WO2023181611A1 - Coil manufacturing method and coil manufacturing device - Google Patents

Coil manufacturing method and coil manufacturing device Download PDF

Info

Publication number
WO2023181611A1
WO2023181611A1 PCT/JP2023/001557 JP2023001557W WO2023181611A1 WO 2023181611 A1 WO2023181611 A1 WO 2023181611A1 JP 2023001557 W JP2023001557 W JP 2023001557W WO 2023181611 A1 WO2023181611 A1 WO 2023181611A1
Authority
WO
WIPO (PCT)
Prior art keywords
rectangular conductor
coil manufacturing
bending
neutral line
main surface
Prior art date
Application number
PCT/JP2023/001557
Other languages
French (fr)
Japanese (ja)
Inventor
充博 井芹
英之 谷口
茂樹 和田
裕規 坂口
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023181611A1 publication Critical patent/WO2023181611A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present disclosure relates to a coil manufacturing method and a coil manufacturing device.
  • Patent Document 1 discloses a coil manufacturing method for forming a spirally wound motor coil.
  • an object of the present disclosure is to provide a coil manufacturing method and a coil manufacturing apparatus that can suppress variations in the thickness of a rectangular conductor due to bending.
  • the coil manufacturing method includes a first main surface, a second main surface located opposite to the first main surface, and a first connection surface connecting the first main surface and the second main surface.
  • the coil manufacturing method includes the steps of processing the processed portion such that the processed portion defined based on the neutral line of bending of the rectangular conductor is thinner than other portions other than the processed portion;
  • the method includes the step of bending the rectangular conductor so that the connection surface is inside the rectangular conductor.
  • the coil manufacturing apparatus includes a first main surface, a second main surface located opposite to the first main surface, and a first connection surface connecting the first main surface and the second main surface.
  • the coil manufacturing device includes a processing device that processes the processed portion such that the processed portion defined based on the neutral line of bending of the rectangular conductor is thinner than other portions other than the processed portion; and a bending device that bends the rectangular conductor so that one connection surface is inside the rectangular conductor.
  • the coil manufacturing method and coil manufacturing apparatus it is possible to provide a coil manufacturing method and a coil manufacturing apparatus that can suppress variations in the thickness of a rectangular conductor due to bending.
  • FIG. 2 is a perspective view of the coil shown in FIG. 1.
  • FIG. 3 is a perspective view of a rectangular conductor that constitutes the coil shown in FIG. 2.
  • FIG. 3 is a block diagram for explaining the configuration of a coil manufacturing apparatus that manufactures the coil shown in FIG. 2.
  • FIG. 2 is a flow diagram of a manufacturing process related to a coil manufacturing method according to the present disclosure.
  • FIG. 3 is a side view showing one step of the coil manufacturing method according to the present disclosure.
  • FIG. 3 is a side view showing one step of the coil manufacturing method according to the present disclosure.
  • FIG. 3 is a side view showing one step of the coil manufacturing method according to the present disclosure.
  • FIG. 3 is a side view showing one step of the coil manufacturing method according to the present disclosure.
  • FIG. 3 is a side view showing one step of the coil manufacturing method according to the present disclosure.
  • FIG. 3 is a plan view showing one step of the coil manufacturing method according to the present disclosure.
  • FIG. 3 is a perspective view showing one step of the coil manufacturing method according to the present disclosure.
  • FIG. 3 is a plan view of a rectangular conductor illustrating a neutral line of bending.
  • FIG. 3 is a plan view of a portion defined based on a bending neutral line of a rectangular conductor. It is a perspective view of a processed part.
  • FIG. 3 is a plan view of a processed portion.
  • FIG. 7 is a plan view showing another shape of the processed portion.
  • FIG. 7 is a plan view showing another shape of the processed portion.
  • FIG. 7 is a plan view showing another shape of the processed portion.
  • FIG. 7 is a plan view showing another shape of the processed portion.
  • FIG. 7 is a plan view showing another shape of the processed portion.
  • FIG. 7 is a perspective view of a processed portion according to Modification 1.
  • FIG. 7 is a perspective view of a processed portion according to Modification 2;
  • FIG. 7 is a perspective view of a processed portion according to Modification 3.
  • FIG. 7 is a perspective view of a processed portion according to modification example 4.
  • Motors used in automobiles have multiple cores, which are laminated iron cores made of laminated thin plates such as silicon steel plates, arranged around the circumference, and a conductor, which is a path for current, is wrapped around each core. Equipped with parts.
  • This conductor functions as a coil, and when current is passed through the coil, the motor rotates. The rotational efficiency of the motor improves as the current flowing through the coil increases. It is known that increasing the current flowing through a coil can be achieved by increasing the ratio of the total cross-sectional area of the conductor (space factor) in the cross-sectional area of the coil cut along a plane perpendicular to the direction of the current flowing through the conductor. ing.
  • a flat conductor with a rectangular cross section is bent in the longitudinal direction of the rectangular cross section (width direction of the flat conductor). That is, the rectangular conductor is bent with the side in the short direction of the cross section of the rectangular conductor set as the inside (inner diameter). This can also be said to bend the rectangular conductor in a direction that is difficult to bend. This type of bending is called edgewise bending.
  • first edgewise bending is performed at three locations on the rectangular conductor. Thereafter, the rectangular conductor is shifted in the short direction of the rectangular cross section (thickness direction of the rectangular conductor), and edgewise bending is performed at four locations. This process is repeated multiple times to form a three-dimensional spiral shape while winding the rectangular conductor around the core.
  • the rectangular conductor after edgewise bending includes two straight parts and a bent part located between the two straight parts.
  • the bent portion is a portion bent by edgewise bending.
  • the two straight sections are the sections that are not bent by edgewise bending.
  • the length of the straight portion along the length of the rectangular conductor after bending does not change from the length of the straight portion along the length of the rectangular conductor before bending.
  • the length of one straight part after bending is A'
  • the length of the other straight part is C'
  • the length of one straight part before bending is A
  • tensile stress acts on the parts outside the neutral line, and the strength of the tensile stress increases as you move outward from the neutral line. Therefore, the thickness of the material decreases as it goes outward from the neutral line. Further, the tensile stress in the length direction of the conductor increases as it approaches the center of the bent portion.
  • the coil manufacturing method of the present disclosure involves processing the portion defined based on the neutral line into a thinner part and bending the thinner processed part. and a coil manufacturing device.
  • a coil manufacturing method includes a first main surface, a second main surface located opposite to the first main surface, and a first connection connecting the first main surface and the second main surface. and a second connection surface connecting the first main surface and the second main surface and located opposite to the first connection surface, based on the neutral line of bending of the rectangular conductor. and bending the rectangular conductor in the thinner processed portion with the first connection surface facing inside.
  • the width of the processed portion along the length direction of the rectangular conductor may increase from near the neutral line toward the first connection surface.
  • the thickness of the processed portion may become thinner as it approaches the first connection surface from near the neutral line.
  • the thinning step may include thinning the rectangular conductor from both the first main surface and the second main surface.
  • the thickness of the processed portion may become thinner toward the center of the processed portion in the length direction of the rectangular conductor.
  • the shape of the processed portion when viewed from the thickness direction of the rectangular conductor may be a shape having an apex located near the neutral line.
  • the shape of the processed portion when viewed from the thickness direction of the rectangular conductor may be triangular.
  • the coil manufacturing method may further include the step of fixing a portion located around a portion defined based on a neutral line of bending of the rectangular conductor from a thickness direction of the rectangular conductor.
  • the thinning step may include pressing a portion defined based on a neutral line of bending of the rectangular conductor.
  • the step of thinning the coil can be easily carried out.
  • a coil manufacturing device includes a first main surface, a second main surface located opposite to the first main surface, and a first connection surface that connects the first main surface and the second main surface. and a second connection surface that connects the first main surface and the second main surface and is located opposite to the first connection surface, based on the neutral line of bending of the rectangular conductor.
  • the present invention includes a processing device that processes a defined portion to be thinner than other portions, and a bending device that bends the rectangular conductor so that the thinner processing portion faces the first connection surface inside.
  • the width of the processed portion along the length direction of the rectangular conductor may increase from near the neutral line toward the first connection surface.
  • the thickness of the processed portion may become thinner as it approaches the first connection surface from near the neutral line.
  • the processing device may process the rectangular conductor thin from both the first main surface and the second main surface.
  • the thickness of the processed portion may become thinner toward the center of the processed portion in the length direction of the rectangular conductor.
  • the shape of the processed portion when viewed from the thickness direction of the rectangular conductor may be a shape having an apex located near the neutral line.
  • the shape of the processed portion when viewed from the thickness direction of the rectangular conductor may be triangular.
  • the coil manufacturing apparatus may further include a fixing device that fixes a portion located around a portion defined based on a neutral line of bending of the rectangular conductor from a thickness direction of the rectangular conductor.
  • the processing device may press-process a portion defined based on a neutral line of bending of the rectangular conductor.
  • the portion defined based on the neutral line of bending of the rectangular conductor can be easily processed to be thin.
  • first, second, etc. are used for descriptive purposes only and are not to be understood as expressing or implying relative importance or ranking of technical features. Shouldn't. Features defined as “first” and “second” are expressly or implied to include one or more such features.
  • the X0, Y0, and Z0 directions in the drawing indicate the width direction, depth direction, and thickness direction of the stator core, respectively, and the X, Y, and Z directions in the drawing respectively indicate the length of the rectangular conductor. The length direction, width direction, and thickness direction are shown.
  • FIG. 1 is a partial cross-sectional view of a stator core of a motor.
  • FIG. 2 is a perspective view of the coil shown in FIG. 1.
  • FIG. 3 is a perspective view of a rectangular conductor that constitutes the coil shown in FIG. 2.
  • the coil 1 is, for example, arranged to be wound around the stator core 2 of a motor.
  • the stator core 2 is, for example, an annular member, and includes a plurality of teeth 3 that extend radially when viewed from the thickness direction Z0 of the stator core 2.
  • FIG. 1 shows one tooth 3, and as shown in FIG. 1, the coil 1 is arranged to be wound around each tooth.
  • the teeth 3 are columnar members extending in the thickness direction Z0 of the stator core 2.
  • the shape of the teeth 3 viewed from the thickness direction Z0 of the stator core 2 is, for example, a substantially rectangular shape.
  • the stator core 2 is formed by laminating thin plates such as silicon steel plates, for example.
  • the coil 1 is arranged to be wound around the teeth 3 in accordance with the outer shape of the teeth 3.
  • the motor rotates by passing current through the coil 1.
  • the coil 1 is composed of a wound rectangular conductor 10.
  • the rectangular conductor 10 is a conductive wire that includes one end 15 and the other end 16 located opposite to the one end 15 in the length direction X of the rectangular conductor.
  • the length direction X is a direction extending between one end 15 and the other end 16 of the rectangular conductor 10, and is a direction represented by a straight line. be.
  • the rectangular conductor 10 has a first main surface 11, a second main surface 12, a first connection surface 13, and a second connection surface 14.
  • the first main surface 11, the second main surface 12, the first connection surface 13, and the second connection surface 14 each extend between one end 15 and the other end 16.
  • the second main surface 12 is a surface located opposite to the first main surface 11 in the thickness direction Z.
  • the first connection surface 13 is a surface located opposite to the second connection surface 14 in the width direction Y.
  • the first connection surface 13 and the second connection surface 14 are surfaces that connect the first main surface 11 and the second main surface 12, respectively.
  • the rectangular conductor 10 has a rectangular cross section perpendicular to the length direction X.
  • the distance between the first connection surface 13 and the second connection surface 14 of the rectangular conductor 10, that is, the width W of the rectangular conductor 10 is, for example, 5 mm or more and 10 mm or less.
  • the distance between the first main surface 11 and the second main surface 12 of the rectangular conductor 10, that is, the thickness T0 of the rectangular conductor 10 is, for example, 1 mm or more and 2 mm or less.
  • the rectangular conductor 10 includes, for example, a conductive member and an insulating member covering the surface of the conductive member.
  • the conductive member is exposed from the insulating member at one end 15 and the other end 16 of the rectangular conductor 10.
  • the conductive member is, for example, copper.
  • the insulating member is, for example, a resin such as enamel, polyimide, amideimide, epoxy, melamine, or phenol.
  • the coil 1 is formed by spirally winding the rectangular conductor 10 with the first connection surface 13 facing inside. Further, in the coil 1, rectangular conductors 10 are laminated in the thickness direction Z. As shown in FIG. 1, in two adjacent layers among the laminated layers, the first main surface 11 of the rectangular conductor 10 forming one layer and the second main surface of the rectangular conductor 10 forming the other layer. 12 are in contact with each other.
  • FIG. 4 is a block diagram for explaining the configuration of a coil manufacturing apparatus that manufactures the coil shown in FIG. 2.
  • the coil manufacturing device 40 includes a processing device 60, a bending device 70, and a control device 50.
  • the processing device 60 processes a portion (processed portion) of the rectangular conductor 10 defined based on the neutral line of bending of the rectangular conductor 10 to be thinner than other portions.
  • the processing device 60 is, for example, a press processing device.
  • the processing device 60 is, for example, a press machine.
  • the processing device 60 includes, for example, a first tool 61 and a second tool 62.
  • the first tool 61 and the second tool 62 are, for example, punches.
  • the first tool 61 and the second tool 62 are arranged coaxially, for example. Specifically, the first tool 61 and the second tool 62 are arranged on an axis extending in the vertical direction of the processing device 60. The first tool 61 and the second tool 62 can move in the vertical direction of the processing device 60 along the axis. The processing device 60 presses the flat conductor 10 by moving the first tool 61 and the second tool 62 in the vertical direction.
  • the first tool 61 and the second tool 62 are, for example, columnar members with a circular, triangular, or rectangular cross-sectional shape.
  • the first tool 61 and the second tool 62 are, for example, removable from the processing device 60.
  • the shapes of the first tool 61 and the second tool 62 attached to the processing device 60 are appropriately selected depending on the shape of the portion defined based on the neutral line of bending of the rectangular conductor 10, which will be described later.
  • the material of the first tool 61 and the second tool 62 is, for example, carbon tool steel, special tool steel, die steel, high speed steel, cemented carbide, or the like.
  • the processing device 60 may further include a fixing device 63.
  • the fixing device 63 fixes a portion of the rectangular conductor 10 located around a portion defined based on the neutral line of bending of the rectangular conductor 10 in the thickness direction Z.
  • the fixing device 63 fixes the rectangular conductor 10 with the first main surface 11 and the second main surface 12 of the rectangular conductor 10 interposed therebetween.
  • the fixing device 63 is made of a mold.
  • the fixing device 63 is a die to which a first tool 61 and a second tool 62 are attached.
  • the processing device may be a cutting device.
  • the cutting device is, for example, a milling machine.
  • the processing device includes, for example, a cutting tool such as an end mill.
  • the processing device cuts a portion 20 defined based on the neutral line L using a cutting tool.
  • the bending device 70 bends the rectangular conductor 10 so that the first connection surface 13 faces inside the thinly processed portion.
  • Control device 50 controls the fixing device 63, the processing device 60, and the bending device 70.
  • Control device 50 includes a data input section and a processor.
  • the data input unit is, for example, an interface such as a touch panel or a keyboard.
  • Data such as fixing conditions, processing conditions for thinning, processing conditions for bending, etc. are input to the data input section.
  • the fixing conditions include, for example, the fixing position and fixing pressure.
  • the conditions for thinning are, for example, the range of the portion defined based on the neutral line of bending of the rectangular conductor 10, the processing speed, etc.
  • the processing conditions include, for example, pressing speed, pressing pressure, and the like.
  • the processing conditions for bending include, for example, the bending radius and bending speed.
  • the processor controls the fixing device 63, the processing device 60, and the bending device 70 based on the data input to the data input section.
  • the processor is a CPU (Central Processing Unit) as a control center, ROM (READ ONLY MEMORY), which remembers programs and control data for the operation of the CPU, and RAM (RANDOM ACCE (RANDOM ACCE) (RANDOM ACCE).
  • SS Memory etc. are provided.
  • Processors also include microcomputers, MPUs (Micro-Processing Units), GPUs (Graphics Processing Units), DSPs (Digital Signal Processors), and FPGAs (Field Programming Units). Even if there are electronic components such as rammable Gate Array), ASIC (Application Specific Integrated Circuit), etc. good.
  • control device 50 may be provided as a separate device from the coil manufacturing device 40. Further, the control device 50 may be provided in each of the fixing device 63, the processing device 60, and the bending device 70.
  • FIG. 5 is a flow diagram of a manufacturing process according to a coil manufacturing method according to the present disclosure.
  • 6A to 6C are side views showing one step of the coil manufacturing method according to the present disclosure.
  • FIG. 6D is a plan view showing one step of the coil manufacturing method according to the present disclosure.
  • FIG. 6E is a perspective view showing one step of the coil manufacturing method according to the present disclosure.
  • a coil manufacturing method according to an embodiment will be described with reference to FIG. 5 and FIGS. 6A to 6E.
  • the coil manufacturing method according to the present disclosure includes a fixing step S1, a thinning step S2, and a bending step S3.
  • a portion 24 located around a portion 20 defined based on a neutral line of bending of the rectangular conductor 10, which will be described later, is fixed from the thickness direction Z.
  • the portion 24 is fixed, for example, from both the first main surface 11 and the second main surface 12 of the rectangular conductor 10. That is, in the fixing step S1, the portion 24 located around the portion 20 defined based on the neutral line of bending of the rectangular conductor 10 is fixed from both the first principal surface 11 and the second principal surface 12 of the rectangular conductor 10. By pressing, the rectangular conductor 10 is held.
  • the neutral line of bending of the rectangular conductor 10 is also simply called a “neutral line.”
  • the portion 24 located around the portion 20 defined based on the neutral line is also referred to as the “surrounding portion 24.”
  • the peripheral portion 24 is fixed by a fixing device 63 of the processing device 60.
  • Step S2 a portion 20 of the rectangular conductor 10 defined based on the neutral line L of bending of the rectangular conductor 10 is processed to be thinner than other portions.
  • Step S2 of processing thinly is performed by the processing device 60. Further, in step S2 of thinning, the rectangular conductor 10 is thinned from both the first main surface 11 and the second main surface 12.
  • the step S2 of thinning is a step of pressing. Pressing is a process in which the rectangular conductor 10 is depressed using a punch or the like. In this embodiment, the step S2 of thinning is performed by the processing device 60, which is a press processing device.
  • the processing device 60 brings the first tool 61 into contact with the first main surface 11, the second tool 62 into contact with the second main surface 12, and sandwiches the rectangular conductor 10 between the first tool 61 and the second tool 62 to thin the rectangular conductor 10. Process.
  • a processed portion 30 is formed as shown in FIG. 6C.
  • the processed portion 30 is a portion of the rectangular conductor 10 processed to be thinner. Further, the processed portion 30 is a concave portion of the rectangular conductor 10.
  • FIG. 7 is a plan view of a rectangular conductor illustrating the neutral line of bending.
  • the length direction Xa of the bent portion is the direction in which the rectangular conductor 10 extends after step S3 of bending, which will be described later. Therefore, the length direction Xa of the portion bent in step S3 of bending is a direction represented by a curved line, as shown in FIG.
  • a bent portion 90 is formed.
  • the bent portion 90 is a portion bent in step S3 of bending.
  • the bent portion 90 includes one end 90a and the other end 90b in the length direction Xa of the bent portion.
  • the neutral line L is a line indicating a portion of the bent portion 90 where the rectangular conductor 10 is neither compressed nor expanded in the length direction. That is, the neutral line L is a portion of the bent portion 90 where the length in the length direction X before bending step S3 is equal to the length Xa of the bent portion after bending step S3. This is the line shown.
  • the distance K is: It can be calculated using the following equation 1 using the length of the rectangular conductor 10 in the width direction Y, that is, the width W of the rectangular conductor 10, and a coefficient ⁇ .
  • K W ⁇
  • the coefficient ⁇ is determined based on the range of the ratio R/W of the bending radius R and the width W of the rectangular conductor 10, where R is the bending radius of the rectangular conductor 10 in step S3 of bending.
  • the relationship between the coefficient ⁇ and the range of the ratio R/W has the relationship shown in Table 1 below.
  • FIG. 8 is a plan view of a portion defined based on the bending neutral line of the rectangular conductor.
  • the shape of the portion 20 defined based on the neutral line L when viewed from the thickness direction Z is a shape having an apex located near the neutral line L.
  • the vicinity of the neutral line L is a range shifted from the neutral line L along the width direction Y by 10% or less (width ⁇ W) of the width W of the rectangular conductor 10.
  • the vicinity of the neutral line L is a position shifted from the neutral line L to the first connection surface 13 side by a width ⁇ W along the width direction Y, and a position shifted from the neutral line L by a width ⁇ W along the width direction Y. 2 refers to the range between the position shifted toward the connecting surface 14 side.
  • the width X1 along the length direction X of the portion 20 defined based on the neutral line L becomes wider as it approaches the first connection surface 13 from the vicinity of the neutral line L.
  • the shape of the portion 20 defined based on the neutral line L is triangular when viewed from the thickness direction Z.
  • the triangular shape has, for example, one vertex (first vertex 21) near the neutral line L and two other vertices (second vertex 22 and third vertex 23) on the first connection surface 13. .
  • first vertex 21 near the neutral line L
  • second vertex 22 and third vertex 23 on the first connection surface 13.
  • the length of the side connecting the first apex 21 and the second apex 22 is equal to the length of the side connecting the first apex 21 and the third apex 23. It is an isosceles triangle.
  • the second vertex 22 is located near one end 90a of the bent portion 90 when viewed from the thickness direction Z.
  • the third vertex 23 is located near the other end 90b of the bent portion 90 when viewed from the thickness direction Z.
  • the vicinity of one end 90a refers to a region that is 10% or less (length ⁇ X) of the length X3 between one end 90a and the other end 90b, and from one end 90a to This is the range shifted along the length direction X.
  • the direction from one end 90a to the other end 90b is the +X direction
  • the direction from the other end 90b to the one end 90a is the -X direction
  • the vicinity of the one end 90a is specifically defined. The result is shown below.
  • the vicinity of one end 90a is defined as the area between the position shifted from one end 90a by a length ⁇ X in the +X direction and the position shifted from one end 90a by a length ⁇ X in the -X direction. range.
  • the vicinity of the other end 90b is a range shifted in the length direction X by a length ⁇ X from the other end 90b.
  • the vicinity of the other end 90b refers to a position shifted by a length ⁇ X in the +X direction from the other end 90b, and a position shifted by a length ⁇ X in the ⁇ X direction from the other end 90b.
  • the range is between .
  • FIG. 9A is a perspective view of the processed portion
  • FIG. 9B is a plan view of the processed portion.
  • the processed portion 30 is formed, for example, by pressing the portion 20 defined based on the neutral line L from the thickness direction Z.
  • the shape of the processed portion 30 viewed from the thickness direction Z is approximately the same shape as the portion 20 defined based on the neutral line L when viewed from the thickness direction Z. Therefore, the shape of the processed portion 30 viewed from the thickness direction Z is a shape having an apex located near the neutral line L, as shown in FIG. 9B.
  • the width X2 of the processed portion 30 along the length direction X when viewed from the thickness direction Z increases as it approaches the first connection surface 13.
  • the shape of the processed portion 30 when viewed from the thickness direction Z is triangular.
  • the triangular shape has, for example, one vertex (first vertex 31) near the neutral line L and two other vertices (second vertex 32 and third vertex 33) on the first connection surface 13. It has a triangular shape.
  • the length of the side connecting the first apex 31 and the second apex 32 is the same as the length of the side connecting the first apex 31 and the third apex 33. They are equal isosceles triangles.
  • the first vertex 31 is located near the neutral line L. Specifically, the first vertex 31 is located on the neutral line L, for example, as shown in FIG. 9B.
  • the first vertex 31a is located between the neutral line L and a position L2 shifted from the neutral line L by a width ⁇ W toward the second connection surface 14 side along the width direction Y. You may do so.
  • the first vertex 31b is located between the neutral line L and a position L1 shifted from the neutral line L by a width ⁇ W toward the first connection surface 13 side along the width direction Y. You may do so.
  • the width ⁇ W is 10% or less of the width W of the rectangular conductor 10.
  • the second vertex 32 is located near one end 90a of the bent portion 90 when viewed from the thickness direction Z.
  • the third vertex 33 is located near the other end 90b of the bent portion 90 when viewed from the thickness direction Z.
  • the second vertex 32 is located between the one end 90a and a position shifted by a length ⁇ X in the ⁇ X direction from the one end 90a. It's okay.
  • the third vertex 33 may be located between the other end 90b and a position shifted by a length ⁇ X in the +X direction from the other end 90b.
  • the second vertex 32 may be located between the one end 90a and a position shifted by a length ⁇ X in the +X direction from the one end 90a.
  • the third vertex 33 may be located between the other end 90b and a position shifted by a length ⁇ X in the ⁇ X direction from the other end 90b.
  • the length ⁇ X is 10% or less of the length X3 between one end 90a and the other end 90b.
  • the processed portion 30 includes a first processed surface 30a and a second processed surface 30b.
  • the first processed surface 30a and the second processed surface 30b are, for example, flat surfaces.
  • the distance between the first processed surface 30a and the second processed surface 30b in the thickness direction Z, that is, the thickness T1 of the processed portion 30, is, for example, approximately constant.
  • the thickness T1 of the processed portion 30 is, for example, 50% or more and less than 100% of the thickness T0 of the rectangular conductor 10 before performing the thinning step S2.
  • step S2 of thinning the portion 20 defined based on the plurality of neutral lines L is thinned, and a plurality of processed portions 30 are formed as shown in FIG. 6D.
  • the plurality of processed portions 30 are formed spaced apart from each other in a predetermined spacing pattern.
  • the predetermined separation distance pattern is, for example, a pattern in which first separation distances d1 and second separation distances d2 different from the first separation distances d1 are arranged alternately.
  • the first separation distance d1 is, for example, longer than the second separation distance d2.
  • the predetermined separation distance pattern may be a pattern in which the elements are spaced at equal intervals.
  • the processing conditions of the processing device 60 are determined based on data input to the control device 50.
  • the processing device 60 is a pressing device
  • the pressing speed is, for example, 100 mm/s.
  • the pressing pressure is, for example, 5 tons.
  • the processed portion 30 is formed by pressing the portion 20 defined based on the neutral line L.
  • the portion 20 defined based on the neutral line L may be processed by cutting, etc. , the thickness may be reduced by other processing methods.
  • step S2 of thinning is performed by a processing device that is a cutting device, for example.
  • the portion 20 defined based on the neutral line L is cut by a cutting device.
  • step S3 of bending the rectangular conductor 10 is bent with the thinned processed portion 30 facing the first connection surface 13 inside. That is, as shown in FIG. 6E, the rectangular conductor 10 is edgewise bent with the first connection surface 13 facing inside.
  • the rectangular conductor 10 after being bent includes a bent portion 90, one straight portion 91, and the other straight portion 92.
  • One straight portion 91 is continuous with one end 90a of the bent portion 90 and is a portion that cannot be bent in step S3 of bending.
  • the other straight portion 92 is a portion that is continuous with the other end 90b of the bent portion 90 and is not bent in the bending step S3.
  • step S3 of bending each of the plurality of processed parts 30 of the rectangular conductor 10 shown in FIG. 6D is bent in order, and the rectangular conductor 10 is wound in a spiral shape.
  • the rectangular conductors 10 are laminated in the thickness direction Z and wound.
  • the first main surface 11 (or second main surface 12) of the rectangular conductor 10 forming one layer of two adjacent layers in the stack, and the second main surface 12 of the rectangular conductor 10 forming the other layer. (or the first main surface 11) and are wound in contact with each other.
  • Step S3 of bending is performed by the bending device 70.
  • the bending device 70 bends the first connecting surface 13 of the processed portion 30 by bringing it into contact with a columnar member.
  • the first connection surface 13 of the processed portion 30 may be brought into contact with the teeth 3 of the stator core 2 shown in FIG. 1, and the rectangular conductor 10 may be directly wound around the teeth 3 of the stator core 2.
  • the bending conditions of the bending device 70 are determined based on data input to the control device 50.
  • the bending speed is, for example, 50 mm/s.
  • the bending radius R is, for example, R5 mm or less.
  • the width X2 of the processed portion 30 along the length direction X increases from the vicinity of the neutral line L to the first connection surface 13.
  • the volume of the processed portion 30 can be reduced in accordance with the compressive stress that increases from the neutral line L toward the first connection surface 13. Therefore, with the coil manufacturing method as described above, variations in the thickness of the rectangular conductor 10 due to bending step S3 can be further suppressed.
  • the rectangular conductor 10 in the thinning step S2, is thinned from both the first main surface 11 and the second main surface 12. Thereby, the rectangular conductor 10 can be symmetrically thinned in the thickness direction Z, and variations in the thickness of the rectangular conductor 10 due to bending step S3 can be further suppressed.
  • the shape of the processed portion 30 when viewed from the thickness direction Z is a shape having an apex located near the neutral line L.
  • the portion to which compressive stress is applied in step S3 of bending can be thinned before step S3 of bending.
  • variations in the thickness of the rectangular conductor 10 due to bending step S3 can be further suppressed.
  • the shape of the processed portion 30 when viewed from the thickness direction Z is triangular. This facilitates the formation of the processed portion 30.
  • the coil manufacturing method as described above further includes step S1 of fixing the peripheral portion 24 of the portion 20 defined based on the neutral line L of the rectangular conductor 10. This makes it possible to suppress changes in the thickness of the peripheral portion 24 of the portion 20 defined based on the neutral line L in the thinning step S2, so that the thickness of the rectangular conductor 10 in the subsequent bending step S3 can be suppressed. Variations in height can be further suppressed.
  • the above-described coil manufacturing apparatus can also achieve the same effects as the coil manufacturing method.
  • the processed portions 30 according to the embodiment have substantially the same thickness T1, but are not limited to this.
  • the thickness of the processed portion 130 according to Modification Example 1 is, for example, continuously thinner as it approaches the first connection surface 13 from the vicinity of the neutral line L.
  • the first processed surface 130a and the second processed surface 130b are surfaces that are inclined with respect to the width direction Y from the second connection surface 14 toward the first connection surface 13.
  • Such a processed portion 130 is formed, for example, by pressing the portion 20 defined based on the neutral line L from a direction having an angle to the thickness direction Z.
  • step S3 of bending the volume of the processed portion 30 can be reduced in accordance with the compressive stress that increases from the neutral line L toward the first connection surface 13. Thereby, variations in the thickness of the rectangular conductor 10 due to bending step S3 can be further suppressed.
  • the processing load applied to the rectangular conductor 10 can be reduced.
  • the thickness of the processed portion 230 according to Modification 2 becomes thinner toward the center of the processed portion 230 in the length direction X, for example.
  • the first processed surface 230a includes a first surface 230c that is inclined with respect to the length direction X from one end 15 to the other end 16, and a first surface 230c that is inclined with respect to the length direction 2 sides 230d.
  • the second processed surface 230b includes a first surface that is inclined with respect to the length direction X from one end 15 to the other end 16, and a second surface that is inclined with respect to the length direction Contains 2 sides.
  • the thickness of the processed portion 230 may become thinner as it approaches the first connection surface 13.
  • the surface may be inclined with respect to the width direction Y.
  • the first surface of the second processed surface 230b and the second surface of the second processed surface 230b are inclined from the second connection surface 14 to the first connection surface 13 in addition to the inclination with respect to the length direction X. It may be a surface that is inclined with respect to the width direction Y.
  • the shape of the processed portion 330 according to Modification Example 3 when viewed from the thickness direction Z is, for example, a semicircular shape. At least a portion of the processed portion 330 is located near the neutral line L when viewed from the thickness direction Z. At least a portion of the processed portion 330 may be one point on the semicircular outer contour of the processed portion 330 when viewed from the thickness direction Z.
  • the shape of the processed portion 30 according to the embodiment when viewed from the thickness direction Z is triangular, the shape is not limited to this.
  • the shape of the processed portion 430 according to Modification 4 when viewed from the thickness direction Z is, for example, a trapezoid.
  • the shape of the processed portion 430 viewed from the thickness direction Z is, for example, a trapezoid shape in which two vertices and a side connecting the two vertices are located near the neutral line L.
  • the width in the length direction X becomes longer as it approaches the first connection surface 13.
  • Coils obtained by the coil manufacturing method and coil manufacturing apparatus according to the present disclosure can be applied as parts for electrical appliances, automobile parts, daily necessities, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

Provided is a coil manufacturing method for manufacturing a coil by processing a rectangular conductor that has: a first main surface; a second main surface positioned opposite to the first main surface; a first connecting surface connecting the first main surface and the second main surface; and a second connecting surface that connects the first main surface and the second main surface and is positioned opposite to the first connecting surface. The coil manufacturing method comprises a step for processing a processing portion of the rectangular conductor so as to be thinner than other portions thereof, the processing portion being defined on the basis of a neutral line for bending of the rectangular conductor, and a step for subjecting the rectangular conductor to a bending process such that the first connecting surface is on the inside of the rectangular conductor.

