WO2023181643A1 - High-strength steel sheet and manufacturing method therefor - Google Patents

High-strength steel sheet and manufacturing method therefor Download PDF

Info

Publication number
WO2023181643A1
WO2023181643A1 PCT/JP2023/002917 JP2023002917W WO2023181643A1 WO 2023181643 A1 WO2023181643 A1 WO 2023181643A1 JP 2023002917 W JP2023002917 W JP 2023002917W WO 2023181643 A1 WO2023181643 A1 WO 2023181643A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
temperature
steel plate
content
strength steel
Prior art date
Application number
PCT/JP2023/002917
Other languages
French (fr)
Japanese (ja)
Inventor
潤也 戸畑
勇樹 田路
秀和 南
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023528942A priority Critical patent/JP7323095B1/en
Publication of WO2023181643A1 publication Critical patent/WO2023181643A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a high-strength steel plate that is excellent in tensile strength, El, toughness, flatness in the width direction, and resistance to work embrittlement, and a method for manufacturing the same.
  • the high-strength steel sheet of the present invention can be suitably used as a structural member for automobile parts and the like.
  • High-strength steel sheets used in automobiles require excellent press forming.
  • frame parts such as automobile bumpers
  • high-strength steel plates with high El.
  • excellent toughness and resistance to work embrittlement are required.
  • Patent Document 1 describes that warpage of a steel plate adversely affects operational troubles in a forming line and dimensional accuracy of products.
  • the present inventors found that the dimensional accuracy of a product is affected not only by the warpage of the steel plate but also by the flatness in the width direction of the plate, which is evaluated using steepness.
  • the steepness in the width direction is preferably 0.02 or less.
  • Patent Document 2 provides a high-strength steel plate having a tensile strength of 1100 MPa or more and excellent YR, surface texture, and weldability, and a method for manufacturing the same.
  • the technique described in Patent Document 2 does not take into consideration El, toughness, flatness in the sheet width direction, and resistance to work embrittlement.
  • Patent Document 3 provides a hot-dip galvanized steel sheet with excellent press formability and low-temperature toughness and a tensile strength of 980 MPa or more, and a method for manufacturing the same.
  • the technique described in Patent Document 3 can improve the embrittlement of the steel plate due to a temperature drop, it does not take into account the embrittlement of the steel plate due to processing. Flatness in the width direction of the plate is also not considered.
  • the present invention was developed in view of the above circumstances, and includes a high-strength steel plate having a TS of 980 MPa or more, an El of 10% or more, and excellent toughness, flatness in the width direction, and resistance to work embrittlement, and a method for manufacturing the same.
  • the purpose is to provide
  • Excellent durability can be achieved by setting the amount of retained austenite to 15% or less in terms of volume fraction and the average value of the occupancy of the packets having the maximum occupancy in the prior austenite grains to 70% or less in terms of area fraction. Process embrittlement properties can be achieved.
  • the present invention has been made based on the above findings. That is, the gist of the present invention is as follows. [1] In mass %, C: 0.030% or more and 0.500% or less, Si: 0.50% or more and 2.50% or less, Mn: 1.00% or more and 5.00% or less, P: 0. Contains 100% or less, S: 0.0200% or less, Al: 1.000% or less, N: 0.0100% or less, and O: 0.0100% or less, with the remainder consisting of Fe and inevitable impurities.
  • the amount of martensite is 60% or more in area fraction
  • the amount of retained austenite is 3% or more and 15% or less in volume fraction
  • the amount of ferrite and bainitic ferrite is A high-strength steel plate, wherein the total area fraction is more than 10%
  • the average value of the occupancy of packets having the maximum occupancy in prior austenite grains is 70% or less in area fraction.
  • the component composition further includes, in mass %, Ti: 0.200% or less, Nb: 0.200% or less, V: 0.200% or less, Ta: 0.10% or less, W: 0.
  • the average cooling rate in the temperature range from Ms to the cooling stop temperature Tb is performed by bending and unbending a total of 1 to 15 times using a roll with a radius of 800 mm or less in the temperature range of 499 ° C to Ms. is cooled at 150°C/s or less, the tension applied to the steel plate in the temperature range from Ms to cooling stop temperature Tb is 5 MPa or more and 100 MPa or less, and the cooling stop temperature Tb is 100°C or more (Ms - 80°C).
  • Ms is the martensitic transformation start temperature (°C) defined by formula (1)
  • the tempering temperature is Tb or more and 450°C or less
  • the holding time at the tempering temperature is 10 seconds or more and 1000 A method for producing high-strength steel sheets that can be tempered in seconds or less.
  • the present invention it is possible to obtain a high-strength steel plate having a TS of 980 MPa or more, an El of 10% or more, and excellent toughness, flatness in the width direction, and resistance to work embrittlement. Furthermore, by applying the high-strength steel plate of the present invention to, for example, automobile structural members, it is possible to improve fuel efficiency by reducing the weight of the vehicle body. Therefore, the industrial value is extremely large.
  • FIG. 1 is a diagram showing the structure of a packet having the maximum occupancy in prior austenite grains and a method for calculating the occupancy of the packet according to the present invention.
  • FIG. 2 is a diagram illustrating the concept of the steepness ⁇ in the width direction of a steel plate and the calculation method thereof according to the present invention.
  • C is one of the important basic components of steel, and particularly in the present invention, it is an important element that affects the amount of martensite. If the C content is less than 0.030%, the amount of martensite decreases, making it difficult to achieve a TS of 980 MPa or more. On the other hand, when the C content exceeds 0.500%, martensite becomes brittle and the toughness and resistance to work embrittlement deteriorate. Therefore, the content of C is 0.030% or more and 0.500% or less.
  • the lower limit of the C content is preferably 0.050% or more.
  • the upper limit of the C content is preferably 0.400% or less.
  • the lower limit of the C content is more preferably 0.100% or more.
  • the upper limit of the C content is more preferably 0.350% or less.
  • Si 0.50% or more and 2.50% or less
  • Si is one of the important basic components of steel and is an important element that affects TS and the amount of retained austenite. If the Si content is less than 0.50%, the strength of martensite decreases, making it difficult to achieve a TS of 980 MPa or more. On the other hand, when the Si content exceeds 2.50%, retained austenite increases excessively, and toughness and resistance to work embrittlement deteriorate. Therefore, the Si content is set to 0.50% or more and 2.50% or less.
  • the lower limit of the Si content is preferably 0.55% or more.
  • the upper limit of the Si content is preferably 2.00% or less.
  • the lower limit of the Si content is more preferably 0.60% or more.
  • the upper limit of the Si content is more preferably 1.80% or less.
  • Mn is one of the important basic components of steel and is an important element that affects the amount of martensite. If the Mn content is less than 1.00%, the amount of martensite decreases, making it difficult to achieve a TS of 980 MPa or more. On the other hand, when the Mn content exceeds 5.00%, martensite becomes brittle and the toughness and resistance to work embrittlement deteriorate. Therefore, the Mn content is 1.00% or more and 5.00% or less.
  • the lower limit of the Mn content is preferably 1.50% or more.
  • the upper limit of the Mn content is preferably 4.50% or less.
  • the lower limit of the Mn content is more preferably 2.00% or more.
  • the upper limit of the Mn content is more preferably 4.00% or less.
  • the content of P needs to be 0.100% or less.
  • the lower limit of the P content is not particularly defined, it is preferably 0.001% or more since P is a solid solution strengthening element and can increase the strength of the steel sheet. Therefore, the content of P is 0.100% or less.
  • the lower limit of the P content is preferably 0.001% or more.
  • the upper limit of the P content is preferably 0.070% or less.
  • the lower limit of the S content is not particularly specified, it is preferably 0.0001% or more due to production technology constraints. Therefore, the S content is set to 0.0200% or less.
  • the lower limit of the S content is preferably 0.0001% or more.
  • the upper limit of the S content is preferably 0.0050% or less.
  • Al 1.000% or less
  • Al exists as an oxide and reduces the ultimate deformability of the steel sheet, thereby reducing the toughness and resistance to work embrittlement. Therefore, the Al content needs to be 1.000% or less.
  • the lower limit of the Al content is not particularly defined, the Al content is preferably 0.001% or more because it suppresses the formation of carbides during continuous annealing and promotes the formation of retained austenite. Therefore, the Al content is set to 1.000% or less.
  • the lower limit of the Al content is preferably 0.001% or more.
  • the upper limit of the Al content is preferably 0.500% or less.
  • N 0.0100% or less
  • N exists as a nitride and reduces the ultimate deformability of the steel sheet, resulting in a reduction in toughness and resistance to work embrittlement. Therefore, the N content needs to be 0.0100% or less.
  • the lower limit of the N content is not particularly specified, it is preferable that the N content is 0.0001% or more due to constraints on production technology. Therefore, the N content is set to 0.0100% or less.
  • the lower limit of the N content is preferably 0.0001% or more.
  • the upper limit of the N content is preferably 0.0050% or less.
  • O exists as an oxide and reduces the ultimate deformability of the steel sheet, thereby reducing the toughness and resistance to work embrittlement. Therefore, the content of O needs to be 0.0100% or less.
  • the lower limit of the O content is not particularly defined, it is preferable that the O content is 0.0001% or more due to production technology constraints. Therefore, the O content is set to 0.0100% or less.
  • the lower limit of the O content is preferably 0.0001% or more.
  • the upper limit of the O content is preferably 0.0050% or less.
  • a high-strength steel plate according to an embodiment of the present invention has a composition containing the above-mentioned components, with the remainder containing Fe and inevitable impurities.
  • unavoidable impurities include Zn, Pb, As, Ge, Sr, and Cs. A total content of these impurities of 0.100% or less is allowed.
  • the high-strength steel plate of the present invention further includes, in mass%, Ti: 0.200% or less, Nb: 0.200% or less, V: 0.200% or less, Ta: 0.10% or less, W: 0.10% or less, B: 0.0100% or less, Cr: 1.00% or less, Mo: 1.00% or less, Ni: 1.00% or less, Co: 0.010% or less, Cu: 1.00% or less, Sn: 0.200% or less, Sb: 0.
  • At least one element selected from the following and Bi: 0.200% or less may be contained alone or in combination.
  • Ti, Nb, and V are each 0.200% or less, large amounts of coarse precipitates and inclusions will not be generated and the ultimate deformability of the steel plate will not be reduced, resulting in a decrease in toughness and resistance to work embrittlement. do not. Therefore, it is preferable that the contents of Ti, Nb, and V are each 0.200% or less. Note that the lower limits of the content of Ti, Nb, and V are not particularly specified, but the strength of the steel sheet can be increased by forming fine carbides, nitrides, or carbonitrides during hot rolling or continuous annealing. Therefore, it is more preferable that the contents of Ti, Nb, and V are each 0.001% or more.
  • Ti, Nb, and V when Ti, Nb, and V are contained, their contents are each 0.200% or less.
  • the lower limit in the case of containing Ti, Nb and V is more preferably 0.001% or more.
  • the upper limit is more preferably 0.100% or less.
  • Ta and W are each 0.10% or less, large amounts of coarse precipitates and inclusions will not be generated and the ultimate deformability of the steel plate will not be reduced, so the toughness and work embrittlement resistance will not deteriorate. Therefore, it is preferable that the contents of Ta and W are each 0.10% or less. Note that there is no particular lower limit to the content of Ta and W, but the strength of the steel sheet is increased by forming fine carbides, nitrides, or carbonitrides during hot rolling or continuous annealing. It is more preferable that the contents of Ta and W are each 0.01% or more. Therefore, when Ta and W are contained, their contents are each 0.10% or less. The lower limit in the case of containing Ta and W is more preferably 0.01% or more. The upper limit when Ta and W are contained is more preferably 0.08% or less.
  • the content of B is preferably 0.0100% or less.
  • the lower limit of the B content is not particularly specified, but since it is an element that segregates at austenite grain boundaries during annealing and improves hardenability, it is preferable that the B content is 0.0003% or more. preferable. Therefore, when B is contained, its content should be 0.0100% or less.
  • the lower limit in the case of containing B is more preferably 0.0003% or more.
  • the upper limit when B is contained is more preferably 0.0080% or less.
  • each of Cr, Mo, and Ni is 1.00% or less, coarse precipitates and inclusions do not increase and the ultimate deformability of the steel sheet does not decrease, so the toughness and work embrittlement resistance do not decrease. Therefore, it is preferable that the contents of Cr, Mo, and Ni are each 1.00% or less.
  • the lower limit of the content of Cr, Mo, and Ni is not particularly specified, but since they are elements that improve hardenability, it is more preferable that the content of Cr, Mo, and Ni is each 0.01% or more. . Therefore, when Cr, Mo, and Ni are contained, their contents are each 1.00% or less.
  • the lower limit in the case of containing Cr, Mo and Ni is more preferably 0.01% or more.
  • the upper limit when Cr, Mo and Ni are contained is more preferably 0.80% or less.
  • the Co content is preferably 0.010% or less.
  • the lower limit of the Co content is not particularly specified, since it is an element that improves hardenability, the Co content is more preferably 0.001% or more. Therefore, when Co is contained, the content should be 0.010% or less.
  • the lower limit in the case of containing Co is more preferably 0.001% or more.
  • the upper limit when Co is contained is more preferably 0.008% or less.
  • the Cu content is preferably 1.00% or less.
  • the lower limit of the Cu content is not particularly specified, since it is an element that improves hardenability, the Cu content is preferably 0.01% or more. Therefore, if Cu is contained, the content should be 1.00% or less.
  • the lower limit in the case of containing Cu is more preferably 0.01% or more.
  • the upper limit when Cu is contained is more preferably 0.80% or less.
  • the content of Sn is preferably 0.200% or less.
  • the lower limit of the Sn content is not particularly specified, but since Sn is an element that improves hardenability (generally an element that improves corrosion resistance), the Sn content should be 0.001% or more. It is more preferable. Therefore, if Sn is contained, the content should be 0.200% or less.
  • the lower limit in the case of containing Sn is more preferably 0.001% or more.
  • the upper limit when Sn is contained is more preferably 0.100% or less.
  • the content of Sb is preferably 0.200% or less.
  • the lower limit of the Sb content is not particularly defined, it is more preferable that the Sb content is 0.001% or more since it is an element that controls the softening thickness of the surface layer and enables strength adjustment. Therefore, if Sb is contained, the content should be 0.200% or less.
  • the lower limit in the case of containing Sb is more preferably 0.001% or more.
  • the upper limit when Sb is contained is more preferably 0.100% or less.
  • the content of Ca, Mg and REM is preferably 0.0100% or less.
  • the lower limits of the contents of Ca, Mg, and REM are not particularly stipulated, but since they are elements that spheroidize the shape of nitrides and sulfides and improve the ultimate deformability of steel sheets, the contents of Ca, Mg, and REM are More preferably, each amount is 0.0005% or more. Therefore, when Ca, Mg and REM are contained, their contents are each 0.0100% or less.
  • the lower limit in the case of containing Ca, Mg and REM is more preferably 0.0005% or more.
  • the upper limit when Ca, Mg and REM are contained is more preferably 0.0050% or less.
  • the contents of Zr and Te are preferably 0.100% or less.
  • the lower limits of the contents of Zr and Te are not particularly specified, but since they are elements that spheroidize the shape of nitrides and sulfides and improve the ultimate deformability of the steel sheet, the contents of Zr and Te are respectively 0. More preferably, the content is .001% or more. Therefore, when Zr and Te are contained, their contents are each 0.100% or less.
  • the lower limit in the case of containing Zr and Te is more preferably 0.001% or more.
  • the upper limit when Zr and Te are contained is more preferably 0.080% or less.
  • the Hf content is preferably 0.10% or less.
  • the Hf content should be 0.01% or more. It is more preferable to do so. Therefore, if Hf is contained, the content should be 0.10% or less.
  • the lower limit in the case of containing Hf is more preferably 0.01% or more.
  • the upper limit when containing Hf is more preferably 0.08% or less.
  • the Bi content is preferably 0.200% or less.
  • the lower limit of the Bi content is not particularly defined, since it is an element that reduces segregation, the Bi content is more preferably 0.001% or more. Therefore, when Bi is contained, the content should be 0.200% or less.
  • the lower limit in the case of containing Bi is more preferably 0.001% or more.
  • the upper limit in the case of containing Bi is more preferably 0.100% or less.
  • each content of Ti, Nb, V, Ta, W, B, Cr, Mo, Ni, Co, Cu, Sn, Sb, Ca, Mg, REM, Zr, Te, Hf and Bi is preferable. If it is less than the lower limit, the effect of the present invention will not be impaired, and therefore it is included as an unavoidable impurity.
  • the area fraction of martensite is 60% or more.
  • the area fraction of martensite is 60% or more.
  • it is 62% or more. More preferably, it is 64% or more.
  • the retained austenite amount is 3% or more and 15% or less in volume fraction. This is an extremely important feature of the invention. If the amount of retained austenite is less than 3% in volume fraction, it becomes difficult to achieve an El of 10% or more, and the toughness improvement effect of retained austenite cannot be obtained, making it difficult to achieve excellent toughness. become. Additionally, if the amount of retained austenite exceeds 15%, the retained austenite will excessively transform into hard martensite during processing, resulting in a decrease in the ultimate deformability of the steel sheet, making it difficult to obtain excellent work embrittlement resistance. It becomes difficult. Therefore, the retained austenite is set to 3% or more and 15% or less.
  • the lower limit of the amount of retained austenite is preferably 5% or more.
  • the upper limit of the amount of retained austenite is preferably 14% or less.
  • the lower limit of the amount of retained austenite is more preferably 7% or more.
  • the upper limit of the amount of retained austenite is more preferably 13% or less.
  • the method for measuring retained austenite is as follows. Retained austenite was determined by polishing the steel plate from 1/4 part of the plate thickness to a surface of 0.1 mm, and then chemically polishing the surface to a further 0.1 mm using an X-ray diffractometer using CoK ⁇ rays. ⁇ , ⁇ 220 ⁇ , ⁇ 311 ⁇ planes and the diffraction peaks of ⁇ 200 ⁇ , ⁇ 211 ⁇ , ⁇ 220 ⁇ planes of BCC iron were measured, and the nine integrated intensity ratios obtained were averaged. Convert and seek.
  • the total amount of ferrite and bainitic ferrite exceeds 10% in area fraction] This is an extremely important feature of the invention. If the total amount of ferrite and bainitic ferrite is 10% or less, it becomes difficult to achieve El of 10% or more. Therefore, the total amount of ferrite and bainitic ferrite is more than 10%. Preferably it is 12% or more. More preferably, it is 13% or more. Note that the upper limit of the total amount of ferrite and bainitic ferrite is not particularly limited.
  • the method for measuring the total amount of ferrite and bainitic ferrite is as follows. After polishing the L cross section of the steel plate, 3vol. % nital, and 1/4 part of the plate thickness (a position corresponding to 1/4 of the plate thickness in the depth direction from the steel plate surface) is observed in 10 fields at a magnification of 2000 times using an SEM.
  • ferrite and bainitic ferrite have concave portions and a flat structure inside, and have no carbide inside. From the average value of those values, the total amount of ferrite and bainitic ferrite can be determined.
  • the method for measuring the amount of martensite is as follows.
  • the amount of martensite can be determined by measuring the amount of retained austenite, the amount of ferrite, and the amount of bainitic ferrite based on the method described above, and subtracting the total from 100%. Therefore, the amount of martensite in the present invention is an amount that includes both quenched martensite and tempered martensite.
  • the volume ratio of the retained austenite amount is approximately the area ratio, it is subtracted from 100% together with the ferrite amount and the bainitic ferrite amount expressed by the area ratio.
  • the average value of the occupancy of the packets with the maximum occupancy in the prior austenite grains is 70% or less in terms of area fraction] This is an extremely important feature of the invention.
  • the occupancy of the packets having the maximum occupancy within the prior austenite grains influences the flatness in the width direction and the resistance to work embrittlement.
  • the packet with the maximum occupancy rate in the prior austenite grains means that, as shown in Figure 1, there are up to four regions in the prior austenite grains, called packets, that have the same crystal habit plane during transformation. indicates the packet with the largest occupancy rate.
  • the occupancy of one packet within the prior austenite grains is determined by dividing the area of the specified packet by the entire area within the prior austenite grains.
  • the present inventors found that by reducing the occupancy of the packets with the maximum occupancy within the prior austenite grains, the strain between the packets was alleviated and the flatness in the sheet width direction was improved. I discovered that. They also found that by reducing the occupancy of packets, which have the highest occupancy within prior austenite grains, the structure becomes finer and crack propagation can be suppressed, thereby improving the work embrittlement resistance of the steel sheet. . Therefore, the average value of the occupancy of the packets having the maximum occupancy in the prior austenite grains is set to be 70% or less. Preferably it is 60% or less. Note that the lower limit of the average value of the occupancy of packets having the maximum occupancy in prior austenite grains is not particularly limited.
  • the occupancy rate of the packet having the maximum occupancy rate in the prior austenite grains is 25%. Therefore, although the lower limit of the average value of the occupancy of packets having the maximum occupancy in prior austenite grains is preferably 25% or more, it is not necessary to be limited to this.
  • the method for measuring the average value of the occupancy of the packets having the maximum occupancy in the prior austenite grains is as follows. First, a test piece for microstructural observation is taken from a cold-rolled steel sheet. Next, the sampled test piece is polished by colloidal silica vibration polishing so that the cross section in the rolling direction (L cross section) becomes the observation surface. The observation surface shall be a mirror surface. Next, electron beam backscatter diffraction (EBSD) measurement is performed on a 1/4 part of the plate thickness (a position corresponding to 1/4 of the plate thickness in the depth direction from the steel plate surface) to obtain local crystal orientation data.
  • EBSD electron beam backscatter diffraction
  • the SEM magnification is 1000 times, the step size is 0.2 ⁇ m, the measurement area is 80 ⁇ m square, and the WD is 15 mm.
  • the obtained local orientation data is analyzed using OIM Analysis 7 (OIM), and a color-coded diagram (CP map) for each Close-packed Plane group (CP group) is created using the method described in Non-Patent Document 1.
  • packets are defined as areas to which the same CP group belongs. The area of the packet with the largest occupancy is determined from the obtained CP map and divided by the total area within the prior austenite grains, thereby obtaining the occupancy of the packet with the maximum occupancy within the prior austenite grains. This analysis is performed on ten or more adjacent prior austenite grains, and the average value is taken as the average value of the occupancy of the packets having the maximum occupancy within the prior austenite grain.
  • the method of melting the steel material is not particularly limited, and any known melting method such as a converter or an electric furnace is suitable.
  • the steel slab (slab) is preferably manufactured by a continuous casting method in order to prevent macro segregation.
  • the slab heating temperature, slab soaking time and coiling temperature in hot rolling are not particularly limited.
  • Methods for hot rolling steel slabs include rolling the slab after heating, directly rolling the slab after continuous casting without heating it, and rolling after subjecting the slab after continuous casting to a short heat treatment. Examples include.
  • the slab heating temperature, slab soaking time, finish rolling temperature, and coiling temperature in hot rolling are not particularly limited, the lower limit of the slab heating temperature is preferably 1100° C. or higher.
  • the upper limit of the slab heating temperature is preferably 1300°C or less.
  • the lower limit of the slab soaking time is preferably 30 min or more.
  • the upper limit of the slab soaking time is preferably 250 min or less.
  • the lower limit of the finish rolling temperature is preferably equal to or higher than the Ar 3 transformation point.
  • the lower limit of the winding temperature is preferably 350°C or higher.
  • the upper limit of the winding temperature is preferably 650° C. or less.
  • the hot-rolled steel sheet produced in this way is pickled. Since pickling can remove oxides on the surface of the steel sheet, it is important for ensuring good chemical conversion treatability and plating quality in the final high-strength steel sheet. Further, the pickling may be carried out once or may be carried out in multiple steps. Moreover, cold rolling may be performed on the pickled plate after hot rolling, or cold rolling may be performed after heat treatment.
  • the rolling reduction in cold rolling and the plate thickness after rolling are not particularly limited, but the lower limit of the rolling reduction is preferably 30% or more. Further, the upper limit of the rolling reduction ratio is preferably 80% or less. Note that the effects of the present invention can be obtained without any particular limitations on the number of rolling passes and the rolling reduction rate of each pass.
  • the cold rolled steel sheet obtained as described above is annealed.
  • the annealing conditions are as follows.
  • the annealing temperature Ta is 700°C or higher and 900°C or lower.
  • the annealing temperature Ta is set to 700°C or more and 900°C or less.
  • the lower limit of the annealing temperature is preferably 750°C or higher.
  • the upper limit of the annealing temperature is preferably 870°C or lower.
  • the holding time at the annealing temperature Ta is 10 seconds or more and 1000 seconds or less.
  • the lower limit of the holding time at the annealing temperature Ta is preferably 50 seconds or more.
  • the upper limit of the holding time at the annealing temperature Ta is preferably 500 seconds or less.
  • the radius of the roll diameter is 600 mm or less.
  • the lower limit of the number of times of bending and unbending is 3 or more times in total.
  • the upper limit of the number of times of bending and unbending is 10 times or less in total.
  • the lower limit of the radius of the roll diameter does not need to be particularly limited, it is preferably 50 mm or more.
  • bending and unbending refers to a process of bending a material in one direction with rolls and then bending it back by the amount of bending in the opposite direction using a known method. The number of times of bending and unbending is counted as one bending and one unbending, rather than one bending and unbending.
  • the average value of the occupancy of the packets having the maximum occupancy in the prior austenite grains exceeds 70%, the flatness in the sheet width direction deteriorates, and the work embrittlement resistance deteriorates. Therefore, the average cooling rate from 750°C to 600°C is set to 20°C/s or more. Preferably it is 30°C/s or more. The upper limit does not need to be particularly limited, but is preferably 100° C./s or less.
  • the average cooling rate in the temperature range of 499°C to Ms affects the total area fraction of the amount of ferrite and bainitic ferrite.
  • the average cooling rate in the temperature range of 499° C. to Ms is 20° C./s or more, the total amount of ferrite and bainitic ferrite decreases, making it difficult to achieve El of 10% or more. Therefore, the average cooling rate in the temperature range of 499°C to Ms is less than 20°C/s. Preferably it is 18°C/s or less.
  • the lower limit does not need to be particularly limited, but is preferably 5° C./s or more.
  • Ms (° C.) is defined by the following equation (1).
  • Ms 519-474 ⁇ [%C]-30.4 ⁇ [%Mn]-12.1 ⁇ [%Cr]-7.5 ⁇ [%Mo]-17.7 ⁇ [%Ni]-Ta/80 ...(1)
  • [%C], [%Mn], [%Cr], [%Mo], and [%Ni] represent the respective contents (mass%) of C, Mn, Cr, Mo, and Ni, and do not include In that case, it is set to 0.
  • the average value of the occupancy of the packets having the maximum occupancy in the prior austenite grains exceeds 70%, the flatness in the sheet width direction deteriorates, and the work embrittlement resistance deteriorates.
  • the average value of the occupancy of the packets having the maximum occupancy in the prior austenite grains exceeds 70%, the flatness in the sheet width direction deteriorates, and the work embrittlement resistance deteriorates.
  • the ultimate deformability of the steel sheet decreases and the work embrittlement resistance decreases. Therefore, bending and unbending is performed a total of 1 to 15 times in a temperature range of 499° C. to Ms with a roll having a radius of 800 mm or less.
  • the radius of the roll diameter is 600 mm or less.
  • the lower limit of the number of times of bending and unbending is 3 or more times in total.
  • the lower limit of the number of times of bending and unbending is 10 times or less in total.
  • the lower limit of the radius of the roll diameter does not need to be particularly limited, it is preferably 50 mm or more.
  • the average cooling rate in the temperature range from Ms to the cooling stop temperature Tb is set to 150° C./s or less. Preferably it is 120°C/s or less.
  • the lower limit does not need to be particularly limited, but is preferably 5° C./s or more.
  • the tension applied to the steel plate in the temperature range from Ms to cooling stop temperature Tb is set to be 5 MPa or more and 100 MPa or less.
  • the lower limit of the tension applied to the steel plate in the temperature range from Ms to cooling stop temperature Tb is preferably 6 MPa or more.
  • the upper limit of the tension applied to the steel plate in the temperature range from Ms to cooling stop temperature Tb is preferably 50 MPa or less.
  • the tension is applied by a known method. As an example, tension may be applied by controlling the speed of the rolls in the furnace.
  • [Cooling stop temperature Tb is 100°C or higher (Ms-80°C) or lower]
  • the cooling stop temperature Tb is set to 100°C or more (Ms-80°C) or less.
  • the lower limit of the cooling stop temperature Tb is preferably 120°C or higher.
  • the upper limit of the cooling stop temperature Tb is preferably (Ms-100°C) or less.
  • Tempeering temperature is Tb or higher and 450°C or lower
  • the remaining austenite is stabilized by holding at that temperature or by reheating and holding at a temperature of 450° C. or lower.
  • Tb a predetermined level of retained austenite cannot be obtained, so that El decreases and it becomes difficult to obtain excellent toughness.
  • the tempering temperature is set to be higher than Tb and lower than 450°C.
  • the lower limit of the tempering temperature is preferably (Tb+10°C) or higher.
  • the upper limit of the tempering temperature is preferably 420°C or less.
  • the holding time at tempering temperature is 10 seconds or more and 1000 seconds or less. If the holding time at the tempering temperature is less than 10 seconds, the stabilization of austenite will be insufficient and the desired residual austenite will not be obtained, resulting in a decrease in El and difficulty in obtaining excellent toughness. . If the holding time at the tempering temperature exceeds 1000 seconds, the martensite will be excessively tempered, making it difficult to achieve a TS of 980 MPa or more. Therefore, the holding time at the tempering temperature is 10 seconds or more and 1000 seconds or less. The lower limit of the holding time at the tempering temperature is preferably 50 seconds or more. The upper limit of the holding time at the tempering temperature is preferably 800 seconds or less.
  • Cooling after tempering does not need to be particularly specified, and may be cooled to a desired temperature by any method.
  • the desired temperature is preferably about room temperature.
  • the above-mentioned high-strength steel plate may be processed under conditions that result in an equivalent plastic strain amount of 0.10% or more and 5.00% or less. Further, after processing, reheating may be performed again under the conditions of 100° C. or more and 400° C. or less.
  • the high-strength steel plate may be subjected to plating treatment during or after annealing.
  • Examples of plating treatment during annealing include hot-dip galvanizing treatment during or after cooling at a temperature of 700°C to 600°C after annealing at an average cooling rate of 20°C/s or more, and alloying after hot-dip galvanizing. can.
  • the plating treatment after annealing for example, Zn-Ni electroplating treatment or pure Zn electroplating treatment can be exemplified after tempering.
  • the plating layer may be formed by electroplating, or hot-dip zinc-aluminum-magnesium alloy plating may be applied.
  • the type of plating metal such as Zn plating and Al plating is not particularly limited.
  • Conditions for other manufacturing methods are not particularly limited, but from the viewpoint of productivity, a series of treatments such as annealing, hot-dip galvanizing, and galvanizing alloying are performed on a continuous galvanizing line (CGL), which is a hot-dip galvanizing line. It is preferable to carry out the process using Line). After hot-dip galvanizing, wiping can be performed to adjust the coating weight. Note that the conditions for plating and the like other than the above-mentioned conditions can be based on a conventional method for hot-dip galvanizing.
  • processing may be performed again under conditions that result in an equivalent plastic strain amount of 0.10% or more and 5.00 or less. Further, after processing, reheating may be performed again under the conditions of 100° C. or more and 400° C. or less.
  • Test test For the tensile test, a JIS No. 5 test piece (gauge length 50 mm, parallel part width 25 mm) was taken so that the longitudinal direction of the test piece was perpendicular to the rolling direction, and tested in accordance with JIS Z 2241. A tensile test was conducted at a crosshead speed of 1.67 ⁇ 10 ⁇ 1 mm/sec, and TS and El were measured. In addition, in the present invention, TS of 980 MPa or more was judged to be acceptable, and El of 10% or more was judged to be acceptable.
  • Toughness Toughness was evaluated by Charpy test.
  • Charpy test piece a plurality of steel plates were stacked together and fastened together with bolts, and after confirming that there were no gaps between the steel plates, a test piece with a V-notch having a depth of 2 mm was prepared. The number of steel plates to be stacked was set so that the thickness of the test piece after stacking was closest to 10 mm. For example, if the plate thickness is 1.2 mm, 8 plates are laminated, resulting in a test piece thickness of 9.6 mm. The laminated Charpy test piece was judged to have "excellent toughness" if it had a strength of 40 J/cm 2 or more. Note that conditions other than the above were in accordance with JIS Z 2242:2018.
  • the flatness in the width direction of the various cold-rolled steel sheets obtained as described above was measured by the method shown in FIG. 2. Specifically, a plate with a length of 500 mm in the rolling direction (coil width x 500 mm L x plate thickness) is cut out from the coil, placed on a surface plate so that the warp of the end face faces upward, and the stylus moves over the object to be measured. The height of the steel plate was continuously measured over the entire width direction using a moving contact displacement meter. Based on the results, the steepness, which is an index indicating the flatness of the steel plate shape, was measured according to the method shown in FIG.
  • the resistance to work embrittlement was evaluated by Charpy test.
  • Charpy test piece a plurality of steel plates were stacked together and fastened together with bolts, and after confirming that there were no gaps between the steel plates, a test piece with a V-notch having a depth of 2 mm was prepared.
  • the number of steel plates to be stacked was set so that the thickness of the test piece after stacking was closest to 10 mm. For example, if the plate thickness is 1.2 mm, 8 plates are laminated, resulting in a test piece thickness of 9.6 mm.
  • the laminated Charpy test piece was taken with the width direction of the plate as the longitudinal direction.
  • Tables 5 to 7 The results are summarized in Tables 5 to 7. As shown in Tables 5 to 7, the examples of the present invention have a TS of 980 MPa or more, an El of 10% or more, and are excellent in toughness, flatness in the width direction, and resistance to work embrittlement. On the other hand, the comparative examples are inferior in any one or more of TS, El, toughness, flatness in the width direction, or resistance to work embrittlement.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

The purpose of the present invention is to provide: a high-strength steel sheet having a TS of 980 MPa or more, an El of 10% or more, and excellent toughness, flatness in the sheet width direction, and resistance to machining embrittlement; and a manufacturing method therefor. This high-strength steel sheet has a prescribed component composition. The amount of martensite is 60% or more in area fraction, and the amount of retained austenite is 3% to 15%, inclusive, in volume fraction at a position at 1/4 of the plate thickness. The sum of the amount of ferrite and the amount of bainitic ferrite is more than 10% in area fraction, and the average value of the occupancy of packets having the maximum occupancy in the prior austenite grains is 70% or less in area fraction.

