM at 90x magnification.
(3) In the photographed SEM image, the length from the adhesive resin to the surface is measured at 10 points at 200 μm intervals in the width direction of the cross section of the epidermal layer.
(4) Calculate the average value (arithmetic mean) of the lengths of the 10 measured points.
 [裏張り層]
 前記裏張り層は、織物、編物、不織布、フェルト、および、発泡樹脂シートからなる群から選ばれる少なくとも1種である。
[Backing layer]
The backing layer is at least one selected from the group consisting of woven fabrics, knitted fabrics, nonwoven fabrics, felts, and foamed resin sheets.
 前記裏張り層を構成する樹脂を樹脂Aと呼ぶ。樹脂Aは、上記の裏張り層の態様に応じて適宜選択される。 The resin constituting the backing layer is referred to as resin A. Resin A is appropriately selected depending on the aspect of the above-mentioned backing layer.
 第1態様において、樹脂Aは、熱可塑性樹脂、熱硬化性樹脂のいずれも好ましく採用することができる。一方、第2態様においては、熱可塑性樹脂を採用することが好ましい。 In the first aspect, as the resin A, either a thermoplastic resin or a thermosetting resin can be preferably employed. On the other hand, in the second embodiment, it is preferable to employ thermoplastic resin.
 前記の織物としては、例えば、平織、綾織、朱子織およびそれらの織組織を基本とした各種織物等が挙げられる。この場合の樹脂Aとしては、
ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリテトラメチレンテレフタレート、ポリシクロヘキシレンジメチレンテレフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレ-ト、およびポリエチレン-1,2-ビス(2-クロロフェノキシ)エタン-4,4’-ジカルボキシレート等等のポリエステル、ならびに、これらの共重合体、混合物である、ポリエステル系樹脂、
ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド6,6、ポリアミド6,10、ポリアミド6,T、ポリアミド6,I、ポリアミド9,T、ポリアミド5M,T」等のポリアミド、ならびに、これらの共重合体、混合物である、ポリアミド系樹脂、
ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル等のポリオレフィン、ならびに、これらの共重合体、混合物である、ポリオレフィン系樹脂等の樹脂、
もしくは、これらの各種共重合体、または、これらの混合物、
あるいは、綿、羊毛等の天然繊維を形成する樹脂
が挙げられ、この織物を構成する繊維がこの樹脂Aからなることとなる。
Examples of the above-mentioned textiles include plain weave, twill weave, satin weave, and various textiles based on these weaving structures. In this case, the resin A is
Polyethylene terephthalate, polytrimethylene terephthalate, polytetramethylene terephthalate, polycyclohexylene dimethylene terephthalate, polyethylene-2,6-naphthalene dicarboxylate, and polyethylene-1,2-bis(2-chlorophenoxy)ethane-4 , 4'-dicarboxylate, etc., as well as copolymers and mixtures thereof, polyester resins;
Polyamides such as polyamide 6, polyamide 11, polyamide 12, polyamide 6,6, polyamide 6,10, polyamide 6,T, polyamide 6,I, polyamide 9,T, polyamide 5M,T, and copolymers thereof , a polyamide resin, which is a mixture;
Polyolefins such as polyethylene, polypropylene, polystyrene, and polyvinyl chloride, as well as copolymers and mixtures thereof, such as polyolefin resins;
Or various copolymers of these, or mixtures thereof,
Alternatively, resins that form natural fibers such as cotton and wool can be used, and the fibers that make up this woven fabric are made of resin A.
 前記の編物としては、例えば、経編、トリコット編みで代表される緯編、レース編み、および、それらの編組織を基本とした各種編物等が挙げられる。この場合の樹脂Aとしては、ポリエステル、ポリアミド、ポリオレフィン等の樹脂、もしくは、これらの成分を含む各種共重合体、または、これらの混合物、あるいは、綿、羊毛等の天然繊維を形成する樹脂が挙げられ、この編物を構成する繊維がこの樹脂Aからなることとなる。 Examples of the knitted fabrics include warp knitting, weft knitting typified by tricot knitting, lace knitting, and various knitted fabrics based on these knitting structures. Examples of resin A in this case include resins such as polyester, polyamide, and polyolefin, various copolymers containing these components, mixtures thereof, and resins that form natural fibers such as cotton and wool. The fibers constituting this knitted fabric are made of this resin A.
 前記の不織布としては、例えば、乾式不織布、湿式不織布、あるいは、スパンボンド不織布、バーストファイバー不織布等が挙げられる。この場合の樹脂Aとしては、前記のポリエステル系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂等の樹脂もしくは、これらの各種共重合体、または、これらの混合物、あるいは、綿、羊毛等の天然繊維を形成する樹脂が挙げられ、この不織布を構成する繊維がこの樹脂Aからなることとなる。 Examples of the nonwoven fabric include dry nonwoven fabric, wet nonwoven fabric, spunbond nonwoven fabric, burst fiber nonwoven fabric, and the like. In this case, the resin A may be a resin such as the above-mentioned polyester resin, polyamide resin, or polyolefin resin, or various copolymers thereof, or a mixture thereof, or a natural fiber such as cotton or wool. The fibers constituting this nonwoven fabric are made of this resin A.
 前記のフェルトとしては、例えば、樹脂綿やニードルパンチ不織布等が挙げられる。この場合の樹脂Aとしては、前記のポリエステル系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂等の樹脂、もしくは、これらの成分を含む各種共重合体、または、これらの混合物、あるいは、綿、羊毛等の天然繊維を形成する樹脂が挙げられ、このフェルトを構成する繊維がこの樹脂Aからなることとなる。 Examples of the felt include resin cotton and needle-punched nonwoven fabric. In this case, the resin A may be resins such as the above-mentioned polyester resins, polyamide resins, or polyolefin resins, various copolymers containing these components, or mixtures thereof, or resins such as cotton and wool. Examples include resins that form natural fibers, and the fibers that make up this felt are made of resin A.
 特に第2態様において、前記の織物、編物、不織布、そして、フェルトの樹脂Aとしては、前記のポリエステル系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、もしくは、これらの成分を含む各種共重合体、または、これらの混合物が挙げられる。 In particular, in the second embodiment, the resin A of the woven fabric, knitted fabric, nonwoven fabric, and felt may be the aforementioned polyester resin, polyamide resin, polyolefin resin, or various copolymers containing these components, or , and mixtures thereof.
 前記の発泡樹脂シートとしては、例えば、気泡を内部に持たせた樹脂をシート状に成形したものや樹脂シートに発泡剤を内包させ発泡させたもの等が挙げられる。この場合の樹脂Aとしては、前記のポリオレフィン系樹脂、ポリエステル系樹脂、前記の[高分子弾性体]に記載のポリウレタン系樹脂、さらには、ポリフェニレンスルフィド、ポリカーボネート、ポリエーテルケトン、ポリエーテルイミド等の樹脂、もしくは、これらの成分を含む各種共重合体、または、これらの混合物が挙げられ、この発泡樹脂シートを構成する樹脂が樹脂Aからなることとなる。 Examples of the above-mentioned foamed resin sheets include those formed by molding a resin with air bubbles inside into a sheet shape, and those formed by encapsulating a foaming agent in a resin sheet and foaming them. In this case, the resin A includes the above-mentioned polyolefin resins, polyester-based resins, polyurethane-based resins described in the above [polymer elastomer], polyphenylene sulfide, polycarbonate, polyether ketone, polyether imide, etc. Examples include resins, various copolymers containing these components, and mixtures thereof, and the resin constituting this foamed resin sheet is resin A.
 中でも、表皮層との接着強度、裏張り層の材料強度、積層体の柔軟性を考慮すると、裏張り層が発泡樹脂シートであることが好ましい。このようにすることで、表皮層との接着強度に優れ、そして、柔軟性にも優れる積層体とすることができる。とりわけ、発泡樹脂シートの主成分がポリオレフィン系樹脂であることが好ましい。このようにすることで、材料強度に優れ、かつ、成形性に優れる積層体とすることができる。 Among these, in consideration of the adhesive strength with the skin layer, the material strength of the backing layer, and the flexibility of the laminate, it is preferable that the backing layer is a foamed resin sheet. By doing so, it is possible to obtain a laminate that has excellent adhesive strength with the skin layer and also has excellent flexibility. In particular, it is preferable that the main component of the foamed resin sheet is a polyolefin resin. By doing so, a laminate having excellent material strength and moldability can be obtained.
 裏張り層が発泡樹脂シートである場合において、この発泡樹脂シートの発泡倍率は、2倍以上40倍以下であることが好ましい。発泡倍率が好ましくは2倍以上、より好ましくは5倍以上であることで、柔軟な積層体を得ることができる。一方、発泡倍率が好ましくは40倍以下、より好ましくは30倍以下であることで、接着強度および材料強度が高い積層体が得ることができる。 When the backing layer is a foamed resin sheet, the foaming ratio of the foamed resin sheet is preferably 2 times or more and 40 times or less. When the expansion ratio is preferably 2 times or more, more preferably 5 times or more, a flexible laminate can be obtained. On the other hand, when the expansion ratio is preferably 40 times or less, more preferably 30 times or less, a laminate with high adhesive strength and material strength can be obtained.
 前記裏張り層の厚みは、0.1mm以上5.0mm以下であることが好ましい。表皮層の厚みが好ましくは0.1mm以上、より好ましくは0.3mm以上、さらに好ましくは0.5mm以上であることで、接着強度、材料強度に優れ、成形後の形態保持性に優れる。また、裏張り層の厚みが好ましくは5.0mm以下、より好ましくは4.5mm以下、さらに好ましくは4.0mm以下であることで、成形性に優れた、柔軟な人工皮革とすることができる。 The thickness of the backing layer is preferably 0.1 mm or more and 5.0 mm or less. When the thickness of the skin layer is preferably 0.1 mm or more, more preferably 0.3 mm or more, and still more preferably 0.5 mm or more, the adhesive strength and material strength are excellent, and the shape retention after molding is excellent. Further, by setting the thickness of the lining layer to preferably 5.0 mm or less, more preferably 4.5 mm or less, and even more preferably 4.0 mm or less, it is possible to obtain a flexible artificial leather with excellent moldability. .
 裏張り層の厚みは、以下の方法によって測定・算出されるものとする。
(1) 積層体の長手方向に垂直な面の断面方向に厚み1mmの薄切片を作製する。
(2) SEMにて積層体の裏張り層の断面を50倍で観察する。
(3) 撮影したSEM画像において、裏張り層の断面の幅方向に200μm間隔で接着樹脂から裏面までに長さを10点測定する。
(4) 測定した10点の長さについて、平均値(算術平均)を算出する。
The thickness of the backing layer shall be measured and calculated by the following method.
(1) A thin section with a thickness of 1 mm is prepared in the cross-sectional direction of a plane perpendicular to the longitudinal direction of the laminate.
(2) Observe the cross section of the backing layer of the laminate using SEM at 50x magnification.
(3) In the photographed SEM image, the length is measured at 10 points from the adhesive resin to the back surface at 200 μm intervals in the width direction of the cross section of the backing layer.
(4) Calculate the average value (arithmetic mean) of the lengths of the 10 measured points.
 [接着樹脂]
 第1態様における接着樹脂は、裏張り層の素材や形態に合わせて、例えば、
ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸プロピル、ポリメタクリル酸ブチル、ポリメタクリル酸2-エチルヘキシル、ポリメタクリル酸2-ジメチルアミノエチル、ポリメタクリル酸2-ヒドロキシエチル等のポリアクリル、ならびに、これらの共重合体、混合物である、アクリル系樹脂、
そして、ポリウレタン系樹脂、ポリエステル系樹脂、ポリオレフィン系樹脂、ポリアミド系樹脂、シリコーン、エポキシ樹脂等から適宜、選択することができる。中でも、柔軟性と高温時の接着力とを考慮すると、ポリウレタン系樹脂、または、アクリル系樹脂であることが好ましい。とりわけ、高い接着力、かつ、高い柔軟性をもたらすポリウレタン系樹脂であることがより好ましい。
[Adhesive resin]
The adhesive resin in the first aspect is selected depending on the material and form of the backing layer, for example,
Polyacrylics such as polymethyl methacrylate, polyethyl methacrylate, polypropyl methacrylate, polybutyl methacrylate, poly 2-ethylhexyl methacrylate, poly 2-dimethylaminoethyl methacrylate, poly 2-hydroxyethyl methacrylate, and Acrylic resin, which is a copolymer or mixture of these,
The material can be appropriately selected from polyurethane resins, polyester resins, polyolefin resins, polyamide resins, silicones, epoxy resins, and the like. Among these, in consideration of flexibility and adhesive strength at high temperatures, polyurethane resins or acrylic resins are preferred. In particular, it is more preferable to use a polyurethane resin that provides high adhesive strength and high flexibility.
 ポリウレタン系樹脂としては、湿気硬化型反応性ホットメルト接着剤、イソシアネートや鎖伸長剤を混合する2液型接着剤が挙げられるが、より好ましくは2液型接着剤が操業性の観点からより好ましい。 Examples of the polyurethane resin include moisture-curable reactive hot melt adhesives and two-component adhesives containing isocyanates and chain extenders, but two-component adhesives are more preferred from the viewpoint of operability. .
 前記接着樹脂の厚みは、5μm以上500μm以下であること好ましい。接着樹脂の厚みを好ましくは5μm以上、より好ましくは75μm以上、さらに好ましくは125μm以上であることで、真空成形時のシワを抑制でき、真空成型時のシール性が上昇し、成形型への追従性を向上させることができる。また、接着樹脂の厚みを好ましくは500μm以下、より好ましくは400μm以下、さらに好ましくは300μm以下であることで、より柔軟な積層体とすることができる。 The thickness of the adhesive resin is preferably 5 μm or more and 500 μm or less. By setting the thickness of the adhesive resin to preferably 5 μm or more, more preferably 75 μm or more, and still more preferably 125 μm or more, it is possible to suppress wrinkles during vacuum forming, improve sealing performance during vacuum forming, and follow the mold. can improve sex. Further, by setting the thickness of the adhesive resin to preferably 500 μm or less, more preferably 400 μm or less, and even more preferably 300 μm or less, a more flexible laminate can be obtained.
 なお、接着樹脂の厚みは、以下の方法によって測定・算出されるものとする。
(1) 積層体の任意の場所から長手方向に等間隔に4cm間隔で、3cm四方の試験片を3枚採取する。
(2) 採取した試験片を厚み方向に平行に切断する。
(3) 厚み方向に切断して露出させた断面において、少なくとも前記の接着樹脂等を含む、表皮層と裏張り層との境界部分を、SEMを用いて500倍で観察する。
(4) 極細繊維の断面部500本以上を含む500μm×500μmの領域を定める。ここで、極細繊維の断面部500本以上を含む領域とは、上記(3)で観察している断面において、切断された断面を観測することができる極細繊維の本数が500本以上である領域のことを表す。
(5) 上記の領域内に存在する接着樹脂の厚みの1枚あたりの平均を算出する。ここでいう接着樹脂の厚みとは、図2に例示するように、裏張り層と接着樹脂の境界と接着樹脂の表皮層側の界面(1μm以上の空隙がある領域)への垂線16の長さの最大値を意味する。
Note that the thickness of the adhesive resin shall be measured and calculated by the following method.
(1) Three 3 cm square test pieces are taken from any location on the laminate at equal intervals of 4 cm in the longitudinal direction.
(2) Cut the sampled specimen parallel to the thickness direction.
(3) In the exposed cross section cut in the thickness direction, the boundary portion between the skin layer and the backing layer, which contains at least the adhesive resin, is observed at 500x magnification using an SEM.
(4) Define an area of 500 μm x 500 μm that includes 500 or more microfiber cross sections. Here, the area containing 500 or more ultrafine fibers in the cross section is an area where the number of ultrafine fibers whose cut cross section can be observed in the cross section observed in (3) above is 500 or more. represents.
(5) Calculate the average thickness of the adhesive resin existing in the above area per sheet. The thickness of the adhesive resin here refers to the length of the perpendicular line 16 to the boundary between the backing layer and the adhesive resin and the interface of the adhesive resin on the skin layer side (area with a gap of 1 μm or more). means the maximum value of
 [中間層]
 第1態様は、接着樹脂が厚み1μm以上400μm以下である中間層を含み、該中間層は、織物、編物、不織布、フェルト、フィルム、発泡シート、および、金属膜からなる群から選ばれる少なくとも1種であることが好ましい。図3、4は、接着樹脂が中間層を含む場合の積層体の断面概念図であり、図3が中間層(19)として織物(織物を構成する繊維が(19a))が用いられた場合の断面概念図、図4が中間層(19)としてフィルム(19b)が用いられた場合の断面概念図である。このような積層体であることで、シール性の高い積層体となるため、成形型への追随性を大きく向上させることができ、寸法精度の高い成形品を得ることができる。また、中間層としては、特にシール性が求められる場合には無孔のものを用いることができるが、求められる用途や目的に合わせて、中間層として開孔されてなるものを用いることもできる。さらに、例えば、電子回路やセンサーが設けられてなるものを用いるなどすることで、本発明の積層体にさらなる機能を付与することもできる。
[Middle layer]
The first aspect includes an intermediate layer in which the adhesive resin has a thickness of 1 μm or more and 400 μm or less, and the intermediate layer is made of at least one material selected from the group consisting of woven fabric, knitted fabric, nonwoven fabric, felt, film, foam sheet, and metal film. Preferably it is a seed. 3 and 4 are cross-sectional conceptual diagrams of a laminate when the adhesive resin includes an intermediate layer, and FIG. 3 shows a case where a woven fabric (the fibers constituting the woven fabric are (19a)) is used as the intermediate layer (19). FIG. 4 is a cross-sectional conceptual diagram when a film (19b) is used as the intermediate layer (19). With such a laminate, the laminate has a high sealing property, so that the conformability to the mold can be greatly improved, and a molded product with high dimensional accuracy can be obtained. In addition, a non-porous intermediate layer can be used when particularly sealing performance is required, but an intermediate layer with holes can also be used depending on the required use and purpose. . Furthermore, further functions can be imparted to the laminate of the present invention by, for example, using one provided with an electronic circuit or a sensor.