Description

コイル製造方法およびコイル製造装置Coil manufacturing method and coil manufacturing device
 本開示は、コイル製造方法及びコイル製造装置に関する。 The present disclosure relates to a coil manufacturing method and a coil manufacturing device.
 家電や自動車等で使われるモータには、平角導体を螺旋状に巻いて形成されたコイルが用いられている。例えば、特許文献1には、螺旋状に巻回形成されるモータのコイルを成形するコイル製造方法が開示されている。 Motors used in home appliances, automobiles, etc. use coils formed by spirally winding rectangular conductors. For example, Patent Document 1 discloses a coil manufacturing method for forming a spirally wound motor coil.
特開2008-178199号公報Japanese Patent Application Publication No. 2008-178199
 このようなコイル製造方法においては、曲げ加工による平角導体の厚みにばらつきが生じることがある。 In such a coil manufacturing method, variations may occur in the thickness of the rectangular conductor due to bending.
 そこで、本開示は、曲げ加工による平角導体の厚みのばらつきを抑制することができるコイル製造方法及びコイル製造装置を提供することを目的とする。 Therefore, an object of the present disclosure is to provide a coil manufacturing method and a coil manufacturing apparatus that can suppress variations in the thickness of a rectangular conductor due to bending.
 本開示に係るコイル製造方法は、第1主面と、前記第1主面の反対に位置する第2主面と、前記第1主面及び前記第2主面を接続する第1接続面と、前記第1主面及び前記第2主面を接続し、前記第1接続面と反対に位置する第2接続面と、を有する平角導体を加工してコイルを製造するコイル製造方法である。コイル製造方法は、前記平角導体の曲げの中立線に基づいて規定される加工部分が前記加工部分以外の他の部分と比べて薄くなるように、前記加工部分を加工するステップと、前記第1接続面が前記平角導体の内側になるように、前記平角導体を曲げ加工するステップと、を含む。 The coil manufacturing method according to the present disclosure includes a first main surface, a second main surface located opposite to the first main surface, and a first connection surface connecting the first main surface and the second main surface. , a coil manufacturing method for manufacturing a coil by processing a rectangular conductor having a second connection surface that connects the first main surface and the second main surface and is located opposite to the first connection surface. The coil manufacturing method includes the steps of processing the processed portion such that the processed portion defined based on the neutral line of bending of the rectangular conductor is thinner than other portions other than the processed portion; The method includes the step of bending the rectangular conductor so that the connection surface is inside the rectangular conductor.
 本開示に係るコイル製造装置は、第1主面と、前記第1主面の反対に位置する第2主面と、前記第1主面及び前記第2主面を接続する第1接続面と、前記第1主面及び前記第2主面を接続し、前記第1接続面と反対に位置する第2接続面と、を有する平角導体を加工してコイルを製造するコイル製造装置である。コイル製造装置は、前記平角導体の曲げの中立線に基づいて規定される加工部分が前記加工部分以外の他の部分と比べて薄くなるように、前記加工部分を加工する加工装置と、前記第1接続面が前記平角導体の内側になるように、前記平角導体を曲げ加工する曲げ加工装置と、を含む。 The coil manufacturing apparatus according to the present disclosure includes a first main surface, a second main surface located opposite to the first main surface, and a first connection surface connecting the first main surface and the second main surface. , a coil manufacturing apparatus for manufacturing a coil by processing a rectangular conductor having a second connection surface that connects the first main surface and the second main surface and is located opposite to the first connection surface. The coil manufacturing device includes a processing device that processes the processed portion such that the processed portion defined based on the neutral line of bending of the rectangular conductor is thinner than other portions other than the processed portion; and a bending device that bends the rectangular conductor so that one connection surface is inside the rectangular conductor.
 本開示に係るコイル製造方法及びコイル製造装置によれば、曲げ加工による平角導体の厚みのばらつきを抑制することができるコイル製造方法及びコイル製造装置を提供できる。 According to the coil manufacturing method and coil manufacturing apparatus according to the present disclosure, it is possible to provide a coil manufacturing method and a coil manufacturing apparatus that can suppress variations in the thickness of a rectangular conductor due to bending.
モータの固定子コアの断面図の一部である。It is a part of sectional view of the stator core of a motor. 図1に示すコイルの斜視図である。2 is a perspective view of the coil shown in FIG. 1. FIG. 図2に示すコイルを構成する平角導体の斜視図である。3 is a perspective view of a rectangular conductor that constitutes the coil shown in FIG. 2. FIG. 図2に示すコイルを製造するコイル製造装置の構成を説明するためのブロック図である。3 is a block diagram for explaining the configuration of a coil manufacturing apparatus that manufactures the coil shown in FIG. 2. FIG. 本開示に係るコイル製造方法に係る製造工程のフロー図である。FIG. 2 is a flow diagram of a manufacturing process related to a coil manufacturing method according to the present disclosure. 本開示に係るコイル製造方法の一工程を示す側面図である。FIG. 3 is a side view showing one step of the coil manufacturing method according to the present disclosure. 本開示に係るコイル製造方法の一工程を示す側面図である。FIG. 3 is a side view showing one step of the coil manufacturing method according to the present disclosure. 本開示に係るコイル製造方法の一工程を示す側面図である。FIG. 3 is a side view showing one step of the coil manufacturing method according to the present disclosure. 本開示に係るコイル製造方法の一工程を示す平面図である。FIG. 3 is a plan view showing one step of the coil manufacturing method according to the present disclosure. 本開示に係るコイル製造方法の一工程を示す斜視図である。FIG. 3 is a perspective view showing one step of the coil manufacturing method according to the present disclosure. 曲げの中立線を説明する平角導体の平面図である。FIG. 3 is a plan view of a rectangular conductor illustrating a neutral line of bending. 平角導体の曲げ中立線に基づいて規定される部分の平面図である。FIG. 3 is a plan view of a portion defined based on a bending neutral line of a rectangular conductor. 加工部分の斜視図である。It is a perspective view of a processed part. 加工部分の平面図である。FIG. 3 is a plan view of a processed portion. 加工部分の他の形状を示す平面図である。FIG. 7 is a plan view showing another shape of the processed portion. 加工部分の他の形状を示す平面図である。FIG. 7 is a plan view showing another shape of the processed portion. 加工部分の他の形状を示す平面図である。FIG. 7 is a plan view showing another shape of the processed portion. 加工部分の他の形状を示す平面図である。FIG. 7 is a plan view showing another shape of the processed portion. 変形例1に係る加工部分の斜視図である。7 is a perspective view of a processed portion according to Modification 1. FIG. 変形例2に係る加工部分の斜視図である。FIG. 7 is a perspective view of a processed portion according to Modification 2; 変形例3に係る加工部分の斜視図である。FIG. 7 is a perspective view of a processed portion according to Modification 3. 変形例4に係る加工部分の斜視図である。FIG. 7 is a perspective view of a processed portion according to modification example 4.
 (本開示に至った経緯)
 少子高齢化において、手作業に変えてAIを取り入れた負荷軽減装置及び/又は全自動装置が急速に発展してきている。また、環境の観点から、電気自動車、ハイブリット自動車が多く流通するようになってきている。これらの装置及び/又は機械には多くの種類のモータが採用されており、モータの需要が急速に拡大してきている。また、モータに対してのさらなる高出力化、高効率化の取り組みが求められている。
(The circumstances that led to this disclosure)
With the declining birthrate and aging population, load reduction devices and/or fully automatic devices that incorporate AI to replace manual labor are rapidly developing. Furthermore, from an environmental point of view, electric vehicles and hybrid vehicles are increasingly being distributed. Many types of motors are employed in these devices and/or machines, and the demand for motors is rapidly expanding. Additionally, efforts are being made to further increase the output and efficiency of motors.
 自動車に利用されるモータは、ケイ素鋼板などの薄板を積層させた積層鉄心であるコアが円周上に複数個配置されており、それぞれのコアに対して電流の通路である導体が巻き付けられている部品を備える。この導体はコイルとして機能し、コイルに電流を流すとモータが回転する。モータの回転効率は、コイルに流れる電流の増加に伴い向上する。コイルに流れる電流の増加は、導体に流れる電流の方向と直交する面でコイルを切断した断面積において、導体の断面積の合計の割合(占積率)を増加させることで実現できることが知られている。 Motors used in automobiles have multiple cores, which are laminated iron cores made of laminated thin plates such as silicon steel plates, arranged around the circumference, and a conductor, which is a path for current, is wrapped around each core. Equipped with parts. This conductor functions as a coil, and when current is passed through the coil, the motor rotates. The rotational efficiency of the motor improves as the current flowing through the coil increases. It is known that increasing the current flowing through a coil can be achieved by increasing the ratio of the total cross-sectional area of the conductor (space factor) in the cross-sectional area of the coil cut along a plane perpendicular to the direction of the current flowing through the conductor. ing.
 そこで、近年、この導体の占積率を大きくするため、断面形状が円形の導体に代わって断面形状が長方形の導体(平角導体)を曲げて、コアに巻き付ける方法が採用されている。また、平角導体をらせん状にコアに巻き付けるとき、平角導体により形成された積層のうち、隣り合う2層の間の隙間を小さくすることによって、導体の占積率を高くすることができる。 Therefore, in recent years, in order to increase the space factor of this conductor, a method has been adopted in which a conductor with a rectangular cross-section (rectangular conductor) is bent and wound around the core instead of a conductor with a circular cross-section. Further, when the rectangular conductor is spirally wound around the core, the space factor of the conductor can be increased by reducing the gap between two adjacent layers of the laminated layers formed by the rectangular conductor.
 ここで、このような平角導体を曲げる方法の一例を説明する。断面形状が長方形の平角導体を、長方形断面の長手方向(平角導体の幅方向)に曲げる。すなわち、平角導体の断面の短手方向の辺を内側(内径)として平角導体を曲げる。これは、平角導体を曲げにくい方向へ曲げるとも言える。このような曲げ方をエッジワイズ曲げと呼んでいる。 Here, an example of a method for bending such a rectangular conductor will be explained. A flat conductor with a rectangular cross section is bent in the longitudinal direction of the rectangular cross section (width direction of the flat conductor). That is, the rectangular conductor is bent with the side in the short direction of the cross section of the rectangular conductor set as the inside (inner diameter). This can also be said to bend the rectangular conductor in a direction that is difficult to bend. This type of bending is called edgewise bending.
 エッジワイズ曲げにより平角導体を曲げてコイルを製造する方法は、まず、平角導体に3か所にエッジワイズ曲げを行う。その後、長方形断面の短手方向(平角導体の厚み方向)に平角導体をずらし、4か所にエッジワイズ曲げを行う。これを複数回繰り返して、立体らせん形状を形成しながら、コアに平角導体を巻き付けていく。 In the method of manufacturing a coil by bending a rectangular conductor by edgewise bending, first edgewise bending is performed at three locations on the rectangular conductor. Thereafter, the rectangular conductor is shifted in the short direction of the rectangular cross section (thickness direction of the rectangular conductor), and edgewise bending is performed at four locations. This process is repeated multiple times to form a three-dimensional spiral shape while winding the rectangular conductor around the core.
 エッジワイズ曲げ後の平角導体は、2つの直線部分と、2つの直線部分の間に位置する曲げ部分と、を含む。曲げ部分は、エッジワイズ曲げによって曲げられた部分である。2つの直線部分はエッジワイズ曲げによって曲げられていない部分である。曲げた後の平角導体の長さ方向に沿った直線部分の長さは、曲げる前の平角導体の長さ方向に沿った直線部分の長さから変化しない。すなわち、曲げた後の一方の直線部分の長さをA’とし、他方側の直線部分の長さをC’とし、曲げる前の一方の直線部分の長さをAとし、他方側の直線部分の長さをCとすると、A=A’、C=C’となる。 The rectangular conductor after edgewise bending includes two straight parts and a bent part located between the two straight parts. The bent portion is a portion bent by edgewise bending. The two straight sections are the sections that are not bent by edgewise bending. The length of the straight portion along the length of the rectangular conductor after bending does not change from the length of the straight portion along the length of the rectangular conductor before bending. In other words, the length of one straight part after bending is A', the length of the other straight part is C', the length of one straight part before bending is A, and the straight part of the other side is C'. If the length of is C, then A=A' and C=C'.
 一方、曲げたときの曲げ部分では、ある円弧部分を境に、内径側では平角導体内部に圧縮応力が作用し、外径側には引張り応力が作用する。この圧縮応力が作用する領域では材料が縮み、引張り応力が作用する領域では材料が伸びるようになる。また、圧縮が作用する領域と引張りが作用する領域の境界は、縮みも伸びもしない部分であって円弧状に存在し、この部分を曲げの中立線と呼ぶ(以下、単に「中立線」とも呼ぶ)。曲げた後における平角導体の長さ方向に沿った中立線の長さはB’とし、曲げる前における中立線に対応する部分の長さをBとすると、B’=Bである。曲げる前における中立線に対応する部分の長さBを曲げ代と呼ぶこともある。 On the other hand, in the bent portion when bent, compressive stress acts inside the rectangular conductor on the inner diameter side, and tensile stress acts on the outer diameter side, bordering on a certain circular arc portion. The material contracts in areas where this compressive stress acts, and stretches in areas where tensile stress acts. In addition, the boundary between the area where compression acts and the area where tension acts is an arc-shaped area that neither shrinks nor expands, and this area is called the neutral line of bending (hereinafter also referred to simply as the ``neutral line''). call). If the length of the neutral line along the length of the rectangular conductor after bending is B', and the length of the portion corresponding to the neutral line before bending is B, then B'=B. The length B of the portion corresponding to the neutral line before bending is sometimes called a bending allowance.
 エッジワイズ曲げを行うと、中立線より内側の部分は圧縮応力が作用するため、材料厚みが厚くふくれた状態になり、外側の部分は引っ張り応力が作用するため薄くなる。中立線に対して内側の部分に圧縮応力が作用し、中立線から内側にいくにしたがって圧縮応力の強さは大きくなる。そのため、中立線から内側にいくにしたがって材料の厚さは厚くなる。また、導体の長さ方向における圧縮応力は、曲げ部分の中央に近づくにしたがって大きくなる。 When edgewise bending is performed, compressive stress acts on the inner part of the neutral line, making the material thick and bulging, while the outer part becomes thinner, as tensile stress acts on it. Compressive stress acts on the inner part of the neutral line, and the strength of the compressive stress increases as you go inward from the neutral line. Therefore, the thickness of the material increases as it goes inward from the neutral line. Furthermore, the compressive stress in the length direction of the conductor increases as it approaches the center of the bent portion.
 同様に、中立線に対して外側の部分に引っ張り応力が作用し、中立線から外側にいくにしたがって引っ張り応力の強さは大きくなる。そのため、中立線から外側にいくにしたがって材料の厚さは薄くなる。また、導体の長さ方向における引っ張り応力は、曲げ部分の中央に近づくにしたがって大きくなる。 Similarly, tensile stress acts on the parts outside the neutral line, and the strength of the tensile stress increases as you move outward from the neutral line. Therefore, the thickness of the material decreases as it goes outward from the neutral line. Further, the tensile stress in the length direction of the conductor increases as it approaches the center of the bent portion.
 一方、中立線は、圧縮応力も引張り応力も作用しないため、材料厚みの変化は発生しない。このように、エッジワイズ曲げを行うと、曲げ部分の厚さが幅方向に沿って異なる。 On the other hand, since neither compressive stress nor tensile stress acts on the neutral line, no change in material thickness occurs. In this way, when edgewise bending is performed, the thickness of the bent portion differs along the width direction.