Description

高強度鋼板およびその製造方法High strength steel plate and its manufacturing method
 本発明は、引張強度、El、靭性、板幅方向の平坦度および耐加工脆化特性に優れる高強度鋼板およびその製造方法に関するものである。本発明の高強度鋼板は、自動車用部品等の構造部材として好適に用いることができる。 The present invention relates to a high-strength steel plate that is excellent in tensile strength, El, toughness, flatness in the width direction, and resistance to work embrittlement, and a method for manufacturing the same. The high-strength steel sheet of the present invention can be suitably used as a structural member for automobile parts and the like.
 車輛の軽量化によるCO排出量削減と車体の軽量化による耐衝突性能向上の両立を目的に、自動車用薄鋼板の高強度化が進行しており、新たな法規制の導入も相次いでいる。そのため、車体強度の増加を目的として、自動車を形成する主要な構造部品では、引張強度(TS)で980MPa級以上の高強度鋼板の適用事例が増加している。 With the aim of both reducing CO2 emissions by reducing the weight of vehicles and improving collision resistance by reducing the weight of the car body, the strength of thin steel sheets for automobiles is progressing, and new laws and regulations are being introduced one after another. . Therefore, in order to increase the strength of the car body, high-strength steel plates with a tensile strength (TS) of 980 MPa or higher are increasingly being used in the main structural parts forming automobiles.
 自動車に用いられる高強度鋼板には、優れたプレス成形が求められる。例えば、自動車のバンパー等の骨格部品では、Elの高い高強度鋼板を適用することが好適である。また、衝突安全性の観点から、優れた靭性および耐加工脆化特性が求められる。 High-strength steel sheets used in automobiles require excellent press forming. For example, for frame parts such as automobile bumpers, it is preferable to use high-strength steel plates with high El. In addition, from the viewpoint of collision safety, excellent toughness and resistance to work embrittlement are required.
 また、自動車に用いられる高強度鋼板には、鋼板の平坦度にも優れていることが求められる。特許文献1には鋼板の反りが成形ラインでの操業トラブルや製品の寸法精度に悪影響を及ぼすことが記載されている。本発明者らは鋭意検討を重ねた結果、製品の寸法精度には鋼板の反りだけでなく、急峻度を用いて評価される板幅方向の平坦度も影響することを見出した。例えば、優れた寸法精度を実現するためには、幅方向の急峻度は0.02以下であることが好適である。 Furthermore, high-strength steel sheets used in automobiles are required to have excellent flatness. Patent Document 1 describes that warpage of a steel plate adversely affects operational troubles in a forming line and dimensional accuracy of products. As a result of extensive studies, the present inventors found that the dimensional accuracy of a product is affected not only by the warpage of the steel plate but also by the flatness in the width direction of the plate, which is evaluated using steepness. For example, in order to achieve excellent dimensional accuracy, the steepness in the width direction is preferably 0.02 or less.
 これらの要求に対し、例えば、特許文献2では、1100MPa以上の引張強度を有し、YR、表面性状および溶接性に優れた高強度鋼板およびその製造方法が提供されている。しかしながら、特許文献2に記載の技術では、El、靭性、板幅方向の平坦度および耐加工脆化特性については考慮していない。 In response to these demands, for example, Patent Document 2 provides a high-strength steel plate having a tensile strength of 1100 MPa or more and excellent YR, surface texture, and weldability, and a method for manufacturing the same. However, the technique described in Patent Document 2 does not take into consideration El, toughness, flatness in the sheet width direction, and resistance to work embrittlement.
 特許文献3では、プレス成形性および低温靭性に優れた引張強度が980MPa以上の溶融亜鉛めっき鋼板およびその製造方法が提供されている。しかしながら、特許文献3に記載の技術では、温度低下による鋼板の脆化を改善できているが、加工による鋼板の脆化については考慮していない。板幅方向の平坦度についても考慮していない。 Patent Document 3 provides a hot-dip galvanized steel sheet with excellent press formability and low-temperature toughness and a tensile strength of 980 MPa or more, and a method for manufacturing the same. However, although the technique described in Patent Document 3 can improve the embrittlement of the steel plate due to a temperature drop, it does not take into account the embrittlement of the steel plate due to processing. Flatness in the width direction of the plate is also not considered.
特許第4947176号公報Patent No. 4947176 特許第6525114号公報Patent No. 6525114 特許第6777272号公報Patent No. 6777272
 本発明は、かかる事情に鑑み開発されたもので、TSが980MPa以上およびElが10%以上、かつ、靭性、板幅方向の平坦度および耐加工脆化特性に優れる高強度鋼板およびその製造方法を提供することを目的とする。 The present invention was developed in view of the above circumstances, and includes a high-strength steel plate having a TS of 980 MPa or more, an El of 10% or more, and excellent toughness, flatness in the width direction, and resistance to work embrittlement, and a method for manufacturing the same. The purpose is to provide
 本発明者らは、上記した課題を達成するために、鋭意検討を重ねた結果、以下のことを見出した。
(1)マルテンサイト量を面積分率で60%以上とすることで、980MPa以上のTSを実現できる。
(2)残留オーステナイト量を体積分率で3%以上、かつ、フェライト量およびベイニティックフェライト量の合計を面積分率で10%超とすることで、10%以上のElを実現できる。
(3)残留オーステナイト量を体積分率で3%以上とすることで、優れた靭性を実現できる。
(4)旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値を面積分率で70%以下とすることで、優れた耐加工脆化特性を実現できる。
(5)残留オーステナイト量を体積分率で15%以下、かつ、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値を面積分率で70%以下とすることで、優れた耐加工脆化特性を実現できる。
In order to achieve the above-mentioned problems, the present inventors have made the following findings as a result of extensive studies.
(1) By setting the amount of martensite to 60% or more in terms of area fraction, a TS of 980 MPa or more can be achieved.
(2) El of 10% or more can be achieved by setting the amount of retained austenite to 3% or more in volume fraction and the total amount of ferrite and bainitic ferrite to more than 10% in area fraction.
(3) Excellent toughness can be achieved by setting the amount of retained austenite to 3% or more in volume fraction.
(4) Excellent work embrittlement resistance can be achieved by setting the average value of the occupancy of packets having the maximum occupancy in prior austenite grains to 70% or less in terms of area fraction.
(5) Excellent durability can be achieved by setting the amount of retained austenite to 15% or less in terms of volume fraction and the average value of the occupancy of the packets having the maximum occupancy in the prior austenite grains to 70% or less in terms of area fraction. Process embrittlement properties can be achieved.
 本発明は、上記知見に基づいてなされたものである。すなわち、本発明の要旨構成は次のとおりである。
[1]質量%で、C:0.030%以上0.500%以下、Si:0.50%以上2.50%以下、Mn:1.00%以上5.00%以下、P:0.100%以下、S:0.0200%以下、Al:1.000%以下、N:0.0100%以下、および、O:0.0100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成と、板厚1/4位置において、マルテンサイト量が面積分率で60%以上、残留オーステナイト量が体積分率で3%以上15%以下であり、フェライト量およびベイニティックフェライト量の合計が面積分率で10%超であり、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値が面積分率で70%以下である、高強度鋼板。
[2]前記成分組成は、さらに、質量%で、Ti:0.200%以下、Nb:0.200%以下、V:0.200%以下、Ta:0.10%以下、W:0.10%以下、B:0.0100%以下、Cr:1.00%以下、Mo:1.00%以下、Co:0.010%以下、Ni:1.00%以下、Cu:1.00%以下、Sn:0.200%以下、Sb:0.200%以下、Ca:0.0100%以下、Mg:0.0100%以下、REM:0.0100%以下、Zr:0.100%以下、Te:0.100%以下、Hf:0.10%以下、Bi:0.200%以下、のうちから選ばれる少なくとも1種の元素を含有する、[1]に記載の高強度鋼板。
[3]鋼板表面にめっき層を有する、[1]又は[2]に記載の高強度鋼板。
[4][1]又は[2]に記載の高強度鋼板の製造方法であって、前記成分組成を有する鋼に、熱間圧延、酸洗および冷間圧延を施し作製した冷延板を、焼鈍温度Taが700℃以上900℃以下、前記焼鈍温度Taでの保持時間が10秒以上1000秒以下の条件で加熱して焼鈍し、前記焼鈍中に半径800mm以下のロールで曲げ曲げ戻しを合計1回以上15回以下となる加工を施し、700℃~600℃の温度範囲での平均冷却速度が20℃/s以上、499℃~Msの温度範囲での平均冷却速度が20℃/s未満で冷却し、前記499℃~Msの温度範囲に半径800mm以下のロールで曲げ曲げ戻しを合計1回以上15回以下となる加工を施し、Ms~冷却停止温度Tbの温度範囲での平均冷却速度が150℃/s以下で冷却し、前記Ms~冷却停止温度Tbの温度範囲での鋼板に付与される張力を5MPa以上100MPa以下とし、前記冷却停止温度Tbが100℃以上(Ms-80℃)以下であり、なお、Msは式(1)にて規定するマルテンサイト変態開始温度(℃)であり、焼戻温度がTb以上450℃以下、前記焼戻温度での保持時間が10秒以上1000秒以下で焼き戻す、高強度鋼板の製造方法。
Ms=519-474×[%C]-30.4×[%Mn]-12.1×[%Cr]-7.5×[%Mo]-17.7×[%Ni]-Ta/80・・・・(1)
ここで、[%C]、[%Mn]、[%Cr]、[%Mo]、[%Ni]はC、Mn、Cr、Mo、Niそれぞれの含有量(質量%)を表し、含まない場合は0とする。
[5]めっき処理を施す、[4]に記載の高強度鋼板の製造方法。
The present invention has been made based on the above findings. That is, the gist of the present invention is as follows.
[1] In mass %, C: 0.030% or more and 0.500% or less, Si: 0.50% or more and 2.50% or less, Mn: 1.00% or more and 5.00% or less, P: 0. Contains 100% or less, S: 0.0200% or less, Al: 1.000% or less, N: 0.0100% or less, and O: 0.0100% or less, with the remainder consisting of Fe and inevitable impurities. Regarding the component composition, at the 1/4 position of the plate thickness, the amount of martensite is 60% or more in area fraction, the amount of retained austenite is 3% or more and 15% or less in volume fraction, and the amount of ferrite and bainitic ferrite is A high-strength steel plate, wherein the total area fraction is more than 10%, and the average value of the occupancy of packets having the maximum occupancy in prior austenite grains is 70% or less in area fraction.
[2] The component composition further includes, in mass %, Ti: 0.200% or less, Nb: 0.200% or less, V: 0.200% or less, Ta: 0.10% or less, W: 0. 10% or less, B: 0.0100% or less, Cr: 1.00% or less, Mo: 1.00% or less, Co: 0.010% or less, Ni: 1.00% or less, Cu: 1.00% Below, Sn: 0.200% or less, Sb: 0.200% or less, Ca: 0.0100% or less, Mg: 0.0100% or less, REM: 0.0100% or less, Zr: 0.100% or less, The high-strength steel plate according to [1], containing at least one element selected from Te: 0.100% or less, Hf: 0.10% or less, Bi: 0.200% or less.
[3] The high-strength steel plate according to [1] or [2], which has a plating layer on the surface of the steel plate.
[4] The method for producing a high-strength steel plate according to [1] or [2], wherein a cold-rolled plate produced by subjecting steel having the above-mentioned composition to hot rolling, pickling, and cold rolling, Heating and annealing is performed under conditions where the annealing temperature Ta is 700°C or more and 900°C or less, and the holding time at the annealing temperature Ta is 10 seconds or more and 1000 seconds or less, and during the annealing, bending and unbending are performed using a roll with a radius of 800 mm or less. Processed 1 to 15 times, and the average cooling rate in the temperature range of 700°C to 600°C is 20°C/s or more, and the average cooling rate in the temperature range of 499°C to Ms is less than 20°C/s. The average cooling rate in the temperature range from Ms to the cooling stop temperature Tb is performed by bending and unbending a total of 1 to 15 times using a roll with a radius of 800 mm or less in the temperature range of 499 ° C to Ms. is cooled at 150°C/s or less, the tension applied to the steel plate in the temperature range from Ms to cooling stop temperature Tb is 5 MPa or more and 100 MPa or less, and the cooling stop temperature Tb is 100°C or more (Ms - 80°C). In addition, Ms is the martensitic transformation start temperature (°C) defined by formula (1), the tempering temperature is Tb or more and 450°C or less, and the holding time at the tempering temperature is 10 seconds or more and 1000 A method for producing high-strength steel sheets that can be tempered in seconds or less.
Ms=519-474×[%C]-30.4×[%Mn]-12.1×[%Cr]-7.5×[%Mo]-17.7×[%Ni]-Ta/80 ...(1)
Here, [%C], [%Mn], [%Cr], [%Mo], and [%Ni] represent the respective contents (mass%) of C, Mn, Cr, Mo, and Ni, and do not include In that case, it is set to 0.
[5] The method for producing a high-strength steel plate according to [4], which comprises performing a plating treatment.
 本発明によれば、TSが980MPa以上およびElが10%以上、かつ、靭性、板幅方向の平坦度および耐加工脆化特性に優れる高強度鋼板を得ることができる。また、本発明の高強度鋼板を、例えば、自動車構造部材に適用することによって車体軽量化による燃費向上を図ることができる。したがって、産業上の利用価値は極めて大きい。 According to the present invention, it is possible to obtain a high-strength steel plate having a TS of 980 MPa or more, an El of 10% or more, and excellent toughness, flatness in the width direction, and resistance to work embrittlement. Furthermore, by applying the high-strength steel plate of the present invention to, for example, automobile structural members, it is possible to improve fuel efficiency by reducing the weight of the vehicle body. Therefore, the industrial value is extremely large.
図1は、本発明に係る旧オーステナイト粒内の最大占有率を有するパケットの構造と当該パケットの占有率の算出方法を示す図である。FIG. 1 is a diagram showing the structure of a packet having the maximum occupancy in prior austenite grains and a method for calculating the occupancy of the packet according to the present invention. 図2は、本発明に係る鋼板の幅方向の急峻度λの概念とその算出方法を示す図である。FIG. 2 is a diagram illustrating the concept of the steepness λ in the width direction of a steel plate and the calculation method thereof according to the present invention.
 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.
 先ず、高強度鋼板の成分組成の適正範囲およびその限定理由について説明する。なお、以下の説明において、鋼の成分元素の含有量を表す「%」は、特に明記しない限り「質量%」を意味する。 First, the appropriate range of the composition of high-strength steel sheets and the reason for its limitation will be explained. In the following description, "%" representing the content of component elements of steel means "mass %" unless otherwise specified.
 [C:0.030%以上0.500%以下]
 Cは、鋼の重要な基本成分の1つであり、特に本発明では、マルテンサイト量に影響する重要な元素である。Cの含有量が0.030%未満では、マルテンサイト量が減少し、980MPa以上のTSを実現することが困難になる。一方、Cの含有量が0.500%を超えると、マルテンサイトが脆化し、靭性および耐加工脆化特性が低下する。したがって、Cの含有量は、0.030%以上0.500%以下とする。Cの含有量の下限は、好ましくは0.050%以上とする。Cの含有量の上限は、好ましくは0.400%以下とする。Cの含有量の下限は、より好ましくは0.100%以上とする。Cの含有量の上限は、より好ましくは0.350%以下とする。
[C: 0.030% or more and 0.500% or less]
C is one of the important basic components of steel, and particularly in the present invention, it is an important element that affects the amount of martensite. If the C content is less than 0.030%, the amount of martensite decreases, making it difficult to achieve a TS of 980 MPa or more. On the other hand, when the C content exceeds 0.500%, martensite becomes brittle and the toughness and resistance to work embrittlement deteriorate. Therefore, the content of C is 0.030% or more and 0.500% or less. The lower limit of the C content is preferably 0.050% or more. The upper limit of the C content is preferably 0.400% or less. The lower limit of the C content is more preferably 0.100% or more. The upper limit of the C content is more preferably 0.350% or less.
 [Si:0.50%以上2.50%以下]
 Siは、鋼の重要な基本成分の1つであり、TSおよび残留オーステナイト量に影響する重要な元素である。Siの含有量が0.50%未満では、マルテンサイトの強度が減少するため、980MPa以上のTSを実現することが困難になる。一方、Siの含有量が2.50%を超えると、残留オーステナイトが過度に増加し、靭性および耐加工脆化特性が低下する。したがって、Siの含有量は、0.50%以上2.50%以下とする。Siの含有量の下限は、好ましくは0.55%以上とする。Siの含有量の上限は、好ましくは2.00%以下とする。Siの含有量の下限は、より好ましくは0.60%以上とする。Siの含有量の上限は、より好ましくは1.80%以下とする。
[Si: 0.50% or more and 2.50% or less]
Si is one of the important basic components of steel and is an important element that affects TS and the amount of retained austenite. If the Si content is less than 0.50%, the strength of martensite decreases, making it difficult to achieve a TS of 980 MPa or more. On the other hand, when the Si content exceeds 2.50%, retained austenite increases excessively, and toughness and resistance to work embrittlement deteriorate. Therefore, the Si content is set to 0.50% or more and 2.50% or less. The lower limit of the Si content is preferably 0.55% or more. The upper limit of the Si content is preferably 2.00% or less. The lower limit of the Si content is more preferably 0.60% or more. The upper limit of the Si content is more preferably 1.80% or less.
 [Mn:1.00%以上5.00%以下]
 Mnは、鋼の重要な基本成分の1つであり、マルテンサイト量に影響する重要な元素である。Mnの含有量が1.00%未満では、マルテンサイト量が減少し、980MPa以上のTSを実現することが困難になる。一方、Mnの含有量が5.00%を超えると、マルテンサイトが脆化し、靭性および耐加工脆化特性が低下する。したがって、Mnの含有量は、1.00%以上5.00%以下とする。Mnの含有量の下限は、好ましくは1.50%以上とする。Mnの含有量の上限は、好ましくは4.50%以下とする。Mnの含有量の下限は、より好ましくは2.00%以上とする。Mnの含有量の上限は、より好ましくは4.00%以下とする。
[Mn: 1.00% or more and 5.00% or less]