 前記中間層の厚みは、1μm以上400μm以下であることが好ましい。中間層の厚みについて、前記の範囲の下限が好ましくは1μm以上、より好ましくは10μm以上、さらに好ましくは20μm以上であることで、よりシール性の高い積層体となるため、成形型への追随性を大きく向上させることができる。一方、前記の範囲の上限が好ましくは400μm以下、より好ましくは350μm以下、さらに好ましくは300μm以下であることで、より柔軟性の高い積層体となるため、やはり、成形型への追随性を大きく向上させることができる。 The thickness of the intermediate layer is preferably 1 μm or more and 400 μm or less. Concerning the thickness of the intermediate layer, the lower limit of the above range is preferably 1 μm or more, more preferably 10 μm or more, and still more preferably 20 μm or more, resulting in a laminate with higher sealing properties, so it has better conformability to the mold. can be greatly improved. On the other hand, by setting the upper limit of the above range to preferably 400 μm or less, more preferably 350 μm or less, and even more preferably 300 μm or less, the laminate becomes more flexible, which also greatly improves the conformability to the mold. can be improved.
 また、中間層は、織物、編物、不織布、フェルト、フィルム、発泡シート、および、金属膜からなる群から選ばれる少なくとも1種であることが好ましい。 Furthermore, the intermediate layer is preferably at least one selected from the group consisting of woven fabrics, knitted fabrics, nonwoven fabrics, felts, films, foam sheets, and metal films.
 中間層として織物、編物、不織布、フェルトが選ばれる場合において、それらの素材は、
ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリテトラメチレンテレフタレート、ポリシクロヘキシレンジメチレンテレフタレート、ポリエチレン-2,6-ナフタレンジカルボキシレ-ト、およびポリエチレン-1,2-ビス(2-クロロフェノキシ)エタン-4,4’-ジカルボキシレート等のポリエステル、ならびに、これらの共重合体、混合物である、ポリエステル系樹脂、
ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド6,6、ポリアミド6,10、ポリアミド6,T、ポリアミド6,I、ポリアミド9,T、ポリアミド5M,T等のポリアミド、ならびに、これらの共重合体、混合物である、ポリアミド系樹脂、
ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル等のポリオレフィン、ならびに、これらの共重合体、混合物である、ポリオレフィン系樹脂等の樹脂、
上記の[高分子弾性体]に記載のポリウレタン系樹脂、
ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸プロピル、ポリメタクリル酸ブチル、ポリメタクリル酸2-エチルヘキシル、ポリメタクリル酸2-ジメチルアミノエチル、ポリメタクリル酸2-ヒドロキシエチル等のポリアクリル、ならびに、これらの共重合体、混合物である、アクリル系樹脂、
もしくは、これらの成分を含む各種共重合体、または、これらの混合物、あるいは、綿、羊毛等の天然繊維を形成する樹脂であることがより好ましい。
When woven fabrics, knitted fabrics, non-woven fabrics, and felt are selected as the intermediate layer, these materials are
Polyethylene terephthalate, polytrimethylene terephthalate, polytetramethylene terephthalate, polycyclohexylene dimethylene terephthalate, polyethylene-2,6-naphthalene dicarboxylate, and polyethylene-1,2-bis(2-chlorophenoxy)ethane-4 , 4'-dicarboxylate and other polyester resins, as well as copolymers and mixtures thereof;
Polyamides such as polyamide 6, polyamide 11, polyamide 12, polyamide 6,6, polyamide 6,10, polyamide 6,T, polyamide 6,I, polyamide 9,T, polyamide 5M,T, and copolymers thereof, polyamide resin, which is a mixture;
Polyolefins such as polyethylene, polypropylene, polystyrene, and polyvinyl chloride, as well as copolymers and mixtures thereof, such as polyolefin resins;
The polyurethane resin described in [Elastic polymer] above,
Polyacrylics such as polymethyl methacrylate, polyethyl methacrylate, polypropyl methacrylate, polybutyl methacrylate, poly 2-ethylhexyl methacrylate, poly 2-dimethylaminoethyl methacrylate, poly 2-hydroxyethyl methacrylate, and Acrylic resin, which is a copolymer or mixture of these,
Alternatively, various copolymers containing these components, mixtures thereof, or resins forming natural fibers such as cotton and wool are more preferable.
 前記中間層にフィルムが選ばれる場合において、その素材は、ポリウレタン系樹脂、アクリル系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、ポリオレフィン系樹脂、さらには、シリコーン、エポキシ樹脂、等であることがより好ましい。 When a film is selected for the intermediate layer, the material is preferably polyurethane resin, acrylic resin, polyester resin, polyamide resin, polyolefin resin, more preferably silicone, epoxy resin, etc. .
 前記中間層に発泡シートが選ばれる場合において、それらの素材は、前記のポリオレフィン系樹脂、ポリウレタン系樹脂、ポリエステル系樹脂、さらには、ポリフェニレンスルフィド、ポリカーボネート、ポリエーテルケトン、ポリエーテルイミド等の樹脂、もしくは、これらの成分を含む各種共重合体、または、これらの混合物であることがより好ましい。 When a foam sheet is selected for the intermediate layer, the materials include the polyolefin resins, polyurethane resins, and polyester resins, as well as resins such as polyphenylene sulfide, polycarbonate, polyether ketone, and polyetherimide. Alternatively, various copolymers containing these components or a mixture thereof are more preferable.
 前記中間層に金属膜が選ばれる場合において、その素材は、白金、金、パラジウム、銀、クロム、銅、鉄、タングステン、チタン、タンタル、ニオブ、マンガン、モリブデン、アルミニウム、または、ハフニウム等の金属、もしくは、これらの成分を含む合金やその金属の酸化物等であることがより好ましい。 When a metal film is selected for the intermediate layer, the material is a metal such as platinum, gold, palladium, silver, chromium, copper, iron, tungsten, titanium, tantalum, niobium, manganese, molybdenum, aluminum, or hafnium. Alternatively, it is more preferable to use an alloy containing these components or an oxide of the metal.
 [表皮層と裏張り層との融着]
 第2態様においては、接着樹脂を用いた第1態様とは異なり、表皮層と、裏張り層と、が接着樹脂を介することなく(直接)積層されてなる。このような構成は、後述するように、例えば、裏張り層の一方の表面を加熱して樹脂Aを溶融させ、表皮層と融着させる、フレームラミネート法と呼ばれる方法で形成することができる。
[Fusion between the skin layer and the lining layer]
In the second embodiment, unlike the first embodiment in which an adhesive resin is used, the skin layer and the backing layer are laminated (directly) without using an adhesive resin. Such a structure can be formed, for example, by a method called a flame lamination method, in which one surface of the backing layer is heated to melt the resin A and fused to the skin layer, as will be described later.
 [積層体]
 本発明の積層体は、厚み方向に平行な断面中の、少なくとも前記の接着樹脂、あるいは、前記の樹脂A(以降、この「前記の接着樹脂、あるいは、前記の樹脂A」を「前記の接着樹脂等」等と略記することがある)と、前記の表皮層の極細繊維の断面を500本以上と、を含む500μm×500μmの領域において、15本以上240本以下の前記の表皮層の極細繊維の外周全てが前記の接着樹脂等で覆われている。
[Laminated body]
In the laminate of the present invention, at least the adhesive resin or the resin A (hereinafter referred to as "the adhesive resin or the resin A") in a cross section parallel to the thickness direction. 15 to 240 ultrafine fibers in the skin layer in an area of 500 μm x 500 μm including 500 or more microfine fibers in the skin layer (sometimes abbreviated as "resin, etc.") The entire outer periphery of the fibers is covered with the above-mentioned adhesive resin or the like.
 本発明における前記の接着樹脂等で覆われている極細繊維の本数が、15本以上、好ましくは30本以上、より好ましくは45本以上であることにより、高温時の接着強度が良好なものとすることができる。一方、前記の極細繊維の本数が、240本以下、好ましくは220本以下、より好ましくは200本以下であることにより、積層体の柔軟性を良好なものとすることができる。 In the present invention, the number of ultrafine fibers covered with the adhesive resin etc. is 15 or more, preferably 30 or more, more preferably 45 or more, so that the adhesive strength at high temperatures is good. can do. On the other hand, when the number of the ultrafine fibers is 240 or less, preferably 220 or less, more preferably 200 or less, the laminate can have good flexibility.
 極細繊維の外周全てが前記の接着樹脂等で覆われている極細繊維の本数は、以下の方法によって測定・算出されるものとする。
(1) 積層体の任意の場所から長手方向に等間隔に4cm間隔で、3cm四方の試験片を3枚採取する。
(2) 採取した試験片を厚み方向に平行に切断する。
(3) 厚み方向に切断して露出させた断面において、少なくとも前記の接着樹脂等を含む、表皮層と裏張り層との境界部分を、SEMを用いて500倍で観察する。
(4)極細繊維の断面部500本以上を含む500μm×500μmの領域を定める。ここで、極細繊維の断面部500本以上とは、上記断面において、切断された断面を観測することができる極細繊維の本数が500本以上であることを表す。
(5)上記の領域内に存在する極細繊維の外周全てが前記接着樹脂等で覆われている本数の1枚あたりの平均を算出する。ここで、極細繊維の外周全てが前記の接着樹脂等で覆われている本数とは、その極細繊維の外周が全て前記の接着樹脂等に囲まれており、かつ、極細繊維とその接着樹脂等との間に1μm以上の空隙が存在しない極細繊維の本数を意味する。
The number of ultrafine fibers whose entire outer periphery is covered with the adhesive resin or the like described above shall be measured and calculated by the following method.
(1) Three 3 cm square test pieces are taken from any location on the laminate at equal intervals of 4 cm in the longitudinal direction.
(2) Cut the sampled specimen parallel to the thickness direction.
(3) In the exposed cross section cut in the thickness direction, the boundary portion between the skin layer and the backing layer, which contains at least the adhesive resin, is observed at 500x magnification using an SEM.
(4) Define an area of 500 μm x 500 μm that includes 500 or more microfiber cross sections. Here, 500 or more ultrafine fibers in cross section means that the number of ultrafine fibers whose cut cross section can be observed in the above cross section is 500 or more.
(5) Calculate the average number of ultrafine fibers present in the above region whose entire outer periphery is covered with the adhesive resin or the like per fiber. Here, the number of microfibers whose entire periphery is covered with the adhesive resin, etc. means that the entire periphery of the microfiber is surrounded by the adhesive resin, etc., and the microfiber and its adhesive resin, etc. It means the number of ultrafine fibers that do not have a gap of 1 μm or more between them.
 なお、この極細繊維の外周全てが前記の接着樹脂等で覆われている極細繊維の本数は、接着樹脂等の硬化前の粘度、表皮層と裏張り層とを接着する際の圧力、温度等を調整することによって、調整することができる。 The number of ultrafine fibers whose entire outer periphery is covered with the adhesive resin, etc. depends on the viscosity of the adhesive resin before hardening, the pressure and temperature when bonding the skin layer and the lining layer, etc. It can be adjusted by adjusting.
 本発明の積層体は、前記の表皮層の繊維絡合体において、前記の極細繊維からなる極細繊維束を構成してなる場合、前記の領域において、1束以上15束以下の前記の極細繊維束の外周全てが前記の接着樹脂等で覆われており、かつ、その極細繊維束内も前記の接着樹脂等で充填されてなることが好ましい。前記の極細繊維束は、好ましくは1束以上、より好ましくは3束以上、さらに好ましくは5束以上であることで、高温時の接着強度に優れた積層体とすることができる。また、好ましくは15束以下、より好ましくは13束以下、さらに好ましくは10束以下であることで、柔軟性に優れた積層体とすることができる。 In the case where the laminate of the present invention comprises ultrafine fiber bundles made of the ultrafine fibers in the fiber entanglement of the skin layer, the ultrafine fiber bundles of 1 to 15 bundles in the area Preferably, the entire outer periphery of the fiber bundle is covered with the adhesive resin, etc., and the inside of the ultrafine fiber bundle is also filled with the adhesive resin, etc. The number of the ultrafine fiber bundles is preferably one or more, more preferably three or more, and still more preferably five or more, so that a laminate with excellent adhesive strength at high temperatures can be obtained. Furthermore, by setting the number of bundles to preferably 15 or less, more preferably 13 or less, and even more preferably 10 or less, a laminate with excellent flexibility can be obtained.
 ここでいう、「外周全てが前記の接着樹脂等で覆われている極細繊維束」とは、極細繊維束内で最も外周にある極細繊維全てにおいて、その極細繊維の外周が全て前記の接着樹脂等に囲まれており、かつ、極細繊維とその接着樹脂等との間に1μm以上の空隙が存在しないことを指す。 Here, "the ultrafine fiber bundle whose entire outer periphery is covered with the adhesive resin, etc." means that in all of the outermost ultrafine fibers in the ultrafine fiber bundle, the outer periphery of the ultrafine fibers is entirely covered with the adhesive resin, etc. , etc., and there are no voids of 1 μm or more between the ultrafine fibers and their adhesive resin, etc.
 前記の領域において、その外周全てが前記の接着樹脂等で覆われている極細繊維束の数は、以下の方法によって測定・算出されるものとする。
(1) 積層体の任意の場所から長手方向に等間隔に4cm間隔で、3cm四方の試験片を3枚採取する。
(2) 採取した試験片を厚み方向に平行に切断する。
(3) 厚み方向に切断して露出させた断面において、少なくとも前記の接着樹脂等を含む、表皮層と裏張り層との境界部分を、SEMを用いて500倍で観察する。
(4) 極細繊維の断面部500本以上を含む500μm×500μmの領域を定める。ここで、極細繊維の断面部500本以上とは、上記断面において、切断された断面を観測することができる極細繊維の本数が500本以上であることを表す。
(5)上記の領域内に存在する外周全てが前記の接着樹脂等で覆われている極細繊維束の本数の1枚あたりの平均を算出する。
In the above region, the number of ultrafine fiber bundles whose entire outer periphery is covered with the above adhesive resin etc. shall be measured and calculated by the following method.
(1) Three 3 cm square test pieces are taken from any location on the laminate at equal intervals of 4 cm in the longitudinal direction.
(2) Cut the sampled specimen parallel to the thickness direction.
(3) In the exposed cross section cut in the thickness direction, the boundary portion between the skin layer and the backing layer, which contains at least the adhesive resin, is observed at 500x magnification using an SEM.
(4) Define an area of 500 μm x 500 μm that includes 500 or more microfiber cross sections. Here, 500 or more ultrafine fibers in cross section means that the number of ultrafine fibers whose cut cross section can be observed in the above cross section is 500 or more.
(5) Calculate the average number of ultrafine fiber bundles that exist within the above region and whose entire outer periphery is covered with the adhesive resin or the like.
 なお、極細繊維束が密集していて、極細繊維束の境界が確認しにくく、本数を計算しにくい箇所が存在する場合には、まず、その密集している箇所以外の部分に存在する極細繊維束を使って、前記の方法により極細繊維束1束を構成する極細繊維の数を算出し、極細繊維束が密集している箇所に存在する極細繊維の数(本)を、極細繊維束1束を構成する極細繊維の数(本/束)で割り、得られた数値(束)の小数点以下を切り捨てることで算出することとする。 In addition, if there are places where the ultrafine fiber bundles are densely packed, making it difficult to confirm the boundaries of the ultrafine fiber bundles and making it difficult to calculate the number, first check the ultrafine fibers that exist in areas other than the densely packed areas. Using the bundle, calculate the number of ultrafine fibers constituting one ultrafine fiber bundle using the method described above, and calculate the number of ultrafine fibers (pieces) present in the area where the ultrafine fiber bundles are densely packed. It is calculated by dividing by the number of ultrafine fibers (strands/bundle) that make up the bundle, and rounding down the resulting number (bundle) to the nearest whole number.
 本発明の積層体は、前記の接着樹脂等の、前記の表皮層への充填深さが5μm以上95μm未満であることが好ましい。この充填深さが、好ましくは5μm以上、より好ましくは15μm以上、さらに好ましくは25μm以上であることにより、高温時の接着強度に優れた積層体とすることができる。一方、好ましくは95μm未満、より好ましくは85μm以下、さらに好ましくは75μm以下であることで、柔軟性に優れた積層体とすることができる。 In the laminate of the present invention, it is preferable that the filling depth of the adhesive resin or the like into the skin layer is 5 μm or more and less than 95 μm. By setting the filling depth to preferably 5 μm or more, more preferably 15 μm or more, and even more preferably 25 μm or more, a laminate with excellent adhesive strength at high temperatures can be obtained. On the other hand, if the thickness is preferably less than 95 μm, more preferably 85 μm or less, and even more preferably 75 μm or less, a laminate with excellent flexibility can be obtained.
 この充填深さは、以下の方法によって測定・算出されるものとする。
(1) 積層体の任意の場所から長手方向に等間隔に4cm間隔で、3cm四方の試験片を3枚採取する。
(2) 採取した試験片を厚み方向に平行に切断する。
(3) 厚み方向に切断して露出させた断面において、少なくとも前記の接着樹脂等を含む、表皮層と裏張り層との境界部分を、SEMを用いて500倍で観察する。
(4) 極細繊維の断面部500本以上を含む500μm×500μmの領域を定める。ここで、極細繊維の断面部500本以上を含む領域とは、上記(3)で観察している断面において、切断された断面を観測することができる極細繊維の本数が500本以上である領域のことを表す。
(5) 上記の領域内に存在する接着樹脂等の充填深さの1枚あたりの平均を算出する。ここでいう充填深さとは、図2に例示するように、外周すべてが前記接着樹脂で覆われている極細繊維のうち、最も裏張り層5に近い極細繊維17の中心から、積層体の表皮層側の表面に向かって垂直な方向に沿って、1μm以上の空隙があるところまでの距離18の最大値を意味する。
This filling depth shall be measured and calculated by the following method.
(1) Three 3 cm square test pieces are taken from any location on the laminate at equal intervals of 4 cm in the longitudinal direction.
(2) Cut the sampled specimen parallel to the thickness direction.
(3) In the exposed cross section cut in the thickness direction, the boundary portion between the skin layer and the backing layer, which contains at least the adhesive resin, is observed at 500x magnification using an SEM.
(4) Define an area of 500 μm x 500 μm that includes 500 or more microfiber cross sections. Here, the area containing 500 or more ultrafine fibers in the cross section is an area where the number of ultrafine fibers whose cut cross section can be observed in the cross section observed in (3) above is 500 or more. represents.
(5) Calculate the average filling depth of the adhesive resin, etc., present in the above area per sheet. The filling depth here means, as illustrated in FIG. It means the maximum value of the distance 18 along the direction perpendicular to the layer side surface to the point where there is a void of 1 μm or more.
