WO2023181710A1 - Terminal device, base station device, and communication method - Google Patents

Terminal device, base station device, and communication method Download PDF

Info

Publication number
WO2023181710A1
WO2023181710A1 PCT/JP2023/004951 JP2023004951W WO2023181710A1 WO 2023181710 A1 WO2023181710 A1 WO 2023181710A1 JP 2023004951 W JP2023004951 W JP 2023004951W WO 2023181710 A1 WO2023181710 A1 WO 2023181710A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
bwp
uplink
configuration information
initial
Prior art date
Application number
PCT/JP2023/004951
Other languages
French (fr)
Japanese (ja)
Inventor
宏樹 高橋
昇平 山田
麗清 劉
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2023181710A1 publication Critical patent/WO2023181710A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates to a terminal device, a base station device, and a communication method.
  • This application claims priority to Japanese Patent Application No. 2022-49390 filed in Japan on March 25, 2022, the contents of which are incorporated herein.
  • Non-Patent Document 1 LTE (Long Term Evolution)-Advanced Pro and NR are being developed as radio access methods and wireless network technologies for fifth-generation cellular systems in the Third Generation Partnership Project (3GPP, registered trademark). (New Radio technology) is being studied and standards are being developed (Non-Patent Document 1).
  • eMBB enhanced MobileBroadBand
  • URLLC Ultra-Reliable and Low Latency Communication
  • IoT Internet of Things
  • mmTC massive Machine Type Communication
  • REDCAP reduced capability NR device with a long lifespan is being studied (Non-Patent Document 2).
  • An object of the present invention is to provide a terminal device, a base station device, and a communication method that enable efficient communication in a wireless communication system as described above.
  • a terminal device includes a receiving unit that receives uplink configuration information in a system information block, and a control unit that configures an initial uplink BWP using the uplink configuration information,
  • the control unit configures the initial uplink BWP using bandwidth information indicated by the first configuration information, and configures the initial uplink BWP so that the uplink configuration information If the first configuration information is not included, the second configuration information is included, and the bandwidth indicated by the second configuration information is less than or equal to the maximum bandwidth supported by the terminal device, the second configuration information
  • the uplink configuration information When the initial uplink BWP is configured using the bandwidth information indicated by the configuration information, and the uplink configuration information does not include the first configuration information and the second configuration information, the uplink configuration information The initial uplink BWP is configured using the bandwidth information indicated by the third configuration information included in the.
  • the base station device in one aspect of the present invention configures a first initial uplink BWP, and includes uplink configuration information that includes first configuration information indicating a bandwidth of the first initial uplink BWP. a control unit that generates information; and a transmission unit that transmits the uplink configuration information in a system information block, the control unit configured to generate a second initial uplink BWP different from the first initial uplink BWP. If configured, the uplink configuration information includes second configuration information indicating a bandwidth of the second initial uplink BWP, which is different from the first initial uplink BWP and the second initial uplink BWP. When configuring the third initial uplink BWP, the uplink configuration information includes third configuration information indicating the bandwidth of the third initial uplink BWP.
  • a communication method is a communication method for a terminal device, in which uplink setting information is received in a system information block, and an initial uplink BWP is set using the uplink setting information. If the uplink configuration information includes first configuration information, the initial uplink BWP is configured using the bandwidth information indicated by the first configuration information, and the uplink configuration information includes the first configuration information.
  • the initial uplink BWP is configured using the bandwidth information indicated by , and if the uplink configuration information does not include the first configuration information and the second configuration information, the uplink configuration information includes the first configuration information and the second configuration information.
  • the initial uplink BWP is configured using the bandwidth information indicated by the third configuration information.
  • a terminal device and a base station device can communicate efficiently.
  • FIG. 1 is a diagram showing the concept of a wireless communication system according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing an example of a schematic configuration of uplink and downlink slots according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing the relationship in the time domain among subframes, slots, and minislots according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of an SS/PBCH block and an SS burst set according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing resources in which PSS, SSS, PBCH, and DMRS for PBCH are arranged in an SS/PBCH block according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of a parameter configuration of BWP.
  • FIG. 3 is a diagram showing an overview of frequency positions of additional synchronization signal blocks according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an example of PDSCH mapping types according to an embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of a parameter configuration of BWP.
  • FIG. 3 is a flow diagram showing an example of initial downlink BWP determination processing in the terminal device 1 according to the embodiment of the present invention.
  • FIG. 3 is a flow diagram showing an example of an initial uplink BWP determination process in the terminal device 1 according to the embodiment of the present invention.
  • 1 is a schematic block diagram showing the configuration of a terminal device 1 according to an embodiment of the present invention.
  • 1 is a schematic block diagram showing the configuration of a base station device 3 according to an embodiment of the present invention.
  • FIG. 1 is a conceptual diagram of a wireless communication system in this embodiment.
  • the wireless communication system includes a terminal device 1A, a terminal device 1B, and a base station device 3.
  • the terminal device 1A and the terminal device 1B will also be referred to as the terminal device 1.
  • the terminal device 1 is also referred to as a user terminal, mobile station device, communication terminal, mobile device, terminal, UE (User Equipment), or MS (Mobile Station). However, the terminal device 1 may be a REDCAP NR device and may be referred to as a REDCAP UE.
  • the base station device 3 includes a wireless base station device, base station, wireless base station, fixed station, NB (Node B), eNB (evolved Node B), BTS (Base Transceiver Station), BS (Base Station), NR NB ( Also referred to as NR Node B), NNB, TRP (Transmission and Reception Point), and gNB.
  • Base station device 3 may include a core network device.
  • the base station device 3 may include one or more transmission/reception points 4 (transmission reception points). At least some of the functions/processing of the base station device 3 described below may be functions/processing at each transmission/reception point 4 included in the base station device 3.
  • the base station device 3 may serve the terminal device 1 by using one or more cells as a communicable range (communication area) controlled by the base station device 3.
  • the base station device 3 may serve the terminal device 1 with a communication range (communication area) controlled by one or more transmission/reception points 4 as one or more cells.
  • the base station device 3 may divide one cell into a plurality of partial areas (Beamed areas) and serve the terminal device 1 in each partial area.
  • the partial region may be identified based on a beam index used in beamforming or a precoding index.
  • the wireless communication link from the base station device 3 to the terminal device 1 is referred to as a downlink.
  • the wireless communication link from the terminal device 1 to the base station device 3 is referred to as an uplink.
  • wireless communication between a terminal device 1 and a base station device 3 uses orthogonal frequency division multiplexing (OFDM) including a cyclic prefix (CP), single carrier frequency division multiplexing (SC- Single-Carrier Frequency Division Multiplexing (FDM), Discrete Fourier Transform Spread OFDM (DFT-S-OFDM), or other transmission methods may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP cyclic prefix
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM
  • OFDM is used as the transmission method and will be explained using OFDM symbols, but the present invention also includes cases where the other transmission methods described above are used.
  • the above-described transmission method that does not use CP or uses zero padding instead of CP may be used in wireless communication between terminal device 1 and base station device 3. Further, CP and zero padding may be added to both the front and rear.
  • One aspect of this embodiment operates in carrier aggregation (CA) or dual connectivity (DC) with radio access technology (RAT) such as LTE and LTE-A/LTE-A Pro. It's okay.
  • some or all cells or cell groups, carriers or carrier groups for example, primary cell (PCell), secondary cell (SCell), primary secondary cell (PSCell), MCG (Master Cell Group ), SCG (Secondary Cell Group), etc.
  • PCell primary cell
  • SCell secondary cell
  • PSCell primary secondary cell
  • MCG Master Cell Group
  • SCG Secondary Cell Group
  • one aspect of the present embodiment may be used in a stand-alone system that operates independently.
  • DC operation SpCell (Special Cell) is referred to as MCG's PCell or SCG's PSCell, depending on whether the MAC (Medium Access Control) entity is associated with MCG or SCG, respectively. If it is not a DC operation, SpCell (Special Cell) is called PCell.
  • SpCell (Spec
  • one or more serving cells may be configured for the terminal device 1.
  • the configured serving cells may include one primary cell and one or more secondary cells.
  • the primary cell may be the serving cell on which the initial connection establishment procedure was performed, the serving cell that initiated the connection re-establishment procedure, or the cell designated as the primary cell in the handover procedure. good.
  • One or more secondary cells may be configured at the time or after the RRC (Radio Resource Control) connection is established.
  • the plurality of configured serving cells may include one primary secondary cell.
  • the primary secondary cell may be a secondary cell capable of transmitting control information on the uplink, among one or more secondary cells in which the terminal device 1 is configured.
  • two types of serving cell subsets, MCG and SCG may be configured for the terminal device 1.
  • MCG may consist of one PCell and zero or more SCells.
  • the SCG may be composed of one PScell and zero or more SCells.
  • the wireless communication system of this embodiment may apply TDD (Time Division Duplex) and/or FDD (Frequency Division Duplex).
  • a TDD (Time Division Duplex) method or an FDD (Frequency Division Duplex) method may be applied to all of the plurality of cells.
  • cells to which the TDD scheme is applied and cells to which the FDD scheme is applied may be aggregated.
  • the TDD method may be referred to as unpaired spectrum operation.
  • the FDD method may also be referred to as paired spectrum operation.
  • the subframe will be explained below.
  • the following is called a subframe, but the subframe according to this embodiment may also be called a resource unit, a radio frame, a time section, a time interval, etc.
  • FIG. 2 is a diagram showing an example of a schematic configuration of uplink and downlink slots according to the first embodiment of the present invention.
  • Each radio frame is 10ms long.
  • each radio frame is composed of 10 subframes and W slots.
  • one slot is composed of X OFDM symbols.
  • the length of one subframe is 1ms.
  • NCP Normal Cyclic Prefix
  • BWP BandWidth Part
  • a slot may be defined as a transmission time interval (TTI).
  • TTI transmission time interval
  • a slot may not be defined as a TTI.
  • the TTI may be a transport block transmission period.
  • the signal or physical channel transmitted in each of the slots may be represented by a resource grid.
  • a resource grid is defined by multiple subcarriers and multiple OFDM symbols for each numerology (subcarrier spacing and cyclic prefix length) and each carrier.
  • the number of subcarriers constituting one slot depends on the downlink and uplink bandwidths of the cell, respectively.
  • Each element in the resource grid is referred to as a resource element (RE).
  • REs may be identified using subcarrier numbers and OFDM symbol numbers.
  • a resource grid is used to express the mapping of resource elements of a certain physical downlink channel (PDSCH, etc.) or uplink channel (PUSCH, etc.). For example, when the subcarrier spacing is 15kHz, the number of OFDM symbols included in a subframe is 14, and in the case of NCP, one physical resource block (PRB) consists of 14 consecutive OFDM symbols in the time domain. OFDM symbol and 12*Nmax consecutive subcarriers in the frequency domain. Nmax is the maximum number of resource blocks (RB) determined by subcarrier interval setting ⁇ , which will be described later. In other words, the resource grid is composed of (14*12*Nmax, ⁇ ) REs.
  • PDSCH physical downlink channel
  • PUSCH uplink channel
  • ECP Extended CP
  • the resource grid is composed of (48*12*Nmax, ⁇ ) REs.
  • reference resource blocks reference resource blocks
  • CRBs common resource blocks
  • PRBs PRBs
  • VRBs virtual resource blocks
  • 1 RB is defined as 12 consecutive subcarriers in the frequency domain.
  • the reference resource blocks are common to all subcarriers, constitute resource blocks at subcarrier intervals of 15 kHz, for example, and may be numbered in ascending order.
  • Subcarrier index 0 in reference resource block index 0 may be referred to as reference point A (point A) (or simply referred to as "reference point”).
  • Point A may be provided as a common reference point for the grid of resource blocks.
  • the position of point A may be determined/specified by the parameter offsetToPointA included in SIB1.
  • the parameter offsetToPointA is a parameter indicating the frequency offset between point A and the lowest frequency subcarrier of the lowest frequency resource block that overlaps with the synchronization signal block used by the terminal device 1 in initial cell selection.
  • the unit of the frequency offset is a resource block with a subcarrier interval of 15 kHz when the frequency range (FR) is 1, and a resource block with a subcarrier interval of 60 kHz when the frequency range is 2.
  • the frequency position of point A may be indicated by ARFCN (Absolute radio-frequency channel number) using the RRC parameter absoluteFrequencyPointA.
  • the CRBs are RBs that are numbered in ascending order starting from 0 in each subcarrier interval setting ⁇ from point A.
  • the CRB number is defined for each subcarrier interval setting ⁇ .
  • the CRB corresponding to the subcarrier interval setting ⁇ may be referred to as CRB ⁇ .
  • the resource grid mentioned above is defined by the CRB.
  • PRB is an RB numbered in ascending order from 0 included in BWP of each subcarrier spacing setting ⁇ , and PRB is numbered in ascending order from 0 included in BWP with subcarrier spacing setting ⁇ . It is RB with .
  • the PRB corresponding to the subcarrier interval setting ⁇ may be referred to as PRB ⁇ .
  • a certain physical uplink channel is first mapped to a VRB. VRBs are then mapped to PRBs.
  • the RB may be a VRB, a PRB, a CRB, or a reference resource block.
  • a BWP is a subset of consecutive RBs (which may be CRBs) with a certain subcarrier spacing in a certain carrier.
  • up to four BWPs may be configured in the downlink.
  • There may be one active downlink BWP active downlink BWP
  • the terminal device 1 may not expect to receive PDSCH, PDCCH or CSI-RS outside the active downlink BWP band.
  • up to four BWPs (uplink BWPs) may be configured on the uplink.
  • the terminal device 1 does not transmit PUSCH and PUCCH outside the active uplink BWP band.
  • the subcarrier interval setting ⁇ As mentioned above, NR supports one or more OFDM numerologies.
  • slots are counted in ascending order from 0 to N ⁇ subframe, ⁇ _ ⁇ slot ⁇ -1 within a subframe, and from 0 to N ⁇ frame, ⁇ _ ⁇ slot within a frame. ⁇ -1 in ascending order.
  • N ⁇ slot ⁇ _ ⁇ symb ⁇ consecutive OFDM symbols in the slot based on the slot configuration and CP.
  • N ⁇ slot ⁇ _ ⁇ symb ⁇ is 14.
  • the start of slot n ⁇ _ ⁇ s ⁇ in a subframe is the start of the n ⁇ _ ⁇ s ⁇ *N ⁇ slot ⁇ _ ⁇ symb ⁇ th OFDM symbol in the same subframe. are aligned.
  • FIG. 3 is a diagram showing an example of the relationship among subframes, slots, and minislots in the time domain.
  • a subframe is 1 ms regardless of the subcarrier interval, and the number of OFDM symbols included in a slot is 7 or 14 (however, if the CP added to each symbol is Extended CP, it is 6 or 12). ), the slot length varies depending on the subcarrier spacing.
  • the subcarrier interval is 15 kHz, one subframe includes 14 OFDM symbols.
  • the downlink slot may be referred to as PDSCH mapping type A.
  • the uplink slot may be referred to as PUSCH mapping type A.
  • a minislot (also referred to as a subslot) is a time unit composed of fewer OFDM symbols than the number of OFDM symbols included in one slot.
  • the figure shows, as an example, a case where a minislot is composed of 2 OFDM symbols.
  • the OFDM symbols within a minislot may match the timing of the OFDM symbols that make up the slot.
  • the minimum unit of scheduling may be a slot or a minislot.
  • assigning minislots may be referred to as non-slot-based scheduling.
  • the fact that a mini-slot is scheduled may be expressed as a resource in which the relative time position of the reference signal and the start position of data is fixed.
  • the downlink minislot may be referred to as PDSCH mapping type B.
  • the uplink minislot may be referred to as PUSCH mapping type B.
  • the transmission direction (uplink, downlink, or flexible) of symbols in each slot is set in an upper layer using an RRC message containing predetermined upper layer parameters received from the base station device 3; It is set by a PDCCH of a specific DCI format (for example, DCI format 2_0) received from the base station device 3.
  • a format in which each symbol in each slot is set to be uplink, downlink, or flexible is called a slot format.
  • One slot format may include downlink symbols, uplink symbols, and flexible symbols.
  • the carrier corresponding to the serving cell of this embodiment is called a component carrier (CC) (or carrier).
  • CC component carrier
  • the carrier corresponding to the serving cell is called a downlink CC (or downlink carrier).
  • the carrier corresponding to the serving cell is called an uplink CC (or uplink carrier).
  • the carrier corresponding to the serving cell is called a sidelink CC (or sidelink carrier).
  • the following physical channels may be used for wireless communication between the terminal device 1 and the base station device 3.
  • PBCH Physical Broadcast CHannel
  • PDCCH Physical Downlink Control CHannel
  • PDSCH Physical Downlink Shared CHannel
  • PUCCH Physical Uplink Control CHannel
  • PRACH Physical Random Access CHannel
  • the PBCH is used by the terminal device 1 to broadcast important information blocks (MIB: Master Information Block, EIB: Essential Information Block, BCH: Broadcast Channel) that include important system information.
  • MIB contains information for identifying the radio frame number (SFN: System Frame Number) to which the PBCH is mapped, and system information block type 1 (SIB1: System Information Block 1).
  • SIB1 System Information Block 1
  • SIB1 includes information necessary for evaluating whether terminal device 1 is allowed to connect to a cell, and includes information for determining scheduling of other system information (SIB: System Information Block).
  • SIB System Information Block
  • the information indicating settings related to PDCCH for SIB1 includes control resource set (CORESET: ControlResourceSet) #0 (CORESET#0 is also referred to as CORESET0, common CORESET), common search space, and/or necessary PDCCH parameters. It may be information that determines the However, CORESET indicates a PDCCH resource element and is composed of a set of PRBs in a time period of a certain number of OFDM symbols (for example, 1 to 3 symbols).
  • CORESET#0 may be a CORESET for a PDCCH that schedules at least SIB1.
  • CORESET#0 may be set by MIB or via RRC signaling.
  • SIB1 may be scheduled by PDCCH transmitted in CORESET#0.
  • Terminal device 1 receives SIB1 scheduled on PDCCH received in CORESET #0.
  • the PDCCH that schedules SIB1 may be Downlink Control Information (DCI) with a scrambled CRC in the SI-RNTI (Scheduling information - Radio Network Temporary Identifier) transmitted on the PDCCH. .
  • DCI and SI-RNTI will be described later.
  • the terminal device 1 may receive a DCI with a CRC scrambled with SI-RNTI on a PDCCH, and may receive a PDSCH including SIB1 scheduled on the DCI.
  • the PDCCH on which SIB1 is scheduled may be a PDCCH with a CRC scrambled with the SI-RNTI transmitted on the PDCCH.
  • the PBCH also includes information for identifying the number (SFN: System Frame Number) and/or Half Radio Frame (HRF) to which the PBCH is mapped. (also referred to as a frame) may be used to broadcast information specifying the frame.
  • SFN System Frame Number
  • HRF Half Radio Frame
  • a half radio frame is a time frame with a length of 5 ms, and the information specifying the half radio frame may be information specifying whether it is the first half 5 ms or the second half 5 ms of a 10 ms radio frame.
  • the PBCH may be used to broadcast the time index within the period of the SS/PBCH block.
  • the time index is information indicating the index of the synchronization signal and PBCH within the cell.
  • the time index may be referred to as an SSB index or an SS/PBCH block index.
  • transmit filter settings and/or receive spatial parameters within a predetermined period or set may indicate the chronological order within the specified period.
  • the terminal device may recognize the difference in time index as a difference in QCL assumptions regarding transmission beams, transmission filter settings, and/or reception spatial parameters.
  • PDCCH is used to transmit (or carry) downlink control information in downlink wireless communication (wireless communication from base station device 3 to terminal device 1).
  • DCIs which may be referred to as DCI formats
  • fields for downlink control information are defined as DCI and mapped to information bits.
  • PDCCH is transmitted on PDCCH candidates.
  • the terminal device 1 monitors a set of PDCCH candidates in the serving cell. However, monitoring may mean attempting to decode the PDCCH according to a certain DCI format.
  • DCI format may be defined: ⁇ DCI format 0_0 ⁇ DCI format 0_1 ⁇ DCI format 0_2 ⁇ DCI format 1_0 ⁇ DCI format 1_1 ⁇ DCI format 1_2 ⁇ DCI format 2_0 ⁇ DCI format 2_1 ⁇ DCI format 2_2 ⁇ DCI format 2_3
  • DCI format 0_0 may be used for PUSCH scheduling in a certain serving cell.
  • DCI format 0_0 may include information indicating PUSCH scheduling information (frequency domain resource allocation and time domain resource allocation).
  • DCI format 0_0 is an identifier of Radio Network Temporary Identifier (RNTI), Cell-RNTI (C-RNTI), Configured Scheduling (CS)-RNTI), MCS-C-RNTI, and/or Temporary C-NRTI.
  • RNTI Radio Network Temporary Identifier
  • C-RNTI Cell-RNTI
  • CS-RNTI Configured Scheduling
  • MCS-C-RNTI MCS-C-RNTI
  • Temporary C-NRTI Temporary C-NRTI.
  • a CRC Cyclic Redundancy Check
  • DCI format 0_1 may be used for PUSCH scheduling in a certain serving cell.
  • DCI format 0_1 includes information indicating PUSCH scheduling information (frequency domain resource allocation and time domain resource allocation), information indicating BWP, channel state information (CSI) request, sounding reference signal (SRS) ) request and/or information regarding the antenna port.
  • DCI format 0_1 may have a CRC scrambled by any of RNTI, C-RNTI, CS-RNTI, Semi Persistent (SP)-CSI-RNTI, and/or MCS-C-RNTI. .
  • DCI format 0_1 may be monitored in the UE specific search space.
  • DCI format 0_2 may be used for PUSCH scheduling in a certain serving cell.
  • DCI format 0_2 may include information indicating PUSCH scheduling information (frequency domain resource allocation and time domain resource allocation), information indicating BWP, CSI request, SRS request, and/or information regarding antenna ports.
  • DCI format 0_2 may have a CRC scrambled by any one of C-RNTI, CSI-RNTI, SP-CSI-RNTI, and/or MCS-C-RNTI among RNTIs.
  • DCI format 0_2 may be monitored in the UE specific search space.
  • DCI format 0_2 may also be referred to as DCI format 0_1A, etc.
  • DCI format 1_0 may be used for PDSCH scheduling in a certain serving cell.
  • DCI format 1_0 may include information indicating PDSCH scheduling information (frequency domain resource allocation and time domain resource allocation).
  • DCI format 1_0 includes the following identifiers: C-RNTI, CS-RNTI, MCS-C-RNTI, Paging RNTI (P-RNTI), System Information (SI)-RNTI, Random access (RA)-RNTI, and/or , TC-RNTI may be added.
  • DCI format 1_0 may be monitored in the common search space or the UE-specific search space.
  • DCI format 1_1 may be used for PDSCH scheduling in a certain serving cell.
  • DCI format 1_1 includes information indicating PDSCH scheduling information (frequency domain resource allocation and time domain resource allocation), information indicating BWP, transmission configuration indication (TCI), and/or information regarding antenna ports. That's fine.
  • DCI format 1_1 may include a CRC scrambled by any one of C-RNTI, CS-RNTI, and/or MCS-C-RNTI among RNTIs. DCI format 1_1 may be monitored in the UE specific search space.
  • DCI format 1_2 may be used for PDSCH scheduling in a certain serving cell.
  • DCI format 1_2 may include information indicating PDSCH scheduling information (frequency domain resource allocation and time domain resource allocation), information indicating BWP, TCI, and/or information regarding antenna ports.
  • DCI format 1_2 may have a CRC scrambled by any one of C-RNTI, CS-RNTI, and/or MCS-C-RNTI among RNTIs.
  • DCI format 1_2 may be monitored in the UE specific search space.
  • DCI format 1_2 may also be referred to as DCI format 1_1A, etc.
  • DCI format 2_0 is used to notify the slot format of one or more slots.
  • the slot format is defined as each OFDM symbol within the slot classified as one of downlink, flexible, and uplink. For example, if the slot format is 28, DDDDDDDDDDFU is applied to 14 OFDM symbols in the slot in which slot format 28 is designated.
  • D is a downlink symbol
  • F is a flexible symbol
  • U is an uplink symbol. Note that the slot will be described later.
  • DCI format 2_1 is used to notify the terminal device 1 of PRBs (or RBs) and OFDM symbols that can be assumed not to be transmitted. Note that this information may be referred to as a preemption instruction (intermittent transmission instruction).
  • DCI format 2_2 is used for transmitting PUSCH and transmit power control (TPC) commands for PUSCH.
  • TPC transmit power control
  • DCI format 2_3 is used to transmit a group of TPC commands for sounding reference signal (SRS) transmission by one or more terminal devices 1. Additionally, an SRS request may be sent along with the TPC command. Furthermore, an SRS request and a TPC command may be defined in DCI format 2_3 for uplinks without PUSCH and PUCCH, or for uplinks in which SRS transmission power control is not linked to PUSCH transmission power control.
  • SRS sounding reference signal
  • DCI for downlink is also referred to as downlink grant or downlink assignment.
  • the DCI for uplink is also referred to as uplink grant or uplink assignment.
  • DCI may also be referred to as DCI format.
  • the CRC parity bits added to the DCI format transmitted on one PDCCH are scrambled with SI-RNTI, P-RNTI, C-RNTI, CS-RNTI, RA-RNTI, or TC-RNTI.
  • SI-RNTI may be an identifier used for broadcasting system information.
  • P-RNTI may be an identifier used for paging and notification of system information changes.
  • C-RNTI, MCS-C-RNTI, and CS-RNTI are identifiers for identifying terminal devices within a cell.
  • TC-RNTI is an identifier for identifying the terminal device 1 that transmitted the random access preamble during CBRA.
  • C-RNTI is used to control PDSCH or PUSCH in one or more slots.
  • CS-RNTI is used to periodically allocate PDSCH or PUSCH resources.
  • MCS-C-RNTI is used to indicate the use of a given MCS table for grant-based transmission.
  • TC-RNTI is used to control PDSCH or PUSCH transmission in one or more slots.
  • TC-RNTI is used to schedule the retransmission of random access message 3 and the transmission of random access message 4.
  • RA-RNTI is determined according to the frequency and time location information of the physical random access channel that transmitted the random access preamble.
  • Different values may be used for the C-RNTI and/or other RNTIs depending on the type of PDSCH or PUSCH traffic. Different values may be used for C-RNTI and other RNTIs depending on the service type (eMBB, URLLC, and/or mMTC) of data transmitted on PDSCH or PUSCH.
  • the base station device 3 may use different values of RNTI depending on the service type of data to be transmitted.
  • the terminal device 1 may identify the service type of data transmitted on the related PDSCH or PUSCH by the value of the RNTI applied (used for scrambling) to the received DCI.
  • the PUCCH is used to transmit uplink control information (UCI) in uplink wireless communication (wireless communication from the terminal device 1 to the base station device 3).
  • the uplink control information may include channel state information (CSI) used to indicate the state of a downlink channel.
  • the uplink control information may include a scheduling request (SR) used to request UL-SCH resources.
  • the uplink control information may include HARQ-ACK (Hybrid Automatic Repeat request ACKnowledgement).
  • HARQ-ACK may indicate HARQ-ACK for downlink data (Transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH).
  • the PDSCH is used to transmit downlink data (DL-SCH: Downlink Shared CHannel) from the Medium Access Control (MAC) layer. Additionally, in the case of downlink, the PDSCH is also used to transmit system information (SI), paging information, random access response (RAR), and the like.
  • SI system information
  • RAR random access response
  • PUSCH may be used to transmit HARQ-ACK and/or CSI along with uplink data (UL-SCH: Uplink Shared CHannel) or uplink data from the MAC layer. Furthermore, PUSCH may be used to transmit only CSI or only HARQ-ACK and CSI. That is, PUSCH may be used to transmit only UCI.
  • UL-SCH Uplink Shared CHannel
  • the base station device 3 and the terminal device 1 exchange (transmit and receive) signals in a higher layer.
  • the base station device 3 and the terminal device 1 may transmit and receive RRC messages (also referred to as RRC messages, RRC information, and RRC signaling) in a radio resource control (RRC) layer.
  • RRC radio resource control
  • the base station device 3 and the terminal device 1 may transmit and receive MAC control elements in the MAC (Medium Access Control) layer.
  • the RRC layer of the terminal device 1 acquires system information broadcast from the base station device 3.
  • the RRC message, system information, and/or MAC control element is also referred to as a higher layer signal (higher layer signal) or a higher layer parameter (higher layer parameter).
  • the upper layer here means an upper layer seen from the physical layer, and may therefore include one or more of a MAC layer, an RRC layer, an RLC layer, a PDCP layer, a NAS (Non Access Stratum) layer, and the like.
  • the upper layer may include one or more of the RRC layer, RLC layer, PDCP layer, NAS layer, and the like.
  • A is given (provided) by the upper layer
  • A is given (provided) by the upper layer
  • the upper layer mean the upper layers of the terminal device 1 (mainly the RRC layer and MAC layer, etc.) receives A from the base station device 3, and the received A is given (provided) from an upper layer of the terminal device 1 to the physical layer of the terminal device 1.
  • “being provided with upper layer parameters” means that the terminal device 1 receives an upper layer signal from the base station device 3, and the upper layer parameters included in the received upper layer signal are transmitted from the upper layer of the terminal device 1 to the terminal device. It may also mean that it is provided to the physical layer of the device 1.
  • Setting upper layer parameters to the terminal device 1 may mean that the upper layer parameters are given (provided) to the terminal device 1.
  • setting upper layer parameters in the terminal device 1 may mean that the terminal device 1 receives an upper layer signal from the base station device 3 and sets the received upper layer parameters in the upper layer.
  • setting upper layer parameters to the terminal device 1 may include setting default parameters given in advance to the upper layer of the terminal device 1.
  • PDSCH or PUSCH may be used to transmit RRC signaling and MAC control elements.
  • the RRC signaling transmitted from the base station device 3 using PDSCH may be common signaling to multiple terminal devices 1 within a cell.
  • the RRC signaling transmitted from the base station device 3 may be dedicated signaling (also referred to as dedicated signaling) for a certain terminal device 1. That is, the terminal device-specific (UE-specific) information may be transmitted to a certain terminal device 1 using dedicated signaling.
  • PUSCH may be used to transmit UE Capability in the uplink.
  • the following downlink physical signals are used in downlink wireless communication.
  • the downlink physical signal is not used to transmit information output from the upper layer, but is used by the physical layer.
  • SS Synchronization signal
  • RS Reference Signal
  • the synchronization signal may include a primary synchronization signal (PSS) and a secondary synchronization signal (SSS). Cell ID may be detected using PSS and SSS.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • the synchronization signal is used by the terminal device 1 to synchronize the downlink frequency domain and time domain.
  • the synchronization signal may be used by the terminal device 1 for precoding or beam selection in precoding or beamforming by the base station device 3.
  • a beam may also be referred to as a transmit or receive filter setting, or a spatial domain transmit filter or a spatial domain receive filter.
  • the reference signal is used by the terminal device 1 to perform propagation path compensation for the physical channel.
  • the reference signal may also be used by the terminal device 1 to calculate the downlink CSI.
  • the reference signal may be used for fine synchronization such as numerology such as radio parameters and subcarrier spacing, and window synchronization of FFT.
  • one or more of the following downlink reference signals are used.
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • PTRS Phase Tracking Reference Signal
  • TRS Tracking Reference Signal
  • DMRS is used to demodulate the modulated signal.
  • CSI-RS is used for channel state information (CSI) measurement and beam management, and periodic, semi-persistent or aperiodic CSI reference signal transmission methods are applied.
  • CSI-RS may be defined as Non-Zero Power (NZP) CSI-RS and Zero Power (ZP) CSI-RS with zero transmission power (or reception power).
  • ZP CSI-RS may be defined as a CSI-RS resource with zero transmit power or no transmission.
  • PTRS is used to track phase in time with the purpose of guaranteeing frequency offsets due to phase noise.
  • TRS is used to guarantee Doppler shift during high-speed movement.
  • TRS may be used as one setting for CSI-RS.
  • 1-port CSI-RS can be used as a wireless Resources may be set.
  • any one or more of the following uplink reference signals are used.
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • SRS Sounding Reference Signal
  • DMRS is used to demodulate the modulated signal.
  • a reference signal for demodulating PUCCH and a reference signal for demodulating PUSCH, and both may be referred to as DMRS.
  • SRS is used for uplink channel state information (CSI) measurement, channel sounding, and beam management.
  • PTRS is used to track phase in time to account for frequency offsets due to phase noise.
  • the downlink physical channels and/or downlink physical signals are collectively referred to as downlink signals.
  • uplink physical channels and/or uplink physical signals are collectively referred to as uplink signals.
  • downlink physical channels and/or uplink physical channels are collectively referred to as physical channels.
  • downlink physical signals and/or uplink physical signals are collectively referred to as physical signals.
  • BCH, UL-SCH and DL-SCH are transport channels.
  • the channel used in the Medium Access Control (MAC) layer is called a transport channel.
  • the units of transport channels used in the MAC layer are also referred to as transport blocks (TB) and/or MAC PDUs (Protocol Data Units).
  • HARQ Hybrid Automatic Repeat reQuest
  • a transport block is a unit of data that the MAC layer delivers to the physical layer.
  • transport blocks are mapped to codewords, and encoding processing is performed for each codeword.
  • FIG. 4 shows an SS/PBCH block (also referred to as a synchronization signal block, SS block, or SSB) according to this embodiment and a half frame with SS/PBCH block in which one or more SS/PBCH blocks are transmitted.
  • FIG. 3 is a diagram illustrating an example of a block or SS burst set.
  • Figure 4 shows an example in which two SS/PBCH blocks are included in an SS burst set that exists at a constant period (also called an SSB period), and each SS/PBCH block is composed of four consecutive OFDM symbols. It shows.
  • the SS/PBCH block may be a block containing synchronization signals (PSS, SSS), PBCH, and DMRS for PBCH.
  • the SS/PBCH block may be a block including synchronization signals (PSS, SSS), REDCAP PBCH, and DMRS for REDCAP PBCH. Transmitting the signals/channels included in the SS/PBCH block is expressed as transmitting the SS/PBCH block.
  • the base station device 3 may use an independent downlink transmission beam for each SS/PBCH block. good.
  • PSS, SSS, PBCH, and DMRS for PBCH are time/frequency multiplexed in one SS/PBCH block.
  • FIG. 5 is a table showing resources in which PSS, SSS, PBCH, and DMRS for PBCH are arranged in an SS/PBCH block.
  • the PSS may be mapped to the first symbol in the SS/PBCH block (the OFDM symbol whose OFDM symbol number is 0 relative to the starting symbol of the SS/PBCH block).
  • the PSS sequence consists of 127 symbols, and the 57th to 183rd subcarriers in the SS/PBCH block (subcarriers with subcarrier numbers 56 to 182 relative to the starting subcarrier of the SS/PBCH block) ) may be mapped to
  • the SSS may be mapped to the third symbol in the SS/PBCH block (the OFDM symbol whose OFDM symbol number is 2 relative to the starting symbol of the SS/PBCH block).
  • the SSS sequence consists of 127 symbols, and the 57th to 183rd subcarriers in the SS/PBCH block (subcarriers with subcarrier numbers 56 to 182 relative to the starting subcarrier of the SS/PBCH block) ) may be mapped to
  • PBCH and DMRS are OFDM symbols whose OFDM symbol numbers are 1, 2, and 3 in the second, third, and fourth symbols in the SS/PBCH block (relative to the starting symbol of the SS/PBCH block). symbol).
  • the sequence of modulation symbols for PBCH consists of M symb symbols, from the 1st subcarrier to the 240th subcarrier (start of SS/PBCH block) of the 2nd and 4th symbols in the SS/PBCH block. subcarriers with subcarrier numbers from 0 to 239), and the 1st to 48th subcarriers and 184th to 240th subcarriers of the third symbol in the SS/PBCH block.
  • the DMRS symbol sequence consists of 144 symbols, from the 1st subcarrier to the 240th subcarrier (the starting subcarrier of the SS/PBCH block) of the second and fourth symbols in the SS/PBCH block.
  • subcarriers with subcarrier numbers 0 to 239), the 1st to 48th subcarriers and the 184th to 240th subcarriers of the third symbol in the SS/PBCH block (SS /PBCH block starting subcarrier, subcarriers with subcarrier numbers 0 to 47 and 192 to 239), and one subcarrier for every four subcarriers may be mapped.
  • modulation symbols of the PBCH may be mapped to 180 subcarriers
  • DMRS for the PBCH may be mapped to 60 subcarriers.
  • Different SS/PBCH blocks within the SS burst set may be assigned different SSB indices.
  • the SS/PBCH block to which a certain SSB index is assigned may be periodically transmitted by the base station device 3 based on the SSB cycle. For example, an SSB cycle for the SS/PBCH block to be used for initial access and an SSB cycle to be set for the connected (Connected or RRC_Connected) terminal device 1 may be defined. Furthermore, the SSB cycle set for the connected (Connected or RRC_Connected) terminal device 1 may be set using the RRC parameter.
  • the SSB cycle set for the connected (Connected or RRC_Connected) terminal device 1 is the cycle of radio resources in the time domain that may potentially transmit, and in reality, the SSB cycle is set for the connected (Connected or RRC_Connected) terminal device 1. You can decide whether to send it or not.
  • the SSB cycle for using the SS/PBCH block for initial access may be defined in advance in specifications or the like. For example, the terminal device 1 that performs initial access may consider the SSB cycle to be 20 milliseconds.
  • the time position of the SS burst set to which the SS/PBCH block is mapped is determined based on information identifying the System Frame Number (SFN) and/or information identifying the half frame included in the PBCH. good.
  • the terminal device 1 that has received the SS/PBCH block may identify the current system frame number and half frame based on the received SS/PBCH block.
  • the SS/PBCH block is assigned an SSB index (which may be referred to as an SS/PBCH block index) according to its temporal position within the SS burst set.
  • the terminal device 1 identifies the SSB index based on PBCH information and/or reference signal information included in the detected SS/PBCH block.
  • SS/PBCH blocks having the same relative time within each SS burst set in multiple SS burst sets may be assigned the same SSB index.
  • SS/PBCH blocks with the same relative time within each SS burst set in multiple SS burst sets may be assumed to be QCL (or have the same downlink transmission beam applied).
  • antenna ports in SS/PBCH blocks with the same relative time within each SS burst set in multiple SS burst sets may be assumed to be QCL with respect to average delay, Doppler shift, and spatial correlation.
  • SS/PBCH blocks that are assigned the same SSB index may be assumed to be QCL with respect to average delay, average gain, Doppler spread, Doppler shift, and spatial correlation.
  • the settings corresponding to one or more SS/PBCH blocks (or may be reference signals) that are QCLs may be referred to as QCL settings.
  • the number of SS/PBCH blocks (also referred to as the number of SS blocks or the number of SSBs) is, for example, the number of SS/PBCH blocks (number) within an SS burst, or SS burst set, or within a period of SS/PBCH blocks. May be defined. Further, the number of SS/PBCH blocks may indicate the number of beam groups for cell selection within an SS burst, within an SS burst set, or within a period of an SS/PBCH block.
  • a beam group may be defined as the number of different SS/PBCH blocks or the number of different beams included within an SS burst, or within an SS burst set, or within a period of SS/PBCH blocks (SSB period). .
  • SS/PBCH blocks having the same relative time within each SS burst set in multiple SS burst sets may be assigned the same SSB index.
  • SS/PBCH blocks with the same relative time within each SS burst set in multiple SS burst sets may be assumed to be QCL (or have the same downlink transmission beam applied).
  • antenna ports in SS/PBCH blocks with the same relative time within each SS burst set in multiple SS burst sets may be assumed to be QCL with respect to average delay, Doppler shift, and spatial correlation.
  • SS/PBCH blocks that are assigned the same SSB index may be assumed to be QCL with respect to average delay, average gain, Doppler spread, Doppler shift, and spatial correlation.
  • the initial BWP (initial BWP), initial downlink BWP (initial DL BWP), and initial uplink BWP (initial UL BWP) are the BWP used at the time of initial access before the RRC connection is established, respectively. It may be a downlink BWP and an uplink BWP. However, the initial BWP, initial downlink BWP and initial uplink BWP may be used after the RRC connection is established. However, the initial BWP, initial downlink BWP, and initial uplink BWP are BWP with index 0 (#0), downlink BWP with index 0 (#0), and initial uplink BWP with index 0 (#0), respectively. It may be some uplink BWP.
  • the initial downlink BWP may be set by parameters provided in MIB, parameters provided in SIB1, parameters provided in SIB, and/or RRC parameters.
  • the initial downlink BWP may be set by the parameter initialDownlinkBWP included in the parameter downlinkConfigCommon provided in SIB1.
  • the initial downlink BWP may be configured by the parameter initialDownlinkBWP-forRedCap-r17 included in the parameter downlinkConfigCommon provided in SIB1.
  • the initial downlink BWP may be configured by the parameter initialDownlinkBWP-forRedCap-r18 included in the parameter downlinkConfigCommon provided in SIB1.
  • the parameter downlinkConfigCommon provided in SIB1 includes initialDownlinkBWP, initialDownlinkBWP-forRedCap-r17, and/or initialDownlinkBWP-forRedCap-r18, and any one of these parameters included in the downlinkConfigCommon is used to configure the initial downlink BWP. May be set. However, initialDownlinkBWP, initialDownlinkBWP-forRedCap-r17, and initialDownlinkBWP-forRedCap-r18 may be parameters indicating the settings of the initial downlink BWP for each UE (UE-specific, dedicated).
  • FIG. 6 shows the parameter configuration of DownlinkConfigCommonSIB (or DownlinkConfigCommon), which is an information element (IE: Information Element) of parameter downlinkConfigCommon, which is downlink configuration information according to this embodiment, and the parameter information element BWP, which is configuration information of downlink BWP.
  • IE Information Element
  • BWP configuration information of downlink BWP.
  • downlinkConfigCommon is a parameter that indicates basic parameters related to one downlink carrier and transmission in the corresponding cell (for example, called frequencyInfoDL), a parameter that indicates the first setting of the initial downlink BWP of a certain serving cell (for example, called initialDownlinkBWP). ), a parameter indicating the second configuration of the initial downlink BWP of a certain serving cell (for example, referred to as initialDownlinkBWP-forRedCap-r17), and a parameter indicating the third configuration of the initial downlink BWP of a certain serving cell ( For example, initialDownlinkBWP-forRedCap-r18) may be included.
  • initialDownlinkBWP-forRedCap-r17 and initialDownlinkBWP-forRedCap-r18 included in downlinkConfigCommon may have a parameter configuration indicated by the same information element (BWP-DownlinkCommon) as initialDownlinkBWP included in downlinkConfigCommon.
  • initialDownlinkBWP-forRedCap-r17 and initialDownlinkBWP-forRedCap-r18 may be included in SIB and/or RRC parameters other than SIB1.
  • initialDownlinkBWP-forRedCap-r17 and initialDownlinkBWP-forRedCap-r18 may be parameters that include part or all of the parameter configuration of initialDownlinkBWP included in downlinkConfigCommon, and each is the configuration information for the second initial downlink BWP. and configuration information for the third initial downlink BWP.
  • downlinkConfigCommon when downlinkConfigCommon is transmitted by SIB, it may necessarily include initialDownlinkBWP, and may not include initialDownlinkBWP-forRedCap-r17 and initialDownlinkBWP-forRedCap-r18.
  • initialDownlinkBWP, initialDownlinkBWP-forRedCap-r17, and initialDownlinkBWP-forRedCap-r18 include general parameters genericParameters of initial downlink BWP, cell-specific parameters pdcch-ConfigCommon of PDCCH, and cell-specific parameters of PDSCH. pdsch-ConfigCommon and/or other parameters.
  • initialDownlinkBWP is a parameter that sets the initial downlink BWP which is the first bandwidth (e.g. up to 100MHz), and initialDownlinkBWP-forRedCap-r17 is the second bandwidth (e.g. up to 20MHz) which is narrower than the first bandwidth. It may be a parameter for setting the initial downlink BWP.
  • initialDownlinkBWP-forRedCap-r17 may be a parameter that terminal device 1 that supports a bandwidth larger than the third bandwidth (for example, 20MHz) does not refer to, and only terminal device 1 that supports only the third bandwidth or less It may be a parameter to be referenced.
  • initialDownlinkBWP-forRedCap-r18 may be a parameter for setting an initial downlink BWP that is a fourth bandwidth (for example, a maximum of 5 MHz) that is narrower than the second bandwidth.
  • initialDownlinkBWP-forRedCap-r18 may be a parameter that terminal device 1 that supports a bandwidth larger than the fifth bandwidth (for example, 5MHz) does not refer to, and only terminal device 1 that supports only the fifth bandwidth or less It may be a parameter to be referenced. In this way, by setting one or more parameters that set different bandwidths as the initial downlink BWP in downlinkConfigCommon, the initial downlink BWP can be set according to the maximum bandwidth supported by each of the multiple terminal devices 1. Can be set.
  • the bandwidth of the initial downlink BWP set by initialDownlinkBWP is 50MHz
  • the bandwidth of the initial downlink BWP set by initialDownlinkBWP-forRedCap-r17 is 10MHz
  • the initial downlink BWP set by initialDownlinkBWP-forRedCap-r18 is 50MHz
  • the bandwidth of the initial downlink BWP set by initialDownlinkBWP-forRedCap-r17 is 10MHz
  • the initial downlink BWP set by initialDownlinkBWP-forRedCap-r18 is the bandwidth of the initial downlink BWP set by initialDownlinkBWP set by initialDownlinkBWP-forRedCap-r18.
  • terminal device 1 that supports a bandwidth of up to 100MHz will configure an initial downlink BWP with a bandwidth of 50MHz based on initialDownlinkBWP and up to 20MHz
  • Terminal device 1 that supports a bandwidth of up to 5MHz sets an initial downlink BWP with a bandwidth of 10MHz based on initialDownlinkBWP-forRedCap-r17
  • terminal device 1 that supports a bandwidth of up to 5MHz sets an initial Downlink BWP based on initialDownlinkBWP-forRedCap-r18.
  • the initial downlink BWP with a bandwidth of 5MHz may be set using
  • the terminal device 1 may identify/set/determine the initial downlink BWP based on the parameters included in the initialDownlinkBWP-forRedCap-r18. For example, when the terminal device 1 receives the initialDownlinkBWP-forRedCap-r18 in SIB1, it may identify/set/determine the initial downlink BWP based on the parameters of the initialDownlinkBWP-forRedCap-r18.
  • part of the information included in the genericParameters in the initialDownlinkBWP is the configuration parameters of the plurality of initial downlink BWPs (or the plurality of frequency positions and/or of the initial downlink BWPs). or setting information of multiple bandwidths).
  • the information element BWP of the parameter genericParameters may be a parameter indicating the frequency position and bandwidth of the corresponding BWP.
  • the information element BWP includes a parameter subcarrierSpacing that indicates the subcarrier spacing used in the corresponding BWP, a parameter locationAndBandwidth that indicates the position and bandwidth (number of resource blocks (total number)) in the frequency domain of the corresponding BWP, and/or the corresponding BWP.
  • the value indicated by locationAndBandwidth may be interpreted as a resource indicator value (RIV).
  • the resource indicator value indicates the number of consecutive PRBs from the starting PRB index of the corresponding BWP.
  • the first PRB that defines the region of the resource indicator value is based on the subcarrier spacing given by subcarrierSpacing of the corresponding BWP and the FrequencyInfoDL (or FrequencyInfoDL-SIB) or FrequencyInfoUL (or FrequencyInfoUL-SIB) corresponding to the subcarrier spacing. ) may be the PRB determined by offsetToCarrier set in SCS-SpecificCarrier.
  • the size defining the region of the resource indicator value may be 275.
  • the subcarrier spacing of the initial downlink BWP indicated by subcarrierSpacing included in genericParameters may be set to have the same value as the subcarrier spacing indicated by the MIB of the same cell. If cyclicPrefix is not included in the genericParameters (not set), the terminal device 1 may use the standard CP instead of the extended CP.
  • the frequencyInfoDL may include a frequencyBandList that indicates a list of one or more frequency bands to which the relevant downlink carrier belongs, and a list of SCS-SpecificCarrier that indicates a set of carrier-related parameters for each subcarrier interval.
  • frequencyInfoUL may include a frequencyBandList that indicates a list of one or more frequency bands to which the uplink carrier belongs, and a list of SCS-SpecificCarrier that indicates a set of parameters regarding carriers for each subcarrier interval.
  • the SCS-SpecificCarrier may include parameters indicating the actual carrier position, bandwidth, and carrier bandwidth. More specifically, the information element SCS-SpecificCarrier in frequencyInfoDL indicates settings regarding a specific carrier, and includes subcarrierSpacing, carrierbandwidth, and/or offsetToCarrier.
  • subcarrierSpacing is a parameter that indicates the subcarrier spacing of the carrier (for example, FR1 indicates 15 kHz or 30 kHz, and FR2 indicates 60 kHz or 120 kHz).
  • carrierbandwidth is a parameter that indicates the bandwidth of the carrier in terms of the number of PRBs (Physical Resource Blocks).
  • offsetToCarrier is the offset in the frequency domain between reference point A (the lowest subcarrier of common RB0) and the lowest usable subcarrier of the carrier in PRB number (however, the subcarrier spacing is subcarrierSpacing is the subcarrier interval of the carrier given by ). For example, for a downlink carrier, its carrier bandwidth is given by the upper layer parameter carrierbandwidth in SCS-SpecificCarrier in frequencyInfoDL for each subcarrier interval, and the starting position on that frequency is given by the SCS in frequencyInfoDL for each subcarrier interval. -Given by the parameter offsetToCarrier in SpecificCarrier.
  • an uplink carrier its carrier bandwidth is given by the upper layer parameter carrierbandwidth in SCS-SpecificCarrier in frequencyInfoUL for each subcarrier interval, and the starting position on that frequency is given by the SCS in frequencyInfoUL for each subcarrier interval. -Given by the parameter offsetToCarrier in SpecificCarrier.
  • Terminal device 1 sets the initial downlink BWP bandwidth set by initialDownlinkBWP and initialDownlinkBWP-forRedCap-r17 provided in downlinkConfigCommon included in SIB1 (which may be other SIB or RRC parameters) received by terminal device 1. If not supported, terminal device 1 performs initial downlink BWP in a continuous manner starting from the PRB with the lowest index and ending with the PRB with the highest index among the PRBs (Physical Resource Blocks) of CORESET (CORESET #0, etc.) of Type 0-PDCCH CSS Set. It may be determined/specified by the position and number of PRBs to be used, and the SCS (SubCarrier Spacing) and cyclic prefix of the PDCCH received in CORESET of Type0-PDCCH CSS Set.
  • SIB1 which may be other SIB or RRC parameters
  • the terminal device 1 may determine/specify the initial downlink BWP using the initialDownlinkBWP-forRedCap-r18.
  • initialDownlinkBWP-forRedCap-r18 is not provided/set in downlinkConfigCommon in SIB1 received by terminal device 1
  • initialDownlinkBWP-forRedCap-r17 is provided/set in downlinkConfigCommon in SIB1 received by terminal device 1, and the corresponding If the terminal device 1 supports the BWP bandwidth set in the initialDownlinkBWP-forRedCap-r17, the terminal device 1 may determine/specify the initial downlink BWP using the initialDownlinkBWP-forRedCap-r17.
  • initialDownlinkBWP-forRedCap-r18 is not provided/set in downlinkConfigCommon in SIB1 received by terminal device 1
  • initialDownlinkBWP-forRedCap-r17 is provided/set in downlinkConfigCommon in SIB1 received by terminal device 1
  • the terminal device 1 may determine/specify the initial downlink BWP using the initialDownlinkBWP-forRedCap-r17.
  • initialDownlinkBWP-forRedCap-r18 is not provided/set in downlinkConfigCommon in SIB1 received by terminal device 1
  • initialDownlinkBWP-forRedCap-r17 is provided/set in downlinkConfigCommon in SIB1 received by terminal device 1, and the corresponding If the terminal device 1 does not support the BWP bandwidth set in initialDownlinkBWP-forRedCap-r17, the terminal device 1 may consider the cell to be a barred cell.
  • terminal device 1 sets initial downlink BWP to initialDownlinkBWP provided in downlinkConfigCommon in SIB1. It may be determined/specified by .
  • initialDownlinkBWP-forRedCap-r18 and initialDownlinkBWP-forRedCap-r17 are not provided/set in downlinkConfigCommon in SIB1 received by terminal device 1, and terminal device 1 supports the BWP bandwidth set in initialDownlinkBWP.
  • the terminal device 1 may determine/specify the initial downlink BWP using the initialDownlinkBWP.
  • terminal device 1 may determine/specify the initial downlink BWP with initialDownlinkBWP instead of initialDownlinkBWP-forRedCap-r17. do not have. However, due to the relationship between the bandwidths set in each of initialDownlinkBWP, initialDownlinkBWP-forRedCap-r17, and initialDownlinkBWP-forRedCap-r18, if initialDownlinkBWP-forRedCap-r18 is not used, the bandwidth will be closer to initialDownlinkBWP-forRedCap-r18.
  • initialDownlinkBWP-forRedCap-r17 which is expected to be set, it may be possible to obtain the advantage of providing flexibility in the bandwidth set for terminal device 1.
  • the base station device 3 sets the initial downlink BWP with a bandwidth that can be set by all the terminal devices 1 in the cell, which of initialDownlinkBWP-forRedCap-r17 and initialDownlinkBWP-forRedCap-r18 By not setting either, all terminal devices 1 may set/specify the initial downlink BWP band in initialDownlinkBWP.
  • the initial it is possible to provide flexibility in the bandwidth of downlink BWP. Note that although this embodiment shows a case where three parameters are used to set three initial downlink BWPs with different bandwidths, it is also possible to use four or more parameters.
  • initialDownlinkBWP-forRedCap-r18 and initialDownlinkBWP-forRedCap-r17 are not provided/set in downlinkConfigCommon in SIB1 received by terminal device 1, and terminal device 1 does not support the BWP bandwidth set in initialDownlinkBWP. , the terminal device 1 may regard the cell as a barred cell.
  • initialDownlinkBWP-forRedCap-r18 is not provided/set in downlinkConfigCommon in SIB1 received by terminal device 1
  • initialDownlinkBWP-forRedCap-r17 is provided/set in downlinkConfigCommon in SIB1 received by terminal device 1, and the corresponding
  • terminal device 1 does not support the BWP bandwidth set in initialDownlinkBWP-forRedCap-r17
  • terminal device 1 uses the initial downlink BWP as PRB (Physical Determined by the position and number of consecutive PRBs starting from the PRB with the lowest index and ending with the PRB with the highest index among the Resource Blocks, and the SCS (SubCarrier Spacing) and cyclic prefix of the PDCCH received in the CORESET of the Type0-PDCCH CSS Set. May be specified.
  • initialDownlinkBWP-forRedCap-r18 and initialDownlinkBWP-forRedCap-r17 are not provided/set in downlinkConfigCommon in SIB1 received by terminal device 1, and initialDownlinkBWP provided in downlinkConfigCommon in SIB1 received by terminal device 1 is not set. If terminal device 1 does not support the BWP bandwidth that is used for It may be determined/specified by the position and number of consecutive PRBs starting from the PRB and ending with the PRB with the highest index, and the SCS and cyclic prefix of the PDCCH received in the CORESET of the Type0-PDCCH CSS Set.
  • initialDownlinkBWP initialDownlinkBWP-forRedCap-r17 or initialDownlinkBWP-forRedCap-r18
  • RRC connection may be established (for example, RRCSetup, RRCResume, and/or RRCReestablishment is being received).
  • initialDownlinkBWP which may be initialDownlinkBWP-forRedCap-r17 or initialDownlinkBWP-forRedCap-r18
  • CORESET#0 is used until it receives RRCSetup, RRCResume, or RRCReestablishment. may be used as the initial downlink BWP.
  • the initial downlink BWP is determined/specified by the position and number of consecutive PRBs starting from the PRB with the lowest index and ending with the PRB with the highest index among the PRBs in CORESET#0. It's fine.
  • determining/identifying the initial downlink BWP may also mean determining/identifying the frequency position and/or bandwidth of the initial downlink BWP.
  • initialDownlinkBWP which may be initialDownlinkBWP-forRedCap-r17 or initialDownlinkBWP-forRedCap-r18
  • terminal device 1 uses the received initialDownlinkBWP
  • the initial downlink BWP may be determined/specified using locationAndBandwidth included in (initialDownlinkBWP-forRedCap-r17 or initialDownlinkBWP-forRedCap-r18).
  • initialDownlinkBWP which may be initialDownlinkBWP-forRedCap-r17 or initialDownlinkBWP-forRedCap-r18
  • initial downlink BWP specifies the initial downlink BWP in CORESET#0 until the RRC connection is established.
  • the initial downlink BWP may be determined/specified using locationAndBandwidth included in initialDownlinkBWP (initialDownlinkBWP-forRedCap-r17/initialDownlinkBWP-forRedCap-r18).
  • RRCSetup may be a message received from the base station device 3 (which may be a network) when the terminal device 1 transmits an RRCSetupRequest message to the base station device 3 (which may be a network).
  • the base station device 3 (which may be a network) may transmit an RRCSetup message to the terminal device 1 when an RRC connection is established with the terminal device 1.
  • RRCResume is a message received from the base station device 3 (which may be a network) when the terminal device 1 transmits an RRCResumeRequest message or an RRCResumeRequest1 message to the base station device 3 (which may be a network). It's fine.
  • base station device 3 (which may be a network) resumes the RRC connection with terminal device 1, base station device 3 (which may be a network) may transmit an RRCResume message to terminal device 1.
  • RRCReestablishment may be a message received from the base station device 3 (which may be a network) when the terminal device 1 transmits an RRCReestablishmentRequest message to the base station device 3 (which may be a network).
  • the base station device 3 which may be a network
  • RRCReestablishment message may be transmitted to the terminal device 1.
  • the terminal device 1 receives/specifies initial downlink BWP configuration information using upper layer parameters initialDownlinkBWP, initialDownlinkBWP-forRedCap-r17, and/or initialDownlinkBWP-forRedCap-r18 in downlinkConfigCommon.
  • initialDownlinkBWP, initialDownlinkBWP-forRedCap-r17, and/or initialDownlinkBWP-forRedCap-r18 may be included in SIB1 or in any RRC message.
  • the initial downlink BWP configuration information may include information indicating the frequency position and bandwidth of the initial downlink BWP.
  • the terminal device 1 may receive SIB1 or arbitrary RRC signaling including multiple pieces of initial downlink BWP configuration information.
  • pdcch-ConfigCommon which can be included in initialDownlinkBWP, initialDownlinkBWP-forRedCap-r17 and/or initialDownlinkBWP-forRedCap-r18 in downlinkConfigCommon, is the CORESET#0 used in the common search space or UE-specific search space in the corresponding initial downlink BWP.
  • Parameter controlResourceSetZero indicates a list of common search spaces other than common search space 0 Parameter commonSearchSpaceList, parameter searchSpaceSIB1 indicating the ID of the search space for SIB1 messages, parameter searchSpaceOtherSystemInformation indicating the ID of the search space for other system information, parameter pagingSearchSpace indicating the ID of the search space for paging, and/or It may contain the parameter ra-SearchSpace indicating the ID of the search space for the random access procedure.
  • ControlResourceSetZero Any value from 0 to 15 is set for ControlResourceSetZero. However, the number of values that can be set for ControlResourceSetZero may be other than 16, and may be 32, for example. Any value from 0 to 15 is set to the information element SearchSpaceZero indicated by searchSpaceZero. However, the number of values that can be set for SearchSpaceZero may be other than 16, and may be 32, for example.
  • the terminal device 1 determines the number of consecutive resource blocks and the number of consecutive symbols for CORESET #0 from controlResourceSetZero in pdcch-ConfigCommon. However, the value indicated by controlResourceSetZero is applied to a predetermined table as an index. However, the terminal device 1 may decide which table to apply based on the supported UE category and/or UE Capability. However, the terminal device 1 may decide which table to apply based on the minimum channel bandwidth. However, the terminal device 1 may determine the table to be applied based on the subcarrier spacing of the SS/PBCH block and/or the subcarrier spacing of CORESET #0.
  • Each row of the table to which the value of controlResourceSetZero is applied as an index includes the index indicated by controlResourceSetZero, the multiplex pattern of PBCH and CORESET, the number of RBs (which may be PRBs) of CORESET#0, the number of symbols of CORESET#0, and the offset. and/or the number of times the PDCCH is repeated may be indicated.
  • commonSearchSpaceList is a parameter that indicates a list of additional common search spaces (CSS), and sets common search spaces with search space IDs other than 0.
  • the parameter SearchSpace included in commonSearchSpaceList includes at least a parameter searchSpaceId indicating a search space ID used to identify a search space, and a parameter controlResourceSetId indicating a CORESET ID used to identify one CORESET in the serving cell. may be included.
  • searchSpaceSIB1 includes an information element SearchSpaceId indicating the ID of the search space for the SIB1 message.
  • the terminal device 1 identifies the CSS used to monitor the PDCCH that schedules the PDSCH including the SIB1 message from the search space ID indicated by searchSpaceSIB1 and the common search space list indicated by commonSearchSpaceList, and
  • the CORESET used to monitor the PDCCH on which messages are scheduled and the settings (eg, frequency location) of the CORESET may be specified.