Mn is one of the important basic components of steel and is an important element that affects the amount of martensite. If the Mn content is less than 1.00%, the amount of martensite decreases, making it difficult to achieve a TS of 980 MPa or more. On the other hand, when the Mn content exceeds 5.00%, martensite becomes brittle and the toughness and resistance to work embrittlement deteriorate. Therefore, the Mn content is 1.00% or more and 5.00% or less. The lower limit of the Mn content is preferably 1.50% or more. The upper limit of the Mn content is preferably 4.50% or less. The lower limit of the Mn content is more preferably 2.00% or more. The upper limit of the Mn content is more preferably 4.00% or less.
 [P:0.100%以下]
 Pは、旧オーステナイト粒界に偏析して粒界を脆化させるため、鋼板の極限変形能を低下させることから、靭性および耐加工脆化特性が低下する。そのため、Pの含有量は0.100%以下にする必要がある。なお、Pの含有量の下限は特に規定しないが、Pは固溶強化元素であり、鋼板の強度を上昇させることができることから、0.001%以上とすることが好ましい。したがって、Pの含有量は、0.100%以下とする。Pの含有量の下限は、好ましくは0.001%以上とする。Pの含有量の上限は、好ましくは0.070%以下とする。
[P: 0.100% or less]
Since P segregates at prior austenite grain boundaries and embrittles the grain boundaries, it lowers the ultimate deformability of the steel sheet, resulting in a decrease in toughness and work embrittlement resistance. Therefore, the content of P needs to be 0.100% or less. Although the lower limit of the P content is not particularly defined, it is preferably 0.001% or more since P is a solid solution strengthening element and can increase the strength of the steel sheet. Therefore, the content of P is 0.100% or less. The lower limit of the P content is preferably 0.001% or more. The upper limit of the P content is preferably 0.070% or less.
 [S:0.0200%以下]
 Sは、硫化物として存在し、鋼板の極限変形能を低下させることから、靭性および耐加工脆化特性が低下する。そのため、Sの含有量は0.0200%以下にする必要がある。なお、Sの含有量の下限は特に規定しないが、生産技術上の制約から、0.0001%以上とすることが好ましい。したがって、Sの含有量は0.0200%以下とする。Sの含有量の下限は、好ましくは0.0001%以上とする。Sの含有量の上限は、好ましくは0.0050%以下とする。
[S: 0.0200% or less]
S exists as a sulfide and reduces the ultimate deformability of the steel sheet, resulting in a reduction in toughness and resistance to work embrittlement. Therefore, the S content needs to be 0.0200% or less. Although the lower limit of the S content is not particularly specified, it is preferably 0.0001% or more due to production technology constraints. Therefore, the S content is set to 0.0200% or less. The lower limit of the S content is preferably 0.0001% or more. The upper limit of the S content is preferably 0.0050% or less.
 [Al:1.000%以下]
 Alは、酸化物として存在し、鋼板の極限変形能を低下させることから、靭性および耐加工脆化特性が低下する。そのため、Alの含有量は1.000%以下にする必要がある。なお、Alの含有量の下限は特に規定しないが、連続焼鈍中の炭化物生成を抑制し、残留オーステナイトの生成を促進することから、Alの含有量は0.001%以上とすることが好ましい。したがって、Alの含有量は1.000%以下とする。Alの含有量の下限は、好ましくは0.001%以上とする。Alの含有量の上限は、好ましくは0.500%以下とする。
[Al: 1.000% or less]
Al exists as an oxide and reduces the ultimate deformability of the steel sheet, thereby reducing the toughness and resistance to work embrittlement. Therefore, the Al content needs to be 1.000% or less. Although the lower limit of the Al content is not particularly defined, the Al content is preferably 0.001% or more because it suppresses the formation of carbides during continuous annealing and promotes the formation of retained austenite. Therefore, the Al content is set to 1.000% or less. The lower limit of the Al content is preferably 0.001% or more. The upper limit of the Al content is preferably 0.500% or less.
 [N:0.0100%以下]
 Nは、窒化物として存在し、鋼板の極限変形能を低下させることから、靭性および耐加工脆化特性が低下する。そのため、Nの含有量は0.0100%以下にする必要がある。なお、Nの含有量の下限は特に規定しないが、生産技術上の制約から、Nの含有量は0.0001%以上とすることが好ましい。したがって、Nの含有量は0.0100%以下とする。Nの含有量の下限は、好ましくは0.0001%以上とする。Nの含有量の上限は、好ましくは0.0050%以下とする。
[N: 0.0100% or less]
N exists as a nitride and reduces the ultimate deformability of the steel sheet, resulting in a reduction in toughness and resistance to work embrittlement. Therefore, the N content needs to be 0.0100% or less. Although the lower limit of the N content is not particularly specified, it is preferable that the N content is 0.0001% or more due to constraints on production technology. Therefore, the N content is set to 0.0100% or less. The lower limit of the N content is preferably 0.0001% or more. The upper limit of the N content is preferably 0.0050% or less.
 [O:0.0100%以下]
 Oは、酸化物として存在し、鋼板の極限変形能を低下させることから、靭性および耐加工脆化特性が低下する。そのため、Oの含有量は0.0100%以下にする必要がある。なお、Oの含有量の下限は特に規定しないが、生産技術上の制約から、Oの含有量は0.0001%以上とすることが好ましい。したがって、Oの含有量は0.0100%以下とする。Oの含有量の下限は、好ましくは0.0001%以上とする。Oの含有量の上限は、好ましくは0.0050%以下とする。
[O: 0.0100% or less]
O exists as an oxide and reduces the ultimate deformability of the steel sheet, thereby reducing the toughness and resistance to work embrittlement. Therefore, the content of O needs to be 0.0100% or less. Although the lower limit of the O content is not particularly defined, it is preferable that the O content is 0.0001% or more due to production technology constraints. Therefore, the O content is set to 0.0100% or less. The lower limit of the O content is preferably 0.0001% or more. The upper limit of the O content is preferably 0.0050% or less.
 本発明の一実施形態に従う高強度鋼板は、上記の成分を含有し、残部がFeおよび不可避的不純物を含む成分組成を有する。ここで不可避的不純物として、Zn、Pb、As、Ge、SrおよびCsが挙げられる。これら不純物は合計で0.100%以下含有されることは許容される。 A high-strength steel plate according to an embodiment of the present invention has a composition containing the above-mentioned components, with the remainder containing Fe and inevitable impurities. Here, unavoidable impurities include Zn, Pb, As, Ge, Sr, and Cs. A total content of these impurities of 0.100% or less is allowed.
 本発明の高強度鋼板は、上記の成分組成に加えて、さらに、質量%で、
Ti:0.200%以下、Nb:0.200%以下、V:0.200%以下、Ta:0.10%以下、W:0.10%以下、B:0.0100%以下、Cr:1.00%以下、Mo:1.00%以下、Ni:1.00%以下、Co:0.010%以下、Cu:1.00%以下、Sn:0.200%以下、Sb:0.200%以下、Ca:0.0100%以下、Mg:0.0100%以下、REM:0.0100%以下、Zr:0.100%以下、Te:0.100%以下、Hf:0.10%以下、およびBi:0.200%以下から選ばれる少なくとも1種の元素を、単独で、あるいは組み合わせて含有しても良い。
In addition to the above-mentioned composition, the high-strength steel plate of the present invention further includes, in mass%,
Ti: 0.200% or less, Nb: 0.200% or less, V: 0.200% or less, Ta: 0.10% or less, W: 0.10% or less, B: 0.0100% or less, Cr: 1.00% or less, Mo: 1.00% or less, Ni: 1.00% or less, Co: 0.010% or less, Cu: 1.00% or less, Sn: 0.200% or less, Sb: 0. 200% or less, Ca: 0.0100% or less, Mg: 0.0100% or less, REM: 0.0100% or less, Zr: 0.100% or less, Te: 0.100% or less, Hf: 0.10% At least one element selected from the following and Bi: 0.200% or less may be contained alone or in combination.
 Ti、NbおよびVは、それぞれ0.200%以下であれば粗大な析出物や介在物が多量に生成せず、鋼板の極限変形能を低下させないことから、靭性および耐加工脆化特性が低下しない。そのため、Ti、NbおよびVの含有量はそれぞれ0.200%以下にすることが好ましい。なお、Ti、NbおよびVの含有量の下限は特に規定しないが、熱間圧延時あるいは連続焼鈍時に、微細な炭化物、窒化物もしくは炭窒化物を形成することによって、鋼板の強度を上昇させることから、Ti、NbおよびVの含有量はそれぞれ0.001%以上とすることがより好ましい。したがって、Ti、NbおよびVを含有する場合には、その含有量はそれぞれ0.200%以下とする。Ti、NbおよびVを含有する場合の下限は、より好ましくは0.001%以上とする。Ti、NbおよびVを含有する場合の上限は、さらに好ましくは0.100%以下とする。 If Ti, Nb, and V are each 0.200% or less, large amounts of coarse precipitates and inclusions will not be generated and the ultimate deformability of the steel plate will not be reduced, resulting in a decrease in toughness and resistance to work embrittlement. do not. Therefore, it is preferable that the contents of Ti, Nb, and V are each 0.200% or less. Note that the lower limits of the content of Ti, Nb, and V are not particularly specified, but the strength of the steel sheet can be increased by forming fine carbides, nitrides, or carbonitrides during hot rolling or continuous annealing. Therefore, it is more preferable that the contents of Ti, Nb, and V are each 0.001% or more. Therefore, when Ti, Nb, and V are contained, their contents are each 0.200% or less. The lower limit in the case of containing Ti, Nb and V is more preferably 0.001% or more. When Ti, Nb and V are contained, the upper limit is more preferably 0.100% or less.
 TaおよびWは、それぞれ0.10%以下であれば粗大な析出物や介在物が多量に生成せず、鋼板の極限変形能を低下させないことから、靭性および耐加工脆化特性が低下しない。そのため、TaおよびWの含有量はそれぞれ0.10%以下にすることが好ましい。なお、TaおよびWの含有量の下限は特に規定しないが、熱間圧延時あるいは連続焼鈍時に、微細な炭化物、窒化物もしくは炭窒化物を形成することによって、鋼板の強度を上昇させることから、TaおよびWの含有量はそれぞれ0.01%以上とすることがより好ましい。したがって、TaおよびWを含有する場合には、その含有量はそれぞれ0.10%以下とする。TaおよびWを含有する場合の下限は、より好ましくは0.01%以上とする。TaおよびWを含有する場合の上限は、さらに好ましくは0.08%以下とする。 If Ta and W are each 0.10% or less, large amounts of coarse precipitates and inclusions will not be generated and the ultimate deformability of the steel plate will not be reduced, so the toughness and work embrittlement resistance will not deteriorate. Therefore, it is preferable that the contents of Ta and W are each 0.10% or less. Note that there is no particular lower limit to the content of Ta and W, but the strength of the steel sheet is increased by forming fine carbides, nitrides, or carbonitrides during hot rolling or continuous annealing. It is more preferable that the contents of Ta and W are each 0.01% or more. Therefore, when Ta and W are contained, their contents are each 0.10% or less. The lower limit in the case of containing Ta and W is more preferably 0.01% or more. The upper limit when Ta and W are contained is more preferably 0.08% or less.
 Bは、0.0100%以下であれば鋳造時あるいは熱間圧延時において鋼板内部に割れを生成せず、鋼板の極限変形能を低下させないことから、靭性および耐加工脆化特性が低下しない。そのため、Bの含有量は0.0100%以下にすることが好ましい。なお、Bの含有量の下限は特に規定しないが、焼鈍中にオーステナイト粒界に偏析し、焼入れ性を向上させる元素であることから、Bの含有量は0.0003%以上とすることがより好ましい。したがって、Bを含有する場合には、その含有量は0.0100%以下とする。Bを含有する場合の下限は、より好ましくは0.0003%以上とする。Bを含有する場合の上限は、さらに好ましくは0.0080%以下とする。 If B is 0.0100% or less, it will not generate cracks inside the steel plate during casting or hot rolling, and will not reduce the ultimate deformability of the steel plate, so the toughness and work embrittlement resistance will not deteriorate. Therefore, the content of B is preferably 0.0100% or less. Note that the lower limit of the B content is not particularly specified, but since it is an element that segregates at austenite grain boundaries during annealing and improves hardenability, it is preferable that the B content is 0.0003% or more. preferable. Therefore, when B is contained, its content should be 0.0100% or less. The lower limit in the case of containing B is more preferably 0.0003% or more. The upper limit when B is contained is more preferably 0.0080% or less.
 Cr、MoおよびNiは、それぞれ1.00%以下であれば粗大な析出物や介在物が増加せず、鋼板の極限変形能を低下させないことから、靭性および耐加工脆化特性が低下しない。そのため、Cr、MoおよびNiの含有量はそれぞれ1.00%以下にすることが好ましい。なお、Cr、MoおよびNiの含有量の下限は特に規定しないが、焼入れ性を向上させる元素であることから、Cr、MoおよびNiの含有量はそれぞれ0.01%以上とすることがより好ましい。したがって、Cr、MoおよびNiを含有する場合には、その含有量はそれぞれ1.00%以下とする。Cr、MoおよびNiを含有する場合の下限は、より好ましくは0.01%以上とする。Cr、MoおよびNiを含有する場合の上限は、さらに好ましくは0.80%以下とする。 If each of Cr, Mo, and Ni is 1.00% or less, coarse precipitates and inclusions do not increase and the ultimate deformability of the steel sheet does not decrease, so the toughness and work embrittlement resistance do not decrease. Therefore, it is preferable that the contents of Cr, Mo, and Ni are each 1.00% or less. Note that the lower limit of the content of Cr, Mo, and Ni is not particularly specified, but since they are elements that improve hardenability, it is more preferable that the content of Cr, Mo, and Ni is each 0.01% or more. . Therefore, when Cr, Mo, and Ni are contained, their contents are each 1.00% or less. The lower limit in the case of containing Cr, Mo and Ni is more preferably 0.01% or more. The upper limit when Cr, Mo and Ni are contained is more preferably 0.80% or less.
 Coは、0.010%以下であれば粗大な析出物や介在物が増加せず、鋼板の極限変形能を低下させないことから、靭性および耐加工脆化特性が低下しない。そのため、Coの含有量は0.010%以下にすることが好ましい。なお、Coの含有量の下限は特に規定しないが、焼入れ性を向上させる元素であることから、Coの含有量は0.001%以上とすることがより好ましい。したがって、Coを含有する場合には、その含有量は0.010%以下とする。Coを含有する場合の下限は、より好ましくは0.001%以上とする。Coを含有する場合の上限は、さらに好ましくは0.008%以下とする。 If Co is 0.010% or less, coarse precipitates and inclusions do not increase and the ultimate deformability of the steel sheet does not decrease, so the toughness and work embrittlement resistance do not decrease. Therefore, the Co content is preferably 0.010% or less. Although the lower limit of the Co content is not particularly specified, since it is an element that improves hardenability, the Co content is more preferably 0.001% or more. Therefore, when Co is contained, the content should be 0.010% or less. The lower limit in the case of containing Co is more preferably 0.001% or more. The upper limit when Co is contained is more preferably 0.008% or less.
 Cuは、1.00%以下であれば粗大な析出物や介在物が増加せず、鋼板の極限変形能を低下させないことから、靭性および耐加工脆化特性が低下しない。そのため、Cuの含有量は1.00%以下にすることが好ましい。なお、Cuの含有量の下限は特に規定しないが、焼入れ性を向上させる元素であることから、Cuの含有量は0.01%以上とすることが好ましい。したがって、Cuを含有する場合には、その含有量は1.00%以下とする。Cuを含有する場合の下限は、より好ましくは、0.01%以上とする。Cuを含有する場合の上限は、さらに好ましくは0.80%以下とする。 If Cu is 1.00% or less, coarse precipitates and inclusions do not increase and the ultimate deformability of the steel sheet does not decrease, so the toughness and work embrittlement resistance do not deteriorate. Therefore, the Cu content is preferably 1.00% or less. Although the lower limit of the Cu content is not particularly specified, since it is an element that improves hardenability, the Cu content is preferably 0.01% or more. Therefore, if Cu is contained, the content should be 1.00% or less. The lower limit in the case of containing Cu is more preferably 0.01% or more. The upper limit when Cu is contained is more preferably 0.80% or less.
 Snは、0.200%以下であれば鋳造時あるいは熱間圧延時において鋼板内部に割れを生成せず、鋼板の極限変形能を低下させないことから、靭性および耐加工脆化特性が低下しない。そのため、Snの含有量は0.200%以下にすることが好ましい。なお、Snの含有量の下限は特に規定しないが、Snは焼入れ性を向上させる元素(一般的には耐食性を向上させる元素)であることから、Snの含有量は0.001%以上とすることがより好ましい。したがって、Snを含有する場合には、その含有量は0.200%以下とする。Snを含有する場合の下限は、より好ましくは0.001%以上とする。Snを含有する場合の上限は、さらに好ましくは0.100%以下とする。 If Sn is 0.200% or less, it will not generate cracks inside the steel sheet during casting or hot rolling, and will not reduce the ultimate deformability of the steel sheet, so the toughness and resistance to work embrittlement will not deteriorate. Therefore, the content of Sn is preferably 0.200% or less. Note that the lower limit of the Sn content is not particularly specified, but since Sn is an element that improves hardenability (generally an element that improves corrosion resistance), the Sn content should be 0.001% or more. It is more preferable. Therefore, if Sn is contained, the content should be 0.200% or less. The lower limit in the case of containing Sn is more preferably 0.001% or more. The upper limit when Sn is contained is more preferably 0.100% or less.
 Sbは、0.200%以下であれば粗大な析出物や介在物が増加せず、鋼板の極限変形能を低下させないことから、靭性および耐加工脆化特性が低下しない。そのため、Sbの含有量は0.200%以下にすることが好ましい。なお、Sbの含有量の下限は特に規定しないが、表層軟化厚みを制御し、強度調整を可能にする元素であることから、Sbの含有量は0.001%以上とすることがより好ましい。したがって、Sbを含有する場合には、その含有量は0.200%以下とする。Sbを含有する場合の下限は、より好ましくは0.001%以上とする。Sbを含有する場合の上限は、さらに好ましくは0.100%以下とする。 If Sb is 0.200% or less, coarse precipitates and inclusions will not increase and the ultimate deformability of the steel plate will not be reduced, so the toughness and work embrittlement resistance will not deteriorate. Therefore, the content of Sb is preferably 0.200% or less. Although the lower limit of the Sb content is not particularly defined, it is more preferable that the Sb content is 0.001% or more since it is an element that controls the softening thickness of the surface layer and enables strength adjustment. Therefore, if Sb is contained, the content should be 0.200% or less. The lower limit in the case of containing Sb is more preferably 0.001% or more. The upper limit when Sb is contained is more preferably 0.100% or less.