 本発明の積層体は、家具、椅子および壁材や、自動車、電車および航空機等の車輛室内における座席、天井および内装等の表皮材として非常に優美な外観を有する内装材、シャツ、ジャケット、カジュアルシューズ、スポーツシューズ、紳士靴および婦人靴等の靴のアッパー、トリム等、鞄、ベルト、財布等、およびそれらの一部に使用した衣料用資材、ワイピングクロス、研磨布およびCDカーテン等の工業用資材として好適に用いることができる。 The laminate of the present invention can be used as a surface material for furniture, chairs, wall materials, seats, ceilings, and interior interiors of vehicles such as automobiles, trains, and airplanes, interior materials having a very elegant appearance, shirts, jackets, and casual wear. Shoes, sports shoes, men's shoes, women's shoes, uppers, trims, etc., bags, belts, wallets, etc., and clothing materials used for some of them, wiping cloths, polishing cloths, CD curtains, etc. for industrial use It can be suitably used as a material.
 このような用途に用いることが好適な本発明の積層体は、表皮層と裏張り層との剥離強度が10N/25mm以上であることが好ましく、20N/25mm以上であることがより好ましい。このようにすることで、表皮層と裏張り層との間で実使用時の時間経過で層間剥離が起こることを防ぐことができる。 The laminate of the present invention, which is suitable for use in such applications, preferably has a peel strength between the skin layer and the backing layer of 10 N/25 mm or more, more preferably 20 N/25 mm or more. By doing so, it is possible to prevent delamination between the skin layer and the lining layer over time during actual use.
 なお、表皮層と裏張り層との剥離強度は、JIS K6854-2:1999「接着剤-はく離接着強さ試験方法」に準じて測定した、180°で剥離した際の表皮層と裏張り層との剥離強度をいう。 The peel strength between the skin layer and the backing layer was measured according to JIS K6854-2:1999 "Adhesives - Peeling adhesive strength test method", and the peel strength between the skin layer and the backing layer was measured when peeled at 180°. Refers to the peel strength between
 また、本発明の積層体は、表皮層と裏張り層との耐熱クリープ性(thermal creep resistance)が、15mm/24h以下であることが好ましく、10mm/24h以下であることがより好ましい。このようにすることで、表皮層と裏張り層との間で自動車内等の高温下での時間経過で層間剥離が起こることを防ぐことができる。 Furthermore, in the laminate of the present invention, the thermal creep resistance between the skin layer and the lining layer is preferably 15 mm/24 h or less, more preferably 10 mm/24 h or less. By doing so, it is possible to prevent delamination between the skin layer and the lining layer over time at high temperatures such as inside an automobile.
 なお、表皮層と裏張り層との耐熱クリープ性とは、JIS K6859:1994「接着剤のクリープ破壊試験方法」に準じて測定した高温下での耐クリープ性であり、180°で剥離した際の単位時間あたりの表皮層と裏張り層との剥離長さをいう。 The heat creep resistance of the skin layer and the backing layer is the creep resistance at high temperatures measured according to JIS K6859:1994 "Creep rupture test method for adhesives", and when peeled at 180° This refers to the length of peeling between the skin layer and the lining layer per unit time.
 さらに、本発明の積層体は、特に積層体の表皮層の縦方向の剥離後剛軟度が40mm以上300mm以下であることが好ましい。表皮層の縦方向の剥離後剛軟度が好ましくは40mm以上、より好ましくは50mm以上、さらに好ましくは55mm以上であることで、より高強度の積層体の表皮層とすることができる。一方、表皮層の縦方向の剥離後剛軟度が好ましくは300mm以下、より好ましくは250mm以下、さらに好ましくは200mm以下であることで、より柔軟性のある積層体とすることができる。 Further, in the laminate of the present invention, it is particularly preferable that the skin layer of the laminate has a bending strength after peeling in the longitudinal direction of 40 mm or more and 300 mm or less. By setting the longitudinal stiffness of the skin layer after peeling to be preferably 40 mm or more, more preferably 50 mm or more, and still more preferably 55 mm or more, the skin layer of the laminate can have higher strength. On the other hand, by setting the longitudinal bending resistance of the skin layer after peeling to be preferably 300 mm or less, more preferably 250 mm or less, and even more preferably 200 mm or less, a more flexible laminate can be obtained.
 なお、本発明において、積層体の表皮層の縦方向の剥離後剛軟度とは、以下の方法によって測定・算出されるものとする。
(1) 積層体の任意の場所から縦方向へ30×2cmの試験片を5枚採取する。
(2) 積層体の表皮層と裏張り層の界面をハサミ等で切断する。
(3) 表皮層側をJIS L1096:2010「織物および編物の生地試験方法」の8.21「剛軟度」の8.21.1に記載のA法(45°カンチレバー法)に基づき測定し、5枚の算術平均値(mm)を算出し、小数点以下第1位を四捨五入する。
In addition, in the present invention, the bending strength after peeling in the vertical direction of the skin layer of the laminate is measured and calculated by the following method.
(1) Take five test pieces of 30 x 2 cm in the vertical direction from any location on the laminate.
(2) Cut the interface between the skin layer and lining layer of the laminate using scissors or the like.
(3) The skin layer side was measured based on method A (45° cantilever method) described in 8.21.1 of 8.21 “Bending resistance” of JIS L1096:2010 “Fabric testing methods for woven and knitted fabrics”. , calculate the arithmetic mean value (mm) of the five sheets, and round to the first decimal place.
 本発明の表皮層における「縦方向」とは、表皮層の製造工程において、表皮層に対して起毛処理を行った方向のことをいう。起毛処理を行った方向の探索方法としては、指でなぞった時の目視確認やSEM撮影等人工皮革の構成成分に応じて適宜採用することができる。すなわち、指でなぞった際、立毛繊維を寝かせたり、立たせたりすることができる方向が縦方向となる。また、指でなぞった表皮層の表面をSEM撮影することで寝た立毛繊維の向きが最も多い方向が縦方向となる。 The "longitudinal direction" in the skin layer of the present invention refers to the direction in which the napping treatment is performed on the skin layer in the manufacturing process of the skin layer. As a method for searching for the direction in which the napping treatment has been performed, it is possible to employ appropriate methods depending on the constituent components of the artificial leather, such as visual confirmation when tracing with a finger or SEM photography. In other words, the vertical direction is the direction in which the napped fibers can be laid down or stood up when traced with a finger. Further, by taking a SEM image of the surface of the epidermis layer traced with a finger, the direction in which the lying napped fibers are most oriented is determined to be the longitudinal direction.
 [積層体の製造方法]
 次に、本発明に係る積層体の製造方法の一例を挙げるが、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
[Method for manufacturing laminate]
Next, an example of a method for manufacturing a laminate according to the present invention will be described, but various changes can be made without departing from the gist of the present invention.
 (1) 表皮層の形成
 本発明の表皮層は、前記の人工皮革であるが、この人工皮革については、以下の工程を含むように形成することが好ましい。
工程(1-1): 極細繊維発現型繊維を形成する工程
工程(1-2): 繊維質基材を製造する工程
工程(1-3): 極細繊維を形成する工程
工程(1-4): 高分子弾性体を付与する工程
工程(1-5): シート状物を半裁し、研磨する工程
工程(1-6): 生機を染色する工程
以下に、各工程の詳細について説明する。
(1) Formation of the skin layer The skin layer of the present invention is the above-mentioned artificial leather, and it is preferable to form this artificial leather so as to include the following steps.
Step (1-1): Step (1-2) of forming ultrafine fiber-expressing fibers Step (1-3) of producing a fibrous base material Step (1-4) of forming ultrafine fibers : Step (1-5) of applying a polymeric elastic body: Step (1-6) of cutting the sheet-like material in half and polishing it: Step (1-6) of dyeing the gray fabric.The details of each step will be explained below.
 <極細繊維発現型繊維を形成する工程>
 本工程は、熱可塑性樹脂からなる島部を形成し、易溶解性ポリマーが海部を形成する海島型複合構造を有する極細繊維発現型繊維を製造するものである。
<Step of forming ultrafine fiber expression type fiber>
This step is to produce ultrafine fiber-expressing fibers having a sea-island composite structure in which island portions are formed from a thermoplastic resin and sea portions are formed from an easily soluble polymer.
 極細繊維発現型繊維としては、溶剤溶解性の異なる熱可塑性樹脂を海部(易溶解性ポリマー)と島部(難溶解性ポリマー)とし、前記の海部を、溶剤等を用いて溶解除去することによって島部を極細繊維とする海島型複合繊維を用いる。海島型複合繊維を用いることによって、海部を除去する際に島部間、すなわち極細繊維束内部の極細繊維間に適度な空隙を付与することができるため、表皮層の風合いや表面品位の観点から好ましい。 The ultra-fine fiber-expressing fiber is made by using thermoplastic resins with different solvent solubility as a sea part (easily soluble polymer) and an island part (slightly soluble polymer), and by dissolving and removing the sea part using a solvent or the like. A sea-island type composite fiber is used in which the island portions are ultrafine fibers. By using sea-island type composite fibers, when removing the sea areas, it is possible to create appropriate voids between the islands, that is, between the ultra-fine fibers inside the ultra-fine fiber bundle, which improves the texture and surface quality of the skin layer. preferable.
 海島型複合構造を有する極細繊維発生型繊維を紡糸する方法としては、海島型複合用口金を用い、海部と島部を相互配列して紡糸する高分子相互配列体を用いる方式が、均一な単繊維繊度の極細繊維が得られるという観点から好ましい。 As a method for spinning ultrafine fiber-generating fibers having a sea-island composite structure, a method using a polymer mutual array in which a sea-island composite spinneret is used and spun by arranging sea parts and island parts mutually is a method that produces uniform fibers. This is preferable from the viewpoint that ultrafine fibers with a fineness of fibers can be obtained.
 海島型複合繊維の海部としては、ポリエチレン、ポリプロピレン、ポリスチレン、ナトリウムスルホイソフタル酸やポリエチレングリコール等を共重合した共重合ポリエステル、およびポリ乳酸等を用いることができるが、製糸性や易溶出性等の観点から、ポリスチレンや共重合ポリエステルが好ましく用いられる。 As the sea part of the sea-island type composite fiber, polyethylene, polypropylene, polystyrene, copolymerized polyester copolymerized with sodium sulfoisophthalic acid, polyethylene glycol, etc., and polylactic acid can be used. From this point of view, polystyrene and copolymerized polyester are preferably used.
 本発明の積層体の製造方法において、海島型複合繊維を用いる場合には、その島部の強度が、2.5cN/dtex以上である海島型複合繊維を用いることが好ましい。島部の強度が2.5cN/dtex以上、より好ましくは2.8cN/dtex以上、さらに好ましくは3.0cN/dtex以上であることによって、積層体の耐摩耗性が向上するとともに繊維の脱落に伴う摩擦堅牢度の低下を抑制することができる。 In the method for producing a laminate of the present invention, when using a sea-island composite fiber, it is preferable to use a sea-island composite fiber whose island portion has a strength of 2.5 cN/dtex or more. By setting the strength of the island portion to 2.5 cN/dtex or more, more preferably 2.8 cN/dtex or more, and still more preferably 3.0 cN/dtex or more, the wear resistance of the laminate is improved and fibers are prevented from falling off. It is possible to suppress the accompanying decrease in fastness to friction.
 本発明において、海島型複合繊維の島部の強度は以下の方法により算出されるものとする。
(i) 長さ20cmの海島型複合繊維を10本束ねる。
(ii) (i)の試料から海部を溶解除去したのちに、風乾する。
(iii) JIS L1013:2010「化学繊維フィラメント糸試験方法」の「8.5 引張強さ及び伸び率」の「8.5.1 標準時試験」にて、つかみ長さ5cm、引張速度5cm/分、荷重2Nの条件にて10回試験する(N=10)。
(iv) (iii)で得られた試験結果の算術平均値(cN/dtex)を小数点以下第二位で四捨五入して得られる値を、海島型複合繊維の島部の強度とする。
In the present invention, the strength of the island portion of the sea-island composite fiber is calculated by the following method.
(i) Bundle 10 sea-island composite fibers with a length of 20 cm.
(ii) After dissolving and removing the sea area from the sample in (i), air dry it.
(iii) JIS L1013:2010 "Chemical Fiber Filament Yarn Test Methods""8.5 Tensile Strength and Elongation""8.5.1 Standard Time Test" with a grip length of 5 cm and a tensile speed of 5 cm/min. , the test is carried out 10 times under the condition of a load of 2N (N=10).
(iv) The value obtained by rounding off the arithmetic mean value (cN/dtex) of the test results obtained in (iii) to the second decimal place is the strength of the island portion of the sea-island composite fiber.
 <繊維質基材を製造する工程>
 本工程は、紡出された極細繊維発現型繊維を開繊したのち、クロスラッパー等により繊維ウェブとし、絡合させることにより不織布を得るものである。繊維ウェブを絡合させ不織布を得る方法としては、ニードルパンチ処理やウォータージェットパンチ処理等を用いることができる。
<Process of manufacturing fibrous base material>
In this step, after opening the spun ultrafine fiber-expressing fibers, the fibers are made into a fiber web using a cross wrapper or the like, and the fibers are entangled to obtain a nonwoven fabric. As a method of entangling fiber webs to obtain a nonwoven fabric, needle punching, water jet punching, or the like can be used.
 不織布の形態としては、前述のように短繊維不織布でも長繊維不織布でも用いることができるが、短繊維不織布であると、積層体の厚さ方向を向く繊維が長繊維不織布に比べて多くなり、起毛した際の積層体の表皮層の表面に高い緻密感を得ることができる。 As for the form of the nonwoven fabric, as mentioned above, either short fiber nonwoven fabric or long fiber nonwoven fabric can be used, but short fiber nonwoven fabric has more fibers oriented in the thickness direction of the laminate than long fiber nonwoven fabric. A highly dense feeling can be obtained on the surface of the skin layer of the laminate when raised.
 不織布として短繊維不織布とする場合には、得られた極細繊維発現型繊維に、好ましくは捲縮加工を施し、所定長にカット加工して原綿を得たのちに、開繊、積層、絡合させることで短繊維不織布を得る。捲縮加工やカット加工は、公知の方法を用いることができる。 When producing a short fiber nonwoven fabric as a nonwoven fabric, the obtained microfiber-expressing fiber is preferably crimped and cut into a predetermined length to obtain raw cotton, which is then spread, laminated, and entangled. By doing this, a short fiber nonwoven fabric is obtained. A known method can be used for crimping and cutting.
 さらに、積層体の表皮層が織物を含む場合には、得られた不織布と織物を積層し、そして絡合一体化させる。不織布と織物の絡合一体化には、不織布の片面もしくは両面に織物を積層するか、あるいは複数枚の不織布ウェブの間に織物を挟んだ後に、ニードルパンチ処理やウォータージェットパンチ処理等によって不織布と織物の繊維同士を絡ませることができる。 Further, when the skin layer of the laminate includes a woven fabric, the obtained nonwoven fabric and woven fabric are laminated and entangled to be integrated. To entangle and integrate the nonwoven fabric and the woven fabric, the woven fabric is laminated on one or both sides of the nonwoven fabric, or the woven fabric is sandwiched between multiple nonwoven fabric webs, and then the nonwoven fabric is separated by a needle punching process, a water jet punching process, etc. It can entangle the fibers of textiles.
 ニードルパンチ処理あるいはウォータージェットパンチ処理後の極細繊維発現型繊維からなる不織布の見掛け密度は、0.15g/cm以上0.45g/cm以下とすることが好ましい。見掛け密度を好ましくは0.15g/cm以上とすることにより、人工皮革が十分な形態安定性と寸法安定性が得られる。一方、見掛け密度を好ましくは0.45g/cm以下とすることにより、高分子弾性体を付与するための十分な空間を維持することができる。 It is preferable that the apparent density of the nonwoven fabric made of microfiber-developed fibers after needle punching or water jet punching is 0.15 g/cm 3 or more and 0.45 g/cm 3 or less. By setting the apparent density to preferably 0.15 g/cm 3 or more, the artificial leather can have sufficient morphological stability and dimensional stability. On the other hand, by setting the apparent density to preferably 0.45 g/cm 3 or less, sufficient space for providing the polymer elastic body can be maintained.
 前記の不織布には、繊維の緻密感向上のために、温水やスチームによる熱収縮処理を施すことも好ましい態様である。 It is also a preferable embodiment to subject the nonwoven fabric to a heat shrinkage treatment using hot water or steam in order to improve the dense feel of the fibers.
 次に、前記の不織布に水溶性樹脂の水溶液を含浸し、乾燥することにより水溶性樹脂を付与することもできる。不織布に水溶性樹脂を付与することにより、繊維が固定されて寸法安定性が向上される。 Next, the water-soluble resin can be applied by impregnating the nonwoven fabric with an aqueous solution of the water-soluble resin and drying it. By adding a water-soluble resin to the nonwoven fabric, fibers are fixed and dimensional stability is improved.
 <極細繊維を形成する工程>
 本工程では、得られた繊維質基材を溶剤で処理して、単繊維の平均単繊維直径が1μm以上10μm以下の極細繊維を発現させる。
<Process of forming ultrafine fibers>
In this step, the obtained fibrous base material is treated with a solvent to develop ultrafine fibers having an average single fiber diameter of 1 μm or more and 10 μm or less.
 極細繊維の発現処理は、溶剤中に海島型複合繊維からなる不織布を浸漬させて、海島型複合繊維の海部を溶解除去することにより行うことができる。 The ultrafine fiber development treatment can be performed by immersing a nonwoven fabric made of sea-island composite fibers in a solvent and dissolving and removing the sea portion of the sea-island composite fibers.
 極細繊維発現型繊維が海島型複合繊維の場合、海部を溶解除去する溶剤としては、海部がポリエチレン、ポリプロピレンおよびポリスチレンの場合には、トルエンやトリクロロエチレン等の有機溶剤を用いることができる。また、海部が共重合ポリエステルやポリ乳酸の場合には、水酸化ナトリウム等のアルカリ水溶液を用いることができる。また、海部が水溶性熱可塑性ポリビニルアルコール系樹脂の場合には、熱水を用いることができる。 When the ultrafine fiber-expressing fiber is a sea-island composite fiber, the solvent for dissolving and removing the sea portion can be an organic solvent such as toluene or trichloroethylene when the sea portion is polyethylene, polypropylene, or polystyrene. Moreover, when the sea part is copolymerized polyester or polylactic acid, an alkaline aqueous solution such as sodium hydroxide can be used. Moreover, when the sea part is a water-soluble thermoplastic polyvinyl alcohol resin, hot water can be used.