  • searchSpaceOtherSystemInformation includes an information element SearchSpaceId that indicates the ID of the search space for other system information (OSI).
  • Terminal device 1 specifies the CSS to be used for monitoring the PDCCH that schedules the PDSCH including the OSI from the search space ID indicated by searchSpaceOtherSystemInformation and the list of common search spaces indicated by commonSearchSpaceList, and further specifies the CSS to be used for monitoring the PDCCH that schedules the PDSCH including the OSI.
  • the CORESET used to monitor the PDCCH that schedules the included PDSCH and the settings (eg, frequency location) of the CORESET may be specified.
  • pagingSearchSpace includes an information element SearchSpaceId that indicates the ID of the search space for paging.
  • the terminal device 1 specifies the CSS to be used for monitoring the PDCCH that schedules the PDSCH including paging information from the search space ID indicated by pagingSearchSpace and the list of common search spaces indicated by commonSearchSpaceList, and further specifies the CSS used for monitoring the PDCCH that schedules the PDSCH that includes paging information,
  • the CORESET used to monitor the PDCCH that schedules the PDSCH containing information and the settings (eg, frequency location) of the CORESET may be specified.
  • ra-SearchSpace contains an information element SearchSpaceId indicating the ID of the search space for the random access procedure.
  • Terminal device 1 schedules a PDSCH that includes a random access response (RAR) based on the search space ID indicated by ra-SearchSpace and the common search space list indicated by commonSearchSpaceList.
  • RAR random access response
  • the CORESET used for monitoring the PDCCH that schedules the PDSCH including RAR and the settings (for example, frequency position) of the CORESET may be specified.
  • the multiplex pattern of PBCH and CORESET indicates the pattern of the frequency/time position relationship between the SS/PBCH block corresponding to the PBCH where the MIB was detected and the corresponding CORESET #0. For example, if the multiplexing pattern for PBCH and CORESET is 1, PBCH and CORESET #0 are time-multiplexed on different symbols.
  • the number of RBs for CORESET #0 indicates the number of resource blocks that are consecutively allocated to CORESET #0.
  • the number of symbols of CORESET #0 indicates the number of symbols consecutively allocated to CORESET #0.
  • the terminal device 1 receives initialDownlinkBWP, initialDownlinkBWP-forRedCap-r17, and/or initialDownlinkBWP-forRedCap-r18 including the RRC parameter pdcch-ConfigCommon in SIB1, other SIB, or RRC signaling, and monitors the PDCCH based on the parameter. .
  • the terminal device 1 determines the PDCCH monitoring opportunity from searchSpaceZero in pdcch-ConfigCommon. However, the value indicated by searchSpaceZero is applied to a predetermined table as an index. However, the terminal device 1 may decide which table to apply based on the supported UE category and/or UE Capability. However, the terminal device 1 may decide which table to apply based on the frequency range.
  • Terminal device 1 monitors PDCCH using Type 0-PDCCH common search space set (Type 0-PDCCH CSS Set) over two consecutive slots starting from slot n0.
  • the terminal device 1 determines n0 and the system frame number in the SS/PBCH block whose index is i based on the parameter O and the parameter M shown in the table.
  • Parameters indicating multiple "frequency positions and bandwidths" for multiple initial downlink BWPs in a certain cell locationAndBandwidth in initialDownlinkBWP in downlinkConfigCommon, locationAndBandwidth in initialDownlinkBWP-forRedCap-r17 in downlinkConfigCommon, and initialDownlinkBWP-forRedCap in downlinkConfigCommon) - locationAndBandwidth in r18) is set (this may be the case when multiple initial downlink BWPs are set in a certain cell), pdcch-ConfigCommon that can be included in initialDownlinkBWP in downlinkConfigCommon or the pdcch-ConfigCommon Each parameter may be a cell-specific parameter of the PDCCH in the initial downlink BWP configured in the initialDownlinkBWP in downlinkConfigCommon, or the initial downlink BWP configured in the initialDownlinkBWP in downlinkConfigCommon, in the downlinkConfigCommon
  • pdsch-ConfigCommon (which may be referred to as PDSCH-ConfigCommon) which may be included in initialDownlinkBWP in downlinkConfigCommon
  • pdsch-ConfigCommon which may be included in initialDownlinkBWP-forRedCap-r17 in downlinkConfigCommon
  • initialDownlinkBWP-forRedCap-r18 in downlinkConfigCommon
  • the pdsch-ConfigCommon that may be configured may include a parameter pdsch-TimeDomainAllocationList that indicates a list of time domain settings for the timing of downlink allocation for downlink data.
  • Parameters indicating multiple "frequency positions and bandwidths" for the initial downlink BWP in a certain cell locationAndBandwidth in initialDownlinkBWP in downlinkConfigCommon, locationAndBandwidth in initialDownlinkBWP-forRedCap-r17 in downlinkConfigCommon, and initialDownlinkBWP-forRedCap-r18 in downlinkConfigCommon) locationAndBandwidth
  • locationAndBandwidth is set (this may be the case when multiple initial downlink BWPs are set in a certain cell)
  • pdsch-ConfigCommon that can be included in initialDownlinkBWP in downlinkConfigCommon or each parameter of the pdsch-ConfigCommon may be a cell-specific parameter of the PDSCH in the initial downlink BWP configured with initialDownlinkBWP in downlinkConfigCommon, or the initial downlink BWP configured with initialDownlinkBWP in downlinkConfigCommon, initialDownlinkBW
  • Terminal device 1 that does not support the frequency location and/or bandwidth of the initial downlink BWP (first initial downlink BWP) configured in initialDownlinkBWP in downlinkConfigCommon is By identifying/determining the initial downlink BWP (second initial downlink BWP) configured in initialDownlinkBWP-forRedCap-r17 in downlinkConfigCommon that can be included in and can receive downlink signals.
  • Terminal device 1 that does not support the frequency location and/or bandwidth of the initial downlink BWP (second initial downlink BWP) configured in initialDownlinkBWP-forRedCap-r17 in downlinkConfigCommon is configured using SIB1 (other SIB or RRC signaling). By identifying/determining the initial downlink BWP (third initial downlink BWP) configured in initialDownlinkBWP-forRedCap-r18 in downlinkConfigCommon that may be included in can receive downlink channels and downlink signals.
  • the base station device 3 When setting the initial downlink BWP of a frequency location and/or bandwidth that is not supported by a specific terminal device 1 in locationAndBandwidth in initialDownlinkBWP, the base station device 3 sets the frequency location and/or bandwidth that the specific terminal device 1 supports.
  • the initial downlink BWP With locationAndBandwidth included in initialDownlinkBWP-forRedCap-r17 or locationAndBandwidth included in initialDownlinkBWP-forRedCap-r18 in downlinkConfigCommon, it is possible to appropriately transmit the downlink channel and downlink signal.
  • the base station device 3 determines the frequency position and/or Alternatively, for the terminal device 1 that does not support the bandwidth, the downlink channel and reference signal corresponding to the second initial downlink BWP are transmitted, and the frequency position and bandwidth of the first initial downlink BWP are supported.
  • the downlink channel and reference signal corresponding to the first initial downlink BWP can be transmitted to the terminal device 1.
  • the base station device 3 includes locationAndBandwidth in initialDownlinkBWP-forRedCap-r18 in downlinkConfigCommon in SIB1 (which may be other SIBs or RRC signaling), thereby controlling the first initial downlink BWP and the second downlink BWP.
  • the downlink channel and reference signal corresponding to the third initial downlink BWP can be transmitted to the terminal device 1 that does not support the frequency position and/or bandwidth of the third initial downlink BWP.
  • the base station device 3 sets the initial downlink BWP of the frequency location and/or bandwidth supported by all the terminal devices 1. ) does not need to include initialDownlinkBWP-forRedCap-r17 and initialDownlinkBWP-forRedCap-r18 in downlinkConfigCommon.
  • the base station device 3 sets the initial downlink BWP of the frequency location and/or bandwidth supported by some of the terminal devices 1 in locationAndBandwidth in the initialDownlinkBWP, and sets the initial downlink BWP of the frequency location and/or bandwidth supported by the other terminal devices 1.
  • initial downlink BWP width With initialDownlinkBWP-r17, it is not necessary to include initialDownlinkBWP-forRedCap-r18 in downlinkConfigCommon in SIB1 (which may be other SIBs or RRC signaling).
  • Terminal device 1 includes genericParameters in initialDownlinkBWP in downlinkConfigCommon regardless of whether initialDownlinkBWP-forRedCap-r17 is included in downlinkConfigCommon in SIB1 (which may be other SIBs or RRC signaling).
  • the subcarrier spacing used in all channels and reference signals in the initial downlink BWP may be identified/determined using subcarrierSpacing.
  • Terminal device 1 includes genericParameters in initialDownlinkBWP in downlinkConfigCommon regardless of whether initialDownlinkBWP-forRedCap-r18 is included in downlinkConfigCommon in SIB1 (which may be other SIBs or RRC signaling).
  • the subcarrier spacing used in all channels and reference signals in the initial downlink BWP may be identified/determined using subcarrierSpacing.
  • Terminal device 1 includes genericParameters in initialDownlinkBWP in downlinkConfigCommon regardless of whether initialDownlinkBWP-forRedCap-r17 is included in downlinkConfigCommon in SIB1 (which may be other SIBs or RRC signaling).
  • cyclicPrefix may be used to identify/determine whether an extended cyclic prefix CP is used in the initial downlink BWP.
  • Terminal device 1 includes genericParameters in initialDownlinkBWP in downlinkConfigCommon regardless of whether initialDownlinkBWP-forRedCap-r18 is included in downlinkConfigCommon in SIB1 (which may be other SIBs or RRC signaling).
  • cyclicPrefix may be used to identify/determine whether an extended cyclic prefix CP is used in the initial downlink BWP.
  • Terminal device 1 uses pdcch-ConfigCommon included in initialDownlinkBWP in downlinkConfigCommon, regardless of whether initialDownlinkBWP-forRedCap-r17 is included in downlinkConfigCommon in SIB1 (which may be other SIBs or RRC signaling). may be used to identify/determine cell-specific parameters of the PDCCH in the initial downlink BWP and monitor/receive the PDCCH.
  • Terminal device 1 uses pdcch-ConfigCommon included in initialDownlinkBWP in downlinkConfigCommon, regardless of whether initialDownlinkBWP-forRedCap-r18 is included in downlinkConfigCommon in SIB1 (which may be other SIBs or RRC signaling). may be used to identify/determine cell-specific parameters of the PDCCH in the initial downlink BWP and monitor/receive the PDCCH.
  • Terminal device 1 uses pdsch-ConfigCommon included in initialDownlinkBWP in downlinkConfigCommon, regardless of whether initialDownlinkBWP-forRedCap-r17 is included in downlinkConfigCommon in SIB1 (which may be other SIBs or RRC signaling). may be used to identify/determine cell-specific parameters of the PDSCH in the initial downlink BWP and receive the PDSCH.
  • Terminal device 1 uses pdsch-ConfigCommon included in initialDownlinkBWP in downlinkConfigCommon, regardless of whether initialDownlinkBWP-forRedCap-r18 is included in downlinkConfigCommon in SIB1 (which may be other SIBs or RRC signaling). may be used to identify/determine cell-specific parameters of the PDSCH in the initial downlink BWP and receive the PDSCH.
  • Terminal device 1 receives locationAndBandwidth included in initialDownlinkBWP-forRedCap-r17 in SIB1 (or other SIBs), and identifies/determines the frequency position and bandwidth of the initial downlink BWP based on the locationAndBandwidth. and the initial downlink BWP specified/determined by the locationAndBandwidth includes the entire CORESET#0, then until the RRC connection is established, re-established or resumed (e.g.
  • the CORESET#0 is set as the initial downlink BWP, and after the RRC connection is established, the initial downlink BWP is set using the locationAndBandwidth included in the initialDownlinkBWP-forRedCap-r17 in the received SIB1 (or other SIBs). May be determined/specified. However, if the initial downlink BWP is set to CORESET#0 until the RRC connection is established, re-established, or restarted, the terminal device 1 performs the random access procedure using the initial downlink BWP determined/specified by CORESET#0. It's okay.
  • Terminal device 1 receives locationAndBandwidth included in initialDownlinkBWP-forRedCap-r17 in SIB1 (or other SIBs), and identifies/determines the frequency position and bandwidth of the initial downlink BWP based on the locationAndBandwidth. and if the initial downlink BWP specified/determined by the locationAndBandwidth does not include the entire CORESET#0, the received SIB1 (other SIB The initial downlink BWP specified/determined by locationAndBandwidth included in initialDownlinkBWP-forRedCap-r17 may be used.
  • Terminal device 1 receives locationAndBandwidth included in initialDownlinkBWP-forRedCap-r18 in SIB1 (or other SIBs), and identifies/determines the frequency position and bandwidth of the initial downlink BWP based on the locationAndBandwidth. and the initial downlink BWP specified/determined by the locationAndBandwidth includes the entire CORESET#0, then until the RRC connection is established, re-established or resumed (e.g.
  • the CORESET#0 is set as the initial downlink BWP, and after the RRC connection is established, the initial downlink BWP is set using the locationAndBandwidth included in the initialDownlinkBWP-forRedCap-r18 in the received SIB1 (or other SIBs). May be determined/specified. However, if the initial downlink BWP is set to CORESET#0 until the RRC connection is established, re-established, or restarted, the terminal device 1 performs the random access procedure using the initial downlink BWP determined/specified by CORESET#0. It's okay.
  • Terminal device 1 receives locationAndBandwidth included in initialDownlinkBWP-forRedCap-r18 in SIB1 (or other SIBs), and identifies/determines the frequency position and bandwidth of the initial downlink BWP based on the locationAndBandwidth. and if the initial downlink BWP specified/determined by the locationAndBandwidth does not include the entire CORESET#0, the received SIB1 (other SIB The initial downlink BWP specified/determined by locationAndBandwidth included in initialDownlinkBWP-forRedCap-r18 may be used.
  • terminal device 1 Based on the information included in SIB1 (which may be other SIBs), terminal device 1 performs initial downlink BWP (separate initial downlink BWP) based on locationAndBandwidth included in initialDownlinkBWP-forRedCap-r18 in SIB1. It is also possible to switch the timing for determining/identifying the
  • the parameter initialBwpTiming which indicates the timing to apply locationAndBandwidth included in initialDownlinkBWP-forRedCap-r18 in SIB1 (or other SIBs), may be 1-bit information.
  • an initial downlink BWP (with a frequency position and/or bandwidth different from the first initial downlink BWP)
  • the band of the second initial downlink BWP may not include a synchronization signal block transmitted within the band of the first initial downlink BWP.
  • An additional synchronization signal within the band of the second initial downlink BWP when the second initial downlink BWP requires a signal with the role of a synchronization signal block for paging, random access and/or other uses. block (hereinafter referred to as additional synchronization signal block (additional SSB)).
  • the base station device 3 may transmit the additional synchronization signal block within the band of the second initial downlink BWP specified/determined by locationAndBandwidth in the initialDownlinkBWP-forRedCap-r17.
  • the terminal device 1 may receive an additional synchronization signal block transmitted within the band of the second initial downlink BWP specified/determined from locationAndBandwidth in the initialDownlinkBWP-forRedCap-r17.
  • the additional synchronization signal block may be a synchronization signal block (referred to as NCD-SSB: Non-Cell Defining SSB) that is not a cell-defining synchronization signal block (referred to as CD-SSB: Cell Defining SSB).
  • NCD-SSB Non-Cell Defining SSB
  • CD-SSB Cell Defining SSB
  • additional synchronization signal blocks may not be centered around the Synchronization Raster.
  • a frequency position and/or band different from the first initial downlink BWP and the second initial downlink BWP When an initial downlink BWP (third initial downlink BWP) with a width of May not contain signal blocks. If the third initial downlink BWP requires a signal with the role of a synchronization signal block for paging, random access, and/or other purposes, an additional synchronization signal block within the band of the third initial downlink BWP. may be sent.
  • the base station device 3 may transmit the additional synchronization signal block within the band of the third initial downlink BWP specified/determined by locationAndBandwidth in the initialDownlinkBWP-forRedCap-r18.
  • the terminal device 1 may receive an additional synchronization signal block transmitted within the band of the third initial downlink BWP specified/determined from the locationAndBandwidth in the initialDownlinkBWP-forRedCap-r18.
  • the additional synchronization signal block may be NCD-SSB:. For example, additional synchronization signal blocks may not be centered around the Synchronization Raster.
  • FIG. 7 is a diagram showing an overview of the frequency positions of additional synchronization signal blocks according to the present embodiment.
  • two initial downlink BWPs a first initial downlink BWP (initial DL BWP) and a second initial downlink BWP (separate initial DL BWP), are set in a certain cell.
  • the initial downlink BWP may be the band of CORESET #0.
  • the initial downlink BWP includes a PDSCH (PDSCH with SIB1) that includes at least a synchronization signal block (SSB), CORESET #0, and SIB1 in the band.
  • SSB synchronization signal block
  • the second initial downlink BWP includes at least an additional synchronization signal block (additional SSB) in the band.
  • the terminal device 1 that has received the synchronization signal block specifies the frequency position of CORESET #0, and specifies the frequency position and time position of the PDSCH including SIB1 based on the PDCCH received in CORESET #0.
  • the terminal device 1 that has received the PDSCH including SIB1 uses the second initial downlink BWP according to the parameter locationAndBandwidth included in the initialDownlinkBWP-forRedCap-r18 in the SIB1 (or may be another SIB specified by the SIB1).
  • Identify/determine the frequency location (including bandwidth) of The terminal device 1 that has specified/determined the frequency position of the second initial downlink BWP uses the parameter ssbFrequencyOffset included in the initialDownlinkBWP-forRedCap-r18 in the SIB1 (or may be another SIB specified by the SIB1).
  • -rc may identify/determine the frequency location of an additional synchronization signal block transmitted within the separate initial downlink BWP and receive the additional synchronization signal block.
  • the terminal device 1 may decode (receive) the corresponding PDSCH.
  • the corresponding PDSCH is scheduled (indicated) by its DCI format (DCI).
  • DCI DCI format
  • the start position (start symbol) of the scheduled PDSCH is referred to as S.
  • the starting symbol S of the PDSCH may be the first symbol on which the PDSCH is transmitted (mapped) within a certain slot.
  • the starting symbol S corresponds to the beginning of the slot. For example, when the value of S is 0, the terminal device 1 may receive the PDSCH from the first symbol in a certain slot.
  • the terminal device 1 may receive the PDSCH from the third symbol of a certain slot.
  • the number of consecutive (Consecutive) symbols of the PDSCH to be scheduled is referred to as L.
  • the number L of consecutive symbols is counted from the starting symbol S. The determination of S and L assigned to PDSCH will be described later.
  • the PDSCH mapping type has PDSCH mapping type A and PDSCH mapping type B.
  • S takes values from 0 to 3.
  • L takes values from 3 to 14.
  • the sum of S and L takes a value from 3 to 14.
  • S takes values from 0 to 12.
  • L takes one value from ⁇ 2, 4, 7 ⁇ .
  • the sum of S and L takes a value from 2 to 14.
  • the location of the DMRS symbol for the PDSCH depends on the type of PDSCH mapping.
  • the position of the first DMRS symbol for the PDSCH depends on the type of PDSCH mapping.
  • the position of the first DMRS symbol may be indicated in the upper layer parameter dmrs-TypeA-Position. That is, the upper layer parameter dmrs-TypeA-Position is used to indicate the position of the first DMRS for PDSCH or PUSCH.
  • dmrs-TypeA-Position may be set to either 'pos2' or 'pos3'.
  • the position of the first DMRS symbol for the PDSCH may be the third symbol in the slot.
  • the position of the first DMRS symbol for the PDSCH may be the fourth symbol in the slot.
  • S can take the value 3 only if dmrs-TypeA-Position is set to 'pos3'. That is, if dmrs-TypeA-Position is set to ‘pos2’, S takes on values between 0 and 2.
  • the position of the first DMRS symbol is the first symbol of the assigned PDSCH.
  • FIG. 8 is a diagram showing an example of PDSCH mapping types according to this embodiment.
  • FIG. 8(A) is a diagram showing an example of PDSCH mapping type A.
  • S of the assigned PDSCH is 3.
  • the allocated PDSCH L is 7.
  • the position of the first DMRS symbol for PDSCH is the fourth symbol within the slot. That is, dmrs-TypeA-Position is set to 'pos3'.
  • FIG. 8(B) is a diagram showing an example of PDSCH mapping type A.
  • S of the assigned PDSCH is 4.
  • the allocated PDSCH L is 4.
  • the position of the first DMRS symbol for PDSCH is the first symbol to which PDSCH is allocated.
  • the initial uplink BWP may be configured by parameters provided in MIB, parameters provided in SIB1, parameters provided in SIB, and/or RRC parameters.
  • the initial uplink BWP may be configured by the parameter initialUplinkBWP included in the parameter uplinkConfigCommon provided in SIB1.
  • the initial downlink BWP may be configured by the parameter initialUplinkBWP-forRedCap-r17 included in the parameter UplinkConfigCommon provided in SIB1.
  • the initial downlink BWP may be configured by the parameter initialUplinkBWP-forRedCap-r18 included in the parameter uplinkConfigCommon provided in SIB1.
  • the parameter uplinkConfigCommon provided in SIB1 includes initialUplinkBWP, initialUplinkBWP-forRedCap-r17, and/or initialUplinkBWP-forRedCap-r18, and any one of these parameters included in the uplinkConfigCommon is used to configure the initial uplink BWP. May be set. However, initialUplinkBWP, initialUplinkBWP-forRedCap-r17, and initialUplinkBWP-forRedCap-r18 may be parameters that indicate UE-specific (UE-specific, dedicated) settings for the initial uplink BWP.
  • FIG. 9 shows the parameter configuration of UplinkConfigCommonSIB (or UplinkConfigCommon), which is an information element (IE: Information Element) of parameter uplinkConfigCommon, which is uplink configuration information according to this embodiment, and the parameter information element BWP, which is configuration information of uplink BWP.
  • IE Information Element
  • BWP configuration information of uplink BWP.
  • uplinkConfigCommon is a parameter that indicates the basic parameters regarding one uplink carrier and transmission in the corresponding cell (for example, called frequencyInfoUL), a parameter that indicates the configuration of the first initial uplink BWP of a certain serving cell (for example, called initialUplinkBWP). ), a parameter indicating the setting of the second initial uplink BWP of a certain serving cell (for example, referred to as initialUplinkBWP-forRedCap-r17), and a parameter indicating the setting of the third initial uplink BWP of a certain serving cell ( For example, initialUplinkBWP-forRedCap-r18) may be included.
  • initialUplinkBWP-forRedCap-r17 and initialUplinkBWP-forRedCap-r18 included in uplinkConfigCommon may have a parameter configuration indicated by the same information element (BWP-UplinkCommon) as initialUplinkBWP included in uplinkConfigCommon.
  • initialUplinkBWP-forRedCap-r17 and initialUplinkBWP-forRedCap-r18 may be included in SIB and/or RRC parameters other than SIB1.
  • initialUplinkBWP-forRedCap-r17 and initialUplinkBWP-forRedCap-r18 may be parameters that include part or all of the parameter configuration of initialUplinkBWP included in uplinkConfigCommon, and each is the configuration information for the second initial uplink BWP. and configuration information for the third initial uplink BWP.
  • initialUplinkBWP may always be included, and initialUplinkBWP-forRedCap-r17 and initialUplinkBWP-forRedCap-r18 may not be included.
  • initialUplinkBWP, initialUplinkBWP-forRedCap-r17, and initialUplinkBWP-forRedCap-r18 include general parameters genericParameters of initial uplink BWP, cell-specific parameters rach-ConfigCommon of random access, and cell-specific parameters of PUSCH. It may include the parameter pushch-ConfigCommon, the PUCCH cell-specific parameter pucch-ConfigCommon, and/or other parameters.
  • initialUplinkBWP is a parameter that sets the initial uplink BWP which is the first bandwidth (e.g. up to 100MHz), and initialUplinkBWP-forRedCap-r17 is the second bandwidth (e.g. up to 20MHz) which is narrower than the first bandwidth. It may be a parameter for setting the initial uplink BWP.
  • initialUplinkBWP-forRedCap-r17 may be a parameter that terminal device 1 that supports a bandwidth greater than the third bandwidth (for example, 20MHz) does not refer to, and only terminal device 1 that supports only the third bandwidth or less It may be a parameter to be referenced.
  • initialUplinkBWP-forRedCap-r18 may be a parameter for setting an initial uplink BWP that is a fourth bandwidth narrower than the second bandwidth (for example, a maximum of 5 MHz).
  • initialUplinkBWP-forRedCap-r18 may be a parameter that terminal device 1 that supports a bandwidth larger than the fifth bandwidth (for example, 5MHz) does not refer to, and only terminal device 1 that supports only the fifth bandwidth or less It may be a parameter to be referenced. In this way, by setting one or more parameters that set different bandwidths as the initial uplink BWP in uplinkConfigCommon, the initial uplink BWP can be set according to the maximum bandwidth supported by each of the multiple terminal devices 1. Can be set.
  • the bandwidth of the initial uplink BWP set by initialUplinkBWP is 50MHz
  • the bandwidth of the initial uplink BWP set by initialUplinkBWP-forRedCap-r17 is 10MHz
  • the initial uplink BWP set by initialUplinkBWP-forRedCap-r18 is 10MHz.
  • terminal device 1 that supports a bandwidth of up to 100MHz will set an initial uplink BWP with a bandwidth of 50MHz based on initialUplinkBWP, and up to 20MHz
  • Terminal device 1 that supports a bandwidth of up to 5MHz sets an initial uplink BWP with a bandwidth of 10MHz based on initialUplinkBWP-forRedCap-r17
  • terminal device 1 that supports a bandwidth of up to 5MHz sets an initial uplink BWP with a bandwidth of 10MHz based on initialUplinkBWP-forRedCap-r18.
  • An initial uplink BWP with a bandwidth of 5MHz may be set.
  • the terminal device 1 may identify/set/determine the initial uplink BWP based on the parameters included in the initialUplinkBWP-forRedCap-r18. For example, when the terminal device 1 receives the initialUplinkBWP-forRedCap-r18 in SIB1, it may identify/set/determine the initial uplink BWP based on the parameters of the initialuplinkBWP-forRedCap-r18.
  • part of the information included in the genericParameters in the initialUplinkBWP is the configuration parameters of the plurality of initial uplink BWPs (or the plurality of frequency positions and/or of the initial uplink BWPs). or setting information of multiple bandwidths).
  • the information element BWP of the parameter genericParameters is the same as the information element BWP in the above-mentioned downlink BWP.
  • Terminal device 1 sets the initial uplink BWP bandwidth set by initialUplinkBWP and initialUplinkBWP-forRedCap-r17 provided in uplinkConfigCommon included in SIB1 (other SIB and RRC parameters may be possible) received by terminal device 1. If not supported, the terminal device 1 does not need to set the initial uplink BWP.
  • the terminal device 1 may determine/specify the initial downlink BWP using the initialUplinkBWP-forRedCap-r18.
  • initialUplinkBWP-forRedCap-r18 is not provided/set in uplinkConfigCommon in SIB1 received by terminal device 1
  • initialUplinkBWP-forRedCap-r17 is provided/set in uplinkConfigCommon in SIB1 received by terminal device 1, and the corresponding If the terminal device 1 supports the BWP bandwidth set in the initialUplinkBWP-forRedCap-r17, the terminal device 1 may determine/specify the initial uplink BWP using the initialUplinkBWP-forRedCap-r17.
  • the terminal device 1 may determine/specify the initial uplink BWP using the initialUplinkBWP-forRedCap-r17.
  • terminal device 1 sets initial uplink BWP to initialUplinkBWP provided in uplinkConfigCommon in SIB1. It may be determined/specified by .
  • initialUplinkBWP-forRedCap-r18 and initialUplinkBWP-forRedCap-r17 are not provided/set in uplinkConfigCommon in SIB1 received by terminal device 1, and terminal device 1 supports the BWP bandwidth set in initialUplinkBWP.
  • the terminal device 1 may determine/specify the initial uplink BWP with the initialUplinkBWP provided in uplinkConfigCommon in SIB1.
  • terminal device 1 may determine/specify the initial uplink BWP with initialUplinkBWP instead of initialUplinkBWP-forRedCap-r17. do not have. However, due to the relationship between the bandwidths set in each of initialUplinkBWP, initialUplinkBWP-forRedCap-r17, and initialUplinkBWP-forRedCap-r18, if initialUplinkBWP-forRedCap-r18 is not used, the bandwidth will be closer to initialUplinkBWP-forRedCap-r18.
  • initialUplinkBWP-forRedCap-r17 which is expected to be set, it may be possible to obtain the advantage of having flexibility in the bandwidth set for terminal device 1.
  • the base station device 3 sets the initial uplink BWP with a bandwidth that can be set by all terminal devices 1 in the cell, which of initialUplinkBWP-forRedCap-r17 and initialUplinkBWP-forRedCap-r18 By not setting also, all terminal devices 1 may set/specify the initial uplink BWP band in initialUplinkBWP.
  • the initial The bandwidth of uplink BWP can be made flexible. Note that although this embodiment shows a case where three parameters are used to set three initial uplink BWPs with different bandwidths, it is also possible to use four or more parameters.
  • the base station device 3 When setting the initial uplink BWP of a frequency location and/or bandwidth that is not supported by a specific terminal device 1 in locationAndBandwidth in initialUplinkBWP, the base station device 3 sets the frequency location and/or bandwidth that the specific terminal device 1 supports.
  • the initial uplink BWP of with locationAndBandwidth included in initialUplinkBWP-forRedCap-r17 or locationAndBandwidth included in initialUplinkBWP-forRedCap-r18 in uplinkConfigCommon uplink channels and uplink signals can be appropriately received.
  • the base station device 3 determines the frequency position and/or Alternatively, from the terminal device 1 that does not support the bandwidth, the uplink channel corresponding to the second initial uplink BWP is received, and from the terminal device 1 that supports the frequency position and bandwidth of the first initial uplink BWP, the uplink channel corresponding to the second initial uplink BWP is received. , an uplink channel corresponding to a first initial uplink BWP may be received. Furthermore, the base station device 3 includes locationAndBandwidth in initialUplinkBWP-forRedCap-r18 in uplinkConfigCommon in SIB1 (which may be other SIBs or RRC signaling), thereby controlling the first initial uplink BWP and the second uplink BWP.
  • SIB1 which may be other SIBs or RRC signaling
  • the uplink channel corresponding to the third initial uplink BWP can be received from the terminal device 1 that does not support the frequency position and/or bandwidth of the initial uplink BWP.
  • the base station device 3 configures SIB1 (other SIB or RRC signaling may be used) ) does not need to include initialUplinkBWP-forRedCap-r17 and initialUplinkBWP-forRedCap-r18 in uplinkConfigCommon.
  • the base station device 3 sets the initial uplink BWP of the frequency location and/or bandwidth supported by some of the terminal devices 1 in locationAndBandwidth in the initialUplinkBWP, and sets the initial uplink BWP of the frequency location and/or bandwidth supported by the other terminal devices 1.
  • initialUplinkBWP-r17 it is not necessary to include initialUplinkBWP-forRedCap-r18 in uplinkConfigCommon in SIB1 (which may be other SIB or RRC signaling).
  • Random access procedures are classified into two procedures: contention-based (CB) and non-contention-based (non-CB) (also referred to as contention free).
  • CB contention-based
  • non-CB non-contention-based Random access
  • Contention-based random access is also called CBRA
  • CFRA non-contention-based random access
  • the random access procedure is initiated by a PDCCH order, a MAC entity, a notification of beam failure from a lower layer, or RRC, etc.
  • the contention-based random access procedure is initiated by a PDCCH order, a MAC entity, a notification of beam failure from a lower layer, or RRC, etc.
  • a beam failure notification is provided to the MAC entity of the terminal device 1 from the physical layer of the terminal device 1 and a certain condition is met
  • the MAC entity of the terminal device 1 starts a random access procedure.
  • a beam failure notification is provided to the MAC entity of terminal device 1 from the physical layer of terminal device 1
  • the procedure of determining whether a certain condition is satisfied and starting a random access procedure is called a beam failure recovery procedure. It's okay.
  • This random access procedure is a random access procedure for beam failure recovery requests. Random access procedures initiated by the MAC entity include random access procedures initiated by a scheduling request procedure.
  • the random access procedure for beam failure recovery request may or may not be considered a random access procedure initiated by the MAC entity.
  • a random access procedure for a beam failure recovery request and a random access procedure initiated by a scheduling request procedure may perform different procedures, so a random access procedure for a beam failure recovery request and a scheduling request procedure are distinguished. You can do it like this.
  • the random access procedure for beam failure recovery request and the scheduling request procedure may be random access procedures initiated by the MAC entity.
  • the random access procedure initiated by the scheduling request procedure is referred to as the random access procedure initiated by the MAC entity
  • the random access procedure for beam failure recovery request is referred to as random access procedure initiated by the beam failure notification from lower layers. It may also be called a procedure.
  • starting a random access procedure upon receiving a beam failure notification from a lower layer may mean starting a random access procedure for a beam failure recovery request.
  • uplink data or transmission that can be transmitted to the terminal device 1 is transmitted.
  • a contention-based random access procedure is performed, such as during a scheduling request when possible sidelink data occurs.
  • the applications of contention-based random access are not limited to these.
  • the non-contention-based random access procedure may be started when the terminal device 1 receives information from the base station device 3 instructing the start of the random access procedure.
  • the non-contention-based random access procedure may be started when the MAC layer of the terminal device 1 receives a beam failure notification from a lower layer.
  • Non-contention-based random access allows for quick access between the terminal device 1 and the base station device 3 when the base station device 3 and the terminal device 1 are connected but the handover or the transmission timing of the mobile station device is not valid. may be used for uplink synchronization. Non-contention-based random access may be used to send a beam failure recovery request when a beam failure occurs at the terminal device 1. However, the uses of non-contention-based random access are not limited to these.
  • the information instructing the start of the random access procedure may be referred to as message 0, Msg.0, NR-PDCCH order, PDCCH order, etc.
  • the terminal device 1 of this embodiment receives random access setting information via an upper layer before initiating a random access procedure.
  • the base station device 3 transmits RRC parameters including random access configuration information to the terminal device 1 as an RRC message.
  • the terminal device 1 uses one or more available random access preambles and/or one or more available physical random access preambles to be used for the random access procedure based on the propagation path characteristics between the terminal device 1 and the base station device 3.
  • a physical random access channel (PRACH) opportunity also referred to as a random access channel (RACH) opportunity, PRACH transmission opportunity, RACH transmission opportunity
  • the terminal device 1 transmits a signal based on the propagation path characteristics (for example, it may be the reference signal received power (RSRP)) measured by the reference signal (for example, SS/PBCH block and/or CSI-RS) received from the base station device 3. may select one or more available random access preambles and/or one or more PRACH opportunities for use in the random access procedure.
  • RSRP reference signal received power
  • the random access procedure is realized by sending and receiving multiple types of messages between the terminal device 1 and the base station device 3. For example, in 4-step random access, the following four messages are sent and received.
  • the terminal device 1 that has generated transmittable uplink data or transmittable sidelink data transmits a preamble for random access (referred to as a random access preamble) to the base station device 3 using PRACH.
  • This transmitted random access preamble may be referred to as message 1 or Msg1.
  • the random access preamble is configured to notify information to the base station device 3 using a plurality of sequences. For example, if 64 types of sequences are prepared, 6 bits of information can be shown to the base station device 3. This information is designated as a Random Access Preamble Identifier.
  • a preamble sequence is selected from a preamble sequence set using a preamble index. The selected random access preamble is transmitted on the designated PRACH resource.
  • the base station device 3 that received the random access preamble generates a random access response (RAR) including an uplink grant to instruct the terminal device 1 to transmit, and sends the generated random access response to the terminal on the PDSCH. Send to device 1.
  • the random access response may be referred to as message 2 or Msg2.
  • the base station device 3 also calculates the transmission timing shift between the terminal device 1 and the base station device 3 from the received random access preamble, and provides transmission timing adjustment information (Timing Advance Command) for adjusting the shift. Include in message 2.
  • the base station device 3 includes in the message 2 a random access preamble identifier corresponding to the received random access preamble.
  • the base station device 3 also scrambles the random access preamble with RA-RNTI (Random Access-Radio Network Temporary Identity) to indicate that the response is addressed to the terminal device 1 that transmitted the random access preamble.
  • RA-RNTI Random Access-Radio Network Temporary Identity
  • the DCI with the added CRC is sent on the PDCCH.
  • RA-RNTI is determined according to the frequency and time location information of the PRACH that transmitted the random access preamble.
  • the terminal device 1 that transmitted the random access preamble monitors the PDCCH for the random access response identified by the RA-RNTI within multiple subframe periods (referred to as RAR windows) after transmitting the random access preamble. .
  • RAR windows subframe periods
  • the terminal device 1 that transmitted the random access preamble detects the corresponding RA-RNTI, it decodes the random access response allocated to the PDSCH.
  • the terminal device 1 that has successfully decoded the random access response checks whether the random access response includes a random access preamble identifier corresponding to the transmitted random access preamble. If a random access preamble identifier is included, the transmission timing adjustment information indicated in the random access response is used to correct the synchronization shift.
  • the terminal device 1 uses the uplink grant included in the received random access response to transmit the data stored in the buffer to the base station device 3.
  • the data transmitted using the uplink grant at this time is referred to as message 3 or Msg3.
  • the terminal device 1 sends message 3 containing information for identifying the terminal device 1 (C- RNTI) and sends it to the base station device 3.
  • the base station device 3 When the base station device 3 receives uplink transmission using the resource allocated to the message 3 of the terminal device 1 in the random access response, it detects the C-RNTI MAC CE included in the received message 3. Then, when establishing a connection with the terminal device 1, the base station device 3 transmits the PDCCH to the detected C-RNTI. When transmitting a PDCCH to the detected C-RNTI, the base station device 3 includes an uplink grant in the PDCCH. These PDCCHs transmitted by the base station device 3 are called message 4, Msg4, or contention resolution message.
  • the terminal device 1 that has transmitted the message 3 starts a contention resolution timer that defines a period for monitoring the message 4 from the base station device 3, and attempts to receive the PDCCH transmitted from the base station within the timer.
  • Terminal device 1 which sent C-RNTI MAC CE in message 3, received the PDCCH addressed to the sent C-RNTI from base station device 3, and the PDCCH included an uplink grant for new transmission. If so, it is assumed that contention resolution with the other terminal device 1 has been successful, the contention resolution timer is stopped, and the random access procedure is ended. If the reception of the PDCCH addressed to C-RNTI sent by the terminal device in message 3 cannot be confirmed within the timer period, it is assumed that contention resolution was not successful, and the terminal device 1 transmits the random access preamble again.
  • the terminal device 1 stops the random access procedure.
  • the terminal device 1 can synchronize with the base station device 3 and perform uplink data transmission to the base station device 3.
  • two-step random access may be used in which four messages are shortened and the terminal device 1 and base station device 3 are synchronized by sending and receiving two messages, message A and message B.
  • FIG. 10 is a flow diagram illustrating an example of the initial downlink BWP determination process in the terminal device 1 of this embodiment.
  • the terminal device 1 receives downlink configuration information (downlinkConfigCommon) including the parameter initialDownlinkBWP in a system information block (SIB) transmitted from the base station device 3.
  • the terminal device 1 determines whether the received downlink configuration information includes the parameter initialDownlinkBWP-forRedCap-r18. If yes in step S1002 (S1002-Yes), in step S1003, the terminal device 1 sets the initial downlink BWP using the bandwidth information (locationAndBandwidth) indicated by the parameter initialDownlinkBWP-forRedCap-r18.
  • locationAndBandwidth bandwidth information indicated by the parameter initialDownlinkBWP-forRedCap-r18.
  • step S1004 determines in step S1004 whether the parameter initialDownlinkBWP-forRedCap-r17 is included in the received downlink configuration information. If yes in step S1004 (S1004-Yes), in step S1005, the terminal device 1 sets the initial downlink BWP using the bandwidth information (locationAndBandwidth) indicated by the parameter initialDownlinkBWP-forRedCap-r17. If the determination in step S1004 is negative (S1004-No), in step S1006, the terminal device 1 sets the initial downlink BWP using the bandwidth information (locationAndBandwidth) indicated by the parameter initialDownlinkBWP.
  • the determination in step S1004 is whether the received downlink configuration information includes the parameter initialDownlinkBWP-forRedCap-r17 and whether the bandwidth indicated by initialDownlinkBWP-forRedCap-r17 is less than or equal to the maximum bandwidth supported by the terminal device. No, it may be.
  • the terminal device 1 may receive a downlink signal and a downlink channel using the set initial downlink BWP.
  • the terminal device 1 may monitor the PDCCH using the CORESET and/or search space in the configured initial downlink BWP.
  • the base station device 3 transmits a downlink signal and a downlink channel in each of one or more initial downlink BWPs configured in initialDownlinkBWP, initialDownlinkBWP-forRedCap-r17, and/or initialDownlinkBWP-forRedCap-r18, good.
  • the base station device 3 uses the CORESET and/or search space included in each of the one or more initial downlink BWPs configured in initialDownlinkBWP, initialDownlinkBWP-forRedCap-r17, and/or initialDownlinkBWP-forRedCap-r18.
  • One or more PDCCHs may be transmitted.
  • terminal device 1 can set the initial downlink BWP according to the bandwidth supported by the device itself.
  • Downlink BWP can be used.
  • the base station device 3 can configure initial downlink BWPs of different bandwidths for different terminal devices 1 that support different bandwidths.
  • the base station device 3 provides an initial downlink BWP of the same bandwidth to different terminal devices 1 that support different bandwidths. Can be set.
  • FIG. 11 is a flow diagram illustrating an example of the initial uplink BWP determination process in the terminal device 1 of this embodiment.
  • the terminal device 1 receives uplink configuration information (uplinkConfigCommon) in a system information block (SIB) transmitted from the base station device 3.
  • the terminal device 1 determines whether the received uplink configuration information includes the parameter initialUplinkBWP-forRedCap-r18. If yes in step S2002 (S2002-Yes), in step S2003, the terminal device 1 sets the initial uplink BWP using the bandwidth information (locationAndBandwidth) indicated by the parameter initialUplinkBWP-forRedCap-r18.
  • uplinkConfigCommon uplinkConfigCommon
  • SIB system information block
  • step S2002 determines in step S2004 whether the parameter initialUplinkBWP-forRedCap-r17 is included in the received uplink configuration information. If yes in step S2004 (S2004-Yes), in step S2005, the terminal device 1 sets the initial uplink BWP using the bandwidth information (locationAndBandwidth) indicated by the parameter initialUplinkBWP-forRedCap-r17. If the determination in step S2004 is negative (S2004-No), in step S2006, the terminal device 1 uses the bandwidth information (locationAndBandwidth) indicated by the parameter initialUplinkBWP included in the received uplink configuration information to configure the initial uplink BWP. Set.
  • step S2004 is whether the parameter initialUplinkBWP-forRedCap-r17 is included in the received uplink configuration information and the bandwidth indicated by initialUplinkBWP-forRedCap-r17 is less than or equal to the maximum bandwidth supported by the terminal device. No, it may be. However, in step 2006, if the received uplink configuration information does not include any parameters, the terminal device 1 may not configure the initial uplink BWP. The terminal device 1 may transmit an uplink signal and an uplink channel using the set initial uplink BWP.
  • the terminal device 1 and the base station device 3 transmit uplink signals and uplink channels in each of one or more initial uplink BWPs configured in initialUplinkBWP, initialUplinkBWP-forRedCap-r17, and/or initialUplinkBWP-forRedCap-r18. You may receive.
  • terminal device 1 can set the initial uplink BWP according to the bandwidth supported by the device itself.
  • Uplink BWP can be used.
  • the base station device 3 can configure initial uplink BWPs of different bandwidths for different terminal devices 1 that support different bandwidths.
  • the base station device 3 provides an initial uplink BWP of the same bandwidth to different terminal devices 1 that support different bandwidths. Can be set.
  • FIG. 12 is a schematic block diagram showing the configuration of the terminal device 1 of this embodiment.
  • the terminal device 1 is configured to include a wireless transmitting/receiving section 10 and an upper layer processing section 14.
  • the radio transmitting/receiving section 10 includes an antenna section 11, an RF (Radio Frequency) section 12, and a baseband section 13.
  • the upper layer processing section 14 includes a medium access control layer processing section 15 and a radio resource control layer processing section 16.
  • the wireless transmitter/receiver 10 is also referred to as a transmitter 10, a receiver 10, a monitor 10, or a physical layer processor 10.
  • the upper layer processing section 14 is also referred to as a processing section 14, a measuring section 14, a selecting section 14, a determining section 14, or a controlling section 14.
  • the upper layer processing unit 14 outputs uplink data (which may be referred to as a transport block) generated by user operations etc. to the wireless transmitting/receiving unit 10.
  • the upper layer processing unit 14 processes a medium access control (MAC) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a radio resource control (Radio resource control) layer. Processes part or all of the Resource Control (RRC) layer.
  • the upper layer processing unit 14 has a function of acquiring bit information of MIB (which may be REDCAP MIB), SIB1 (which may be REDCAP SIB1), and other SIBs (which may be REDCAP SIB). It's okay.
  • the upper layer processing unit 14 may have a function of determining/specifying initial downlink BWP settings (eg, frequency position and bandwidth) based on system information block (SIB1/SIB) or RRC signaling information.
  • the upper layer processing unit 14 may have a function of determining/specifying initial uplink BWP settings (eg, frequency position and bandwidth) based on system information block (SIB1/SIB) or RRC signaling information.
  • the medium access control layer processing unit 15 included in the upper layer processing unit 14 performs MAC layer (medium access control layer) processing.
  • the medium access control layer processing section 15 controls transmission of scheduling requests based on various setting information/parameters managed by the radio resource control layer processing section 16.
  • the radio resource control layer processing unit 16 included in the upper layer processing unit 14 performs RRC layer (radio resource control layer) processing.
  • the radio resource control layer processing unit 16 manages various setting information/parameters of its own device.
  • the radio resource control layer processing unit 16 sets various configuration information/parameters based on the upper layer signal received from the base station device 3. That is, the radio resource control layer processing unit 16 sets various configuration information/parameters based on information indicating various configuration information/parameters received from the base station device 3.
  • the radio resource control layer processing unit 16 controls (specifies) resource allocation based on the downlink control information received from the base station device 3.
  • the wireless transmitter/receiver 10 performs physical layer processing such as modulation, demodulation, encoding, and decoding.
  • the wireless transmitting/receiving unit 10 separates, demodulates, and decodes the signal received from the base station device 3, and outputs the decoded information to the upper layer processing unit 14.
  • the wireless transmitter/receiver 10 generates a transmission signal by modulating and encoding data, and transmits it to the base station device 3 and the like.
  • the wireless transmitter/receiver 10 outputs the upper layer signal (RRC message), DCI, etc. received from the base station device 3 to the upper layer processor 14.
  • the radio transmitter/receiver 10 generates and transmits uplink signals (including PUCCH and/or PUSCH) based on instructions from the upper layer processor 14.
  • the radio transceiver 10 may have a function of receiving a synchronization signal block, an additional synchronization signal block, PSS, SSS, PBCH, DMRS for PBCH, random access response, PDCCH and/or PDSCH.
  • the radio transmitter/receiver 10 may have a function of transmitting PRACH (which may be a random access preamble), PUCCH, and/or PUSCH.
  • the wireless transmitter/receiver 10 may have a function of monitoring PDCCH.
  • the wireless transmitter/receiver 10 may have a function of receiving DCI on PDCCH.
  • the wireless transmitting/receiving unit 10 may have a function of outputting the DCI received on the PDCCH to the upper layer processing unit 14.
  • the wireless transmitter/receiver 10 may have a function of receiving a system information block (SIB1 and/or SIB) corresponding to a predetermined cell.
  • the radio transmitting/receiving unit 10 may have a function of receiving DCI with a CRC scrambled with a predetermined RNTI (eg, SI-RNTI, RA-RNTI, P-RNTI, etc.) in a certain BWP of a certain cell.
  • the radio transceiver 10 may have a function of receiving an SIB (which may be SIB1) or a random access response in a certain BWP of a certain cell via a PDSCH scheduled for a predetermined time resource.
  • the RF unit 12 converts the signal received via the antenna unit 11 into a baseband signal by orthogonal demodulation (down converting) and removes unnecessary frequency components.
  • the RF section 12 outputs the processed analog signal to the baseband section.
  • the baseband section 13 converts the analog signal input from the RF section 12 into a digital signal.
  • the baseband unit 13 removes a portion corresponding to the CP (Cyclic Prefix) from the converted digital signal, performs Fast Fourier Transform (FFT) on the signal from which the CP has been removed, and transforms the signal in the frequency domain. Extract.
  • CP Cyclic Prefix
  • FFT Fast Fourier Transform
  • the baseband unit 13 performs an inverse fast Fourier transform (IFFT) on the data to generate an OFDM symbol, adds a CP to the generated OFDM symbol, generates a baseband digital signal, and generates a baseband digital signal. Convert band digital signals to analog signals. Baseband section 13 outputs the converted analog signal to RF section 12.
  • IFFT inverse fast Fourier transform
  • the RF section 12 uses a low-pass filter to remove extra frequency components from the analog signal input from the baseband section 13, up-converts the analog signal to a carrier frequency, and transmits it via the antenna section 11. do. Furthermore, the RF section 12 amplifies power. Further, the RF unit 12 may have a function of determining the transmission power of an uplink signal and/or an uplink channel to be transmitted in the serving cell.
  • the RF section 12 is also referred to as a transmission power control section.
  • the RF unit 12 may use an antenna switch to connect the antenna unit 11 and the filter included in the RF unit 12 when receiving a signal, and to connect the power amplifier included in the antenna unit 11 and the RF unit 12 when transmitting a signal.
  • the RF unit 12 configures the downlink A function for adjusting/retuning the frequency band to which the RF circuit is applied within the BWP may be provided.
  • the frequency band to which the RF circuit is applied may be the frequency band of the carrier frequency applied when down-converting the received signal to a baseband signal.
  • the RF unit 12 A function may be provided to adjust/readjust the frequency band to which the RF circuit is applied within the BWP.
  • the frequency band to which the RF circuit is applied may be the frequency band of the carrier wave frequency applied when upconverting an analog signal to the carrier wave frequency.
  • FIG. 13 is a schematic block diagram showing the configuration of the base station device 3 of this embodiment.
  • the base station device 3 is configured to include a wireless transmitting/receiving section 30 and an upper layer processing section .
  • the radio transmitting/receiving section 30 includes an antenna section 31, an RF section 32, and a baseband section 33.
  • the upper layer processing section 34 includes a medium access control layer processing section 35 and a radio resource control layer processing section 36.
  • the wireless transmitter/receiver 30 is also referred to as a transmitter 30, a receiver 30, a monitor 30, or a physical layer processor 30.
  • a control section may be separately provided to control the operation of each section based on various conditions.
  • the upper layer processing section 34 is also referred to as a processing section 34, a determining section 34, or a control section 34.
  • the upper layer processing unit 34 processes a medium access control (MAC) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a radio resource control (Radio resource control) layer. Processes part or all of the Resource Control (RRC) layer.
  • the upper layer processing unit 34 may have a function of generating the DCI based on the upper layer signal transmitted to the terminal device 1 and the time resource for transmitting the PUSCH.
  • the upper layer processing unit 34 may have a function of outputting the generated DCI and the like to the wireless transmitting/receiving unit 30.
  • the upper layer processing unit 34 may have a function of generating a system information block (SIB1/SIB) containing information for the terminal device 1 to specify the initial downlink BWP and/or RRC signaling.
  • the upper layer processing unit 34 may have a function of generating a system information block (SIB1/SIB) containing information for the terminal device 1 to specify the initial uplink BWP and/or RRC signaling.
  • the medium access control layer processing unit 35 included in the upper layer processing unit 34 performs MAC layer processing.
  • the medium access control layer processing unit 35 performs processing related to scheduling requests based on various setting information/parameters managed by the radio resource control layer processing unit 36.
  • the radio resource control layer processing unit 36 included in the upper layer processing unit 34 performs RRC layer processing.
  • the radio resource control layer processing unit 36 generates DCI (uplink grant, downlink grant) including resource allocation information for the terminal device 1.
  • the radio resource control layer processing unit 36 generates downlink data (transport block (TB), random access response (RAR)), system information, RRC message, MAC CE (Control Element), etc. to be placed in DCI and PDSCH. or obtain it from a higher-level node and output it to the wireless transmitter/receiver 30.
  • the radio resource control layer processing unit 36 manages various setting information/parameters of each terminal device 1.
  • the radio resource control layer processing unit 36 may set various setting information/parameters for each terminal device 1 via upper layer signals. That is, the radio resource control layer processing unit 36 transmits/broadcasts information indicating various setting information/parameters.
  • the radio resource control layer processing unit 36 may transmit/broadcast information for specifying the setting of one or more reference signals in a certain cell.
  • the base station device 3 transmits an RRC message, MAC CE, and/or PDCCH to the terminal device 1, and the terminal device 1 performs processing based on the reception
  • the base station device 3 Processing (controlling the terminal device 1 and the system) is performed assuming that the terminal device 1 and the system are being executed. That is, the base station device 3 sends to the terminal device 1 an RRC message, a MAC CE, and/or a PDCCH that causes the terminal device to perform processing based on the reception thereof.
  • the wireless transmitting/receiving unit 30 transmits upper layer signals (RRC messages), DCI, etc. to the terminal device 1. Furthermore, the wireless transmitting/receiving unit 30 receives the uplink signal transmitted from the terminal device 1 based on an instruction from the upper layer processing unit 34.
  • the wireless transmitter/receiver 30 may have a function of transmitting PDCCH and/or PDSCH.
  • the wireless transmitter/receiver 30 may have a function of receiving one or more PUCCH and/or PUSCH.
  • the wireless transmitter/receiver 30 may have a function of transmitting DCI on PDCCH.
  • the wireless transmitter/receiver 30 may have a function of transmitting the DCI output by the upper layer processor 34 on the PDCCH.
  • the wireless transmitter/receiver 30 may have a function of transmitting SSB, PSS, SSS, PBCH, and/or DMRS for PBCH.
  • the wireless transmitter/receiver 30 may have a function of transmitting an RRC message (which may be an RRC parameter).
  • the wireless transmitter/receiver 30 may have a function for the terminal device 1 to transmit the system information block (SIB1/SIB).
  • the radio transmitting/receiving unit 30 may have a function of transmitting DCI with a CRC scrambled with a predetermined RNTI (eg, SI-RNTI, RA-RNTI, P-RNTI, etc.) in a certain BWP of a certain cell.
  • a predetermined RNTI eg, SI-RNTI, RA-RNTI, P-RNTI, etc.
  • the radio transmitter/receiver 30 may have a function of transmitting an SIB (which may be SIB1) or a random access response via a PDSCH scheduled at a predetermined time resource in a certain BWP of a certain cell. Some other functions of the wireless transmitter/receiver 30 are the same as those of the wireless transmitter/receiver 10, so description thereof will be omitted. Note that when the base station device 3 is connected to one or more transmitting/receiving points 4, part or all of the functions of the wireless transmitting/receiving section 30 may be included in each transmitting/receiving point 4.
  • SIB which may be SIB1
  • the upper layer processing unit 34 also transmits (transfers) control messages or user data between the base station devices 3 or between an upper network device (MME, S-GW (Serving-GW)) and the base station device 3. ) or receive.
  • MME upper network device
  • S-GW Serving-GW
  • FIG. 13 other components of the base station device 3 and transmission paths for data (control information) between the components are omitted, but other functions necessary for operating as the base station device 3 are omitted. It is clear that it has a plurality of blocks as constituent elements.
  • the upper layer processing section 34 includes a radio resource management layer processing section and an application layer processing section.
  • unit in the figure is an element that realizes the functions and procedures of the terminal device 1 and the base station device 3, which is also expressed by terms such as section, circuit, component device, device, and unit.
  • Each of the units numbered 10 to 16 included in the terminal device 1 may be configured as a circuit.
  • Each of the units labeled 30 to 36 included in the base station device 3 may be configured as a circuit.
  • the program that runs on the device related to the present invention may be a program that controls the Central Processing Unit (CPU) and the like to make the computer function so as to realize the functions of the embodiments related to the present invention.
  • Programs, or the information handled by them, are temporarily stored in volatile memory such as Random Access Memory (RAM), non-volatile memory such as flash memory, hard disk drives (HDD), or other storage systems.
  • volatile memory such as Random Access Memory (RAM), non-volatile memory such as flash memory, hard disk drives (HDD), or other storage systems.
  • a program for realizing the functions of the embodiments related to the present invention may be recorded on a computer-readable recording medium.
  • the program recorded on this recording medium may be read into a computer system and executed.
  • the "computer system” herein refers to a computer system built into the device, and includes hardware such as an operating system and peripheral devices.
  • a "computer-readable recording medium” refers to a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a medium that dynamically stores a program for a short period of time, or any other computer-readable recording medium. Also good.
  • each functional block or feature of the device used in the embodiments described above may be implemented or executed in an electrical circuit, such as an integrated circuit or multiple integrated circuits.
  • An electrical circuit designed to perform the functions described herein may be a general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), field programmable gate array (FPGA), or other programmable logic devices, discrete gate or transistor logic, discrete hardware components, or combinations thereof.
  • a general purpose processor may be a microprocessor or a conventional processor, controller, microcontroller, or state machine.
  • the electric circuit described above may be composed of a digital circuit or an analog circuit.
  • an integrated circuit technology that replaces the current integrated circuit emerges due to advances in semiconductor technology, one or more aspects of the present invention may use a new integrated circuit based on that technology.
  • the present invention is not limited to the above-described embodiments. Although an example of the device has been described in the embodiment, the present invention is not limited to this, and can be applied to stationary or non-movable electronic equipment installed indoors or outdoors, such as AV equipment, kitchen equipment, It can be applied to terminal devices or communication devices such as cleaning/washing equipment, air conditioning equipment, office equipment, vending machines, and other household equipment.
  • the present invention can be used, for example, in a communication system, a communication device (e.g., a mobile phone device, a base station device, a wireless LAN device, or a sensor device), an integrated circuit (e.g., a communication chip), a program, etc. .
  • a communication device e.g., a mobile phone device, a base station device, a wireless LAN device, or a sensor device
  • an integrated circuit e.g., a communication chip
  • a program e.g., etc.
  • Terminal device 1 (1A, 1B) Terminal device 3 Base station device 4 Transmission/reception point (TRP) 10 Radio transceiver section 11 Antenna section 12 RF section 13 Baseband section 14 Upper layer processing section 15 Medium access control layer processing section 16 Radio resource control layer processing section 30 Radio transceiver section 31 Antenna section 32 RF section 33 Baseband section 34 Upper layer Processing unit 35 Medium access control layer processing unit 36 Radio resource control layer processing unit 50 Transmission unit (TXRU) 51 Phase shifter 52 Antenna element