 Ca、MgおよびREMは、それぞれ0.0100%以下であれば粗大な析出物や介在物が増加せず、鋼板の極限変形能を低下させないことから、靭性および耐加工脆化特性が低下しない。そのため、Ca、MgおよびREMの含有量は0.0100%以下にすることが好ましい。なお、Ca、MgおよびREMの含有量の下限は特に規定しないが、窒化物や硫化物の形状を球状化し、鋼板の極限変形能を向上する元素であることから、Ca、MgおよびREMの含有量はそれぞれ0.0005%以上とすることがより好ましい。したがって、Ca、MgおよびREMを含有する場合には、その含有量はそれぞれ0.0100%以下とする。Ca、MgおよびREMを含有する場合の下限は、より好ましくは0.0005%以上とする。Ca、MgおよびREMを含有する場合の上限は、さらに好ましくは0.0050%以下とする。 If each of Ca, Mg and REM is 0.0100% or less, coarse precipitates and inclusions will not increase and the ultimate deformability of the steel plate will not be reduced, so the toughness and work embrittlement resistance will not deteriorate. Therefore, the content of Ca, Mg and REM is preferably 0.0100% or less. Note that the lower limits of the contents of Ca, Mg, and REM are not particularly stipulated, but since they are elements that spheroidize the shape of nitrides and sulfides and improve the ultimate deformability of steel sheets, the contents of Ca, Mg, and REM are More preferably, each amount is 0.0005% or more. Therefore, when Ca, Mg and REM are contained, their contents are each 0.0100% or less. The lower limit in the case of containing Ca, Mg and REM is more preferably 0.0005% or more. The upper limit when Ca, Mg and REM are contained is more preferably 0.0050% or less.
 ZrおよびTeは、それぞれ0.100%以下であれば粗大な析出物や介在物が増加せず、鋼板の極限変形能を低下させないことから、靭性および耐加工脆化特性が低下しない。そのため、ZrおよびTeの含有量は0.100%以下にすることが好ましい。なお、ZrおよびTeの含有量の下限は特に規定しないが、窒化物や硫化物の形状を球状化し、鋼板の極限変形能を向上する元素であることから、ZrおよびTeの含有量はそれぞれ0.001%以上とすることがより好ましい。したがって、ZrおよびTeを含有する場合には、その含有量はそれぞれ0.100%以下とする。ZrおよびTeを含有する場合の下限は、より好ましくは0.001%以上とする。ZrおよびTeを含有する場合の上限は、さらに好ましくは0.080%以下とする。 If each of Zr and Te is 0.100% or less, coarse precipitates and inclusions will not increase and the ultimate deformability of the steel plate will not be reduced, so the toughness and work embrittlement resistance will not deteriorate. Therefore, the contents of Zr and Te are preferably 0.100% or less. Note that the lower limits of the contents of Zr and Te are not particularly specified, but since they are elements that spheroidize the shape of nitrides and sulfides and improve the ultimate deformability of the steel sheet, the contents of Zr and Te are respectively 0. More preferably, the content is .001% or more. Therefore, when Zr and Te are contained, their contents are each 0.100% or less. The lower limit in the case of containing Zr and Te is more preferably 0.001% or more. The upper limit when Zr and Te are contained is more preferably 0.080% or less.
 Hfは、0.10%以下であれば粗大な析出物や介在物が増加せず、鋼板の極限変形能を低下させないことから、靭性および耐加工脆化特性が低下しない。そのため、Hfの含有量は0.10%以下にすることが好ましい。なお、Hfの含有量の下限は特に規定しないが、窒化物や硫化物の形状を球状化し、鋼板の極限変形能を向上する元素であることから、Hfの含有量は0.01%以上とすることがより好ましい。したがって、Hfを含有する場合には、その含有量は0.10%以下とする。Hfを含有する場合の下限は、より好ましくは0.01%以上とする。Hfを含有する場合の上限は、さらに好ましくは0.08%以下とする。 If Hf is 0.10% or less, coarse precipitates and inclusions will not increase and the ultimate deformability of the steel plate will not be reduced, so the toughness and work embrittlement resistance will not deteriorate. Therefore, the Hf content is preferably 0.10% or less. Note that there is no particular lower limit to the Hf content, but since it is an element that spheroidizes the shape of nitrides and sulfides and improves the ultimate deformability of steel sheets, the Hf content should be 0.01% or more. It is more preferable to do so. Therefore, if Hf is contained, the content should be 0.10% or less. The lower limit in the case of containing Hf is more preferably 0.01% or more. The upper limit when containing Hf is more preferably 0.08% or less.
 Biは、0.200%以下であれば粗大な析出物や介在物が増加せず、鋼板の極限変形能を低下させないことから、靭性および耐加工脆化特性が低下しない。そのため、Biの含有量は0.200%以下にすることが好ましい。なお、Biの含有量の下限は特に規定しないが、偏析を軽減する元素であることから、Biの含有量は0.001%以上とすることがより好ましい。したがって、Biを含有する場合には、その含有量は0.200%以下とする。Biを含有する場合の下限は、より好ましくは0.001%以上とする。Biを含有する場合の上限は、さらに好ましくは0.100%以下とする。 If Bi is 0.200% or less, coarse precipitates and inclusions will not increase and the ultimate deformability of the steel plate will not be reduced, so the toughness and work embrittlement resistance will not deteriorate. Therefore, the Bi content is preferably 0.200% or less. Although the lower limit of the Bi content is not particularly defined, since it is an element that reduces segregation, the Bi content is more preferably 0.001% or more. Therefore, when Bi is contained, the content should be 0.200% or less. The lower limit in the case of containing Bi is more preferably 0.001% or more. The upper limit in the case of containing Bi is more preferably 0.100% or less.
 なお、上記したTi、Nb、V、Ta、W、B、Cr、Mo、Ni、Co、Cu、Sn、Sb、Ca、Mg、REM、Zr、Te、HfおよびBiについて、各含有量が好ましい下限値未満の場合には本発明の効果を害することがないため、不可避的不純物として含むものとする。 In addition, each content of Ti, Nb, V, Ta, W, B, Cr, Mo, Ni, Co, Cu, Sn, Sb, Ca, Mg, REM, Zr, Te, Hf and Bi is preferable. If it is less than the lower limit, the effect of the present invention will not be impaired, and therefore it is included as an unavoidable impurity.
 次に、本発明の高強度鋼板の鋼組織について説明する。 Next, the steel structure of the high-strength steel plate of the present invention will be explained.
 [マルテンサイト量が面積分率で60%以上]
 本発明において、極めて重要な発明構成要件である。マルテンサイト量を面積分率で60%以上とすることで、980MPa以上のTSを実現することが可能となる。したがって、マルテンサイトが面積分率で60%以上とする。好ましくは62%以上である。より好ましくは64%以上である。
[Amount of martensite is 60% or more in terms of area fraction]
This is an extremely important feature of the invention. By setting the amount of martensite to 60% or more in terms of area fraction, it becomes possible to realize a TS of 980 MPa or more. Therefore, the area fraction of martensite is 60% or more. Preferably it is 62% or more. More preferably, it is 64% or more.
 [残留オーステナイト量が体積分率で3%以上15%以下]
 本発明において、極めて重要な発明構成要件である。残留オーステナイト量が体積分率で3%未満の場合、10%以上のElを実現することが困難になり、かつ、残留オーステナイトによる靭性の向上効果が得られず優れた靭性を実現することが困難になる。また、残留オーステナイト量が15%超えの場合、加工付与時により残留オーステナイトが硬質なマルテンサイトに過度に変態するため、鋼板の極限変形能が低下し、優れた耐加工脆化特性を得ることが困難になる。したがって、残留オーステナイトは3%以上15%以下とする。残留オーステナイト量の下限は、好ましくは5%以上とする。残留オーステナイト量の上限は、好ましくは14%以下とする。残留オーステナイト量の下限は、より好ましくは7%以上とする。残留オーステナイト量の上限は、より好ましくは13%以下とする。
[Retained austenite amount is 3% or more and 15% or less in volume fraction]
This is an extremely important feature of the invention. If the amount of retained austenite is less than 3% in volume fraction, it becomes difficult to achieve an El of 10% or more, and the toughness improvement effect of retained austenite cannot be obtained, making it difficult to achieve excellent toughness. become. Additionally, if the amount of retained austenite exceeds 15%, the retained austenite will excessively transform into hard martensite during processing, resulting in a decrease in the ultimate deformability of the steel sheet, making it difficult to obtain excellent work embrittlement resistance. It becomes difficult. Therefore, the retained austenite is set to 3% or more and 15% or less. The lower limit of the amount of retained austenite is preferably 5% or more. The upper limit of the amount of retained austenite is preferably 14% or less. The lower limit of the amount of retained austenite is more preferably 7% or more. The upper limit of the amount of retained austenite is more preferably 13% or less.
 ここで、残留オーステナイトの測定方法は、以下の通りである。残留オーステナイトは、鋼板を板厚1/4部から0.1mmの面まで研磨後、化学研磨によりさらに0.1mm研磨した面について、X線回折装置でCoKα線を用いて、fcc鉄の{200}、{220}、{311}面および、bcc鉄の{200}、{211}、{220}面の回折ピークの各々の積分強度比を測定し、得られた9つの積分強度比を平均化して求める。 Here, the method for measuring retained austenite is as follows. Retained austenite was determined by polishing the steel plate from 1/4 part of the plate thickness to a surface of 0.1 mm, and then chemically polishing the surface to a further 0.1 mm using an X-ray diffractometer using CoKα rays. }, {220}, {311} planes and the diffraction peaks of {200}, {211}, {220} planes of BCC iron were measured, and the nine integrated intensity ratios obtained were averaged. Convert and seek.
 [フェライト量およびベイニティックフェライト量の合計が面積分率で10%超]
 本発明において、極めて重要な発明構成要件である。フェライト量およびベイニティックフェライト量の合計が10%以下の場合、10%以上のElを実現することが困難になる。したがって、フェライト量およびベイニティックフェライト量の合計は10%超とする。好ましくは12%以上とする。より好ましくは13%以上とする。なお、フェライト量およびベイニティックフェライト量の合計の上限は特に限定しない。
[The total amount of ferrite and bainitic ferrite exceeds 10% in area fraction]
This is an extremely important feature of the invention. If the total amount of ferrite and bainitic ferrite is 10% or less, it becomes difficult to achieve El of 10% or more. Therefore, the total amount of ferrite and bainitic ferrite is more than 10%. Preferably it is 12% or more. More preferably, it is 13% or more. Note that the upper limit of the total amount of ferrite and bainitic ferrite is not particularly limited.
 ここで、フェライト量およびベイニティックフェライト量の合計の測定方法は、以下の通りである。鋼板のL断面を研磨後、3vol.%ナイタールで腐食し、板厚1/4部(鋼板表面から深さ方向で板厚の1/4に相当する位置)を、SEMを用いて2000倍の倍率で10視野観察する。なお、上記の組織画像において、フェライトおよびベイニティックフェライトは凹部で組織内部が平坦な組織であり、かつ、内部に炭化物を有さない組織である。それらの値の平均値から、フェライト量およびベイニティックフェライト量の合計を求めることができる。 Here, the method for measuring the total amount of ferrite and bainitic ferrite is as follows. After polishing the L cross section of the steel plate, 3vol. % nital, and 1/4 part of the plate thickness (a position corresponding to 1/4 of the plate thickness in the depth direction from the steel plate surface) is observed in 10 fields at a magnification of 2000 times using an SEM. In the above structure image, ferrite and bainitic ferrite have concave portions and a flat structure inside, and have no carbide inside. From the average value of those values, the total amount of ferrite and bainitic ferrite can be determined.
 上記マルテンサイト量の測定方法は、以下の通りである。マルテンサイト量は、前述した方法に基づき残留オーステナイト量、フェライト量およびベイニティックフェライト量を測定し、それらの合計を100%から差し引くことで求めることができる。したがって本発明のマルテンサイト量とは、焼入れマルテンサイトと焼戻しマルテンサイトの両方を含んだ量である。なお、差し引きにおいて、残留オーステナイト量の体積率≒面積率であるので、面積率で表されるフェライト量およびベイニティックフェライト量と共に100%から差し引くこととする。 The method for measuring the amount of martensite is as follows. The amount of martensite can be determined by measuring the amount of retained austenite, the amount of ferrite, and the amount of bainitic ferrite based on the method described above, and subtracting the total from 100%. Therefore, the amount of martensite in the present invention is an amount that includes both quenched martensite and tempered martensite. In addition, in subtraction, since the volume ratio of the retained austenite amount is approximately the area ratio, it is subtracted from 100% together with the ferrite amount and the bainitic ferrite amount expressed by the area ratio.
 [旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値が面積分率で70%以下]
 本発明において、極めて重要な発明構成要件である。旧オーステナイト粒内の最大占有率を有するパケットの占有率は、板幅方向の平坦度および耐加工脆化特性に影響する。旧オーステナイト粒内の最大占有率を有するパケットとは、図1に示すように、旧オーステナイト粒内にはパケットと呼ばれる変態時の晶癖面が同じ領域が最大4つ存在しており、その中の最も大きい占有率を有するパケットのことを示す。
[The average value of the occupancy of the packets with the maximum occupancy in the prior austenite grains is 70% or less in terms of area fraction]
This is an extremely important feature of the invention. The occupancy of the packets having the maximum occupancy within the prior austenite grains influences the flatness in the width direction and the resistance to work embrittlement. The packet with the maximum occupancy rate in the prior austenite grains means that, as shown in Figure 1, there are up to four regions in the prior austenite grains, called packets, that have the same crystal habit plane during transformation. indicates the packet with the largest occupancy rate.
 旧オーステナイト粒内の1つのパケットの占有率は、指定のパケットの面積を旧オーステナイト粒内の全体の面積で除することで求められる。 The occupancy of one packet within the prior austenite grains is determined by dividing the area of the specified packet by the entire area within the prior austenite grains.
 本発明者らは、鋭意検討を重ねた結果、旧オーステナイト粒内の最大占有率を有するパケットの占有率を減少させることで、パケット間の歪が緩和され、板幅方向の平坦度が改善されることを見出した。また、旧オーステナイト粒内の最大占有率を有するパケットの占有率を減少させることで、組織が微細化し、き裂の伝播を抑制できるため、鋼板の耐加工脆化特性を向上することも見出した。したがって、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値は70%以下とする。好ましくは60%以下とする。なお、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値の下限は特に限定しない。パケットの種類は最大で4つであり、4つのパケットが均等に存在する場合に旧オーステナイト粒内の最大占有率を有するパケットの占有率が25%となる。よって、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値の下限は25%以上が好ましいが、これに限定する必要はない。 As a result of extensive studies, the present inventors found that by reducing the occupancy of the packets with the maximum occupancy within the prior austenite grains, the strain between the packets was alleviated and the flatness in the sheet width direction was improved. I discovered that. They also found that by reducing the occupancy of packets, which have the highest occupancy within prior austenite grains, the structure becomes finer and crack propagation can be suppressed, thereby improving the work embrittlement resistance of the steel sheet. . Therefore, the average value of the occupancy of the packets having the maximum occupancy in the prior austenite grains is set to be 70% or less. Preferably it is 60% or less. Note that the lower limit of the average value of the occupancy of packets having the maximum occupancy in prior austenite grains is not particularly limited. There are a maximum of four types of packets, and when the four packets are evenly distributed, the occupancy rate of the packet having the maximum occupancy rate in the prior austenite grains is 25%. Therefore, although the lower limit of the average value of the occupancy of packets having the maximum occupancy in prior austenite grains is preferably 25% or more, it is not necessary to be limited to this.
 ここで、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値の測定方法は、以下の通りである。まず、冷延鋼板から、組織観察用の試験片を採取する。次いで、採取した試験片を、圧延方向断面(L断面)が観察面となるように、コロイダルシリカ振動研磨により研磨する。観察面は鏡面とする。次いで、板厚1/4部(鋼板表面から深さ方向で板厚の1/4に相当する位置)に対して電子線後方散乱回折(EBSD)測定を実施し、局所結晶方位データを得る。このとき、SEM倍率は1000倍、ステップサイズは0.2μm、測定領域は80μm平方、WDは15mmとする。得られた局所方位データを、OIMAnalysis7(OIM)を用いて解析し、非特許文献1に記載の方法を用いてClose-packed Plane group(CPグループ)ごとに色分けした図(CPマップ)を作成する。本発明では、パケットを同じCPグループの属している領域と定義する。得られたCPマップから最も大きい占有率を有するパケットの面積を求め、旧オーステナイト粒内の全体の面積で除することで旧オーステナイト粒内の最大占有率を有するパケットの占有率が求められる。この解析を隣接する10個以上の旧オーステナイト粒に対して実施し、その平均の値を、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値とする。 Here, the method for measuring the average value of the occupancy of the packets having the maximum occupancy in the prior austenite grains is as follows. First, a test piece for microstructural observation is taken from a cold-rolled steel sheet. Next, the sampled test piece is polished by colloidal silica vibration polishing so that the cross section in the rolling direction (L cross section) becomes the observation surface. The observation surface shall be a mirror surface. Next, electron beam backscatter diffraction (EBSD) measurement is performed on a 1/4 part of the plate thickness (a position corresponding to 1/4 of the plate thickness in the depth direction from the steel plate surface) to obtain local crystal orientation data. At this time, the SEM magnification is 1000 times, the step size is 0.2 μm, the measurement area is 80 μm square, and the WD is 15 mm. The obtained local orientation data is analyzed using OIM Analysis 7 (OIM), and a color-coded diagram (CP map) for each Close-packed Plane group (CP group) is created using the method described in Non-Patent Document 1. . In the present invention, packets are defined as areas to which the same CP group belongs. The area of the packet with the largest occupancy is determined from the obtained CP map and divided by the total area within the prior austenite grains, thereby obtaining the occupancy of the packet with the maximum occupancy within the prior austenite grains. This analysis is performed on ten or more adjacent prior austenite grains, and the average value is taken as the average value of the occupancy of the packets having the maximum occupancy within the prior austenite grain.