 <高分子弾性体を付与する工程>
 本工程では、極細繊維または極細繊維発現型繊維を主構成成分とする繊維質基材に高分子弾性体の溶液を含浸し固化して、高分子弾性体を付与する。高分子弾性体を不織布に固定する方法としては、高分子弾性体の溶液を不織布(繊維絡合体)に含浸させた後、湿式凝固または乾式凝固する方法があり、使用する高分子弾性体の種類により適宜これらの方法を選択することができる。
<Process of imparting polymer elastic body>
In this step, a fibrous base material containing ultrafine fibers or ultrafine fiber-expressing fibers as a main component is impregnated with a solution of an elastomer polymer and solidified to provide an elastomer polymer. Methods for fixing an elastic polymer to a nonwoven fabric include a method of impregnating a solution of the elastic polymer into a nonwoven fabric (fiber entangled body) and then wet coagulation or dry coagulation. These methods can be selected as appropriate.
 高分子弾性体としてポリウレタンを付与させる際に用いられる溶媒としては、N,N’-ジメチルホルムアミドやジメチルスルホキシド等が好ましく用いられる。また、ポリウレタンを水中にエマルジョンとして分散させた水分散型ポリウレタン液を用いてもよい。 As the solvent used when applying polyurethane as the polymeric elastomer, N,N'-dimethylformamide, dimethyl sulfoxide, etc. are preferably used. Alternatively, a water-dispersed polyurethane liquid in which polyurethane is dispersed in water as an emulsion may be used.
 なお、繊維質基材への高分子弾性体の付与は、極細繊維発生型繊維から極細繊維を発生させる前に付与してもよいし、極細繊維発生型繊維から極細繊維を発生させる後に付与してもよい。 The polymer elastic material may be applied to the fibrous base material before generating ultrafine fibers from ultrafine fiber generation type fibers, or after generating ultrafine fibers from ultrafine fiber generation type fibers. It's okay.
 <シート状物を半裁し、研磨する工程>
 前記工程を終えて得られる、高分子弾性体が付与されてなるシート状物は、製造効率の観点から、厚み方向に半裁して2枚のシート状物とすることも好ましい態様である。
<Process of cutting sheet material in half and polishing>
From the viewpoint of production efficiency, it is also a preferred embodiment that the sheet-like product obtained by completing the above step and provided with the polymer elastic body is cut in half in the thickness direction to form two sheet-like products.
 さらに、前記の高分子弾性体が付与されてなるシート状物あるいは半裁されたシート状物の表面に、起毛処理を施すことができる。起毛処理は、サンドペーパーやロールサンダー等を用いて、研削する方法等により施し、生機を得ることができる。起毛処理はこのシート状物の片側表面のみに施しても、両面に施すこともできる。 Furthermore, the surface of the sheet-like article or the sheet-like article cut in half to which the above-described polymeric elastic body is applied can be subjected to a napping treatment. The raising treatment can be performed by grinding using sandpaper, a roll sander, etc. to obtain a gray fabric. The napping treatment can be applied to only one surface of this sheet-like material or to both surfaces.
 起毛処理を施す場合には、起毛処理の前にシリコーンエマルジョン等の滑剤をシート状物の表面へ付与することができる。また、起毛処理の前に帯電防止剤を付与することで、研削によってシート状物から発生した研削粉がサンドペーパー上に堆積しにくくなる。 When performing a napping treatment, a lubricant such as a silicone emulsion can be applied to the surface of the sheet-like article before the napping treatment. Further, by applying an antistatic agent before the napping treatment, grinding powder generated from the sheet material during grinding becomes difficult to accumulate on the sandpaper.
 <生機を染色する工程>
 本発明の人工皮革の製造方法においては、生機を染色処理することがより好ましい。この染色処理としては、例えば、ジッガー染色機や液流染色機を用いた液流染色処理、連続染色機を用いたサーモゾル染色処理等の浸染処理、あるいはローラー捺染、スクリーン捺染、インクジェット方式捺染、昇華捺染および真空昇華捺染等による立毛面への捺染処理等を用いることができる。中でも、柔軟な風合いが得られること等から、品質や品位面から液流染色機を用いることが好ましい。また、前記のとおり、染色処理後の最後には必要に応じて、各種の樹脂仕上げ加工、例えばコーティング等を施すことができる。
<Process of dyeing gray fabric>
In the method for producing artificial leather of the present invention, it is more preferable to dye the gray fabric. Examples of this dyeing process include jet dyeing using a jigger dyeing machine or jet dyeing machine, thermosol dyeing using a continuous dyeing machine, roller printing, screen printing, inkjet printing, and sublimation. Printing treatment on the raised surface by printing, vacuum sublimation printing, etc. can be used. Among these, it is preferable to use a jet dyeing machine from the viewpoint of quality and elegance, since a soft texture can be obtained. Furthermore, as described above, after the dyeing process, various resin finishing treatments such as coating can be applied as necessary.
 <表皮層>
 本発明における表皮層は、その縦方向の剛軟度を40mm以上300mm以下とすることが好ましい。表皮層の縦方向の剛軟度を好ましくは40mm以上、より好ましくは50mm以上、さらに好ましくは55mm以上とすることで、より強度の高い積層体とすることができる。一方、表皮層の縦方向の剛軟度を好ましくは300mm以下、より好ましくは250mm以下、さらに好ましくは200mm以下とすることで、より柔軟性のある積層体とすることができる。
<Epidermal layer>
The skin layer in the present invention preferably has a bending resistance in the longitudinal direction of 40 mm or more and 300 mm or less. By setting the longitudinal bending resistance of the skin layer to preferably 40 mm or more, more preferably 50 mm or more, even more preferably 55 mm or more, a laminate with higher strength can be obtained. On the other hand, by setting the longitudinal bending resistance of the skin layer to preferably 300 mm or less, more preferably 250 mm or less, still more preferably 200 mm or less, a more flexible laminate can be obtained.
 なお、本発明において、表皮層の縦方向の剛軟度とは、以下の方法によって測定・算出されるものとする。
(i) 表皮層の任意の場所から縦方向へ30×2cmの試験片を5枚採取する。
(ii) 表皮層をJIS L1096:2010「織物および編物の生地試験方法」の8.21「剛軟度」の8.21.1に記載のA法(45°カンチレバー法)に基づき測定し、5枚の平均値を算出する。
In addition, in the present invention, the longitudinal bending resistance of the epidermis layer shall be measured and calculated by the following method.
(i) Five test pieces of 30 x 2 cm are taken in the longitudinal direction from any location on the epidermal layer.
(ii) The skin layer was measured based on method A (45° cantilever method) described in 8.21.1 of 8.21 "Bending resistance" of JIS L1096: 2010 "Testing methods for woven and knitted fabrics", Calculate the average value of 5 sheets.
 (2) 積層体の形成
 <積層体を形成する工程1 (第1態様を製造する場合)>
 第1態様を製造する場合には、好ましくは、表皮層と裏張り層とを積層する方法は、裏張り層に接着樹脂となる液状の接着剤または粘着剤を塗工し、表皮層と圧着させる方法を取ることができる。このようにすることで、高温時の接着強度が良好となる。あるいは、裏張り層に接着樹脂となるシート状の接着材を載置し、表皮層と圧着させる方法も取ることをできる。この場合には、接着樹脂の厚みをより均一なものとすることができ、成形させる際、特定の方向に変形が進むことのない、つまり、異方性の少ない積層体とすることができる。なお、接着樹脂が前記の中間層を含む場合には、例えば、裏張り層に液状の接着剤を塗工するなどした後に中間層を積層し、再度接着剤を塗工するなどして表皮層を積層して、これらを圧着させることで積層体を得ることができる。
(2) Formation of laminate <Step 1 of forming a laminate (when manufacturing the first embodiment)>
When manufacturing the first embodiment, the method of laminating the skin layer and the backing layer is preferably such that the backing layer is coated with a liquid adhesive or pressure-sensitive adhesive that serves as an adhesive resin, and the skin layer and the backing layer are bonded together. There are ways to do it. By doing so, the adhesive strength at high temperatures is improved. Alternatively, a method may be adopted in which a sheet-like adhesive material serving as an adhesive resin is placed on the backing layer and pressed against the skin layer. In this case, the thickness of the adhesive resin can be made more uniform, and a laminate that does not undergo deformation in a specific direction during molding, that is, has less anisotropy, can be obtained. In addition, when the adhesive resin includes the above-mentioned intermediate layer, for example, after applying a liquid adhesive to the backing layer, the intermediate layer is laminated, and the adhesive is applied again to form the skin layer. A laminate can be obtained by laminating these and pressing them together.
 接着樹脂となる液状の接着剤または粘着剤を塗工する手法としては、グラビアコート法等や、ナイフコート法等やフラットスクリーンやロータリースクリーン等のスクリーン法等や、スプレーコート法等や、離型紙等に接着剤または粘着剤を塗工し粘着シートを形成した後に裏張り層に転写させる手法等が挙げられる。好ましくは、グラビアコート法を用いることで、操業性良く、かつ、良好な品位を維持した状態で、表皮層と裏張り層との間の高温時の接着強度を向上させることができる。 Methods for applying liquid adhesives or adhesives that serve as adhesive resin include gravure coating, knife coating, screen methods such as flat screen and rotary screen, spray coating, and release paper. For example, a method may be used in which a pressure-sensitive adhesive sheet is formed by applying an adhesive or a pressure-sensitive adhesive to a material, and then the pressure-sensitive adhesive sheet is transferred to a backing layer. Preferably, by using the gravure coating method, it is possible to improve the adhesive strength at high temperatures between the skin layer and the backing layer while maintaining good operability and good quality.
 裏張り層に塗工する際の、液状の接着剤または粘着剤の粘度は、好ましくは1.5Pa・s以上、より好ましくは3.0Pa・s以上とすることで、表皮層内部まで浸透してしまうのを抑制し、充填深さをコントロールすることができる。一方、好ましくは20.0Pa・s以下、より好ましくは15.0Pa・s以下とすることで、接着樹脂が極細繊維束内部へ浸透しやすくなり、表皮層と裏張り層との間の高温時の接着強度が向上する。 The viscosity of the liquid adhesive or pressure-sensitive adhesive when applied to the backing layer is preferably 1.5 Pa·s or more, more preferably 3.0 Pa·s or more, so that it can penetrate into the inside of the skin layer. The filling depth can be controlled. On the other hand, by setting the pressure to preferably 20.0 Pa·s or less, more preferably 15.0 Pa·s or less, the adhesive resin can easily penetrate into the inside of the ultrafine fiber bundle, and at high temperatures between the skin layer and the lining layer. Improves adhesive strength.
 裏張り層に塗工する際の、液状の接着剤または粘着剤の塗工量、あるいは、シート状の接着材を載置する場合の該接着材の目付は、好ましくは15g/m以上、より好ましくは20g/m以上とすることで、高温時の接着強度が良好になる。一方で、好ましくは、500g/m以下、より好ましくは400g/m以下とすることで、積層体の柔軟性が良好となる。 The coating amount of the liquid adhesive or pressure-sensitive adhesive when coating the backing layer, or the basis weight of the adhesive when placing a sheet-like adhesive, is preferably 15 g/m 2 or more, More preferably, by setting it as 20 g/m 2 or more, the adhesive strength at high temperature becomes good. On the other hand, the flexibility of the laminate is improved by preferably setting it to 500 g/m 2 or less, more preferably 400 g/m 2 or less.
 そして、裏張り層の接着剤を塗工などさせた面と表皮材の裏面とを重ね合わせ、圧着することにより積層体を得ることができる。この圧着については、プレス機による圧着、カレンダーロールによる乾熱圧着、もしくは、湿熱圧着が好ましく、連続的に積層体を製造でき、極細繊維の構造が緩くなり接着樹脂が極細繊維束内部に浸透しやすくなることから、高温時の接着強度の観点でカレンダーロールによる湿熱圧着がより好ましい。 Then, a laminate can be obtained by overlapping the adhesive-coated side of the backing layer and the back side of the skin material and pressing them together. For this crimping, crimping with a press, dry heat crimping with a calendar roll, or wet heat crimping is preferable, as it allows continuous production of a laminate, loosens the structure of the microfibers, and allows the adhesive resin to penetrate into the microfiber bundles. From the viewpoint of adhesive strength at high temperatures, wet heat pressure bonding using a calendar roll is more preferable because it facilitates bonding.
 まず、プレス機による圧着を行う際において、金型表面の温度は、40℃以上200℃以下とすることが好ましい。好ましくは40℃、より好ましくは60℃以上とすることで接着樹脂が極細繊維束内部への浸透しやすくなり、高温時の接着強度が向上する。一方、好ましくは200℃以下、より好ましくは140℃以下とすることで、良好な品位の積層体が得られる。 First, when performing pressure bonding using a press machine, the temperature of the mold surface is preferably 40°C or more and 200°C or less. By setting the temperature to preferably 40°C, more preferably 60°C or higher, the adhesive resin can easily penetrate into the inside of the microfiber bundle, and the adhesive strength at high temperatures can be improved. On the other hand, if the temperature is preferably 200°C or lower, more preferably 140°C or lower, a laminate of good quality can be obtained.
 また、この際のプレス機の圧力は、0.1MPa以上10MPa以下とすることが好ましい。好ましくは0.2MPa以上、より好ましくは0.3MPa以上とすることで、接着樹脂が極細繊維束内部への浸透しやすくなり、高温時の接着強度が向上することができる。一方、好ましくは9MPa以下、より好ましくは8MPa以下とすることで、柔軟で良好な品位の積層体することができる。 Further, the pressure of the press at this time is preferably 0.1 MPa or more and 10 MPa or less. By setting the pressure to preferably 0.2 MPa or more, more preferably 0.3 MPa or more, the adhesive resin can easily penetrate into the inside of the ultrafine fiber bundle, and the adhesive strength at high temperatures can be improved. On the other hand, by setting the pressure to preferably 9 MPa or less, more preferably 8 MPa or less, a flexible and high-quality laminate can be obtained.
 そして、乾熱圧着をする場合のカレンダーロールの温度は、40℃以上200℃以下とすることが好ましい。好ましくは40℃、より好ましくは60℃以上とすることで接着樹脂が極細繊維束内部への浸透しやすくなり、高温時の接着強度が向上する。一方、好ましくは200℃以下、より好ましくは140℃以下とすることで、良好な品位の積層体が得られる。 The temperature of the calender roll when performing dry heat compression bonding is preferably 40°C or more and 200°C or less. By setting the temperature to preferably 40°C, more preferably 60°C or higher, the adhesive resin can easily penetrate into the inside of the microfiber bundle, and the adhesive strength at high temperatures can be improved. On the other hand, if the temperature is preferably 200°C or lower, more preferably 140°C or lower, a laminate of good quality can be obtained.
 また、この際のカレンダーロールの圧力は、10N/cm以上1000N/cm以下とすることが好ましい。好ましくは20N/cm以上、より好ましくは30N/cm以上とすることで、接着樹脂が極細繊維束内部への浸透しやすくなり、高温時の接着強度が向上することができる。一方、好ましくは900N/cm以下、より好ましくは800N/cm以下とすることで、柔軟で良好な品位の積層体とすることができる。 Further, the pressure of the calender roll at this time is preferably 10 N/cm or more and 1000 N/cm or less. By setting the pressure to preferably 20 N/cm or more, more preferably 30 N/cm or more, the adhesive resin can easily penetrate into the inside of the ultrafine fiber bundle, and the adhesive strength at high temperatures can be improved. On the other hand, by setting the pressure to preferably 900 N/cm or less, more preferably 800 N/cm or less, a flexible and high-quality laminate can be obtained.
 一方、カレンダーロールにて湿熱圧着を行う場合、スチーム温度は40℃以上が好ましく、より好ましくは60℃以上で接着樹脂が極細繊維束内部への浸透しやすくなり、高温時の接着力が向上する。一方、スチームの温度は100℃以下が好ましく、より好ましくは90℃以下とすることで、良好な品位の積層体が得られる。 On the other hand, when wet heat compression bonding is performed using a calendar roll, the steam temperature is preferably 40°C or higher, more preferably 60°C or higher, so that the adhesive resin can easily penetrate into the inside of the microfiber bundle, improving adhesive strength at high temperatures. . On the other hand, by setting the steam temperature to preferably 100°C or lower, more preferably 90°C or lower, a laminate of good quality can be obtained.
 また、この際のカレンダーロールの圧力は、乾熱圧着をする場合のものと同様である。 Also, the pressure of the calender roll at this time is the same as that for dry heat compression bonding.
 <積層体を形成する工程2 (第2態様を製造する場合)>
 一方、本発明において、本願第2発明の積層体を製造する場合には、表皮層と裏張り層とを積層する方法は、裏張り層の一方の表面を加熱して樹脂Aを溶融させ、表皮層と融着させる、フレームラミネート法と呼ばれる方法を取ることができる。
<Step 2 of forming a laminate (when manufacturing the second embodiment)>
On the other hand, in the present invention, when manufacturing the laminate of the second invention of the present application, the method of laminating the skin layer and the lining layer is to heat one surface of the lining layer to melt the resin A, A method called flame lamination, which fuses it with the skin layer, can be used.
 具体的には、裏張り層の一方の表面を、都市ガスやプロパンガス等を用いるガスバーナーの火炎で炙って溶融させ、溶融状態の裏張り層と表皮層とをカレンダーロールで圧着、積層する方法を採用することができる。ここで、ガスバーナーの火炎は600℃以上とすることで裏張り層を容易に溶融することができ、4000℃以下とすることで裏張り層の炭化を防ぐことができる。 Specifically, one surface of the lining layer is melted by burning it with the flame of a gas burner using city gas, propane gas, etc., and the molten lining layer and skin layer are pressed and laminated using a calendar roll. method can be adopted. Here, the flame of the gas burner can easily melt the backing layer by setting it to 600°C or higher, and can prevent carbonization of the backing layer by setting the flame to 4000°C or lower.