Abstract

Provided is a terminal device that receives UL setting information in an SIB and uses the UL setting information to set an initial UL BWP, sets, when the UL setting information includes first setting information, the initial UL BWP using information about a bandwidth indicated by the first setting information, sets, when the UL setting information does not include the first setting information and includes second setting information and a bandwidth indicated by the second setting information is not more than the maximum bandwidth supported by the terminal device, the initial UL BWP using information about the bandwidth indicated by the second setting information, and sets, when the UL setting information includes none of the first setting information and the second setting information, the initial UL BWP using information about a bandwidth indicated by third setting information included in the UL setting information.

Description

端末装置、基地局装置、および、通信方法Terminal device, base station device, and communication method
 本発明は、端末装置、基地局装置、および、通信方法に関する。
 本願は、2022年3月25日に日本に出願された特願2022-49390号について優先権を主張し、その内容をここに援用する。
The present invention relates to a terminal device, a base station device, and a communication method.
This application claims priority to Japanese Patent Application No. 2022-49390 filed in Japan on March 25, 2022, the contents of which are incorporated herein.
 現在、第5世代のセルラーシステムに向けた無線アクセス方式および無線ネットワーク技術として、第三世代パートナーシッププロジェクト(3GPP: The Third Generation Partnership Project、登録商標)において、LTE(Long Term Evolution)-Advanced Pro及びNR(New Radio technology)の技術検討及び規格策定が行われている(非特許文献1)。 Currently, LTE (Long Term Evolution)-Advanced Pro and NR are being developed as radio access methods and wireless network technologies for fifth-generation cellular systems in the Third Generation Partnership Project (3GPP, registered trademark). (New Radio technology) is being studied and standards are being developed (Non-Patent Document 1).
 第5世代のセルラーシステムでは、高速・大容量伝送を実現するeMBB(enhanced MobileBroadBand)、低遅延・高信頼通信を実現するURLLC(Ultra-Reliable and Low Latency Communication)、IoT(Internet of Things)などマシン型デバイスが多数接続するmMTC(massive Machine Type Communication)の3つがサービスの想定シナリオとして要求されている。更に、NRの将来リリースであるRelease 17では、センサネットワークや監視カメラ、および/またはウェアラブルデバイス等の用途を想定し、eMBBやURLLCのような高い要求条件を必要としない一方でコスト削減やバッテリーの長寿命を図るreduced capability (REDCAP) NRデバイスの検討が行われている(非特許文献2)。 In the 5th generation cellular system, machines such as eMBB (enhanced MobileBroadBand) that realizes high-speed and large-capacity transmission, URLLC (Ultra-Reliable and Low Latency Communication) that realizes low-latency and highly reliable communication, and IoT (Internet of Things) Three possible service scenarios are required: mmTC (massive Machine Type Communication) where many type devices connect. Additionally, NR's future release, Release 17, is intended for applications such as sensor networks, surveillance cameras, and/or wearable devices, and will not require the high requirements of eMBB or URLLC, but will reduce costs and save battery life. A reduced capability (REDCAP) NR device with a long lifespan is being studied (Non-Patent Document 2).
 本発明の目的は、上記のような無線通信システムにおいて、効率的な通信を可能とする端末装置、基地局装置、および、通信方法を提供することを目的とする。 An object of the present invention is to provide a terminal device, a base station device, and a communication method that enable efficient communication in a wireless communication system as described above.
 (1)上記の目的を達成するために、本発明の態様は、以下のような手段を講じた。すなわち、本発明の一態様における端末装置は、システム情報ブロックで上りリンク設定情報を受信する受信部と、前記上りリンク設定情報を用いて初期上りリンクBWPを設定する制御部と、を備え、前記制御部は、前記上りリンク設定情報が第1の設定情報を含む場合、前記第1の設定情報で示される帯域幅の情報を用いて前記初期上りリンクBWPを設定し、前記上りリンク設定情報が前記第1の設定情報を含まず、第2の設定情報を含み、かつ、前記第2の設定情報で示される帯域幅が前記端末装置のサポートする最大帯域幅以下である場合、前記第2の設定情報で示される帯域幅の情報を用いて前記初期上りリンクBWPを設定し、前記上りリンク設定情報が前記第1の設定情報と前記第2の設定情報を含まない場合、前記上りリンク設定情報に含まれる第3の設定情報で示される帯域幅の情報を用いて前記初期上りリンクBWPを設定する。 (1) In order to achieve the above object, aspects of the present invention take the following measures. That is, a terminal device according to one aspect of the present invention includes a receiving unit that receives uplink configuration information in a system information block, and a control unit that configures an initial uplink BWP using the uplink configuration information, When the uplink configuration information includes first configuration information, the control unit configures the initial uplink BWP using bandwidth information indicated by the first configuration information, and configures the initial uplink BWP so that the uplink configuration information If the first configuration information is not included, the second configuration information is included, and the bandwidth indicated by the second configuration information is less than or equal to the maximum bandwidth supported by the terminal device, the second configuration information When the initial uplink BWP is configured using the bandwidth information indicated by the configuration information, and the uplink configuration information does not include the first configuration information and the second configuration information, the uplink configuration information The initial uplink BWP is configured using the bandwidth information indicated by the third configuration information included in the.
 (2)また、本発明の一態様における基地局装置は、第1の初期上りリンクBWPを設定し、前記第1の初期上りリンクBWPの帯域幅を示す第1の設定情報を含む上りリンク設定情報を生成する制御部と、システム情報ブロックで前記上りリンク設定情報を送信する送信部と、を備え、前記制御部は、前記第1の初期上りリンクBWPと異なる第2の初期上りリンクBWPを設定する場合、前記上りリンク設定情報に前記第2の初期上りリンクBWPの帯域幅を示す第2の設定情報を含め、前記第1の初期上りリンクBWPおよび前記第2の初期上りリンクBWPと異なる第3の初期上りリンクBWPを設定する場合、前記上りリンク設定情報に前記第3の初期上りリンクBWPの帯域幅を示す第3の設定情報を含める。 (2) Furthermore, the base station device in one aspect of the present invention configures a first initial uplink BWP, and includes uplink configuration information that includes first configuration information indicating a bandwidth of the first initial uplink BWP. a control unit that generates information; and a transmission unit that transmits the uplink configuration information in a system information block, the control unit configured to generate a second initial uplink BWP different from the first initial uplink BWP. If configured, the uplink configuration information includes second configuration information indicating a bandwidth of the second initial uplink BWP, which is different from the first initial uplink BWP and the second initial uplink BWP. When configuring the third initial uplink BWP, the uplink configuration information includes third configuration information indicating the bandwidth of the third initial uplink BWP.
 (3)また、本発明の一態様における通信方法は、端末装置の通信方法であって、システム情報ブロックで上りリンク設定情報を受信し、前記上りリンク設定情報を用いて初期上りリンクBWPを設定し、前記上りリンク設定情報が第1の設定情報を含む場合、前記第1の設定情報で示される帯域幅の情報を用いて前記初期上りリンクBWPを設定し、前記上りリンク設定情報が前記第1の設定情報を含まず、第2の設定情報を含み、かつ、前記第2の設定情報で示される帯域幅が前記端末装置のサポートする最大帯域幅以下である場合、前記第2の設定情報で示される帯域幅の情報を用いて前記初期上りリンクBWPを設定し、前記上りリンク設定情報が前記第1の設定情報と前記第2の設定情報を含まない場合、前記上りリンク設定情報に含まれる第3の設定情報で示される帯域幅の情報を用いて前記初期上りリンクBWPを設定する。 (3) Further, a communication method according to an aspect of the present invention is a communication method for a terminal device, in which uplink setting information is received in a system information block, and an initial uplink BWP is set using the uplink setting information. If the uplink configuration information includes first configuration information, the initial uplink BWP is configured using the bandwidth information indicated by the first configuration information, and the uplink configuration information includes the first configuration information. 1 does not include configuration information, but includes second configuration information, and the bandwidth indicated by the second configuration information is less than or equal to the maximum bandwidth supported by the terminal device, the second configuration information The initial uplink BWP is configured using the bandwidth information indicated by , and if the uplink configuration information does not include the first configuration information and the second configuration information, the uplink configuration information includes the first configuration information and the second configuration information. The initial uplink BWP is configured using the bandwidth information indicated by the third configuration information.
 この発明によれば、端末装置と基地局装置が、効率的に通信することができる。 According to this invention, a terminal device and a base station device can communicate efficiently.
本発明の実施形態に係る無線通信システムの概念を示す図である。1 is a diagram showing the concept of a wireless communication system according to an embodiment of the present invention. 本発明の実施形態に係る上りリンクおよび下りリンクスロットの概略構成の一例を示す図である。FIG. 2 is a diagram showing an example of a schematic configuration of uplink and downlink slots according to an embodiment of the present invention. 本発明の実施形態に係るサブフレーム、スロット、ミニスロットの時間領域における関係を示した図である。FIG. 3 is a diagram showing the relationship in the time domain among subframes, slots, and minislots according to an embodiment of the present invention. 本発明の実施形態に係るSS/PBCHブロックおよびSSバーストセットの例を示す図である。FIG. 3 is a diagram showing an example of an SS/PBCH block and an SS burst set according to an embodiment of the present invention. 本発明の実施形態に係るSS/PBCHブロック内でPSS、SSS、PBCHおよびPBCHのためのDMRSが配置されるリソースを示す図である。FIG. 3 is a diagram showing resources in which PSS, SSS, PBCH, and DMRS for PBCH are arranged in an SS/PBCH block according to an embodiment of the present invention. 本発明の実施形態に係る下りリンク設定情報の情報要素であるDownlinkConfigCommonSIBのパラメータ構成、下りリンクBWPの設定情報であるパラメータの情報要素BWP-DownlinkCommonのパラメータ構成、BWPの設定情報であるパラメータの情報要素BWPのパラメータ構成の一例を示す図である。Parameter configuration of DownlinkConfigCommonSIB, which is an information element of downlink configuration information according to an embodiment of the present invention, parameter information element of BWP-DownlinkCommon, which is a parameter information element that is downlink BWP configuration information, and parameter information element that is BWP configuration information FIG. 3 is a diagram showing an example of a parameter configuration of BWP. 本発明の実施形態に係る追加同期信号ブロックの周波数位置に関する概要を示す図である。FIG. 3 is a diagram showing an overview of frequency positions of additional synchronization signal blocks according to an embodiment of the present invention. 本発明の実施形態に係るPDSCHマッピングタイプの一例を示す図である。FIG. 3 is a diagram illustrating an example of PDSCH mapping types according to an embodiment of the present invention. 本発明の実施形態に係る上りリンク設定情報の情報要素であるUplinkConfigCommonSIBのパラメータ構成、上りリンクBWPの設定情報であるパラメータの情報要素BWP-UplinkCommonのパラメータ構成、BWPの設定情報であるパラメータの情報要素BWPのパラメータ構成の一例を示す図である。Parameter configuration of UplinkConfigCommonSIB, which is an information element of uplink configuration information according to an embodiment of the present invention, parameter information element of parameter BWP-UplinkCommon, which is configuration information of uplink BWP, information element of parameter which is configuration information of BWP FIG. 3 is a diagram showing an example of a parameter configuration of BWP. 本発明の実施形態に係る端末装置1における初期下りリンクBWPの決定処理の一例を示すフロー図である。FIG. 3 is a flow diagram showing an example of initial downlink BWP determination processing in the terminal device 1 according to the embodiment of the present invention. 本発明の実施形態に係る端末装置1における初期上りリンクBWPの決定処理の一例を示すフロー図である。FIG. 3 is a flow diagram showing an example of an initial uplink BWP determination process in the terminal device 1 according to the embodiment of the present invention. 本発明の実施形態に係る端末装置1の構成を示す概略ブロック図である。1 is a schematic block diagram showing the configuration of a terminal device 1 according to an embodiment of the present invention. 本発明の実施形態に係る基地局装置3の構成を示す概略ブロック図である。1 is a schematic block diagram showing the configuration of a base station device 3 according to an embodiment of the present invention. FIG.
 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
 図1は、本実施形態における無線通信システムの概念図である。図1において、無線通信システムは、端末装置1A、端末装置1B、および基地局装置3を具備する。以下、端末装置1A、および、端末装置1Bを、端末装置1とも称する。 FIG. 1 is a conceptual diagram of a wireless communication system in this embodiment. In FIG. 1, the wireless communication system includes a terminal device 1A, a terminal device 1B, and a base station device 3. Hereinafter, the terminal device 1A and the terminal device 1B will also be referred to as the terminal device 1.
 端末装置1は、ユーザ端末、移動局装置、通信端末、移動機、端末、UE(User Equipment)、MS(Mobile Station)とも称される。ただし、端末装置1は、REDCAP NRデバイスであってもよく、REDCAP UEと称されてもよい。基地局装置3は、無線基地局装置、基地局、無線基地局、固定局、NB(Node B)、eNB(evolved Node B)、BTS(Base Transceiver Station)、BS(Base Station)、NR NB(NR Node B)、NNB、TRP(Transmission and Reception Point)、gNBとも称される。基地局装置3は、コアネットワーク装置を含んでも良い。また、基地局装置3は、1つまたは複数の送受信点4(transmission reception point)を具備しても良い。以下で説明する基地局装置3の機能/処理の少なくとも一部は、該基地局装置3が具備する各々の送受信点4における機能/処理であってもよい。基地局装置3は、基地局装置3によって制御される通信可能範囲(通信エリア)を1つまたは複数のセルとして端末装置1をサーブしてもよい。また、基地局装置3は、1つまたは複数の送受信点4によって制御される通信可能範囲(通信エリア)を1つまたは複数のセルとして端末装置1をサーブしてもよい。また、基地局装置3は、1つのセルを複数の部分領域(Beamed area)にわけ、それぞれの部分領域において端末装置1をサーブしてもよい。ここで、部分領域は、ビームフォーミングで使用されるビームのインデックスあるいはプリコーディングのインデックスに基づいて識別されてもよい。 The terminal device 1 is also referred to as a user terminal, mobile station device, communication terminal, mobile device, terminal, UE (User Equipment), or MS (Mobile Station). However, the terminal device 1 may be a REDCAP NR device and may be referred to as a REDCAP UE. The base station device 3 includes a wireless base station device, base station, wireless base station, fixed station, NB (Node B), eNB (evolved Node B), BTS (Base Transceiver Station), BS (Base Station), NR NB ( Also referred to as NR Node B), NNB, TRP (Transmission and Reception Point), and gNB. Base station device 3 may include a core network device. Furthermore, the base station device 3 may include one or more transmission/reception points 4 (transmission reception points). At least some of the functions/processing of the base station device 3 described below may be functions/processing at each transmission/reception point 4 included in the base station device 3. The base station device 3 may serve the terminal device 1 by using one or more cells as a communicable range (communication area) controlled by the base station device 3. Furthermore, the base station device 3 may serve the terminal device 1 with a communication range (communication area) controlled by one or more transmission/reception points 4 as one or more cells. Furthermore, the base station device 3 may divide one cell into a plurality of partial areas (Beamed areas) and serve the terminal device 1 in each partial area. Here, the partial region may be identified based on a beam index used in beamforming or a precoding index.
 本実施形態では、基地局装置3から端末装置1への無線通信リンクは下りリンクと称される。本実施形態では、端末装置1から基地局装置3への無線通信リンクは上りリンクと称される。 In this embodiment, the wireless communication link from the base station device 3 to the terminal device 1 is referred to as a downlink. In this embodiment, the wireless communication link from the terminal device 1 to the base station device 3 is referred to as an uplink.
 図1において、端末装置1と基地局装置3の間の無線通信では、サイクリックプレフィックス(CP: Cyclic Prefix)を含む直交周波数分割多重(OFDM: Orthogonal Frequency Division Multiplexing)、シングルキャリア周波数多重(SC-FDM: Single-Carrier Frequency Division Multiplexing)、離散フーリエ変換拡散OFDM(DFT-S-OFDM: Discrete Fourier Transform Spread OFDM)が用いられてもよいし、その他の伝送方式が用いられてもよい。 In Figure 1, wireless communication between a terminal device 1 and a base station device 3 uses orthogonal frequency division multiplexing (OFDM) including a cyclic prefix (CP), single carrier frequency division multiplexing (SC- Single-Carrier Frequency Division Multiplexing (FDM), Discrete Fourier Transform Spread OFDM (DFT-S-OFDM), or other transmission methods may be used.
 なお、本実施形態ではOFDMを伝送方式としてOFDMシンボルで説明するが、上述の他の伝送方式の場合を用いた場合も本発明に含まれる。 Note that in this embodiment, OFDM is used as the transmission method and will be explained using OFDM symbols, but the present invention also includes cases where the other transmission methods described above are used.
 また、図1において、端末装置1と基地局装置3の間の無線通信では、CPを用いない、あるいはCPの代わりにゼロパディングをした上述の伝送方式が用いられてもよい。また、CPやゼロパディングは前方と後方の両方に付加されてもよい。 Furthermore, in FIG. 1, the above-described transmission method that does not use CP or uses zero padding instead of CP may be used in wireless communication between terminal device 1 and base station device 3. Further, CP and zero padding may be added to both the front and rear.
 本実施形態の一態様は、LTEやLTE-A/LTE-A Proといった無線アクセス技術(RAT: RadioAccess Technology)とのキャリアアグリゲーション(CA: Carrier aggregation)またはデュアルコネクティビティ(DC: Dual connectivity)においてオペレーションされてもよい。このとき、一部またはすべてのセルまたはセルグループ、キャリアまたはキャリアグループ(例えば、プライマリセル(PCell: Primary Cell)、セカンダリセル(SCell: Secondary Cell)、プライマリセカンダリセル(PSCell)、MCG(Master Cell Group)、SCG(Secondary Cell Group)など)で用いられてもよい。また、本実施形態の一態様は、単独でオペレーションするスタンドアローンで用いられてもよい。DCオペレーションにおいては、SpCell(Special Cell)は、MAC(Medium Access Control)エンティティがMCGに関連付けられているか、SCGに関連付けられているかに応じて、それぞれ、MCGのPCellまたは、SCGのPSCellと称する。DCオペレーションでなければ、SpCell(Special Cell)は、PCellと称する。SpCell(Special Cell)は、PUCCH送信と、競合ベースランダムアクセス(CBRA: Contention Based Random Access)をサポートする。 One aspect of this embodiment operates in carrier aggregation (CA) or dual connectivity (DC) with radio access technology (RAT) such as LTE and LTE-A/LTE-A Pro. It's okay. At this time, some or all cells or cell groups, carriers or carrier groups (for example, primary cell (PCell), secondary cell (SCell), primary secondary cell (PSCell), MCG (Master Cell Group ), SCG (Secondary Cell Group), etc.). Further, one aspect of the present embodiment may be used in a stand-alone system that operates independently. In DC operation, SpCell (Special Cell) is referred to as MCG's PCell or SCG's PSCell, depending on whether the MAC (Medium Access Control) entity is associated with MCG or SCG, respectively. If it is not a DC operation, SpCell (Special Cell) is called PCell. SpCell (Special Cell) supports PUCCH transmission and Contention Based Random Access (CBRA).
 本実施形態では、端末装置1に対して1つまたは複数のサービングセルが設定されてもよい。設定された複数のサービングセルは、1つのプライマリセルと1つまたは複数のセカンダリセルとを含んでもよい。プライマリセルは、初期コネクション確立(initial connection establishment)プロシージャが行なわれたサービングセル、コネクション再確立(connection re-establishment)プロシージャを開始したサービングセル、または、ハンドオーバプロシージャにおいてプライマリセルと指示されたセルであってもよい。RRC(Radio Resource Control)コネクションが確立された時点、または、後に、1つまたは複数のセカンダリセルが設定されてもよい。ただし、設定された複数のサービングセルは、1つのプライマリセカンダリセルを含んでもよい。プライマリセカンダリセルは、端末装置1が設定された1つまたは複数のセカンダリセルのうち、上りリンクにおいて制御情報を送信可能なセカンダリセルであってもよい。また、端末装置1に対して、MCGとSCGの2種類のサービングセルのサブセットが設定されてもよい。MCGは1つのPCellと0個以上のSCellで構成されてもよい。SCGは1つのPScellと0個以上のSCellで構成されてもよい。 In this embodiment, one or more serving cells may be configured for the terminal device 1. The configured serving cells may include one primary cell and one or more secondary cells. The primary cell may be the serving cell on which the initial connection establishment procedure was performed, the serving cell that initiated the connection re-establishment procedure, or the cell designated as the primary cell in the handover procedure. good. One or more secondary cells may be configured at the time or after the RRC (Radio Resource Control) connection is established. However, the plurality of configured serving cells may include one primary secondary cell. The primary secondary cell may be a secondary cell capable of transmitting control information on the uplink, among one or more secondary cells in which the terminal device 1 is configured. Furthermore, two types of serving cell subsets, MCG and SCG, may be configured for the terminal device 1. MCG may consist of one PCell and zero or more SCells. The SCG may be composed of one PScell and zero or more SCells.
 本実施形態の無線通信システムは、TDD(Time Division Duplex)および/またはFDD(Frequency Division Duplex)が適用されてよい。複数のセルの全てに対してTDD(Time Division Duplex)方式またはFDD(Frequency Division Duplex)方式が適用されてもよい。また、TDD方式が適用されるセルとFDD方式が適用されるセルが集約されてもよい。TDD方式はアンペアードスペクトラムオペレーション(Unpaired spectrum operation)と称されてもよい。FDD方式はペアードスペクトラムオペレーション(Paired spectrum operation)と称されてもよい。 The wireless communication system of this embodiment may apply TDD (Time Division Duplex) and/or FDD (Frequency Division Duplex). A TDD (Time Division Duplex) method or an FDD (Frequency Division Duplex) method may be applied to all of the plurality of cells. Furthermore, cells to which the TDD scheme is applied and cells to which the FDD scheme is applied may be aggregated. The TDD method may be referred to as unpaired spectrum operation. The FDD method may also be referred to as paired spectrum operation.
 以下、サブフレームについて説明する。本実施形態では以下がサブフレームと称されるが、本実施形態に係るサブフレームはリソースユニット、無線フレーム、時間区間、時間間隔などと称されてもよい。 The subframe will be explained below. In this embodiment, the following is called a subframe, but the subframe according to this embodiment may also be called a resource unit, a radio frame, a time section, a time interval, etc.
 図2は、本発明の第1の実施形態に係る上りリンクおよび下りリンクスロットの概略構成の一例を示す図である。無線フレームのそれぞれは、10ms長である。また、無線フレームのそれぞれは10個のサブフレームおよびW個のスロットから構成される。また、1スロットは、X個のOFDMシンボルで構成される。つまり、1サブフレームの長さは1msである。スロットのそれぞれは、サブキャリア間隔によって時間長が定義される。例えば、OFDMシンボルのサブキャリア間隔が15kHz、NCP(Normal Cyclic Prefix)の場合、X=7あるいはX=14であり、それぞれ0.5msおよび1msである。また、サブキャリア間隔が60kHzの場合は、X=7あるいはX=14であり、それぞれ0.125msおよび0.25msである。また、例えば、X=14の場合、サブキャリア間隔が15kHzの場合はW=10であり、サブキャリア間隔が60kHzの場合はW=40である。図2は、X=7の場合を一例として示している。なお、図2の一例は、X=14の場合にも同様に拡張されうる。また、上りリンクスロットも同様に定義され、下りリンクスロットと上りリンクスロットは別々に定義されてもよい。また、図2のセルの帯域幅は部分帯域(BWP: BandWidth Part)として定義されてもよい。ただし、下りリンクで用いられるBWPは下りリンクBWP、上りリンクで用いられるBWPは上りリンクBWPと称されてもよい。また、スロットは、送信時間間隔(TTI: Transmission Time Interval)と定義されてもよい。スロットは、TTIとして定義されなくてもよい。TTIは、トランスポートブロックの送信期間であってもよい。 FIG. 2 is a diagram showing an example of a schematic configuration of uplink and downlink slots according to the first embodiment of the present invention. Each radio frame is 10ms long. Furthermore, each radio frame is composed of 10 subframes and W slots. Furthermore, one slot is composed of X OFDM symbols. In other words, the length of one subframe is 1ms. The time length of each slot is defined by the subcarrier spacing. For example, when the OFDM symbol subcarrier interval is 15 kHz and NCP (Normal Cyclic Prefix), X=7 or X=14, which are 0.5 ms and 1 ms, respectively. Furthermore, when the subcarrier interval is 60 kHz, X=7 or X=14, which are 0.125 ms and 0.25 ms, respectively. Further, for example, when X=14, when the subcarrier interval is 15kHz, W=10, and when the subcarrier interval is 60kHz, W=40. FIG. 2 shows the case where X=7 as an example. Note that the example in FIG. 2 can be similarly extended to the case where X=14. Further, uplink slots may be defined similarly, and downlink slots and uplink slots may be defined separately. Further, the bandwidth of the cell in FIG. 2 may be defined as a partial band (BWP: BandWidth Part). However, the BWP used in the downlink may be referred to as the downlink BWP, and the BWP used in the uplink may be referred to as the uplink BWP. Further, a slot may be defined as a transmission time interval (TTI). A slot may not be defined as a TTI. The TTI may be a transport block transmission period.
 スロットのそれぞれにおいて送信される信号または物理チャネルは、リソースグリッドによって表現されてよい。リソースグリッドは、それぞれのヌメロロジー(サブキャリア間隔およびサイクリックプレフィックス長)およびそれぞれのキャリアに対して、複数のサブキャリアと複数のOFDMシンボルによって定義される。1つのスロットを構成するサブキャリアの数は、セルの下りリンクおよび上りリンクの帯域幅にそれぞれ依存する。リソースグリッド内のエレメントのそれぞれをリソースエレメント(RE: Resource Element)と称する。REは、サブキャリアの番号とOFDMシンボルの番号とを用いて識別されてよい。 The signal or physical channel transmitted in each of the slots may be represented by a resource grid. A resource grid is defined by multiple subcarriers and multiple OFDM symbols for each numerology (subcarrier spacing and cyclic prefix length) and each carrier. The number of subcarriers constituting one slot depends on the downlink and uplink bandwidths of the cell, respectively. Each element in the resource grid is referred to as a resource element (RE). REs may be identified using subcarrier numbers and OFDM symbol numbers.
 リソースグリッドは、ある物理下りリンクチャネル(PDSCHなど)あるいは上りリンクチャネル(PUSCHなど)のリソースエレメントのマッピングを表現するために用いられる。例えば、サブキャリア間隔が15kHzの場合、サブフレームに含まれるOFDMシンボル数X=14で、NCPの場合には、1つの物理リソースブロック(PRB: Physical Resource Block)は、時間領域において14個の連続するOFDMシンボルと周波数領域において12*Nmax個の連続するサブキャリアとから定義される。Nmaxは、後述するサブキャリア間隔設定μにより決定されるリソースブロック(RB)の最大数である。つまり、リソースグリッドは、(14*12*Nmax,μ)個のREから構成される。ECP(Extended CP)の場合、サブキャリア間隔60kHzにおいてのみサポートされるので、1つのPRBは、例えば、時間領域において12(1スロットに含まれるOFDMシンボル数)*4(1サブフレームに含まれるスロット数)=48個の連続するOFDMシンボルと、周波数領域において12*Nmax,μ個の連続するサブキャリアとにより定義される。つまり、リソースグリッドは、(48*12*Nmax,μ)個のREから構成される。 A resource grid is used to express the mapping of resource elements of a certain physical downlink channel (PDSCH, etc.) or uplink channel (PUSCH, etc.). For example, when the subcarrier spacing is 15kHz, the number of OFDM symbols included in a subframe is 14, and in the case of NCP, one physical resource block (PRB) consists of 14 consecutive OFDM symbols in the time domain. OFDM symbol and 12*Nmax consecutive subcarriers in the frequency domain. Nmax is the maximum number of resource blocks (RB) determined by subcarrier interval setting μ, which will be described later. In other words, the resource grid is composed of (14*12*Nmax,μ) REs. In the case of ECP (Extended CP), it is supported only at a subcarrier spacing of 60 kHz, so one PRB is, for example, 12 (number of OFDM symbols included in 1 slot) * 4 (slots included in 1 subframe) in the time domain. = 48 consecutive OFDM symbols and 12*Nmax,μ consecutive subcarriers in the frequency domain. In other words, the resource grid is composed of (48*12*Nmax,μ) REs.
 RBとして、参照リソースブロック(reference RB)、共通リソースブロック(CRB: Common RB)、PRB、仮想リソースブロック(VRB: Virtual RB)が定義される。1RBは、周波数領域で連続する12サブキャリアとして定義される。参照リソースブロックは、全てのサブキャリアにおいて共通であり、例えば15kHzのサブキャリア間隔でリソースブロックを構成し、昇順に番号が付されてよい。参照リソースブロックインデックス0におけるサブキャリアインデックス0は、参照ポイントA(point A)と称されてよい(単に“参照ポイント”と称されてもよい)。point Aは、リソースブロックのグリッドのための共通参照ポイントとして提供されるものであってよい。point Aの位置はSIB1に含まれるパラメータoffsetToPointAによって決定/特定されてよい。パラメータoffsetToPointAは、point Aと、端末装置1が初期セル選択で用いた同期信号ブロックと重複する最も周波数の低いリソースブロックの最も周波数の低いサブキャリアと、の間の周波数オフセットを示すパラメータである。ただし、該周波数オフセットの単位は、周波数レンジ(FR)1である場合にはサブキャリア間隔が15kHzのリソースブロックであり、周波数レンジ2である場合にはサブキャリア間隔が60kHzのリソースブロックである。ただし、point Aの位置は、RRCパラメータabsoluteFrequencyPointAにより、周波数位置がARFCN(絶対無線周波数チャンネル番号: Absolute radio-frequency channel number)で示されても良い。CRBは、point Aから各サブキャリア間隔設定μにおいて0から昇順で番号が付されるRBである。従って、CRBの番号は、サブキャリア間隔設定μ毎に定義される。サブキャリア間隔設定μに対応するCRBをCRBμと称しても良い。上述のリソースグリッドはCRBにより定義される。ただし、各サブキャリア間隔設定μにおける番号0のCRBμのサブキャリアインデックス0の中心は、point Aである。PRBは、各サブキャリア間隔設定μのBWPの中に含まれる0から昇順で番号が付されたRBであり、PRBは、サブキャリア間隔設定μであるBWPの中に含まれる0から昇順で番号が付されたRBである。サブキャリア間隔設定μに対応するPRBをPRBμと称しても良い。ある物理上りリンクチャネルは、まずVRBにマップされる。その後、VRBは、PRBにマップされる。以下、RBはVRBであってもよいし、PRBであってもよいし、CRBであってもよいし、参照リソースブロックであってもよい。 As RBs, reference resource blocks (reference RBs), common resource blocks (CRBs), PRBs, and virtual resource blocks (VRBs) are defined. 1 RB is defined as 12 consecutive subcarriers in the frequency domain. The reference resource blocks are common to all subcarriers, constitute resource blocks at subcarrier intervals of 15 kHz, for example, and may be numbered in ascending order. Subcarrier index 0 in reference resource block index 0 may be referred to as reference point A (point A) (or simply referred to as "reference point"). Point A may be provided as a common reference point for the grid of resource blocks. The position of point A may be determined/specified by the parameter offsetToPointA included in SIB1. The parameter offsetToPointA is a parameter indicating the frequency offset between point A and the lowest frequency subcarrier of the lowest frequency resource block that overlaps with the synchronization signal block used by the terminal device 1 in initial cell selection. However, the unit of the frequency offset is a resource block with a subcarrier interval of 15 kHz when the frequency range (FR) is 1, and a resource block with a subcarrier interval of 60 kHz when the frequency range is 2. However, the frequency position of point A may be indicated by ARFCN (Absolute radio-frequency channel number) using the RRC parameter absoluteFrequencyPointA. The CRBs are RBs that are numbered in ascending order starting from 0 in each subcarrier interval setting μ from point A. Therefore, the CRB number is defined for each subcarrier interval setting μ. The CRB corresponding to the subcarrier interval setting μ may be referred to as CRB μ. The resource grid mentioned above is defined by the CRB. However, the center of subcarrier index 0 of CRB μ with number 0 in each subcarrier interval setting μ is point A. PRB is an RB numbered in ascending order from 0 included in BWP of each subcarrier spacing setting μ, and PRB is numbered in ascending order from 0 included in BWP with subcarrier spacing setting μ. It is RB with . The PRB corresponding to the subcarrier interval setting μ may be referred to as PRBμ. A certain physical uplink channel is first mapped to a VRB. VRBs are then mapped to PRBs. Hereinafter, the RB may be a VRB, a PRB, a CRB, or a reference resource block.
 BWPは、あるキャリアにおいてあるサブキャリア間隔設定の連続するRB(CRBであってよい)のサブセットである。端末装置1は、下りリンクにおいて最大4つのBWP(下りリンクBWP)が設定されるかもしれない。ある時間においてアクティブな下りリンクBWP(アクティブ下りリンクBWP)は1つであってよい。端末装置1は、アクティブ下りリンクBWPの帯域外で、PDSCH、PDCCHあるいはCSI-RSを受信することを期待しないかもしれない。端末装置1は、上りリンクにおいて最大4つのBWP(上りリンクBWP)が設定されるかもしれない。ある時間においてアクティブな上りリンクBWP(アクティブ上りリンクBWP)は1つであってよい。端末装置1は、アクティブ上りリンクBWPの帯域外で、PUSCH、PUCCHを送信しない。 A BWP is a subset of consecutive RBs (which may be CRBs) with a certain subcarrier spacing in a certain carrier. In the terminal device 1, up to four BWPs (downlink BWPs) may be configured in the downlink. There may be one active downlink BWP (active downlink BWP) at a certain time. The terminal device 1 may not expect to receive PDSCH, PDCCH or CSI-RS outside the active downlink BWP band. In the terminal device 1, up to four BWPs (uplink BWPs) may be configured on the uplink. There may be one active uplink BWP (active uplink BWP) at a certain time. The terminal device 1 does not transmit PUSCH and PUCCH outside the active uplink BWP band.
 次に、サブキャリア間隔設定μについて説明する。上述のようにNRでは、1つまたは複数のOFDMヌメロロジー(numerology)がサポートされる。あるBWPにおいて、サブキャリア間隔設定μ(μ=0,1,...,5)と、CP長は、下りリンクのBWPに対して上位層で与えられ、上りリンクのBWPにおいて上位層で与えられる。ここで、μが与えられると、サブキャリア間隔Δfは、Δf=2^μ・15(kHz)で与えられる。 Next, the subcarrier interval setting μ will be explained. As mentioned above, NR supports one or more OFDM numerologies. In a certain BWP, the subcarrier interval setting μ (μ=0,1,...,5) and CP length are given in the upper layer for the downlink BWP, and are given in the upper layer for the uplink BWP. It will be done. Here, when μ is given, the subcarrier spacing Δf is given by Δf=2^μ·15 (kHz).
 サブキャリア間隔設定μにおいて、スロットは、サブフレーム内で0からN^{subframe, μ}_{slot}-1に昇順に数えられ、フレーム内で0からN^{frame, μ}_{slot}-1に昇順に数えられる。スロット設定およびCPに基づいてN^{slot}_{symb}の連続するOFDMシンボルがスロット内にある。N^{slot}_{symb}は14である。サブフレーム内のスロットn^{μ}_{s}のスタートは、同じサブフレーム内のn^{μ}_{s}*N^{slot}_{symb}番目のOFDMシンボルのスタートと時間でアラインされている。 In the subcarrier spacing setting μ, slots are counted in ascending order from 0 to N^{subframe, μ}_{slot}-1 within a subframe, and from 0 to N^{frame, μ}_{slot within a frame. }-1 in ascending order. There are N^{slot}_{symb} consecutive OFDM symbols in the slot based on the slot configuration and CP. N^{slot}_{symb} is 14. The start of slot n^{μ}_{s} in a subframe is the start of the n^{μ}_{s}*N^{slot}_{symb}th OFDM symbol in the same subframe. are aligned.
 次に、サブフレーム、スロット、ミニスロットについて説明する。図3は、サブフレーム、スロット、ミニスロットの時間領域における関係の一例を示した図である。同図のように、3種類の時間ユニットが定義される。サブフレームは、サブキャリア間隔によらず1msであり、スロットに含まれるOFDMシンボル数は7または14であり(ただし、各シンボルに付加されるCPがExtended CPである場合、6または12であってもよい)、スロット長はサブキャリア間隔により異なる。ここで、サブキャリア間隔が15kHzの場合、1サブフレームには14OFDMシンボルが含まれる。下りリンクスロットはPDSCHマッピングタイプAと称されてよい。上りリンクスロットはPUSCHマッピングタイプAと称されてよい。 Next, subframes, slots, and minislots will be explained. FIG. 3 is a diagram showing an example of the relationship among subframes, slots, and minislots in the time domain. As shown in the figure, three types of time units are defined. A subframe is 1 ms regardless of the subcarrier interval, and the number of OFDM symbols included in a slot is 7 or 14 (however, if the CP added to each symbol is Extended CP, it is 6 or 12). ), the slot length varies depending on the subcarrier spacing. Here, when the subcarrier interval is 15 kHz, one subframe includes 14 OFDM symbols. The downlink slot may be referred to as PDSCH mapping type A. The uplink slot may be referred to as PUSCH mapping type A.
 ミニスロット(サブスロット(subslot)と称されてもよい)は、1つのスロットに含まれるOFDMシンボル数よりも少ない数のOFDMシンボルで構成される時間ユニットである。同図はミニスロットが2OFDMシンボルで構成される場合を一例として示している。ミニスロット内のOFDMシンボルは、スロットを構成するOFDMシンボルタイミングに一致してもよい。なお、スケジューリングの最小単位はスロットまたはミニスロットでよい。また、ミニスロットを割り当てることを、ノンスロットベースのスケジューリングと称してもよい。また、ミニスロットをスケジューリングされることを参照信号とデータのスタート位置の相対的な時間位置が固定であるリソースがスケジュールされたと表現されてもよい。下りリンクミニスロットはPDSCHマッピングタイプBと称されてよい。上りリンクミニスロットはPUSCHマッピングタイプBと称されてよい。 A minislot (also referred to as a subslot) is a time unit composed of fewer OFDM symbols than the number of OFDM symbols included in one slot. The figure shows, as an example, a case where a minislot is composed of 2 OFDM symbols. The OFDM symbols within a minislot may match the timing of the OFDM symbols that make up the slot. Note that the minimum unit of scheduling may be a slot or a minislot. Also, assigning minislots may be referred to as non-slot-based scheduling. Further, the fact that a mini-slot is scheduled may be expressed as a resource in which the relative time position of the reference signal and the start position of data is fixed. The downlink minislot may be referred to as PDSCH mapping type B. The uplink minislot may be referred to as PUSCH mapping type B.
 端末装置1において、各スロット内のシンボルの伝送方向(上りリンク、下りリンクまたはフレキシブル)は基地局装置3から受信する所定の上位レイヤパラメータを含むRRCメッセージを用いて上位層で設定されるか、基地局装置3から受信する特定のDCIフォーマット(例えばDCIフォーマット2_0)のPDCCHによって設定される。本実施形態では、各スロットにおいてスロット内の各シンボルが上りリンク、下りリンクおよびフレキシブルの何れかを設定するものがスロットフォーマットと称される。1つのスロットフォーマットは下りリンクシンボルと上りリンクシンボルとフレキシブルシンボルとを含んでよい。 In the terminal device 1, the transmission direction (uplink, downlink, or flexible) of symbols in each slot is set in an upper layer using an RRC message containing predetermined upper layer parameters received from the base station device 3; It is set by a PDCCH of a specific DCI format (for example, DCI format 2_0) received from the base station device 3. In this embodiment, a format in which each symbol in each slot is set to be uplink, downlink, or flexible is called a slot format. One slot format may include downlink symbols, uplink symbols, and flexible symbols.
 本実施形態のサービングセルに対応するキャリアはコンポーネントキャリア(CC: Component Carrier)(あるいはキャリア)と称される。本実施形態の下りリンクにおいて、サービングセルに対応するキャリアは下りリンクCC(あるいは下りリンクキャリア)と称される。本実施形態の上りリンクにおいて、サービングセルに対応するキャリアは上りリンクCC(あるいは上りリンクキャリア)と称される。本実施形態のサイドリンクにおいて、サービングセルに対応するキャリアはサイドリンクCC(あるいはサイドリンクキャリア)と称される。 The carrier corresponding to the serving cell of this embodiment is called a component carrier (CC) (or carrier). In the downlink of this embodiment, the carrier corresponding to the serving cell is called a downlink CC (or downlink carrier). In the uplink of this embodiment, the carrier corresponding to the serving cell is called an uplink CC (or uplink carrier). In the sidelink of this embodiment, the carrier corresponding to the serving cell is called a sidelink CC (or sidelink carrier).
 本実施形態の物理チャネルおよび物理信号について説明する。 The physical channel and physical signal of this embodiment will be explained.
 図1において、端末装置1と基地局装置3の無線通信では、以下の物理チャネルが用いられてよい。 In FIG. 1, the following physical channels may be used for wireless communication between the terminal device 1 and the base station device 3.
・PBCH(物理報知チャネル:Physical Broadcast CHannel)
・PDCCH(物理下りリンク制御チャネル:Physical Downlink Control CHannel)
・PDSCH(物理下りリンク共用チャネル:Physical Downlink Shared CHannel)
・PUCCH(物理上りリンク制御チャネル:Physical Uplink Control CHannel)
・PUSCH(物理上りリンク共用チャネル:Physical Uplink Shared CHannel)
・PRACH(物理ランダムアクセスチャネル:Physical Random Access CHannel)
・PBCH (Physical Broadcast CHannel)
・PDCCH (Physical Downlink Control CHannel)
・PDSCH (Physical Downlink Shared CHannel)
・PUCCH (Physical Uplink Control CHannel)
・PUSCH (Physical Uplink Shared CHannel)
・PRACH (Physical Random Access CHannel)
 PBCHは、端末装置1が必要な重要なシステム情報を含む重要情報ブロック(MIB: MasterInformation Block、EIB: Essential Information Block、BCH: Broadcast Channel)を報知するために用いられる。MIBには、PBCHがマップされている無線フレーム(システムフレームとも称する)の番号(SFN: System Frame Number)を特定するための情報、システム情報ブロックタイプ1(SIB1: System Information Block 1、システム情報ブロック1)のサブキャリア間隔を特定する情報、リソースブロックのグリッドとSS/PBCHブロック(同期信号ブロック、SSブロック、SSBとも称される)との間の周波数領域オフセットを示す情報、SIB1のためのPDCCHに関する設定を示す情報が含まれてよい。ただし、SIB1は、端末装置1がセルに接続することが許されるかを評価する際に必要な情報を含み、その他のシステム情報(SIB: System Information Block)のスケジューリングを決定する情報を含む。ただし、SIB1のためのPDCCHに関する設定を示す情報とは、制御リソースセット(CORESET: ControlResourceSet)#0(CORESET#0はCORESET0、コモンCORESETとも称される)、コモンサーチスペースおよび/または必要なPDCCHパラメータを決定する情報であってよい。ただし、CORESETはPDCCHのリソース要素を示し、一定数のOFDMシンボル(例えば1~3シンボル)の時間期間におけるPRBのセットで構成される。CORESET#0は、少なくともSIB1をスケジュールするPDCCHのためのCORESETであってよい。CORESET#0は、MIBで設定されても良いし、RRCシグナリングを介して設定されてもよい。SIB1はCORESET#0で送信されるPDCCHによってスケジュールされてよい。端末装置1はCORESET#0で受信したPDCCHでスケジュールされたSIB1を受信する。ただし、SIB1をスケジュールするPDCCHとは、PDCCHにおいて送信されるSI-RNTI(Scheduling information - Radio Network Temporary Identifier)でスクランブルされたCRCを伴う下りリンク制御情報(DCI: Downlink Control Information)であってもよい。DCIおよびSI-RNTIについては後述する。端末装置1は、PDCCHで、SI-RNTIでスクランブルされたCRCを伴うDCIを受信し、該DCIでスケジュールされたSIB1を含むPDSCHを受信してもよい。ただし、SIB1をスケジュールするPDCCHとは、PDCCHにおいて送信されるSI-RNTIでスクランブルされたCRCを伴うPDCCHであってもよい。 The PBCH is used by the terminal device 1 to broadcast important information blocks (MIB: Master Information Block, EIB: Essential Information Block, BCH: Broadcast Channel) that include important system information. The MIB contains information for identifying the radio frame number (SFN: System Frame Number) to which the PBCH is mapped, and system information block type 1 (SIB1: System Information Block 1). 1) Information specifying the subcarrier spacing, information indicating the frequency domain offset between the grid of resource blocks and the SS/PBCH block (also referred to as synchronization signal block, SS block, SSB), PDCCH for SIB1 It may include information indicating settings related to. However, SIB1 includes information necessary for evaluating whether terminal device 1 is allowed to connect to a cell, and includes information for determining scheduling of other system information (SIB: System Information Block). However, the information indicating settings related to PDCCH for SIB1 includes control resource set (CORESET: ControlResourceSet) #0 (CORESET#0 is also referred to as CORESET0, common CORESET), common search space, and/or necessary PDCCH parameters. It may be information that determines the However, CORESET indicates a PDCCH resource element and is composed of a set of PRBs in a time period of a certain number of OFDM symbols (for example, 1 to 3 symbols). CORESET#0 may be a CORESET for a PDCCH that schedules at least SIB1. CORESET#0 may be set by MIB or via RRC signaling. SIB1 may be scheduled by PDCCH transmitted in CORESET#0. Terminal device 1 receives SIB1 scheduled on PDCCH received in CORESET #0. However, the PDCCH that schedules SIB1 may be Downlink Control Information (DCI) with a scrambled CRC in the SI-RNTI (Scheduling information - Radio Network Temporary Identifier) transmitted on the PDCCH. . DCI and SI-RNTI will be described later. The terminal device 1 may receive a DCI with a CRC scrambled with SI-RNTI on a PDCCH, and may receive a PDSCH including SIB1 scheduled on the DCI. However, the PDCCH on which SIB1 is scheduled may be a PDCCH with a CRC scrambled with the SI-RNTI transmitted on the PDCCH.
 また、PBCHは、該PBCHがマップされている無線フレーム(システムフレームとも称する)の番号(SFN: System Frame Number)を特定するための情報および/またはハーフ無線フレーム(HRF: Half Radio Frame)(ハーフフレームとも称される)を特定する情報を報知するために用いられてもよい。ただし、ハーフ無線フレームは5ms長の時間フレームであり、ハーフ無線フレームを特定する情報とは、10msの無線フレームの前半5msか後半5msかを特定する情報であってよい。 The PBCH also includes information for identifying the number (SFN: System Frame Number) and/or Half Radio Frame (HRF) to which the PBCH is mapped. (also referred to as a frame) may be used to broadcast information specifying the frame. However, a half radio frame is a time frame with a length of 5 ms, and the information specifying the half radio frame may be information specifying whether it is the first half 5 ms or the second half 5 ms of a 10 ms radio frame.
 また、PBCHは、SS/PBCHブロックの周期内の時間インデックスを報知するために用いられてよい。ここで、時間インデックスは、セル内の同期信号およびPBCHのインデックスを示す情報である。該時間インデックスをSSBインデックスまたはSS/PBCHブロックインデックスと称してもよい。例えば、複数の送信ビーム、送信フィルタ設定および/または受信空間パラメータに関する擬似同位置(QCL: Quasi Co-Location)の想定を用いてSS/PBCHブロックを送信する場合、予め定められた周期内または設定された周期内の時間順を示してよい。また、端末装置は、時間インデックスの違いを送信ビーム、送信フィルタ設定および/または受信空間パラメータに関するQCLの想定の違いと認識してもよい。 Additionally, the PBCH may be used to broadcast the time index within the period of the SS/PBCH block. Here, the time index is information indicating the index of the synchronization signal and PBCH within the cell. The time index may be referred to as an SSB index or an SS/PBCH block index. For example, when transmitting SS/PBCH blocks using quasi co-location (QCL) assumptions regarding multiple transmit beams, transmit filter settings and/or receive spatial parameters, within a predetermined period or set may indicate the chronological order within the specified period. Furthermore, the terminal device may recognize the difference in time index as a difference in QCL assumptions regarding transmission beams, transmission filter settings, and/or reception spatial parameters.
 PDCCHは、下りリンクの無線通信(基地局装置3から端末装置1への無線通信)において、下りリンク制御情報を送信する(または運ぶ)ために用いられる。ここで、下りリンク制御情報の送信に対して、1つまたは複数のDCI(DCIフォーマットと称されてもよい)が定義される。すなわち、下りリンク制御情報に対するフィールドは、DCIとして定義され、情報ビットへマップされる。PDCCHは、PDCCH候補において送信される。端末装置1は、サービングセルにおいてPDCCH候補(candidate)のセットをモニタする。ただし、モニタするとは、あるDCIフォーマットに応じてPDCCHのデコードを試みることを意味してよい。 PDCCH is used to transmit (or carry) downlink control information in downlink wireless communication (wireless communication from base station device 3 to terminal device 1). Here, one or more DCIs (which may be referred to as DCI formats) are defined for the transmission of downlink control information. That is, fields for downlink control information are defined as DCI and mapped to information bits. PDCCH is transmitted on PDCCH candidates. The terminal device 1 monitors a set of PDCCH candidates in the serving cell. However, monitoring may mean attempting to decode the PDCCH according to a certain DCI format.
 例えば、以下のDCIフォーマットが定義されてよい。
 ・DCIフォーマット0_0
 ・DCIフォーマット0_1
 ・DCIフォーマット0_2
 ・DCIフォーマット1_0
 ・DCIフォーマット1_1
 ・DCIフォーマット1_2
 ・DCIフォーマット2_0
 ・DCIフォーマット2_1
 ・DCIフォーマット2_2
 ・DCIフォーマット2_3
For example, the following DCI format may be defined:
・DCI format 0_0
・DCI format 0_1
・DCI format 0_2
・DCI format 1_0
・DCI format 1_1
・DCI format 1_2
・DCI format 2_0
・DCI format 2_1
・DCI format 2_2
・DCI format 2_3
 DCIフォーマット0_0は、あるサービングセルにおけるPUSCHのスケジューリングのために用いられてもよい。DCIフォーマット0_0は、PUSCHのスケジューリング情報(周波数領域リソース割り当て及び時間領域リソース割り当て)を示す情報を含んでよい。DCIフォーマット0_0は、識別子であるRadio Network Temporary Identifier(RNTI)のうち、Cell-RNTI(C-RNTI)、Configured Scheduling(CS)-RNTI)、MCS-C-RNTI、および/または、Temporary C-NRTI(TC-RNTI)の何れかによってスクランブルされるCRC(Cyclic Redundancy Check)が付加されてもよい。DCIフォーマット0_0は、コモンサーチスペースまたはUEスペシフィックサーチスペースにおいてモニタされてもよい。 DCI format 0_0 may be used for PUSCH scheduling in a certain serving cell. DCI format 0_0 may include information indicating PUSCH scheduling information (frequency domain resource allocation and time domain resource allocation). DCI format 0_0 is an identifier of Radio Network Temporary Identifier (RNTI), Cell-RNTI (C-RNTI), Configured Scheduling (CS)-RNTI), MCS-C-RNTI, and/or Temporary C-NRTI. A CRC (Cyclic Redundancy Check) scrambled by either (TC-RNTI) may be added. DCI format 0_0 may be monitored in the common search space or the UE-specific search space.
 DCIフォーマット0_1は、あるサービングセルにおけるPUSCHのスケジューリングのために用いられてもよい。DCIフォーマット0_1は、PUSCHのスケジューリング情報(周波数領域リソース割り当て及び時間領域リソース割り当て)を示す情報、BWPを示す情報、チャネル状態情報(CSI: Channel State Information)リクエスト、サウンディング参照信号(SRS: Sounding Reference Signal)リクエスト、および/または、アンテナポートに関する情報を含んでよい。DCIフォーマット0_1は、RNTIのうち、C-RNTI、CS-RNTI、Semi Persistent(SP)-CSI-RNTI、および/または、MCS-C-RNTIの何れかによってスクランブルされるCRCが付加されてもよい。DCIフォーマット0_1は、UEスペシフィックサーチスペースにおいてモニタされてもよい。 DCI format 0_1 may be used for PUSCH scheduling in a certain serving cell. DCI format 0_1 includes information indicating PUSCH scheduling information (frequency domain resource allocation and time domain resource allocation), information indicating BWP, channel state information (CSI) request, sounding reference signal (SRS) ) request and/or information regarding the antenna port. DCI format 0_1 may have a CRC scrambled by any of RNTI, C-RNTI, CS-RNTI, Semi Persistent (SP)-CSI-RNTI, and/or MCS-C-RNTI. . DCI format 0_1 may be monitored in the UE specific search space.
 DCIフォーマット0_2は、あるサービングセルにおけるPUSCHのスケジューリングのために用いられてもよい。DCIフォーマット0_2は、PUSCHのスケジューリング情報(周波数領域リソース割り当て及び時間領域リソース割り当て)を示す情報、BWPを示す情報、CSIリクエスト、SRSリクエスト、および/または、アンテナポートに関する情報を含んでよい。DCIフォーマット0_2は、RNTIのうち、C-RNTI、CSI-RNTI、SP-CSI-RNTI、および/または、MCS-C-RNTIの何れかによってスクランブルされるCRCが付加されてもよい。DCIフォーマット0_2は、UEスペシフィックサーチスペースにおいてモニタされてもよい。DCIフォーマット0_2は、DCIフォーマット0_1A等と称されるかもしれない。 DCI format 0_2 may be used for PUSCH scheduling in a certain serving cell. DCI format 0_2 may include information indicating PUSCH scheduling information (frequency domain resource allocation and time domain resource allocation), information indicating BWP, CSI request, SRS request, and/or information regarding antenna ports. DCI format 0_2 may have a CRC scrambled by any one of C-RNTI, CSI-RNTI, SP-CSI-RNTI, and/or MCS-C-RNTI among RNTIs. DCI format 0_2 may be monitored in the UE specific search space. DCI format 0_2 may also be referred to as DCI format 0_1A, etc.