 次に、本発明の製造方法について説明する。 Next, the manufacturing method of the present invention will be explained.
 本発明において、鋼素材(鋼スラブ)の溶製方法は特に限定されず、転炉や電気炉等、公知の溶製方法いずれもが適合する。鋼スラブ(スラブ)は、マクロ偏析を防止するため、連続鋳造法で製造するのが好ましい。 In the present invention, the method of melting the steel material (steel slab) is not particularly limited, and any known melting method such as a converter or an electric furnace is suitable. The steel slab (slab) is preferably manufactured by a continuous casting method in order to prevent macro segregation.
 本発明において、熱間圧延におけるスラブ加熱温度、スラブ均熱保持時間および巻取温度は特に限定されない。鋼スラブを熱間圧延する方法としては、スラブを加熱後圧延する方法、連続鋳造後のスラブを加熱することなく直接圧延する方法、連続鋳造後のスラブに短時間加熱処理を施して圧延する方法などが挙げられる。熱間圧延におけるスラブ加熱温度、スラブ均熱保持時間、仕上げ圧延温度および巻取温度は特に限定されないが、スラブ加熱温度の下限は1100℃以上が好ましい。スラブ加熱温度の上限は1300℃以下が好ましい。スラブ均熱保持時間の下限は30min以上が好ましい。スラブ均熱保持時間の上限は250min以下が好ましい。仕上げ圧延温度の下限はAr変態点以上が好ましい。また、巻取温度の下限は350℃以上が好ましい。また、巻取温度の上限は650℃以下が好ましい。 In the present invention, the slab heating temperature, slab soaking time and coiling temperature in hot rolling are not particularly limited. Methods for hot rolling steel slabs include rolling the slab after heating, directly rolling the slab after continuous casting without heating it, and rolling after subjecting the slab after continuous casting to a short heat treatment. Examples include. Although the slab heating temperature, slab soaking time, finish rolling temperature, and coiling temperature in hot rolling are not particularly limited, the lower limit of the slab heating temperature is preferably 1100° C. or higher. The upper limit of the slab heating temperature is preferably 1300°C or less. The lower limit of the slab soaking time is preferably 30 min or more. The upper limit of the slab soaking time is preferably 250 min or less. The lower limit of the finish rolling temperature is preferably equal to or higher than the Ar 3 transformation point. Further, the lower limit of the winding temperature is preferably 350°C or higher. Moreover, the upper limit of the winding temperature is preferably 650° C. or less.
 このようにして製造した熱延鋼板に、酸洗を行う。酸洗は鋼板表面の酸化物の除去が可能であることから、最終製品の高強度鋼板における良好な化成処理性やめっき品質の確保のために重要である。また、酸洗は、一回でも良いし、複数回に分けても良い。また、熱延後酸洗処理板のままで冷間圧延を施してもよいし、熱処理を施したのちに冷間圧延を施してもよい。 The hot-rolled steel sheet produced in this way is pickled. Since pickling can remove oxides on the surface of the steel sheet, it is important for ensuring good chemical conversion treatability and plating quality in the final high-strength steel sheet. Further, the pickling may be carried out once or may be carried out in multiple steps. Moreover, cold rolling may be performed on the pickled plate after hot rolling, or cold rolling may be performed after heat treatment.
 冷間圧延における圧下率および圧延後の板厚は特に限定しないが、圧下率の下限は30%以上が好ましい。また、圧下率の上限は80%以下とすることが好ましい。なお、圧延パスの回数、各パスの圧下率については、特に限定されることなく本発明の効果を得ることができる。 The rolling reduction in cold rolling and the plate thickness after rolling are not particularly limited, but the lower limit of the rolling reduction is preferably 30% or more. Further, the upper limit of the rolling reduction ratio is preferably 80% or less. Note that the effects of the present invention can be obtained without any particular limitations on the number of rolling passes and the rolling reduction rate of each pass.
 上記のようにして得られた冷延鋼板に、焼鈍を行う。焼鈍条件は以下のとおりである。 The cold rolled steel sheet obtained as described above is annealed. The annealing conditions are as follows.
 [焼鈍温度Taが700℃以上900℃以下]
 焼鈍温度Taが700℃未満の場合、マルテンサイト量が減少し、980MPa以上のTSを実現することが困難になる。一方、焼鈍温度が900℃超えの場合、フェライト量およびベイニティックフェライト量の合計が減少し、10%以上のElを実現することが困難になる。したがって、焼鈍温度は700℃以上900℃以下とする。焼鈍温度の下限は、好ましくは750℃以上である。焼鈍温度の上限は、好ましくは870℃以下である。
[Annealing temperature Ta is 700°C or higher and 900°C or lower]
When the annealing temperature Ta is less than 700°C, the amount of martensite decreases, making it difficult to achieve a TS of 980 MPa or more. On the other hand, when the annealing temperature exceeds 900° C., the total amount of ferrite and bainitic ferrite decreases, making it difficult to achieve El of 10% or more. Therefore, the annealing temperature is set to 700°C or more and 900°C or less. The lower limit of the annealing temperature is preferably 750°C or higher. The upper limit of the annealing temperature is preferably 870°C or lower.
 [焼鈍温度Taでの保持時間が10秒以上1000秒以下で焼鈍]
 焼鈍温度Taでの保持時間が10秒未満の場合、マルテンサイト量が減少し、980MPa以上のTSを実現することが困難になる。一方、焼鈍温度Taでの保持時間が1000秒超えの場合、フェライト量およびベイニティックフェライト量の合計が減少し、10%以上のElを実現することが困難になる。したがって、焼鈍温度Taでの保持時間は10秒以上1000秒以下とする。焼鈍温度Taでの保持時間の下限は、好ましくは50秒以上である。焼鈍温度Taでの保持時間の上限は、好ましくは500秒以下である。
[Annealing with holding time at annealing temperature Ta of 10 seconds or more and 1000 seconds or less]
If the holding time at the annealing temperature Ta is less than 10 seconds, the amount of martensite decreases, making it difficult to achieve a TS of 980 MPa or more. On the other hand, if the holding time at the annealing temperature Ta exceeds 1000 seconds, the total amount of ferrite and bainitic ferrite decreases, making it difficult to achieve El of 10% or more. Therefore, the holding time at the annealing temperature Ta is 10 seconds or more and 1000 seconds or less. The lower limit of the holding time at the annealing temperature Ta is preferably 50 seconds or more. The upper limit of the holding time at the annealing temperature Ta is preferably 500 seconds or less.
 [焼鈍中に半径800mm以下のロールで曲げ曲げ戻しを合計1回以上15回以下]
 本発明者らは鋭意検討を重ねた結果、焼鈍中での鋼板への曲げ曲げ戻しの付与が旧オーステナイト粒内の最大占有率を有するパケットの占有率に影響することを見出した。焼鈍中に半径800mm以下のロールで曲げ曲げ戻しを行わない場合、マルテンサイト変態の核生成サイトが低減する。そのため、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値が70%を超え、板幅方向の平坦度が悪化し、かつ、耐加工脆化特性が低下する。一方、焼鈍中に半径800mm以下のロールで曲げ曲げ戻しを16回以上行った場合、鋼板の極限変形能が低下し、耐加工脆化特性が低下する。したがって、焼鈍中に半径800mm以下のロールで曲げ曲げ戻しを合計1回以上15回以下行うこととする。好ましくはロール径の半径は600mm以下である。好ましくは曲げ曲げ戻しの回数の下限は、合計3回以上である。好ましくは曲げ曲げ戻しの回数の上限は、合計10回以下である。ロール径の半径の下限は特に限定する必要はないが、50mm以上が好ましい。
[Bending and unbending a total of 1 to 15 times with rolls with a radius of 800 mm or less during annealing]
As a result of extensive studies, the present inventors have found that applying unbending to a steel sheet during annealing affects the occupancy of packets having the maximum occupancy within prior austenite grains. If bending and unbending is not performed using rolls with a radius of 800 mm or less during annealing, the number of nucleation sites for martensitic transformation is reduced. Therefore, the average value of the occupancy of the packets having the maximum occupancy in the prior austenite grains exceeds 70%, the flatness in the sheet width direction deteriorates, and the work embrittlement resistance deteriorates. On the other hand, when bending and unbending is performed 16 times or more using rolls with a radius of 800 mm or less during annealing, the ultimate deformability of the steel sheet decreases, and the work embrittlement resistance decreases. Therefore, during annealing, bending and unbending are performed at least once and at most 15 times in total using rolls with a radius of 800 mm or less. Preferably, the radius of the roll diameter is 600 mm or less. Preferably, the lower limit of the number of times of bending and unbending is 3 or more times in total. Preferably, the upper limit of the number of times of bending and unbending is 10 times or less in total. Although the lower limit of the radius of the roll diameter does not need to be particularly limited, it is preferably 50 mm or more.
 なお、曲げ曲げ戻しとは、公知の方法により、ロールで一方向に曲げた後、逆方向に前記曲げた量だけ曲げ戻す処理を言う。曲げ曲げ戻しの回数は、曲げ-曲げ戻しで1回ではなく、曲げで1回、曲げ戻しで1回と数える。 Incidentally, the term "bending and unbending" refers to a process of bending a material in one direction with rolls and then bending it back by the amount of bending in the opposite direction using a known method. The number of times of bending and unbending is counted as one bending and one unbending, rather than one bending and unbending.
 [700℃~600℃の温度範囲での平均冷却速度が20℃/s以上]
 本発明者らは鋭意検討を重ねた結果、700℃~600℃の温度範囲での平均冷却速度が旧オーステナイト粒内の最大占有率を有するパケットの占有率に影響することを見出した。700℃~600℃の温度範囲での平均冷却速度が20℃/s未満の場合、焼鈍中の鋼板への曲げ曲げ戻しの付与の影響が減少し、マルテンサイト変態の核生成サイトが低減する。そのため、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値が70%を超え、板幅方向の平坦度が悪化し、かつ、耐加工脆化特性が低下する。したがって、750℃~600℃の平均冷却速度は20℃/s以上とする。好ましくは30℃/s以上である。上限は特に限定する必要はないが、100℃/s以下が好ましい。
[Average cooling rate of 20°C/s or more in the temperature range of 700°C to 600°C]
As a result of intensive studies, the present inventors found that the average cooling rate in the temperature range of 700° C. to 600° C. affects the occupancy rate of packets having the maximum occupancy rate in prior austenite grains. When the average cooling rate in the temperature range of 700° C. to 600° C. is less than 20° C./s, the influence of bending and unbending the steel sheet during annealing is reduced, and the number of nucleation sites for martensitic transformation is reduced. Therefore, the average value of the occupancy of the packets having the maximum occupancy in the prior austenite grains exceeds 70%, the flatness in the sheet width direction deteriorates, and the work embrittlement resistance deteriorates. Therefore, the average cooling rate from 750°C to 600°C is set to 20°C/s or more. Preferably it is 30°C/s or more. The upper limit does not need to be particularly limited, but is preferably 100° C./s or less.
 [499℃~Msの温度範囲での平均冷却速度が20℃/s未満]
 499℃~Msの温度範囲での平均冷却速度は、フェライト量およびベイニティックフェライト量の合計面積分率に影響する。499℃~Msの温度範囲での平均冷却速度が20℃/s以上の場合、フェライト量およびベイニティックフェライト量の合計が減少し、10%以上のElを実現することが困難になる。したがって、499℃~Msの温度範囲での平均冷却速度は20℃/s未満とする。好ましくは18℃/s以下である。下限は特に限定する必要はないが、5℃/s以上が好ましい。
[Average cooling rate in the temperature range of 499°C to Ms is less than 20°C/s]
The average cooling rate in the temperature range of 499° C. to Ms affects the total area fraction of the amount of ferrite and bainitic ferrite. When the average cooling rate in the temperature range of 499° C. to Ms is 20° C./s or more, the total amount of ferrite and bainitic ferrite decreases, making it difficult to achieve El of 10% or more. Therefore, the average cooling rate in the temperature range of 499°C to Ms is less than 20°C/s. Preferably it is 18°C/s or less. The lower limit does not need to be particularly limited, but is preferably 5° C./s or more.
 なお、マルテンサイト変態開始温度Ms(℃)は以下の(1)式にて規定する。
Ms=519-474×[%C]-30.4×[%Mn]-12.1×[%Cr]-7.5×[%Mo]-17.7×[%Ni]-Ta/80・・・・(1)
ここで、[%C]、[%Mn]、[%Cr]、[%Mo]、[%Ni]はC、Mn、Cr、Mo、Niそれぞれの含有量(質量%)を表し、含まない場合は0とする。
Note that the martensitic transformation start temperature Ms (° C.) is defined by the following equation (1).
Ms=519-474×[%C]-30.4×[%Mn]-12.1×[%Cr]-7.5×[%Mo]-17.7×[%Ni]-Ta/80 ...(1)
Here, [%C], [%Mn], [%Cr], [%Mo], and [%Ni] represent the respective contents (mass%) of C, Mn, Cr, Mo, and Ni, and do not include In that case, it is set to 0.
 [499℃~Msの温度範囲で半径800mm以下のロールで曲げ曲げ戻しを合計1回以上15回以下]
 本発明者らは鋭意検討を重ねた結果、499℃~Msの温度範囲での鋼板への曲げ曲げ戻しの付与が旧オーステナイト粒内の最大占有率を有するパケットの占有率に影響することを見出した。499℃~Msの温度範囲に半径800mm以下のロールで曲げ曲げ戻しを行わない場合、マルテンサイトの核生成サイトが低減する。そのため、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値が70%を超え、板幅方向の平坦度が悪化し、かつ、耐加工脆化特性が低下する。一方、499℃~Msの温度範囲に半径800mm以下のロールで曲げ曲げ戻しを16回以上行った場合、鋼板の極限変形能を低下し、耐加工脆化特性が低下する。したがって、499℃~Msの温度範囲に半径800mm以下のロールで曲げ曲げ戻しを合計1回以上15回以下行うこととする。好ましくはロール径の半径は600mm以下である。好ましくは曲げ曲げ戻しの回数の下限は、合計3回以上である。好ましくは曲げ曲げ戻しの回数の下限は、合計10回以下である。ロール径の半径の下限は特に限定する必要はないが、50mm以上が好ましい。
[Bending and unbending a total of 1 to 15 times with a roll with a radius of 800 mm or less in a temperature range of 499°C to Ms]
As a result of extensive studies, the present inventors found that applying bending and unbending to a steel sheet in the temperature range of 499°C to Ms affects the occupancy rate of packets having the maximum occupancy rate in prior austenite grains. Ta. If bending and unbending is not performed in the temperature range of 499° C. to Ms with a roll having a radius of 800 mm or less, the number of martensite nucleation sites is reduced. Therefore, the average value of the occupancy of the packets having the maximum occupancy in the prior austenite grains exceeds 70%, the flatness in the sheet width direction deteriorates, and the work embrittlement resistance deteriorates. On the other hand, when bending and unbending is performed more than 16 times in the temperature range of 499° C. to Ms with a roll having a radius of 800 mm or less, the ultimate deformability of the steel sheet decreases and the work embrittlement resistance decreases. Therefore, bending and unbending is performed a total of 1 to 15 times in a temperature range of 499° C. to Ms with a roll having a radius of 800 mm or less. Preferably, the radius of the roll diameter is 600 mm or less. Preferably, the lower limit of the number of times of bending and unbending is 3 or more times in total. Preferably, the lower limit of the number of times of bending and unbending is 10 times or less in total. Although the lower limit of the radius of the roll diameter does not need to be particularly limited, it is preferably 50 mm or more.
 [Ms~冷却停止温度Tbの温度範囲での平均冷却速度が150℃/s以下]
 本発明者らは鋭意検討を重ねた結果、Ms~冷却停止温度Tbの温度範囲での平均冷却速度が旧オーステナイト粒内の最大占有率を有するパケットの占有率に影響することを見出した。Ms~冷却停止温度Tbの温度範囲での平均冷却速度が150℃/s超えの場合、マルテンサイト変態速度が速いことに起因して1つのパケットが成長しやすいため、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値が70%を超え、板幅方向の平坦度が悪化し、かつ、耐加工脆化特性が低下する。したがって、Ms~冷却停止温度Tbの温度範囲での平均冷却速度は150℃/s以下とする。好ましくは120℃/s以下である。下限は特に限定する必要はないが、5℃/s以上が好ましい。
[Average cooling rate in the temperature range from Ms to cooling stop temperature Tb is 150°C/s or less]
As a result of extensive studies, the present inventors found that the average cooling rate in the temperature range from Ms to the cooling stop temperature Tb affects the occupancy of packets having the maximum occupancy in prior austenite grains. When the average cooling rate in the temperature range from Ms to the cooling stop temperature Tb exceeds 150°C/s, one packet tends to grow due to the fast martensitic transformation rate, so the maximum occupancy within the prior austenite grains increases. The average value of the occupancy rate of packets having a ratio exceeds 70%, the flatness in the sheet width direction deteriorates, and the work embrittlement resistance deteriorates. Therefore, the average cooling rate in the temperature range from Ms to the cooling stop temperature Tb is set to 150° C./s or less. Preferably it is 120°C/s or less. The lower limit does not need to be particularly limited, but is preferably 5° C./s or more.
 [Ms~冷却停止温度Tb温度範囲での鋼板に付与される張力が5MPa以上100MPa以下]
 本発明者らは鋭意検討を重ねた結果、Ms~冷却停止温度Tb温度範囲での鋼板への張力の付与が旧オーステナイト粒内の最大占有率を有するパケットの占有率に影響することを見出した。Ms~冷却停止温度Tb温度範囲での鋼板に付与される張力が5MPa未満の場合、マルテンサイトの核生成サイトが低減する。そのため、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値が70%を超え、板幅方向の平坦度が悪化し、かつ、耐加工脆化特性が低下する。一方、Ms~冷却停止温度Tb温度範囲での鋼板に付与される張力が100MPa超えの場合、フェライト量およびベイニティックフェライト量の合計が過度に増加するため、マルテンサイト量が減少し、980MPa以上のTSを実現することが困難になる。したがって、Ms~冷却停止温度Tb温度範囲での鋼板に付与される張力は5MPa以上100MPa以下とする。Ms~冷却停止温度Tb温度範囲での鋼板に付与される張力の下限は、好ましくは6MPa以上である。Ms~冷却停止温度Tb温度範囲での鋼板に付与される張力の上限は、好ましくは50MPa以下である。なお、張力の付与は公知の方法で行う。一例として、炉内のロールのロール速度を制御することによって張力を付与する方式を行っても良い。
[Tension applied to the steel plate in the temperature range from Ms to cooling stop temperature Tb is 5 MPa or more and 100 MPa or less]