 このカレンダーロールによる圧着については、カレンダーロールによる乾熱圧着、もしくは、湿熱圧着が好ましく、極細繊維の構造が緩くなり接着樹脂が極細繊維束内部に浸透しやすくなることから、高温時の接着強度の観点で湿熱圧着がより好ましい。なお、カレンダーロールによる乾熱圧着、湿熱圧着を行う場合における好ましい温度、圧力の条件については、<積層体を形成する工程1>の条件と同様にすることが好ましい。 Regarding this pressure bonding using a calendar roll, dry heat pressure bonding using a calendar roll or wet heat pressure bonding is preferable, since the structure of the ultrafine fibers becomes loose and the adhesive resin easily penetrates into the inside of the ultrafine fiber bundle. From this point of view, wet heat compression bonding is more preferable. In addition, the preferable temperature and pressure conditions when performing dry heat compression bonding and wet heat compression bonding using a calendar roll are preferably the same as those in <Step 1 of forming a laminate>.
 次に、実施例に基づき本発明を具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。なお、各物性の測定において、特段の記載がないものは、前記の方法に基づいて測定を行ったものである。 Next, the present invention will be specifically explained based on Examples. However, the present invention is not limited to these examples. In addition, in the measurement of each physical property, unless otherwise specified, the measurement was performed based on the method described above.
 [測定方法]
 (1)極細繊維の平均単繊維直径(μm)
 極細繊維の平均単繊維直径の測定には、走査型電子顕微鏡(株式会社キーエンス製「VE-7800」)を用いて、前記の方法によって測定、算出した。
[Measuring method]
(1) Average single fiber diameter of ultrafine fibers (μm)
The average single fiber diameter of the ultrafine fibers was measured and calculated by the method described above using a scanning electron microscope ("VE-7800" manufactured by Keyence Corporation).
 (2)表皮層の繊維絡合体における極細繊維束を構成する極細繊維の数(本)
 表皮層の繊維絡合体における極細繊維束を構成する極細繊維の数の測定には、走査型電子顕微鏡(株式会社キーエンス製「VE-7800」)を用いて、前記の方法によって測定、算出した。
(2) Number of ultrafine fibers constituting the ultrafine fiber bundle in the fiber entanglement of the epidermal layer (number)
The number of ultrafine fibers constituting the ultrafine fiber bundle in the fiber entanglement of the epidermal layer was measured and calculated using a scanning electron microscope ("VE-7800" manufactured by Keyence Corporation) according to the method described above.
 (3)接着樹脂の塗工量(g/m
 接着樹脂の塗工量は、積層体を製造する際、接着樹脂を塗工する前後の裏張り層の質量を測定して行った。具体的には、以下の(3-1)~(3-3)のとおりである。
(3-1)接着樹脂を塗工する前の裏張り層を長手方向で任意の位置で、幅方向中央、右端・左端から10cmのところから10cm×10cmの試験片を計3枚採取し、その質量の数平均値から接着樹脂塗工前の裏張り層の目付(g/m)を算出した。
(3-2)次に、裏張り層に接着樹脂を塗工した後、表皮層と接着させる前の裏張り層についても同様に長手方向で任意の位置で、幅方向中央、右端・左端から10cmのところから10cm×10cmの試験片を計3枚採取し、その質量の数平均値から、接着樹脂塗工後の裏張り層の目付(g/m)を算出した。
(3-3)最後に、接着樹脂塗工後の裏張り層の目付(g/m)と接着樹脂塗工前の裏張り層の目付(g/m)との差を小数点以下第1位で四捨五入して得られた値を接着樹脂の塗工量(g/m)とした。
(3) Coating amount of adhesive resin (g/m 2 )
The amount of adhesive resin applied was determined by measuring the mass of the backing layer before and after applying the adhesive resin when manufacturing the laminate. Specifically, the following are (3-1) to (3-3).
(3-1) Take a total of three test pieces of 10 cm x 10 cm from the center of the width direction and 10 cm from the right and left ends of the backing layer before applying the adhesive resin at any position in the longitudinal direction. The basis weight (g/m 2 ) of the backing layer before coating with the adhesive resin was calculated from the number average value of the mass.
(3-2) Next, after coating the lining layer with adhesive resin, apply the adhesive resin to the lining layer before adhering it to the skin layer. A total of three test pieces of 10 cm x 10 cm were taken from the 10 cm point, and the basis weight (g/m 2 ) of the backing layer after coating with the adhesive resin was calculated from the number average value of the mass.
(3-3) Finally, calculate the difference between the basis weight (g/m 2 ) of the backing layer after coating with adhesive resin and the basis weight (g/m 2 ) of the backing layer before coating with adhesive resin to the nearest decimal point. The value obtained by rounding off to the first place was defined as the coating amount (g/m 2 ) of the adhesive resin.
 (4)接着樹脂の粘度(Pa・s)
 塗工前の接着樹脂をJIS K7117:1999における「プラスチック-液状,乳濁状又は分散状の樹脂―ブルックフィールド形回転粘度計による見掛け粘度の測定方法」に従って、株式会社東京計器製「B型粘度計」を用いて、25℃に保持した状態で粘度を測定した。
(4) Viscosity of adhesive resin (Pa・s)
The adhesive resin before coating was measured using a "B-type viscosity tester manufactured by Tokyo Keiki Co., Ltd." according to "Plastics - Liquid, emulsion or dispersion resin - Measuring method of apparent viscosity using a Brookfield rotational viscometer" in JIS K7117:1999. The viscosity was measured while the temperature was maintained at 25°C.
 (5)裏張り層、接着樹脂の組成
 裏張り層、接着樹脂の組成について、フーリエ変換赤外分光光度計(日本分光株式会社製「FT/IR 4000 series」)を用いて、赤外分光分析により組成を同定した。
(5) Composition of backing layer and adhesive resin The composition of the backing layer and adhesive resin was analyzed by infrared spectroscopy using a Fourier transform infrared spectrophotometer (“FT/IR 4000 series” manufactured by JASCO Corporation). The composition was identified by
 (6)積層体の剥離強度(N/25mm)
 得られた積層体をJIS K6854-2:1999「接着剤-はく離接着強さ試験方法-第2部:180度はく離」に従って測定を行った。なお、測定には、引張試験機(株式会社ボールドウィン製「RTG-1250」)を用い、積層体の試験片寸法は幅25mm、接着長さ20cmで実施した。
(6) Peel strength of laminate (N/25mm)
The obtained laminate was measured in accordance with JIS K6854-2:1999 "Adhesives - Peel adhesion strength test method - Part 2: 180 degree peel". The measurement was carried out using a tensile testing machine ("RTG-1250" manufactured by Baldwin Co., Ltd.), and the test piece size of the laminate was 25 mm in width and 20 cm in adhesive length.
 (7)積層体の耐熱クリープ性(mm)
 JIS K6859:1994「接着剤のクリープ破壊試験方法」に従って、積層体の耐熱クリープ性試験(条件:100℃、200g荷重、24時間、融着幅25mm、融着長さ100mm)における180°ピール試験を行い、剥離した長さを測定した。なお、測定には、定温乾燥機(アズワン株式会社製「DRYING OVEN EO-600V」)、および、分銅として東京硝子器械株式会社製「上皿天びん用分銅 200g」を用いた。ここで、剥離した長さが100mm以上となる場合は、測定不能とした。
(7) Heat resistant creep property of laminate (mm)
180° peel test in heat resistance creep test of laminate (conditions: 100°C, 200g load, 24 hours, fusion width 25mm, fusion length 100mm) in accordance with JIS K6859: 1994 "Adhesive creep rupture test method" The peeled length was measured. In addition, for the measurement, a constant temperature dryer ("DRYING OVEN EO-600V" manufactured by As One Co., Ltd.) and a "weight for precision balance 200 g" manufactured by Tokyo Glass Instruments Co., Ltd. were used as a weight. Here, if the peeled length was 100 mm or more, it was determined that measurement was impossible.
 (8)柔軟性(表皮層の縦方向の剥離後剛軟度(mm))
 長手方向で任意の位置で、幅方向中央、右端・左端から10cmのところから試験片を採取し、前記の方法によって測定を行った。ここで、試験片全長300mmにおいても斜面と接触しなければ、測定不能とした。
(8) Flexibility (bending resistance after peeling in the vertical direction of the epidermal layer (mm))
A test piece was taken at an arbitrary position in the longitudinal direction, from the center in the width direction, 10 cm from the right end and the left end, and measured by the method described above. Here, even if the test piece had a total length of 300 mm, it was considered impossible to measure unless it came into contact with the slope.
 (9)積層体の外観品位(級)
 得られた積層体の表面品位は、人工皮革の評価に熟達した10人による評価で行い、下記の基準で評価して、最も人数の多かった評価結果を採用した。なお、表面品位の評価は、図5に示すように床面21と平行の位置にある検査台22の上に積層体23を置き、目視確認する位置24と積層体23とを結ぶ線25の距離が50cmとなるように、積層体23に対して検査台平面から45°の角度で積層体23を目視確認して判断した。また、検査台には、検査台上面から垂直方向に150cm上部に32Wの蛍光灯26が設置されていた。その蛍光灯26の真下、すなわち、積層体から蛍光灯への垂線27を引くことができる位置に積層体23を置いて表面品位評価を実施した。外観品位は、4級~5級を良好であるものとした。
5級:均一な繊維の立毛があり、繊維の分散状態は良好で、外観は良好であった。
4級:5級と3級の間の評価である。
3級:繊維の立毛状態はやや良くない部分があったが、繊維の分散はあり、外観はまずまず良好であった。
2級:3級と1級の間の評価である。
1級:全体的に繊維の立毛状態、分散状態は非常に悪く、外観は不良であった。
(9) Appearance quality (grade) of laminate
The surface quality of the obtained laminate was evaluated by 10 people who are experts in evaluating artificial leather, and evaluated based on the following criteria, and the evaluation result obtained by the largest number of people was adopted. The surface quality is evaluated by placing the laminate 23 on an inspection table 22 parallel to the floor 21 as shown in FIG. The judgment was made by visually checking the laminate 23 at an angle of 45° from the plane of the inspection table so that the distance was 50 cm. Furthermore, a 32W fluorescent lamp 26 was installed on the examination table 150 cm vertically above the top surface of the examination table. Surface quality evaluation was performed by placing the laminate 23 directly below the fluorescent lamp 26, that is, at a position where a perpendicular line 27 could be drawn from the laminate to the fluorescent lamp. Regarding the appearance quality, grades 4 to 5 were considered good.
Grade 5: Uniform fiber napping, good fiber dispersion, and good appearance.
Grade 4: Rated between grade 5 and grade 3.
Grade 3: Although there were some parts where the nap of the fibers was not good, the fibers were dispersed and the appearance was reasonably good.
2nd grade: An evaluation between 3rd grade and 1st grade.
Grade 1: Overall, the fibers were in a very poor state of napping and dispersion, and the appearance was poor.
 (10)外周全てが前記の接着樹脂等で覆われている、極細繊維の本数(本)、極細繊維束の束数(束)
 厚み方向に平行な断面中の、接着樹脂等と、前記の表皮層の極細繊維の断面を500本以上と、を含む500μm×500μmの領域において、前記の表皮層の極細繊維の外周全てが前記の接着樹脂等で覆われている、極細繊維の本数(本)、極細繊維束の束数(束)、の測定には、走査型電子顕微鏡(株式会社キーエンス製「VE-7800」)を用いて、前述の方法によって測定、算出した。
(10) Number of ultrafine fibers (pieces) and number of ultrafine fiber bundles (bundles) whose entire outer periphery is covered with the adhesive resin, etc.
In a 500 μm x 500 μm area including adhesive resin, etc. and 500 or more cross sections of the ultrafine fibers of the skin layer in a cross section parallel to the thickness direction, the entire outer periphery of the ultrafine fibers of the skin layer is A scanning electron microscope ("VE-7800" manufactured by Keyence Corporation) was used to measure the number of microfibers (pieces) and the number of microfiber bundles (bundles) covered with adhesive resin, etc. It was measured and calculated using the method described above.
 (11)表皮層への充填深さ(μm)
 表皮層への充填深さは、走査型電子顕微鏡(株式会社キーエンス製「VE-7800」)を用いて、前述の方法によって測定、算出した。
(11) Filling depth into the epidermal layer (μm)
The filling depth into the epidermal layer was measured and calculated by the method described above using a scanning electron microscope ("VE-7800" manufactured by Keyence Corporation).
 (12)接着樹脂の厚み(μm)
 接着樹脂の厚みは、走査型電子顕微鏡(株式会社キーエンス製「VE-7800」)を用いて、前述の方法によって測定、算出した。
(12) Thickness of adhesive resin (μm)
The thickness of the adhesive resin was measured and calculated by the method described above using a scanning electron microscope ("VE-7800" manufactured by Keyence Corporation).
 (13)真空成形性(級)
 積層体の真空成形のしやすさについて評価した方法を、図を用いて説明する。まず、図6は、真空成形性の評価に用いた成形型の断面概念図である。成形型(32)は、頂部(32a)の幅(図6の横方向の長さ)が25mm、頂部(32a)の角(32b)の丸み(角R)が1mm、底部(32c)の角(32d)の丸み(角R)が6mmである凹部が略円柱形状であり、凹部の幅(略円柱の直径、32e)が50mm、深さ(32f)が14mmであって、成形体はシルクハット型の形状となるものである。この成形型(32)の上に、10mm×10mmの正方形に裁断した積層体(31)を、その表皮層側を成形型(32)側にして配置し、積層体の表面温度が160℃となるように金型の温度調節器を調製して真空成型加工を行った。そして、この時の積層体と成形型との間の隙間(クリアランス)を測定し、目視観察の結果と合わせ、以下の5段階で評価を行った。
5級:真空成形時の積層体と成形型の隙間は2mm未満であり、かつ、得られた成形体にシワは認められなかった。
4級:真空成形時の積層体と成形型の隙間は2mm以上5mm未満であり、かつ、得られた成形体にシワは認められなかった。
3級:真空成形時の積層体と成形型の隙間は5mm以上10mm未満であるか、または、得られた成形体にわずかにシワが認められた。
2級:真空成形時の積層体と成形型の隙間は10mm以上であるか、または、得られた成形体に明らかなシワが認められた。
1級:積層体はシルクハット型の形状とはならなかった。
(13) Vacuum formability (grade)
A method for evaluating the ease of vacuum forming of a laminate will be explained using figures. First, FIG. 6 is a conceptual cross-sectional diagram of a mold used for evaluating vacuum formability. The mold (32) has a top (32a) width (horizontal length in FIG. 6) of 25 mm, a corner (32b) of the top (32a), a radius (corner R) of 1 mm, and a bottom (32c) corner. The recess (32d) has a roundness (corner R) of 6 mm and is approximately cylindrical in shape, the width of the recess (approximate diameter of the cylinder, 32e) is 50 mm, and the depth (32f) is 14 mm. It has a hat-shaped shape. A laminate (31) cut into a square of 10 mm x 10 mm is placed on the mold (32) with the skin layer side facing the mold (32), and the surface temperature of the laminate is 160°C. We prepared a temperature controller for the mold and performed vacuum molding. Then, the gap (clearance) between the laminate and the mold at this time was measured, and in conjunction with the results of visual observation, evaluation was performed on the following five levels.
Grade 5: The gap between the laminate and the mold during vacuum forming was less than 2 mm, and no wrinkles were observed in the obtained molded product.
Grade 4: The gap between the laminate and the mold during vacuum forming was 2 mm or more and less than 5 mm, and no wrinkles were observed in the obtained molded product.
Grade 3: The gap between the laminate and the mold during vacuum forming was 5 mm or more and less than 10 mm, or the resulting molded product had slight wrinkles.
Grade 2: The gap between the laminate and the mold during vacuum forming was 10 mm or more, or obvious wrinkles were observed in the obtained molded product.
Grade 1: The laminate did not have a top hat shape.
 [実施例1]
 (1) 表皮層の形成
 (繊維質基材を製造する工程)
 海成分としてポリスチレンを用い、島成分として固有粘度(IV値)が0.72のポリエチレンテレフタレートを用いて、海成分が20質量%、島成分が80質量%の複合比率で、島数が16島/1フィラメント、平均単繊維直径が20μmの海島型複合繊維を得た。得られた海島型複合繊維を、繊維長51mmにカットしてステープルとし、カードおよびクロスラッパーを通して繊維ウェブを形成し、ニードルパンチ処理を行い、繊維構造体を製造した。
[Example 1]
(1) Formation of skin layer (process of manufacturing fibrous base material)
Using polystyrene as the sea component and polyethylene terephthalate with an intrinsic viscosity (IV value) of 0.72 as the island component, the composite ratio is 20% by mass for the sea component and 80% by mass for the island component, and the number of islands is 16. A sea-island type conjugate fiber having a /1 filament and an average single fiber diameter of 20 μm was obtained. The obtained sea-island composite fibers were cut into staples with a fiber length of 51 mm, passed through a card and a cross wrapper to form a fiber web, and needle punched to produce a fiber structure.
 (極細繊維を形成する工程)
 得られた繊維構造体を、トリクロロエチレンに浸漬してマングルで絞ることを10回繰り返すことにより、海島型複合繊維の海成分を除去した極細繊維からなるシートを得た。
(Process of forming ultrafine fibers)
The obtained fiber structure was immersed in trichlorethylene and squeezed with a mangle, which was repeated 10 times to obtain a sheet made of ultrafine fibers from which the sea component of the sea-island composite fibers had been removed.
 (高分子弾性体を付与する工程)
 上記のようにして得られた極細繊維からなるシートを、有機溶剤系ポリウレタンを主成分とする、固形分の濃度が13質量%となるように調整した、ポリウレタンのN,N-ジメチルホルムアミド(DMF)溶液に浸漬し、次いでDMF濃度30質量%の水溶液中でポリウレタン樹脂を凝固させた。その後、110℃の温度の熱風で10分間乾燥することにより、ポリウレタン樹脂付与シートを得た。
(Process of imparting polymer elastic body)
A sheet made of ultrafine fibers obtained as described above was prepared using N,N-dimethylformamide (DMF), a polyurethane whose main component is organic solvent-based polyurethane and whose solid content was adjusted to a solid content of 13% by mass. ) solution, and then the polyurethane resin was coagulated in an aqueous solution with a DMF concentration of 30% by mass. Thereafter, a polyurethane resin-applied sheet was obtained by drying with hot air at a temperature of 110° C. for 10 minutes.
 (シート状物を半裁し、研磨する工程)
 上記のようにして得られたポリウレタン樹脂付与シートを厚さ方向に垂直に半裁し、非半裁面をサンドペーパー番手240番のエンドレスサンドペーパーで研削することにより、立毛を有するシート状物を得た。
(Process of cutting the sheet-like material in half and polishing it)