 このように、エッジワイズ曲げを行うと、中立線より内側の部分の厚みは、中立線より外側の部分の厚みより厚くなるため、平角導体の曲げ部分の厚みにばらつきが生じるという問題がある。このため、平角導体を螺旋状に巻回すると、積層方向に隣り合う2層の間に隙間が生じ、平角導体の占積率が低下する。その結果、コイルに流れる電流量を増加させることが困難になる場合がある。 In this way, when edgewise bending is performed, the thickness of the portion inside the neutral line is thicker than the thickness of the portion outside the neutral line, so there is a problem that the thickness of the bent portion of the rectangular conductor varies. For this reason, when a rectangular conductor is spirally wound, a gap is generated between two layers adjacent to each other in the lamination direction, and the space factor of the rectangular conductor is reduced. As a result, it may become difficult to increase the amount of current flowing through the coil.
 そこで、発明者らは、この問題を解決すべく、鋭意検討した結果、中立線に基づいて規定される部分を薄く加工し、薄く加工された加工部分を曲げ加工する、本開示のコイル製造方法及びコイル製造装置に至った。 Therefore, in order to solve this problem, the inventors have made extensive studies, and as a result, the coil manufacturing method of the present disclosure involves processing the portion defined based on the neutral line into a thinner part and bending the thinner processed part. and a coil manufacturing device.
 本開示の一態様のコイル製造方法は、第1主面と、前記第1主面の反対に位置する第2主面と、前記第1主面及び前記第2主面を接続する第1接続面と、前記第1主面及び前記第2主面を接続し、前記第1接続面と反対に位置する第2接続面と、を有する平角導体において、前記平角導体の曲げの中立線に基づいて規定される部分を他の部分と比べて薄く加工するステップと、薄く加工された加工部分を、前記第1接続面を内側にして前記平角導体を曲げ加工するステップと、を含む。 A coil manufacturing method according to an aspect of the present disclosure includes a first main surface, a second main surface located opposite to the first main surface, and a first connection connecting the first main surface and the second main surface. and a second connection surface connecting the first main surface and the second main surface and located opposite to the first connection surface, based on the neutral line of bending of the rectangular conductor. and bending the rectangular conductor in the thinner processed portion with the first connection surface facing inside.
 このようなコイル製造方法により、曲げ加工による平角導体の厚さのばらつきを抑制できる。 With such a coil manufacturing method, variations in the thickness of the rectangular conductor due to bending can be suppressed.
 前記コイル製造方法において、前記平角導体の長さ方向に沿った前記加工部分の幅は、前記中立線近傍から前記第1接続面に近づくにしたがって広くなってもよい。 In the coil manufacturing method, the width of the processed portion along the length direction of the rectangular conductor may increase from near the neutral line toward the first connection surface.
 このようなコイル製造方法により、曲げ加工による平角導体の厚さのばらつきをより抑制できる。 With such a coil manufacturing method, variations in the thickness of the rectangular conductor due to bending can be further suppressed.
 前記コイル製造方法において、前記加工部分の厚さは、前記中立線近傍から前記第1接続面に近づくにしたがって薄くなってもよい。 In the coil manufacturing method, the thickness of the processed portion may become thinner as it approaches the first connection surface from near the neutral line.
 このようなコイル製造方法により、曲げ加工による平角導体の厚さのばらつきをより抑制できる。 With such a coil manufacturing method, variations in the thickness of the rectangular conductor due to bending can be further suppressed.
 前記コイル製造方法において、前記薄く加工するステップは、前記第1主面及び前記第2主面の両面から前記平角導体を薄く加工してもよい。 In the coil manufacturing method, the thinning step may include thinning the rectangular conductor from both the first main surface and the second main surface.
 このようなコイル製造方法により、曲げ加工による平角導体の厚さのばらつきをより抑制できる。 With such a coil manufacturing method, variations in the thickness of the rectangular conductor due to bending can be further suppressed.
 前記コイル製造方法において、前記加工部分の厚さは、前記平角導体の長さ方向における前記加工部分の中央に向かうにしたがって薄くなってもよい。 In the coil manufacturing method, the thickness of the processed portion may become thinner toward the center of the processed portion in the length direction of the rectangular conductor.
 このようなコイル製造方法により、曲げ加工による平角導体の厚さのばらつきをより抑制できる。 With such a coil manufacturing method, variations in the thickness of the rectangular conductor due to bending can be further suppressed.
 前記コイル製造方法において、前記平角導体の厚さ方向から見たときの前記加工部分の形状は、前記中立線近傍に位置する頂点を有する形状であってもよい。 In the coil manufacturing method, the shape of the processed portion when viewed from the thickness direction of the rectangular conductor may be a shape having an apex located near the neutral line.
 このようなコイル製造方法により、曲げ加工による平角導体の厚さのばらつきをより抑制できる。 With such a coil manufacturing method, variations in the thickness of the rectangular conductor due to bending can be further suppressed.
 前記コイル製造方法において、前記平角導体の厚さ方向から見たときの前記加工部分の形状は、三角形であってもよい。 In the coil manufacturing method, the shape of the processed portion when viewed from the thickness direction of the rectangular conductor may be triangular.
 このようなコイル製造方法により、加工部分の形成が容易である。 With such a coil manufacturing method, it is easy to form the processed portion.
 前記コイル製造方法において、前記平角導体の曲げの中立線に基づいて規定される部分の周囲に位置する部分を前記平角導体の厚さ方向から固定するステップをさらに含んでもよい。 The coil manufacturing method may further include the step of fixing a portion located around a portion defined based on a neutral line of bending of the rectangular conductor from a thickness direction of the rectangular conductor.
 このようなコイル製造方法により、曲げ加工による平角導体の厚さのばらつきをより抑制できる。 With such a coil manufacturing method, variations in the thickness of the rectangular conductor due to bending can be further suppressed.
 前記コイル製造方法において、前記薄く加工するステップは、前記平角導体の曲げの中立線に基づいて規定される部分を押圧加工してもよい。 In the coil manufacturing method, the thinning step may include pressing a portion defined based on a neutral line of bending of the rectangular conductor.
 このようなコイル製造方法により、薄く加工するステップを容易に実施することができる。 With such a coil manufacturing method, the step of thinning the coil can be easily carried out.
 本開示の一態様のコイル製造装置は第1主面と、前記第1主面の反対に位置する第2主面と、前記第1主面及び前記第2主面を接続する第1接続面と、前記第1主面及び前記第2主面を接続し、前記第1接続面と反対に位置する第2接続面と、を有する平角導体において、前記平角導体の曲げの中立線に基づいて規定される部分を他の部分と比べて薄く加工する加工装置と、薄く加工された加工部分を、前記第1接続面を内側にして前記平角導体を曲げ加工する曲げ加工装置と、を含む。 A coil manufacturing device according to an aspect of the present disclosure includes a first main surface, a second main surface located opposite to the first main surface, and a first connection surface that connects the first main surface and the second main surface. and a second connection surface that connects the first main surface and the second main surface and is located opposite to the first connection surface, based on the neutral line of bending of the rectangular conductor. The present invention includes a processing device that processes a defined portion to be thinner than other portions, and a bending device that bends the rectangular conductor so that the thinner processing portion faces the first connection surface inside.
 このような構成により、曲げ加工による平角導体の厚さのばらつきを抑制できる。 With such a configuration, variations in the thickness of the rectangular conductor due to bending can be suppressed.
 前記コイル製造装置において、前記平角導体の長さ方向に沿った前記加工部分の幅は、前記中立線近傍から前記第1接続面に近づくにしたがって広くなってもよい。 In the coil manufacturing apparatus, the width of the processed portion along the length direction of the rectangular conductor may increase from near the neutral line toward the first connection surface.
 このような構成により、曲げ加工による平角導体の厚さのばらつきをより抑制できる。 With such a configuration, variations in the thickness of the rectangular conductor due to bending can be further suppressed.
 前記コイル製造装置において、前記加工部分の厚さは、前記中立線近傍から前記第1接続面に近づくにしたがって薄くなってもよい。 In the coil manufacturing apparatus, the thickness of the processed portion may become thinner as it approaches the first connection surface from near the neutral line.
 このような構成により、曲げ加工による平角導体の厚さのばらつきをより抑制できる。 With such a configuration, variations in the thickness of the rectangular conductor due to bending can be further suppressed.
 前記コイル製造装置において、前記加工装置は、前記第1主面及び前記第2主面の両面から前記平角導体を薄く加工してもよい。 In the coil manufacturing device, the processing device may process the rectangular conductor thin from both the first main surface and the second main surface.
 このような構成により、曲げ加工による平角導体の厚さのばらつきをより抑制できる。 With such a configuration, variations in the thickness of the rectangular conductor due to bending can be further suppressed.
 前記コイル製造装置において、前記加工部分の厚さは、前記平角導体の長さ方向における前記加工部分の中央に向かうにしたがって薄くなってもよい。 In the coil manufacturing apparatus, the thickness of the processed portion may become thinner toward the center of the processed portion in the length direction of the rectangular conductor.
 このような構成により、曲げ加工による平角導体の厚さのばらつきをより抑制できる。 With such a configuration, variations in the thickness of the rectangular conductor due to bending can be further suppressed.
 前記コイル製造装置において、前記平角導体の厚さ方向から見たときの前記加工部分の形状は、前記中立線近傍に位置する頂点を有する形状であってもよい。 In the coil manufacturing apparatus, the shape of the processed portion when viewed from the thickness direction of the rectangular conductor may be a shape having an apex located near the neutral line.
 このような構成により、曲げ加工による平角導体の厚さのばらつきをより抑制できる。 With such a configuration, variations in the thickness of the rectangular conductor due to bending can be further suppressed.
 前記コイル製造装置において、前記平角導体の厚さ方向から見たときの前記加工部分の形状は、三角形であってもよい。 In the coil manufacturing apparatus, the shape of the processed portion when viewed from the thickness direction of the rectangular conductor may be triangular.
 このような構成により、加工部分の形成が容易である。 With such a configuration, it is easy to form the processed portion.
 前記コイル製造装置において、前記平角導体の曲げの中立線に基づいて規定される部分の周囲に位置する部分を前記平角導体の厚さ方向から固定する固定装置をさらに含んでもよい。 The coil manufacturing apparatus may further include a fixing device that fixes a portion located around a portion defined based on a neutral line of bending of the rectangular conductor from a thickness direction of the rectangular conductor.
 このような構成により、曲げ加工による平角導体の厚さのばらつきをより抑制できる。 With such a configuration, variations in the thickness of the rectangular conductor due to bending can be further suppressed.
 前記コイル製造装置において、前記加工装置は、前記平角導体の曲げの中立線に基づいて規定される部分を押圧加工してもよい。 In the coil manufacturing device, the processing device may press-process a portion defined based on a neutral line of bending of the rectangular conductor.
 このような構成により、平角導体の曲げの中立線に基づいて規定される部分を容易に薄く加工することができる。 With such a configuration, the portion defined based on the neutral line of bending of the rectangular conductor can be easily processed to be thin.
 以下、本開示の実施の形態について、添付の図面を参照しながら説明する。また、各図においては、説明を容易なものとするため、各要素を誇張して示している。 Hereinafter, embodiments of the present disclosure will be described with reference to the accompanying drawings. Furthermore, in each figure, each element is exaggerated for ease of explanation.
 本明細書において、「第1」、「第2」などの用語は、説明のためだけに用いられるものであり、相対的な重要性または技術的特徴の順位を明示または暗示するものとして理解されるべきではない。「第1」と「第2」と限定されている特徴は、1つまたはさらに多くの当該特徴を含むことを明示または暗示するものである。また、添付図面において、図中のX0、Y0、Z0方向はそれぞれ、固定子コアの幅方向、奥行き方向、厚さ方向を示し、図中のX、Y、Z方向はそれぞれ、平角導体の長さ方向、幅方向、厚さ方向を示している。 As used herein, terms such as "first", "second", etc. are used for descriptive purposes only and are not to be understood as expressing or implying relative importance or ranking of technical features. Shouldn't. Features defined as "first" and "second" are expressly or implied to include one or more such features. In addition, in the attached drawings, the X0, Y0, and Z0 directions in the drawing indicate the width direction, depth direction, and thickness direction of the stator core, respectively, and the X, Y, and Z directions in the drawing respectively indicate the length of the rectangular conductor. The length direction, width direction, and thickness direction are shown.
 <実施の形態>
 (コイル)
 図1は、モータの固定子コアの断面図の一部である。図2は、図1に示すコイルの斜視図である。図3は、図2に示すコイルを構成する平角導体の斜視図である。
<Embodiment>
(coil)
FIG. 1 is a partial cross-sectional view of a stator core of a motor. FIG. 2 is a perspective view of the coil shown in FIG. 1. FIG. 3 is a perspective view of a rectangular conductor that constitutes the coil shown in FIG. 2.
 本開示に係るコイル1は、例えば、モータの固定子コア2に巻き付いて配置されている。固定子コア2は、例えば、環状の部材であり、固定子コア2の厚さ方向Z0から見て放射状に延びる複数のティース3を備える。図1は、1つのティース3を示しており、図1に示すように、コイル1は、各ティースに巻き付いて配置されている。ティース3は、固定子コア2の厚さ方向Z0に延びる柱状部材である。固定子コア2の厚さ方向Z0から見たティース3の形状は、例えば、略矩形形状である。固定子コア2は、例えば、ケイ素鋼板などの薄板を積層させて形成される。コイル1は、例えば、ティース3の外形形状に合わせてティース3に巻き付いて配置されている。コイル1に電流を流すことでモータが回転する。 The coil 1 according to the present disclosure is, for example, arranged to be wound around the stator core 2 of a motor. The stator core 2 is, for example, an annular member, and includes a plurality of teeth 3 that extend radially when viewed from the thickness direction Z0 of the stator core 2. FIG. 1 shows one tooth 3, and as shown in FIG. 1, the coil 1 is arranged to be wound around each tooth. The teeth 3 are columnar members extending in the thickness direction Z0 of the stator core 2. The shape of the teeth 3 viewed from the thickness direction Z0 of the stator core 2 is, for example, a substantially rectangular shape. The stator core 2 is formed by laminating thin plates such as silicon steel plates, for example. For example, the coil 1 is arranged to be wound around the teeth 3 in accordance with the outer shape of the teeth 3. The motor rotates by passing current through the coil 1.
 図2に示すように、コイル1は、巻回された平角導体10から構成されている。図3に示すように、平角導体10は、平角導体の長さ方向Xにおいて、一端15と、一端15の反対に位置する他端16と、を含む導線である。図3に示すように、平角導体10が曲げられていない場合、長さ方向Xは、平角導体10の一端15と他端16との間で延びる方向であって、直線で表される方向である。 As shown in FIG. 2, the coil 1 is composed of a wound rectangular conductor 10. As shown in FIG. 3, the rectangular conductor 10 is a conductive wire that includes one end 15 and the other end 16 located opposite to the one end 15 in the length direction X of the rectangular conductor. As shown in FIG. 3, when the rectangular conductor 10 is not bent, the length direction X is a direction extending between one end 15 and the other end 16 of the rectangular conductor 10, and is a direction represented by a straight line. be.
 平角導体10は、図3に示すように、第1主面11と、第2主面12と、第1接続面13と、第2接続面14と、を有する。第1主面11と、第2主面12と、第1接続面13と、第2接続面14とはそれぞれ、一端15及び他端16の間に延びる。第2主面12は、厚さ方向Zにおいて第1主面11の反対に位置する面である。第1接続面13は、幅方向Yにおいて第2接続面14の反対に位置する面である。第1接続面13及び第2接続面14はそれぞれ、第1主面11と第2主面12とを接続する面である。平角導体10は、長さ方向Xに直交する断面形状が矩形形状である。 As shown in FIG. 3, the rectangular conductor 10 has a first main surface 11, a second main surface 12, a first connection surface 13, and a second connection surface 14. The first main surface 11, the second main surface 12, the first connection surface 13, and the second connection surface 14 each extend between one end 15 and the other end 16. The second main surface 12 is a surface located opposite to the first main surface 11 in the thickness direction Z. The first connection surface 13 is a surface located opposite to the second connection surface 14 in the width direction Y. The first connection surface 13 and the second connection surface 14 are surfaces that connect the first main surface 11 and the second main surface 12, respectively. The rectangular conductor 10 has a rectangular cross section perpendicular to the length direction X.