As a result of extensive studies, the present inventors found that applying tension to the steel sheet in the temperature range from Ms to cooling stop temperature Tb affects the occupancy rate of packets having the maximum occupancy rate in prior austenite grains. . When the tension applied to the steel plate in the temperature range from Ms to the cooling stop temperature Tb is less than 5 MPa, the number of martensite nucleation sites is reduced. Therefore, the average value of the occupancy of the packets having the maximum occupancy in the prior austenite grains exceeds 70%, the flatness in the sheet width direction deteriorates, and the work embrittlement resistance deteriorates. On the other hand, if the tension applied to the steel sheet in the temperature range from Ms to cooling stop temperature Tb exceeds 100 MPa, the total amount of ferrite and bainitic ferrite increases excessively, so the amount of martensite decreases, and the tension exceeds 980 MPa. It becomes difficult to realize the TS of Therefore, the tension applied to the steel plate in the temperature range from Ms to the cooling stop temperature Tb is set to be 5 MPa or more and 100 MPa or less. The lower limit of the tension applied to the steel plate in the temperature range from Ms to cooling stop temperature Tb is preferably 6 MPa or more. The upper limit of the tension applied to the steel plate in the temperature range from Ms to cooling stop temperature Tb is preferably 50 MPa or less. Note that the tension is applied by a known method. As an example, tension may be applied by controlling the speed of the rolls in the furnace.
 なお、上記曲げ曲げ戻し工程は、マルテンサイト変態開始箇所である核生成サイトの数を増加させる一方、上記張力を付与する工程は、マルテンサイト変態自体を促進させる点で得られる効果が異なる。 Note that while the bending and unbending process increases the number of nucleation sites that are martensitic transformation initiation sites, the tension application process has a different effect in that it promotes martensitic transformation itself.
 [冷却停止温度Tbが100℃以上(Ms-80℃)以下]
 冷却停止温度Tbが100℃未満の場合、残留オーステナイト量が減少し、曲げ性が低下する。一方、冷却停止温度Tbが(Ms-80℃)超えの場合、残留オーステナイト量が過度に増加し、旧オーステナイト粒径が過剰に増大し、耐加工脆化特性が低下する。したがって、冷却停止温度Tbは100℃以上(Ms-80℃)以下とする。冷却停止温度Tbの下限は、好ましくは120℃以上である。冷却停止温度Tbの上限は、好ましくは(Ms-100℃)以下である。
[Cooling stop temperature Tb is 100°C or higher (Ms-80°C) or lower]
When the cooling stop temperature Tb is less than 100°C, the amount of retained austenite decreases and bendability decreases. On the other hand, when the cooling stop temperature Tb exceeds (Ms-80°C), the amount of retained austenite increases excessively, the prior austenite grain size increases excessively, and the work embrittlement resistance deteriorates. Therefore, the cooling stop temperature Tb is set to 100°C or more (Ms-80°C) or less. The lower limit of the cooling stop temperature Tb is preferably 120°C or higher. The upper limit of the cooling stop temperature Tb is preferably (Ms-100°C) or less.
 [焼戻温度がTb以上450℃以下]
 上記冷却停止温度Tbにて冷却停止後、そのままの温度で保持を行うか、再加熱し450℃以下の温度で保持を行い、残留オーステナイトを安定化する。焼戻温度がTb未満の場合、所定の残留オーステナイトが得られないため、Elが低下し、かつ、優れた靭性を得ることが困難となる。焼戻温度が450℃超の場合、マルテンサイトの焼戻が過度に進行し、980MPa以上のTSを実現することが困難になる。したがって、焼戻温度はTb以上450℃以下とする。焼戻温度の下限は、好ましくは(Tb+10℃)以上である。焼戻温度の上限は、好ましくは420℃以下である。
[Tempering temperature is Tb or higher and 450°C or lower]
After cooling is stopped at the cooling stop temperature Tb, the remaining austenite is stabilized by holding at that temperature or by reheating and holding at a temperature of 450° C. or lower. When the tempering temperature is lower than Tb, a predetermined level of retained austenite cannot be obtained, so that El decreases and it becomes difficult to obtain excellent toughness. If the tempering temperature exceeds 450° C., the martensite will be excessively tempered, making it difficult to achieve a TS of 980 MPa or more. Therefore, the tempering temperature is set to be higher than Tb and lower than 450°C. The lower limit of the tempering temperature is preferably (Tb+10°C) or higher. The upper limit of the tempering temperature is preferably 420°C or less.
 [焼戻温度での保持時間が10秒以上1000秒以下]
 焼戻温度での保持時間が10秒未満の場合、オーステナイトの安定化が不十分となり、所定の残留オーステナイトが得られないため、Elが低下し、かつ、優れた靭性を得ることが困難となる。焼戻温度での保持時間が1000秒超の場合、マルテンサイトの焼戻が過度に進行し、980MPa以上のTSを実現することが困難になる。したがって、焼戻温度での保持時間は10秒以上1000秒以下とする。焼戻温度での保持時間の下限は、好ましくは50秒以上である。焼戻温度での保持時間の上限は、好ましくは800秒以下である。
[Holding time at tempering temperature is 10 seconds or more and 1000 seconds or less]
If the holding time at the tempering temperature is less than 10 seconds, the stabilization of austenite will be insufficient and the desired residual austenite will not be obtained, resulting in a decrease in El and difficulty in obtaining excellent toughness. . If the holding time at the tempering temperature exceeds 1000 seconds, the martensite will be excessively tempered, making it difficult to achieve a TS of 980 MPa or more. Therefore, the holding time at the tempering temperature is 10 seconds or more and 1000 seconds or less. The lower limit of the holding time at the tempering temperature is preferably 50 seconds or more. The upper limit of the holding time at the tempering temperature is preferably 800 seconds or less.
 焼戻後の冷却は、特に規定する必要がなく、任意の方法により所望の温度に冷却してよい。なお、上記所望の温度は、室温程度が望ましい。 Cooling after tempering does not need to be particularly specified, and may be cooled to a desired temperature by any method. Note that the desired temperature is preferably about room temperature.
 また、上記の高強度鋼板に0.10%以上5.00%以下の相当塑性歪量となる条件で加工を施してもよい。また、加工後に再度100℃以上400℃以下となる条件で再加熱を施してもよい。 Furthermore, the above-mentioned high-strength steel plate may be processed under conditions that result in an equivalent plastic strain amount of 0.10% or more and 5.00% or less. Further, after processing, reheating may be performed again under the conditions of 100° C. or more and 400° C. or less.
 なお、高強度鋼板が取引対象となる場合には、通常、室温まで冷却された後、取引対象となる。 Note that when high-strength steel sheets are traded, they are usually traded after being cooled to room temperature.
 焼鈍中または焼鈍後に、高強度鋼板にめっき処理を施してもよい。 The high-strength steel plate may be subjected to plating treatment during or after annealing.
 焼鈍中のめっき処理として例えば、焼鈍後700℃~600℃の平均冷却速度が20℃/s以上の条件にて冷却中又は冷却後に溶融亜鉛めっき処理、溶融亜鉛めっき後に合金化を行う処理を例示できる。また、焼鈍後のめっき処理として例えば、焼戻し後にZn-Ni電気合金めっき処理、または、純Zn電気めっき処理を例示できる。電気めっきにより、めっき層を形成してもよいし、溶融亜鉛-アルミニウム-マグネシウム合金めっきを施してもよい。なお、上記のめっき処理では、亜鉛めっきの場合を中心に説明したが、Znめっき、Alめっき等のめっき金属の種類は特に限定されない。その他の製造方法の条件は、特に限定しないが、生産性の観点から、上記の焼鈍、溶融亜鉛めっき、亜鉛めっきの合金化処理などの一連の処理は、溶融亜鉛めっきラインであるCGL(Continuous Galvanizing Line)で行うのが好ましい。溶融亜鉛めっき後は、めっきの目付け量を調整するために、ワイピングが可能である。なお、上記した条件以外のめっき等の条件は、溶融亜鉛めっきの常法に依ることができる。 Examples of plating treatment during annealing include hot-dip galvanizing treatment during or after cooling at a temperature of 700°C to 600°C after annealing at an average cooling rate of 20°C/s or more, and alloying after hot-dip galvanizing. can. Further, as the plating treatment after annealing, for example, Zn-Ni electroplating treatment or pure Zn electroplating treatment can be exemplified after tempering. The plating layer may be formed by electroplating, or hot-dip zinc-aluminum-magnesium alloy plating may be applied. In addition, although the above-mentioned plating treatment was mainly explained in the case of zinc plating, the type of plating metal such as Zn plating and Al plating is not particularly limited. Conditions for other manufacturing methods are not particularly limited, but from the viewpoint of productivity, a series of treatments such as annealing, hot-dip galvanizing, and galvanizing alloying are performed on a continuous galvanizing line (CGL), which is a hot-dip galvanizing line. It is preferable to carry out the process using Line). After hot-dip galvanizing, wiping can be performed to adjust the coating weight. Note that the conditions for plating and the like other than the above-mentioned conditions can be based on a conventional method for hot-dip galvanizing.
 焼鈍後のめっき処理後に再度0.10%以上5.00以下の相当塑性歪量となる条件で加工を施してもよい。また、加工後に再度100℃以上400℃以下となる条件で再加熱を施してもよい。 After the plating treatment after annealing, processing may be performed again under conditions that result in an equivalent plastic strain amount of 0.10% or more and 5.00 or less. Further, after processing, reheating may be performed again under the conditions of 100° C. or more and 400° C. or less.
 表1、2に示す成分組成を有し、残部がFeおよび不可避的不純物よりなる鋼を転炉にて溶製し、連続鋳造法にてスラブとした。次いで、得られたスラブを加熱して、熱間圧延後に酸洗処理を施した後、冷間圧延を施し、表3、4に示す焼鈍処理を施し、板厚が0.6~2.2mmである高強度冷延鋼板を得た。焼鈍中の曲げ曲げ戻しについては、半径300mmのロールを用い、499℃~Msの温度範囲の曲げ曲げ戻しについては、半径300mmのロールを用いた。なお、一部の鋼板については焼鈍中または焼鈍後めっき処理を施して製造している。 A steel having the composition shown in Tables 1 and 2, with the remainder consisting of Fe and unavoidable impurities, was melted in a converter and made into a slab by continuous casting. Next, the obtained slab was heated, hot rolled, pickled, cold rolled, and annealed as shown in Tables 3 and 4 to give a plate thickness of 0.6 to 2.2 mm. A high-strength cold-rolled steel sheet was obtained. For bending and unbending during annealing, a roll with a radius of 300 mm was used, and for bending and unbending in the temperature range of 499° C. to Ms, a roll with a radius of 300 mm was used. Note that some steel plates are manufactured by performing plating treatment during or after annealing.
 以上のようにして得られた高強度冷延鋼板を供試鋼として、以下の試験方法に従い、引張特性、板幅方向の平坦度、靭性および耐加工脆化特性を評価した。 Using the high-strength cold-rolled steel sheet obtained as described above as a test steel, tensile properties, flatness in the sheet width direction, toughness, and resistance to work embrittlement were evaluated according to the following test methods.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (組織観察)
 前述した方法にしたがって、マルテンサイト量、残留オーステナイト量、フェライト量、ベイニティックフェライト量の合計を求めた。
(organizational observation)
According to the method described above, the total amount of martensite, retained austenite, ferrite, and bainitic ferrite was determined.
 (旧オーステナイト粒内の最大占有率を有するパケットの占有率)
 前述した方法にしたがって、旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値を求めた。
(Occupancy of packets with maximum occupancy in prior austenite grains)
According to the method described above, the average value of the occupancy of the packets having the maximum occupancy within the prior austenite grains was determined.
 (引張試験)
 引張試験は、圧延方向と垂直方向が試験片の長手となるように、JIS5号試験片(標点距離50mm、平行部幅25mm)を採取し、JIS Z 2241に従って試験した。クロスヘッド速度が1.67×10-1mm/秒の条件で引張試験を行い、TSおよびElを測定した。なお、本発明では、TSが980MPa以上を合格と判断し、Elが10%以上を合格と判断した。
(Tensile test)
For the tensile test, a JIS No. 5 test piece (gauge length 50 mm, parallel part width 25 mm) was taken so that the longitudinal direction of the test piece was perpendicular to the rolling direction, and tested in accordance with JIS Z 2241. A tensile test was conducted at a crosshead speed of 1.67×10 −1 mm/sec, and TS and El were measured. In addition, in the present invention, TS of 980 MPa or more was judged to be acceptable, and El of 10% or more was judged to be acceptable.
 (靭性)
 靭性はシャルピー試験により評価した。シャルピー試験片は、鋼板を複数枚重ね合わせてボルトで締結し、鋼板間に隙間が無いことを確認した上で、深さ2mmのVノッチ付き試験片を作製した。重ね合わせる鋼板の枚数は、積層後の試験片厚さが10mmに最も近づくように設定した。例えば、板厚が1.2mmの場合は8枚積層し、試験片厚さが9.6mmとなる。積層シャルピー試験片は、40J/cm以上のものを「靭性に優れる」と判断した。なお、上記以外の条件は、JIS Z 2242:2018に従った。
(toughness)
Toughness was evaluated by Charpy test. For the Charpy test piece, a plurality of steel plates were stacked together and fastened together with bolts, and after confirming that there were no gaps between the steel plates, a test piece with a V-notch having a depth of 2 mm was prepared. The number of steel plates to be stacked was set so that the thickness of the test piece after stacking was closest to 10 mm. For example, if the plate thickness is 1.2 mm, 8 plates are laminated, resulting in a test piece thickness of 9.6 mm. The laminated Charpy test piece was judged to have "excellent toughness" if it had a strength of 40 J/cm 2 or more. Note that conditions other than the above were in accordance with JIS Z 2242:2018.
 (板幅方向の平坦度)
 上記のようにして得た各種冷延鋼板について、板幅方向の平坦度を図2に記載の方法で測定した。具体的には、コイルから圧延方向に500mm長さとなる板(コイル幅×500mmL×板厚)を切り出し、端面の反りが上向きになるように定盤上に設置し、触針が測定物上を移動する接触式変位計を用いて鋼板の高さを連続的に幅方向の全体に亘って測定した。その結果をもとに図2に示す方法に沿って、鋼板の形状の平坦さを示す指標である急峻度を測定した。急峻度が0.02超えのものを「×」、急峻度が0.01超え0.02以下のものを「○」、急峻度が0.01以下のものを「◎」と評価し、急峻度が0.02以下のものを「板幅方向の平坦度に優れる」と判断した。
(Flatness in board width direction)
The flatness in the width direction of the various cold-rolled steel sheets obtained as described above was measured by the method shown in FIG. 2. Specifically, a plate with a length of 500 mm in the rolling direction (coil width x 500 mm L x plate thickness) is cut out from the coil, placed on a surface plate so that the warp of the end face faces upward, and the stylus moves over the object to be measured. The height of the steel plate was continuously measured over the entire width direction using a moving contact displacement meter. Based on the results, the steepness, which is an index indicating the flatness of the steel plate shape, was measured according to the method shown in FIG. If the steepness exceeds 0.02, it is evaluated as "×", if the steepness exceeds 0.01 and is less than 0.02, it is evaluated as "○", and if the steepness is less than 0.01, it is evaluated as "◎". Those with a degree of 0.02 or less were judged to have "excellent flatness in the board width direction".
 (耐加工脆化特性)
 耐加工脆化特性はシャルピー試験により評価した。シャルピー試験片は、鋼板を複数枚重ね合わせてボルトで締結し、鋼板間に隙間が無いことを確認した上で、深さ2mmのVノッチ付き試験片を作製した。重ね合わせる鋼板の枚数は、積層後の試験片厚さが10mmに最も近づくように設定した。例えば、板厚が1.2mmの場合は8枚積層し、試験片厚さが9.6mmとなる。積層シャルピー試験片は、板幅方向を長手として採取した。耐加工脆化特性を示す指標として、製造まま(未加工)の鋼板と10%圧延を施した鋼板における室温での衝撃吸収エネルギーの比vE0%/vE10%を測定した。vE0%/vE10%が0.6未満のものを「×」、vE0%/vE10%が0.6以上0.7未満のものを「○」、vE0%/vE10%が0.7以上のものを「◎」と評価し、vE0%/vE10%が0.6以上のものを「耐加工脆化特性に優れる」と判断した。なお、上記以外の条件は、JIS Z 2242:2018に従った。
(Processing embrittlement resistance)
The resistance to work embrittlement was evaluated by Charpy test. For the Charpy test piece, a plurality of steel plates were stacked together and fastened together with bolts, and after confirming that there were no gaps between the steel plates, a test piece with a V-notch having a depth of 2 mm was prepared. The number of steel plates to be stacked was set so that the thickness of the test piece after stacking was closest to 10 mm. For example, if the plate thickness is 1.2 mm, 8 plates are laminated, resulting in a test piece thickness of 9.6 mm. The laminated Charpy test piece was taken with the width direction of the plate as the longitudinal direction. As an index indicating resistance to work embrittlement, the ratio vE 0% /vE 10% of impact absorption energy at room temperature between an as-produced (unprocessed) steel plate and a 10% rolled steel plate was measured. "x" indicates that vE 0% /vE 10% is less than 0.6; "○" indicates that vE 0% /vE 10 % is 0.6 or more and less than 0.7; Those with vE 0% /vE 10% of 0.6 or more were evaluated as "excellent in work embrittlement resistance." Note that conditions other than the above were in accordance with JIS Z 2242:2018.
 結果を表5~7にまとめた。表5~7に示すように、本発明例では、TSが980MPa以上およびElが10%以上、かつ、靭性、板幅方向の平坦度および耐加工脆化特性に優れている。一方、比較例では、TS、El、靭性、板幅方向の平坦度、または、耐加工脆化特性のいずれか一つ以上が劣っている。 The results are summarized in Tables 5 to 7. As shown in Tables 5 to 7, the examples of the present invention have a TS of 980 MPa or more, an El of 10% or more, and are excellent in toughness, flatness in the width direction, and resistance to work embrittlement. On the other hand, the comparative examples are inferior in any one or more of TS, El, toughness, flatness in the width direction, or resistance to work embrittlement.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007