The polyurethane resin-applied sheet obtained as described above was cut in half perpendicularly to the thickness direction, and the uncut surface was ground with endless sandpaper of sandpaper grit No. 240 to obtain a sheet-like product with raised naps. .
 (生機を染色する工程)
 上記のようにして得られた立毛を有するシート状物を、液流染色機を用いて120℃の温度条件下で黒色染料を用いて染色を行った後、乾燥機で乾燥を行い、極細繊維の平均単繊維直径が4.4μm、厚み0.9mm、極細繊維束を構成する極細繊維の数が16本、目付290g/mの人工皮革を得て、表皮層とした。
(Process of dyeing gray fabric)
The sheet-like material with raised naps obtained as described above was dyed with black dye using a jet dyeing machine at a temperature of 120°C, and then dried in a drier to produce ultrafine fibers. An artificial leather having an average single fiber diameter of 4.4 μm, a thickness of 0.9 mm, the number of ultrafine fibers constituting an ultrafine fiber bundle of 16, and a basis weight of 290 g/m 2 was obtained and used as a skin layer.
 (2) 積層体の形成
 (裏張り層)
 ポリオレフィン系樹脂で構成される発泡樹脂シート(厚み2.4mm、目付170g/m、発泡倍率15倍)を裏張り層として用いた。
(2) Formation of laminate (backing layer)
A foamed resin sheet (thickness: 2.4 mm, basis weight: 170 g/m 2 , foaming ratio: 15 times) made of polyolefin resin was used as the backing layer.
 (接着樹脂)
 粘度を5Pa・sに調整したポリウレタン系2液型接着剤(表1~4では、「PU-2」と略記した)を接着樹脂として用い、グラビアロールにより60g/mの塗工量となるように、上記の裏張り層の上に塗工した。
(Adhesive resin)
A two-component polyurethane adhesive (abbreviated as "PU-2" in Tables 1 to 4) with a viscosity adjusted to 5 Pa s was used as the adhesive resin, and a coating amount of 60 g/m 2 was obtained using a gravure roll. It was coated on top of the above-mentioned backing layer.
 (積層体を形成する工程)
 表皮層の半裁面と、裏張り層の接着樹脂を塗工した面とを重ね合わせた後、カレンダーロールにて湿熱圧着を行った。具体的には、80℃のスチームで湿熱処理しながら、80℃のカレンダーロールにてニップした。その後、90℃の乾燥機で乾燥させ積層体を得た。結果を表1に示す。
(Step of forming a laminate)
After the half-cut surface of the skin layer and the surface coated with the adhesive resin of the backing layer were overlapped, moist heat compression bonding was performed using a calendar roll. Specifically, it was nipped using calender rolls at 80° C. while being subjected to moist heat treatment with 80° C. steam. Thereafter, it was dried in a dryer at 90°C to obtain a laminate. The results are shown in Table 1.
 [実施例2]
 裏張り層としてポリウレタン系発泡体(厚み2.0mm、目付40g/m、発泡倍率15倍)を使用したこと以外は実施例1と同様にして、積層体を得た。結果を表1に示す。
[Example 2]
A laminate was obtained in the same manner as in Example 1, except that a polyurethane foam (thickness: 2.0 mm, basis weight: 40 g/m 2 , foaming ratio: 15 times) was used as the backing layer. The results are shown in Table 1.
 [実施例3]
 裏張り層としてポリエステル繊維により編まれたトリコットを使用したこと以外は実施例1と同様にして、積層体を得た。結果を表1に示す。
[Example 3]
A laminate was obtained in the same manner as in Example 1 except that tricot knitted from polyester fibers was used as the backing layer. The results are shown in Table 1.
 [実施例4]
 接着樹脂として粘度が5Pa・sのアクリル系粘着剤(表1では、「AC」と略記した)を使用したこと以外は実施例1と同様にして、積層体を得た。結果を表1に示す。
[Example 4]
A laminate was obtained in the same manner as in Example 1, except that an acrylic pressure-sensitive adhesive (abbreviated as "AC" in Table 1) having a viscosity of 5 Pa·s was used as the adhesive resin. The results are shown in Table 1.
 [実施例5]
 接着樹脂の粘度を16Pa・sに調整したこと以外は実施例1同様にして、積層体を得た。結果を表2に示す。
[Example 5]
A laminate was obtained in the same manner as in Example 1 except that the viscosity of the adhesive resin was adjusted to 16 Pa·s. The results are shown in Table 2.
 [実施例6]
 接着樹脂の粘度を2Pa・sに調整したこと以外は実施例1と同様にして、積層体を得た。結果を表2に示す。
[Example 6]
A laminate was obtained in the same manner as in Example 1 except that the viscosity of the adhesive resin was adjusted to 2 Pa·s. The results are shown in Table 2.
 [実施例7]
 接着樹脂の塗工量を100g/mとしたこと以外は実施例1と同様にして、積層体を得た。結果を表2に示す。
[Example 7]
A laminate was obtained in the same manner as in Example 1 except that the coating amount of the adhesive resin was 100 g/m 2 . The results are shown in Table 2.
 [実施例8]
 接着樹脂の塗工量を20g/mとしたこと以外は実施例1と同様にして、積層体を得た。結果を表2に示す。
[Example 8]
A laminate was obtained in the same manner as in Example 1 except that the coating amount of the adhesive resin was 20 g/m 2 . The results are shown in Table 2.
 [実施例9]
 積層体を形成する工程において、100℃のスチームで湿熱処理しながら150℃のカレンダーロールにてニップしたこと以外は実施例1と同様にして、積層体を得た。結果を表3に示す。
[Example 9]
A laminate was obtained in the same manner as in Example 1, except that in the step of forming the laminate, it was subjected to wet heat treatment with 100°C steam and nipped with calender rolls at 150°C. The results are shown in Table 3.
 [実施例10]
 積層体を形成する工程において、50℃のスチームで湿熱処理しながら50℃のカレンダーロールにてニップしたこと以外は実施例1と同様にして、積層体を得た。結果を表3に示す。
[Example 10]
A laminate was obtained in the same manner as in Example 1, except that in the step of forming the laminate, it was subjected to wet heat treatment with 50°C steam and nipped with calender rolls at 50°C. The results are shown in Table 3.
 [実施例11]
 (1) 表皮層の形成
 実施例1と同様に人工皮革を得て、表皮層とした。
[Example 11]
(1) Formation of skin layer Artificial leather was obtained in the same manner as in Example 1 to form a skin layer.
 (2) 積層体の形成
 (裏張り層)
 実施例1で用いたのと同様の発泡樹脂シートを裏張り層として用いた。
(2) Formation of laminate (backing layer)
A foamed resin sheet similar to that used in Example 1 was used as a backing layer.
 (接着樹脂)
 接着樹脂は用いなかった。
(Adhesive resin)
No adhesive resin was used.
 (積層体を形成する工程)
 裏張り層を1800℃のガスバーナーで溶融させて、表皮層の半裁面と、裏張り層の溶融させた面とを重ね合わせる、フレームラミネート法を行った。次いで、カレンダーロールにて湿熱圧着した(表3において、「フレラミ後湿熱圧着」と表記した)。具体的には、80℃のスチームで湿熱処理しながら、80℃のカレンダーロールにてニップし、積層体を得た。結果を表3に示す。
(Step of forming a laminate)
A flame lamination method was performed in which the backing layer was melted with a gas burner at 1800° C., and the half-cut surface of the skin layer and the melted surface of the backing layer were superimposed. Subsequently, it was subjected to moist heat compression bonding using a calendar roll (in Table 3, it was described as "moist heat compression bonding after flerami"). Specifically, a laminate was obtained by nipping with calender rolls at 80° C. while performing a wet heat treatment with steam at 80° C. The results are shown in Table 3.
 [実施例12]
 (1) 表皮層の形成
 実施例1と同様に人工皮革を得て、表皮層とした。
[Example 12]
(1) Formation of skin layer Artificial leather was obtained in the same manner as in Example 1 to form a skin layer.
 (2) 積層体の形成
 (裏張り層)
 実施例1で用いたのと同様の発泡樹脂シートを裏張り層として用いた。
(2) Formation of laminate (backing layer)
A foamed resin sheet similar to that used in Example 1 was used as a backing layer.
 (接着樹脂)
 粘度を5Pa・sに調整したアクリル系粘着剤(表1では、「AC」と略記した)を、グラビアロールにより50g/mの塗工量となるように、上記の裏張り層の上に塗工した。その後、厚みが50μmのポリウレタン樹脂からなるフィルム(表1では「50μm PU-F」と略記した)を積層した。そして、粘度を5Pa・sに調整したアクリル系粘着剤(表1では、「AC」と略記した)をグラビアロールにより50g/mの塗工量となるように、上記のフィルムの上に塗工した。
(Adhesive resin)
An acrylic adhesive (abbreviated as "AC" in Table 1) with a viscosity adjusted to 5 Pa s was applied onto the above backing layer using a gravure roll to a coating amount of 50 g/ m2 . Coated. Thereafter, a film made of polyurethane resin having a thickness of 50 μm (abbreviated as “50 μm PU-F” in Table 1) was laminated. Then, an acrylic adhesive (abbreviated as "AC" in Table 1) whose viscosity was adjusted to 5 Pa·s was applied onto the above film using a gravure roll in a coating amount of 50 g/ m2 . I worked on it.
 (積層体を形成する工程)
 表皮層の半裁面と、上記の裏張り層の接着樹脂を塗工した面とを重ね合わせ、以降は実施例1と同様にして、積層体を得た。結果を表3に示す。
(Step of forming a laminate)
The half-cut surface of the skin layer and the surface coated with the adhesive resin of the above-mentioned backing layer were overlapped, and the rest was carried out in the same manner as in Example 1 to obtain a laminate. The results are shown in Table 3.
 [比較例1]
 接着樹脂の塗工量を10g/mに調整したこと以外は実施例1と同様にして、積層体を得た。結果を表4に示す。
[Comparative example 1]
A laminate was obtained in the same manner as in Example 1 except that the coating amount of the adhesive resin was adjusted to 10 g/m 2 . The results are shown in Table 4.
 [比較例2]
 接着樹脂の粘度を25Pa・sに調整したこと以外は実施例1と同様にして、積層体を得た。結果を表4に示す。
[Comparative example 2]
A laminate was obtained in the same manner as in Example 1 except that the viscosity of the adhesive resin was adjusted to 25 Pa·s. The results are shown in Table 4.
 [比較例3]
 接着樹脂の粘度を1Pa・sに調整したこと以外は実施例1と同様にして、積層体を得た。結果を表4に示す。
[Comparative example 3]
A laminate was obtained in the same manner as in Example 1 except that the viscosity of the adhesive resin was adjusted to 1 Pa·s. The results are shown in Table 4.
 [比較例4]
 接着樹脂の塗工量を100g/mに調整したこと以外は実施例1と同様にして、積層体を得た。結果を表4に示す。
[Comparative example 4]
A laminate was obtained in the same manner as in Example 1 except that the coating amount of the adhesive resin was adjusted to 100 g/m 2 . The results are shown in Table 4.
 [比較例5]
 積層体を形成する工程スチームの温度を100℃、カレンダーロールの温度を220℃としたこと以外は実施例1と同様にして、積層体を得た。結果を表5に示す。
[Comparative example 5]
Process for forming a laminate A laminate was obtained in the same manner as in Example 1, except that the temperature of the steam was 100°C and the temperature of the calender roll was 220°C. The results are shown in Table 5.
 [比較例6]
 (1) 表皮層の形成
 実施例1と同様に人工皮革を得て、表皮層とした。
[Comparative example 6]
(1) Formation of skin layer Artificial leather was obtained in the same manner as in Example 1 to form a skin layer.
 (2) 積層体の形成
 (裏張り層)
 実施例1で用いたのと同様の発泡樹脂シートを裏張り層として用いた。
(2) Formation of laminate (backing layer)
A foamed resin sheet similar to that used in Example 1 was used as a backing layer.
 (接着樹脂・積層体を形成する工程)
 裏張り層にカーテンスプレー法にて反応型ホットメルト接着剤を噴射し、表皮層の半裁面と、裏張り層の溶融させた面とを重ね合わせた。その後、カレンダーロールにて湿熱圧着して(表4において、「カーテンスプレー法」と表記した)、積層体を得た。結果を表5に示す。
(Process of forming adhesive resin/laminate)
A reactive hot melt adhesive was sprayed onto the backing layer by a curtain spray method, and the half-cut surface of the skin layer and the melted surface of the backing layer were overlapped. Thereafter, a laminate was obtained by performing wet heat compression bonding using a calendar roll (described as "curtain spray method" in Table 4). The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 実施例1~11の積層体は、接着樹脂等の硬化前の粘度、表皮層と裏張り層とを接着する際の温度を調整すること等により、外周全てが接着樹脂等で覆われている、極細繊維の本数を15本以上240本以下にすることで、高温時の接着強度と柔軟な風合いとを両立する積層体を得ることができた。 In the laminates of Examples 1 to 11, the entire outer periphery is covered with the adhesive resin, etc. by adjusting the viscosity of the adhesive resin etc. before curing, the temperature when bonding the skin layer and the lining layer, etc. By setting the number of ultrafine fibers to 15 or more and 240 or less, it was possible to obtain a laminate that has both adhesive strength at high temperatures and a flexible texture.
 中でも、実施例1の積層体は、さらに、外周全てが接着樹脂等で覆われている、極細繊維束の数を1束以上15束以下とし、接着樹脂の表皮層への充填深さが5μm以上95μm未満としているため、特に高温時の接着強度と柔軟風合いを両立する積層体を得ることができた。 Among them, the laminate of Example 1 further includes a case in which the entire outer periphery is covered with adhesive resin, etc., the number of ultrafine fiber bundles is 1 bundle or more and 15 bundles or less, and the filling depth of the adhesive resin into the skin layer is 5 μm. Since the thickness is less than 95 μm, it was possible to obtain a laminate that exhibits both adhesive strength and soft texture especially at high temperatures.
 一方で、比較例1の積層体は、塗工量が少なく、外周全てが接着樹脂等で覆われている極細繊維が少なくなったため、剥離強度や高温時の接着強度に乏しい積層体となった。 On the other hand, in the laminate of Comparative Example 1, the amount of coating was small and there were fewer microfibers whose entire outer periphery was covered with adhesive resin, etc., resulting in a laminate with poor peel strength and adhesive strength at high temperatures. .
 また、比較例2の積層体は、接着樹脂の硬化前の粘度が高く、接着樹脂が極細繊維束の内部へ浸透しにくくなったため、外周全てが接着樹脂等で覆われている極細繊維数が見られなくなり、高温時の接着強度に乏しい積層体となった。 In addition, in the laminate of Comparative Example 2, the viscosity of the adhesive resin before curing was high, making it difficult for the adhesive resin to penetrate into the inside of the ultrafine fiber bundle. This resulted in a laminate with poor adhesive strength at high temperatures.
 また、比較例3の積層体は、接着樹脂の硬化前の粘度が低く、接着樹脂が表皮層の内部まで浸透し、外周全てが接着樹脂等で覆われている極細繊維数が極端に多くなり、硬い風合いである積層体となった。 In addition, in the laminate of Comparative Example 3, the viscosity of the adhesive resin before curing was low, the adhesive resin penetrated into the skin layer, and the number of ultrafine fibers whose entire outer periphery was covered with adhesive resin etc. was extremely large. , resulting in a laminate with a hard texture.
 また、比較例4の積層体は、接着樹脂の塗工量が多く、接着樹脂が表皮層の内部まで浸透し、外周全てが接着樹脂等で覆われている極細繊維数が多くなり、硬い風合いである積層体となった。 In addition, in the laminate of Comparative Example 4, the amount of adhesive resin applied was large, the adhesive resin penetrated into the inside of the skin layer, and the number of ultrafine fibers whose entire outer periphery was covered with adhesive resin etc. was increased, resulting in a hard texture. The result was a laminate.
 また、比較例5の積層体は、積層体を形成する工程のカレンダーロール温度が高く接着樹脂が表皮層の内部まで浸透し、外周全てが接着樹脂等で覆われている極細繊維数が多くなり硬い風合いとなり、また、外観品位が劣化した積層体となった。 In addition, in the laminate of Comparative Example 5, the temperature of the calender roll during the process of forming the laminate was high, and the adhesive resin penetrated into the inside of the skin layer, resulting in a large number of ultrafine fibers whose entire outer periphery was covered with adhesive resin, etc. The laminate had a hard texture and a deteriorated appearance quality.
 また、比較例6の積層体は、積層体を形成する工程にてカーテンスプレー法を適用したことで、接着樹脂のドメインが細かくなり、外周全てが接着樹脂等で覆われている極細繊維や繊維束の数が少なくなり、剥離強度及び高温時の接着強度に乏しい積層体となった。 In addition, in the laminate of Comparative Example 6, by applying the curtain spray method in the process of forming the laminate, the domains of the adhesive resin became finer, and the laminate was made of ultrafine fibers and fibers whose entire outer periphery was covered with adhesive resin, etc. The number of bundles decreased, resulting in a laminate with poor peel strength and adhesive strength at high temperatures.
1: 極細繊維束の外周を囲う線
11: 積層体
12a: 極細繊維
12b: 高分子弾性体
12c: 極細繊維束
13: 裏張り層
14: 接着樹脂
15: 裏張り層と接着樹脂の境界
16: 裏張り層と接着樹脂の境界と接着樹脂の表皮層側の界面への垂線
17: 最も裏張り層に近い極細繊維
18: 極細繊維から表皮層側の表面への垂線
19: 中間層
19a: 中間層を構成する繊維
19b: フィルム
21: 床面
22: 検査台
23: 積層体
24: 目視確認する位置
25: 目視確認する位置と人工皮革とを結ぶ線
26: 蛍光灯
27: 積層体から蛍光灯への垂線
31: 積層体
32: 成形型
32a: 成形型の頂部
32b: 成形型の頂部の角
32c: 成形型の底部
32d: 成形型の底部の角
32e: 成形型の凹部の幅を示す矢印
32f: 成形型の凹部の深さを示す矢印
1: Line surrounding the outer periphery of the ultrafine fiber bundle 11: Laminated body 12a: Ultrafine fiber 12b: Polymer elastic body 12c: Ultrafine fiber bundle 13: Backing layer 14: Adhesive resin 15: Boundary between backing layer and adhesive resin 16: Perpendicular line 17 to the boundary between the lining layer and adhesive resin and the interface of the adhesive resin on the skin layer side: Ultrafine fiber 18 closest to the lining layer: Perpendicular line 19 from the ultrafine fiber to the surface on the skin layer side: Intermediate layer 19a: Intermediate Fibers constituting the layer 19b: Film 21: Floor surface 22: Examination table 23: Laminate 24: Visual confirmation position 25: Line connecting the visual confirmation position and artificial leather 26: Fluorescent lamp 27: Fluorescent light from the laminate Perpendicular line 31 to: laminate 32: mold 32a: top of the mold 32b: top corner of the mold 32c: bottom of the mold 32d: bottom corner of the mold 32e: arrow indicating the width of the recess of the mold 32f: Arrow indicating the depth of the recess of the mold

