WO2023181399A1 - Numerical control device - Google Patents

Numerical control device Download PDF

Info

Publication number
WO2023181399A1
WO2023181399A1 PCT/JP2022/014621 JP2022014621W WO2023181399A1 WO 2023181399 A1 WO2023181399 A1 WO 2023181399A1 JP 2022014621 W JP2022014621 W JP 2022014621W WO 2023181399 A1 WO2023181399 A1 WO 2023181399A1
Authority
WO
WIPO (PCT)
Prior art keywords
machining
power consumption
numerical control
machining program
control device
Prior art date
Application number
PCT/JP2022/014621
Other languages
French (fr)
Japanese (ja)
Inventor
八起 高嶋
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/014621 priority Critical patent/WO2023181399A1/en
Publication of WO2023181399A1 publication Critical patent/WO2023181399A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4155Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration

Definitions

  • the present invention relates to a numerical control device.
  • One aspect of the numerical control device of the present disclosure includes an input unit for inputting at least a machining program and a maximum allowable machining time of a machine tool that operates based on the machining program; a machining program simulation execution unit that simulates the operation of the machine tool; a PLC simulation execution unit that simulates the operation of at least one peripheral device arranged around the machine tool based on the machining program; a storage unit that stores predicted power consumption of each peripheral device as a device power consumption profile; and a processing program simulation execution unit and a PLC simulation execution unit that change machining parameters for each of the changed machining parameters.
  • a power-saving machining parameter calculation unit that calculates the machining parameter with the minimum power consumption and presents the calculated machining parameter.
  • power consumption of peripheral devices can be calculated with higher accuracy in simulation of a machining program, and machining conditions that maximize the power consumption reduction effect can be determined.
  • FIG. 1 is a functional block diagram showing an example of a functional configuration of a numerical control system according to an embodiment.
  • FIG. 3 is a diagram showing an example of a user interface for inputting a machining program and maximum allowable machining time.
  • FIG. 3 is a diagram illustrating an example of a device power consumption profile. It is a figure which shows an example of a speed command value when changing a process parameter.
  • FIG. 3 is a diagram illustrating an example of the relationship between machining time and power consumption according to changes in machining parameters.
  • FIG. 1 is a functional block diagram showing an example of the functional configuration of a numerical control system according to an embodiment.
  • the numerical control system 1 includes a virtual numerical control device 10 as a digital twin, a real numerical control device 20, and a power meter 30.
  • the virtual numerical control device 10, the real numerical control device 20, and the power measuring device 30 may be directly connected to each other via a connection interface (not shown). Furthermore, the virtual numerical control device 10 and the real numerical control device 20 may be connected to each other via a network (not shown) such as a LAN (Local Area Network) or the Internet. In this case, the virtual numerical control device 10 and the real numerical control device 20 are equipped with a communication section (not shown) for communicating with each other through such a connection. Note that, as described later, although the virtual numerical control device 10 and the real numerical control device 20 are different devices, they may be one numerical control device. Further, when the machine tool (not shown) controlled by the virtual numerical control device 10 and the real numerical control device 20 is a robot or the like, the virtual numerical control device 10 and the real numerical control device 20 may be a robot control device or the like.
  • the power measuring device 30 measures the power consumption of a spindle amplifier, feed shaft amplifier, etc. of a machine tool (not shown) controlled by a real numerical control device 20, which will be described later, and also measures power consumption by a PLC device 210 included in the real numerical control device 20.
  • the power consumption of peripheral devices such as controlled circulation pumps and cooling fans is measured.
  • the power measuring device 30 outputs the measured power consumption to the real numerical control device 20. Note that in FIG. 1, one power meter 30 is connected to the real numerical control device 20, but the present invention is not limited to this.
  • a plurality of power measuring instruments 30 may be arranged in peripheral devices (not shown) such as a spindle amplifier, a feed shaft amplifier, a circulation pump, a cooling fan, etc. of a machine tool (not shown), and may be connected to the real numerical control device 20.
  • the virtual numerical control device 10 is a known computer or the like. As will be described later, the virtual numerical control device 10 is, for example, an illustration in which the real numerical control device 20 executes the machining program while changing the machining parameters so that the machining time is less than or equal to the inputted machining program and the maximum allowable machining time. The operation of the machine tool and peripheral equipment (not shown) is simulated, and the predicted power consumption of the machine tool and peripheral equipment (not shown) is calculated for each machining parameter. The virtual numerical control device 10 outputs, to the real numerical control device 20, the machining parameter with the minimum power consumption among the power consumption calculated for each machining parameter.
  • the real numerical control device 20 can control machine tools and peripheral equipment (not shown) with minimum power consumption.
  • the virtual numerical control device 10 includes an input section 110, a control section 120, and a storage section 130.
  • the control unit 120 includes a PLC simulation execution unit 121, a machining program simulation execution unit 122, and a power saving machining parameter calculation unit 123.