Claims (5)

  1.  質量%で、
    C:0.030%以上0.500%以下、
    Si:0.50%以上2.50%以下、
    Mn:1.00%以上5.00%以下、
    P:0.100%以下、
    S:0.0200%以下、
    Al:1.000%以下、
    N:0.0100%以下、および、
    O:0.0100%以下
    を含有し、残部がFeおよび不可避的不純物からなる成分組成と、
     板厚1/4位置において、
    マルテンサイト量が面積分率で60%以上、
    残留オーステナイト量が体積分率で3%以上15%以下であり、
    フェライト量およびベイニティックフェライト量の合計が面積分率で10%超であり、
    旧オーステナイト粒内の最大占有率を有するパケットの占有率の平均値が面積分率で70%以下である、高強度鋼板。
    In mass%,
    C: 0.030% or more and 0.500% or less,
    Si: 0.50% or more and 2.50% or less,
    Mn: 1.00% or more and 5.00% or less,
    P: 0.100% or less,
    S: 0.0200% or less,
    Al: 1.000% or less,
    N: 0.0100% or less, and
    A component composition containing O: 0.0100% or less, with the remainder consisting of Fe and inevitable impurities;
    At the plate thickness 1/4 position,
    The amount of martensite is 60% or more in terms of area fraction,
    The amount of retained austenite is 3% or more and 15% or less in volume fraction,
    The total amount of ferrite and bainitic ferrite is more than 10% in area fraction,
    A high-strength steel sheet in which the average value of the occupancy of packets having the maximum occupancy in prior austenite grains is 70% or less in terms of area fraction.
  2.  前記成分組成が、さらに、質量%で、
    Ti:0.200%以下、Nb:0.200%以下、
    V:0.200%以下、Ta:0.10%以下、
    W:0.10%以下、B:0.0100%以下、
    Cr:1.00%以下、Mo:1.00%以下、
    Co:0.010%以下、Ni:1.00%以下、
    Cu:1.00%以下、Sn:0.200%以下、
    Sb:0.200%以下、Ca:0.0100%以下、
    Mg:0.0100%以下、REM:0.0100%以下、
    Zr:0.100%以下、Te:0.100%以下、
    Hf:0.10%以下、Bi:0.200%以下、
    のうちから選ばれる少なくとも1種の元素を含有する、請求項1に記載の高強度鋼板。
    The component composition further includes, in mass%,
    Ti: 0.200% or less, Nb: 0.200% or less,
    V: 0.200% or less, Ta: 0.10% or less,
    W: 0.10% or less, B: 0.0100% or less,
    Cr: 1.00% or less, Mo: 1.00% or less,
    Co: 0.010% or less, Ni: 1.00% or less,
    Cu: 1.00% or less, Sn: 0.200% or less,
    Sb: 0.200% or less, Ca: 0.0100% or less,
    Mg: 0.0100% or less, REM: 0.0100% or less,
    Zr: 0.100% or less, Te: 0.100% or less,
    Hf: 0.10% or less, Bi: 0.200% or less,
    The high-strength steel plate according to claim 1, containing at least one element selected from the following.
  3.  鋼板表面にめっき層を有する、請求項1又は2に記載の高強度鋼板。 The high-strength steel plate according to claim 1 or 2, which has a plating layer on the surface of the steel plate.
  4.  請求項1又は2に記載の高強度鋼板の製造方法であって、
    前記成分組成を有する鋼に、熱間圧延、酸洗および冷間圧延を施し作製した冷延板を、
    焼鈍温度Taが700℃以上900℃以下、
    前記焼鈍温度Taでの保持時間が10秒以上1000秒以下の条件で加熱して焼鈍し、
    前記焼鈍中に半径800mm以下のロールで曲げ曲げ戻しを合計1回以上15回以下となる加工を施し、
    700℃~600℃の温度範囲での平均冷却速度が20℃/s以上、
    499℃~Msの温度範囲での平均冷却速度が20℃/s未満で冷却し、
    前記499℃~Msの温度範囲に半径800mm以下のロールで曲げ曲げ戻しを合計1回以上15回以下となる加工を施し、
    Ms~冷却停止温度Tbの温度範囲での平均冷却速度が150℃/s以下で冷却し、
    前記Ms~冷却停止温度Tbの温度範囲での鋼板に付与される張力を5MPa以上100MPa以下とし、
    前記冷却停止温度Tbが100℃以上(Ms-80℃)以下であり、なお、Msは式(1)にて規定するマルテンサイト変態開始温度(℃)であり、
    焼戻温度がTb以上450℃以下、
    前記焼戻温度での保持時間が10秒以上1000秒以下で焼き戻す、高強度鋼板の製造方法。
    Ms=519-474×[%C]-30.4×[%Mn]-12.1×[%Cr]-7.5×[%Mo]-17.7×[%Ni]-Ta/80・・・・(1)
    ここで、[%C]、[%Mn]、[%Cr]、[%Mo]、[%Ni]はC、Mn、Cr、Mo、Niそれぞれの含有量(質量%)を表し、含まない場合は0とする。
    A method for manufacturing a high-strength steel plate according to claim 1 or 2, comprising:
    A cold-rolled plate produced by subjecting steel having the above-mentioned composition to hot rolling, pickling and cold rolling,
    The annealing temperature Ta is 700°C or more and 900°C or less,
    Heating and annealing under conditions where the holding time at the annealing temperature Ta is 10 seconds or more and 1000 seconds or less,
    During the annealing, bending and unbending is performed a total of 1 to 15 times with a roll having a radius of 800 mm or less,
    The average cooling rate in the temperature range of 700°C to 600°C is 20°C/s or more,
    Cooling at an average cooling rate of less than 20°C/s in a temperature range of 499°C to Ms,
    Bending and unbending a total of 1 to 15 times using rolls with a radius of 800 mm or less in the temperature range of 499 ° C to Ms,
    Cooling at an average cooling rate of 150 ° C / s or less in the temperature range from Ms to cooling stop temperature Tb,
    The tension applied to the steel plate in the temperature range from Ms to cooling stop temperature Tb is 5 MPa or more and 100 MPa or less,
    The cooling stop temperature Tb is 100°C or more (Ms - 80°C) or less, where Ms is the martensitic transformation start temperature (°C) defined by formula (1),
    Tempering temperature is Tb or higher and 450°C or lower,
    A method for producing a high-strength steel plate, wherein the holding time at the tempering temperature is 10 seconds or more and 1000 seconds or less.
    Ms=519-474×[%C]-30.4×[%Mn]-12.1×[%Cr]-7.5×[%Mo]-17.7×[%Ni]-Ta/80 ...(1)
    Here, [%C], [%Mn], [%Cr], [%Mo], and [%Ni] represent the respective contents (mass%) of C, Mn, Cr, Mo, and Ni, and do not include In that case, it is set to 0.
  5.  めっき処理を施す、請求項4に記載の高強度鋼板の製造方法。 The method for manufacturing a high-strength steel plate according to claim 4, which comprises performing a plating treatment.
PCT/JP2023/002917 2022-03-25 2023-01-30 High-strength steel sheet and manufacturing method therefor WO2023181643A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023528942A JP7323095B1 (en) 2022-03-25 2023-01-30 High-strength steel plate and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-049759 2022-03-25
JP2022049759 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023181643A1 true WO2023181643A1 (en) 2023-09-28