Claims (9)

  1.  表皮層と、樹脂Aで構成される裏張り層と、が接着樹脂を介して積層されてなる積層体であって、
     前記表皮層は、平均単繊維直径が0.1μm以上10.0μm以下の極細繊維からなる不織布を構成要素として含む繊維絡合体と、高分子弾性体と、を含む人工皮革であり、
     前記裏張り層は、織物、編物、不織布、フェルト、および、発泡樹脂シートからなる群から選ばれる少なくとも1種であり、
     前記積層体の厚み方向に平行な断面中の、少なくとも前記接着樹脂と、前記表皮層の極細繊維の断面を500本以上と、を含む500μm×500μmの領域において、15本以上240本以下の前記表皮層の極細繊維の外周全てが前記接着樹脂で覆われている、積層体。
    A laminate in which a skin layer and a backing layer made of resin A are laminated via an adhesive resin,
    The skin layer is an artificial leather containing a fiber entangled body containing as a component a nonwoven fabric made of ultrafine fibers with an average single fiber diameter of 0.1 μm or more and 10.0 μm or less, and a polymeric elastic body,
    The lining layer is at least one selected from the group consisting of woven fabric, knitted fabric, nonwoven fabric, felt, and foamed resin sheet,
    In a 500 μm x 500 μm area including at least the adhesive resin and 500 or more ultrafine fibers of the skin layer in a cross section parallel to the thickness direction of the laminate, 15 or more and 240 or less of the A laminate in which the entire outer periphery of the ultrafine fibers of the skin layer is covered with the adhesive resin.
  2.  表皮層と、樹脂Aで構成される裏張り層と、が積層されてなる積層体であって、
     前記表皮層は、平均単繊維直径が0.1μm以上10.0μm以下の極細繊維からなる不織布を構成要素として含む繊維絡合体と、高分子弾性体と、を含む人工皮革であり、
     前記裏張り層は、織物、編物、不織布、フェルト、および、発泡樹脂シートからなる群から選ばれる少なくとも1種であり、
     前記積層体の厚み方向に平行な断面中の、少なくとも前記樹脂Aと、前記表皮層の極細繊維の断面を500本以上と、を含む500μm×500μmの領域において、15本以上240本以下の前記表皮層の極細繊維の外周全てが前記樹脂Aで覆われている、積層体。
    A laminate formed by laminating a skin layer and a lining layer made of resin A,
    The skin layer is an artificial leather containing a fiber entangled body containing as a component a nonwoven fabric made of ultrafine fibers with an average single fiber diameter of 0.1 μm or more and 10.0 μm or less, and a polymeric elastic body,
    The lining layer is at least one selected from the group consisting of woven fabric, knitted fabric, nonwoven fabric, felt, and foamed resin sheet,
    In a 500 μm x 500 μm area including at least the resin A and 500 or more microfibers in the skin layer in a cross section parallel to the thickness direction of the laminate, 15 or more and 240 or less of the A laminate in which the entire outer periphery of the ultrafine fibers of the skin layer is covered with the resin A.
  3.  前記接着樹脂が、厚み1μm以上400μm以下である中間層を含み、
     該中間層は、織物、編物、不織布、フェルト、フィルム、発泡シート、および、金属膜からなる群から選ばれる少なくとも1種である、請求項1に記載の積層体。
    The adhesive resin includes an intermediate layer having a thickness of 1 μm or more and 400 μm or less,
    The laminate according to claim 1, wherein the intermediate layer is at least one selected from the group consisting of a woven fabric, a knitted fabric, a nonwoven fabric, a felt, a film, a foam sheet, and a metal film.
  4.  前記表皮層の繊維絡合体において、3本以上40本以下の極細繊維からなる極細繊維束を構成してなる、請求項1~3のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the fiber entangled body of the skin layer comprises an ultrafine fiber bundle consisting of 3 or more and 40 or less ultrafine fibers.
  5.  前記領域において、1束以上15束以下の前記極細繊維束の外周全てが前記接着樹脂または前記樹脂Aで覆われており、かつ、該極細繊維束内も前記接着樹脂または前記樹脂Aで充填されてなる、請求項4に記載の積層体。 In the region, the entire outer periphery of the ultrafine fiber bundles of 1 to 15 bundles is covered with the adhesive resin or the resin A, and the inside of the ultrafine fiber bundle is also filled with the adhesive resin or the resin A. The laminate according to claim 4, comprising:
  6.  前記接着樹脂または前記樹脂Aの、前記表皮層への充填深さが5μm以上95μm未満である、請求項1~3のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 3, wherein a filling depth of the adhesive resin or the resin A into the skin layer is 5 μm or more and less than 95 μm.
  7.  前記裏張り層が発泡樹脂シートである、請求項1~3のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the backing layer is a foamed resin sheet.
  8.  前記発泡樹脂シートの主成分がポリオレフィン系樹脂である、請求項7に記載の積層体。 The laminate according to claim 7, wherein the main component of the foamed resin sheet is a polyolefin resin.
  9.  前記接着樹脂の厚みが5μm以上500μm以下である、請求項1または3に記載の積層体。 The laminate according to claim 1 or 3, wherein the adhesive resin has a thickness of 5 μm or more and 500 μm or less.
PCT/JP2023/006976 2022-03-22 2023-02-27 Layered body WO2023181789A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023514403A JPWO2023181789A1 (en) 2022-03-22 2023-02-27