  • the input unit 110 is, for example, a touch panel placed in front of a keyboard, a liquid crystal display, etc., and inputs a machining program and a maximum permissible machining time of a machine tool (not shown) that operates according to the machining program based on input operations by the user. Enter .
  • FIG. 2 is a diagram showing an example of a user interface for inputting a machining program and maximum allowable machining time.
  • the user interface includes an input field for inputting a machining program (NC program) to be executed, and an estimated fastest speed of a machine tool (not shown) based on the input machining program estimated by a machining program simulation execution unit 122 described later. It has a display field for machining time, an input field for inputting the maximum allowable machining time, etc.
  • the storage unit 130 is an SSD (Solid State Drive), an HDD (Hard Disk Drive), or the like.
  • the storage unit 130 stores a machining program 131, a device power consumption profile 132, and a machining parameter 133, as well as an operating system and application programs executed by the control unit 120.
  • the machining program 131 is, for example, a machining program input by the user via the user interface shown in FIG.
  • the device power consumption profile 132 is, for example, a file in which expected power consumption per unit time is recorded according to a control state (PLC signal state) of a peripheral device (not shown) by the real numerical control device 20 described later.
  • PLC signal state a control state of a peripheral device
  • FIG. 3 is a diagram illustrating an example of the device power consumption profile 132.
  • the device power consumption profile 132 has storage areas for "device name”, “device control state”, "expected power consumption”, and "power meter”.
  • the "device name” storage area in the device power consumption profile 132 stores, for example, device names such as "circulation pump” and "cooling fan.”
  • “Y31.0 TRUE”
  • "Y31.0 TRUE”
  • M_TEMP> 31
  • etc. are stored.
  • a circulating pump (not shown) connected to the output terminal Y31 is in a standby control state.
  • M_TEMP ⁇ 31 indicates the control state of the cooling fan (not shown) when the temperature is less than 31 degrees
  • the "expected power consumption” storage area in the device power consumption profile 132 stores the expected power consumption for each control state of the "device control state", for example, “1 kW", “0.2 kW”, “2 kW”, “3kW” etc. are stored.
  • "wattmeter” in the device power consumption profile 132 for example, "pom2-ch1", “NA”, etc., indicating the power measuring device 30 arranged for each peripheral device of "device name” are stored. Ru.
  • "pom2-ch1" is a combination of “pom2” indicating the power meter 30 placed in the circulation pump and "ch1" indicating one channel among the plurality of channels that the power meter 30 has. be.
  • the machining parameters 133 are, for example, parameters indicating machining conditions when the real numerical control device 20 (described later) executes the machining program 131.
  • the machining parameters 133 include, for example, an override parameter indicating the ratio when the rapid traverse speed specified in the machining program 131 is taken as 100%, and an acceleration/deceleration rate and acceleration/deceleration method for reaching the target speed. and acceleration/deceleration parameters indicating.
  • the control unit 120 includes a CPU, ROM, RAM, CMOS memory, etc., which are configured to be able to communicate with each other via a bus, which are well known to those skilled in the art.
  • the CPU is a processor that controls the virtual numerical control device 10 as a whole.
  • the CPU reads the system program and application program stored in the ROM via the bus, and controls the entire virtual numerical control device 10 according to the system program and application program.
  • the control section 120 is configured to realize the functions of the PLC simulation execution section 121, the machining program simulation execution section 122, and the power saving machining parameter calculation section 123.
  • Various data such as temporary calculation data and display data are stored in the RAM.
  • the CMOS memory is backed up by a battery (not shown) and is configured as a nonvolatile memory that maintains its storage state even when the virtual numerical control device 10 is powered off.
  • the PLC simulation execution unit 121 simulates the operation of peripheral equipment (not shown) based on the input machining program 131 using a known method. That is, the PLC simulation execution unit 121 simulates the control state (PLC signal state) for peripheral equipment (not shown) based on the machining program 131. Based on the device power consumption profile 132, the PLC simulation execution unit 121 predicts the power consumption of peripheral devices (not shown) by adding the expected power consumption according to the simulated control state (PLC signal state).
  • the machining program simulation execution unit 122 uses a known method (for example, Patent Document 2) to include feedback information of the drive unit of the machine tool (not shown) based on the input machining program 131 and machining parameters 133.
  • the operation of a machine tool (not shown) is simulated. That is, the machining program simulation execution unit 122 pseudo-calculates a torque value that the real numerical control device 20 (described later) outputs to a machine tool (not shown) in the simulation, and adjusts the consumption of the machine tool (not shown) based on the calculated torque value. Simulate power.
  • the power-saving machining parameter calculation unit 123 changes the machining parameters 133, causes the PLC simulation execution unit 121 and the machining program simulation execution unit 122 to execute the simulation for each changed machining parameter 133, and causes the PLC simulation execution unit 121 and the machining program to execute the simulation.
  • the power consumption is predicted based on the simulation result of the program simulation execution unit 122 and the device power consumption profile 132, and in addition, the machining parameter 133 of the power consumption that is the minimum among the predicted power consumption that is less than or equal to the maximum allowable machining time is calculated, and the calculated machining parameters 133 are presented.