Family

ID=88101020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002917 WO2023181643A1 (en) 2022-03-25 2023-01-30 High-strength steel sheet and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2023181643A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018124157A1 (en) * 2016-12-27 2018-07-05 Jfeスチール株式会社 High-strength galvanized steel sheet and method for manufacturing same
WO2018216522A1 (en) * 2017-05-24 2018-11-29 株式会社神戸製鋼所 High-strength steel sheet and production method for same
JP2020020033A (en) * 2018-07-20 2020-02-06 日本製鉄株式会社 Steel and method for producing the same
WO2020158066A1 (en) * 2019-01-30 2020-08-06 Jfeスチール株式会社 High-strength steel sheet and method for producing same
WO2022209519A1 (en) * 2021-03-31 2022-10-06 Jfeスチール株式会社 Steel sheet, member, method for producing steel sheet, and method for producing member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018124157A1 (en) * 2016-12-27 2018-07-05 Jfeスチール株式会社 High-strength galvanized steel sheet and method for manufacturing same
WO2018216522A1 (en) * 2017-05-24 2018-11-29 株式会社神戸製鋼所 High-strength steel sheet and production method for same
JP2020020033A (en) * 2018-07-20 2020-02-06 日本製鉄株式会社 Steel and method for producing the same
WO2020158066A1 (en) * 2019-01-30 2020-08-06 Jfeスチール株式会社 High-strength steel sheet and method for producing same
WO2022209519A1 (en) * 2021-03-31 2022-10-06 Jfeスチール株式会社 Steel sheet, member, method for producing steel sheet, and method for producing member

Similar Documents

Publication Publication Date Title
US20220251676A1 (en) High-strength steel sheet and method for manufacturing same
CN114286870B (en) Steel plate
EP2730671B1 (en) Hot-dip plated cold-rolled steel sheet and process for producing same
WO2013018739A1 (en) High-strength galvanized steel sheet having superior bendability and method for producing same
JP2005528519A5 (en)
CN112840047B (en) Hot dip galvanized steel sheet and method for producing same
KR20040091751A (en) Process for producing high tensile hot-dip zinc-coated steel sheet of excellent ductility and antifatigue properties
JPWO2019130713A1 (en) High strength steel sheet and method for manufacturing the same
WO2017131054A1 (en) High strength zinc plated steel sheet, high strength member, and production method for high strength zinc plated steel sheet
CN113348259B (en) High-strength hot-dip galvanized steel sheet and method for producing same
CN113544302A (en) High-strength steel sheet and method for producing same
CN113227456B (en) Coated steel member, coated steel sheet, and method for producing same
CN113195764B (en) Hot-dip galvanized steel sheet and method for producing same
CN115715332B (en) Galvanized steel sheet, member, and method for producing same
CN115349028A (en) Steel sheet, component and method for producing same
JP7195501B1 (en) Hot-dip galvanized steel sheet, manufacturing method thereof, and member
EP4198149A1 (en) High-strength cold-rolled steel sheet, hot-dipped galvanized steel sheet, alloyed hot-dipped galvanized steel sheet, and methods for producing of these
WO2023181643A1 (en) High-strength steel sheet and manufacturing method therefor
JP4826694B2 (en) Method for improving fatigue resistance of thin steel sheet
WO2023181642A1 (en) High-strength steel sheet and method for producing same
KR20230049120A (en) Steel sheet for hot stamping and manufacturing method therefor, and hot stamp member and manufacturing method therefor
WO2023181640A1 (en) High strength steel sheet and manufacturing method therefor
WO2023181641A1 (en) High-strength steel sheet and method for producing same
CN115698361A (en) Steel sheet, member, and method for producing same
JP7323095B1 (en) High-strength steel plate and its manufacturing method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023528942

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774242

Country of ref document: EP

Kind code of ref document: A1