 DCIフォーマット1_0は、あるサービングセルにおけるPDSCHのスケジューリングのために用いられてもよい。DCIフォーマット1_0は、PDSCHのスケジューリング情報(周波数領域リソース割り当て及び時間領域リソース割り当て)を示す情報を含んでよい。DCIフォーマット1_0は、識別子のうち、C-RNTI、CS-RNTI、MCS-C-RNTI、Paging RNTI(P-RNTI)、System Information(SI)-RNTI、Random access(RA)-RNTI、および/または、TC-RNTIの何れかによってスクランブルされるCRCが付加されてもよい。DCIフォーマット1_0は、コモンサーチスペースまたはUEスペシフィックサーチスペースにおいてモニタされてもよい。 DCI format 1_0 may be used for PDSCH scheduling in a certain serving cell. DCI format 1_0 may include information indicating PDSCH scheduling information (frequency domain resource allocation and time domain resource allocation). DCI format 1_0 includes the following identifiers: C-RNTI, CS-RNTI, MCS-C-RNTI, Paging RNTI (P-RNTI), System Information (SI)-RNTI, Random access (RA)-RNTI, and/or , TC-RNTI may be added. DCI format 1_0 may be monitored in the common search space or the UE-specific search space.
 DCIフォーマット1_1は、あるサービングセルにおけるPDSCHのスケジューリングのために用いられてもよい。DCIフォーマット1_1は、PDSCHのスケジューリング情報(周波数領域リソース割り当て及び時間領域リソース割り当て)を示す情報、BWPを示す情報、送信設定指示(TCI: Transmission Configuration Indication)、および/または、アンテナポートに関する情報を含んでよい。DCIフォーマット1_1は、RNTIのうち、C-RNTI、CS-RNTI、および/または、MCS-C-RNTIの何れかによってスクランブルされるCRCが付加されてもよい。DCIフォーマット1_1は、UEスペシフィックサーチスペースにおいてモニタされてもよい。 DCI format 1_1 may be used for PDSCH scheduling in a certain serving cell. DCI format 1_1 includes information indicating PDSCH scheduling information (frequency domain resource allocation and time domain resource allocation), information indicating BWP, transmission configuration indication (TCI), and/or information regarding antenna ports. That's fine. DCI format 1_1 may include a CRC scrambled by any one of C-RNTI, CS-RNTI, and/or MCS-C-RNTI among RNTIs. DCI format 1_1 may be monitored in the UE specific search space.
 DCIフォーマット1_2は、あるサービングセルにおけるPDSCHのスケジューリングのために用いられてもよい。DCIフォーマット1_2は、PDSCHのスケジューリング情報(周波数領域リソース割り当て及び時間領域リソース割り当て)を示す情報、BWPを示す情報、TCI、および/または、アンテナポートに関する情報を含んでよい。DCIフォーマット1_2は、RNTIのうち、C-RNTI、CS-RNTI、および/または、MCS-C-RNTIの何れかによってスクランブルされるCRCが付加されてもよい。DCIフォーマット1_2は、UEスペシフィックサーチスペースにおいてモニタされてもよい。DCIフォーマット1_2は、DCIフォーマット1_1A等と称されるかもしれない。 DCI format 1_2 may be used for PDSCH scheduling in a certain serving cell. DCI format 1_2 may include information indicating PDSCH scheduling information (frequency domain resource allocation and time domain resource allocation), information indicating BWP, TCI, and/or information regarding antenna ports. DCI format 1_2 may have a CRC scrambled by any one of C-RNTI, CS-RNTI, and/or MCS-C-RNTI among RNTIs. DCI format 1_2 may be monitored in the UE specific search space. DCI format 1_2 may also be referred to as DCI format 1_1A, etc.
 DCIフォーマット2_0は、1つまたは複数のスロットのスロットフォーマットを通知するために用いられる。スロットフォーマットは、スロット内の各OFDMシンボルが下りリンク、フレキシブル、上りリンクのいずれかに分類されたものとして定義される。例えば、スロットフォーマットが28の場合、スロットフォーマット28が指示されたスロット内の14シンボルのOFDMシンボルに対してDDDDDDDDDDDDFUが適用される。ここで、Dが下りリンクシンボル、Fがフレキシブルシンボル、Uが上りリンクシンボルである。なお、スロットについては後述する。 DCI format 2_0 is used to notify the slot format of one or more slots. The slot format is defined as each OFDM symbol within the slot classified as one of downlink, flexible, and uplink. For example, if the slot format is 28, DDDDDDDDDDDDFU is applied to 14 OFDM symbols in the slot in which slot format 28 is designated. Here, D is a downlink symbol, F is a flexible symbol, and U is an uplink symbol. Note that the slot will be described later.
 DCIフォーマット2_1は、端末装置1に対して、送信がないと想定してよいPRB(あるいはRB)とOFDMシンボルを通知するために用いられる。なお、この情報はプリエンプション指示(間欠送信指示)と称してよい。 DCI format 2_1 is used to notify the terminal device 1 of PRBs (or RBs) and OFDM symbols that can be assumed not to be transmitted. Note that this information may be referred to as a preemption instruction (intermittent transmission instruction).
 DCIフォーマット2_2は、PUSCHおよびPUSCHのための送信電力制御(TPC: Transmit Power Control)コマンドの送信のために用いられる。 DCI format 2_2 is used for transmitting PUSCH and transmit power control (TPC) commands for PUSCH.
 DCIフォーマット2_3は、1または複数の端末装置1によるサウンディング参照信号(SRS)送信のためのTPCコマンドのグループを送信するために用いられる。また、TPCコマンドとともに、SRSリクエストが送信されてもよい。また、DCIフォーマット2_3に、PUSCHおよびPUCCHのない上りリンク、またはSRSの送信電力制御がPUSCHの送信電力制御と紐付いていない上りリンクのために、SRSリクエストとTPCコマンドが定義されてよい。 DCI format 2_3 is used to transmit a group of TPC commands for sounding reference signal (SRS) transmission by one or more terminal devices 1. Additionally, an SRS request may be sent along with the TPC command. Furthermore, an SRS request and a TPC command may be defined in DCI format 2_3 for uplinks without PUSCH and PUCCH, or for uplinks in which SRS transmission power control is not linked to PUSCH transmission power control.
 下りリンクに対するDCIを、下りリンクグラント(downlink grant)、または、下りリンクアサインメント(downlink assignment)とも称する。ここで、上りリンクに対するDCIを、上りリンクグラント(uplink grant)、または、上りリンクアサインメント(Uplink assignment)とも称する。DCIを、DCIフォーマットとも称してもよい。 DCI for downlink is also referred to as downlink grant or downlink assignment. Here, the DCI for uplink is also referred to as uplink grant or uplink assignment. DCI may also be referred to as DCI format.
 1つのPDCCHで送信されるDCIフォーマットに付加されるCRCパリティビットは、SI-RNTI、P-RNTI、C-RNTI、CS-RNTI、RA-RNTI、または、TC-RNTIでスクランブルされる。SI-RNTIはシステム情報のブロードキャストに使用される識別子であってもよい。P-RNTIは、ページングおよびシステム情報変更の通知に使用される識別子であってもよい。C-RNTI、MCS-C-RNTI、および、CS-RNTIは、セル内において端末装置を識別するための識別子である。TC-RNTIは、CBRA中に、ランダムアクセスプリアンブルを送信した端末装置1を識別するための識別子である。 The CRC parity bits added to the DCI format transmitted on one PDCCH are scrambled with SI-RNTI, P-RNTI, C-RNTI, CS-RNTI, RA-RNTI, or TC-RNTI. SI-RNTI may be an identifier used for broadcasting system information. P-RNTI may be an identifier used for paging and notification of system information changes. C-RNTI, MCS-C-RNTI, and CS-RNTI are identifiers for identifying terminal devices within a cell. TC-RNTI is an identifier for identifying the terminal device 1 that transmitted the random access preamble during CBRA.
 C-RNTIは、1つまたは複数のスロットにおけるPDSCHまたはPUSCHを制御するために用いられる。CS-RNTIは、PDSCHまたはPUSCHのリソースを周期的に割り当てるために用いられる。MCS-C-RNTIは、グラントベース送信(grant-based transmission)に対して所定のMCSテーブルの使用を示すために用いられる。TC-RNTIは、1つまたは複数のスロットにおけるPDSCH送信またはPUSCH送信を制御するために用いられる。TC-RNTIは、ランダムアクセスメッセージ3の再送信、およびランダムアクセスメッセージ4の送信をスケジュールするために用いられる。RA-RNTIは、ランダムアクセスプリアンブルを送信した物理ランダムアクセスチャネルの周波数および時間の位置情報に応じて決定される。 C-RNTI is used to control PDSCH or PUSCH in one or more slots. CS-RNTI is used to periodically allocate PDSCH or PUSCH resources. MCS-C-RNTI is used to indicate the use of a given MCS table for grant-based transmission. TC-RNTI is used to control PDSCH or PUSCH transmission in one or more slots. TC-RNTI is used to schedule the retransmission of random access message 3 and the transmission of random access message 4. RA-RNTI is determined according to the frequency and time location information of the physical random access channel that transmitted the random access preamble.
 C-RNTIおよび/またはその他のRNTIは、PDSCHまたはPUSCHのトラフィックのタイプに対応して異なる値が用いられてもよい。C-RNTIおよびその他のRNTIは、PDSCHまたはPUSCHで伝送されるデータのサービスタイプ(eMBB、URLLC、および/または、mMTC)に対応して異なる値が用いられてもよい。基地局装置3は、送信するデータのサービスタイプに対応して異なる値のRNTIを用いてもよい。端末装置1は、受信したDCIに適用された(スクランブルに用いられた)RNTIの値によって、関連するPDSCHまたはPUSCHで伝送されるデータのサービスタイプを識別してもよい。 Different values may be used for the C-RNTI and/or other RNTIs depending on the type of PDSCH or PUSCH traffic. Different values may be used for C-RNTI and other RNTIs depending on the service type (eMBB, URLLC, and/or mMTC) of data transmitted on PDSCH or PUSCH. The base station device 3 may use different values of RNTI depending on the service type of data to be transmitted. The terminal device 1 may identify the service type of data transmitted on the related PDSCH or PUSCH by the value of the RNTI applied (used for scrambling) to the received DCI.
 PUCCHは、上りリンクの無線通信(端末装置1から基地局装置3の無線通信)において、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる。ここで、上りリンク制御情報には、下りリンクのチャネルの状態を示すために用いられるチャネル状態情報(CSI: Channel State Information)が含まれてもよい。また、上りリンク制御情報には、UL-SCHリソースを要求するために用いられるスケジューリング要求(SR: Scheduling Request)が含まれてもよい。また、上りリンク制御情報には、HARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)が含まれてもよい。HARQ-ACKは、下りリンクデータ(Transport block, Medium Access Control Protocol Data Unit:MAC PDU, Downlink-Shared Channel: DL-SCH)に対するHARQ-ACKを示してもよい。 The PUCCH is used to transmit uplink control information (UCI) in uplink wireless communication (wireless communication from the terminal device 1 to the base station device 3). Here, the uplink control information may include channel state information (CSI) used to indicate the state of a downlink channel. Further, the uplink control information may include a scheduling request (SR) used to request UL-SCH resources. Further, the uplink control information may include HARQ-ACK (Hybrid Automatic Repeat request ACKnowledgement). HARQ-ACK may indicate HARQ-ACK for downlink data (Transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH).
 PDSCHは、媒介アクセス(MAC: Medium Access Control)層からの下りリンクデータ(DL-SCH: Downlink Shared CHannel)の送信に用いられる。また、PDSCHは、下りリンクの場合にはシステム情報(SI: System Information)や、ページング情報、ランダムアクセス応答(RAR: Random Access Response)などの送信にも用いられる。 The PDSCH is used to transmit downlink data (DL-SCH: Downlink Shared CHannel) from the Medium Access Control (MAC) layer. Additionally, in the case of downlink, the PDSCH is also used to transmit system information (SI), paging information, random access response (RAR), and the like.
 PUSCHは、MAC層からの上りリンクデータ(UL-SCH: Uplink Shared CHannel)または上りリンクデータと共にHARQ-ACKおよび/またはCSIを送信するために用いられてもよい。また、PUSCHは、CSIのみ、または、HARQ-ACKおよびCSIのみを送信するために用いられてもよい。すなわち、PUSCHは、UCIのみを送信するために用いられてもよい。 PUSCH may be used to transmit HARQ-ACK and/or CSI along with uplink data (UL-SCH: Uplink Shared CHannel) or uplink data from the MAC layer. Furthermore, PUSCH may be used to transmit only CSI or only HARQ-ACK and CSI. That is, PUSCH may be used to transmit only UCI.
 ここで、基地局装置3と端末装置1は、上位層(上位レイヤ:higher layer)において信号をやり取り(送受信)する。例えば、基地局装置3と端末装置1は、無線リソース制御(RRC: Radio Resource Control)層において、RRCメッセージ(RRC message、RRC information、RRC signallingとも称される)を送受信してもよい。また、基地局装置3と端末装置1は、MAC(Medium Access Control)層において、MACコントロールエレメントを送受信してもよい。また、端末装置1のRRC層は、基地局装置3から報知されるシステム情報を取得する。ここで、RRCメッセージ、システム情報、および/または、MACコントロールエレメントは、上位層の信号(上位レイヤ信号:higher layer signaling)または上位層のパラメータ(上位レイヤパラメータ:higher layer parameter)とも称される。端末装置1が受信した上位レイヤ信号に含まれるパラメータのそれぞれが上位レイヤパラメータと称されてもよい。ここでの上位層は、物理層から見た上位層を意味するため、MAC層、RRC層、RLC層、PDCP層、NAS(Non Access Stratum)層などの1つまたは複数を含んでもよい。例えば、MAC層の処理において上位層とは、RRC層、RLC層、PDCP層、NAS層などの1つまたは複数を含んでもよい。以下、“Aは、上位層で与えられる(提供される)”や“Aは、上位層によって与えられる(提供される)”の意味は、端末装置1の上位層(主にRRC層やMAC層など)が、基地局装置3からAを受信し、その受信したAが端末装置1の上位層から端末装置1の物理層に与えられる(提供される)ことを意味してもよい。例えば、端末装置1において「上位レイヤパラメータを提供される」とは、基地局装置3から上位レイヤ信号を受信し、受信した上位レイヤ信号に含まれる上位レイヤパラメータが端末装置1の上位層から端末装置1の物理層に提供されることを意味してもよい。端末装置1に上位レイヤパラメータが設定されることは端末装置1に対して上位レイヤパラメータが与えられる(提供される)ことを意味してもよい。例えば、端末装置1に上位レイヤパラメータが設定されることは、端末装置1が基地局装置3から上位レイヤ信号を受信し、受信した上位レイヤパラメータを上位層で設定することを意味してもよい。ただし、端末装置1に上位レイヤパラメータが設定されることには、端末装置1の上位層に予め与えられているデフォルトパラメータが設定されることを含んでもよい。 Here, the base station device 3 and the terminal device 1 exchange (transmit and receive) signals in a higher layer. For example, the base station device 3 and the terminal device 1 may transmit and receive RRC messages (also referred to as RRC messages, RRC information, and RRC signaling) in a radio resource control (RRC) layer. Furthermore, the base station device 3 and the terminal device 1 may transmit and receive MAC control elements in the MAC (Medium Access Control) layer. Further, the RRC layer of the terminal device 1 acquires system information broadcast from the base station device 3. Here, the RRC message, system information, and/or MAC control element is also referred to as a higher layer signal (higher layer signal) or a higher layer parameter (higher layer parameter). Each of the parameters included in the upper layer signal received by the terminal device 1 may be referred to as an upper layer parameter. The upper layer here means an upper layer seen from the physical layer, and may therefore include one or more of a MAC layer, an RRC layer, an RLC layer, a PDCP layer, a NAS (Non Access Stratum) layer, and the like. For example, in the processing of the MAC layer, the upper layer may include one or more of the RRC layer, RLC layer, PDCP layer, NAS layer, and the like. Hereinafter, "A is given (provided) by the upper layer" and "A is given (provided) by the upper layer" mean the upper layers of the terminal device 1 (mainly the RRC layer and MAC layer, etc.) receives A from the base station device 3, and the received A is given (provided) from an upper layer of the terminal device 1 to the physical layer of the terminal device 1. For example, in the terminal device 1, “being provided with upper layer parameters” means that the terminal device 1 receives an upper layer signal from the base station device 3, and the upper layer parameters included in the received upper layer signal are transmitted from the upper layer of the terminal device 1 to the terminal device. It may also mean that it is provided to the physical layer of the device 1. Setting upper layer parameters to the terminal device 1 may mean that the upper layer parameters are given (provided) to the terminal device 1. For example, setting upper layer parameters in the terminal device 1 may mean that the terminal device 1 receives an upper layer signal from the base station device 3 and sets the received upper layer parameters in the upper layer. . However, setting upper layer parameters to the terminal device 1 may include setting default parameters given in advance to the upper layer of the terminal device 1.
 PDSCHまたはPUSCHは、RRCシグナリング、および、MACコントロールエレメントを送信するために用いられてもよい。PDSCHによって基地局装置3から送信されるRRCシグナリングは、セル内における複数の端末装置1に対して共通のシグナリングであってもよい。また、基地局装置3から送信されるRRCシグナリングは、ある端末装置1に対して専用のシグナリング(dedicated signalingとも称する)であってもよい。すなわち、端末装置固有(UEスペシフィック)の情報は、ある端末装置1に対して専用のシグナリングを用いて送信されてもよい。また、PUSCHは、上りリンクにおいてUEの能力(UE Capability)の送信に用いられてもよい。 PDSCH or PUSCH may be used to transmit RRC signaling and MAC control elements. The RRC signaling transmitted from the base station device 3 using PDSCH may be common signaling to multiple terminal devices 1 within a cell. Further, the RRC signaling transmitted from the base station device 3 may be dedicated signaling (also referred to as dedicated signaling) for a certain terminal device 1. That is, the terminal device-specific (UE-specific) information may be transmitted to a certain terminal device 1 using dedicated signaling. Furthermore, PUSCH may be used to transmit UE Capability in the uplink.
 図1において、下りリンクの無線通信では、以下の下りリンク物理信号が用いられる。ここで、下りリンク物理信号は、上位層から出力された情報を送信するために使用されないが、物理層によって使用される。
・同期信号(Synchronization signal: SS)
・参照信号(Reference Signal: RS)
In FIG. 1, the following downlink physical signals are used in downlink wireless communication. Here, the downlink physical signal is not used to transmit information output from the upper layer, but is used by the physical layer.
・Synchronization signal (SS)
・Reference Signal (RS)
 同期信号は、プライマリ同期信号(PSS: Primary Synchronization Signal)およびセカンダリ同期信号(SSS)を含んでよい。PSSとSSSを用いてセルIDが検出されてよい。 The synchronization signal may include a primary synchronization signal (PSS) and a secondary synchronization signal (SSS). Cell ID may be detected using PSS and SSS.
 同期信号は、端末装置1が下りリンクの周波数領域および時間領域の同期をとるために用いられる。ここで、同期信号は、端末装置1が基地局装置3によるプリコーディングまたはビームフォーミングにおけるプリコーディングまたはビームの選択に用いられて良い。なお、ビームは、送信または受信フィルタ設定、あるいは空間ドメイン送信フィルタまたは空間ドメイン受信フィルタと呼ばれてもよい。 The synchronization signal is used by the terminal device 1 to synchronize the downlink frequency domain and time domain. Here, the synchronization signal may be used by the terminal device 1 for precoding or beam selection in precoding or beamforming by the base station device 3. Note that a beam may also be referred to as a transmit or receive filter setting, or a spatial domain transmit filter or a spatial domain receive filter.
 参照信号は、端末装置1が物理チャネルの伝搬路補償を行うために用いられる。ここで、参照信号は、端末装置1が下りリンクのCSIを算出するためにも用いられてよい。また、参照信号は、無線パラメータやサブキャリア間隔などのヌメロロジーやFFTの窓同期などができる程度の細かい同期(Fine synchronization)に用いられて良い。 The reference signal is used by the terminal device 1 to perform propagation path compensation for the physical channel. Here, the reference signal may also be used by the terminal device 1 to calculate the downlink CSI. Further, the reference signal may be used for fine synchronization such as numerology such as radio parameters and subcarrier spacing, and window synchronization of FFT.
 本実施形態において、以下の下りリンク参照信号のいずれか1つまたは複数が用いられる。
 ・DMRS(Demodulation Reference Signal)
 ・CSI-RS(Channel State Information Reference Signal)
 ・PTRS(Phase Tracking Reference Signal)
 ・TRS(Tracking Reference Signal)
In this embodiment, one or more of the following downlink reference signals are used.
・DMRS (Demodulation Reference Signal)
・CSI-RS (Channel State Information Reference Signal)
・PTRS (Phase Tracking Reference Signal)
・TRS (Tracking Reference Signal)
 DMRSは、変調信号を復調するために使用される。なお、DMRSには、PBCHを復調するための参照信号と、PDSCHを復調するための参照信号の2種類が定義されてもよいし、両方をDMRSと称してもよい。CSI-RSは、チャネル状態情報(CSI: Channel State Information)の測定およびビームマネジメントに使用され、周期的またはセミパーシステントまたは非周期のCSI参照信号の送信方法が適用される。CSI-RSには、ノンゼロパワー(NZP: Non-Zero Power)CSI-RSと、送信電力(または受信電力)がゼロである(ゼロパワー(ZP: ZeroPower)CSI-RSが定義されてよい。ここで、ZP CSI-RSは送信電力がゼロまたは送信されないCSI-RSリソースと定義されてよい。PTRSは、位相雑音に起因する周波数オフセットを保証する目的で、時間軸で位相をトラックするために使用される。TRSは、高速移動時におけるドップラーシフトを保証するために使用される。なお、TRSはCSI-RSの1つの設定として用いられてよい。例えば、1ポートのCSI-RSがTRSとして無線リソースが設定されてもよい。 DMRS is used to demodulate the modulated signal. Note that two types of DMRS may be defined: a reference signal for demodulating PBCH and a reference signal for demodulating PDSCH, and both may be referred to as DMRS. CSI-RS is used for channel state information (CSI) measurement and beam management, and periodic, semi-persistent or aperiodic CSI reference signal transmission methods are applied. CSI-RS may be defined as Non-Zero Power (NZP) CSI-RS and Zero Power (ZP) CSI-RS with zero transmission power (or reception power). , ZP CSI-RS may be defined as a CSI-RS resource with zero transmit power or no transmission. PTRS is used to track phase in time with the purpose of guaranteeing frequency offsets due to phase noise. TRS is used to guarantee Doppler shift during high-speed movement. Note that TRS may be used as one setting for CSI-RS. For example, 1-port CSI-RS can be used as a wireless Resources may be set.
 本実施形態において、以下の上りリンク参照信号のいずれか1つまたは複数が用いられる。
 ・DMRS(Demodulation Reference Signal)
 ・PTRS(Phase Tracking Reference Signal)
 ・SRS(Sounding Reference Signal)
In this embodiment, any one or more of the following uplink reference signals are used.
・DMRS (Demodulation Reference Signal)
・PTRS (Phase Tracking Reference Signal)
・SRS (Sounding Reference Signal)
 DMRSは、変調信号を復調するために使用される。なお、DMRSには、PUCCHを復調するための参照信号と、PUSCHを復調するための参照信号の2種類が定義されてもよいし、両方をDMRSと称してもよい。SRSは、上りリンクのチャネル状態情報(CSI)の測定、チャネルサウンディング、およびビームマネジメントに使用される。PTRSは、位相雑音に起因する周波数オフセットを保証する目的で、時間軸で位相をトラックするために使用される。 DMRS is used to demodulate the modulated signal. Note that two types of DMRS may be defined: a reference signal for demodulating PUCCH and a reference signal for demodulating PUSCH, and both may be referred to as DMRS. SRS is used for uplink channel state information (CSI) measurement, channel sounding, and beam management. PTRS is used to track phase in time to account for frequency offsets due to phase noise.
 本実施形態では、下りリンク物理チャネルおよび/または下りリンク物理シグナルは、総じて下りリンク信号と称される。本実施形態では、上りリンク物理チャネルおよび/または上りリンク物理シグナルは、総じて、上りリンク信号と称される。本実施形態では、下りリンク物理チャネルおよび/または上りリンク物理チャネルは、総じて物理チャネルと称される。本実施形態では、下りリンク物理シグナルおよび/または上りリンク物理シグナルは、総じて物理シグナルと称される。 In this embodiment, the downlink physical channels and/or downlink physical signals are collectively referred to as downlink signals. In this embodiment, uplink physical channels and/or uplink physical signals are collectively referred to as uplink signals. In this embodiment, downlink physical channels and/or uplink physical channels are collectively referred to as physical channels. In this embodiment, downlink physical signals and/or uplink physical signals are collectively referred to as physical signals.
 BCH、UL-SCHおよびDL-SCHは、トランスポートチャネルである。媒体アクセス制御(MAC:Medium Access Control)層で用いられるチャネルをトランスポートチャネルと称する。MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(TB: transport block)および/またはMAC PDU(Protocol Data Unit)とも称する。MAC層においてトランスポートブロック毎にHARQ(Hybrid Automatic Repeat reQuest)の制御が行われる。トランスポートブロックは、MAC層が物理層に渡す(deliver)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に符号化処理が行われる。 BCH, UL-SCH and DL-SCH are transport channels. The channel used in the Medium Access Control (MAC) layer is called a transport channel. The units of transport channels used in the MAC layer are also referred to as transport blocks (TB) and/or MAC PDUs (Protocol Data Units). HARQ (Hybrid Automatic Repeat reQuest) control is performed for each transport block in the MAC layer. A transport block is a unit of data that the MAC layer delivers to the physical layer. At the physical layer, transport blocks are mapped to codewords, and encoding processing is performed for each codeword.
 図4は、本実施形態に係るSS/PBCHブロック(同期信号ブロック、SSブロック、SSBとも称される)および1つまたは複数のSS/PBCHブロックが送信されるハーフフレーム(Half frame with SS/PBCH blockあるいはSSバーストセットと称されてもよい)の一例を示す図である。図4は、一定周期(SSB周期と称されてもよい)で存在するSSバーストセット内に2つのSS/PBCHブロックが含まれ、SS/PBCHブロックは、連続する4OFDMシンボルで構成される例を示している。 FIG. 4 shows an SS/PBCH block (also referred to as a synchronization signal block, SS block, or SSB) according to this embodiment and a half frame with SS/PBCH block in which one or more SS/PBCH blocks are transmitted. FIG. 3 is a diagram illustrating an example of a block or SS burst set. Figure 4 shows an example in which two SS/PBCH blocks are included in an SS burst set that exists at a constant period (also called an SSB period), and each SS/PBCH block is composed of four consecutive OFDM symbols. It shows.
 SS/PBCHブロックは、同期信号(PSS、SSS)、PBCHおよびPBCHのためのDMRSを含むブロックであってよい。ただし、SS/PBCHブロックは、同期信号(PSS、SSS)、REDCAP PBCHおよびREDCAP PBCHのためのDMRSを含むブロックであってもよい。SS/PBCHブロックに含まれる信号/チャネルを送信することを、SS/PBCHブロックを送信すると表現する。基地局装置3はSSバーストセット内の1つまたは複数のSS/PBCHブロックを用いて同期信号および/またはPBCHを送信する場合に、SS/PBCHブロック毎に独立した下りリンク送信ビームを用いてもよい。 The SS/PBCH block may be a block containing synchronization signals (PSS, SSS), PBCH, and DMRS for PBCH. However, the SS/PBCH block may be a block including synchronization signals (PSS, SSS), REDCAP PBCH, and DMRS for REDCAP PBCH. Transmitting the signals/channels included in the SS/PBCH block is expressed as transmitting the SS/PBCH block. When transmitting a synchronization signal and/or PBCH using one or more SS/PBCH blocks in the SS burst set, the base station device 3 may use an independent downlink transmission beam for each SS/PBCH block. good.
 図4において、1つのSS/PBCHブロックにはPSS、SSS、PBCHおよびPBCHのためのDMRSが時間/周波数多重されている。図5は、SS/PBCHブロック内でPSS、SSS、PBCHおよびPBCHのためのDMRSが配置されるリソースを示す表である。 In FIG. 4, PSS, SSS, PBCH, and DMRS for PBCH are time/frequency multiplexed in one SS/PBCH block. FIG. 5 is a table showing resources in which PSS, SSS, PBCH, and DMRS for PBCH are arranged in an SS/PBCH block.
 PSSはSS/PBCHブロック内の1つ目のシンボル(SS/PBCHブロックの開始シンボルに対して(relative to)OFDMシンボル番号が0であるOFDMシンボル)にマップされてよい。PSSの系列は127シンボルで構成され、SS/PBCHブロック内の57番目のサブキャリアから183番目のサブキャリア(SS/PBCHブロックの開始サブキャリアに対してサブキャリアナンバーが56 ~ 182であるサブキャリア)にマップされてよい。 The PSS may be mapped to the first symbol in the SS/PBCH block (the OFDM symbol whose OFDM symbol number is 0 relative to the starting symbol of the SS/PBCH block). The PSS sequence consists of 127 symbols, and the 57th to 183rd subcarriers in the SS/PBCH block (subcarriers with subcarrier numbers 56 to 182 relative to the starting subcarrier of the SS/PBCH block) ) may be mapped to
 SSSはSS/PBCHブロック内の3つ目のシンボル(SS/PBCHブロックの開始シンボルに対して(relative to)OFDMシンボル番号が2であるOFDMシンボル)にマップされてよい。SSSの系列は127シンボルで構成され、SS/PBCHブロック内の57番目のサブキャリアから183番目のサブキャリア(SS/PBCHブロックの開始サブキャリアに対してサブキャリアナンバーが56 ~ 182であるサブキャリア)にマップされてよい。 SSS may be mapped to the third symbol in the SS/PBCH block (the OFDM symbol whose OFDM symbol number is 2 relative to the starting symbol of the SS/PBCH block). The SSS sequence consists of 127 symbols, and the 57th to 183rd subcarriers in the SS/PBCH block (subcarriers with subcarrier numbers 56 to 182 relative to the starting subcarrier of the SS/PBCH block) ) may be mapped to
 PBCHとDMRSはSS/PBCHブロック内の2つ目、3つ目、4つ目のシンボル(SS/PBCHブロックの開始シンボルに対して(relative to)OFDMシンボル番号が1、2、3であるOFDMシンボル)にマップされてよい。PBCHの変調シンボルの系列はMsymbシンボルで構成され、SS/PBCHブロック内の2つ目のシンボルおよび4つ目のシンボルの1番目のサブキャリアから240番目のサブキャリア(SS/PBCHブロックの開始サブキャリアに対してサブキャリアナンバーが0~ 239であるサブキャリア)と、SS/PBCHブロック内の3つめのシンボルの1番目のサブキャリアから48番目のサブキャリアと184番目から240番目のサブキャリア(SS/PBCHブロックの開始サブキャリアに対してサブキャリアナンバーが0 ~ 47と192 ~ 239であるサブキャリア)と、のうちDMRSがマップされないリソースにマップされてよい。DMRSのシンボルの系列は144シンボルで構成され、SS/PBCHブロック内の2つ目のシンボルおよび4つ目のシンボルの1番目のサブキャリアから240番目のサブキャリア(SS/PBCHブロックの開始サブキャリアに対してサブキャリアナンバーが0 ~ 239であるサブキャリア)と、SS/PBCHブロック内の3つめのシンボルの1番目のサブキャリアから48番目のサブキャリアと184番目から240番目のサブキャリア(SS/PBCHブロックの開始サブキャリアに対してサブキャリアナンバーが0 ~ 47と192 ~ 239であるサブキャリア)と、に4サブキャリア毎に1サブキャリアずつマップされてよい。例えば、240サブキャリアに対して、そのうち180サブキャリアにPBCHの変調シンボルがマップされ、60サブキャリアに該PBCHのためのDMRSがマップされてよい。 PBCH and DMRS are OFDM symbols whose OFDM symbol numbers are 1, 2, and 3 in the second, third, and fourth symbols in the SS/PBCH block (relative to the starting symbol of the SS/PBCH block). symbol). The sequence of modulation symbols for PBCH consists of M symb symbols, from the 1st subcarrier to the 240th subcarrier (start of SS/PBCH block) of the 2nd and 4th symbols in the SS/PBCH block. subcarriers with subcarrier numbers from 0 to 239), and the 1st to 48th subcarriers and 184th to 240th subcarriers of the third symbol in the SS/PBCH block. (Subcarriers whose subcarrier numbers are 0 to 47 and 192 to 239 with respect to the starting subcarrier of the SS/PBCH block) may be mapped to resources to which DMRS is not mapped. The DMRS symbol sequence consists of 144 symbols, from the 1st subcarrier to the 240th subcarrier (the starting subcarrier of the SS/PBCH block) of the second and fourth symbols in the SS/PBCH block. subcarriers with subcarrier numbers 0 to 239), the 1st to 48th subcarriers and the 184th to 240th subcarriers of the third symbol in the SS/PBCH block (SS /PBCH block starting subcarrier, subcarriers with subcarrier numbers 0 to 47 and 192 to 239), and one subcarrier for every four subcarriers may be mapped. For example, for 240 subcarriers, modulation symbols of the PBCH may be mapped to 180 subcarriers, and DMRS for the PBCH may be mapped to 60 subcarriers.
 SSバーストセット内の異なるSS/PBCHブロックには異なるSSBインデックスが割り当てられてよい。あるSSBインデックスが割り当てられたSS/PBCHブロックは、基地局装置3によってSSB周期に基づいて周期的に送信されてよい。例えば、SS/PBCHブロックが初期アクセスに使用されるためのSSB周期と、接続されている(ConnectedまたはRRC_Connected)端末装置1のために設定するSSB周期が定義されてもよい。また、接続されている(ConnectedまたはRRC_Connected)端末装置1のために設定するSSB周期はRRCパラメータで設定されてよい。また、接続されている(ConnectedまたはRRC_Connected)端末装置1のために設定するSSB周期は潜在的に送信する可能性がある時間領域の無線リソースの周期であって、実際には基地局装置3が送信するかどうかを決めてもよい。また、SS/PBCHブロックが初期アクセスに使用されるためのSSB周期は、仕様書などに予め定義されてよい。例えば、初期アクセスを行なう端末装置1は、SSB周期を20ミリ秒とみなしてもよい。 Different SS/PBCH blocks within the SS burst set may be assigned different SSB indices. The SS/PBCH block to which a certain SSB index is assigned may be periodically transmitted by the base station device 3 based on the SSB cycle. For example, an SSB cycle for the SS/PBCH block to be used for initial access and an SSB cycle to be set for the connected (Connected or RRC_Connected) terminal device 1 may be defined. Furthermore, the SSB cycle set for the connected (Connected or RRC_Connected) terminal device 1 may be set using the RRC parameter. In addition, the SSB cycle set for the connected (Connected or RRC_Connected) terminal device 1 is the cycle of radio resources in the time domain that may potentially transmit, and in reality, the SSB cycle is set for the connected (Connected or RRC_Connected) terminal device 1. You can decide whether to send it or not. Furthermore, the SSB cycle for using the SS/PBCH block for initial access may be defined in advance in specifications or the like. For example, the terminal device 1 that performs initial access may consider the SSB cycle to be 20 milliseconds.
 SS/PBCHブロックがマップされているSSバーストセットの時間位置は、PBCHに含まれるシステムフレーム番号(SFN: System Frame Number)を特定する情報および/またはハーフフレームを特定する情報に基づいて特定されてよい。SS/PBCHブロックを受信した端末装置1は、受信したSS/PBCHブロックに基づいて現在のシステムフレーム番号とハーフフレームを特定してもよい。 The time position of the SS burst set to which the SS/PBCH block is mapped is determined based on information identifying the System Frame Number (SFN) and/or information identifying the half frame included in the PBCH. good. The terminal device 1 that has received the SS/PBCH block may identify the current system frame number and half frame based on the received SS/PBCH block.
 SS/PBCHブロックは、SSバーストセット内の時間的な位置に応じてSSBインデックス(SS/PBCHブロックインデックスと称されてもよい)が割り当てられる。端末装置1は、検出したSS/PBCHブロックに含まれるPBCHの情報および/または参照信号の情報に基づいてSSBインデックスを特定する。 The SS/PBCH block is assigned an SSB index (which may be referred to as an SS/PBCH block index) according to its temporal position within the SS burst set. The terminal device 1 identifies the SSB index based on PBCH information and/or reference signal information included in the detected SS/PBCH block.
 複数のSSバーストセットにおける各SSバーストセット内における相対的な時間が同じSS/PBCHブロックは、同じSSBインデックスが割り当てられてよい。複数のSSバーストセットにおける各SSバーストセット内における相対的な時間が同じSS/PBCHブロックは、QCLである(あるいは同じ下りリンク送信ビームが適用されている)と想定されてもよい。また、複数のSSバーストセットにおける各SSバーストセット内における相対的な時間が同じSS/PBCHブロックにおけるアンテナポートは、平均遅延、ドップラーシフト、空間相関に関してQCLであると想定されてもよい。 SS/PBCH blocks having the same relative time within each SS burst set in multiple SS burst sets may be assigned the same SSB index. SS/PBCH blocks with the same relative time within each SS burst set in multiple SS burst sets may be assumed to be QCL (or have the same downlink transmission beam applied). Also, antenna ports in SS/PBCH blocks with the same relative time within each SS burst set in multiple SS burst sets may be assumed to be QCL with respect to average delay, Doppler shift, and spatial correlation.
 あるSSバーストセットの周期内で、同じSSBインデックスが割り当てられているSS/PBCHブロックは、平均遅延、平均ゲイン、ドップラースプレッド、ドップラーシフト、空間相関に関してQCLであると想定されてもよい。QCLである1つまたは複数のSS/PBCHブロック(あるいは参照信号であってもよい)に対応する設定をQCL設定と称してもよい。 Within a period of a given SS burst set, SS/PBCH blocks that are assigned the same SSB index may be assumed to be QCL with respect to average delay, average gain, Doppler spread, Doppler shift, and spatial correlation. The settings corresponding to one or more SS/PBCH blocks (or may be reference signals) that are QCLs may be referred to as QCL settings.
 SS/PBCHブロック数(SSブロック数あるいはSSB数と称されてもよい)は、例えばSSバースト、またはSSバーストセット内、またはSS/PBCHブロックの周期の中のSS/PBCHブロック数(個数)として定義されてよい。また、SS/PBCHブロック数は、SSバースト内、またはSSバーストセット内、またはSS/PBCHブロックの周期の中のセル選択のためのビームグループの数を示してもよい。ここで、ビームグループは、SSバースト内、またはSSバーストセット内、またはSS/PBCHブロックの周期(SSB周期)の中に含まれる異なるSS/PBCHブロックの数または異なるビームの数として定義されてよい。 The number of SS/PBCH blocks (also referred to as the number of SS blocks or the number of SSBs) is, for example, the number of SS/PBCH blocks (number) within an SS burst, or SS burst set, or within a period of SS/PBCH blocks. May be defined. Further, the number of SS/PBCH blocks may indicate the number of beam groups for cell selection within an SS burst, within an SS burst set, or within a period of an SS/PBCH block. Here, a beam group may be defined as the number of different SS/PBCH blocks or the number of different beams included within an SS burst, or within an SS burst set, or within a period of SS/PBCH blocks (SSB period). .
 複数のSSバーストセットにおける各SSバーストセット内における相対的な時間が同じSS/PBCHブロックは、同じSSBインデックスが割り当てられてよい。複数のSSバーストセットにおける各SSバーストセット内における相対的な時間が同じSS/PBCHブロックは、QCLである(あるいは同じ下りリンク送信ビームが適用されている)と想定されてもよい。また、複数のSSバーストセットにおける各SSバーストセット内における相対的な時間が同じSS/PBCHブロックにおけるアンテナポートは、平均遅延、ドップラーシフト、空間相関に関してQCLであると想定されてもよい。 SS/PBCH blocks having the same relative time within each SS burst set in multiple SS burst sets may be assigned the same SSB index. SS/PBCH blocks with the same relative time within each SS burst set in multiple SS burst sets may be assumed to be QCL (or have the same downlink transmission beam applied). Also, antenna ports in SS/PBCH blocks with the same relative time within each SS burst set in multiple SS burst sets may be assumed to be QCL with respect to average delay, Doppler shift, and spatial correlation.
 あるSSバーストセットの周期内で、同じSSBインデックスが割り当てられているSS/PBCHブロックは、平均遅延、平均ゲイン、ドップラースプレッド、ドップラーシフト、空間相関に関してQCLであると想定されてもよい。 Within a period of a given SS burst set, SS/PBCH blocks that are assigned the same SSB index may be assumed to be QCL with respect to average delay, average gain, Doppler spread, Doppler shift, and spatial correlation.
 本実施形態に係る初期BWP(initial BWP)、初期下りリンクBWP(initial DL BWP)および初期上りリンクBWP(initial UL BWP)は、それぞれ、RRC接続が確立する前の初期アクセス時に使用されるBWP、下りリンクBWPおよび上りリンクBWPであってよい。ただし、初期BWP、初期下りリンクBWPおよび初期上りリンクBWPは、RRC接続が確立した後に使用されてもよい。ただし、初期BWP、初期下りリンクBWPおよび初期上りリンクBWPは、それぞれ、インデックスが0(#0)であるBWP、インデックスが0(#0)である下りリンクBWPおよびインデックスが0(#0)である上りリンクBWPであってよい。 The initial BWP (initial BWP), initial downlink BWP (initial DL BWP), and initial uplink BWP (initial UL BWP) according to this embodiment are the BWP used at the time of initial access before the RRC connection is established, respectively. It may be a downlink BWP and an uplink BWP. However, the initial BWP, initial downlink BWP and initial uplink BWP may be used after the RRC connection is established. However, the initial BWP, initial downlink BWP, and initial uplink BWP are BWP with index 0 (#0), downlink BWP with index 0 (#0), and initial uplink BWP with index 0 (#0), respectively. It may be some uplink BWP.
 初期下りリンクBWPは、MIBで提供されるパラメータ、SIB1で提供されるパラメータ、SIBで提供されるパラメータおよび/またはRRCパラメータによって設定されてよい。例えば、初期下りリンクBWPはSIB1で提供されるパラメータdownlinkConfigCommonに含まれるパラメータinitialDownlinkBWPによって設定されるかもしれない。例えば、初期下りリンクBWPはSIB1で提供されるパラメータdownlinkConfigCommonに含まれるパラメータinitialDownlinkBWP-forRedCap-r17によって設定されるかもしれない。例えば、初期下りリンクBWPはSIB1で提供されるパラメータdownlinkConfigCommonに含まれるパラメータinitialDownlinkBWP-forRedCap-r18によって設定されるかもしれない。SIB1で提供されるパラメータdownlinkConfigCommonにはinitialDownlinkBWP、initialDownlinkBWP-forRedCap-r17、および/またはinitialDownlinkBWP-forRedCap-r18が含まれ、該downlinkConfigCommonに含まれるこれらのパラメータのいずれか1つを用いて初期下りリンクBWPを設定してもよい。ただし、initialDownlinkBWP、initialDownlinkBWP-forRedCap-r17およびinitialDownlinkBWP-forRedCap-r18は、初期下りリンクBWPのUE個別のUE-specific、dedicated)の設定を示すパラメータであってよい。 The initial downlink BWP may be set by parameters provided in MIB, parameters provided in SIB1, parameters provided in SIB, and/or RRC parameters. For example, the initial downlink BWP may be set by the parameter initialDownlinkBWP included in the parameter downlinkConfigCommon provided in SIB1. For example, the initial downlink BWP may be configured by the parameter initialDownlinkBWP-forRedCap-r17 included in the parameter downlinkConfigCommon provided in SIB1. For example, the initial downlink BWP may be configured by the parameter initialDownlinkBWP-forRedCap-r18 included in the parameter downlinkConfigCommon provided in SIB1. The parameter downlinkConfigCommon provided in SIB1 includes initialDownlinkBWP, initialDownlinkBWP-forRedCap-r17, and/or initialDownlinkBWP-forRedCap-r18, and any one of these parameters included in the downlinkConfigCommon is used to configure the initial downlink BWP. May be set. However, initialDownlinkBWP, initialDownlinkBWP-forRedCap-r17, and initialDownlinkBWP-forRedCap-r18 may be parameters indicating the settings of the initial downlink BWP for each UE (UE-specific, dedicated).
 図6は、本実施形態に係る下りリンク設定情報であるパラメータdownlinkConfigCommonの情報要素(IE: Information Element)であるDownlinkConfigCommonSIB(あるいはDownlinkConfigCommon)のパラメータ構成、下りリンクBWPの設定情報であるパラメータの情報要素BWP-DownlinkCommonのパラメータ構成、BWPの設定情報であるパラメータの情報要素BWPのパラメータ構成の一例を示している。 FIG. 6 shows the parameter configuration of DownlinkConfigCommonSIB (or DownlinkConfigCommon), which is an information element (IE: Information Element) of parameter downlinkConfigCommon, which is downlink configuration information according to this embodiment, and the parameter information element BWP, which is configuration information of downlink BWP. - Parameter configuration of DownlinkCommon, parameter information element that is BWP setting information An example of the parameter configuration of BWP is shown.
 downlinkConfigCommonは、対応するセルにおける、1つの下りリンクキャリアと送信に関する基礎パラメータを示すパラメータ(例えばfrequencyInfoDLと称される)、あるサービングセルの初期下りリンクBWPの第1の設定を示すパラメータ(例えばinitialDownlinkBWPと称される)、あるサービングセルの初期下りリンクBWPの第2の設定を示すパラメータ(例えばinitialDownlinkBWP-forRedCap-r17と称される)、および、あるサービングセルの初期下りリンクBWPの第3の設定を示すパラメータ(例えばinitialDownlinkBWP-forRedCap-r18と称される)、を含んでよい。ただし、downlinkConfigCommon内に含まれるinitialDownlinkBWP-forRedCap-r17およびinitialDownlinkBWP-forRedCap-r18は、downlinkConfigCommon内に含まれるinitialDownlinkBWPと同じ情報要素(BWP-DownlinkCommon)で示されるパラメータ構成であってよい。ただし、initialDownlinkBWP-forRedCap-r17およびinitialDownlinkBWP-forRedCap-r18はSIB1以外のSIBおよび/またはRRCパラメータに含まれても良い。ただし、initialDownlinkBWP-forRedCap-r17およびinitialDownlinkBWP-forRedCap-r18は、downlinkConfigCommonに含まれるinitialDownlinkBWPのパラメータ構成の一部あるいは全てを含むパラメータであってよく、それぞれ、第2の初期下りリンクBWPのための設定情報および第3の初期下りリンクBWPのための設定情報であってよい。ただし、downlinkConfigCommonがSIBで送信される場合、initialDownlinkBWPを必ず含んでもよく、initialDownlinkBWP-forRedCap-r17およびinitialDownlinkBWP-forRedCap-r18は、含まない場合があってよい。本実施形態に係るinitialDownlinkBWP、initialDownlinkBWP-forRedCap-r17およびinitialDownlinkBWP-forRedCap-r18は、初期下りリンクBWPの汎用パラメータgenericParameters、PDCCHのセルスペシフィックな(cell-specific)パラメータpdcch-ConfigCommon、PDSCHのセルスペシフィックなパラメータpdsch-ConfigCommon、および/または、その他のパラメータを含んでもよい。 downlinkConfigCommon is a parameter that indicates basic parameters related to one downlink carrier and transmission in the corresponding cell (for example, called frequencyInfoDL), a parameter that indicates the first setting of the initial downlink BWP of a certain serving cell (for example, called initialDownlinkBWP). ), a parameter indicating the second configuration of the initial downlink BWP of a certain serving cell (for example, referred to as initialDownlinkBWP-forRedCap-r17), and a parameter indicating the third configuration of the initial downlink BWP of a certain serving cell ( For example, initialDownlinkBWP-forRedCap-r18) may be included. However, initialDownlinkBWP-forRedCap-r17 and initialDownlinkBWP-forRedCap-r18 included in downlinkConfigCommon may have a parameter configuration indicated by the same information element (BWP-DownlinkCommon) as initialDownlinkBWP included in downlinkConfigCommon. However, initialDownlinkBWP-forRedCap-r17 and initialDownlinkBWP-forRedCap-r18 may be included in SIB and/or RRC parameters other than SIB1. However, initialDownlinkBWP-forRedCap-r17 and initialDownlinkBWP-forRedCap-r18 may be parameters that include part or all of the parameter configuration of initialDownlinkBWP included in downlinkConfigCommon, and each is the configuration information for the second initial downlink BWP. and configuration information for the third initial downlink BWP. However, when downlinkConfigCommon is transmitted by SIB, it may necessarily include initialDownlinkBWP, and may not include initialDownlinkBWP-forRedCap-r17 and initialDownlinkBWP-forRedCap-r18. initialDownlinkBWP, initialDownlinkBWP-forRedCap-r17, and initialDownlinkBWP-forRedCap-r18 according to the present embodiment include general parameters genericParameters of initial downlink BWP, cell-specific parameters pdcch-ConfigCommon of PDCCH, and cell-specific parameters of PDSCH. pdsch-ConfigCommon and/or other parameters.
 initialDownlinkBWPは第1の帯域幅(例えば最大100MHz)である初期下りリンクBWPを設定するパラメータであり、initialDownlinkBWP-forRedCap-r17は第1の帯域幅より狭い第2の帯域幅(例えば最大20MHz)である初期下りリンクBWPを設定するパラメータであってよい。initialDownlinkBWP-forRedCap-r17は第3の帯域幅(例えば20MHz)より大きい帯域幅をサポートする端末装置1は参照しないパラメータであっても良く、第3の帯域幅以下のみをサポートする端末装置1のみが参照するパラメータであってよい。initialDownlinkBWP-forRedCap-r18は第2の帯域幅より狭い第4の帯域幅(例えば最大5MHz)である初期下りリンクBWPを設定するパラメータであってよい。initialDownlinkBWP-forRedCap-r18は第5の帯域幅(例えば5MHz)より大きい帯域幅をサポートする端末装置1は参照しないパラメータであっても良く、第5の帯域幅以下のみをサポートする端末装置1のみが参照するパラメータであってよい。このようにdownlinkConfigCommon内に初期下りリンクBWPとして異なる帯域幅を設定するパラメータを1つまたは複数設定することにより、複数の端末装置1に対してそれぞれサポートする最大帯域幅に応じた初期下りリンクBWPを設定することができる。例えば、initialDownlinkBWPが設定する初期下りリンクBWPの帯域幅が50MHzであり、initialDownlinkBWP-forRedCap-r17が設定する初期下りリンクBWPの帯域幅が10MHzであり、initialDownlinkBWP-forRedCap-r18が設定する初期下りリンクBWPの帯域幅が5MHzであり、downlinkConfigCommonにこれら3つのパラメータが含まれる場合、最大100MHzの帯域幅をサポートする端末装置1はinitialDownlinkBWPに基づいて帯域幅が50MHzの初期下りリンクBWPを設定し、最大20MHzの帯域幅をサポートする端末装置1はinitialDownlinkBWP-forRedCap-r17に基づいて帯域幅が10MHzの初期下りリンクBWPを設定し、最大5MHzの帯域幅をサポートする端末装置1はinitialDownlinkBWP-forRedCap-r18に基づいて帯域幅が5MHzの初期下りリンクBWPを設定してよい。 initialDownlinkBWP is a parameter that sets the initial downlink BWP which is the first bandwidth (e.g. up to 100MHz), and initialDownlinkBWP-forRedCap-r17 is the second bandwidth (e.g. up to 20MHz) which is narrower than the first bandwidth. It may be a parameter for setting the initial downlink BWP. initialDownlinkBWP-forRedCap-r17 may be a parameter that terminal device 1 that supports a bandwidth larger than the third bandwidth (for example, 20MHz) does not refer to, and only terminal device 1 that supports only the third bandwidth or less It may be a parameter to be referenced. initialDownlinkBWP-forRedCap-r18 may be a parameter for setting an initial downlink BWP that is a fourth bandwidth (for example, a maximum of 5 MHz) that is narrower than the second bandwidth. initialDownlinkBWP-forRedCap-r18 may be a parameter that terminal device 1 that supports a bandwidth larger than the fifth bandwidth (for example, 5MHz) does not refer to, and only terminal device 1 that supports only the fifth bandwidth or less It may be a parameter to be referenced. In this way, by setting one or more parameters that set different bandwidths as the initial downlink BWP in downlinkConfigCommon, the initial downlink BWP can be set according to the maximum bandwidth supported by each of the multiple terminal devices 1. Can be set. For example, the bandwidth of the initial downlink BWP set by initialDownlinkBWP is 50MHz, the bandwidth of the initial downlink BWP set by initialDownlinkBWP-forRedCap-r17 is 10MHz, and the initial downlink BWP set by initialDownlinkBWP-forRedCap-r18. If the bandwidth of is 5MHz and downlinkConfigCommon contains these three parameters, terminal device 1 that supports a bandwidth of up to 100MHz will configure an initial downlink BWP with a bandwidth of 50MHz based on initialDownlinkBWP and up to 20MHz Terminal device 1 that supports a bandwidth of up to 5MHz sets an initial downlink BWP with a bandwidth of 10MHz based on initialDownlinkBWP-forRedCap-r17, and terminal device 1 that supports a bandwidth of up to 5MHz sets an initial Downlink BWP based on initialDownlinkBWP-forRedCap-r18. The initial downlink BWP with a bandwidth of 5MHz may be set using
 端末装置1は、downlinkConfigCommon内にinitialDownlinkBWP-forRedCap-r18が含まれている場合、該initialDownlinkBWP-forRedCap-r18に含まれるパラメータに基づいて初期下りリンクBWPを特定/設定/決定してもよい。例えば、端末装置1は、SIB1でinitialDownlinkBWP-forRedCap-r18を受信した場合、初期下りリンクBWPを該initialDownlinkBWP-forRedCap-r18のパラメータに基づいて特定/設定/決定しても良い。 If initialDownlinkBWP-forRedCap-r18 is included in downlinkConfigCommon, the terminal device 1 may identify/set/determine the initial downlink BWP based on the parameters included in the initialDownlinkBWP-forRedCap-r18. For example, when the terminal device 1 receives the initialDownlinkBWP-forRedCap-r18 in SIB1, it may identify/set/determine the initial downlink BWP based on the parameters of the initialDownlinkBWP-forRedCap-r18.
 あるセルにおいてinitialDownlinkBWP、initialDownlinkBWP-forRedCap-r17およびinitialDownlinkBWP-forRedCap-r18によって、複数の初期下りリンクBWPの設定パラメータが存在する場合(あるいはあるセルにおいて初期下りリンクBWPに対する複数の周波数位置および/または複数の帯域幅の設定情報が報知されている場合)、initialDownlinkBWP内のgenericParametersに含まれる情報の一部は、該複数の初期下りリンクBWPの設定パラメータ(あるいは該初期下りリンクBWPの複数の周波数位置および/または複数の帯域幅の設定情報)に共通のパラメータであってもよい。 If there are multiple initial downlink BWP configuration parameters (or multiple frequency positions and/or multiple If the bandwidth configuration information is broadcast), part of the information included in the genericParameters in the initialDownlinkBWP is the configuration parameters of the plurality of initial downlink BWPs (or the plurality of frequency positions and/or of the initial downlink BWPs). or setting information of multiple bandwidths).
 パラメータgenericParametersの情報要素BWPは、対応するBWPの周波数位置と帯域幅を示すパラメータであってよい。情報要素BWPは、対応するBWPで用いられるサブキャリア間隔を示すパラメータsubcarrierSpacing、対応するBWPの周波数領域での位置と帯域幅(リソースブロック数(総数))を示すパラメータlocationAndBandwidth、および/または対応するBWPで標準CP(cyclic prefix)が用いられるか拡張CPが用いられるかを示すパラメータcyclicPrefixを含んでよい。すなわち、対応するBWPは、サブキャリア間隔、CP、および周波数領域での位置と帯域幅によって定義されてよい。ただし、locationAndBandwidthが示す値はリソースインディケータ値(RIV: Resource Indicator Value)として解釈されてよい。リソースインディケータ値は、対応するBWPの開始PRBインデックスと連続するPRB数を示す。ただし、当該リソースインディケータ値の領域を定義する最初のPRBは、対応するBWPのsubcarrierSpacingで与えられるサブキャリア間隔と、該サブキャリア間隔に対応するFrequencyInfoDL(またはFrequencyInfoDL-SIB)あるいはFrequencyInfoUL(またはFrequencyInfoUL-SIB)に含まれるSCS-SpecificCarrierで設定されるoffsetToCarrierで決定されるPRBであってよい。また、当該リソースインディケータ値の領域を定義するサイズは275であってよい。genericParametersに含まれるsubcarrierSpacingが示す初期下りリンクBWPのサブキャリア間隔は、同じセルのMIBによって示されるサブキャリア間隔と同じ値となるように設定されてもよい。genericParametersにcyclicPrefixが含まれない(セットされていない)場合、端末装置1は拡張CPを用いず、標準CPを用いてもよい。 The information element BWP of the parameter genericParameters may be a parameter indicating the frequency position and bandwidth of the corresponding BWP. The information element BWP includes a parameter subcarrierSpacing that indicates the subcarrier spacing used in the corresponding BWP, a parameter locationAndBandwidth that indicates the position and bandwidth (number of resource blocks (total number)) in the frequency domain of the corresponding BWP, and/or the corresponding BWP. may include a parameter cyclicPrefix indicating whether a standard CP (cyclic prefix) or an extended CP is used. That is, the corresponding BWP may be defined by the subcarrier spacing, CP, and position and bandwidth in the frequency domain. However, the value indicated by locationAndBandwidth may be interpreted as a resource indicator value (RIV). The resource indicator value indicates the number of consecutive PRBs from the starting PRB index of the corresponding BWP. However, the first PRB that defines the region of the resource indicator value is based on the subcarrier spacing given by subcarrierSpacing of the corresponding BWP and the FrequencyInfoDL (or FrequencyInfoDL-SIB) or FrequencyInfoUL (or FrequencyInfoUL-SIB) corresponding to the subcarrier spacing. ) may be the PRB determined by offsetToCarrier set in SCS-SpecificCarrier. Further, the size defining the region of the resource indicator value may be 275. The subcarrier spacing of the initial downlink BWP indicated by subcarrierSpacing included in genericParameters may be set to have the same value as the subcarrier spacing indicated by the MIB of the same cell. If cyclicPrefix is not included in the genericParameters (not set), the terminal device 1 may use the standard CP instead of the extended CP.