  • the power-saving machining parameter calculation unit 123 calculates machining parameters 133 (which are trial machining conditions) in order to calculate conditions that minimize power consumption when operating a machine tool (not shown) based on a machining program. For example, override parameters, acceleration/deceleration parameters, etc.) are searched for using Bayesian optimization, genetic algorithms, etc. Note that if the predicted power consumption value increases significantly from the predicted value at the start, the search for the optimal machining parameters 133 may be discontinued.
  • FIG. 4 is a diagram showing an example of the speed command value when the machining parameter 133 is changed.
  • the solid line shows the speed command value as it is in the machining program 131 input without changing the machining parameter 133
  • the broken line shows the speed command value when the machining parameter 133 is changed. That is, as shown in FIG. 4, the speed command value when the machining parameter 133 is changed accelerates gently and reaches a lower speed than the speed command value when the machining program 131 is unchanged.
  • the power-saving machining parameter calculation unit 123 causes the PLC simulation execution unit 121 and the machining program simulation execution unit 122 to execute a simulation for each changed machining parameter 133, and predicts machining time T cur and power consumption P cur . .
  • the power-saving machining parameter calculation unit 123 calculates the machining time and power consumption predicted by the simulation of the PLC simulation execution unit 121 and the machining program simulation execution unit 122 using the input machining program 131 without changing the machining parameters 133. , machining time T min and power consumption P std .
  • FIG. 5 is a diagram illustrating an example of the relationship between machining time T cur and power consumption P cur depending on changes in machining parameter 133.
  • the power saving machining parameter calculation unit 123 calculates the input power consumption P cur predicted by the simulation of the PLC simulation execution unit 121 and the machining program simulation execution unit 122 for each changed machining parameter 133.
  • the machining parameter 133 that provides the minimum power consumption P min within the maximum allowable machining time T max is calculated (selected).
  • the power-saving machining parameter calculation unit 123 displays the calculated (selected) machining parameters 133 (machining conditions) and machining time T cur on a display unit (not shown) such as a liquid crystal display included in the virtual numerical control device 10. Display and present to the user.
  • FIG. 6 is a diagram illustrating an example of a user interface that presents minimum power consumption processing.
  • the user interface includes a display field that displays the machining time T cur (machining time when power consumption reduction is applied) when the minimum power consumption P min is reached, and the presented machining parameter 133 (power consumption It has a selection field etc. for selecting whether to apply the reduction parameter).
  • the user interface may include a display column showing how much power consumption can be reduced by applying the presented processing parameters 133.
  • the power-saving machining parameter calculation unit 123 receives an input as to whether or not to apply the machining parameters 133 presented by the user via the user interface of FIG. Output to 20.
  • the real numerical control device 20 is a numerical control device known to those skilled in the art, and generates commands based on a machining program 231 and machining parameters 233, which will be described later, and transmits the generated commands to a machine tool and peripheral equipment (not shown). Thereby, the real numerical control device 20 controls the operation of the machine tool and peripheral equipment (not shown). As shown in FIG. 1, the real numerical control device 20 includes a PLC device 210, a control section 220, and a storage section 230. The control unit 220 includes a machining program execution unit 221.
  • the storage unit 230 is a storage unit such as an SSD or an HDD.
  • the storage unit 230 stores a processing program 231, device power consumption measurement results 232, and processing parameters 233, as well as an operating system and application programs executed by the control unit 220, which will be described later.
  • the machining program 231 is the machining program 131 input via the input unit 110 of the virtual numerical control device 10.
  • the device power consumption measurement result 232 includes the control state of the PLC device 210 when the peripheral device (not shown) operates based on the control of the PLC device 210, which will be described later, and the power consumption of the peripheral device (not shown) measured by the power meter 30. are files stored in association with each other.
  • the virtual numerical control device 10 acquires the device power consumption measurement result 232, compares the device power consumption profile 132 with the acquired device power consumption measurement result 232, and compares the device power consumption profile 132 with the device power consumption measurement result 232.
  • the device power consumption profile 132 may be corrected by using the difference (deviation amount) from the power consumption measurement result 232 as an error amount.
  • the virtual numerical control device 10 can more accurately calculate the machining parameters 133 that minimize power consumption.
  • the machining parameters 233 are the machining conditions acquired from the virtual numerical control device 10, that is, the machining parameters 133 to which power consumption reduction is applied (or not applied).
  • the PLC device 210 is a PLC well known to those skilled in the art, and controls the operation of peripheral devices (not shown) based on a machining program 231. Further, the PLC device 210 receives from the power meter 30 the power consumption of a peripheral device (not shown) measured by the power meter 30 as the peripheral device (not shown) operates, and determines the control state of the PLC device 210 based on the received power consumption.
  • the device power consumption measurement result 232 is stored in association with the device power consumption measurement result 232.
  • the control unit 220 includes a CPU, ROM, RAM, CMOS memory, etc., which are configured to be able to communicate with each other via a bus, which are well known to those skilled in the art.