 平角導体10の第1接続面13と第2接続面14と間の距離、即ち、平角導体10の幅Wは、例えば、5mm以上10mm以下である。平角導体10の第1主面11と第2主面12と間の距離、即ち、平角導体10の厚さT0は、例えば、1mm以上2mm以下である。 The distance between the first connection surface 13 and the second connection surface 14 of the rectangular conductor 10, that is, the width W of the rectangular conductor 10 is, for example, 5 mm or more and 10 mm or less. The distance between the first main surface 11 and the second main surface 12 of the rectangular conductor 10, that is, the thickness T0 of the rectangular conductor 10 is, for example, 1 mm or more and 2 mm or less.
 平角導体10は、例えば、導電性部材と、導電性部材の表面を被覆する絶縁性部材と、を含む。導電性部材は、平角導体10の一端15と他端16とにおいて、絶縁性部材から露出する。導電性部材は、例えば、銅等である。絶縁性部材は、例えば、エナメル、ポリイミド、アミドイミド、エポキシ、メラミン、フェノール等の樹脂である。 The rectangular conductor 10 includes, for example, a conductive member and an insulating member covering the surface of the conductive member. The conductive member is exposed from the insulating member at one end 15 and the other end 16 of the rectangular conductor 10. The conductive member is, for example, copper. The insulating member is, for example, a resin such as enamel, polyimide, amideimide, epoxy, melamine, or phenol.
 図2に示すように、コイル1は、第1接続面13を内側にして平角導体10を螺旋状に巻回して形成される。また、コイル1において、平角導体10が厚さ方向Zに積層されている。図1に示すように、積層された層のうち隣接する2つの層において、一方の層を形成する平角導体10の第1主面11と他方の層を形成する平角導体10の第2主面12とは、互いに接している。 As shown in FIG. 2, the coil 1 is formed by spirally winding the rectangular conductor 10 with the first connection surface 13 facing inside. Further, in the coil 1, rectangular conductors 10 are laminated in the thickness direction Z. As shown in FIG. 1, in two adjacent layers among the laminated layers, the first main surface 11 of the rectangular conductor 10 forming one layer and the second main surface of the rectangular conductor 10 forming the other layer. 12 are in contact with each other.
 <コイル製造装置>
 次に、コイル1を製造するコイル製造装置の構成について図4を用いて説明する。図4は、図2に示すコイルを製造するコイル製造装置の構成を説明するためのブロック図である。図4に示すように、コイル製造装置40は、加工装置60と、曲げ加工装置70と、制御装置50と、を含む。
<Coil manufacturing equipment>
Next, the configuration of a coil manufacturing apparatus for manufacturing the coil 1 will be described using FIG. 4. FIG. 4 is a block diagram for explaining the configuration of a coil manufacturing apparatus that manufactures the coil shown in FIG. 2. As shown in FIG. 4, the coil manufacturing device 40 includes a processing device 60, a bending device 70, and a control device 50.
 (加工装置)
 加工装置60は、平角導体10において、平角導体10の曲げの中立線に基づいて規定される部分(加工部分)を他の部分と比べて薄く加工する。
(Processing equipment)
The processing device 60 processes a portion (processed portion) of the rectangular conductor 10 defined based on the neutral line of bending of the rectangular conductor 10 to be thinner than other portions.
 本実施形態において、加工装置60は、例えば、押圧加工装置である。加工装置60は、例えば、プレス機である。加工装置60が押圧加工装置である場合、加工装置60は、例えば、第1工具61と、第2工具62と、を備える。第1工具61と、第2工具62とは、例えば、パンチである。 In this embodiment, the processing device 60 is, for example, a press processing device. The processing device 60 is, for example, a press machine. When the processing device 60 is a press processing device, the processing device 60 includes, for example, a first tool 61 and a second tool 62. The first tool 61 and the second tool 62 are, for example, punches.
 第1工具61及び第2工具62は、例えば、同軸上に配置されている。具体的には、第1工具61及び第2工具62は、加工装置60の上下方向に延びる軸上に配置されている。第1工具61及び第2工具62は、該軸に沿って、加工装置60の上下方向に移動できる。加工装置60は、第1工具61及び第2工具62を上下方向に移動させて、平角導体10を押圧加工する。 The first tool 61 and the second tool 62 are arranged coaxially, for example. Specifically, the first tool 61 and the second tool 62 are arranged on an axis extending in the vertical direction of the processing device 60. The first tool 61 and the second tool 62 can move in the vertical direction of the processing device 60 along the axis. The processing device 60 presses the flat conductor 10 by moving the first tool 61 and the second tool 62 in the vertical direction.
 第1工具61及び第2工具62は、例えば、断面形状が円形、三角形、矩形等の柱状形状の部材である。第1工具61及び第2工具62は、例えば、加工装置60から取り外し自在である。後述する平角導体10の曲げの中立線に基づいて規定される部分の形状に応じて、加工装置60に取り付けられる第1工具61及び第2工具62の形状は適宜選択される。第1工具61及び第2工具62の材料は、例えば、炭素工具鋼、特殊工具鋼、ダイス鋼、高速度鋼、超硬合金などである。 The first tool 61 and the second tool 62 are, for example, columnar members with a circular, triangular, or rectangular cross-sectional shape. The first tool 61 and the second tool 62 are, for example, removable from the processing device 60. The shapes of the first tool 61 and the second tool 62 attached to the processing device 60 are appropriately selected depending on the shape of the portion defined based on the neutral line of bending of the rectangular conductor 10, which will be described later. The material of the first tool 61 and the second tool 62 is, for example, carbon tool steel, special tool steel, die steel, high speed steel, cemented carbide, or the like.
 加工装置60は、さらに固定装置63を備えていてもよい。固定装置63は、平角導体10の曲げの中立線に基づいて規定される部分の周囲に位置する部分を平角導体10の厚さ方向Zから固定する。固定装置63は、平角導体10の第1主面11及び第2主面12を挟んで平角導体10を固定する。本実施形態では、固定装置63は、金型で構成されている。例えば、固定装置63は、第1工具61及び第2工具62が取り付けられたダイである。 The processing device 60 may further include a fixing device 63. The fixing device 63 fixes a portion of the rectangular conductor 10 located around a portion defined based on the neutral line of bending of the rectangular conductor 10 in the thickness direction Z. The fixing device 63 fixes the rectangular conductor 10 with the first main surface 11 and the second main surface 12 of the rectangular conductor 10 interposed therebetween. In this embodiment, the fixing device 63 is made of a mold. For example, the fixing device 63 is a die to which a first tool 61 and a second tool 62 are attached.
 また、加工装置は、切削加工装置であってもよい。切削加工装置は、例えば、フライス盤である。加工装置が切削加工装置である場合、加工装置は、例えば、エンドミル等の切削工具を備える。加工装置は、切削工具により中立線Lに基づいて規定される部分20を切削する。 Additionally, the processing device may be a cutting device. The cutting device is, for example, a milling machine. When the processing device is a cutting device, the processing device includes, for example, a cutting tool such as an end mill. The processing device cuts a portion 20 defined based on the neutral line L using a cutting tool.
 (曲げ加工装置)
 曲げ加工装置70は、薄く加工された加工部分を、第1接続面13を内側にして平角導体10を曲げ加工する。
(Bending processing equipment)
The bending device 70 bends the rectangular conductor 10 so that the first connection surface 13 faces inside the thinly processed portion.
 (制御装置)
 制御装置50は、固定装置63と、加工装置60と、曲げ加工装置70と、の制御を行う。制御装置50は、データ入力部とプロセッサと、を含む。
(Control device)
The control device 50 controls the fixing device 63, the processing device 60, and the bending device 70. Control device 50 includes a data input section and a processor.
 データ入力部は、例えば、タッチパネルやキーボード等のインターフェイスである。データ入力部には、固定条件、薄く加工する加工条件、曲げ加工する加工条件等のデータが入力される。固定条件は、例えば、固定する位置、固定圧力等である。薄く加工する条件は、例えば、平角導体10の曲げの中立線に基づいて規定される部分の範囲、加工速度等である。また、加工装置60が押圧加工装置である場合、加工条件は、例えば、押圧速度、押圧圧力等である。曲げ加工する加工条件は、例えば、曲げ半径、曲げ速度等である。 The data input unit is, for example, an interface such as a touch panel or a keyboard. Data such as fixing conditions, processing conditions for thinning, processing conditions for bending, etc. are input to the data input section. The fixing conditions include, for example, the fixing position and fixing pressure. The conditions for thinning are, for example, the range of the portion defined based on the neutral line of bending of the rectangular conductor 10, the processing speed, etc. Furthermore, when the processing device 60 is a pressing device, the processing conditions include, for example, pressing speed, pressing pressure, and the like. The processing conditions for bending include, for example, the bending radius and bending speed.
 プロセッサは、データ入力部に入力されたデータに基づいて、固定装置63と、加工装置60と、曲げ加工装置70と、を制御する。 The processor controls the fixing device 63, the processing device 60, and the bending device 70 based on the data input to the data input section.
 プロセッサは、制御中枢としてのCPU(Central Processing Unit)、CPUが動作するためのプログラムや制御データ等を記憶しているROM(Read Only Memory)、CPUのワークエリアとして機能するRAM(Random Access Memory)等を設けてある。プロセッサはまた、マイコン、MPU(Micro-Processing Unit)、GPU(Graphics Processong Unit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)等の電子部品あってもよい。 The processor is a CPU (Central Processing Unit) as a control center, ROM (READ ONLY MEMORY), which remembers programs and control data for the operation of the CPU, and RAM (RANDOM ACCE (RANDOM ACCE) (RANDOM ACCE). SS Memory) etc. are provided. Processors also include microcomputers, MPUs (Micro-Processing Units), GPUs (Graphics Processing Units), DSPs (Digital Signal Processors), and FPGAs (Field Programming Units). Even if there are electronic components such as rammable Gate Array), ASIC (Application Specific Integrated Circuit), etc. good.
 なお、制御装置50は、コイル製造装置40とは別の装置として設けられていてもよい。また、制御装置50は、固定装置63と、加工装置60と、曲げ加工装置70と、それぞれに備えられていてもよい。 Note that the control device 50 may be provided as a separate device from the coil manufacturing device 40. Further, the control device 50 may be provided in each of the fixing device 63, the processing device 60, and the bending device 70.
 <コイル製造方法>
 図5は、本開示に係るコイル製造方法に係る製造工程のフロー図である。図6Aから図6Cは、本開示に係るコイル製造方法の一工程を示す側面図である。図6Dは、本開示に係るコイル製造方法の一工程を示す平面図である。図6Eは、本開示に係るコイル製造方法の一工程を示す斜視図である。図5、及び図6Aから図6Eを参照して、実施の形態に係るコイル製造方法を説明する。本開示に係るコイル製造方法は、図5に示すように、固定するステップS1と、薄く加工するステップS2と、曲げ加工するステップS3と、を含む。
<Coil manufacturing method>
FIG. 5 is a flow diagram of a manufacturing process according to a coil manufacturing method according to the present disclosure. 6A to 6C are side views showing one step of the coil manufacturing method according to the present disclosure. FIG. 6D is a plan view showing one step of the coil manufacturing method according to the present disclosure. FIG. 6E is a perspective view showing one step of the coil manufacturing method according to the present disclosure. A coil manufacturing method according to an embodiment will be described with reference to FIG. 5 and FIGS. 6A to 6E. As shown in FIG. 5, the coil manufacturing method according to the present disclosure includes a fixing step S1, a thinning step S2, and a bending step S3.
 (固定するステップ)
 図6Aに示すように、固定するステップS1では、後述する平角導体10の曲げの中立線に基づいて規定される部分20の周囲に位置する部分24を、厚さ方向Zから固定する。該部分24は、例えば、平角導体10の第1主面11及び第2主面12の両方から固定される。即ち、固定するステップS1は、平角導体10の曲げの中立線に基づいて規定される部分20の周囲に位置する部分24を平角導体10の第1主面11及び第2主面12の両方から押圧することによって、平角導体10が挟持される。なお、以下では、平角導体10の曲げの中立線を、単に「中立線」とも呼ぶ。また、中立線に基づいて規定される部分20の周囲に位置する部分24を、「周囲部分24」とも呼ぶ。周囲部分24は、加工装置60の固定装置63で固定される。
(Fixing step)
As shown in FIG. 6A, in the fixing step S1, a portion 24 located around a portion 20 defined based on a neutral line of bending of the rectangular conductor 10, which will be described later, is fixed from the thickness direction Z. The portion 24 is fixed, for example, from both the first main surface 11 and the second main surface 12 of the rectangular conductor 10. That is, in the fixing step S1, the portion 24 located around the portion 20 defined based on the neutral line of bending of the rectangular conductor 10 is fixed from both the first principal surface 11 and the second principal surface 12 of the rectangular conductor 10. By pressing, the rectangular conductor 10 is held. In addition, below, the neutral line of bending of the rectangular conductor 10 is also simply called a "neutral line." Furthermore, the portion 24 located around the portion 20 defined based on the neutral line is also referred to as the "surrounding portion 24." The peripheral portion 24 is fixed by a fixing device 63 of the processing device 60.
 (薄く加工するステップ)
 図6Bに示すように、薄く加工するステップS2では、平角導体10において、平角導体10の曲げの中立線Lに基づいて規定される部分20を他の部分と比べて薄く加工する。薄く加工するステップS2は、加工装置60で実施される。また、薄く加工するステップS2では、第1主面11及び第2主面12の両面から平角導体10を薄く加工する。
(Step for thinning)
As shown in FIG. 6B, in the thinning step S2, a portion 20 of the rectangular conductor 10 defined based on the neutral line L of bending of the rectangular conductor 10 is processed to be thinner than other portions. Step S2 of processing thinly is performed by the processing device 60. Further, in step S2 of thinning, the rectangular conductor 10 is thinned from both the first main surface 11 and the second main surface 12.
 本実施形態において、薄く加工するステップS2は、押圧加工するステップである。押圧加工するとは、平角導体10をパンチ等によって窪ませる加工である。本実施形態において、薄く加工するステップS2は、押圧加工装置である加工装置60によって実施される。 In this embodiment, the step S2 of thinning is a step of pressing. Pressing is a process in which the rectangular conductor 10 is depressed using a punch or the like. In this embodiment, the step S2 of thinning is performed by the processing device 60, which is a press processing device.
 加工装置60は、第1工具61を第1主面11に当接し、第2工具62を第2主面12に当接し、第1工具61及び第2工具62で平角導体10を挟み込んで薄く加工する。 The processing device 60 brings the first tool 61 into contact with the first main surface 11, the second tool 62 into contact with the second main surface 12, and sandwiches the rectangular conductor 10 between the first tool 61 and the second tool 62 to thin the rectangular conductor 10. Process.
 中立線Lに基づいて規定される部分20が薄く加工されると、図6Cに示すように、加工部分30が形成される。加工部分30とは、平角導体10の厚さが薄く加工された部分である。また、加工部分30とは、平角導体10の凹状に窪んだ部分である。 When the portion 20 defined based on the neutral line L is thinned, a processed portion 30 is formed as shown in FIG. 6C. The processed portion 30 is a portion of the rectangular conductor 10 processed to be thinner. Further, the processed portion 30 is a concave portion of the rectangular conductor 10.
 ここで、中立線Lに基づいて規定される部分20の詳細な形状、及び加工部分30の詳細な形状について説明するため、図7を参照して中立線Lについて説明する。図7は、曲げの中立線を説明する平角導体の平面図である。図7において、曲げ部分の長さ方向Xaとは、後述の曲げ加工するステップS3後に平角導体10が延びる方向である。従って、曲げ加工するステップS3で曲げられた部分の長さ方向Xaは、図7に示すように、曲線で表される方向である。 Here, in order to explain the detailed shape of the portion 20 defined based on the neutral line L and the detailed shape of the processed portion 30, the neutral line L will be explained with reference to FIG. 7. FIG. 7 is a plan view of a rectangular conductor illustrating the neutral line of bending. In FIG. 7, the length direction Xa of the bent portion is the direction in which the rectangular conductor 10 extends after step S3 of bending, which will be described later. Therefore, the length direction Xa of the portion bent in step S3 of bending is a direction represented by a curved line, as shown in FIG.
 (中立線)
 まず、後述の曲げ加工するステップS3において平角導体10が曲げられると、曲げ部分90が形成される。言い換えると、曲げ部分90は、曲げ加工するステップS3において曲げられた部分である。曲げ部分90は、曲げ部分の長さ方向Xaにおいて、一方の端部90aと他方の端部90bとを含む。
(neutral line)
First, when the rectangular conductor 10 is bent in step S3 of bending, which will be described later, a bent portion 90 is formed. In other words, the bent portion 90 is a portion bent in step S3 of bending. The bent portion 90 includes one end 90a and the other end 90b in the length direction Xa of the bent portion.