 frequencyInfoDLは、当該下りリンクキャリアが属する1つまたは複数の周波数バンドのリストを示すfrequencyBandListとサブキャリア間隔毎のキャリアに関するパラメータのセットを示すSCS-SpecificCarrierのリストを含んでも良い。frequencyInfoULは、当該上りリンクキャリアが属する1つまたは複数の周波数バンドのリストを示すfrequencyBandListとサブキャリア間隔毎のキャリアに関するパラメータのセットを示すSCS-SpecificCarrierのリストを含んでも良い。 The frequencyInfoDL may include a frequencyBandList that indicates a list of one or more frequency bands to which the relevant downlink carrier belongs, and a list of SCS-SpecificCarrier that indicates a set of carrier-related parameters for each subcarrier interval. frequencyInfoUL may include a frequencyBandList that indicates a list of one or more frequency bands to which the uplink carrier belongs, and a list of SCS-SpecificCarrier that indicates a set of parameters regarding carriers for each subcarrier interval.
 SCS-SpecificCarrierは、実際のキャリアの位置や帯域幅、キャリア帯域幅を示すパラメータを含んでよい。より具体的には、frequencyInfoDL内の情報要素であるSCS-SpecificCarrierは、特定のキャリアに関する設定を示し、subcarrierSpacing、carrierbandwidthおよび/またはoffsetToCarrierを含む。subcarrierSpacingは、当該キャリアのサブキャリア間隔を示す(例えばFR1では15kHzまたは30kHzを示し、FR2では60kHzまたは120kHzを示す)パラメータである。carrierbandwidthは、当該キャリアの帯域幅をPRB(Physical Resource Block)の数で示すパラメータである。offsetToCarrierは、参照ポイントA(コモンRB0の最小(lowest)サブキャリア)と当該キャリアの最小利用可能サブキャリア(lowest usable subcarrier)の間の周波数領域でのオフセットをPRB数(ただし、サブキャリア間隔はsubcarrierSpacingで与えられる当該キャリアのサブキャリア間隔である)で示すパラメータである。例えば、下りリンクのキャリアについて、そのキャリア帯域幅はサブキャリア間隔毎にfrequencyInfoDL内のSCS-SpecificCarrier内の上位レイヤパラメータcarrierbandwidthで与えられ、その周波数上の開始位置はサブキャリア間隔毎にfrequencyInfoDL内のSCS-SpecificCarrier内のパラメータoffsetToCarrierで与えられる。例えば、上りリンクのキャリアについて、そのキャリア帯域幅はサブキャリア間隔毎にfrequencyInfoUL内のSCS-SpecificCarrier内の上位レイヤパラメータcarrierbandwidthで与えられ、その周波数上の開始位置はサブキャリア間隔毎にfrequencyInfoUL内のSCS-SpecificCarrier内のパラメータoffsetToCarrierで与えられる。 The SCS-SpecificCarrier may include parameters indicating the actual carrier position, bandwidth, and carrier bandwidth. More specifically, the information element SCS-SpecificCarrier in frequencyInfoDL indicates settings regarding a specific carrier, and includes subcarrierSpacing, carrierbandwidth, and/or offsetToCarrier. subcarrierSpacing is a parameter that indicates the subcarrier spacing of the carrier (for example, FR1 indicates 15 kHz or 30 kHz, and FR2 indicates 60 kHz or 120 kHz). carrierbandwidth is a parameter that indicates the bandwidth of the carrier in terms of the number of PRBs (Physical Resource Blocks). offsetToCarrier is the offset in the frequency domain between reference point A (the lowest subcarrier of common RB0) and the lowest usable subcarrier of the carrier in PRB number (however, the subcarrier spacing is subcarrierSpacing is the subcarrier interval of the carrier given by ). For example, for a downlink carrier, its carrier bandwidth is given by the upper layer parameter carrierbandwidth in SCS-SpecificCarrier in frequencyInfoDL for each subcarrier interval, and the starting position on that frequency is given by the SCS in frequencyInfoDL for each subcarrier interval. -Given by the parameter offsetToCarrier in SpecificCarrier. For example, for an uplink carrier, its carrier bandwidth is given by the upper layer parameter carrierbandwidth in SCS-SpecificCarrier in frequencyInfoUL for each subcarrier interval, and the starting position on that frequency is given by the SCS in frequencyInfoUL for each subcarrier interval. -Given by the parameter offsetToCarrier in SpecificCarrier.
 端末装置1が受信したSIB1(その他のSIB、RRCパラメータであってもよい)に含まれるdownlinkConfigCommonで提供されるinitialDownlinkBWPおよびinitialDownlinkBWP-forRedCap-r17が設定する初期下りリンクBWPの帯域幅を端末装置1がサポートしていない場合、端末装置1は初期下りリンクBWPをType0-PDCCH CSS SetのCORESET(CORESET#0など)のPRB(Physical Resource Block)のうちlowest indexのPRBから始まりhighest indexのPRBで終わる連続するPRBの位置と数、および、Type0-PDCCH CSS SetのCORESETで受信するPDCCHのSCS(SubCarrier Spacing)とcyclic prefixによって決定/特定してもよい。 Terminal device 1 sets the initial downlink BWP bandwidth set by initialDownlinkBWP and initialDownlinkBWP-forRedCap-r17 provided in downlinkConfigCommon included in SIB1 (which may be other SIB or RRC parameters) received by terminal device 1. If not supported, terminal device 1 performs initial downlink BWP in a continuous manner starting from the PRB with the lowest index and ending with the PRB with the highest index among the PRBs (Physical Resource Blocks) of CORESET (CORESET #0, etc.) of Type 0-PDCCH CSS Set. It may be determined/specified by the position and number of PRBs to be used, and the SCS (SubCarrier Spacing) and cyclic prefix of the PDCCH received in CORESET of Type0-PDCCH CSS Set.
 端末装置1が受信したSIB1に含まれるdownlinkConfigCommonでinitialDownlinkBWP-forRedCap-r18が提供される場合、端末装置1は初期下りリンクBWPを該initialDownlinkBWP-forRedCap-r18で決定/特定してもよい。 If initialDownlinkBWP-forRedCap-r18 is provided in the downlinkConfigCommon included in the SIB1 received by the terminal device 1, the terminal device 1 may determine/specify the initial downlink BWP using the initialDownlinkBWP-forRedCap-r18.
 端末装置1が受信したSIB1内のdownlinkConfigCommonでinitialDownlinkBWP-forRedCap-r18が提供/設定されておらず、端末装置1が受信したSIB1内のdownlinkConfigCommonでinitialDownlinkBWP-forRedCap-r17が提供/設定されており、該initialDownlinkBWP-forRedCap-r17で設定されるBWPの帯域幅を端末装置1がサポートしている場合、端末装置1は初期下りリンクBWPを該initialDownlinkBWP-forRedCap-r17で決定/特定してもよい。 initialDownlinkBWP-forRedCap-r18 is not provided/set in downlinkConfigCommon in SIB1 received by terminal device 1, initialDownlinkBWP-forRedCap-r17 is provided/set in downlinkConfigCommon in SIB1 received by terminal device 1, and the corresponding If the terminal device 1 supports the BWP bandwidth set in the initialDownlinkBWP-forRedCap-r17, the terminal device 1 may determine/specify the initial downlink BWP using the initialDownlinkBWP-forRedCap-r17.
 端末装置1が受信したSIB1内のdownlinkConfigCommonでinitialDownlinkBWP-forRedCap-r18が提供/設定されておらず、端末装置1が受信したSIB1内のdownlinkConfigCommonでinitialDownlinkBWP-forRedCap-r17が提供/設定されている場合、端末装置1は初期下りリンクBWPを該initialDownlinkBWP-forRedCap-r17で決定/特定するかもしれない。 If initialDownlinkBWP-forRedCap-r18 is not provided/set in downlinkConfigCommon in SIB1 received by terminal device 1, and initialDownlinkBWP-forRedCap-r17 is provided/set in downlinkConfigCommon in SIB1 received by terminal device 1, The terminal device 1 may determine/specify the initial downlink BWP using the initialDownlinkBWP-forRedCap-r17.
 端末装置1が受信したSIB1内のdownlinkConfigCommonでinitialDownlinkBWP-forRedCap-r18が提供/設定されておらず、端末装置1が受信したSIB1内のdownlinkConfigCommonでinitialDownlinkBWP-forRedCap-r17が提供/設定されており、該initialDownlinkBWP-forRedCap-r17で設定されるBWPの帯域幅を端末装置1がサポートしていない場合、端末装置1は、当該セルをキャンプできないセル(barred cell)とみなすかもしれない。 initialDownlinkBWP-forRedCap-r18 is not provided/set in downlinkConfigCommon in SIB1 received by terminal device 1, initialDownlinkBWP-forRedCap-r17 is provided/set in downlinkConfigCommon in SIB1 received by terminal device 1, and the corresponding If the terminal device 1 does not support the BWP bandwidth set in initialDownlinkBWP-forRedCap-r17, the terminal device 1 may consider the cell to be a barred cell.
 端末装置1が受信したSIB1内のdownlinkConfigCommonでinitialDownlinkBWP-forRedCap-r18およびinitialDownlinkBWP-forRedCap-r17が提供/設定されていない場合、端末装置1は初期下りリンクBWPをSIB1内のdownlinkConfigCommonで提供されているinitialDownlinkBWPで決定/特定してもよい。 If initialDownlinkBWP-forRedCap-r18 and initialDownlinkBWP-forRedCap-r17 are not provided/set in downlinkConfigCommon in SIB1 received by terminal device 1, terminal device 1 sets initial downlink BWP to initialDownlinkBWP provided in downlinkConfigCommon in SIB1. It may be determined/specified by .
 端末装置1が受信したSIB1内のdownlinkConfigCommonでinitialDownlinkBWP-forRedCap-r18およびinitialDownlinkBWP-forRedCap-r17が提供/設定されておらず、initialDownlinkBWPで設定されるBWPの帯域幅を端末装置1がサポートしている場合、端末装置1は初期下りリンクBWPを該initialDownlinkBWPで決定/特定するかもしれない。 If initialDownlinkBWP-forRedCap-r18 and initialDownlinkBWP-forRedCap-r17 are not provided/set in downlinkConfigCommon in SIB1 received by terminal device 1, and terminal device 1 supports the BWP bandwidth set in initialDownlinkBWP. , the terminal device 1 may determine/specify the initial downlink BWP using the initialDownlinkBWP.
 端末装置1が受信したSIB1内のdownlinkConfigCommonでinitialDownlinkBWP-forRedCap-r18が提供/設定されていない場合に、端末装置1は初期下りリンクBWPをinitialDownlinkBWP-forRedCap-r17ではなくinitialDownlinkBWPで決定/特定するかもしれない。ただし、initialDownlinkBWP、initialDownlinkBWP-forRedCap-r17、およびinitialDownlinkBWP-forRedCap-r18のそれぞれで設定される帯域幅の関係性から、initialDownlinkBWP-forRedCap-r18を用いない場合には、initialDownlinkBWP-forRedCap-r18により近い帯域幅を設定することが想定されるinitialDownlinkBWP-forRedCap-r17を用いることで、端末装置1に設定する帯域幅に柔軟性を持たせるという利点が得られるかもしれない。ただし、基地局装置3が、セル内の全ての端末装置1が設定可能な帯域幅の初期下りリンクBWPを設定することが想定される場合、initialDownlinkBWP-forRedCap-r17とinitialDownlinkBWP-forRedCap-r18の何れも設定しないことで、全ての端末装置1がinitialDownlinkBWPで初期下りリンクBWPの帯域を設定/特定するかもしれない。このように初期下りリンクBWPの帯域幅として3つのパラメータを用意することで、セル内にサポートする帯域幅が異なる3種類以上の端末装置1が混在する場合に、基地局装置3が設定する初期下りリンクBWPの帯域幅に柔軟性を持たせることができる。尚、本実施形態では帯域幅の異なる3つの初期下りリンクBWPの設定として3つのパラメータを用いる場合を示しているが、4つ以上のパラメータを用いることも考えられる。 If initialDownlinkBWP-forRedCap-r18 is not provided/set in downlinkConfigCommon in SIB1 received by terminal device 1, terminal device 1 may determine/specify the initial downlink BWP with initialDownlinkBWP instead of initialDownlinkBWP-forRedCap-r17. do not have. However, due to the relationship between the bandwidths set in each of initialDownlinkBWP, initialDownlinkBWP-forRedCap-r17, and initialDownlinkBWP-forRedCap-r18, if initialDownlinkBWP-forRedCap-r18 is not used, the bandwidth will be closer to initialDownlinkBWP-forRedCap-r18. By using initialDownlinkBWP-forRedCap-r17, which is expected to be set, it may be possible to obtain the advantage of providing flexibility in the bandwidth set for terminal device 1. However, if it is assumed that the base station device 3 sets the initial downlink BWP with a bandwidth that can be set by all the terminal devices 1 in the cell, which of initialDownlinkBWP-forRedCap-r17 and initialDownlinkBWP-forRedCap-r18 By not setting either, all terminal devices 1 may set/specify the initial downlink BWP band in initialDownlinkBWP. By preparing three parameters as the initial downlink BWP bandwidth in this way, when three or more types of terminal devices 1 with different supported bandwidths coexist in a cell, the initial It is possible to provide flexibility in the bandwidth of downlink BWP. Note that although this embodiment shows a case where three parameters are used to set three initial downlink BWPs with different bandwidths, it is also possible to use four or more parameters.
 端末装置1が受信したSIB1内のdownlinkConfigCommonでinitialDownlinkBWP-forRedCap-r18およびinitialDownlinkBWP-forRedCap-r17が提供/設定されておらず、initialDownlinkBWPで設定されるBWPの帯域幅を端末装置1がサポートしていない場合、端末装置1は、当該セルをキャンプできないセル(barred cell)とみなすかもしれない。 If initialDownlinkBWP-forRedCap-r18 and initialDownlinkBWP-forRedCap-r17 are not provided/set in downlinkConfigCommon in SIB1 received by terminal device 1, and terminal device 1 does not support the BWP bandwidth set in initialDownlinkBWP. , the terminal device 1 may regard the cell as a barred cell.
 端末装置1が受信したSIB1内のdownlinkConfigCommonでinitialDownlinkBWP-forRedCap-r18が提供/設定されておらず、端末装置1が受信したSIB1内のdownlinkConfigCommonでinitialDownlinkBWP-forRedCap-r17が提供/設定されており、該initialDownlinkBWP-forRedCap-r17で設定されるBWPの帯域幅を端末装置1がサポートしていない場合、端末装置1は初期下りリンクBWPをType0-PDCCH CSS SetのCORESET(CORESET#0など)のPRB(Physical Resource Block)のうちlowest indexのPRBから始まりhighest indexのPRBで終わる連続するPRBの位置と数、および、Type0-PDCCH CSS SetのCORESETで受信するPDCCHのSCS(SubCarrier Spacing)とcyclic prefixによって決定/特定してもよい。 initialDownlinkBWP-forRedCap-r18 is not provided/set in downlinkConfigCommon in SIB1 received by terminal device 1, initialDownlinkBWP-forRedCap-r17 is provided/set in downlinkConfigCommon in SIB1 received by terminal device 1, and the corresponding If terminal device 1 does not support the BWP bandwidth set in initialDownlinkBWP-forRedCap-r17, terminal device 1 uses the initial downlink BWP as PRB (Physical Determined by the position and number of consecutive PRBs starting from the PRB with the lowest index and ending with the PRB with the highest index among the Resource Blocks, and the SCS (SubCarrier Spacing) and cyclic prefix of the PDCCH received in the CORESET of the Type0-PDCCH CSS Set. May be specified.
 端末装置1が受信したSIB1内のdownlinkConfigCommonでinitialDownlinkBWP-forRedCap-r18およびinitialDownlinkBWP-forRedCap-r17が提供/設定されておらず、端末装置1が受信したSIB1内のdownlinkConfigCommonで提供されているinitialDownlinkBWPで設定されるBWPの帯域幅を端末装置1がサポートしていない場合、端末装置1は初期下りリンクBWPをType0-PDCCH CSS SetのCORESET(CORESET#0など)のPRB(Physical Resource Block)のうちlowest indexのPRBから始まりhighest indexのPRBで終わる連続するPRBの位置と数、および、Type0-PDCCH CSS SetのCORESETで受信するPDCCHのSCSとcyclic prefixによって決定/特定してもよい。 initialDownlinkBWP-forRedCap-r18 and initialDownlinkBWP-forRedCap-r17 are not provided/set in downlinkConfigCommon in SIB1 received by terminal device 1, and initialDownlinkBWP provided in downlinkConfigCommon in SIB1 received by terminal device 1 is not set. If terminal device 1 does not support the BWP bandwidth that is used for It may be determined/specified by the position and number of consecutive PRBs starting from the PRB and ending with the PRB with the highest index, and the SCS and cyclic prefix of the PDCCH received in the CORESET of the Type0-PDCCH CSS Set.
 ただし、downlinkConfigCommonでinitialDownlinkBWP(initialDownlinkBWP-forRedCap-r17あるいはinitialDownlinkBWP-forRedCap-r18であってもよい)が提供されているとは、RRCパラメータでinitialDownlinkBWP(initialDownlinkBWP-forRedCap-r17/initialDownlinkBWP-forRedCap-r18)を受信し、かつRRC接続が確立している(例えば、RRCSetup、RRCResumeおよび/またはRRCReestablishmentを受信している)状態であってもよい。例えば、端末装置1は、SIB1内のdownlinkConfigCommonでinitialDownlinkBWP(initialDownlinkBWP-forRedCap-r17あるいはinitialDownlinkBWP-forRedCap-r18であってもよい)を受信した場合、RRCSetup、RRCResumeまたはRRCReestablishmentを受信するまでは、CORESET#0を初期下りリンクBWPとしてもよい。ただし、CORESET#0を初期下りリンクBWPにするとは、初期下りリンクBWPをCORESET#0のPRBのうちlowest indexのPRBから始まりhighest indexのPRBで終わる連続するPRBの位置と数で決定/特定することであってよい。ただし、初期下りリンクBWPを決定/特定するとは、初期下りリンクBWPの周波数位置および/または帯域幅を決定/特定することであってもよい。端末装置1は、SIB1内のdownlinkConfigCommonでinitialDownlinkBWP(initialDownlinkBWP-forRedCap-r17あるいはinitialDownlinkBWP-forRedCap-r18であってもよい)を受信した場合、RRCSetup、RRCResumeおよび/またはRRCReestablishmentを受信した後は、受信したinitialDownlinkBWP(initialDownlinkBWP-forRedCap-r17あるいはinitialDownlinkBWP-forRedCap-r18)に含まれるlocationAndBandwidthで初期下りリンクBWPを決定/特定してもよい。端末装置1は、SIB1でinitialDownlinkBWP(initialDownlinkBWP-forRedCap-r17あるいはinitialDownlinkBWP-forRedCap-r18であってもよい)を受信した場合、RRC接続が確立するまでは、CORESET#0で初期下りリンクBWPを特定し、RRC接続が確立してからはinitialDownlinkBWP(initialDownlinkBWP-forRedCap-r17/initialDownlinkBWP-forRedCap-r18)に含まれるlocationAndBandwidthで初期下りリンクBWPを決定/特定してもよい。 However, if initialDownlinkBWP (initialDownlinkBWP-forRedCap-r17 or initialDownlinkBWP-forRedCap-r18) is provided in downlinkConfigCommon, receiving initialDownlinkBWP (initialDownlinkBWP-forRedCap-r17/initialDownlinkBWP-forRedCap-r18) in RRC parameter However, the RRC connection may be established (for example, RRCSetup, RRCResume, and/or RRCReestablishment is being received). For example, when terminal device 1 receives initialDownlinkBWP (which may be initialDownlinkBWP-forRedCap-r17 or initialDownlinkBWP-forRedCap-r18) in downlinkConfigCommon in SIB1, CORESET#0 is used until it receives RRCSetup, RRCResume, or RRCReestablishment. may be used as the initial downlink BWP. However, to set CORESET#0 as the initial downlink BWP, the initial downlink BWP is determined/specified by the position and number of consecutive PRBs starting from the PRB with the lowest index and ending with the PRB with the highest index among the PRBs in CORESET#0. It's fine. However, determining/identifying the initial downlink BWP may also mean determining/identifying the frequency position and/or bandwidth of the initial downlink BWP. When terminal device 1 receives initialDownlinkBWP (which may be initialDownlinkBWP-forRedCap-r17 or initialDownlinkBWP-forRedCap-r18) in downlinkConfigCommon in SIB1, after receiving RRCSetup, RRCResume, and/or RRCReestablishment, terminal device 1 uses the received initialDownlinkBWP The initial downlink BWP may be determined/specified using locationAndBandwidth included in (initialDownlinkBWP-forRedCap-r17 or initialDownlinkBWP-forRedCap-r18). When terminal device 1 receives initialDownlinkBWP (which may be initialDownlinkBWP-forRedCap-r17 or initialDownlinkBWP-forRedCap-r18) in SIB1, it specifies the initial downlink BWP in CORESET#0 until the RRC connection is established. , after the RRC connection is established, the initial downlink BWP may be determined/specified using locationAndBandwidth included in initialDownlinkBWP (initialDownlinkBWP-forRedCap-r17/initialDownlinkBWP-forRedCap-r18).
 RRCSetupは、端末装置1が、基地局装置3(ネットワークであってよい)に対してRRCSetupRequestメッセージを送信した場合に、基地局装置3(ネットワークであってよい)から受信するメッセージであってよい。基地局装置3(ネットワークであってよい)は端末装置1とのRRC接続が確立した場合に、端末装置1に対して、RRCSetupメッセージを送信しても良い。 RRCSetup may be a message received from the base station device 3 (which may be a network) when the terminal device 1 transmits an RRCSetupRequest message to the base station device 3 (which may be a network). The base station device 3 (which may be a network) may transmit an RRCSetup message to the terminal device 1 when an RRC connection is established with the terminal device 1.
 RRCResumeは、端末装置1が、基地局装置3(ネットワークであってよい)に対してRRCResumeRequestメッセージあるいはRRCResumeRequest1メッセージを送信した場合に、基地局装置3(ネットワークであってよい)から受信するメッセージであってよい。基地局装置3(ネットワークであってよい)は端末装置1とのRRC接続を再開した場合に、端末装置1に対して、RRCResumeメッセージを送信しても良い。 RRCResume is a message received from the base station device 3 (which may be a network) when the terminal device 1 transmits an RRCResumeRequest message or an RRCResumeRequest1 message to the base station device 3 (which may be a network). It's fine. When base station device 3 (which may be a network) resumes the RRC connection with terminal device 1, base station device 3 (which may be a network) may transmit an RRCResume message to terminal device 1.
 RRCReestablishmentは、端末装置1が、基地局装置3(ネットワークであってよい)に対してRRCReestablishmentRequestメッセージを送信した場合に、基地局装置3(ネットワークであってよい)から受信するメッセージであってよい。基地局装置3(ネットワークであってよい)は端末装置1とのRRC接続を再確立した場合に、端末装置1に対して、RRCReestablishmentメッセージを送信しても良い。 RRCReestablishment may be a message received from the base station device 3 (which may be a network) when the terminal device 1 transmits an RRCReestablishmentRequest message to the base station device 3 (which may be a network). When the base station device 3 (which may be a network) reestablishes the RRC connection with the terminal device 1, it may transmit an RRCReestablishment message to the terminal device 1.
 本発明に係る端末装置1は、downlinkConfigCommon内の上位レイヤパラメータinitialDownlinkBWP、initialDownlinkBWP-forRedCap-r17および/またはinitialDownlinkBWP-forRedCap-r18で初期下りリンクBWPの設定情報を受信/特定する。ただし、initialDownlinkBWP、initialDownlinkBWP-forRedCap-r17および/またはinitialDownlinkBWP-forRedCap-r18はSIB1に含まれてもよいし、任意のRRCメッセージに含まれてもよい。例えば、初期下りリンクBWPの設定情報は該初期下りリンクBWPの周波数位置と帯域幅とを示す情報を含んでもよい。端末装置1は、初期下りリンクBWPの複数の設定情報を含むSIB1あるいは任意のRRCシグナリングを受信するかもしれない。 The terminal device 1 according to the present invention receives/specifies initial downlink BWP configuration information using upper layer parameters initialDownlinkBWP, initialDownlinkBWP-forRedCap-r17, and/or initialDownlinkBWP-forRedCap-r18 in downlinkConfigCommon. However, initialDownlinkBWP, initialDownlinkBWP-forRedCap-r17, and/or initialDownlinkBWP-forRedCap-r18 may be included in SIB1 or in any RRC message. For example, the initial downlink BWP configuration information may include information indicating the frequency position and bandwidth of the initial downlink BWP. The terminal device 1 may receive SIB1 or arbitrary RRC signaling including multiple pieces of initial downlink BWP configuration information.
 downlinkConfigCommon内のinitialDownlinkBWP、initialDownlinkBWP-forRedCap-r17および/またはinitialDownlinkBWP-forRedCap-r18に含まれうるpdcch-ConfigCommonは、対応する初期下りリンクBWPにおける、コモンサーチスペースあるいはUEスペシフィックサーチスペースで用いられるCORESET#0のパラメータcontrolResourceSetZero、コモンサーチスペースあるいはUEスペシフィックサーチスペースで用いられる追加の共通CORESETのパラメータcommonControlResourceSet、コモンサーチスペース0(common search space #0)のパラメータsearchSpaceZero、コモンサーチスペース0以外のコモンサーチスペースのリストを示すパラメータcommonSearchSpaceList、SIB1メッセージのためのサーチスペースのIDを示すパラメータsearchSpaceSIB1、その他のシステム情報のためのサーチスペースのIDを示すパラメータsearchSpaceOtherSystemInformation、ページングのためのサーチスペースのIDを示すパラメータpagingSearchSpace、および/または、ランダムアクセス手順のためのサーチスペースのIDを示すパラメータra-SearchSpaceを含むかもしれない。 pdcch-ConfigCommon, which can be included in initialDownlinkBWP, initialDownlinkBWP-forRedCap-r17 and/or initialDownlinkBWP-forRedCap-r18 in downlinkConfigCommon, is the CORESET#0 used in the common search space or UE-specific search space in the corresponding initial downlink BWP. Parameter controlResourceSetZero, parameter commonControlResourceSet of additional common CORESET used in common search space or UE-specific search space, parameter searchSpaceZero of common search space 0 (common search space #0), indicates a list of common search spaces other than common search space 0 Parameter commonSearchSpaceList, parameter searchSpaceSIB1 indicating the ID of the search space for SIB1 messages, parameter searchSpaceOtherSystemInformation indicating the ID of the search space for other system information, parameter pagingSearchSpace indicating the ID of the search space for paging, and/or It may contain the parameter ra-SearchSpace indicating the ID of the search space for the random access procedure.
 controlResourceSetZeroで示される情報要素(IE: Information Element)ControlResourceSetZeroには0から15のいずれかの値が設定される。ただし、ControlResourceSetZeroに設定可能な値の数は16以外でも良く、例えば32であってもよい。searchSpaceZeroで示される情報要素SearchSpaceZeroには0から15のいずれかの値が設定される。ただし、SearchSpaceZeroに設定可能な値の数は16以外でも良く、例えば32であってもよい。 Information element (IE: Information Element) indicated by controlResourceSetZero Any value from 0 to 15 is set for ControlResourceSetZero. However, the number of values that can be set for ControlResourceSetZero may be other than 16, and may be 32, for example. Any value from 0 to 15 is set to the information element SearchSpaceZero indicated by searchSpaceZero. However, the number of values that can be set for SearchSpaceZero may be other than 16, and may be 32, for example.
 端末装置1は、pdcch-ConfigCommon内のcontrolResourceSetZeroから、CORESET#0のための連続するリソースブロックの数と連続するシンボルの数を決定する。ただし、controlResourceSetZeroで示される値は、インデックスとして所定のテーブルに適用される。ただし、端末装置1は、サポートするUEカテゴリおよび/またはUE Capabilityに基づいて、適用するテーブルを決定しても良い。ただし、端末装置1は、最小チャネル帯域幅に基づいて、適用するテーブルを決定しても良い。ただし、端末装置1は、SS/PBCHブロックのサブキャリア間隔および/またはCORESET#0のサブキャリア間隔に基づいて、適用するテーブルを決定しても良い。controlResourceSetZeroの値がインデックスとして適用されるテーブルの各行には、controlResourceSetZeroが示すインデックス、PBCHとCORESETの多重パターン、CORESET#0のRB(PRBであってもよい)数、CORESET#0のシンボル数、オフセットおよび/またはPDCCHの繰り返し回数が示されてよい。 The terminal device 1 determines the number of consecutive resource blocks and the number of consecutive symbols for CORESET #0 from controlResourceSetZero in pdcch-ConfigCommon. However, the value indicated by controlResourceSetZero is applied to a predetermined table as an index. However, the terminal device 1 may decide which table to apply based on the supported UE category and/or UE Capability. However, the terminal device 1 may decide which table to apply based on the minimum channel bandwidth. However, the terminal device 1 may determine the table to be applied based on the subcarrier spacing of the SS/PBCH block and/or the subcarrier spacing of CORESET #0. Each row of the table to which the value of controlResourceSetZero is applied as an index includes the index indicated by controlResourceSetZero, the multiplex pattern of PBCH and CORESET, the number of RBs (which may be PRBs) of CORESET#0, the number of symbols of CORESET#0, and the offset. and/or the number of times the PDCCH is repeated may be indicated.
 commonSearchSpaceListは、追加のコモンサーチスペース(CSS)のリストを示すパラメータであり、サーチスペースIDが0以外のコモンサーチスペースを設定する。commonSearchSpaceListに含まれるパラメータSearchSpaceは、少なくとも、サーチスペースを特定するために用いられるサーチスペースIDを示すパラメータsearchSpaceIdを含み、更にサービングセル内の1つのCORESETを特定するために用いられるCORESET IDを示すパラメータcontrolResourceSetIdを含んでよい。 commonSearchSpaceList is a parameter that indicates a list of additional common search spaces (CSS), and sets common search spaces with search space IDs other than 0. The parameter SearchSpace included in commonSearchSpaceList includes at least a parameter searchSpaceId indicating a search space ID used to identify a search space, and a parameter controlResourceSetId indicating a CORESET ID used to identify one CORESET in the serving cell. may be included.
 searchSpaceSIB1は、SIB1メッセージのためのサーチスペースのIDを示す情報要素SearchSpaceIdを含む。端末装置1は、searchSpaceSIB1で示されるサーチスペースのIDと、commonSearchSpaceListで示されるコモンサーチスペースのリストと、から、SIB1メッセージを含むPDSCHをスケジュールするPDCCHをモニタするために用いるCSSを特定し、更にSIB1メッセージをスケジュールするPDCCHをモニタするために用いるCORESETおよび該CORESETの設定(例えば周波数位置)を特定しても良い。 searchSpaceSIB1 includes an information element SearchSpaceId indicating the ID of the search space for the SIB1 message. The terminal device 1 identifies the CSS used to monitor the PDCCH that schedules the PDSCH including the SIB1 message from the search space ID indicated by searchSpaceSIB1 and the common search space list indicated by commonSearchSpaceList, and The CORESET used to monitor the PDCCH on which messages are scheduled and the settings (eg, frequency location) of the CORESET may be specified.
 searchSpaceOtherSystemInformationは、その他のシステム情報(OSI)のためのサーチスペースのIDを示す情報要素SearchSpaceIdを含む。端末装置1は、searchSpaceOtherSystemInformationで示されるサーチスペースのIDと、commonSearchSpaceListで示されるコモンサーチスペースのリストと、から、OSIを含むPDSCHをスケジュールするPDCCHをモニタするために用いるCSSを特定し、更にOSIを含むPDSCHをスケジュールするPDCCHをモニタするために用いるCORESETおよび該CORESETの設定(例えば周波数位置)を特定しても良い。 searchSpaceOtherSystemInformation includes an information element SearchSpaceId that indicates the ID of the search space for other system information (OSI). Terminal device 1 specifies the CSS to be used for monitoring the PDCCH that schedules the PDSCH including the OSI from the search space ID indicated by searchSpaceOtherSystemInformation and the list of common search spaces indicated by commonSearchSpaceList, and further specifies the CSS to be used for monitoring the PDCCH that schedules the PDSCH including the OSI. The CORESET used to monitor the PDCCH that schedules the included PDSCH and the settings (eg, frequency location) of the CORESET may be specified.
 pagingSearchSpaceは、ページングのためのサーチスペースのIDを示す情報要素SearchSpaceIdを含む。端末装置1は、pagingSearchSpaceで示されるサーチスペースのIDと、commonSearchSpaceListで示されるコモンサーチスペースのリストと、から、ページング情報を含むPDSCHをスケジュールするPDCCHをモニタするために用いるCSSを特定し、更にページング情報を含むPDSCHをスケジュールするPDCCHをモニタするために用いるCORESETおよび該CORESETの設定(例えば周波数位置)を特定しても良い。 pagingSearchSpace includes an information element SearchSpaceId that indicates the ID of the search space for paging. The terminal device 1 specifies the CSS to be used for monitoring the PDCCH that schedules the PDSCH including paging information from the search space ID indicated by pagingSearchSpace and the list of common search spaces indicated by commonSearchSpaceList, and further specifies the CSS used for monitoring the PDCCH that schedules the PDSCH that includes paging information, The CORESET used to monitor the PDCCH that schedules the PDSCH containing information and the settings (eg, frequency location) of the CORESET may be specified.
 ra-SearchSpaceは、ランダムアクセス手順のためのサーチスペースのIDを示す情報要素SearchSpaceIdを含む。端末装置1は、ra-SearchSpaceで示されるサーチスペースのIDと、commonSearchSpaceListで示されるコモンサーチスペースのリストと、から、ランダムアクセス応答(RAR)を含むPDSCHをスケジュールするPDCCHをモニタするために用いるCSSを特定し、更にRARを含むPDSCHをスケジュールするPDCCHをモニタするために用いるCORESETおよび該CORESETの設定(例えば周波数位置)を特定しても良い。 ra-SearchSpace contains an information element SearchSpaceId indicating the ID of the search space for the random access procedure. Terminal device 1 schedules a PDSCH that includes a random access response (RAR) based on the search space ID indicated by ra-SearchSpace and the common search space list indicated by commonSearchSpaceList. In addition, the CORESET used for monitoring the PDCCH that schedules the PDSCH including RAR and the settings (for example, frequency position) of the CORESET may be specified.
 PBCHとCORESETの多重パターンは、MIBを検出したPBCHに対応するSS/PBCHブロックと対応するCORESET#0の周波数/時間位置の関係のパターンを示す。例えば、PBCHとCORESETの多重パターンが1である場合には、PBCHとCORESET#0は異なるシンボルに時間多重される。 The multiplex pattern of PBCH and CORESET indicates the pattern of the frequency/time position relationship between the SS/PBCH block corresponding to the PBCH where the MIB was detected and the corresponding CORESET #0. For example, if the multiplexing pattern for PBCH and CORESET is 1, PBCH and CORESET #0 are time-multiplexed on different symbols.
 CORESET#0のRB数は、CORESET#0に対して連続的に割り当てられるリソースブロックの数を示す。CORESET#0のシンボル数は、CORESET#0に対して連続的に割り当てられるシンボルの数を示す。 The number of RBs for CORESET #0 indicates the number of resource blocks that are consecutively allocated to CORESET #0. The number of symbols of CORESET #0 indicates the number of symbols consecutively allocated to CORESET #0.
 端末装置1は、RRCパラメータpdcch-ConfigCommonを含むinitialDownlinkBWP、initialDownlinkBWP-forRedCap-r17および/またはinitialDownlinkBWP-forRedCap-r18をSIB1、その他のSIBまたはRRCシグナリングで受信し、該パラメータに基づいて、PDCCHをモニタする。 The terminal device 1 receives initialDownlinkBWP, initialDownlinkBWP-forRedCap-r17, and/or initialDownlinkBWP-forRedCap-r18 including the RRC parameter pdcch-ConfigCommon in SIB1, other SIB, or RRC signaling, and monitors the PDCCH based on the parameter. .
 端末装置1は、pdcch-ConfigCommon内のsearchSpaceZeroから、PDCCHモニタリング機会を決定する。ただし、searchSpaceZeroで示される値は、インデックスとして所定のテーブルに適用される。ただし、端末装置1は、サポートするUEカテゴリおよび/またはUE Capabilityに基づいて、適用するテーブルを決定しても良い。ただし、端末装置1は、周波数レンジに基づいて、適用するテーブルを決定しても良い。 The terminal device 1 determines the PDCCH monitoring opportunity from searchSpaceZero in pdcch-ConfigCommon. However, the value indicated by searchSpaceZero is applied to a predetermined table as an index. However, the terminal device 1 may decide which table to apply based on the supported UE category and/or UE Capability. However, the terminal device 1 may decide which table to apply based on the frequency range.
 端末装置1は、スロットn0から連続する2スロットにわたりタイプ0-PDCCHコモンサーチスペースセット(Type0-PDCCH CSS Set)でPDCCHをモニタする。端末装置1は、インデックスがiであるSS/PBCHブロックにおいて、テーブルで示されるパラメータOとパラメータMに基づいてn0とシステムフレーム番号を決定する。 Terminal device 1 monitors PDCCH using Type 0-PDCCH common search space set (Type 0-PDCCH CSS Set) over two consecutive slots starting from slot n0. The terminal device 1 determines n0 and the system frame number in the SS/PBCH block whose index is i based on the parameter O and the parameter M shown in the table.
 あるセルにおいて複数の初期下りリンクBWPに対する複数の「周波数位置および帯域幅」を示すパラメータ(downlinkConfigCommon内のinitialDownlinkBWP内のlocationAndBandwidth、downlinkConfigCommon内のinitialDownlinkBWP-forRedCap-r17内のlocationAndBandwidth、およびdownlinkConfigCommon内のinitialDownlinkBWP-forRedCap-r18内のlocationAndBandwidth)が設定される場合(あるセルにおいて複数の初期下りリンクBWPが設定される場合であってもよい)、downlinkConfigCommon内のinitialDownlinkBWPに含まれうるpdcch-ConfigCommonあるいは該pdcch-ConfigCommonの各パラメータは、downlinkConfigCommon内のinitialDownlinkBWPで設定される初期下りリンクBWPにおけるPDCCHのセルスペシフィックな(cell-specific)パラメータであってもよいし、downlinkConfigCommon内のinitialDownlinkBWPで設定される初期下りリンクBWP、downlinkConfigCommon内のinitialDownlinkBWP-forRedCap-r17で設定される初期下りリンクBWP、および、downlinkConfigCommon内のinitialDownlinkBWP-forRedCap-r18で設定される初期下りリンクBWPに共通であるPDCCHのセルスペシフィックな(cell-specific)パラメータであってもよい。 Parameters indicating multiple "frequency positions and bandwidths" for multiple initial downlink BWPs in a certain cell (locationAndBandwidth in initialDownlinkBWP in downlinkConfigCommon, locationAndBandwidth in initialDownlinkBWP-forRedCap-r17 in downlinkConfigCommon, and initialDownlinkBWP-forRedCap in downlinkConfigCommon) - locationAndBandwidth in r18) is set (this may be the case when multiple initial downlink BWPs are set in a certain cell), pdcch-ConfigCommon that can be included in initialDownlinkBWP in downlinkConfigCommon or the pdcch-ConfigCommon Each parameter may be a cell-specific parameter of the PDCCH in the initial downlink BWP configured in the initialDownlinkBWP in downlinkConfigCommon, or the initial downlink BWP configured in the initialDownlinkBWP in downlinkConfigCommon, in the downlinkConfigCommon. This is a cell-specific parameter of the PDCCH that is common to the initial downlink BWP configured in initialDownlinkBWP-forRedCap-r17 of It's okay.
 downlinkConfigCommon内のinitialDownlinkBWPに含まれうるpdsch-ConfigCommon(PDSCH-ConfigCommonと称されるかもしれない)、downlinkConfigCommon内のinitialDownlinkBWP-forRedCap-r17に含まれうるpdsch-ConfigCommonおよびdownlinkConfigCommon内のinitialDownlinkBWP-forRedCap-r18に含まれうるpdsch-ConfigCommonは、下りリンクデータに対する下りリンク割当のタイミングのための時間領域設定のリストを示すパラメータpdsch-TimeDomainAllocationListを含むかもしれない。 pdsch-ConfigCommon (which may be referred to as PDSCH-ConfigCommon) which may be included in initialDownlinkBWP in downlinkConfigCommon, pdsch-ConfigCommon which may be included in initialDownlinkBWP-forRedCap-r17 in downlinkConfigCommon and initialDownlinkBWP-forRedCap-r18 in downlinkConfigCommon The pdsch-ConfigCommon that may be configured may include a parameter pdsch-TimeDomainAllocationList that indicates a list of time domain settings for the timing of downlink allocation for downlink data.
 あるセルにおいて初期下りリンクBWPに対する複数の「周波数位置および帯域幅」を示すパラメータ(downlinkConfigCommon内のinitialDownlinkBWP内のlocationAndBandwidth、downlinkConfigCommon内のinitialDownlinkBWP-forRedCap-r17内のlocationAndBandwidth、およびdownlinkConfigCommon内のinitialDownlinkBWP-forRedCap-r18内のlocationAndBandwidth)が設定される場合(あるセルにおいて複数の初期下りリンクBWPが設定される場合であってもよい)、downlinkConfigCommon内のinitialDownlinkBWPに含まれうるpdsch-ConfigCommonあるいは該pdsch-ConfigCommonの各パラメータは、downlinkConfigCommon内のinitialDownlinkBWPで設定される初期下りリンクBWPにおけるPDSCHのセルスペシフィックな(cell-specific)パラメータであってもよいし、downlinkConfigCommon内のinitialDownlinkBWPで設定される初期下りリンクBWP、downlinkConfigCommon内のinitialDownlinkBWP-forRedCap-r17で設定される初期下りリンクBWP、および、downlinkConfigCommon内のinitialDownlinkBWP-forRedCap-r18で設定される初期下りリンクBWPに共通であるPDSCHのセルスペシフィックな(cell-specific)パラメータであってもよい。 Parameters indicating multiple "frequency positions and bandwidths" for the initial downlink BWP in a certain cell (locationAndBandwidth in initialDownlinkBWP in downlinkConfigCommon, locationAndBandwidth in initialDownlinkBWP-forRedCap-r17 in downlinkConfigCommon, and initialDownlinkBWP-forRedCap-r18 in downlinkConfigCommon) locationAndBandwidth) is set (this may be the case when multiple initial downlink BWPs are set in a certain cell), pdsch-ConfigCommon that can be included in initialDownlinkBWP in downlinkConfigCommon or each parameter of the pdsch-ConfigCommon may be a cell-specific parameter of the PDSCH in the initial downlink BWP configured with initialDownlinkBWP in downlinkConfigCommon, or the initial downlink BWP configured with initialDownlinkBWP in downlinkConfigCommon, initialDownlinkBWP in downlinkConfigCommon. -Even if it is a cell-specific parameter of PDSCH that is common to the initial downlink BWP configured with forRedCap-r17 and the initial downlink BWP configured with initialDownlinkBWP-forRedCap-r18 in downlinkConfigCommon. good.
 downlinkConfigCommon内のinitialDownlinkBWPで設定される初期下りリンクBWP(第1の初期下りリンクBWP)の周波数位置および/または帯域幅をサポートしない端末装置1は、SIB1(その他のSIB、またはRRCシグナリングであってもよい)に含まれうるdownlinkConfigCommon内のinitialDownlinkBWP-forRedCap-r17で設定される初期下りリンクBWP(第2の初期下りリンクBWP)を特定/決定することで、基地局装置3から送信される下りリンクチャネルおよび下りリンク信号を受信することができる。downlinkConfigCommon内のinitialDownlinkBWP-forRedCap-r17で設定される初期下りリンクBWP(第2の初期下りリンクBWP)の周波数位置および/または帯域幅をサポートしない端末装置1は、SIB1(その他のSIB、またはRRCシグナリングであってもよい)に含まれうるdownlinkConfigCommon内のinitialDownlinkBWP-forRedCap-r18で設定される初期下りリンクBWP(第3の初期下りリンクBWP)を特定/決定することで、基地局装置3から送信される下りリンクチャネルおよび下りリンク信号を受信することができる。 Terminal device 1 that does not support the frequency location and/or bandwidth of the initial downlink BWP (first initial downlink BWP) configured in initialDownlinkBWP in downlinkConfigCommon is By identifying/determining the initial downlink BWP (second initial downlink BWP) configured in initialDownlinkBWP-forRedCap-r17 in downlinkConfigCommon that can be included in and can receive downlink signals. Terminal device 1 that does not support the frequency location and/or bandwidth of the initial downlink BWP (second initial downlink BWP) configured in initialDownlinkBWP-forRedCap-r17 in downlinkConfigCommon is configured using SIB1 (other SIB or RRC signaling). By identifying/determining the initial downlink BWP (third initial downlink BWP) configured in initialDownlinkBWP-forRedCap-r18 in downlinkConfigCommon that may be included in can receive downlink channels and downlink signals.
 基地局装置3は、特定の端末装置1がサポートしない周波数位置および/または帯域幅の初期下りリンクBWPをinitialDownlinkBWP内のlocationAndBandwidthで設定する場合、該端末装置1がサポートする周波数位置および/または帯域幅の初期下りリンクBWPをdownlinkConfigCommon内のinitialDownlinkBWP-forRedCap-r17に含まれるlocationAndBandwidthあるいはinitialDownlinkBWP-forRedCap-r18に含まれるlocationAndBandwidthで設定することにより、適切に下りリンクチャネルおよび下りリンク信号を送信することができる。基地局装置3は、SIB1(その他のSIB、またはRRCシグナリングであってもよい)内のdownlinkConfigCommon内のinitialDownlinkBWP-forRedCap-r17にlocationAndBandwidthを含めることで、第1の初期下りリンクBWPの周波数位置および/または帯域幅をサポートしない端末装置1に対しては、第2の初期下りリンクBWPに対応する下りリンクチャネルおよび参照信号を送信し、第1の初期下りリンクBWPの周波数位置および帯域幅をサポートする端末装置1に対しては、第1の初期下りリンクBWPに対応する下りリンクチャネルおよび参照信号を送信することができる。さらに、基地局装置3は、SIB1(その他のSIB、またはRRCシグナリングであってもよい)内のdownlinkConfigCommon内のinitialDownlinkBWP-forRedCap-r18にlocationAndBandwidthを含めることで、第1の初期下りリンクBWPおよび第2の初期下りリンクBWPの周波数位置および/または帯域幅をサポートしない端末装置1に対しては、第3の初期下りリンクBWPに対応する下りリンクチャネルおよび参照信号を送信することができる。基地局装置3は、全ての端末装置1がサポートする周波数位置および/または帯域幅の初期下りリンクBWPをinitialDownlinkBWP内のlocationAndBandwidthで設定する場合、SIB1(その他のSIB、またはRRCシグナリングであってもよい)内のdownlinkConfigCommonにinitialDownlinkBWP-forRedCap-r17およびinitialDownlinkBWP-forRedCap-r18を含めなくてもよい。基地局装置3は、一部の端末装置1がサポートする周波数位置および/または帯域幅の初期下りリンクBWPをinitialDownlinkBWP内のlocationAndBandwidthで設定し、その他の端末装置1がサポートする周波数位置および/または帯域幅の初期下りリンクBWPをinitialDownlinkBWP-r17で設定する場合、SIB1(その他のSIB、またはRRCシグナリングであってもよい)内のdownlinkConfigCommonにinitialDownlinkBWP-forRedCap-r18を含めなくてもよい。 When setting the initial downlink BWP of a frequency location and/or bandwidth that is not supported by a specific terminal device 1 in locationAndBandwidth in initialDownlinkBWP, the base station device 3 sets the frequency location and/or bandwidth that the specific terminal device 1 supports. By configuring the initial downlink BWP with locationAndBandwidth included in initialDownlinkBWP-forRedCap-r17 or locationAndBandwidth included in initialDownlinkBWP-forRedCap-r18 in downlinkConfigCommon, it is possible to appropriately transmit the downlink channel and downlink signal. The base station device 3 determines the frequency position and/or Alternatively, for the terminal device 1 that does not support the bandwidth, the downlink channel and reference signal corresponding to the second initial downlink BWP are transmitted, and the frequency position and bandwidth of the first initial downlink BWP are supported. The downlink channel and reference signal corresponding to the first initial downlink BWP can be transmitted to the terminal device 1. Furthermore, the base station device 3 includes locationAndBandwidth in initialDownlinkBWP-forRedCap-r18 in downlinkConfigCommon in SIB1 (which may be other SIBs or RRC signaling), thereby controlling the first initial downlink BWP and the second downlink BWP. The downlink channel and reference signal corresponding to the third initial downlink BWP can be transmitted to the terminal device 1 that does not support the frequency position and/or bandwidth of the third initial downlink BWP. When setting the initial downlink BWP of the frequency location and/or bandwidth supported by all terminal devices 1 in locationAndBandwidth in the initialDownlinkBWP, the base station device 3 sets the initial downlink BWP of the frequency location and/or bandwidth supported by all the terminal devices 1. ) does not need to include initialDownlinkBWP-forRedCap-r17 and initialDownlinkBWP-forRedCap-r18 in downlinkConfigCommon. The base station device 3 sets the initial downlink BWP of the frequency location and/or bandwidth supported by some of the terminal devices 1 in locationAndBandwidth in the initialDownlinkBWP, and sets the initial downlink BWP of the frequency location and/or bandwidth supported by the other terminal devices 1. When setting the initial downlink BWP width with initialDownlinkBWP-r17, it is not necessary to include initialDownlinkBWP-forRedCap-r18 in downlinkConfigCommon in SIB1 (which may be other SIBs or RRC signaling).
 端末装置1は、SIB1(その他のSIB、またはRRCシグナリングであってもよい)内のdownlinkConfigCommon内にinitialDownlinkBWP-forRedCap-r17が含まれるか含まれないかに関わらず、downlinkConfigCommon内のinitialDownlinkBWP内のgenericParametersに含まれるsubcarrierSpacingを用いて、初期下りリンクBWPにおいて全てのチャネルおよび参照信号で使用されるサブキャリア間隔を特定/決定してもよい。端末装置1は、SIB1(その他のSIB、またはRRCシグナリングであってもよい)内のdownlinkConfigCommon内にinitialDownlinkBWP-forRedCap-r18が含まれるか含まれないかに関わらず、downlinkConfigCommon内のinitialDownlinkBWP内のgenericParametersに含まれるsubcarrierSpacingを用いて、初期下りリンクBWPにおいて全てのチャネルおよび参照信号で使用されるサブキャリア間隔を特定/決定してもよい。 Terminal device 1 includes genericParameters in initialDownlinkBWP in downlinkConfigCommon regardless of whether initialDownlinkBWP-forRedCap-r17 is included in downlinkConfigCommon in SIB1 (which may be other SIBs or RRC signaling). The subcarrier spacing used in all channels and reference signals in the initial downlink BWP may be identified/determined using subcarrierSpacing. Terminal device 1 includes genericParameters in initialDownlinkBWP in downlinkConfigCommon regardless of whether initialDownlinkBWP-forRedCap-r18 is included in downlinkConfigCommon in SIB1 (which may be other SIBs or RRC signaling). The subcarrier spacing used in all channels and reference signals in the initial downlink BWP may be identified/determined using subcarrierSpacing.
 端末装置1は、SIB1(その他のSIB、またはRRCシグナリングであってもよい)内のdownlinkConfigCommonにinitialDownlinkBWP-forRedCap-r17が含まれるか含まれないかに関わらず、downlinkConfigCommon内のinitialDownlinkBWP内のgenericParametersに含まれるcyclicPrefixを用いて、初期下りリンクBWPにおいて拡張サイクリックプレフィックスCPが用いられるかを特定/決定してもよい。端末装置1は、SIB1(その他のSIB、またはRRCシグナリングであってもよい)内のdownlinkConfigCommonにinitialDownlinkBWP-forRedCap-r18が含まれるか含まれないかに関わらず、downlinkConfigCommon内のinitialDownlinkBWP内のgenericParametersに含まれるcyclicPrefixを用いて、初期下りリンクBWPにおいて拡張サイクリックプレフィックスCPが用いられるかを特定/決定してもよい。 Terminal device 1 includes genericParameters in initialDownlinkBWP in downlinkConfigCommon regardless of whether initialDownlinkBWP-forRedCap-r17 is included in downlinkConfigCommon in SIB1 (which may be other SIBs or RRC signaling). cyclicPrefix may be used to identify/determine whether an extended cyclic prefix CP is used in the initial downlink BWP. Terminal device 1 includes genericParameters in initialDownlinkBWP in downlinkConfigCommon regardless of whether initialDownlinkBWP-forRedCap-r18 is included in downlinkConfigCommon in SIB1 (which may be other SIBs or RRC signaling). cyclicPrefix may be used to identify/determine whether an extended cyclic prefix CP is used in the initial downlink BWP.
 端末装置1は、SIB1(その他のSIB、またはRRCシグナリングであってもよい)内のdownlinkConfigCommonにinitialDownlinkBWP-forRedCap-r17が含まれるか含まれないかに関わらず、downlinkConfigCommon内のinitialDownlinkBWPに含まれるpdcch-ConfigCommonを用いて、初期下りリンクBWPにおけるPDCCHのセルスペシフィックな(cell-specific)パラメータを特定/決定し、PDCCHをモニタ/受信してもよい。端末装置1は、SIB1(その他のSIB、またはRRCシグナリングであってもよい)内のdownlinkConfigCommonにinitialDownlinkBWP-forRedCap-r18が含まれるか含まれないかに関わらず、downlinkConfigCommon内のinitialDownlinkBWPに含まれるpdcch-ConfigCommonを用いて、初期下りリンクBWPにおけるPDCCHのセルスペシフィックな(cell-specific)パラメータを特定/決定し、PDCCHをモニタ/受信してもよい。 Terminal device 1 uses pdcch-ConfigCommon included in initialDownlinkBWP in downlinkConfigCommon, regardless of whether initialDownlinkBWP-forRedCap-r17 is included in downlinkConfigCommon in SIB1 (which may be other SIBs or RRC signaling). may be used to identify/determine cell-specific parameters of the PDCCH in the initial downlink BWP and monitor/receive the PDCCH. Terminal device 1 uses pdcch-ConfigCommon included in initialDownlinkBWP in downlinkConfigCommon, regardless of whether initialDownlinkBWP-forRedCap-r18 is included in downlinkConfigCommon in SIB1 (which may be other SIBs or RRC signaling). may be used to identify/determine cell-specific parameters of the PDCCH in the initial downlink BWP and monitor/receive the PDCCH.