  • the CPU is a processor that controls the real numerical control device 20 as a whole.
  • the CPU reads the system program and application program stored in the ROM via the bus, and controls the entire real numerical control device 20 according to the system program and application program.
  • the control section 220 is configured to realize the functions of the machining program execution section 221.
  • the machining program execution unit 221 controls the operation of a machine tool (not shown) based on the machining program 231 and machining parameters 233.
  • FIG. 7 is a flowchart illustrating processing parameter determination processing of the virtual numerical control device 10. The flow shown here is repeatedly executed every time the machining program 131 and maximum allowable machining time are input.
  • step S1 the input unit 110 inputs the machining program 131 via the user interface of FIG. 2 based on the user's input operation.
  • step S2 the input unit 110 inputs the maximum allowable machining time T max via the user interface of FIG. 2 based on the user's input operation.
  • step S3 the machining program simulation execution unit 122 executes a simulation of the operation of the machine tool (not shown) based on the machining program 131 input in step S1 and the machining parameters 133 that have not been changed. Furthermore, the PLC simulation execution unit 121 executes a simulation of the operation of a peripheral device (not shown) based on the machining program 131 input in step S1.
  • step S4 the machining program simulation execution unit 122 obtains a machining time T std of a machine tool (not shown).
  • step S5 the machining program simulation execution unit 122 calculates machining power consumption of a machine tool (not shown). Furthermore, the PLC simulation execution unit 121 calculates the power consumption of peripheral devices (not shown) by adding the expected power consumption according to the simulated control state (PLC signal state) based on the device power consumption profile 132.
  • step S6 the power-saving machining parameter calculation unit 123 adds together the machining power consumption of the machine tool (not shown) calculated in step S5 and the power consumption of the peripheral equipment (not shown) to obtain power consumption P std .
  • step S7 the power saving machining parameter calculation unit 123 holds the power consumption P std when the machining parameter 133 acquired in step S6 is not changed as the power consumption P min .
  • step S8 the power-saving machining parameter calculation unit 123 searches and determines the machining parameters 133, which are trial machining conditions, by Bayesian optimization, genetic algorithm, or the like.
  • step S9 the machining program simulation execution unit 122 executes a simulation of the operation of the machine tool (not shown) based on the machining program 131 input in step S1 and the machining parameters 133 retrieved (determined) in step S8. Furthermore, the PLC simulation execution unit 121 executes a simulation of the operation of a peripheral device (not shown) based on the machining program 131 input in step S1.
  • step S10 the machining program simulation execution unit 122 obtains a machining time T cur of a machine tool (not shown).
  • step S11 the machining program simulation execution unit 122 calculates the machining power consumption of a machine tool (not shown), and the PLC simulation execution unit 121 adjusts the simulated control state (PLC signal state) based on the device power consumption profile 132.
  • the power consumption of peripheral devices (not shown) is calculated by adding the corresponding expected power consumption.
  • step S12 the power-saving machining parameter calculation unit 123 adds the machining power consumption of the machine tool (not shown) calculated in step S11 and the power consumption of the peripheral equipment (not shown) to obtain power consumption P cur .
  • step S13 the power-saving machining parameter calculation unit 123 determines whether the machining time T cur calculated in step S10 is larger than the maximum allowable machining time T max . If the machining time T cur is larger than the maximum allowable machining time T max , the power-saving machining parameter calculation unit 123 ends the machining parameter determination process and calculates the minimum power consumption P min held in step S15, which will be described later. Calculate (select) machining parameters 133. As shown in FIG. 6, the power-saving machining parameter calculation unit 123 displays the calculated (selected) machining parameters 133 (machining conditions) and machining time T cur on the display unit (not shown) of the virtual numerical control device 10. and present it to the user. On the other hand, if the machining time T cur is less than or equal to the maximum allowable machining time T max , the process proceeds to step S14.
  • step S14 the power saving machining parameter calculation unit 123 determines whether the minimum power consumption P min so far is larger than the power consumption P cur obtained in step S12. If the minimum power consumption P min is greater than the power consumption P cur , the process proceeds to step S15. On the other hand, if the minimum power consumption P min is less than or equal to the power consumption P cur , the process returns to step S8.
  • step S15 the power saving machining parameter calculation unit 123 holds the power consumption P cur acquired in step S12 as the minimum power consumption P min . The process then returns to step S8.
  • FIG. 8 is a flowchart illustrating processing processing of the numerical control system 1. The flow shown here is repeatedly executed every time the machining program 131 is input.
  • step S20 after the machining parameter determination process shown in FIG. 233).
  • step S21 the real numerical control device 20 (machining program execution unit 221 and PLC device 210) executes the machining program 231 based on the machining parameters 233 acquired in step S20, and operates the machine tool and peripheral equipment (not shown). , perform processing.