 中立線Lは、曲げ部分90において、平角導体10が長さ方向に圧縮も伸張もしない部分を示す線である。すなわち、中立線Lは、曲げ部分90のうち、曲げ加工するステップS3前の長さ方向Xの長さと、曲げ加工するステップS3後の曲げ部分の長さ方向Xaの長さとが、等しい部分を示す線である。 The neutral line L is a line indicating a portion of the bent portion 90 where the rectangular conductor 10 is neither compressed nor expanded in the length direction. That is, the neutral line L is a portion of the bent portion 90 where the length in the length direction X before bending step S3 is equal to the length Xa of the bent portion after bending step S3. This is the line shown.
 図7に示すように、中立線Lの位置を、平角導体10を厚さ方向Zから見たときの第1接続面13と中立線Lとの間の距離Kで表すと、距離Kは、平角導体10の幅方向Yの長さ、即ち、平角導体10の幅Wと、係数λにより以下の式1で算出することができる。
(式1)
K=W×λ
 係数λは、曲げ加工するステップS3における平角導体10の曲げ半径をRとしたとき、曲げ半径Rと平角導体10の幅Wとの割合R/Wの範囲に依拠して決定される。係数λと割合R/Wの範囲との関係は、以下の表1に示す関係を有する。
As shown in FIG. 7, when the position of the neutral line L is expressed by the distance K between the first connection surface 13 and the neutral line L when the rectangular conductor 10 is viewed from the thickness direction Z, the distance K is: It can be calculated using the following equation 1 using the length of the rectangular conductor 10 in the width direction Y, that is, the width W of the rectangular conductor 10, and a coefficient λ.
(Formula 1)
K=W×λ
The coefficient λ is determined based on the range of the ratio R/W of the bending radius R and the width W of the rectangular conductor 10, where R is the bending radius of the rectangular conductor 10 in step S3 of bending. The relationship between the coefficient λ and the range of the ratio R/W has the relationship shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、例えば、曲げ半径Rが平角導体10の幅Wの5倍以上になると、距離Kは、平角導体10の幅Wの半分となる。すなわち、中立線Lの位置は、幅方向Yの中央となる。 From Table 1, for example, when the bending radius R becomes five times or more the width W of the rectangular conductor 10, the distance K becomes half the width W of the rectangular conductor 10. That is, the position of the neutral line L is the center in the width direction Y.
 (平角導体の曲げ中立線に基づいて規定される部分)
 図8は、平角導体の曲げ中立線に基づいて規定される部分の平面図である。図8に示すように、厚さ方向Zから見たときの中立線Lに基づいて規定される部分20の形状は、中立線L近傍に位置する頂点を有する形状である。本明細書において、中立線L近傍とは、平角導体10の幅Wの10%以下(幅ΔW)で、中立線Lから幅方向Yに沿ってシフトした範囲である。具体的には、中立線L近傍は、中立線Lから幅方向Yに沿って幅ΔWだけ第1接続面13側にシフトした位置と、中立線Lから幅方向Yに沿って幅ΔWだけ第2接続面14側にシフトした位置と、の間の範囲を意味する。
(The part defined based on the bending neutral line of the rectangular conductor)
FIG. 8 is a plan view of a portion defined based on the bending neutral line of the rectangular conductor. As shown in FIG. 8, the shape of the portion 20 defined based on the neutral line L when viewed from the thickness direction Z is a shape having an apex located near the neutral line L. In this specification, the vicinity of the neutral line L is a range shifted from the neutral line L along the width direction Y by 10% or less (width ΔW) of the width W of the rectangular conductor 10. Specifically, the vicinity of the neutral line L is a position shifted from the neutral line L to the first connection surface 13 side by a width ΔW along the width direction Y, and a position shifted from the neutral line L by a width ΔW along the width direction Y. 2 refers to the range between the position shifted toward the connecting surface 14 side.
 また、中立線Lに基づいて規定される部分20の長さ方向Xに沿った幅X1は、中立線L近傍から第1接続面13に近づくにしたがって広くなる。 Further, the width X1 along the length direction X of the portion 20 defined based on the neutral line L becomes wider as it approaches the first connection surface 13 from the vicinity of the neutral line L.
 図8に示すように、本実施の形態において、厚さ方向Zから見たとき、中立線Lに基づいて規定される部分20の形状は、三角形形状である。該三角形形状は、例えば、中立線L近傍に1つの頂点(第1頂点21)を有し、第1接続面13上に他の2つの頂点(第2頂点22及び第3頂点23)を有する。該三角形形状は、例えば、厚さ方向Zから見たとき、第1頂点21と第2頂点22とを結ぶ辺の長さが第1頂点21と第3頂点23とを結ぶ辺の長さと等しい二等辺三角形である。 As shown in FIG. 8, in this embodiment, the shape of the portion 20 defined based on the neutral line L is triangular when viewed from the thickness direction Z. The triangular shape has, for example, one vertex (first vertex 21) near the neutral line L and two other vertices (second vertex 22 and third vertex 23) on the first connection surface 13. . For example, when the triangular shape is viewed from the thickness direction Z, the length of the side connecting the first apex 21 and the second apex 22 is equal to the length of the side connecting the first apex 21 and the third apex 23. It is an isosceles triangle.
 第2頂点22は、厚さ方向Zから見て、曲げ部分90の一方の端部90aの近傍に位置する。第3頂点23は、厚さ方向Zから見て、曲げ部分90の他方の端部90bの近傍に位置する。本明細書において、一方の端部90aの近傍とは、一方の端部90aと他方の端部90bとの間の長さX3の10%以下(長さΔX)で、一方の端部90aから長さ方向Xに沿ってシフトした範囲である。一方の端部90aから他方の端部90bに向かう方向を+X方向とし、他方の端部90bから一方の端部90aに向か方向を-X方向とし、一方の端部90aの近傍を具体的に示すと以下のようになる。一方の端部90aの近傍とは、一方の端部90aから+X方向に長さΔXだけシフトした位置と、一方の端部90aから-X方向に長さΔXだけシフトした位置と、の間の範囲である。同様に、本明細書において、他方の端部90bの近傍とは、他方の端部90bから長さΔXだけ長さ方向Xにシフトした範囲である。具体的には、他方の端部90bの近傍とは、他方の端部90bから+X方向に長さΔXだけシフトした位置と、他方の端部90bから-X方向に長さΔXだけシフトした位置と、の間の範囲である。 The second vertex 22 is located near one end 90a of the bent portion 90 when viewed from the thickness direction Z. The third vertex 23 is located near the other end 90b of the bent portion 90 when viewed from the thickness direction Z. In this specification, the vicinity of one end 90a refers to a region that is 10% or less (length ΔX) of the length X3 between one end 90a and the other end 90b, and from one end 90a to This is the range shifted along the length direction X. The direction from one end 90a to the other end 90b is the +X direction, the direction from the other end 90b to the one end 90a is the -X direction, and the vicinity of the one end 90a is specifically defined. The result is shown below. The vicinity of one end 90a is defined as the area between the position shifted from one end 90a by a length ΔX in the +X direction and the position shifted from one end 90a by a length ΔX in the -X direction. range. Similarly, in this specification, the vicinity of the other end 90b is a range shifted in the length direction X by a length ΔX from the other end 90b. Specifically, the vicinity of the other end 90b refers to a position shifted by a length ΔX in the +X direction from the other end 90b, and a position shifted by a length ΔX in the −X direction from the other end 90b. The range is between .
 (加工部分)
 図9Aは、加工部分の斜視図であり、図9Bは、加工部分の平面図である。加工部分30は、例えば、中立線Lに基づいて規定される部分20を厚さ方向Zから押圧加工して形成される。図8及び図9Bに示すように、厚さ方向Zから見た加工部分30の形状は、厚さ方向Zから見た中立線Lに基づいて規定される部分20と略同一形状である。したがって、厚さ方向Zから見た加工部分30の形状は、図9Bに示すように、中立線L近傍に位置する頂点を有する形状である。また、厚さ方向Zから見た加工部分30の長さ方向Xに沿った幅X2は、第1接続面13に近づくにしたがって広くなる。
(processing part)
FIG. 9A is a perspective view of the processed portion, and FIG. 9B is a plan view of the processed portion. The processed portion 30 is formed, for example, by pressing the portion 20 defined based on the neutral line L from the thickness direction Z. As shown in FIGS. 8 and 9B, the shape of the processed portion 30 viewed from the thickness direction Z is approximately the same shape as the portion 20 defined based on the neutral line L when viewed from the thickness direction Z. Therefore, the shape of the processed portion 30 viewed from the thickness direction Z is a shape having an apex located near the neutral line L, as shown in FIG. 9B. Furthermore, the width X2 of the processed portion 30 along the length direction X when viewed from the thickness direction Z increases as it approaches the first connection surface 13.
 図9Bに示すように、本実施の形態において、厚さ方向Zから見た加工部分30の形状は、三角形形状である。該三角形形状は、例えば、中立線L近傍に1つの頂点(第1頂点31)を有し、第1接続面13上に他の2つの頂点(第2頂点32及び第3頂点33)を有する三角形形状である。該三角形形状は、例えば、厚さ方向Zから見たとき、第1頂点31と第2頂点32とを結ぶ辺の長さが、第1頂点31と第3頂点33とを結ぶ辺の長さと等しい二等辺三角形である。 As shown in FIG. 9B, in this embodiment, the shape of the processed portion 30 when viewed from the thickness direction Z is triangular. The triangular shape has, for example, one vertex (first vertex 31) near the neutral line L and two other vertices (second vertex 32 and third vertex 33) on the first connection surface 13. It has a triangular shape. For example, when the triangular shape is viewed from the thickness direction Z, the length of the side connecting the first apex 31 and the second apex 32 is the same as the length of the side connecting the first apex 31 and the third apex 33. They are equal isosceles triangles.
 上述したように第1頂点31は、中立線L近傍に位置する。具体的には、第1頂点31は、図9Bに示すように、例えば、中立線L上に位置する。 As described above, the first vertex 31 is located near the neutral line L. Specifically, the first vertex 31 is located on the neutral line L, for example, as shown in FIG. 9B.
 また、図10Aに示すように、第1頂点31aは、中立線Lから幅方向Yに沿って幅ΔWだけ第2接続面14側にシフトした位置L2と、中立線Lと、の間に位置していてもよい。 Further, as shown in FIG. 10A, the first vertex 31a is located between the neutral line L and a position L2 shifted from the neutral line L by a width ΔW toward the second connection surface 14 side along the width direction Y. You may do so.
 また、図10Bに示すように、第1頂点31bは、中立線Lから幅方向Yに沿って幅ΔWだけ第1接続面13側にシフトした位置L1と、中立線Lと、の間に位置していてもよい。なお、幅ΔWは、平角導体10の幅Wの10%以下の幅である。 Further, as shown in FIG. 10B, the first vertex 31b is located between the neutral line L and a position L1 shifted from the neutral line L by a width ΔW toward the first connection surface 13 side along the width direction Y. You may do so. Note that the width ΔW is 10% or less of the width W of the rectangular conductor 10.
 第2頂点32は、厚さ方向Zから見て、曲げ部分90の一方の端部90aの近傍に位置する。第3頂点33は、厚さ方向Zから見て、曲げ部分90の他方の端部90bの近傍に位置する。具体的には、図10Cに示すように、第2頂点32は、一方の端部90aから-X方向に長さΔXだけシフトした位置と、一方の端部90aと、の間に位置していてもよい。同様に、第3頂点33は、他方の端部90bから+X方向に長さΔXだけシフトした位置と、他方の端部90bと、の間に位置していてもよい。 The second vertex 32 is located near one end 90a of the bent portion 90 when viewed from the thickness direction Z. The third vertex 33 is located near the other end 90b of the bent portion 90 when viewed from the thickness direction Z. Specifically, as shown in FIG. 10C, the second vertex 32 is located between the one end 90a and a position shifted by a length ΔX in the −X direction from the one end 90a. It's okay. Similarly, the third vertex 33 may be located between the other end 90b and a position shifted by a length ΔX in the +X direction from the other end 90b.
 また、図10Dに示すように、第2頂点32は、一方の端部90aから+X方向に長さΔXだけシフトした位置と、一方の端部90aと、の間に位置していてもよい。同様に、第3頂点33は、他方の端部90bから-X方向に長さΔXシフトした位置と、他方の端部90bと、の間に位置していてもよい。なお、長さΔXは、一方の端部90aと他方の端部90bとの間の長さX3の10%以下の長さである。 Further, as shown in FIG. 10D, the second vertex 32 may be located between the one end 90a and a position shifted by a length ΔX in the +X direction from the one end 90a. Similarly, the third vertex 33 may be located between the other end 90b and a position shifted by a length ΔX in the −X direction from the other end 90b. Note that the length ΔX is 10% or less of the length X3 between one end 90a and the other end 90b.
 図9Aに示すように、加工部分30は、第1加工面30aと、第2加工面30bと、を含む。第1加工面30a及び第2加工面30bは、例えば、平面である。第1加工面30aと第2加工面30bとの厚さ方向Zにおける距離、すなわち、加工部分30の厚さT1は、例えば、略一定である。加工部分30の厚さT1は、例えば、薄く加工するステップS2をする前の平角導体10の厚さT0の50%以上100%未満である。 As shown in FIG. 9A, the processed portion 30 includes a first processed surface 30a and a second processed surface 30b. The first processed surface 30a and the second processed surface 30b are, for example, flat surfaces. The distance between the first processed surface 30a and the second processed surface 30b in the thickness direction Z, that is, the thickness T1 of the processed portion 30, is, for example, approximately constant. The thickness T1 of the processed portion 30 is, for example, 50% or more and less than 100% of the thickness T0 of the rectangular conductor 10 before performing the thinning step S2.
 また、薄く加工するステップS2では、複数の中立線Lに基づいて規定される部分20を薄く加工し、図6Dに示すように、複数の加工部分30を形成する。複数の加工部分30は、所定の離隔距離パターンで互いに離隔して形成される。所定の離隔距離パターンは、例えば、第1離隔距離d1、及び第1離隔距離d1とは異なる第2離隔距離d2が交互に配列されるパターンである。第1離隔距離d1は、例えば、第2離隔距離d2より長い。また、所定の離隔距離パターンは、等間隔で離隔するパターンであってもよい。 Furthermore, in step S2 of thinning, the portion 20 defined based on the plurality of neutral lines L is thinned, and a plurality of processed portions 30 are formed as shown in FIG. 6D. The plurality of processed portions 30 are formed spaced apart from each other in a predetermined spacing pattern. The predetermined separation distance pattern is, for example, a pattern in which first separation distances d1 and second separation distances d2 different from the first separation distances d1 are arranged alternately. The first separation distance d1 is, for example, longer than the second separation distance d2. Further, the predetermined separation distance pattern may be a pattern in which the elements are spaced at equal intervals.
 加工装置60の加工条件は、制御装置50に入力されたデータに基づいて決定される。加工装置60が押圧加工装置である場合、押圧速度は、例えば、100mm/sである。押圧圧力は、例えば、5トンである。 The processing conditions of the processing device 60 are determined based on data input to the control device 50. When the processing device 60 is a pressing device, the pressing speed is, for example, 100 mm/s. The pressing pressure is, for example, 5 tons.
 なお、実施の形態では、中立線Lに基づいて規定される部分20を押圧して加工部分30を形成しているが、中立線Lに基づいて規定される部分20は、例えば、切削加工等、他の加工方法により厚さを薄くしてもよい。この場合、薄く加工するステップS2は、例えば、切削加工装置である加工装置によって実施される。中立線Lに基づいて規定される部分20は、切削加工装置によって切削加工される。 In the embodiment, the processed portion 30 is formed by pressing the portion 20 defined based on the neutral line L. However, the portion 20 defined based on the neutral line L may be processed by cutting, etc. , the thickness may be reduced by other processing methods. In this case, step S2 of thinning is performed by a processing device that is a cutting device, for example. The portion 20 defined based on the neutral line L is cut by a cutting device.
 (曲げ加工するステップ)
 図5に戻って、曲げ加工するステップS3では、薄く加工された加工部分30を、第1接続面13を内側にして平角導体10を曲げ加工する。すなわち、図6Eに示すように、平角導体10を、第1接続面13を内側にしてエッジワイズ曲げ加工する。これにより、曲げ加工された後の平角導体10は、曲げ部分90と、一方の直線部分91と、他方の直線部分92と、を含む。一方の直線部分91は、曲げ部分90の一方の端部90aに連続し、曲げ加工するステップS3で曲げられない部分である。他方の直線部分92は、曲げ部分90の他方の端部90bに連続し、曲げ加工するステップS3で曲げられない部分である。
(Step of bending)
Returning to FIG. 5, in step S3 of bending, the rectangular conductor 10 is bent with the thinned processed portion 30 facing the first connection surface 13 inside. That is, as shown in FIG. 6E, the rectangular conductor 10 is edgewise bent with the first connection surface 13 facing inside. As a result, the rectangular conductor 10 after being bent includes a bent portion 90, one straight portion 91, and the other straight portion 92. One straight portion 91 is continuous with one end 90a of the bent portion 90 and is a portion that cannot be bent in step S3 of bending. The other straight portion 92 is a portion that is continuous with the other end 90b of the bent portion 90 and is not bent in the bending step S3.