 端末装置1は、SIB1(その他のSIB、またはRRCシグナリングであってもよい)内のdownlinkConfigCommonにinitialDownlinkBWP-forRedCap-r17が含まれるか含まれないかに関わらず、downlinkConfigCommon内のinitialDownlinkBWPに含まれるpdsch-ConfigCommonを用いて、初期下りリンクBWPにおけるPDSCHのセルスペシフィックな(cell-specific)パラメータを特定/決定し、PDSCHを受信してもよい。端末装置1は、SIB1(その他のSIB、またはRRCシグナリングであってもよい)内のdownlinkConfigCommonにinitialDownlinkBWP-forRedCap-r18が含まれるか含まれないかに関わらず、downlinkConfigCommon内のinitialDownlinkBWPに含まれるpdsch-ConfigCommonを用いて、初期下りリンクBWPにおけるPDSCHのセルスペシフィックな(cell-specific)パラメータを特定/決定し、PDSCHを受信してもよい。 Terminal device 1 uses pdsch-ConfigCommon included in initialDownlinkBWP in downlinkConfigCommon, regardless of whether initialDownlinkBWP-forRedCap-r17 is included in downlinkConfigCommon in SIB1 (which may be other SIBs or RRC signaling). may be used to identify/determine cell-specific parameters of the PDSCH in the initial downlink BWP and receive the PDSCH. Terminal device 1 uses pdsch-ConfigCommon included in initialDownlinkBWP in downlinkConfigCommon, regardless of whether initialDownlinkBWP-forRedCap-r18 is included in downlinkConfigCommon in SIB1 (which may be other SIBs or RRC signaling). may be used to identify/determine cell-specific parameters of the PDSCH in the initial downlink BWP and receive the PDSCH.
 端末装置1は、SIB1(その他のSIBであってもよい)内のinitialDownlinkBWP-forRedCap-r17に含まれるlocationAndBandwidthを受信し、該locationAndBandwidthに基づいて初期下りリンクBWPの周波数位置と帯域幅を特定/決定し、かつ該locationAndBandwidthで特定/決定される初期下りリンクBWPがCORESET#0全体を含む場合、RRC接続が確立、再確立または再開するまで(例えば、RRCSetup、RRCResumeまたはRRCReestablishmentを受信する前)は、該CORESET#0を初期下りリンクBWPとし、RRC接続が確立してからは、受信したSIB1(その他のSIBであってもよい)内のinitialDownlinkBWP-forRedCap-r17に含まれるlocationAndBandwidthで初期下りリンクBWPを決定/特定してもよい。ただし、RRC接続が確立、再確立または再開するまで初期下りリンクBWPをCORESET#0とする場合、端末装置1は、CORESET#0で決定/特定した初期下りリンクBWPを用いてランダムアクセス手順を行なってもよい。 Terminal device 1 receives locationAndBandwidth included in initialDownlinkBWP-forRedCap-r17 in SIB1 (or other SIBs), and identifies/determines the frequency position and bandwidth of the initial downlink BWP based on the locationAndBandwidth. and the initial downlink BWP specified/determined by the locationAndBandwidth includes the entire CORESET#0, then until the RRC connection is established, re-established or resumed (e.g. before receiving RRCSetup, RRCResume or RRCReestablishment), The CORESET#0 is set as the initial downlink BWP, and after the RRC connection is established, the initial downlink BWP is set using the locationAndBandwidth included in the initialDownlinkBWP-forRedCap-r17 in the received SIB1 (or other SIBs). May be determined/specified. However, if the initial downlink BWP is set to CORESET#0 until the RRC connection is established, re-established, or restarted, the terminal device 1 performs the random access procedure using the initial downlink BWP determined/specified by CORESET#0. It's okay.
 端末装置1は、SIB1(その他のSIBであってもよい)内のinitialDownlinkBWP-forRedCap-r17に含まれるlocationAndBandwidthを受信し、該locationAndBandwidthに基づいて初期下りリンクBWPの周波数位置と帯域幅を特定/決定し、かつ該locationAndBandwidthで特定/決定される初期下りリンクBWPがCORESET#0全体を含まない場合、初期アクセスの間とおよび初期アクセスの後の下りリンクメッセージの受信に、受信したSIB1(その他のSIBであってもよい)内のinitialDownlinkBWP-forRedCap-r17に含まれるlocationAndBandwidthで特定/決定される初期下りリンクBWPを用いてもよい。 Terminal device 1 receives locationAndBandwidth included in initialDownlinkBWP-forRedCap-r17 in SIB1 (or other SIBs), and identifies/determines the frequency position and bandwidth of the initial downlink BWP based on the locationAndBandwidth. and if the initial downlink BWP specified/determined by the locationAndBandwidth does not include the entire CORESET#0, the received SIB1 (other SIB The initial downlink BWP specified/determined by locationAndBandwidth included in initialDownlinkBWP-forRedCap-r17 may be used.
 端末装置1は、SIB1(その他のSIBであってもよい)内のinitialDownlinkBWP-forRedCap-r18に含まれるlocationAndBandwidthを受信し、該locationAndBandwidthに基づいて初期下りリンクBWPの周波数位置と帯域幅を特定/決定し、かつ該locationAndBandwidthで特定/決定される初期下りリンクBWPがCORESET#0全体を含む場合、RRC接続が確立、再確立または再開するまで(例えば、RRCSetup、RRCResumeまたはRRCReestablishmentを受信する前)は、該CORESET#0を初期下りリンクBWPとし、RRC接続が確立してからは、受信したSIB1(その他のSIBであってもよい)内のinitialDownlinkBWP-forRedCap-r18に含まれるlocationAndBandwidthで初期下りリンクBWPを決定/特定してもよい。ただし、RRC接続が確立、再確立または再開するまで初期下りリンクBWPをCORESET#0とする場合、端末装置1は、CORESET#0で決定/特定した初期下りリンクBWPを用いてランダムアクセス手順を行なってもよい。 Terminal device 1 receives locationAndBandwidth included in initialDownlinkBWP-forRedCap-r18 in SIB1 (or other SIBs), and identifies/determines the frequency position and bandwidth of the initial downlink BWP based on the locationAndBandwidth. and the initial downlink BWP specified/determined by the locationAndBandwidth includes the entire CORESET#0, then until the RRC connection is established, re-established or resumed (e.g. before receiving RRCSetup, RRCResume or RRCReestablishment), The CORESET#0 is set as the initial downlink BWP, and after the RRC connection is established, the initial downlink BWP is set using the locationAndBandwidth included in the initialDownlinkBWP-forRedCap-r18 in the received SIB1 (or other SIBs). May be determined/specified. However, if the initial downlink BWP is set to CORESET#0 until the RRC connection is established, re-established, or restarted, the terminal device 1 performs the random access procedure using the initial downlink BWP determined/specified by CORESET#0. It's okay.
 端末装置1は、SIB1(その他のSIBであってもよい)内のinitialDownlinkBWP-forRedCap-r18に含まれるlocationAndBandwidthを受信し、該locationAndBandwidthに基づいて初期下りリンクBWPの周波数位置と帯域幅を特定/決定し、かつ該locationAndBandwidthで特定/決定される初期下りリンクBWPがCORESET#0全体を含まない場合、初期アクセスの間とおよび初期アクセスの後の下りリンクメッセージの受信に、受信したSIB1(その他のSIBであってもよい)内のinitialDownlinkBWP-forRedCap-r18に含まれるlocationAndBandwidthで特定/決定される初期下りリンクBWPを用いてもよい。 Terminal device 1 receives locationAndBandwidth included in initialDownlinkBWP-forRedCap-r18 in SIB1 (or other SIBs), and identifies/determines the frequency position and bandwidth of the initial downlink BWP based on the locationAndBandwidth. and if the initial downlink BWP specified/determined by the locationAndBandwidth does not include the entire CORESET#0, the received SIB1 (other SIB The initial downlink BWP specified/determined by locationAndBandwidth included in initialDownlinkBWP-forRedCap-r18 may be used.
 端末装置1は、SIB1(その他のSIBであってもよい)に含まれる情報に基づいて、該SIB1内のinitialDownlinkBWP-forRedCap-r18に含まれるlocationAndBandwidthに基づいて初期下りリンクBWP(セパレート初期下りリンクBWPと称されてよい)を決定/特定するタイミングを切り替えても良い。SIB1(その他のSIBであってもよい)内のinitialDownlinkBWP-forRedCap-r18に含まれるlocationAndBandwidthを適用するタイミングを示すパラメータinitialBwpTimingは、1ビットの情報であっても良い。 Based on the information included in SIB1 (which may be other SIBs), terminal device 1 performs initial downlink BWP (separate initial downlink BWP) based on locationAndBandwidth included in initialDownlinkBWP-forRedCap-r18 in SIB1. It is also possible to switch the timing for determining/identifying the The parameter initialBwpTiming, which indicates the timing to apply locationAndBandwidth included in initialDownlinkBWP-forRedCap-r18 in SIB1 (or other SIBs), may be 1-bit information.
 あるセルにおいて、ある初期下りリンクBWP(第1の初期下りリンクBWP)でSIB1を受信する場合に、第1の初期下りリンクBWPとは異なる周波数位置および/または帯域幅を持つ初期下りリンクBWP(第2の初期下りリンクBWP)が設定される場合に、該第2の初期下りリンクBWPの帯域は、第1の初期下りリンクBWPの帯域内で送信される同期信号ブロックを含まないかもしれない。第2の初期下りリンクBWPでページング、ランダムアクセスおよび/またはその他の用途で同期信号ブロックの役割を持つ信号を必要とする場合に、該第2の初期下りリンクBWPの帯域内で追加の同期信号ブロック(以後、追加同期信号ブロック(additional SSB)と称する)を送信するかもしれない。基地局装置3は、initialDownlinkBWP-forRedCap-r17内のlocationAndBandwidthで特定/決定される第2の初期下りリンクBWPの帯域内で追加同期信号ブロックを送信するかもしれない。端末装置1は、initialDownlinkBWP-forRedCap-r17内のlocationAndBandwidthから特定/決定される第2の初期下りリンクBWPの帯域内で送信される追加同期信号ブロックを受信するかもしれない。追加同期信号ブロックは、セルを定義する同期信号ブロック(CD-SSB: Cell Defining SSBと称される)ではない同期信号ブロック(NCD-SSB: Non-Cell Defining SSBと称される)であってよい。例えば、追加同期信号ブロックは、同期ラスタ(Synchronization Raster)を中心周波数としなくても良いかもしれない。 In a certain cell, when receiving SIB1 with a certain initial downlink BWP (first initial downlink BWP), an initial downlink BWP (with a frequency position and/or bandwidth different from the first initial downlink BWP) If a second initial downlink BWP) is configured, the band of the second initial downlink BWP may not include a synchronization signal block transmitted within the band of the first initial downlink BWP. . An additional synchronization signal within the band of the second initial downlink BWP when the second initial downlink BWP requires a signal with the role of a synchronization signal block for paging, random access and/or other uses. block (hereinafter referred to as additional synchronization signal block (additional SSB)). The base station device 3 may transmit the additional synchronization signal block within the band of the second initial downlink BWP specified/determined by locationAndBandwidth in the initialDownlinkBWP-forRedCap-r17. The terminal device 1 may receive an additional synchronization signal block transmitted within the band of the second initial downlink BWP specified/determined from locationAndBandwidth in the initialDownlinkBWP-forRedCap-r17. The additional synchronization signal block may be a synchronization signal block (referred to as NCD-SSB: Non-Cell Defining SSB) that is not a cell-defining synchronization signal block (referred to as CD-SSB: Cell Defining SSB). . For example, additional synchronization signal blocks may not be centered around the Synchronization Raster.
 あるセルにおいて、ある初期下りリンクBWP(第1の初期下りリンクBWP)でSIB1を受信する場合に、第1の初期下りリンクBWPおよび第2の初期下りリンクBWPとは異なる周波数位置および/または帯域幅を持つ初期下りリンクBWP(第3の初期下りリンクBWP)が設定される場合に、該第3の初期下りリンクBWPの帯域は、第1の初期下りリンクBWPの帯域内で送信される同期信号ブロックを含まないかもしれない。第3の初期下りリンクBWPでページング、ランダムアクセスおよび/またはその他の用途で同期信号ブロックの役割を持つ信号を必要とする場合に、該第3の初期下りリンクBWPの帯域内で追加同期信号ブロックを送信するかもしれない。基地局装置3は、initialDownlinkBWP-forRedCap-r18内のlocationAndBandwidthで特定/決定される第3の初期下りリンクBWPの帯域内で追加同期信号ブロックを送信するかもしれない。端末装置1は、initialDownlinkBWP-forRedCap-r18内のlocationAndBandwidthから特定/決定される第3の初期下りリンクBWPの帯域内で送信される追加同期信号ブロックを受信するかもしれない。追加同期信号ブロックは、NCD-SSB:であってよい。例えば、追加同期信号ブロックは、同期ラスタ(Synchronization Raster)を中心周波数としなくても良いかもしれない。 In a certain cell, when receiving SIB1 with a certain initial downlink BWP (first initial downlink BWP), a frequency position and/or band different from the first initial downlink BWP and the second initial downlink BWP When an initial downlink BWP (third initial downlink BWP) with a width of May not contain signal blocks. If the third initial downlink BWP requires a signal with the role of a synchronization signal block for paging, random access, and/or other purposes, an additional synchronization signal block within the band of the third initial downlink BWP. may be sent. The base station device 3 may transmit the additional synchronization signal block within the band of the third initial downlink BWP specified/determined by locationAndBandwidth in the initialDownlinkBWP-forRedCap-r18. The terminal device 1 may receive an additional synchronization signal block transmitted within the band of the third initial downlink BWP specified/determined from the locationAndBandwidth in the initialDownlinkBWP-forRedCap-r18. The additional synchronization signal block may be NCD-SSB:. For example, additional synchronization signal blocks may not be centered around the Synchronization Raster.
 図7は、本実施形態に係る追加同期信号ブロックの周波数位置に関する概要を示す図である。図7では、あるセルにおいて、第1の初期下りリンクBWP(initial DL BWP)と第2の初期下りリンクBWP(separate initial DL BWP)の2つの初期下りリンクBWPが設定されている。ただし、初期下りリンクBWPはCORESET#0の帯域であってもよい。図7において、初期下りリンクBWPは、帯域内に少なくとも同期信号ブロック(SSB)、CORESET#0、SIB1を含むPDSCH(PDSCH with SIB1)を含む。図7において、第2の初期下りリンクBWPは、帯域内に少なくとも追加同期信号ブロック(additional SSB)を含む。同期信号ブロックを受信した端末装置1は、CORESET#0の周波数位置を特定し、CORESET#0で受信したPDCCHにより、SIB1を含むPDSCHの周波数位置および時間位置を特定する。SIB1を含むPDSCHを受信した端末装置1は、SIB1(あるいは該SIB1により特定されるその他のSIBであってもよい)内のinitialDownlinkBWP-forRedCap-r18に含まれるパラメータlocationAndBandwidthにより第2の初期下りリンクBWPの周波数位置(帯域幅を含む)を特定/決定する。第2の初期下りリンクBWPの周波数位置を特定/決定した端末装置1は、SIB1(あるいは該SIB1により特定されるその他のSIBであってもよい)内のinitialDownlinkBWP-forRedCap-r18に含まれるパラメータssbFrequencyOffset-rcにより、該セパレート初期下りリンクBWP内で送信される追加同期信号ブロックの周波数位置を特定/決定し、該追加同期信号ブロックを受信するかもしれない。 FIG. 7 is a diagram showing an overview of the frequency positions of additional synchronization signal blocks according to the present embodiment. In FIG. 7, two initial downlink BWPs, a first initial downlink BWP (initial DL BWP) and a second initial downlink BWP (separate initial DL BWP), are set in a certain cell. However, the initial downlink BWP may be the band of CORESET #0. In FIG. 7, the initial downlink BWP includes a PDSCH (PDSCH with SIB1) that includes at least a synchronization signal block (SSB), CORESET #0, and SIB1 in the band. In FIG. 7, the second initial downlink BWP includes at least an additional synchronization signal block (additional SSB) in the band. The terminal device 1 that has received the synchronization signal block specifies the frequency position of CORESET #0, and specifies the frequency position and time position of the PDSCH including SIB1 based on the PDCCH received in CORESET #0. The terminal device 1 that has received the PDSCH including SIB1 uses the second initial downlink BWP according to the parameter locationAndBandwidth included in the initialDownlinkBWP-forRedCap-r18 in the SIB1 (or may be another SIB specified by the SIB1). Identify/determine the frequency location (including bandwidth) of The terminal device 1 that has specified/determined the frequency position of the second initial downlink BWP uses the parameter ssbFrequencyOffset included in the initialDownlinkBWP-forRedCap-r18 in the SIB1 (or may be another SIB specified by the SIB1). -rc may identify/determine the frequency location of an additional synchronization signal block transmitted within the separate initial downlink BWP and receive the additional synchronization signal block.
 端末装置1は、DCIフォーマット1_0、DCIフォーマット1_1またはDCIフォーマット1_2を含むPDCCHの検出によって、対応するPDSCHをデコード(受信)してもよい。対応するPDSCHは、そのDCIフォーマット(DCI)によってスケジュールされる(示される)。スケジュールされるPDSCHの開始位置(開始シンボル)をSと称する。PDSCHの開始シンボルSはあるスロット内でPDSCHが送信(マップ)される最初のシンボルであってもよい。開始シンボルSはスロットの始まりに対応する。例えば、Sの値が0である場合、端末装置1は、あるスロット内の1番目のシンボルからPDSCHを受信してもよい。また、例えば、Sの値が2である場合、端末装置1は、あるスロットの3番目のシンボルからPDSCHを受信してもよい。スケジュールされるPDSCHの連続的な(Consecutive)シンボルの数をLと称する。連続的なシンボルの数Lは開始シンボルSから数える。PDSCHに対して割り当てられたSとLの決定は後述する。 By detecting a PDCCH including DCI format 1_0, DCI format 1_1, or DCI format 1_2, the terminal device 1 may decode (receive) the corresponding PDSCH. The corresponding PDSCH is scheduled (indicated) by its DCI format (DCI). The start position (start symbol) of the scheduled PDSCH is referred to as S. The starting symbol S of the PDSCH may be the first symbol on which the PDSCH is transmitted (mapped) within a certain slot. The starting symbol S corresponds to the beginning of the slot. For example, when the value of S is 0, the terminal device 1 may receive the PDSCH from the first symbol in a certain slot. Further, for example, when the value of S is 2, the terminal device 1 may receive the PDSCH from the third symbol of a certain slot. The number of consecutive (Consecutive) symbols of the PDSCH to be scheduled is referred to as L. The number L of consecutive symbols is counted from the starting symbol S. The determination of S and L assigned to PDSCH will be described later.
 PDSCHマッピングのタイプはPDSCHマッピングタイプAとPDSCHマッピングタイプBを有する。PDSCHマッピングタイプAでは、Sは0から3までの値を取る。Lは3から14までの値を取る。ただし、SとLの和は3から14までの値を取る。PDSCHマッピングタイプBでは、Sは0から12までの値を取る。Lは{2、4、7}から1つの値を取る。ただし、SとLの和は2から14までの値を取る。 The PDSCH mapping type has PDSCH mapping type A and PDSCH mapping type B. For PDSCH mapping type A, S takes values from 0 to 3. L takes values from 3 to 14. However, the sum of S and L takes a value from 3 to 14. For PDSCH mapping type B, S takes values from 0 to 12. L takes one value from {2, 4, 7}. However, the sum of S and L takes a value from 2 to 14.
 PDSCHのためのDMRSシンボルの位置は、PDSCHマッピングのタイプに依存する。PDSCHのための最初のDMRSシンボル(first DM-RS symbol)の位置は、PDSCHマッピングのタイプに依存する。PDSCHマッピングタイプAでは、最初のDMRSシンボルの位置は、上位層のパラメータdmrs-TypeA-Positionに示されてもよい。つまり、上位層のパラメータdmrs-TypeA-PositionはPDSCHまたはPUSCHのための最初のDMRSの位置を示すために用いられる。dmrs-TypeA-Positionは、‘pos2’または‘pos3’のいずれかにセットされてもよい。例えば、dmrs-TypeA-Positionが‘pos2’にセットされている場合、PDSCHのための最初のDMRSシンボルの位置は、スロット内の3番目のシンボルであってもよい。例えば、dmrs-TypeA-Positionが‘pos3’にセットされている場合、PDSCHのための最初のDMRSシンボルの位置は、スロット内の4番目のシンボルであってもよい。ここで、Sは、dmrs-TypeA-Positionが‘pos3’にセットされている場合にのみ、3の値をとることができる。つまり、dmrs-TypeA-Positionが‘pos2’にセットされている場合、Sは0から2までの値をとる。PDSCHマッピングタイプBでは、最初のDMRSシンボルの位置は、割り当てられるPDSCHの最初のシンボルである。 The location of the DMRS symbol for the PDSCH depends on the type of PDSCH mapping. The position of the first DMRS symbol for the PDSCH depends on the type of PDSCH mapping. For PDSCH mapping type A, the position of the first DMRS symbol may be indicated in the upper layer parameter dmrs-TypeA-Position. That is, the upper layer parameter dmrs-TypeA-Position is used to indicate the position of the first DMRS for PDSCH or PUSCH. dmrs-TypeA-Position may be set to either 'pos2' or 'pos3'. For example, if dmrs-TypeA-Position is set to 'pos2', the position of the first DMRS symbol for the PDSCH may be the third symbol in the slot. For example, if dmrs-TypeA-Position is set to 'pos3', the position of the first DMRS symbol for the PDSCH may be the fourth symbol in the slot. Here, S can take the value 3 only if dmrs-TypeA-Position is set to 'pos3'. That is, if dmrs-TypeA-Position is set to ‘pos2’, S takes on values between 0 and 2. For PDSCH mapping type B, the position of the first DMRS symbol is the first symbol of the assigned PDSCH.
 図8は本実施形態に係るPDSCHマッピングタイプの一例を示す図である。図8(A)はPDSCHマッピングタイプAの一例を示す図である。図8(A)において、割り当てられるPDSCHのSは3である。割り当てられるPDSCHのLは7である。図8(A)において、PDSCHのための最初のDMRSシンボルの位置は、スロット内の4番目のシンボルである。即ち、dmrs-TypeA-Positionが‘pos3’にセットされている。図8(B)はPDSCHマッピングタイプAの一例を示す図である。図8(B)において、割り当てられるPDSCHのSは4である。割り当てられるPDSCHのLは4である。図8(B)において、PDSCHのための最初のDMRSシンボルの位置は、PDSCHが割り当てられる最初のシンボルである。 FIG. 8 is a diagram showing an example of PDSCH mapping types according to this embodiment. FIG. 8(A) is a diagram showing an example of PDSCH mapping type A. In FIG. 8(A), S of the assigned PDSCH is 3. The allocated PDSCH L is 7. In FIG. 8(A), the position of the first DMRS symbol for PDSCH is the fourth symbol within the slot. That is, dmrs-TypeA-Position is set to 'pos3'. FIG. 8(B) is a diagram showing an example of PDSCH mapping type A. In FIG. 8(B), S of the assigned PDSCH is 4. The allocated PDSCH L is 4. In FIG. 8(B), the position of the first DMRS symbol for PDSCH is the first symbol to which PDSCH is allocated.
 初期上りリンクBWPは、MIBで提供されるパラメータ、SIB1で提供されるパラメータ、SIBで提供されるパラメータおよび/またはRRCパラメータによって設定されてよい。例えば、初期上りリンクBWPはSIB1で提供されるパラメータuplinkConfigCommonに含まれるパラメータinitialUplinkBWPによって設定されるかもしれない。例えば、初期下りリンクBWPはSIB1で提供されるパラメータUplinkConfigCommonに含まれるパラメータinitialUplinkBWP-forRedCap-r17によって設定されるかもしれない。例えば、初期下りリンクBWPはSIB1で提供されるパラメータuplinkConfigCommonに含まれるパラメータinitialUplinkBWP-forRedCap-r18によって設定されるかもしれない。SIB1で提供されるパラメータuplinkConfigCommonにはinitialUplinkBWP、initialUplinkBWP-forRedCap-r17、および/またはinitialUplinkBWP-forRedCap-r18が含まれ、該uplinkConfigCommonに含まれるこれらのパラメータのいずれか1つを用いて初期上りリンクBWPを設定してもよい。ただし、initialUplinkBWP、initialUplinkBWP-forRedCap-r17およびinitialUplinkBWP-forRedCap-r18は、初期上りリンクBWPのUE個別のUE-specific、dedicated)の設定を示すパラメータであってよい。 The initial uplink BWP may be configured by parameters provided in MIB, parameters provided in SIB1, parameters provided in SIB, and/or RRC parameters. For example, the initial uplink BWP may be configured by the parameter initialUplinkBWP included in the parameter uplinkConfigCommon provided in SIB1. For example, the initial downlink BWP may be configured by the parameter initialUplinkBWP-forRedCap-r17 included in the parameter UplinkConfigCommon provided in SIB1. For example, the initial downlink BWP may be configured by the parameter initialUplinkBWP-forRedCap-r18 included in the parameter uplinkConfigCommon provided in SIB1. The parameter uplinkConfigCommon provided in SIB1 includes initialUplinkBWP, initialUplinkBWP-forRedCap-r17, and/or initialUplinkBWP-forRedCap-r18, and any one of these parameters included in the uplinkConfigCommon is used to configure the initial uplink BWP. May be set. However, initialUplinkBWP, initialUplinkBWP-forRedCap-r17, and initialUplinkBWP-forRedCap-r18 may be parameters that indicate UE-specific (UE-specific, dedicated) settings for the initial uplink BWP.
 図9は、本実施形態に係る上りリンク設定情報であるパラメータuplinkConfigCommonの情報要素(IE: Information Element)であるUplinkConfigCommonSIB(あるいはUplinkConfigCommon)のパラメータ構成、上りリンクBWPの設定情報であるパラメータの情報要素BWP-UplinkCommonのパラメータ構成、BWPの設定情報であるパラメータの情報要素BWPのパラメータ構成の一例を示している。 FIG. 9 shows the parameter configuration of UplinkConfigCommonSIB (or UplinkConfigCommon), which is an information element (IE: Information Element) of parameter uplinkConfigCommon, which is uplink configuration information according to this embodiment, and the parameter information element BWP, which is configuration information of uplink BWP. - Parameter configuration of UplinkCommon, parameter information element that is BWP setting information An example of the parameter configuration of BWP is shown.
 uplinkConfigCommonは、対応するセルにおける、1つの上りリンクキャリアと送信に関する基礎パラメータを示すパラメータ(例えばfrequencyInfoULと称される)、あるサービングセルの第1の初期上りリンクBWPの設定を示すパラメータ(例えばinitialUplinkBWPと称される)、あるサービングセルの第2の初期上りリンクBWPの設定を示すパラメータ(例えばinitialUplinkBWP-forRedCap-r17と称される)、および、あるサービングセルの第3の初期上りリンクBWPの設定を示すパラメータ(例えばinitialUplinkBWP-forRedCap-r18と称される)、を含んでよい。ただし、uplinkConfigCommon内に含まれるinitialUplinkBWP-forRedCap-r17およびinitialUplinkBWP-forRedCap-r18は、uplinkConfigCommon内に含まれるinitialUplinkBWPと同じ情報要素(BWP-UplinkCommon)で示されるパラメータ構成であってよい。ただし、initialUplinkBWP-forRedCap-r17およびinitialUplinkBWP-forRedCap-r18はSIB1以外のSIBおよび/またはRRCパラメータに含まれても良い。ただし、initialUplinkBWP-forRedCap-r17およびinitialUplinkBWP-forRedCap-r18は、uplinkConfigCommonに含まれるinitialUplinkBWPのパラメータ構成の一部あるいは全てを含むパラメータであってよく、それぞれ、第2の初期上りリンクBWPのための設定情報および第3の初期上りリンクBWPのための設定情報であってよい。ただし、uplinkConfigCommonがSIBで送信される場合、initialUplinkBWPを必ず含んでもよく、initialUplinkBWP-forRedCap-r17およびinitialUplinkBWP-forRedCap-r18は、含まない場合があってよい。本実施形態に係るinitialUplinkBWP、initialUplinkBWP-forRedCap-r17およびinitialUplinkBWP-forRedCap-r18は、初期上りリンクBWPの汎用パラメータgenericParameters、ランダムアクセスのセルスペシフィックなパラメータrach-ConfigCommon、PUSCHのセルスペシフィックな(cell-specific)パラメータpusch-ConfigCommon、PUCCHのセルスペシフィックなパラメータpucch-ConfigCommon、および/または、その他のパラメータを含んでもよい。 uplinkConfigCommon is a parameter that indicates the basic parameters regarding one uplink carrier and transmission in the corresponding cell (for example, called frequencyInfoUL), a parameter that indicates the configuration of the first initial uplink BWP of a certain serving cell (for example, called initialUplinkBWP). ), a parameter indicating the setting of the second initial uplink BWP of a certain serving cell (for example, referred to as initialUplinkBWP-forRedCap-r17), and a parameter indicating the setting of the third initial uplink BWP of a certain serving cell ( For example, initialUplinkBWP-forRedCap-r18) may be included. However, initialUplinkBWP-forRedCap-r17 and initialUplinkBWP-forRedCap-r18 included in uplinkConfigCommon may have a parameter configuration indicated by the same information element (BWP-UplinkCommon) as initialUplinkBWP included in uplinkConfigCommon. However, initialUplinkBWP-forRedCap-r17 and initialUplinkBWP-forRedCap-r18 may be included in SIB and/or RRC parameters other than SIB1. However, initialUplinkBWP-forRedCap-r17 and initialUplinkBWP-forRedCap-r18 may be parameters that include part or all of the parameter configuration of initialUplinkBWP included in uplinkConfigCommon, and each is the configuration information for the second initial uplink BWP. and configuration information for the third initial uplink BWP. However, when uplinkConfigCommon is transmitted by SIB, initialUplinkBWP may always be included, and initialUplinkBWP-forRedCap-r17 and initialUplinkBWP-forRedCap-r18 may not be included. initialUplinkBWP, initialUplinkBWP-forRedCap-r17, and initialUplinkBWP-forRedCap-r18 according to this embodiment include general parameters genericParameters of initial uplink BWP, cell-specific parameters rach-ConfigCommon of random access, and cell-specific parameters of PUSCH. It may include the parameter pushch-ConfigCommon, the PUCCH cell-specific parameter pucch-ConfigCommon, and/or other parameters.
 initialUplinkBWPは第1の帯域幅(例えば最大100MHz)である初期上りリンクBWPを設定するパラメータであり、initialUplinkBWP-forRedCap-r17は第1の帯域幅より狭い第2の帯域幅(例えば最大20MHz)である初期上りリンクBWPを設定するパラメータであってよい。initialUplinkBWP-forRedCap-r17は第3の帯域幅(例えば20MHz)より大きい帯域幅をサポートする端末装置1は参照しないパラメータであっても良く、第3の帯域幅以下のみをサポートする端末装置1のみが参照するパラメータであってよい。initialUplinkBWP-forRedCap-r18は第2の帯域幅より狭い第4の帯域幅(例えば最大5MHz)である初期上りリンクBWPを設定するパラメータであってよい。initialUplinkBWP-forRedCap-r18は第5の帯域幅(例えば5MHz)より大きい帯域幅をサポートする端末装置1は参照しないパラメータであっても良く、第5の帯域幅以下のみをサポートする端末装置1のみが参照するパラメータであってよい。このようにuplinkConfigCommon内に初期上りリンクBWPとして異なる帯域幅を設定するパラメータを1つまたは複数設定することにより、複数の端末装置1に対してそれぞれサポートする最大帯域幅に応じた初期上りリンクBWPを設定することができる。例えば、initialUplinkBWPが設定する初期上りリンクBWPの帯域幅が50MHzであり、initialUplinkBWP-forRedCap-r17が設定する初期上りリンクBWPの帯域幅が10MHzであり、initialUplinkBWP-forRedCap-r18が設定する初期上りリンクBWPの帯域幅が5MHzであり、uplinkConfigCommonにこれら3つのパラメータが含まれる場合、最大100MHzの帯域幅をサポートする端末装置1はinitialUplinkBWPに基づいて帯域幅が50MHzの初期上りリンクBWPを設定し、最大20MHzの帯域幅をサポートする端末装置1はinitialUplinkBWP-forRedCap-r17に基づいて帯域幅が10MHzの初期上りリンクBWPを設定し、最大5MHzの帯域幅をサポートする端末装置1はinitialUplinkBWP-forRedCap-r18に基づいて帯域幅が5MHzの初期上りリンクBWPを設定してよい。 initialUplinkBWP is a parameter that sets the initial uplink BWP which is the first bandwidth (e.g. up to 100MHz), and initialUplinkBWP-forRedCap-r17 is the second bandwidth (e.g. up to 20MHz) which is narrower than the first bandwidth. It may be a parameter for setting the initial uplink BWP. initialUplinkBWP-forRedCap-r17 may be a parameter that terminal device 1 that supports a bandwidth greater than the third bandwidth (for example, 20MHz) does not refer to, and only terminal device 1 that supports only the third bandwidth or less It may be a parameter to be referenced. initialUplinkBWP-forRedCap-r18 may be a parameter for setting an initial uplink BWP that is a fourth bandwidth narrower than the second bandwidth (for example, a maximum of 5 MHz). initialUplinkBWP-forRedCap-r18 may be a parameter that terminal device 1 that supports a bandwidth larger than the fifth bandwidth (for example, 5MHz) does not refer to, and only terminal device 1 that supports only the fifth bandwidth or less It may be a parameter to be referenced. In this way, by setting one or more parameters that set different bandwidths as the initial uplink BWP in uplinkConfigCommon, the initial uplink BWP can be set according to the maximum bandwidth supported by each of the multiple terminal devices 1. Can be set. For example, the bandwidth of the initial uplink BWP set by initialUplinkBWP is 50MHz, the bandwidth of the initial uplink BWP set by initialUplinkBWP-forRedCap-r17 is 10MHz, and the initial uplink BWP set by initialUplinkBWP-forRedCap-r18 is 10MHz. If the bandwidth of is 5MHz and uplinkConfigCommon contains these three parameters, terminal device 1 that supports a bandwidth of up to 100MHz will set an initial uplink BWP with a bandwidth of 50MHz based on initialUplinkBWP, and up to 20MHz Terminal device 1 that supports a bandwidth of up to 5MHz sets an initial uplink BWP with a bandwidth of 10MHz based on initialUplinkBWP-forRedCap-r17, and terminal device 1 that supports a bandwidth of up to 5MHz sets an initial uplink BWP with a bandwidth of 10MHz based on initialUplinkBWP-forRedCap-r18. An initial uplink BWP with a bandwidth of 5MHz may be set.
 端末装置1は、uplinkConfigCommon内にinitialUplinkBWP-forRedCap-r18が含まれている場合、該initialUplinkBWP-forRedCap-r18に含まれるパラメータに基づいて初期上りリンクBWPを特定/設定/決定してもよい。例えば、端末装置1は、SIB1でinitialUplinkBWP-forRedCap-r18を受信した場合、初期上りリンクBWPを該initialuplinkBWP-forRedCap-r18のパラメータに基づいて特定/設定/決定しても良い。 If initialUplinkBWP-forRedCap-r18 is included in uplinkConfigCommon, the terminal device 1 may identify/set/determine the initial uplink BWP based on the parameters included in the initialUplinkBWP-forRedCap-r18. For example, when the terminal device 1 receives the initialUplinkBWP-forRedCap-r18 in SIB1, it may identify/set/determine the initial uplink BWP based on the parameters of the initialuplinkBWP-forRedCap-r18.
 あるセルにおいてinitialUplinkBWP、initialUplinkBWP-forRedCap-r17およびinitialUplinkBWP-forRedCap-r18によって、複数の初期上りリンクBWPの設定パラメータが存在する場合(あるいはあるセルにおいて初期上りリンクBWPに対する複数の周波数位置および/または複数の帯域幅の設定情報が報知されている場合)、initialUplinkBWP内のgenericParametersに含まれる情報の一部は、該複数の初期上りリンクBWPの設定パラメータ(あるいは該初期上りリンクBWPの複数の周波数位置および/または複数の帯域幅の設定情報)に共通のパラメータであってもよい。 If there are multiple initial uplink BWP configuration parameters (or multiple frequency positions and/or multiple If bandwidth configuration information is broadcast), part of the information included in the genericParameters in the initialUplinkBWP is the configuration parameters of the plurality of initial uplink BWPs (or the plurality of frequency positions and/or of the initial uplink BWPs). or setting information of multiple bandwidths).
 パラメータgenericParametersの情報要素BWPは、前述の下りリンクBWPにおける情報要素BWPと同一である。 The information element BWP of the parameter genericParameters is the same as the information element BWP in the above-mentioned downlink BWP.
 端末装置1が受信したSIB1(その他のSIB、RRCパラメータであってもよい)に含まれるuplinkConfigCommonで提供されるinitialUplinkBWPおよびinitialUplinkBWP-forRedCap-r17が設定する初期上りリンクBWPの帯域幅を端末装置1がサポートしていない場合、端末装置1は初期上りリンクBWPを設定しなくてもよい。 Terminal device 1 sets the initial uplink BWP bandwidth set by initialUplinkBWP and initialUplinkBWP-forRedCap-r17 provided in uplinkConfigCommon included in SIB1 (other SIB and RRC parameters may be possible) received by terminal device 1. If not supported, the terminal device 1 does not need to set the initial uplink BWP.
 端末装置1が受信したSIB1に含まれるuplinkConfigCommonでinitialUplinkBWP-forRedCap-r18が提供される場合、端末装置1は初期下りリンクBWPを該initialUplinkBWP-forRedCap-r18で決定/特定してもよい。 If the initialUplinkBWP-forRedCap-r18 is provided in the uplinkConfigCommon included in the SIB1 received by the terminal device 1, the terminal device 1 may determine/specify the initial downlink BWP using the initialUplinkBWP-forRedCap-r18.
 端末装置1が受信したSIB1内のuplinkConfigCommonでinitialUplinkBWP-forRedCap-r18が提供/設定されておらず、端末装置1が受信したSIB1内のuplinkConfigCommonでinitialUplinkBWP-forRedCap-r17が提供/設定されており、該initialUplinkBWP-forRedCap-r17で設定されるBWPの帯域幅を端末装置1がサポートしている場合、端末装置1は初期上りリンクBWPを該initialUplinkBWP-forRedCap-r17で決定/特定してもよい。 initialUplinkBWP-forRedCap-r18 is not provided/set in uplinkConfigCommon in SIB1 received by terminal device 1, initialUplinkBWP-forRedCap-r17 is provided/set in uplinkConfigCommon in SIB1 received by terminal device 1, and the corresponding If the terminal device 1 supports the BWP bandwidth set in the initialUplinkBWP-forRedCap-r17, the terminal device 1 may determine/specify the initial uplink BWP using the initialUplinkBWP-forRedCap-r17.
 端末装置1が受信したSIB1内のuplinkConfigCommonでinitialUplinkBWP-forRedCap-r18が提供/設定されておらず、端末装置1が受信したSIB1内のuplinkConfigCommonでinitialUplinkBWP-forRedCap-r17が提供/設定されている場合、端末装置1は初期上りリンクBWPを該initialUplinkBWP-forRedCap-r17で決定/特定するかもしれない。 If initialUplinkBWP-forRedCap-r18 is not provided/set in uplinkConfigCommon in SIB1 received by terminal device 1, and initialUplinkBWP-forRedCap-r17 is provided/set in uplinkConfigCommon in SIB1 received by terminal device 1, The terminal device 1 may determine/specify the initial uplink BWP using the initialUplinkBWP-forRedCap-r17.
 端末装置1が受信したSIB1内のuplinkConfigCommonでinitialUplinkBWP-forRedCap-r18およびinitialUplinkBWP-forRedCap-r17が提供/設定されていない場合、端末装置1は初期上りリンクBWPをSIB1内のuplinkConfigCommonで提供されているinitialUplinkBWPで決定/特定してもよい。 If initialUplinkBWP-forRedCap-r18 and initialUplinkBWP-forRedCap-r17 are not provided/set in uplinkConfigCommon in SIB1 received by terminal device 1, terminal device 1 sets initial uplink BWP to initialUplinkBWP provided in uplinkConfigCommon in SIB1. It may be determined/specified by .
 端末装置1が受信したSIB1内のuplinkConfigCommonでinitialUplinkBWP-forRedCap-r18およびinitialUplinkBWP-forRedCap-r17が提供/設定されておらず、initialUplinkBWPで設定されるBWPの帯域幅を端末装置1がサポートしている場合、端末装置1は初期上りリンクBWPをSIB1内のuplinkConfigCommonで提供されているinitialUplinkBWPで決定/特定するかもしれない。 If initialUplinkBWP-forRedCap-r18 and initialUplinkBWP-forRedCap-r17 are not provided/set in uplinkConfigCommon in SIB1 received by terminal device 1, and terminal device 1 supports the BWP bandwidth set in initialUplinkBWP. , the terminal device 1 may determine/specify the initial uplink BWP with the initialUplinkBWP provided in uplinkConfigCommon in SIB1.
 端末装置1が受信したSIB1内のuplinkConfigCommonでinitialUplinkBWP-forRedCap-r18が提供/設定されていない場合に、端末装置1は初期上りリンクBWPをinitialUplinkBWP-forRedCap-r17ではなくinitialUplinkBWPで決定/特定するかもしれない。ただし、initialUplinkBWP、initialUplinkBWP-forRedCap-r17、およびinitialUplinkBWP-forRedCap-r18のそれぞれで設定される帯域幅の関係性から、initialUplinkBWP-forRedCap-r18を用いない場合には、initialUplinkBWP-forRedCap-r18により近い帯域幅を設定することが想定されるinitialUplinkBWP-forRedCap-r17を用いることで、端末装置1に設定する帯域幅に柔軟性を持たせるという利点が得られるかもしれない。ただし、基地局装置3が、セル内の全ての端末装置1が設定可能な帯域幅の初期上りリンクBWPを設定することが想定される場合、initialUplinkBWP-forRedCap-r17とinitialUplinkBWP-forRedCap-r18の何れも設定しないことで、全ての端末装置1がinitialUplinkBWPで初期上りリンクBWPの帯域を設定/特定するかもしれない。このように初期上りリンクBWPの帯域幅として3つのパラメータを用意することで、セル内にサポートする帯域幅が異なる3種類以上の端末装置1が混在する場合に、基地局装置3が設定する初期上りリンクBWPの帯域幅に柔軟性を持たせることができる。尚、本実施形態では帯域幅の異なる3つの初期上りリンクBWPの設定として3つのパラメータを用いる場合を示しているが、4つ以上のパラメータを用いることも考えられる。 If initialUplinkBWP-forRedCap-r18 is not provided/set in uplinkConfigCommon in SIB1 received by terminal device 1, terminal device 1 may determine/specify the initial uplink BWP with initialUplinkBWP instead of initialUplinkBWP-forRedCap-r17. do not have. However, due to the relationship between the bandwidths set in each of initialUplinkBWP, initialUplinkBWP-forRedCap-r17, and initialUplinkBWP-forRedCap-r18, if initialUplinkBWP-forRedCap-r18 is not used, the bandwidth will be closer to initialUplinkBWP-forRedCap-r18. By using initialUplinkBWP-forRedCap-r17, which is expected to be set, it may be possible to obtain the advantage of having flexibility in the bandwidth set for terminal device 1. However, if it is assumed that the base station device 3 sets the initial uplink BWP with a bandwidth that can be set by all terminal devices 1 in the cell, which of initialUplinkBWP-forRedCap-r17 and initialUplinkBWP-forRedCap-r18 By not setting also, all terminal devices 1 may set/specify the initial uplink BWP band in initialUplinkBWP. By preparing three parameters for the initial uplink BWP bandwidth in this way, when three or more types of terminal devices 1 that support different bandwidths coexist within a cell, the initial The bandwidth of uplink BWP can be made flexible. Note that although this embodiment shows a case where three parameters are used to set three initial uplink BWPs with different bandwidths, it is also possible to use four or more parameters.
 基地局装置3は、特定の端末装置1がサポートしない周波数位置および/または帯域幅の初期上りリンクBWPをinitialUplinkBWP内のlocationAndBandwidthで設定する場合、該端末装置1がサポートする周波数位置および/または帯域幅の初期上りリンクBWPをuplinkConfigCommon内のinitialUplinkBWP-forRedCap-r17に含まれるlocationAndBandwidthあるいはinitialUplinkBWP-forRedCap-r18に含まれるlocationAndBandwidthで設定することにより、適切に上りリンクチャネルおよび上りリンク信号を受信することができる。基地局装置3は、SIB1(その他のSIB、またはRRCシグナリングであってもよい)内のuplinkConfigCommon内のinitialUplinkBWP-forRedCap-r17にlocationAndBandwidthを含めることで、第1の初期上りリンクBWPの周波数位置および/または帯域幅をサポートしない端末装置1からは、第2の初期上りリンクBWPに対応する上りリンクチャネルを受信し、第1の初期上りリンクBWPの周波数位置および帯域幅をサポートする端末装置1からは、第1の初期上りリンクBWPに対応する上りリンクチャネルを受信することができる。さらに、基地局装置3は、SIB1(その他のSIB、またはRRCシグナリングであってもよい)内のuplinkConfigCommon内のinitialUplinkBWP-forRedCap-r18にlocationAndBandwidthを含めることで、第1の初期上りリンクBWPおよび第2の初期上りリンクBWPの周波数位置および/または帯域幅をサポートしない端末装置1からは、第3の初期上りリンクBWPに対応する上りリンクチャネルを受信することができる。基地局装置3は、全ての端末装置1がサポートする周波数位置および/または帯域幅の初期上りリンクBWPをinitialUplinkBWP内のlocationAndBandwidthで設定する場合、SIB1(その他のSIB、またはRRCシグナリングであってもよい)内のuplinkConfigCommonにinitialUplinkBWP-forRedCap-r17およびinitialUplinkBWP-forRedCap-r18を含めなくてもよい。基地局装置3は、一部の端末装置1がサポートする周波数位置および/または帯域幅の初期上りリンクBWPをinitialUplinkBWP内のlocationAndBandwidthで設定し、その他の端末装置1がサポートする周波数位置および/または帯域幅の初期上りリンクBWPをinitialUplinkBWP-r17で設定する場合、SIB1(その他のSIB、またはRRCシグナリングであってもよい)内のuplinkConfigCommonにinitialUplinkBWP-forRedCap-r18を含めなくてもよい。 When setting the initial uplink BWP of a frequency location and/or bandwidth that is not supported by a specific terminal device 1 in locationAndBandwidth in initialUplinkBWP, the base station device 3 sets the frequency location and/or bandwidth that the specific terminal device 1 supports. By setting the initial uplink BWP of with locationAndBandwidth included in initialUplinkBWP-forRedCap-r17 or locationAndBandwidth included in initialUplinkBWP-forRedCap-r18 in uplinkConfigCommon, uplink channels and uplink signals can be appropriately received. The base station device 3 determines the frequency position and/or Alternatively, from the terminal device 1 that does not support the bandwidth, the uplink channel corresponding to the second initial uplink BWP is received, and from the terminal device 1 that supports the frequency position and bandwidth of the first initial uplink BWP, the uplink channel corresponding to the second initial uplink BWP is received. , an uplink channel corresponding to a first initial uplink BWP may be received. Furthermore, the base station device 3 includes locationAndBandwidth in initialUplinkBWP-forRedCap-r18 in uplinkConfigCommon in SIB1 (which may be other SIBs or RRC signaling), thereby controlling the first initial uplink BWP and the second uplink BWP. The uplink channel corresponding to the third initial uplink BWP can be received from the terminal device 1 that does not support the frequency position and/or bandwidth of the initial uplink BWP. When setting the initial uplink BWP of the frequency location and/or bandwidth supported by all terminal devices 1 in locationAndBandwidth in the initialUplinkBWP, the base station device 3 configures SIB1 (other SIB or RRC signaling may be used) ) does not need to include initialUplinkBWP-forRedCap-r17 and initialUplinkBWP-forRedCap-r18 in uplinkConfigCommon. The base station device 3 sets the initial uplink BWP of the frequency location and/or bandwidth supported by some of the terminal devices 1 in locationAndBandwidth in the initialUplinkBWP, and sets the initial uplink BWP of the frequency location and/or bandwidth supported by the other terminal devices 1. When setting the initial uplink BWP for the width using initialUplinkBWP-r17, it is not necessary to include initialUplinkBWP-forRedCap-r18 in uplinkConfigCommon in SIB1 (which may be other SIB or RRC signaling).
 本実施形態のランダムアクセス手順(Random Access procedure)について説明する。 The random access procedure of this embodiment will be explained.
 ランダムアクセス手順は、競合ベース(CB: Contention Based)と非競合ベース(non-CB)(CF: Contention Freeと称してもよい)の2つの手順に分類される。競合ベースランダムアクセスはCBRA、非競合ベースランダムアクセスはCFRAとも称される。 Random access procedures are classified into two procedures: contention-based (CB) and non-contention-based (non-CB) (also referred to as contention free). Contention-based random access is also called CBRA, and non-contention-based random access is also called CFRA.
 ランダムアクセス手順は、PDCCHオーダー、MACエンティティ、下位レイヤからのビーム失敗(beam failure)の通知、あるいはRRC等によって開始(initiate)される。 The random access procedure is initiated by a PDCCH order, a MAC entity, a notification of beam failure from a lower layer, or RRC, etc.
 競合ベースのランダムアクセス手順は、PDCCHオーダー、MACエンティティ、下位レイヤからのビーム失敗(beam failure)の通知、あるいはRRC等によって開始(initiate)される。ビーム失敗通知が、端末装置1のMACエンティティに端末装置1の物理レイヤから提供された場合に、ある条件を満たした場合、端末装置1のMACエンティティは、ランダムアクセス手順を開始する。ビーム失敗通知が、端末装置1のMACエンティティに端末装置1の物理レイヤから提供された場合に、ある条件を満たしたかどうかを判断し、ランダムアクセス手順を開始する手続きを、ビーム失敗リカバリ手順と称してもよい。このランダムアクセス手順は、ビーム失敗リカバリ要求のためのランダムアクセス手順である。MACエンティティによって開始されるランダムアクセス手順は、スケジューリングリクエスト手続きによって開始されるランダムアクセス手順を含む。ビーム失敗リカバリ要求のためのランダムアクセス手順は、MACエンティティによって開始されるランダムアクセス手順と考えられるかもしれないし、考えられないかもしれない。ビーム失敗リカバリ要求のためのランダムアクセス手順とスケジューリングリクエスト手続きによって開始されるランダムアクセス手順で、異なる手続きを行う場合があるため、ビーム失敗リカバリ要求のためのランダムアクセス手順とスケジューリングリクエスト手続きを、区別するようにしてもよい。ビーム失敗リカバリ要求のためのランダムアクセス手順とスケジューリングリクエスト手続きを、MACエンティティによって開始されるランダムアクセス手順としてもよい。ある実施形態では、スケジューリングリクエスト手続きによって開始されるランダムアクセス手順をMACエンティティによって開始されるランダムアクセス手順と称し、ビーム失敗リカバリ要求のためのランダムアクセス手順を下位レイヤからのビーム失敗の通知によるランダムアクセス手順と称するようにしてもよい。以下、下位レイヤからのビーム失敗の通知を受けた場合のランダムアクセス手順の開始は、ビーム失敗リカバリ要求のためのランダムアクセス手順の開始を意味してもよい。 The contention-based random access procedure is initiated by a PDCCH order, a MAC entity, a notification of beam failure from a lower layer, or RRC, etc. When a beam failure notification is provided to the MAC entity of the terminal device 1 from the physical layer of the terminal device 1 and a certain condition is met, the MAC entity of the terminal device 1 starts a random access procedure. When a beam failure notification is provided to the MAC entity of terminal device 1 from the physical layer of terminal device 1, the procedure of determining whether a certain condition is satisfied and starting a random access procedure is called a beam failure recovery procedure. It's okay. This random access procedure is a random access procedure for beam failure recovery requests. Random access procedures initiated by the MAC entity include random access procedures initiated by a scheduling request procedure. The random access procedure for beam failure recovery request may or may not be considered a random access procedure initiated by the MAC entity. A random access procedure for a beam failure recovery request and a random access procedure initiated by a scheduling request procedure may perform different procedures, so a random access procedure for a beam failure recovery request and a scheduling request procedure are distinguished. You can do it like this. The random access procedure for beam failure recovery request and the scheduling request procedure may be random access procedures initiated by the MAC entity. In some embodiments, the random access procedure initiated by the scheduling request procedure is referred to as the random access procedure initiated by the MAC entity, and the random access procedure for beam failure recovery request is referred to as random access procedure initiated by the beam failure notification from lower layers. It may also be called a procedure. Hereinafter, starting a random access procedure upon receiving a beam failure notification from a lower layer may mean starting a random access procedure for a beam failure recovery request.
 端末装置1は、基地局装置3と接続(通信)していない状態からの初期アクセス時、および/または、基地局装置3と接続中であるが端末装置1に送信可能な上りリンクデータあるいは送信可能なサイドリンクデータが発生した場合のスケジューリングリクエスト時などにおいて競合ベースのランダムアクセス手順を行なう。ただし、競合ベースのランダムアクセスの用途はこれらに限定されない。 At the time of initial access from a state where the terminal device 1 is not connected (communicating) with the base station device 3, and/or while connected to the base station device 3, uplink data or transmission that can be transmitted to the terminal device 1 is transmitted. A contention-based random access procedure is performed, such as during a scheduling request when possible sidelink data occurs. However, the applications of contention-based random access are not limited to these.
 非競合ベースのランダムアクセス手順は、端末装置1が基地局装置3からランダムアクセス手順の開始を指示する情報を受けた場合に開始されてもよい。非競合ベースランダムアクセス手順は、端末装置1のMACレイヤが、下位レイヤからビーム失敗の通知を受けた場合に開始されてもよい。 The non-contention-based random access procedure may be started when the terminal device 1 receives information from the base station device 3 instructing the start of the random access procedure. The non-contention-based random access procedure may be started when the MAC layer of the terminal device 1 receives a beam failure notification from a lower layer.
 非競合ベースのランダムアクセスは、基地局装置3と端末装置1とが接続中であるがハンドオーバや移動局装置の送信タイミングが有効でない場合に、迅速に端末装置1と基地局装置3との間の上りリンク同期をとるために用いられてよい。非競合ベースランダムアクセスは、端末装置1においてビーム失敗が発生した場合にビーム失敗リカバリ要求を送信するために用いられてよい。ただし、非競合ベースのランダムアクセスの用途はこれらに限定されない。 Non-contention-based random access allows for quick access between the terminal device 1 and the base station device 3 when the base station device 3 and the terminal device 1 are connected but the handover or the transmission timing of the mobile station device is not valid. may be used for uplink synchronization. Non-contention-based random access may be used to send a beam failure recovery request when a beam failure occurs at the terminal device 1. However, the uses of non-contention-based random access are not limited to these.
 ただし、該ランダムアクセス手順の開始を指示する情報はメッセージ0、Msg.0、NR-PDCCHオーダー、PDCCHオーダーなどと称されてもよい。 However, the information instructing the start of the random access procedure may be referred to as message 0, Msg.0, NR-PDCCH order, PDCCH order, etc.
 本実施形態の端末装置1は、ランダムアクセス手順を開始する(initiate)前に上位層を介してランダムアクセス設定情報を受信する。 The terminal device 1 of this embodiment receives random access setting information via an upper layer before initiating a random access procedure.
 基地局装置3は、端末装置1に対して、ランダムアクセス設定情報を含むRRCパラメータをRRCメッセージとして端末装置1に送信する。 The base station device 3 transmits RRC parameters including random access configuration information to the terminal device 1 as an RRC message.
 端末装置1は、基地局装置3との間の伝搬路特性に基づいてランダムアクセス手順に使用する1つまたは複数の利用可能なランダムアクセスプリアンブルおよび/または1つまたは複数の利用可能な物理ランダムアクセスチャネル(PRACH: Physical Random Access Channel)機会(ランダムアクセスチャネル(RACH: Random Access Channel)機会、PRACH送信機会、RACH送信機会と称されてもよい)を選択してもよい。端末装置1は、基地局装置3から受信した参照信号(例えば、SS/PBCHブロックおよび/またはCSI-RS)により測定した伝搬路特性(例えば参照信号受信電力(RSRP)であってよい)に基づいてランダムアクセス手順に使用する1つまたは複数の利用可能なランダムアクセスプリアンブルおよび/または1つまたは複数のPRACH機会を選択してもよい。 The terminal device 1 uses one or more available random access preambles and/or one or more available physical random access preambles to be used for the random access procedure based on the propagation path characteristics between the terminal device 1 and the base station device 3. A physical random access channel (PRACH) opportunity (also referred to as a random access channel (RACH) opportunity, PRACH transmission opportunity, RACH transmission opportunity) may be selected. The terminal device 1 transmits a signal based on the propagation path characteristics (for example, it may be the reference signal received power (RSRP)) measured by the reference signal (for example, SS/PBCH block and/or CSI-RS) received from the base station device 3. may select one or more available random access preambles and/or one or more PRACH opportunities for use in the random access procedure.