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022044937 2022-03-22
JP2022-044937 2022-03-22
JP2022-135558 2022-08-29
JP2022135558 2022-08-29

Publications (1)

Publication Number Publication Date
WO2023181789A1 true WO2023181789A1 (en) 2023-09-28

Family

ID=88100539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006976 WO2023181789A1 (en) 2022-03-22 2023-02-27 Layered body

Country Status (3)

Country Link
JP (1) JPWO2023181789A1 (en)
TW (1) TW202342609A (en)
WO (1) WO2023181789A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116477A (en) * 1982-12-20 1984-07-05 東レ株式会社 Lined artificial leather
JPS63159049A (en) * 1986-12-24 1988-07-01 株式会社クラレ Method of backing leather-like sheet-shaped article
US5277969A (en) * 1992-10-06 1994-01-11 Alcantara S.P.A. Laminate material having a microfibrous polyurethanic base sheet and process for its preparation
JP2019108619A (en) * 2017-12-15 2019-07-04 株式会社クラレ Artificial leather with embroidery, decorative formed body, and production method of these

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116477A (en) * 1982-12-20 1984-07-05 東レ株式会社 Lined artificial leather
JPS63159049A (en) * 1986-12-24 1988-07-01 株式会社クラレ Method of backing leather-like sheet-shaped article
US5277969A (en) * 1992-10-06 1994-01-11 Alcantara S.P.A. Laminate material having a microfibrous polyurethanic base sheet and process for its preparation
JP2019108619A (en) * 2017-12-15 2019-07-04 株式会社クラレ Artificial leather with embroidery, decorative formed body, and production method of these

Also Published As

Publication number Publication date
JPWO2023181789A1 (en) 2023-09-28
TW202342609A (en) 2023-11-01

Similar Documents

Publication Publication Date Title
CN107849806B (en) Leather-like fabric
EP3128071B1 (en) Artificial leather
KR102337556B1 (en) Sheet-like article and manufacturing method thereof
JP2018003181A (en) Grained artificial leather and method for producing the same
JP6972564B2 (en) Sheet-like material
KR20170047209A (en) Sheet material and manufacturing method thereof
KR20210022551A (en) Sheet-like material and its manufacturing method
WO2023181789A1 (en) Layered body
WO2020040201A1 (en) Sheet material
JP2019065450A (en) Sheet material
JP7156559B1 (en) Artificial leather
JP2020051003A (en) Grained artificial leather and method for producing the same
JP7193036B1 (en) Artificial leather and its manufacturing method
JP2018123443A (en) Fabric and manufacturing method thereof
JP7420697B2 (en) Suede-like skin material for vehicle interior materials
WO2023189269A1 (en) Artificial leather and production method therefor, and composite artificial leather
EP4206398A1 (en) Artificial leather
CN116018439A (en) Artificial leather, method for producing the same, and artificial leather substrate
JP2020172736A (en) Sheet-like material and method for producing the same
US20240141584A1 (en) Artificial leather and method for manufacturing the same
JP2023048983A (en) Composite artificial leather and manufacturing method thereof
JP2020066821A (en) Sheet-like material and method for manufacturing the same
JP2018123437A (en) Leather-like fabric

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023514403

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774388

Country of ref document: EP

Kind code of ref document: A1