  • step S22 the virtual numerical control device 10 performs power measurement processing via the real numerical control device 20 and corrects the device power consumption profile 132. Note that the detailed flow of the power measurement process will be described later. Furthermore, the processing in step S21 and the processing in step S22 may be executed in parallel or may be processed in chronological order.
  • FIG. 9 is a flowchart illustrating detailed processing contents of the power measurement process shown in step S22 in FIG.
  • step S221 the virtual numerical control device 10 (power-saving processing parameter calculation unit 123) obtains the device power consumption measurement result 232 from the real numerical control device 20.
  • step S222 the virtual numerical control device 10 (power saving processing parameter calculation unit 123) takes measures in the device power consumption profile 132 based on the wattmeter of the power meter 30 indicated by the device power consumption measurement result 232 acquired in step S221. Search for peripheral devices.
  • step S223 the virtual numerical control device 10 (power-saving processing parameter calculation unit 123) acquires the control state (IO) of the PLC device 210 indicated by the device power consumption measurement result 232.
  • step S224 the virtual numerical control device 10 (power saving processing parameter calculation unit 123) calculates the expected power consumption of the device power consumption profile 132 corresponding to the control state obtained in step S223 in the peripheral device searched in step S222, An error amount that is a difference (deviation) from the actual power consumption indicated by the device power consumption measurement result 232 is calculated.
  • step S225 the virtual numerical control device 10 (power-saving processing parameter calculation unit 123) switches the peripheral device from which power is to be obtained.
  • step S226 the virtual numerical control device 10 (power-saving machining parameter calculation unit 123) determines whether machining of the machine tool (not shown) by the real numerical control device 20 has been completed. If the machining is completed, the process advances to step S227. On the other hand, if the machining is not completed, the process returns to step S221. That is, the virtual numerical control device 10 (power-saving machining parameter calculation unit 123) repeatedly monitors power consumption while the machining program 231 is being executed, and calculates the amount of error between the control state of each peripheral device and the expected power consumption. get.
  • step S227 the virtual numerical control device 10 (power-saving processing parameter calculation unit 123) corrects the expected power consumption of the device power consumption profile 132 based on the error amount calculated in step S224 for each peripheral device.
  • the virtual numerical control device 10 may reflect the results of a moving average filter or coefficient calculation at this time.
  • the virtual numerical control device 10 calculates the power consumption P cur of the machine tool and peripheral equipment (not shown) based on the machining program 131 for each changed machining parameter 133,
  • the machining parameter 133 at which the power consumption P min is the minimum among cur is calculated (selected), and the calculated (selected) machining parameter 133 and machining time T cur are displayed on the display section (not shown) of the virtual numerical control device 10. ) and present it to the user.
  • the virtual numerical control device 10 can more accurately calculate the power consumption of peripheral devices in the simulation of the machining program 131, and can determine machining conditions that maximize the power consumption reduction effect.
  • the virtual numerical control device 10 searches for the optimal machining parameters 133 according to the production volume plan by repeatedly executing simulations, the user (NC program creator, production planner, etc.) is burdened with adjusting the machining parameters. can be reduced.
  • the virtual numerical control device 10 is not limited to the above-described embodiment, and includes modifications, improvements, etc. within a range that can achieve the purpose.
  • the virtual numerical control device 10 and the real numerical control device 20 are different devices from each other, but they may be one numerical control device. Furthermore, the virtual numerical control device 10 and the real numerical control device 20 may be included in a machine tool (not shown).
  • each function included in the virtual numerical control device 10 in one embodiment can be realized by hardware, software, or a combination thereof.
  • being realized by software means being realized by a computer reading and executing a program.
  • Non-transitory computer-readable media include various types of tangible storage media. Examples of non-transitory computer-readable media are magnetic recording media (e.g., flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (e.g., magneto-optical disks), CD-ROMs (Read Only Memory), CD-ROMs, R, CD-R/W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM).
  • the program may also be provided to the computer on various types of transitory computer readable media. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can provide the program to the computer via wired communication channels such as electrical wires and optical fibers, or via wireless communication channels.
  • the step of writing a program to be recorded on a recording medium includes not only processes that are performed in chronological order, but also processes that are not necessarily performed in chronological order but are executed in parallel or individually. It also includes.
  • the numerical control device of the present disclosure can take various embodiments having the following configurations.
  • the virtual numerical control device 10 of the present disclosure includes an input unit 110 for inputting at least a machining program 131 and a maximum permissible machining time of a machine tool that operates based on the machining program 131; A machining program simulation execution unit 122 that simulates the operation of the machine tool based on the machining program 131, a PLC simulation execution unit 121 that simulates the operation of at least one peripheral device arranged around the machine tool based on the machining program 131, and peripheral device control.
  • a storage unit 130 stores predicted power consumption of each peripheral device according to the state as a device power consumption profile 132, a machining program simulation execution unit 122 and a machining program simulation execution unit 122 for changing machining parameters 133 and
  • the PLC simulation execution unit 121 executes the simulation, and the power consumption is predicted based on the simulation results of the machining program simulation execution unit 122 and the PLC simulation execution unit 121, the maximum allowable machining time, and the device power consumption profile 132. It includes a power-saving machining parameter calculation unit 123 that calculates a machining parameter 133 that consumes the least amount of power and presents the calculated machining parameter 133.