 曲げ加工するステップS3では、図6Dに示す、平角導体10の複数の加工部分30それぞれを順に曲げ、平角導体10を螺旋状に巻回する。言い換えると、平角導体10を厚さ方向Zに積層して巻回する。積層の隣接する2つの層のうちの一方の層を形成する平角導体10の第1主面11(又は第2主面12)と、他方の層を形成する平角導体10の第2主面12(又は第1主面11)と、は互いに接触させて巻回される。 In step S3 of bending, each of the plurality of processed parts 30 of the rectangular conductor 10 shown in FIG. 6D is bent in order, and the rectangular conductor 10 is wound in a spiral shape. In other words, the rectangular conductors 10 are laminated in the thickness direction Z and wound. The first main surface 11 (or second main surface 12) of the rectangular conductor 10 forming one layer of two adjacent layers in the stack, and the second main surface 12 of the rectangular conductor 10 forming the other layer. (or the first main surface 11) and are wound in contact with each other.
 曲げ加工するステップS3は、曲げ加工装置70で実施される。曲げ加工装置70は、例えば、加工部分30の第1接続面13を柱状部材に当接させて曲げる。また、加工部分30の第1接続面13を、図1に示す固定子コア2のティース3に当接して、平角導体10を直接固定子コア2のティース3に巻回してもよい。 Step S3 of bending is performed by the bending device 70. For example, the bending device 70 bends the first connecting surface 13 of the processed portion 30 by bringing it into contact with a columnar member. Alternatively, the first connection surface 13 of the processed portion 30 may be brought into contact with the teeth 3 of the stator core 2 shown in FIG. 1, and the rectangular conductor 10 may be directly wound around the teeth 3 of the stator core 2.
 曲げ加工装置70の曲げ加工条件は、制御装置50に入力されたデータに基づいて決定される。曲げ速度は、例えば、50mm/sである。曲げ半径Rは、例えば、R5mm以下である。 The bending conditions of the bending device 70 are determined based on data input to the control device 50. The bending speed is, for example, 50 mm/s. The bending radius R is, for example, R5 mm or less.
 (効果)
 上記のようなコイル製造方法では、曲げ加工するステップS3の前に、中立線Lに基づいて規定される部分20を薄く加工し、加工部分30を形成することができる。これにより、曲げ加工するステップS3による平角導体10の厚さのばらつきを抑制できる。その結果、平角導体10の占積率が向上し、通電する電流量が増加するコイルを製造できる。
(effect)
In the coil manufacturing method as described above, before step S3 of bending, the portion 20 defined based on the neutral line L can be thinned to form the processed portion 30. Thereby, variations in the thickness of the rectangular conductor 10 due to bending step S3 can be suppressed. As a result, the space factor of the rectangular conductor 10 is improved, and a coil with an increased amount of current can be manufactured.
 また、上記のようなコイル製造方法では、長さ方向Xに沿った加工部分30の幅X2が、中立線L近傍から第1接続面13に近づくにしたがって広くなっている。これにより、曲げ加工するステップS3において、中立線Lから第1接続面13に向けて大きくなる圧縮応力に応じて、加工部分30の体積を減少させることができる。そのため、上記のようなコイル製造方法により、曲げ加工するステップS3による平角導体10の厚さのばらつきをより抑制できる。 Furthermore, in the coil manufacturing method as described above, the width X2 of the processed portion 30 along the length direction X increases from the vicinity of the neutral line L to the first connection surface 13. Thereby, in step S3 of bending, the volume of the processed portion 30 can be reduced in accordance with the compressive stress that increases from the neutral line L toward the first connection surface 13. Therefore, with the coil manufacturing method as described above, variations in the thickness of the rectangular conductor 10 due to bending step S3 can be further suppressed.
 また、上記のようなコイル製造方法では、薄く加工するステップS2において、第1主面11及び第2主面12の両面から平角導体10を薄く加工している。これにより、厚さ方向Zにおいて、対称に平角導体10を薄く加工することができ、曲げ加工するステップS3による平角導体10の厚さのばらつきをより抑制できる。 In addition, in the above-described coil manufacturing method, in the thinning step S2, the rectangular conductor 10 is thinned from both the first main surface 11 and the second main surface 12. Thereby, the rectangular conductor 10 can be symmetrically thinned in the thickness direction Z, and variations in the thickness of the rectangular conductor 10 due to bending step S3 can be further suppressed.
 また、上記のようなコイル製造方法では、厚さ方向Zから見たときの加工部分30の形状が、中立線L近傍に位置する頂点を有する形状である。これにより、曲げ加工するステップS3において圧縮応力が負荷される部分を曲げ加工するステップS3の前に薄く加工することができる。これにより、曲げ加工するステップS3による平角導体10の厚さのばらつきをより抑制できる。 Further, in the coil manufacturing method as described above, the shape of the processed portion 30 when viewed from the thickness direction Z is a shape having an apex located near the neutral line L. Thereby, the portion to which compressive stress is applied in step S3 of bending can be thinned before step S3 of bending. Thereby, variations in the thickness of the rectangular conductor 10 due to bending step S3 can be further suppressed.
 また、上記のようなコイル製造方法では、厚さ方向Zから見たときの加工部分30の形状が、三角形である。これにより、加工部分30の形成が容易になる。 Furthermore, in the coil manufacturing method as described above, the shape of the processed portion 30 when viewed from the thickness direction Z is triangular. This facilitates the formation of the processed portion 30.
 また、上記のようなコイル製造方法は、平角導体10の中立線Lに基づいて規定される部分20の周囲部分24を固定するステップS1をさらに含む。これにより、薄く加工するステップS2において、中立線Lに基づいて規定される部分20の周囲部分24の厚さが変化することを抑制できるため、後続の曲げ加工するステップS3による平角導体10の厚さのばらつきをより抑制できる。 Further, the coil manufacturing method as described above further includes step S1 of fixing the peripheral portion 24 of the portion 20 defined based on the neutral line L of the rectangular conductor 10. This makes it possible to suppress changes in the thickness of the peripheral portion 24 of the portion 20 defined based on the neutral line L in the thinning step S2, so that the thickness of the rectangular conductor 10 in the subsequent bending step S3 can be suppressed. Variations in height can be further suppressed.
 上記のコイル製造装置についてもコイル製造方法と同様の効果を奏することができる。 The above-described coil manufacturing apparatus can also achieve the same effects as the coil manufacturing method.
 <変形例1>
 実施の形態に係る加工部分30は、厚さT1が略同一であるが、これに限定されるものではない。図11Aに示すように、変形例1に係る加工部分130の厚さは、例えば、中立線L近傍から第1接続面13に近づくにしたがって連続的に薄くなっている。言い換えると、第1加工面130a及び第2加工面130bは、第2接続面14から第1接続面13に向かう幅方向Yに対して傾斜する面である。
<Modification 1>
The processed portions 30 according to the embodiment have substantially the same thickness T1, but are not limited to this. As shown in FIG. 11A, the thickness of the processed portion 130 according to Modification Example 1 is, for example, continuously thinner as it approaches the first connection surface 13 from the vicinity of the neutral line L. In other words, the first processed surface 130a and the second processed surface 130b are surfaces that are inclined with respect to the width direction Y from the second connection surface 14 toward the first connection surface 13.
 このような加工部分130は、例えば、厚さ方向Zに対して角度を有する方向から中立線Lに基づいて規定される部分20を押圧することで形成される。 Such a processed portion 130 is formed, for example, by pressing the portion 20 defined based on the neutral line L from a direction having an angle to the thickness direction Z.
 (効果)
 このような構成により、曲げ加工するステップS3において、中立線Lから第1接続面13に向けて大きくなる圧縮応力に応じて、加工部分30の体積を減少させることができる。これにより、曲げ加工するステップS3による平角導体10の厚さのばらつきをより抑制できる。
(effect)
With such a configuration, in step S3 of bending, the volume of the processed portion 30 can be reduced in accordance with the compressive stress that increases from the neutral line L toward the first connection surface 13. Thereby, variations in the thickness of the rectangular conductor 10 due to bending step S3 can be further suppressed.
 また、厚さ方向Zに対して角度を有する方向から中立線Lに基づいて規定される部分20を押圧することにより、平角導体10に負荷される加工荷重を軽減させることができる。 Furthermore, by pressing the portion 20 defined based on the neutral line L from a direction having an angle to the thickness direction Z, the processing load applied to the rectangular conductor 10 can be reduced.
 <変形例2>
 また、図11Bに示すように、変形例2に係る加工部分230の厚さは、例えば、長さ方向Xにおける加工部分230の中央に向かうにしたがって薄くなる。例えば、第1加工面230aは、一端15から他端16に向かう長さ方向Xに対して傾斜する第1面230cと、他端16から一端15に向かう長さ方向Xに対して傾斜する第2面230dと、を含む。同様に、第2加工面230bは、一端15から他端16に向かう長さ方向Xに対して傾斜する第1面と、他端16から一端15に向かう長さ方向Xに対して傾斜する第2面と、を含む。
<Modification 2>
Further, as shown in FIG. 11B, the thickness of the processed portion 230 according to Modification 2 becomes thinner toward the center of the processed portion 230 in the length direction X, for example. For example, the first processed surface 230a includes a first surface 230c that is inclined with respect to the length direction X from one end 15 to the other end 16, and a first surface 230c that is inclined with respect to the length direction 2 sides 230d. Similarly, the second processed surface 230b includes a first surface that is inclined with respect to the length direction X from one end 15 to the other end 16, and a second surface that is inclined with respect to the length direction Contains 2 sides.
 さらに、加工部分230の厚さは、第1接続面13に近づくにしたがって薄くなっていてもよい。例えば、第1加工面230aの第1面230cと、第1加工面230aの第2面230dとは、長さ方向Xに対する傾斜に加えて、第2接続面14から第1接続面13に向かう幅方向Yに対して傾斜する面であってもよい。同様に、例えば、第2加工面230bの第1面と、第2加工面230bの第2面とは、長さ方向Xに対する傾斜に加えて、第2接続面14から第1接続面13に向かう幅方向Yに対して傾斜する面であってもよい。 Furthermore, the thickness of the processed portion 230 may become thinner as it approaches the first connection surface 13. For example, in addition to being inclined with respect to the length direction The surface may be inclined with respect to the width direction Y. Similarly, for example, the first surface of the second processed surface 230b and the second surface of the second processed surface 230b are inclined from the second connection surface 14 to the first connection surface 13 in addition to the inclination with respect to the length direction X. It may be a surface that is inclined with respect to the width direction Y.
 (効果)
 このような構成により、曲げ部分90の一方の端部90a及び他方の端部90bから、長さ方向Xaにおける曲げ部分90の中央に向けて大きくなる圧縮応力に応じて、加工部分30の体積を減少させることができる。これにより、曲げ加工するステップS3による平角導体10の厚さのばらつきをより抑制できる。
(effect)
With this configuration, the volume of the processed portion 30 is increased in accordance with the compressive stress that increases from one end 90a and the other end 90b of the bent portion 90 toward the center of the bent portion 90 in the length direction Xa. can be reduced. Thereby, variations in the thickness of the rectangular conductor 10 due to bending step S3 can be further suppressed.
 <変形例3>
 また、図11Cに示すように、変形例3に係る加工部分330の、厚さ方向Zから見た形状は、例えば、半円形状である。厚さ方向Zから見て、加工部分330の少なくとも一部は、中立線L近傍に位置する。加工部分330の少なくとも一部とは、厚さ方向Zから見た加工部分330の半円形状の外形輪郭線上の一点であってもよい。
<Modification 3>
Further, as shown in FIG. 11C, the shape of the processed portion 330 according to Modification Example 3 when viewed from the thickness direction Z is, for example, a semicircular shape. At least a portion of the processed portion 330 is located near the neutral line L when viewed from the thickness direction Z. At least a portion of the processed portion 330 may be one point on the semicircular outer contour of the processed portion 330 when viewed from the thickness direction Z.
 (効果)
 このような構成により、曲げ加工するステップS3により、曲げ加工するステップS3において、中立線Lから第1接続面13に向けて大きくなる圧縮応力に応じて、加工部分30の体積を減少させることができる。これにより、曲げ加工するステップS3による平角導体10の厚さのばらつきをより抑制できる。
(effect)
With such a configuration, the volume of the processed portion 30 can be reduced in accordance with the compressive stress that increases from the neutral line L toward the first connection surface 13 in the bending step S3. can. Thereby, variations in the thickness of the rectangular conductor 10 due to bending step S3 can be further suppressed.
 <変形例4>
 さらに、実施の形態に係る加工部分30の、厚さ方向Zから見た形状は、三角形であったが、これに限定されるものではない。図11Dに示すように、変形例4に係る加工部分430の、厚さ方向Zから見た形状は、例えば、台形である。厚さ方向Zから見た加工部分430の形状は、例えば、2つの頂点と、該2つの頂点を結ぶ辺とを、中立線L近傍に位置させる台形形状である。厚さ方向Zから見た加工部分430の形状は、第1接続面13に近づくにしたがって、長さ方向Xの幅が長くなる。
<Modification 4>
Furthermore, although the shape of the processed portion 30 according to the embodiment when viewed from the thickness direction Z is triangular, the shape is not limited to this. As shown in FIG. 11D, the shape of the processed portion 430 according to Modification 4 when viewed from the thickness direction Z is, for example, a trapezoid. The shape of the processed portion 430 viewed from the thickness direction Z is, for example, a trapezoid shape in which two vertices and a side connecting the two vertices are located near the neutral line L. In the shape of the processed portion 430 viewed from the thickness direction Z, the width in the length direction X becomes longer as it approaches the first connection surface 13.
 (効果)
 このような構成により、曲げの加工条件や平角導体10の素材状態等に応じて中立線Lの位置や圧縮応力の範囲に誤差が発生しても、曲げ加工するステップS3による平角導体10の厚さのばらつきをより抑制できる。
(effect)
With such a configuration, even if an error occurs in the position of the neutral line L or the range of compressive stress depending on the bending conditions, the material condition of the rectangular conductor 10, etc., the thickness of the rectangular conductor 10 in step S3 of bending can be adjusted. Variations in height can be further suppressed.
 本開示に係るコイル製造方法及びコイル製造装置により得られるコイルは、電家製品、自動車部品、日用品などの部品として適用可能である。 Coils obtained by the coil manufacturing method and coil manufacturing apparatus according to the present disclosure can be applied as parts for electrical appliances, automobile parts, daily necessities, and the like.
1 コイル
2 固定子コア
3 ティース
10 平角導体
11 第1主面
12 第2主面
13 第1接続面
14 第2接続面
15 一端
16 他端
20 平角導体の曲げ中立線に基づいて規定される部分(中立線に基づいて規定される部分)
21 第1頂点
22 第2頂点
23 第3頂点
24 周囲部分
30、130、230、330、430 加工部分
30a、130a、230a 第1加工面
30b、130b、230b 第2加工面
31、31a、31b 第1頂点
32、32a、32b 第2頂点
33、33a、33b 第3頂点
40 コイル製造装置
50 制御装置
60 加工装置
61 第1工具
62 第2工具
63 固定装置
70 曲げ加工装置
90 曲げ部分
90a 一方の端部
90b 他方の端部
91 一方の直線部分
92 他方の直線部分
230c 第1面
230d 第2面
d1 第1離隔距離
d2 第2離隔距離
L 平角導体の曲げの中立線(中立線)
T0、T1 厚さ
X1、X2、X3 幅
W 幅
1 Coil 2 Stator core 3 Teeth 10 Rectangular conductor 11 First principal surface 12 Second principal surface 13 First connection surface 14 Second connection surface 15 One end 16 Other end 20 Portion defined based on the bending neutral line of the rectangular conductor (The part defined based on the neutral line)
21 First vertex 22 Second vertex 23 Third vertex 24 Surrounding portion 30, 130, 230, 330, 430 Processing portion 30a, 130a, 230a First processing surface 30b, 130b, 230b Second processing surface 31, 31a, 31b 1 vertex 32, 32a, 32b 2nd vertex 33, 33a, 33b 3rd vertex 40 Coil manufacturing device 50 Control device 60 Processing device 61 1st tool 62 2nd tool 63 Fixing device 70 Bending device 90 Bending portion 90a One end Part 90b Other end 91 One straight part 92 Other straight part 230c First surface 230d Second surface d1 First separation distance d2 Second separation distance L Neutral line of bending of rectangular conductor (neutral line)
T0, T1 Thickness X1, X2, X3 Width W Width