 ランダムアクセス手順は端末装置1と基地局装置3との間の複数種類のメッセージの送受信により実現される。例えば4ステップランダムアクセスでは、下記4つのメッセージの送受信が行われる。 The random access procedure is realized by sending and receiving multiple types of messages between the terminal device 1 and the base station device 3. For example, in 4-step random access, the following four messages are sent and received.
 <メッセージ1>
 送信可能な上りリンクデータあるいは送信可能なサイドリンクデータが発生した端末装置1は、基地局装置3に対して、PRACHでランダムアクセスのためのプリアンブル(ランダムアクセスプリアンブルと称する)を送信する。この送信されるランダムアクセスプリアンブルをメッセージ1またはMsg1と称してもよい。ランダムアクセスプリアンブルは、複数のシーケンスによって基地局装置3へ情報を通知するように構成される。例えば、64種類のシーケンスが用意されている場合、6ビットの情報を基地局装置3へ示すことができる。この情報は、ランダムアクセスプリアンブル識別子(Random Access preamble Identifier)として示される。プリアンブルシーケンスは、プリアンブルインデックスを用いるプリアンブルシーケンスセットの中から選択される。指定されたPRACHのリソースにおいて選択されたランダムアクセスプリアンブルが送信される。
<Message 1>
The terminal device 1 that has generated transmittable uplink data or transmittable sidelink data transmits a preamble for random access (referred to as a random access preamble) to the base station device 3 using PRACH. This transmitted random access preamble may be referred to as message 1 or Msg1. The random access preamble is configured to notify information to the base station device 3 using a plurality of sequences. For example, if 64 types of sequences are prepared, 6 bits of information can be shown to the base station device 3. This information is designated as a Random Access Preamble Identifier. A preamble sequence is selected from a preamble sequence set using a preamble index. The selected random access preamble is transmitted on the designated PRACH resource.
 <メッセージ2>
 ランダムアクセスプリアンブルを受信した基地局装置3は、端末装置1に送信を指示するための上りリンクグラントを含むランダムアクセス応答(RAR: Random Access Response)を生成し、生成したランダムアクセス応答をPDSCHで端末装置1へ送信する。ランダムアクセス応答を、メッセージ2またはMsg2と称してもよい。また、基地局装置3は、受信したランダムアクセスプリアンブルから端末装置1と基地局装置3との間の送信タイミングのずれを算出し、該ずれを調整するための送信タイミング調整情報(Timing Advance Command)をメッセージ2に含める。また、基地局装置3は、受信したランダムアクセスプリアンブルに対応したランダムアクセスプリアンブル識別子をメッセージ2に含める。また、基地局装置3は、ランダムアクセスプリアンブルを送信した端末装置1宛てのランダムアクセス応答であることを示すためのRA-RNTI(ランダムアクセス応答識別情報:Random Access-Radio Network Temporary Identity)でスクランブルされたCRCを付加したDCIをPDCCHで送信する。RA-RNTIは、ランダムアクセスプリアンブルを送信したPRACHの周波数および時間の位置情報に応じて決定される。
<Message 2>
The base station device 3 that received the random access preamble generates a random access response (RAR) including an uplink grant to instruct the terminal device 1 to transmit, and sends the generated random access response to the terminal on the PDSCH. Send to device 1. The random access response may be referred to as message 2 or Msg2. The base station device 3 also calculates the transmission timing shift between the terminal device 1 and the base station device 3 from the received random access preamble, and provides transmission timing adjustment information (Timing Advance Command) for adjusting the shift. Include in message 2. Furthermore, the base station device 3 includes in the message 2 a random access preamble identifier corresponding to the received random access preamble. The base station device 3 also scrambles the random access preamble with RA-RNTI (Random Access-Radio Network Temporary Identity) to indicate that the response is addressed to the terminal device 1 that transmitted the random access preamble. The DCI with the added CRC is sent on the PDCCH. RA-RNTI is determined according to the frequency and time location information of the PRACH that transmitted the random access preamble.
 <メッセージ3>
 ランダムアクセスプリアンブルを送信した端末装置1は、該ランダムアクセスプリアンブル送信後の複数のサブフレーム期間(RARウィンドウと称される)内で、RA-RNTIによって識別されるランダムアクセス応答に対するPDCCHのモニタリングを行う。ランダムアクセスプリアンブルを送信した端末装置1は、該当するRA-RNTIを検出した場合に、PDSCHに配置されたランダムアクセス応答の復号を行う。ランダムアクセス応答の復号に成功した端末装置1は、該ランダムアクセス応答に、送信したランダムアクセスプリアンブルに対応したランダムアクセスプリアンブル識別子が含まれるか否か確認する。ランダムアクセスプリアンブル識別子が含まれる場合、ランダムアクセス応答に示される送信タイミング調整情報を用いて同期のずれを補正する。また、端末装置1は受信したランダムアクセス応答に含まれる上りリンクグラントを用いて、バッファに保管されているデータを基地局装置3へ送信する。この時上りリンクグラントを用いて送信されるデータをメッセージ3またはMsg3と称する。
<Message 3>
The terminal device 1 that transmitted the random access preamble monitors the PDCCH for the random access response identified by the RA-RNTI within multiple subframe periods (referred to as RAR windows) after transmitting the random access preamble. . When the terminal device 1 that transmitted the random access preamble detects the corresponding RA-RNTI, it decodes the random access response allocated to the PDSCH. The terminal device 1 that has successfully decoded the random access response checks whether the random access response includes a random access preamble identifier corresponding to the transmitted random access preamble. If a random access preamble identifier is included, the transmission timing adjustment information indicated in the random access response is used to correct the synchronization shift. Furthermore, the terminal device 1 uses the uplink grant included in the received random access response to transmit the data stored in the buffer to the base station device 3. The data transmitted using the uplink grant at this time is referred to as message 3 or Msg3.
 また、端末装置1は、復号に成功したランダムアクセス応答が一連のランダムアクセス手順において初めて受信に成功したものであった場合に、送信するメッセージ3に端末装置1を識別するための情報(C-RNTI)を含めて基地局装置3へ送信する。 In addition, if the successfully decoded random access response is the first one successfully received in a series of random access procedures, the terminal device 1 sends message 3 containing information for identifying the terminal device 1 (C- RNTI) and sends it to the base station device 3.
 <メッセージ4>
 基地局装置3は、ランダムアクセス応答で端末装置1のメッセージ3に対して割り当てたリソースで上りリンク送信を受信すると、受信したメッセージ3に含まれるC-RNTI MAC CEを検出する。そして、該端末装置1と接続を確立する場合、基地局装置3は検出したC-RNTI宛てにPDCCHを送信する。基地局装置3は、検出したC-RNTI宛てにPDCCHを送信する場合、該PDCCHに上りリンクグラントを含める。基地局装置3が送信するこれらのPDCCHはメッセージ4、Msg4あるいはコンテンションレゾリューションメッセージと称される。
<Message 4>
When the base station device 3 receives uplink transmission using the resource allocated to the message 3 of the terminal device 1 in the random access response, it detects the C-RNTI MAC CE included in the received message 3. Then, when establishing a connection with the terminal device 1, the base station device 3 transmits the PDCCH to the detected C-RNTI. When transmitting a PDCCH to the detected C-RNTI, the base station device 3 includes an uplink grant in the PDCCH. These PDCCHs transmitted by the base station device 3 are called message 4, Msg4, or contention resolution message.
 メッセージ3を送信した端末装置1は、基地局装置3からのメッセージ4をモニタリングする期間を定めたコンテンションレゾリューションタイマーを開始し、タイマー内で基地局から送信されるPDCCHの受信を試みる。メッセージ3でC-RNTI MAC CEを送信した端末装置1は、送信したC-RNTI宛てのPDCCHを基地局装置3から受信し、かつ該PDCCHに新規送信のための上りリンクグラントが含まれていた場合、他の端末装置1とのコンテンションレゾリューションに成功したものとみなし、コンテンションレゾリューションタイマーを停止し、ランダムアクセス手順を終了する。タイマー期間内で、自装置がメッセージ3で送信したC-RNTI宛てのPDCCHの受信が確認できなかった場合は、コンテンションレゾリューションが成功しなかったとみなし、端末装置1は再度ランダムアクセスプリアンブルの送信を行い、ランダムアクセス手順を続行する。ただし、ランダムアクセスプリアンブルの送信を所定の回数繰り返し、コンテンションレゾリューションに成功しなかった場合には、ランダムアクセスに問題があると判定し、上位層にランダムアクセス問題を通知する。例えば、上位層は、ランダムアクセス問題に基づいてMACエンティティをリセットしてもよい。上位層によってMACエンティティのリセットを要求された場合、端末装置1は、ランダムアクセス手順をストップする。 The terminal device 1 that has transmitted the message 3 starts a contention resolution timer that defines a period for monitoring the message 4 from the base station device 3, and attempts to receive the PDCCH transmitted from the base station within the timer. Terminal device 1, which sent C-RNTI MAC CE in message 3, received the PDCCH addressed to the sent C-RNTI from base station device 3, and the PDCCH included an uplink grant for new transmission. If so, it is assumed that contention resolution with the other terminal device 1 has been successful, the contention resolution timer is stopped, and the random access procedure is ended. If the reception of the PDCCH addressed to C-RNTI sent by the terminal device in message 3 cannot be confirmed within the timer period, it is assumed that contention resolution was not successful, and the terminal device 1 transmits the random access preamble again. Make the transmission and continue with the random access procedure. However, if the transmission of the random access preamble is repeated a predetermined number of times and contention resolution is not successful, it is determined that there is a problem with random access, and the upper layer is notified of the random access problem. For example, higher layers may reset the MAC entity based on random access issues. When requested to reset the MAC entity by the upper layer, the terminal device 1 stops the random access procedure.
 以上の4つのメッセージの送受信により、端末装置1は基地局装置3との同期をとり、基地局装置3に対する上りリンクデータ送信を行なうことができる。ただし、4つのメッセージを短縮し、メッセージAとメッセージBの2つのメッセージの送受信により端末装置1と基地局装置3が同期をとる2ステップランダムアクセスが用いられることもある。 By transmitting and receiving the above four messages, the terminal device 1 can synchronize with the base station device 3 and perform uplink data transmission to the base station device 3. However, two-step random access may be used in which four messages are shortened and the terminal device 1 and base station device 3 are synchronized by sending and receiving two messages, message A and message B.
 図10は、本実施形態の端末装置1における初期下りリンクBWPの決定処理の一例を示すフロー図である。ステップS1001において、端末装置1は、基地局装置3から送信されたシステム情報ブロック(SIB)でパラメータinitialDownlinkBWPを含む下りリンク設定情報(downlinkConfigCommon)を受信する。ステップS1002において、端末装置1は、受信した下りリンク設定情報にパラメータinitialDownlinkBWP-forRedCap-r18が含まれるか否かを判定する。ステップS1002において是である場合(S1002-Yes)、ステップS1003において、端末装置1は、パラメータinitialDownlinkBWP-forRedCap-r18で示される帯域幅の情報(locationAndBandwidth)を用いて初期下りリンクBWPを設定する。ステップS1002において否である場合(S1002-No)、ステップS1004において、端末装置1は、受信した下りリンク設定情報にパラメータinitialDownlinkBWP-forRedCap-r17が含まれるか否かを判定する。ステップS1004において是である場合(S1004-Yes)、ステップS1005において、端末装置1は、パラメータinitialDownlinkBWP-forRedCap-r17で示される帯域幅の情報(locationAndBandwidth)を用いて初期下りリンクBWPを設定する。ステップS1004において否である場合(S1004-No)、ステップS1006において、端末装置1は、パラメータinitialDownlinkBWPで示される帯域幅の情報(locationAndBandwidth)を用いて初期下りリンクBWPを設定する。ただし、ステップS1004における判定は、受信した下りリンク設定情報にパラメータinitialDownlinkBWP-forRedCap-r17が含まれ、かつinitialDownlinkBWP-forRedCap-r17で示される帯域幅が前記端末装置のサポートする最大帯域幅以下であるか否か、であってもよい。端末装置1は、設定した初期下りリンクBWPを用いて下りリンク信号および下りリンクチャネルを受信してもよい。端末装置1は、設定した初期下りリンクBWP内のCORESETおよび/またはサーチスペースを用いてPDCCHをモニタしても良い。基地局装置3は、initialDownlinkBWP、initialDownlinkBWP-forRedCap-r17および/またはinitialDownlinkBWP-forRedCap-r18で設定される1つまたは複数の初期下りリンクBWP内のそれぞれで下りリンク信号および下りリンクチャネルを送信しても良い。基地局装置3は、initialDownlinkBWP、initialDownlinkBWP-forRedCap-r17および/またはinitialDownlinkBWP-forRedCap-r18で設定される1つまたは複数の初期下りリンクBWP内のそれぞれに含まれるCORESETおよび/またはサーチスペースを用いて1つまたは複数のPDCCHを送信しても良い。このように、下りリンク設定情報に含まれるパラメータの有無により、異なる帯域幅の情報を用いて初期下りリンクBWPを設定することにより、端末装置1は、自装置がサポートする帯域幅に対応した初期下りリンクBWPを用いることができる。基地局装置3は、下りリンク設定情報に含まれる複数のパラメータを含めることで、異なる帯域幅をサポートする異なる端末装置1に対して異なる帯域幅の初期下りリンクBWPを設定することができる。基地局装置3は、下りリンク設定情報に前記複数のパラメータのうち一部のパラメータを含めないことで、異なる帯域幅をサポートする異なる端末装置1に対して同一の帯域幅の初期下りリンクBWPを設定することができる。 FIG. 10 is a flow diagram illustrating an example of the initial downlink BWP determination process in the terminal device 1 of this embodiment. In step S1001, the terminal device 1 receives downlink configuration information (downlinkConfigCommon) including the parameter initialDownlinkBWP in a system information block (SIB) transmitted from the base station device 3. In step S1002, the terminal device 1 determines whether the received downlink configuration information includes the parameter initialDownlinkBWP-forRedCap-r18. If yes in step S1002 (S1002-Yes), in step S1003, the terminal device 1 sets the initial downlink BWP using the bandwidth information (locationAndBandwidth) indicated by the parameter initialDownlinkBWP-forRedCap-r18. If the determination in step S1002 is negative (S1002-No), the terminal device 1 determines in step S1004 whether the parameter initialDownlinkBWP-forRedCap-r17 is included in the received downlink configuration information. If yes in step S1004 (S1004-Yes), in step S1005, the terminal device 1 sets the initial downlink BWP using the bandwidth information (locationAndBandwidth) indicated by the parameter initialDownlinkBWP-forRedCap-r17. If the determination in step S1004 is negative (S1004-No), in step S1006, the terminal device 1 sets the initial downlink BWP using the bandwidth information (locationAndBandwidth) indicated by the parameter initialDownlinkBWP. However, the determination in step S1004 is whether the received downlink configuration information includes the parameter initialDownlinkBWP-forRedCap-r17 and whether the bandwidth indicated by initialDownlinkBWP-forRedCap-r17 is less than or equal to the maximum bandwidth supported by the terminal device. No, it may be. The terminal device 1 may receive a downlink signal and a downlink channel using the set initial downlink BWP. The terminal device 1 may monitor the PDCCH using the CORESET and/or search space in the configured initial downlink BWP. Even if the base station device 3 transmits a downlink signal and a downlink channel in each of one or more initial downlink BWPs configured in initialDownlinkBWP, initialDownlinkBWP-forRedCap-r17, and/or initialDownlinkBWP-forRedCap-r18, good. The base station device 3 uses the CORESET and/or search space included in each of the one or more initial downlink BWPs configured in initialDownlinkBWP, initialDownlinkBWP-forRedCap-r17, and/or initialDownlinkBWP-forRedCap-r18. One or more PDCCHs may be transmitted. In this way, by setting the initial downlink BWP using information on different bandwidths depending on the presence or absence of parameters included in the downlink configuration information, terminal device 1 can set the initial downlink BWP according to the bandwidth supported by the device itself. Downlink BWP can be used. By including a plurality of parameters included in the downlink configuration information, the base station device 3 can configure initial downlink BWPs of different bandwidths for different terminal devices 1 that support different bandwidths. By not including some of the parameters among the plurality of parameters in the downlink configuration information, the base station device 3 provides an initial downlink BWP of the same bandwidth to different terminal devices 1 that support different bandwidths. Can be set.
 図11は、本実施形態の端末装置1における初期上りリンクBWPの決定処理の一例を示すフロー図である。ステップS2001において、端末装置1は、基地局装置3から送信されたシステム情報ブロック(SIB)で上りリンク設定情報(uplinkConfigCommon)を受信する。ステップS2002において、端末装置1は、受信した上りリンク設定情報にパラメータinitialUplinkBWP-forRedCap-r18が含まれるか否かを判定する。ステップS2002において是である場合(S2002-Yes)、ステップS2003において、端末装置1は、パラメータinitialUplinkBWP-forRedCap-r18で示される帯域幅の情報(locationAndBandwidth)を用いて初期上りリンクBWPを設定する。ステップS2002において否である場合(S2002-No)、ステップS2004において、端末装置1は、受信した上りリンク設定情報にパラメータinitialUplinkBWP-forRedCap-r17が含まれるか否かを判定する。ステップS2004において是である場合(S2004-Yes)、ステップS2005において、端末装置1は、パラメータinitialUplinkBWP-forRedCap-r17で示される帯域幅の情報(locationAndBandwidth)を用いて初期上りリンクBWPを設定する。ステップS2004において否である場合(S2004-No)、ステップS2006において、端末装置1は、受信した上りリンク設定情報に含まれるパラメータinitialUplinkBWPで示される帯域幅の情報(locationAndBandwidth)を用いて初期上りリンクBWPを設定する。ただし、ステップS2004における判定は、受信した上りリンク設定情報にパラメータinitialUplinkBWP-forRedCap-r17が含まれ、かつinitialUplinkBWP-forRedCap-r17で示される帯域幅が前記端末装置のサポートする最大帯域幅以下であるか否か、であってもよい。ただし、ステップ2006において、受信した上りリンク設定情報にパラメータが含まれていない場合、端末装置1は、初期上りリンクBWPを設定しないかもしれない。端末装置1は、設定した初期上りリンクBWPを用いて上りリンク信号および上りリンクチャネルを送信してもよい。端末装置1は、基地局装置3は、initialUplinkBWP、initialUplinkBWP-forRedCap-r17および/またはinitialUplinkBWP-forRedCap-r18で設定される1つまたは複数の初期上りリンクBWP内のそれぞれで上りリンク信号および上りリンクチャネルを受信しても良い。このように、上りリンク設定情報に含まれるパラメータの有無により、異なる帯域幅の情報を用いて初期上りリンクBWPを設定することにより、端末装置1は、自装置がサポートする帯域幅に対応した初期上りリンクBWPを用いることができる。基地局装置3は、上りリンク設定情報に含まれる複数のパラメータを含めることで、異なる帯域幅をサポートする異なる端末装置1に対して異なる帯域幅の初期上りリンクBWPを設定することができる。基地局装置3は、上りリンク設定情報に前記複数のパラメータのうち一部のパラメータを含めないことで、異なる帯域幅をサポートする異なる端末装置1に対して同一の帯域幅の初期上りリンクBWPを設定することができる。 FIG. 11 is a flow diagram illustrating an example of the initial uplink BWP determination process in the terminal device 1 of this embodiment. In step S2001, the terminal device 1 receives uplink configuration information (uplinkConfigCommon) in a system information block (SIB) transmitted from the base station device 3. In step S2002, the terminal device 1 determines whether the received uplink configuration information includes the parameter initialUplinkBWP-forRedCap-r18. If yes in step S2002 (S2002-Yes), in step S2003, the terminal device 1 sets the initial uplink BWP using the bandwidth information (locationAndBandwidth) indicated by the parameter initialUplinkBWP-forRedCap-r18. If the determination in step S2002 is negative (S2002-No), the terminal device 1 determines in step S2004 whether the parameter initialUplinkBWP-forRedCap-r17 is included in the received uplink configuration information. If yes in step S2004 (S2004-Yes), in step S2005, the terminal device 1 sets the initial uplink BWP using the bandwidth information (locationAndBandwidth) indicated by the parameter initialUplinkBWP-forRedCap-r17. If the determination in step S2004 is negative (S2004-No), in step S2006, the terminal device 1 uses the bandwidth information (locationAndBandwidth) indicated by the parameter initialUplinkBWP included in the received uplink configuration information to configure the initial uplink BWP. Set. However, the determination in step S2004 is whether the parameter initialUplinkBWP-forRedCap-r17 is included in the received uplink configuration information and the bandwidth indicated by initialUplinkBWP-forRedCap-r17 is less than or equal to the maximum bandwidth supported by the terminal device. No, it may be. However, in step 2006, if the received uplink configuration information does not include any parameters, the terminal device 1 may not configure the initial uplink BWP. The terminal device 1 may transmit an uplink signal and an uplink channel using the set initial uplink BWP. The terminal device 1 and the base station device 3 transmit uplink signals and uplink channels in each of one or more initial uplink BWPs configured in initialUplinkBWP, initialUplinkBWP-forRedCap-r17, and/or initialUplinkBWP-forRedCap-r18. You may receive. In this way, by setting the initial uplink BWP using information on different bandwidths depending on the presence or absence of parameters included in the uplink configuration information, terminal device 1 can set the initial uplink BWP according to the bandwidth supported by the device itself. Uplink BWP can be used. By including a plurality of parameters included in the uplink configuration information, the base station device 3 can configure initial uplink BWPs of different bandwidths for different terminal devices 1 that support different bandwidths. By not including some of the parameters among the plurality of parameters in the uplink configuration information, the base station device 3 provides an initial uplink BWP of the same bandwidth to different terminal devices 1 that support different bandwidths. Can be set.
 以下、本実施形態における装置の構成について説明する。 The configuration of the device in this embodiment will be described below.
 図12は、本実施形態の端末装置1の構成を示す概略ブロック図である。図示するように、端末装置1は、無線送受信部10、および、上位層処理部14を含んで構成される。無線送受信部10は、アンテナ部11、RF(Radio Frequency)部12、および、ベースバンド部13を含んで構成される。上位層処理部14は、媒体アクセス制御層処理部15、無線リソース制御層処理部16を含んで構成される。無線送受信部10を送信部10、受信部10、モニタ部10、または、物理層処理部10とも称する。上位層処理部14を処理部14、測定部14、選択部14、決定部14または制御部14とも称する。 FIG. 12 is a schematic block diagram showing the configuration of the terminal device 1 of this embodiment. As illustrated, the terminal device 1 is configured to include a wireless transmitting/receiving section 10 and an upper layer processing section 14. The radio transmitting/receiving section 10 includes an antenna section 11, an RF (Radio Frequency) section 12, and a baseband section 13. The upper layer processing section 14 includes a medium access control layer processing section 15 and a radio resource control layer processing section 16. The wireless transmitter/receiver 10 is also referred to as a transmitter 10, a receiver 10, a monitor 10, or a physical layer processor 10. The upper layer processing section 14 is also referred to as a processing section 14, a measuring section 14, a selecting section 14, a determining section 14, or a controlling section 14.
 上位層処理部14は、ユーザの操作等により生成された上りリンクデータ(トランスポートブロックと称されてもよい)を、無線送受信部10に出力する。上位層処理部14は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の一部あるいはすべての処理を行なう。上位層処理部14は、MIB(REDCAP MIBであってもよい)、SIB1(REDCAP SIB1であってもよい)およびその他のSIB(REDCAP SIBであってもよい)のビット情報を取得する機能を備えてもよい。上位層処理部14は、システム情報ブロック(SIB1/SIB)またはRRCシグナリングの情報に基づいて初期下りリンクBWPの設定(例えば周波数位置や帯域幅)を決定/特定する機能を備えてもよい。上位層処理部14は、システム情報ブロック(SIB1/SIB)またはRRCシグナリングの情報に基づいて初期上りリンクBWPの設定(例えば周波数位置や帯域幅)を決定/特定する機能を備えてもよい。 The upper layer processing unit 14 outputs uplink data (which may be referred to as a transport block) generated by user operations etc. to the wireless transmitting/receiving unit 10. The upper layer processing unit 14 processes a medium access control (MAC) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a radio resource control (Radio resource control) layer. Processes part or all of the Resource Control (RRC) layer. The upper layer processing unit 14 has a function of acquiring bit information of MIB (which may be REDCAP MIB), SIB1 (which may be REDCAP SIB1), and other SIBs (which may be REDCAP SIB). It's okay. The upper layer processing unit 14 may have a function of determining/specifying initial downlink BWP settings (eg, frequency position and bandwidth) based on system information block (SIB1/SIB) or RRC signaling information. The upper layer processing unit 14 may have a function of determining/specifying initial uplink BWP settings (eg, frequency position and bandwidth) based on system information block (SIB1/SIB) or RRC signaling information.
 上位層処理部14が備える媒体アクセス制御層処理部15は、MACレイヤ(媒体アクセス制御層)の処理を行なう。媒体アクセス制御層処理部15は、無線リソース制御層処理部16によって管理されている各種設定情報/パラメータに基づいて、スケジューリング要求の伝送の制御を行う。 The medium access control layer processing unit 15 included in the upper layer processing unit 14 performs MAC layer (medium access control layer) processing. The medium access control layer processing section 15 controls transmission of scheduling requests based on various setting information/parameters managed by the radio resource control layer processing section 16.
 上位層処理部14が備える無線リソース制御層処理部16は、RRCレイヤ(無線リソース制御層)の処理を行なう。無線リソース制御層処理部16は、自装置の各種設定情報/パラメータの管理をする。無線リソース制御層処理部16は、基地局装置3から受信した上位層の信号に基づいて各種設定情報/パラメータをセットする。すなわち、無線リソース制御層処理部16は、基地局装置3から受信した各種設定情報/パラメータを示す情報に基づいて各種設定情報/パラメータをセットする。無線リソース制御層処理部16は、基地局装置3から受信した下りリンク制御情報に基づいてリソース割り当てを制御(特定)する。 The radio resource control layer processing unit 16 included in the upper layer processing unit 14 performs RRC layer (radio resource control layer) processing. The radio resource control layer processing unit 16 manages various setting information/parameters of its own device. The radio resource control layer processing unit 16 sets various configuration information/parameters based on the upper layer signal received from the base station device 3. That is, the radio resource control layer processing unit 16 sets various configuration information/parameters based on information indicating various configuration information/parameters received from the base station device 3. The radio resource control layer processing unit 16 controls (specifies) resource allocation based on the downlink control information received from the base station device 3.
 無線送受信部10は、変調、復調、符号化、復号化などの物理層の処理を行う。無線送受信部10は、基地局装置3から受信した信号を、分離、復調、復号し、復号した情報を上位層処理部14に出力する。無線送受信部10は、データを変調、符号化することによって送信信号を生成し、基地局装置3等に送信する。無線送受信部10は、基地局装置3から受信した上位層の信号(RRCメッセージ)、DCIなどを上位層処理部14に出力する。また、無線送受信部10は、上位層処理部14からの指示に基づいて、上りリンク信号(PUCCHおよび/またはPUSCHを含む)を生成して送信する。無線送受信部10は、同期信号ブロック、追加同期信号ブロック、PSS、SSS、PBCH、PBCHのためのDMRS、ランダムアクセス応答、PDCCHおよび/またはPDSCHを受信する機能を備えてもよい。無線送受信部10は、PRACH(ランダムアクセスプリアンブルであってもよい)、PUCCHおよび/またはPUSCHを送信する機能を備えてもよい。無線送受信部10は、PDCCHをモニタする機能を備えてもよい。無線送受信部10は、PDCCHでDCIを受信する機能を備えてもよい。無線送受信部10は、PDCCHで受信したDCIを上位層処理部14に出力する機能を備えてもよい。無線送受信部10は、所定のセルに対応するシステム情報ブロック(SIB1および/またはSIB)を受信する機能を備えてもよい。無線送受信部10は、あるセルのあるBWPにおいて、所定のRNTI(例えば、SI-RNTI、RA-RNTI、P-RNTIなど)でスクランブルされたCRCを伴うDCIを受信する機能を備えてもよい。無線送受信部10は、あるセルのあるBWPにおいて、SIB(SIB1であってよい)またはランダムアクセス応答を、所定の時間リソースにスケジュールされたPDSCHを介して受信する機能を備えてもよい。 The wireless transmitter/receiver 10 performs physical layer processing such as modulation, demodulation, encoding, and decoding. The wireless transmitting/receiving unit 10 separates, demodulates, and decodes the signal received from the base station device 3, and outputs the decoded information to the upper layer processing unit 14. The wireless transmitter/receiver 10 generates a transmission signal by modulating and encoding data, and transmits it to the base station device 3 and the like. The wireless transmitter/receiver 10 outputs the upper layer signal (RRC message), DCI, etc. received from the base station device 3 to the upper layer processor 14. Furthermore, the radio transmitter/receiver 10 generates and transmits uplink signals (including PUCCH and/or PUSCH) based on instructions from the upper layer processor 14. The radio transceiver 10 may have a function of receiving a synchronization signal block, an additional synchronization signal block, PSS, SSS, PBCH, DMRS for PBCH, random access response, PDCCH and/or PDSCH. The radio transmitter/receiver 10 may have a function of transmitting PRACH (which may be a random access preamble), PUCCH, and/or PUSCH. The wireless transmitter/receiver 10 may have a function of monitoring PDCCH. The wireless transmitter/receiver 10 may have a function of receiving DCI on PDCCH. The wireless transmitting/receiving unit 10 may have a function of outputting the DCI received on the PDCCH to the upper layer processing unit 14. The wireless transmitter/receiver 10 may have a function of receiving a system information block (SIB1 and/or SIB) corresponding to a predetermined cell. The radio transmitting/receiving unit 10 may have a function of receiving DCI with a CRC scrambled with a predetermined RNTI (eg, SI-RNTI, RA-RNTI, P-RNTI, etc.) in a certain BWP of a certain cell. The radio transceiver 10 may have a function of receiving an SIB (which may be SIB1) or a random access response in a certain BWP of a certain cell via a PDSCH scheduled for a predetermined time resource.
 RF部12は、アンテナ部11を介して受信した信号を、直交復調によりベースバンド信号に変換し(ダウンコンバート: down covert)、不要な周波数成分を除去する。RF部12は、処理をしたアナログ信号をベースバンド部に出力する。 The RF unit 12 converts the signal received via the antenna unit 11 into a baseband signal by orthogonal demodulation (down converting) and removes unnecessary frequency components. The RF section 12 outputs the processed analog signal to the baseband section.
 ベースバンド部13は、RF部12から入力されたアナログ信号を、アナログ信号をデジタル信号に変換する。ベースバンド部13は、変換したデジタル信号からCP(Cyclic Prefix)に相当する部分を除去し、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出する。 The baseband section 13 converts the analog signal input from the RF section 12 into a digital signal. The baseband unit 13 removes a portion corresponding to the CP (Cyclic Prefix) from the converted digital signal, performs Fast Fourier Transform (FFT) on the signal from which the CP has been removed, and transforms the signal in the frequency domain. Extract.
 ベースバンド部13は、データを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)して、OFDMシンボルを生成し、生成されたOFDMシンボルにCPを付加し、ベースバンドのデジタル信号を生成し、ベースバンドのデジタル信号をアナログ信号に変換する。ベースバンド部13は、変換したアナログ信号をRF部12に出力する。 The baseband unit 13 performs an inverse fast Fourier transform (IFFT) on the data to generate an OFDM symbol, adds a CP to the generated OFDM symbol, generates a baseband digital signal, and generates a baseband digital signal. Convert band digital signals to analog signals. Baseband section 13 outputs the converted analog signal to RF section 12.
 RF部12は、ローパスフィルタを用いてベースバンド部13から入力されたアナログ信号から余分な周波数成分を除去し、アナログ信号を搬送波周波数にアップコンバート(up convert)し、アンテナ部11を介して送信する。また、RF部12は、電力を増幅する。また、RF部12は在圏セルにおいて送信する上りリンク信号および/または上りリンクチャネルの送信電力を決定する機能を備えてもよい。RF部12を送信電力制御部とも称する。 The RF section 12 uses a low-pass filter to remove extra frequency components from the analog signal input from the baseband section 13, up-converts the analog signal to a carrier frequency, and transmits it via the antenna section 11. do. Furthermore, the RF section 12 amplifies power. Further, the RF unit 12 may have a function of determining the transmission power of an uplink signal and/or an uplink channel to be transmitted in the serving cell. The RF section 12 is also referred to as a transmission power control section.
 RF部12は、アンテナスイッチを用いて、信号受信時にはアンテナ部11とRF部12が備えるフィルタを接続し、信号送信時にはアンテナ部11とRF部12が備えるパワーアンプを接続してもよい。 The RF unit 12 may use an antenna switch to connect the antenna unit 11 and the filter included in the RF unit 12 when receiving a signal, and to connect the power amplifier included in the antenna unit 11 and the RF unit 12 when transmitting a signal.
 RF部12は、設定された下りリンクBWP(例えば初期下りリンクBWP)の帯域幅が、自装置の受信機がサポートする帯域幅(割当帯域幅と称されて良い)より広い場合、該下りリンクBWP内でRF回路を適用する周波数帯域を調整/再調整(tuning/retuning)する機能を備えても良い。ただし、RF回路を適用する周波数帯域とは、受信信号をベースバンド信号にダウンコンバートする際に適用する搬送波周波数の周波数帯域であってよい。 If the bandwidth of the configured downlink BWP (for example, initial downlink BWP) is wider than the bandwidth supported by the receiver of its own device (which may be referred to as allocated bandwidth), the RF unit 12 configures the downlink A function for adjusting/retuning the frequency band to which the RF circuit is applied within the BWP may be provided. However, the frequency band to which the RF circuit is applied may be the frequency band of the carrier frequency applied when down-converting the received signal to a baseband signal.
 RF部12は、設定された上りリンクBWP(例えば初期下りリンクBWP)の帯域幅が、自装置の送信機がサポートする帯域幅(割当帯域幅と称されて良い)より広い場合、該上りリンクBWP内でRF回路を適用する周波数帯域を調整/再調整する機能を備えても良い。ただし、RF回路を適用する周波数帯域とは、アナログ信号を搬送波周波数にアップコンバートする際に適用する搬送波周波数の周波数帯域であってよい。 If the bandwidth of the configured uplink BWP (for example, initial downlink BWP) is wider than the bandwidth supported by the transmitter of its own device (which may be referred to as allocated bandwidth), the RF unit 12 A function may be provided to adjust/readjust the frequency band to which the RF circuit is applied within the BWP. However, the frequency band to which the RF circuit is applied may be the frequency band of the carrier wave frequency applied when upconverting an analog signal to the carrier wave frequency.
 図13は、本実施形態の基地局装置3の構成を示す概略ブロック図である。図示するように、基地局装置3は、無線送受信部30、および、上位層処理部34を含んで構成される。無線送受信部30は、アンテナ部31、RF部32、および、ベースバンド部33を含んで構成される。上位層処理部34は、媒体アクセス制御層処理部35、無線リソース制御層処理部36を含んで構成される。無線送受信部30を送信部30、受信部30、モニタ部30、または、物理層処理部30とも称する。また様々な条件に基づき各部の動作を制御する制御部を別途備えてもよい。上位層処理部34を、処理部34、決定部34または制御部34とも称する。 FIG. 13 is a schematic block diagram showing the configuration of the base station device 3 of this embodiment. As illustrated, the base station device 3 is configured to include a wireless transmitting/receiving section 30 and an upper layer processing section . The radio transmitting/receiving section 30 includes an antenna section 31, an RF section 32, and a baseband section 33. The upper layer processing section 34 includes a medium access control layer processing section 35 and a radio resource control layer processing section 36. The wireless transmitter/receiver 30 is also referred to as a transmitter 30, a receiver 30, a monitor 30, or a physical layer processor 30. Further, a control section may be separately provided to control the operation of each section based on various conditions. The upper layer processing section 34 is also referred to as a processing section 34, a determining section 34, or a control section 34.
 上位層処理部34は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の一部あるいはすべての処理を行なう。上位層処理部34は、端末装置1に送信した上位層の信号とPUSCHを送信するための時間リソースに基づいてDCIを生成する機能を備えてもよい。上位層処理部34は、生成したDCIなどを無線送受信部30に出力する機能を備えてもよい。上層処理部34は、端末装置1が初期下りリンクBWPを特定するための情報を含むシステム情報ブロック(SIB1/SIB)および/またはRRCシグナリングを生成する機能を備えても良い。上層処理部34は、端末装置1が初期上りリンクBWPを特定するための情報を含むシステム情報ブロック(SIB1/SIB)および/またはRRCシグナリングを生成する機能を備えても良い。 The upper layer processing unit 34 processes a medium access control (MAC) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, and a radio resource control (Radio resource control) layer. Processes part or all of the Resource Control (RRC) layer. The upper layer processing unit 34 may have a function of generating the DCI based on the upper layer signal transmitted to the terminal device 1 and the time resource for transmitting the PUSCH. The upper layer processing unit 34 may have a function of outputting the generated DCI and the like to the wireless transmitting/receiving unit 30. The upper layer processing unit 34 may have a function of generating a system information block (SIB1/SIB) containing information for the terminal device 1 to specify the initial downlink BWP and/or RRC signaling. The upper layer processing unit 34 may have a function of generating a system information block (SIB1/SIB) containing information for the terminal device 1 to specify the initial uplink BWP and/or RRC signaling.
 上位層処理部34が備える媒体アクセス制御層処理部35は、MACレイヤの処理を行なう。媒体アクセス制御層処理部35は、無線リソース制御層処理部36によって管理されている各種設定情報/パラメータに基づいて、スケジューリングリクエストに関する処理を行う。 The medium access control layer processing unit 35 included in the upper layer processing unit 34 performs MAC layer processing. The medium access control layer processing unit 35 performs processing related to scheduling requests based on various setting information/parameters managed by the radio resource control layer processing unit 36.
 上位層処理部34が備える無線リソース制御層処理部36は、RRCレイヤの処理を行なう。無線リソース制御層処理部36は、端末装置1にリソースの割当情報を含むDCI(上りリンクグラント、下りリンクグラント)を生成する。無線リソース制御層処理部36は、DCI、PDSCHに配置される下りリンクデータ(トランスポートブロック(TB)、ランダムアクセス応答(RAR))、システム情報、RRCメッセージ、MAC CE(Control Element)などを生成し、又は上位ノードから取得し、無線送受信部30に出力する。また、無線リソース制御層処理部36は、端末装置1各々の各種設定情報/パラメータの管理をする。無線リソース制御層処理部36は、上位層の信号を介して端末装置1各々に対して各種設定情報/パラメータをセットしてもよい。すなわち、無線リソース制御層処理部36は、各種設定情報/パラメータを示す情報を送信/報知する。無線リソース制御層処理部36は、あるセルにおける1つまたは複数の参照信号の設定を特定するための情報を送信/報知してもよい。 The radio resource control layer processing unit 36 included in the upper layer processing unit 34 performs RRC layer processing. The radio resource control layer processing unit 36 generates DCI (uplink grant, downlink grant) including resource allocation information for the terminal device 1. The radio resource control layer processing unit 36 generates downlink data (transport block (TB), random access response (RAR)), system information, RRC message, MAC CE (Control Element), etc. to be placed in DCI and PDSCH. or obtain it from a higher-level node and output it to the wireless transmitter/receiver 30. Furthermore, the radio resource control layer processing unit 36 manages various setting information/parameters of each terminal device 1. The radio resource control layer processing unit 36 may set various setting information/parameters for each terminal device 1 via upper layer signals. That is, the radio resource control layer processing unit 36 transmits/broadcasts information indicating various setting information/parameters. The radio resource control layer processing unit 36 may transmit/broadcast information for specifying the setting of one or more reference signals in a certain cell.
 基地局装置3から端末装置1にRRCメッセージ、MAC CE、および/またはPDCCHを送信し、端末装置1がその受信に基づいて処理を行う場合、基地局装置3は、端末装置が、その処理を行っていることを想定して処理(端末装置1やシステムの制御)を行う。すなわち、基地局装置3は、端末装置にその受信に基づく処理を行わせるようにするRRCメッセージ、MAC CE、および/またはPDCCHを端末装置1に送っている。 When the base station device 3 transmits an RRC message, MAC CE, and/or PDCCH to the terminal device 1, and the terminal device 1 performs processing based on the reception, the base station device 3 Processing (controlling the terminal device 1 and the system) is performed assuming that the terminal device 1 and the system are being executed. That is, the base station device 3 sends to the terminal device 1 an RRC message, a MAC CE, and/or a PDCCH that causes the terminal device to perform processing based on the reception thereof.
 無線送受信部30は、端末装置1に上位層の信号(RRCメッセージ)、DCIなどを送信する。また、無線送受信部30は、上位層処理部34からの指示に基づいて、端末装置1から送信した上りリンク信号を受信する。無線送受信部30は、PDCCHおよび/またはPDSCHを送信する機能を備えてもよい。無線送受信部30は、1つまたは複数のPUCCHおよび/またはPUSCHを受信する機能を備えてもよい。無線送受信部30は、PDCCHでDCIを送信する機能を備えてもよい。無線送受信部30は、上位層処理部34が出力したDCIをPDCCHで送信する機能を備えてもよい。無線送受信部30は、SSB、PSS、SSS、PBCHおよび/またはPBCHのためのDMRSを送信する機能を備えてもよい。無線送受信部30は、RRCメッセージ(RRCパラメータであってもよい)を送信する機能を備えてもよい。無線送受信部30は、端末装置1がシステム情報ブロック(SIB1/SIB)を送信する機能を備えても良い。無線送受信部30は、あるセルのあるBWPにおいて、所定のRNTI(例えば、SI-RNTI、RA-RNTI、P-RNTIなど)でスクランブルされたCRCを伴うDCIを送信する機能を備えてもよい。無線送受信部30は、あるセルのあるBWPにおいて、SIB(SIB1であってよい)またはランダムアクセス応答を、所定の時間リソースにスケジュールされたPDSCHを介して送信する機能を備えてもよい。その他、無線送受信部30の一部の機能は、無線送受信部10と同様であるため説明を省略する。なお、基地局装置3が1つまたは複数の送受信点4と接続している場合、無線送受信部30の機能の一部あるいは全部が、各送受信点4に含まれてもよい。 The wireless transmitting/receiving unit 30 transmits upper layer signals (RRC messages), DCI, etc. to the terminal device 1. Furthermore, the wireless transmitting/receiving unit 30 receives the uplink signal transmitted from the terminal device 1 based on an instruction from the upper layer processing unit 34. The wireless transmitter/receiver 30 may have a function of transmitting PDCCH and/or PDSCH. The wireless transmitter/receiver 30 may have a function of receiving one or more PUCCH and/or PUSCH. The wireless transmitter/receiver 30 may have a function of transmitting DCI on PDCCH. The wireless transmitter/receiver 30 may have a function of transmitting the DCI output by the upper layer processor 34 on the PDCCH. The wireless transmitter/receiver 30 may have a function of transmitting SSB, PSS, SSS, PBCH, and/or DMRS for PBCH. The wireless transmitter/receiver 30 may have a function of transmitting an RRC message (which may be an RRC parameter). The wireless transmitter/receiver 30 may have a function for the terminal device 1 to transmit the system information block (SIB1/SIB). The radio transmitting/receiving unit 30 may have a function of transmitting DCI with a CRC scrambled with a predetermined RNTI (eg, SI-RNTI, RA-RNTI, P-RNTI, etc.) in a certain BWP of a certain cell. The radio transmitter/receiver 30 may have a function of transmitting an SIB (which may be SIB1) or a random access response via a PDSCH scheduled at a predetermined time resource in a certain BWP of a certain cell. Some other functions of the wireless transmitter/receiver 30 are the same as those of the wireless transmitter/receiver 10, so description thereof will be omitted. Note that when the base station device 3 is connected to one or more transmitting/receiving points 4, part or all of the functions of the wireless transmitting/receiving section 30 may be included in each transmitting/receiving point 4.
 また、上位層処理部34は、基地局装置3間あるいは上位のネットワーク装置(MME、S-GW(Serving-GW))と基地局装置3との間の制御メッセージ、またはユーザデータの送信(転送)または受信を行なう。図13において、その他の基地局装置3の構成要素や、構成要素間のデータ(制御情報)の伝送経路については省略されているが、基地局装置3として動作するために必要なその他の機能を有する複数のブロックを構成要素として持つことは明らかである。例えば、上位層処理部34には、無線リソース管理(Radio Resource Management)層処理部や、アプリケーション層処理部が存在している。 The upper layer processing unit 34 also transmits (transfers) control messages or user data between the base station devices 3 or between an upper network device (MME, S-GW (Serving-GW)) and the base station device 3. ) or receive. In FIG. 13, other components of the base station device 3 and transmission paths for data (control information) between the components are omitted, but other functions necessary for operating as the base station device 3 are omitted. It is clear that it has a plurality of blocks as constituent elements. For example, the upper layer processing section 34 includes a radio resource management layer processing section and an application layer processing section.
 なお、図中の「部」とは、セクション、回路、構成装置、デバイス、ユニットなど用語によっても表現される、端末装置1および基地局装置3の機能および各手順を実現する要素である。 Note that the "unit" in the figure is an element that realizes the functions and procedures of the terminal device 1 and the base station device 3, which is also expressed by terms such as section, circuit, component device, device, and unit.
 端末装置1が備える符号10から符号16が付された部のそれぞれは、回路として構成されてもよい。基地局装置3が備える符号30から符号36が付された部のそれぞれは、回路として構成されてもよい。 Each of the units numbered 10 to 16 included in the terminal device 1 may be configured as a circuit. Each of the units labeled 30 to 36 included in the base station device 3 may be configured as a circuit.
 本発明に関わる装置で動作するプログラムは、本発明に関わる実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、一時的にRandom Access Memory(RAM)などの揮発性メモリあるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)、あるいはその他の記憶装置システムに格納される。 The program that runs on the device related to the present invention may be a program that controls the Central Processing Unit (CPU) and the like to make the computer function so as to realize the functions of the embodiments related to the present invention. Programs, or the information handled by them, are temporarily stored in volatile memory such as Random Access Memory (RAM), non-volatile memory such as flash memory, hard disk drives (HDD), or other storage systems.
 尚、本発明に関わる実施形態の機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録しても良い。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体、短時間動的にプログラムを保持する媒体、あるいはコンピュータが読み取り可能なその他の記録媒体であっても良い。 Incidentally, a program for realizing the functions of the embodiments related to the present invention may be recorded on a computer-readable recording medium. The program recorded on this recording medium may be read into a computer system and executed. The "computer system" herein refers to a computer system built into the device, and includes hardware such as an operating system and peripheral devices. Furthermore, a "computer-readable recording medium" refers to a semiconductor recording medium, an optical recording medium, a magnetic recording medium, a medium that dynamically stores a program for a short period of time, or any other computer-readable recording medium. Also good.
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、たとえば、集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサであってもよいし、従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。前述した電気回路は、デジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、本発明の一又は複数の態様は当該技術による新たな集積回路を用いることも可能である。 Additionally, each functional block or feature of the device used in the embodiments described above may be implemented or executed in an electrical circuit, such as an integrated circuit or multiple integrated circuits. An electrical circuit designed to perform the functions described herein may be a general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), field programmable gate array (FPGA), or other programmable logic devices, discrete gate or transistor logic, discrete hardware components, or combinations thereof. A general purpose processor may be a microprocessor or a conventional processor, controller, microcontroller, or state machine. The electric circuit described above may be composed of a digital circuit or an analog circuit. Furthermore, if an integrated circuit technology that replaces the current integrated circuit emerges due to advances in semiconductor technology, one or more aspects of the present invention may use a new integrated circuit based on that technology.
 なお、本発明に関わる実施形態では、基地局装置と端末装置で構成される通信システムに適用される例を記載したが、D2D(Device to Device)のような、端末同士が通信を行うシステムにおいても適用可能である。 Note that in the embodiments related to the present invention, an example has been described in which the present invention is applied to a communication system composed of a base station device and a terminal device. is also applicable.
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用出来る。 Note that the present invention is not limited to the above-described embodiments. Although an example of the device has been described in the embodiment, the present invention is not limited to this, and can be applied to stationary or non-movable electronic equipment installed indoors or outdoors, such as AV equipment, kitchen equipment, It can be applied to terminal devices or communication devices such as cleaning/washing equipment, air conditioning equipment, office equipment, vending machines, and other household equipment.
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。 Although the embodiments of the present invention have been described above in detail with reference to the drawings, the specific configuration is not limited to these embodiments, and may include design changes without departing from the gist of the present invention. Further, the present invention can be modified in various ways within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included within the technical scope of the present invention. It will be done. Also included are configurations in which the elements described in each of the above embodiments are replaced with each other and have similar effects.
 本発明は、例えば、通信システム、通信機器(例えば、携帯電話装置、基地局装置、無線LAN装置、或いはセンサーデバイス)、集積回路(例えば、通信チップ)、又はプログラム等において、利用することができる。 The present invention can be used, for example, in a communication system, a communication device (e.g., a mobile phone device, a base station device, a wireless LAN device, or a sensor device), an integrated circuit (e.g., a communication chip), a program, etc. .
1(1A、1B) 端末装置
3 基地局装置
4 送受信点(TRP)
10 無線送受信部
11 アンテナ部
12 RF部
13 ベースバンド部
14 上位層処理部
15 媒体アクセス制御層処理部
16 無線リソース制御層処理部
30 無線送受信部
31 アンテナ部
32 RF部
33 ベースバンド部
34 上位層処理部
35 媒体アクセス制御層処理部
36 無線リソース制御層処理部
50 送信ユニット(TXRU)
51 位相シフタ
52 アンテナエレメント
1 (1A, 1B) Terminal device 3 Base station device 4 Transmission/reception point (TRP)
10 Radio transceiver section 11 Antenna section 12 RF section 13 Baseband section 14 Upper layer processing section 15 Medium access control layer processing section 16 Radio resource control layer processing section 30 Radio transceiver section 31 Antenna section 32 RF section 33 Baseband section 34 Upper layer Processing unit 35 Medium access control layer processing unit 36 Radio resource control layer processing unit 50 Transmission unit (TXRU)
51 Phase shifter 52 Antenna element