  • this virtual numerical control device 10 it is possible to more accurately calculate the power consumption of peripheral devices in the simulation of a machining program, and to determine the machining conditions that maximize the power consumption reduction effect.
  • the power consumption of the device power consumption profile 132 is calculated based on the calculated machining parameters 133 and the machining program 131 when the peripheral devices are actually operated. It may be corrected based on the difference from the measured power consumption. By doing so, the virtual numerical control device 10 can predict power consumption of peripheral devices with higher accuracy.
  • the processing parameters 133 may include at least an override parameter and an acceleration/deceleration parameter. By doing so, the virtual numerical control device 10 can easily change the processing conditions.

Abstract

The present invention makes it possible to more accurately calculate the power consumption of a peripheral device in simulation of a machining program, and derive a machining condition that maximizes a power consumption reduction effect. This numerical control device comprises: an input unit for inputting a machining program and a maximum allowable machining time; a machining program simulation execution unit for simulating the operation of a machine tool on the basis of the machining program; a PLC simulation execution unit for simulating the operation of a peripheral device on the basis of the machining program; a storage unit for storing, as a device power consumption profile, the power consumption by each peripheral device according to the control state of the peripheral device; and a power-saving machining parameter calculation unit for varying a machining parameter and causing the machining program simulation execution unit and the PLC simulation execution unit to execute simulations for each machining parameter, predicting power consumption on the basis of the simulation results, the maximum allowable machining time and the device power consumption profile, and calculating and presenting the machining parameter with the minimum power consumption.

Description

数値制御装置numerical control device
 本発明は、数値制御装置に関する。 The present invention relates to a numerical control device.
 SDGsへの関心の高まりに伴い、工作機械の切削加工における消費電力削減に対する需要が増加している。
 消費電力を削減するために、機械設計の改良(例えば、移動物の重量の低減等)、待機時の省電力化、製造ラインの電力監視によるピーク電力消費削減の生産計画の立案や、工作機械単体での精度安定・省電力化両立の実現等が行われている。
 この点、加工プログラムの運転に先立って、工作機械の工作機械情報、補助動作機器の補助動作情報、ワーク情報、及びこれから運転する加工プログラムを含む加工情報を学習済みモデルに入力することで、加工プログラム運転時の総消費電力量、及び加工プログラム運転時の各ブロックの消費電力を含む消費電力情報を取得し、加工プログラム運転時の総消費電力量、及び加工プログラム運転時の各ブロックの消費電力を予測する技術が知られている。例えば、特許文献1参照。
 また、周辺機器を含めた工作機械全体における消費電力量を低減させることが可能な消費電力量低減機能を備えた工作機械の制御装置の技術が知られている。例えば、特許文献2参照。
With increasing interest in SDGs, there is an increasing demand for reducing power consumption in cutting processing of machine tools.
In order to reduce power consumption, improvements to machine design (for example, reducing the weight of moving objects, etc.), power saving during standby, production planning to reduce peak power consumption by monitoring power on the production line, and improvement of machine tools. Efforts are being made to achieve both stable accuracy and power savings on a single unit.
In this regard, prior to running the machining program, machining information including machine tool information of the machine tool, auxiliary motion information of auxiliary motion equipment, work information, and machining information including the machining program to be run from now on can be input into the learned model. Obtain power consumption information including the total power consumption during program operation and the power consumption of each block during machining program operation, and calculate the total power consumption during program operation and the power consumption of each block during machining program operation. Techniques for predicting are known. For example, see Patent Document 1.
Further, there is known a technology for a control device for a machine tool that has a power consumption reduction function that can reduce the power consumption of the entire machine tool including peripheral devices. For example, see Patent Document 2.
特開2021-86405号公報JP 2021-86405 Publication 特開2010-240800号公報Japanese Patent Application Publication No. 2010-240800
 最大の生産量実現(サイクルタイム短縮)のため1秒でも加工時間を短縮できるように加工プログラムが作成され、実行時にはアイドルタイム(加工以外の時間)を短縮するように早送りといった高速化処理が実行される。一般的にはサイクルタイムが短いほど消費電力は少なくなると考えられるため、サイクルタイムを短縮することが省電力にもつながる。
 しかしながら、切削主軸、送り軸の過度な加減速及び高速移動はサイクルタイムを短縮する一方で電力を多く消費する場合もある。また、生産現場の技術者による加工条件の調整は煩雑で困難である。
 また、特許文献1、2では、加工プログラムの消費電力を見積もっているが、実加工を伴わないシミュレーション上では周辺装置の消費電力を一定の値にする等、周辺機器の消費電力の考慮が不足している。
In order to achieve maximum production volume (shorten cycle time), machining programs are created to shorten machining time by even one second, and when executed, high-speed processing such as rapid forwarding is executed to shorten idle time (time other than machining). be done. Generally, it is thought that the shorter the cycle time, the lower the power consumption, so shortening the cycle time also leads to power savings.