Claims (18)

  1.  第1主面と、前記第1主面の反対に位置する第2主面と、前記第1主面及び前記第2主面を接続する第1接続面と、前記第1主面及び前記第2主面を接続し、前記第1接続面と反対に位置する第2接続面と、を有する平角導体を加工してコイルを製造するコイル製造方法であって、
     前記平角導体の曲げの中立線に基づいて規定される加工部分が前記加工部分以外の他の部分と比べて薄くなるように、前記加工部分を加工するステップと、
     前記第1接続面が前記平角導体の内側になるように、前記平角導体を曲げ加工するステップと、
    を含む、コイル製造方法。
    a first main surface, a second main surface located opposite to the first main surface, a first connection surface connecting the first main surface and the second main surface; A coil manufacturing method for manufacturing a coil by processing a rectangular conductor having two main surfaces connected to each other and a second connection surface located opposite to the first connection surface, the method comprising:
    processing the processed portion so that the processed portion defined based on the neutral line of bending of the rectangular conductor is thinner than other portions other than the processed portion;
    bending the rectangular conductor so that the first connection surface is inside the rectangular conductor;
    Coil manufacturing method, including:
  2.  前記平角導体の長さ方向に沿った前記加工部分の幅は、前記中立線近傍から前記第1接続面に近づくにしたがって広くなる、請求項1に記載のコイル製造方法。 The coil manufacturing method according to claim 1, wherein the width of the processed portion along the length direction of the rectangular conductor becomes wider as it approaches the first connection surface from near the neutral line.
  3.  前記加工部分の厚さは、前記中立線から前記第1接続面に近づくにしたがって薄くなる、請求項1又は2に記載のコイル製造方法。 The coil manufacturing method according to claim 1 or 2, wherein the thickness of the processed portion becomes thinner as it approaches the first connection surface from the neutral line.
  4.  前記加工するステップは、前記第1主面及び前記第2主面の両面から前記加工部分を加工する、請求項1から3のいずれか1項に記載のコイル製造方法。 The coil manufacturing method according to any one of claims 1 to 3, wherein in the processing step, the processing portion is processed from both the first main surface and the second main surface.
  5.  前記加工部分の厚さは、前記平角導体の長さ方向における前記加工部分の中央に向かうにしたがって薄くなる、請求項1から4のいずれか1項に記載のコイル製造方法。 The coil manufacturing method according to any one of claims 1 to 4, wherein the thickness of the processed portion becomes thinner toward the center of the processed portion in the length direction of the rectangular conductor.
  6.  前記平角導体の厚さ方向から見たときの前記加工部分の形状は、前記中立線近傍に位置する頂点を有する形状である、請求項1から5のいずれか1項に記載のコイル製造方法。 The coil manufacturing method according to any one of claims 1 to 5, wherein the shape of the processed portion when viewed from the thickness direction of the rectangular conductor is a shape having an apex located near the neutral line.
  7.  前記平角導体の厚さ方向から見たときの前記加工部分の形状は、三角形である、請求項6に記載のコイル製造方法。 The coil manufacturing method according to claim 6, wherein the processed portion has a triangular shape when viewed from the thickness direction of the rectangular conductor.
  8.  前記他の部分を前記平角導体の厚さ方向から固定するステップをさらに含む、請求項1から7のいずれか1項に記載のコイル製造方法。 The coil manufacturing method according to any one of claims 1 to 7, further comprising the step of fixing the other portion from the thickness direction of the rectangular conductor.
  9.  前記加工するステップは、前記加工部分を押圧加工する、請求項1から8のいずれか1項に記載のコイル製造方法。 The coil manufacturing method according to any one of claims 1 to 8, wherein in the processing step, the processing portion is press-processed.
  10.  第1主面と、前記第1主面の反対に位置する第2主面と、前記第1主面及び前記第2主面を接続する第1接続面と、前記第1主面及び前記第2主面を接続し、前記第1接続面と反対に位置する第2接続面と、を有する平角導体を加工してコイルを製造するコイル製造装置であって、
     前記平角導体の曲げの中立線に基づいて規定される加工部分が前記加工部分以外の他の部分と比べて薄くなるように、前記加工部分を加工する加工装置と、
     前記第1接続面が前記平角導体の内側になるように、前記平角導体を曲げ加工する曲げ加工装置と、
    を含む、コイル製造装置。
    a first main surface, a second main surface located opposite to the first main surface, a first connection surface connecting the first main surface and the second main surface; A coil manufacturing device for manufacturing a coil by processing a rectangular conductor having two main surfaces connected to each other and a second connection surface located opposite to the first connection surface,
    a processing device that processes the processed portion such that the processed portion defined based on the neutral line of bending of the rectangular conductor is thinner than other portions other than the processed portion;
    a bending device that bends the rectangular conductor so that the first connection surface is on the inside of the rectangular conductor;
    Coil manufacturing equipment, including:
  11.  前記平角導体の長さ方向に沿った前記加工部分の幅は、前記中立線近傍から前記第1接続面に近づくにしたがって広くなる、請求項10に記載のコイル製造装置。 11. The coil manufacturing apparatus according to claim 10, wherein the width of the processed portion along the length direction of the rectangular conductor increases as it approaches the first connection surface from near the neutral line.
  12.  前記加工部分の厚さは、前記中立線近傍から前記第1接続面に近づくにしたがって薄くなる、請求項10又は11に記載のコイル製造装置。 The coil manufacturing apparatus according to claim 10 or 11, wherein the thickness of the processed portion becomes thinner as it approaches the first connection surface from the vicinity of the neutral line.
  13.  前記加工装置は、前記第1主面及び前記第2主面の両面から前記加工部分を加工する、請求項10から12のいずれか1項に記載のコイル製造装置。 The coil manufacturing device according to any one of claims 10 to 12, wherein the processing device processes the processed portion from both the first main surface and the second main surface.
  14.  前記加工部分の厚さは、前記平角導体の長さ方向における前記加工部分の中央に向かうにしたがって薄くなる、請求項10から13のいずれか1項に記載のコイル製造装置。 The coil manufacturing device according to any one of claims 10 to 13, wherein the thickness of the processed portion becomes thinner toward the center of the processed portion in the length direction of the rectangular conductor.
  15.  前記平角導体の厚さ方向から見たときの前記加工部分の形状は、前記中立線近傍に位置する頂点を有する形状である、請求項10から14のいずれか1項に記載のコイル製造装置。 The coil manufacturing apparatus according to any one of claims 10 to 14, wherein the shape of the processed portion when viewed from the thickness direction of the rectangular conductor is a shape having an apex located near the neutral line.
  16.  前記平角導体の厚さ方向から見たときの前記加工部分の形状は、三角形である、請求項15に記載のコイル製造装置。 The coil manufacturing apparatus according to claim 15, wherein the processed portion has a triangular shape when viewed from the thickness direction of the rectangular conductor.
  17.  前記他の部分を前記平角導体の厚さ方向から固定する固定装置をさらに含む、請求項10から16のいずれか1項に記載のコイル製造装置。 The coil manufacturing apparatus according to any one of claims 10 to 16, further comprising a fixing device that fixes the other portion from the thickness direction of the rectangular conductor.
  18.  前記加工装置は、前記加工部分を押圧加工する、請求項10から17のいずれか1項に記載のコイル製造装置。 The coil manufacturing device according to any one of claims 10 to 17, wherein the processing device press-processes the processed portion.
PCT/JP2023/001557 2022-03-24 2023-01-19 Coil manufacturing method and coil manufacturing device WO2023181611A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-048918 2022-03-24
JP2022048918 2022-03-24