Claims (4)

  1.  端末装置であって、
     システム情報ブロックで上りリンク設定情報を受信する受信部と、
     前記上りリンク設定情報を用いて初期上りリンクBWPを設定する制御部と、を備え、
     前記制御部は、
     前記上りリンク設定情報が第1の設定情報を含む場合、前記第1の設定情報で示される帯域幅の情報を用いて前記初期上りリンクBWPを設定し、
     前記上りリンク設定情報が前記第1の設定情報を含まず、第2の設定情報を含み、かつ、前記第2の設定情報で示される帯域幅が前記端末装置のサポートする最大帯域幅以下である場合、前記第2の設定情報で示される帯域幅の情報を用いて前記初期上りリンクBWPを設定し、
     前記上りリンク設定情報が前記第1の設定情報と前記第2の設定情報を含まない場合、前記上りリンク設定情報に含まれる第3の設定情報で示される帯域幅の情報を用いて前記初期上りリンクBWPを設定する、端末装置。
    A terminal device,
    a receiving unit that receives uplink configuration information in a system information block;
    a control unit that configures an initial uplink BWP using the uplink configuration information,
    The control unit includes:
    When the uplink configuration information includes first configuration information, setting the initial uplink BWP using bandwidth information indicated by the first configuration information,
    The uplink configuration information does not include the first configuration information, but includes second configuration information, and the bandwidth indicated by the second configuration information is less than or equal to the maximum bandwidth supported by the terminal device. If so, configure the initial uplink BWP using bandwidth information indicated by the second configuration information,
    If the uplink configuration information does not include the first configuration information and the second configuration information, the initial uplink configuration is performed using the bandwidth information indicated by the third configuration information included in the uplink configuration information. Terminal device for setting link BWP.
  2.  前記受信部は、
     前記設定された初期上りリンクBWPを用いて上りリンクチャネルを送信する請求項1記載の端末装置。
    The receiving section includes:
    The terminal device according to claim 1, wherein the terminal device transmits an uplink channel using the set initial uplink BWP.
  3.  基地局装置であって、
     第1の初期上りリンクBWPを設定し、前記第1の初期上りリンクBWPの帯域幅を示す第1の設定情報を含む上りリンク設定情報を生成する制御部と、
     システム情報ブロックで前記上りリンク設定情報を送信する送信部と、を備え、
     前記制御部は、
     前記第1の初期上りリンクBWPと異なる第2の初期上りリンクBWPを設定する場合、前記上りリンク設定情報に前記第2の初期上りリンクBWPの帯域幅を示す第2の設定情報を含め、
     前記第1の初期上りリンクBWPおよび前記第2の初期上りリンクBWPと異なる第3の初期上りリンクBWPを設定する場合、前記上りリンク設定情報に前記第3の初期上りリンクBWPの帯域幅を示す第3の設定情報を含める、基地局装置。
    A base station device,
    a control unit that configures a first initial uplink BWP and generates uplink configuration information including first configuration information indicating a bandwidth of the first initial uplink BWP;
    a transmitter that transmits the uplink configuration information in a system information block,
    The control unit includes:
    When setting a second initial uplink BWP different from the first initial uplink BWP, the uplink configuration information includes second configuration information indicating a bandwidth of the second initial uplink BWP,
    When setting a third initial uplink BWP different from the first initial uplink BWP and the second initial uplink BWP, the bandwidth of the third initial uplink BWP is indicated in the uplink configuration information. A base station device that includes third configuration information.
  4.  端末装置の通信方法であって、
     システム情報ブロックで上りリンク設定情報を受信し、
     前記上りリンク設定情報を用いて初期上りリンクBWPを設定し、
     前記上りリンク設定情報が第1の設定情報を含む場合、前記第1の設定情報で示される帯域幅の情報を用いて前記初期上りリンクBWPを設定し、
     前記上りリンク設定情報が前記第1の設定情報を含まず、第2の設定情報を含み、かつ、前記第2の設定情報で示される帯域幅が前記端末装置のサポートする最大帯域幅以下である場合、前記第2の設定情報で示される帯域幅の情報を用いて前記初期上りリンクBWPを設定し、
     前記上りリンク設定情報が前記第1の設定情報と前記第2の設定情報を含まない場合、前記上りリンク設定情報に含まれる第3の設定情報で示される帯域幅の情報を用いて前記初期上りリンクBWPを設定する、通信方法。
    A communication method for a terminal device, the method comprising:
    Receive uplink configuration information in the system information block,
    Setting an initial uplink BWP using the uplink configuration information,
    When the uplink configuration information includes first configuration information, setting the initial uplink BWP using bandwidth information indicated by the first configuration information,
    The uplink configuration information does not include the first configuration information, but includes second configuration information, and the bandwidth indicated by the second configuration information is less than or equal to the maximum bandwidth supported by the terminal device. If so, configure the initial uplink BWP using bandwidth information indicated by the second configuration information,
    If the uplink configuration information does not include the first configuration information and the second configuration information, the initial uplink configuration is performed using the bandwidth information indicated by the third configuration information included in the uplink configuration information. Communication method for setting link BWP.
PCT/JP2023/004951 2022-03-25 2023-02-14 Terminal device, base station device, and communication method WO2023181710A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-049390 2022-03-25
JP2022049390 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023181710A1 true WO2023181710A1 (en) 2023-09-28

Family

ID=88101183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004951 WO2023181710A1 (en) 2022-03-25 2023-02-14 Terminal device, base station device, and communication method

Country Status (1)

Country Link
WO (1) WO2023181710A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020033395A1 (en) * 2018-08-06 2020-02-13 Babaei Alireza Cell and bandwidth part operations in unlicensed bands

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020033395A1 (en) * 2018-08-06 2020-02-13 Babaei Alireza Cell and bandwidth part operations in unlicensed bands

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CMCC: "Remaining issues of reduced maximum UE bandwidth", 3GPP DRAFT; R1-2201861, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20220221 - 20220303, 14 February 2022 (2022-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052109801 *

Similar Documents

Publication Publication Date Title
US11706777B2 (en) Base station apparatus, terminal apparatus, and communication method
JP7246874B2 (en) BASE STATION DEVICE, TERMINAL DEVICE, AND COMMUNICATION METHOD
US20220124633A1 (en) Communication method, terminal apparatus, base station apparatus, and integrated circuit
US20220095353A1 (en) Base station apparatus, terminal apparatus, and communication method
WO2020170972A1 (en) Base station device, terminal device, communication method, and integrated circuit
US20220116144A1 (en) Base station apparatus, terminal apparatus and communication method
US20220159682A1 (en) Base station apparatus, terminal apparatus, and communication method
JP6917403B2 (en) Base station equipment, terminal equipment and communication methods
JP7240843B2 (en) BASE STATION DEVICE, TERMINAL DEVICE, COMMUNICATION METHOD, AND INTEGRATED CIRCUIT
WO2020218529A1 (en) Base station device, terminal device, and communication method
WO2020203427A1 (en) Base station device, terminal device, and communication method
WO2022239492A1 (en) Terminal device, base station device, and communication method
WO2020195531A1 (en) Base station device, terminal device, and communication method
WO2020218348A1 (en) Base station device, terminal device, communication method, and integrated circuit
JP2022102123A (en) Terminal device, base station device, and communication method
JP2022102124A (en) Terminal device, base station device, and communication method
JP2022055393A (en) Terminal device, base station device, and communication method
WO2023181710A1 (en) Terminal device, base station device, and communication method
WO2023181746A1 (en) Terminal device, base station device, and communication method
JP2022011324A (en) Terminal device, base station device, and communication method
WO2023013293A1 (en) Terminal device, base station device, and communication method
WO2023013294A1 (en) Terminal device, base station device, and communication method
WO2023119892A1 (en) Terminal device, base station device, and communication method
WO2022239493A1 (en) Terminal device, base station device, and communication method
WO2023054111A1 (en) Terminal device, base station device, and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774309

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024509840

Country of ref document: JP