However, excessive acceleration/deceleration and high-speed movement of the cutting spindle and feed axis may shorten the cycle time, but may also consume a large amount of power. Furthermore, adjustment of processing conditions by engineers at the production site is complicated and difficult.
In addition, although Patent Documents 1 and 2 estimate the power consumption of a machining program, in simulations that do not involve actual machining, there is insufficient consideration of the power consumption of peripheral devices, such as setting the power consumption of peripheral devices to a constant value. are doing.
 そこで、加工プログラムのシミュレーションにおいて周辺装置の電力消費をより精度良く算出し、消費電力削減効果を最大化する加工条件を求めることが望まれている。 Therefore, it is desired to calculate the power consumption of peripheral devices more accurately in simulation of a machining program and find machining conditions that maximize the power consumption reduction effect.
 本開示の数値制御装置の一態様は、少なくとも加工プログラムと前記加工プログラムに基づいて動作する工作機械の許容可能な最大許容加工時間とを入力する入力部と、前記加工プログラムに基づいて前記工作機械の動作をシミュレーションする加工プログラムシミュレーション実行部と、前記加工プログラムに基づいて前記工作機械周辺に配置された少なくとも1つの周辺機器の動作をシミュレーションするPLCシミュレーション実行部と、前記周辺機器の制御状態に応じて予測される前記周辺機器毎の消費電力を装置電力消費プロファイルとして記憶する記憶部と、加工パラメータを変化させて、変化させた前記加工パラメータ毎に前記加工プログラムシミュレーション実行部及び前記PLCシミュレーション実行部にシミュレーションを実行させ、前記加工プログラムシミュレーション実行部及び前記PLCシミュレーション実行部のシミュレーション結果と前記最大許容加工時間と前記装置電力消費プロファイルとに基づいて消費電力を予測し、予測した前記消費電力のうち最小となる消費電力の前記加工パラメータを算出し、算出された前記加工パラメータを提示する省電力加工パラメータ算出部と、を備える。 One aspect of the numerical control device of the present disclosure includes an input unit for inputting at least a machining program and a maximum allowable machining time of a machine tool that operates based on the machining program; a machining program simulation execution unit that simulates the operation of the machine tool; a PLC simulation execution unit that simulates the operation of at least one peripheral device arranged around the machine tool based on the machining program; a storage unit that stores predicted power consumption of each peripheral device as a device power consumption profile; and a processing program simulation execution unit and a PLC simulation execution unit that change machining parameters for each of the changed machining parameters. to predict the power consumption based on the simulation results of the machining program simulation execution unit and the PLC simulation execution unit, the maximum allowable machining time, and the device power consumption profile, and out of the predicted power consumption. A power-saving machining parameter calculation unit that calculates the machining parameter with the minimum power consumption and presents the calculated machining parameter.
 一態様によれば、加工プログラムのシミュレーションにおいて周辺装置の電力消費をより精度良く算出し、消費電力削減効果を最大化する加工条件を求めることができる。 According to one aspect, power consumption of peripheral devices can be calculated with higher accuracy in simulation of a machining program, and machining conditions that maximize the power consumption reduction effect can be determined.
一実施形態に係る数値制御システムの機能的構成例を示す機能ブロック図である。FIG. 1 is a functional block diagram showing an example of a functional configuration of a numerical control system according to an embodiment. 加工プログラム及び最大許容加工時間を入力するユーザインタフェースの一例を示す図である。FIG. 3 is a diagram showing an example of a user interface for inputting a machining program and maximum allowable machining time. 装置電力消費プロファイルの一例を示す図である。FIG. 3 is a diagram illustrating an example of a device power consumption profile. 加工パラメータを変化させた場合の速度指令値の一例を示す図である。It is a figure which shows an example of a speed command value when changing a process parameter. 加工パラメータの変化に応じた加工時間と消費電力との関係の一例を示す図である。FIG. 3 is a diagram illustrating an example of the relationship between machining time and power consumption according to changes in machining parameters. 消費電力最小加工を提示するユーザインタフェースの一例を示す図である。FIG. 3 is a diagram illustrating an example of a user interface that presents minimum power consumption processing. 仮想数値制御装置の加工パラメータ決定処理について説明するフローチャートである。It is a flowchart explaining processing parameter determination processing of a virtual numerical control device. 数値制御システムの加工処理について説明するフローチャートである。It is a flowchart explaining processing processing of a numerical control system. 図8においてステップS22で示した電力計測処理の詳細な処理内容を説明するフローチャートである。9 is a flowchart illustrating detailed processing contents of the power measurement process shown in step S22 in FIG. 8.
 以下、本開示の一実施形態について、図面を用いて説明する。
<一実施形態>
 図1は、一実施形態に係る数値制御システムの機能的構成例を示す機能ブロック図である。
 図1に示すように、数値制御システム1は、デジタルツインとしての仮想数値制御装置10、リアル数値制御装置20、及び電力計測器30を有する。
An embodiment of the present disclosure will be described below with reference to the drawings.