Publications (1)

Publication Number Publication Date
WO2023181611A1 true WO2023181611A1 (en) 2023-09-28

Family

ID=88100992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001557 WO2023181611A1 (en) 2022-03-24 2023-01-19 Coil manufacturing method and coil manufacturing device

Country Status (1)

Country Link
WO (1) WO2023181611A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036056A (en) * 2005-07-28 2007-02-08 Suncall Corp Edge-wise coil
JP2009148791A (en) * 2007-12-20 2009-07-09 Denso Corp Coil forming method and coil forming die

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007036056A (en) * 2005-07-28 2007-02-08 Suncall Corp Edge-wise coil
JP2009148791A (en) * 2007-12-20 2009-07-09 Denso Corp Coil forming method and coil forming die

Similar Documents

Publication Publication Date Title
JP5472057B2 (en) Stator winding winding method, stator winding winding device and stator winding manufacturing apparatus
JP3656733B2 (en) Stator for rotating electrical machine for vehicle and method for manufacturing the same
JP4932967B1 (en) Manufacturing method of spiral core for rotating electrical machine and manufacturing apparatus of spiral core for rotating electrical machine
WO2019177016A1 (en) Electric wire conductor, coated electric wire, wire harness, and electric wire conductor manufacturing method
JP2011147295A (en) Method of manufacturing stator for electric rotating machine
JP4577840B2 (en) Edgewise coil manufacturing method
US20050264123A1 (en) Stator of rotating electric machine and manufacturing method of the stator
JP5621263B2 (en) Stator winding manufacturing method and manufacturing apparatus thereof
WO2014002545A1 (en) Method for manufacturing linear conductor, and method for manufacturing rotating electrical machine
WO2023181611A1 (en) Coil manufacturing method and coil manufacturing device
WO2011039850A1 (en) Stator and method of manufacturing same
JP3379461B2 (en) Core member laminating mold apparatus, core member laminating method and electric motor
JP2007288983A (en) Stator and manufacturing method of the same
CN113223760A (en) Wiring member and method for manufacturing same
JP4616652B2 (en) Coil manufacturing equipment
JP5150952B2 (en) Manufacturing method of laminated iron core
JP4500654B2 (en) Method for manufacturing irregular cross-section coil
WO2021220322A1 (en) Stator coil and rotating electric machine stator
KR102544956B1 (en) Cheol Shim Kwon
EP4383284A1 (en) Core and method for producing core
US20130113333A1 (en) Multi-gap type electric rotating machine
JP7401842B1 (en) Laminated core, rotor and method for manufacturing laminated core
JP5896948B2 (en) Manufacturing method of laminated iron core of rotating electrical machine
JP2015149854A (en) Stator core of rotary electric machine
JP5674012B2 (en) Stator for rotating electric machine and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774212

Country of ref document: EP

Kind code of ref document: A1