<One embodiment>
FIG. 1 is a functional block diagram showing an example of the functional configuration of a numerical control system according to an embodiment.
As shown in FIG. 1, the numerical control system 1 includes a virtual numerical control device 10 as a digital twin, a real numerical control device 20, and a power meter 30.
 仮想数値制御装置10、リアル数値制御装置20、及び電力計測器30は、図示しない接続インタフェースを介して互いに直接接続されてもよい。また、仮想数値制御装置10、及びリアル数値制御装置20は、LAN(Local Area Network)やインターネット等の図示しないネットワークを介して相互に接続されていてもよい。この場合、仮想数値制御装置10、及びリアル数値制御装置20は、かかる接続によって相互に通信を行うための図示しない通信部を備えている。
 なお、後述するように、仮想数値制御装置10と、リアル数値制御装置20とは、異なる装置としたが、1つの数値制御装置であってもよい。また、仮想数値制御装置10、及びリアル数値制御装置20が制御する図示しない工作機械がロボット等の場合、仮想数値制御装置10、及びリアル数値制御装置20は、ロボット制御装置等でもよい。
The virtual numerical control device 10, the real numerical control device 20, and the power measuring device 30 may be directly connected to each other via a connection interface (not shown). Furthermore, the virtual numerical control device 10 and the real numerical control device 20 may be connected to each other via a network (not shown) such as a LAN (Local Area Network) or the Internet. In this case, the virtual numerical control device 10 and the real numerical control device 20 are equipped with a communication section (not shown) for communicating with each other through such a connection.
Note that, as described later, although the virtual numerical control device 10 and the real numerical control device 20 are different devices, they may be one numerical control device. Further, when the machine tool (not shown) controlled by the virtual numerical control device 10 and the real numerical control device 20 is a robot or the like, the virtual numerical control device 10 and the real numerical control device 20 may be a robot control device or the like.
<電力計測器30>
 電力計測器30は、後述するリアル数値制御装置20が制御する工作機械(図示しない)の主軸アンプや送り軸アンプ等の消費電力を計測したり、リアル数値制御装置20に含まれるPLC装置210により制御される循環ポンプや冷却ファン等の周辺機器(図示しない)の消費電力を計測したりする。電力計測器30は、計測した消費電力をリアル数値制御装置20に出力する。
 なお、図1では、1つの電力計測器30がリアル数値制御装置20に接続されるが、これに限定されない。複数の電力計測器30が、図示しない工作機械の主軸アンプや送り軸アンプ、循環ポンプや冷却ファン等の図示しない周辺機器それぞれに配置され、リアル数値制御装置20に接続されてもよい。
<Power meter 30>
The power measuring device 30 measures the power consumption of a spindle amplifier, feed shaft amplifier, etc. of a machine tool (not shown) controlled by a real numerical control device 20, which will be described later, and also measures power consumption by a PLC device 210 included in the real numerical control device 20. The power consumption of peripheral devices (not shown) such as controlled circulation pumps and cooling fans is measured. The power measuring device 30 outputs the measured power consumption to the real numerical control device 20.
Note that in FIG. 1, one power meter 30 is connected to the real numerical control device 20, but the present invention is not limited to this. A plurality of power measuring instruments 30 may be arranged in peripheral devices (not shown) such as a spindle amplifier, a feed shaft amplifier, a circulation pump, a cooling fan, etc. of a machine tool (not shown), and may be connected to the real numerical control device 20.
<仮想数値制御装置10>
 仮想数値制御装置10は、公知のコンピュータ等である。仮想数値制御装置10は、後述するように、例えば、入力された加工プログラム及び最大許容加工時間以下になるように、加工パラメータを変更しながらリアル数値制御装置20が加工プログラムを実行した場合の図示しない工作機械及び周辺機器の動作をシミュレーションし、加工パラメータ毎に図示しない工作機械及び周辺機器において予測される消費電力を算出する。仮想数値制御装置10は、加工パラメータ毎に算出した消費電力のうち消費電力が最小となる加工パラメータを、リアル数値制御装置20に出力する。これにより、リアル数値制御装置20は、図示しない工作機械及び周辺機器を最小の消費電力で制御することができる。
 図1に示すように、仮想数値制御装置10は、入力部110、制御部120、及び記憶部130を含む。また、制御部120は、PLCシミュレーション実行部121、加工プログラムシミュレーション実行部122、及び省電力加工パラメータ算出部123を含む。
<Virtual numerical control device 10>
The virtual numerical control device 10 is a known computer or the like. As will be described later, the virtual numerical control device 10 is, for example, an illustration in which the real numerical control device 20 executes the machining program while changing the machining parameters so that the machining time is less than or equal to the inputted machining program and the maximum allowable machining time. The operation of the machine tool and peripheral equipment (not shown) is simulated, and the predicted power consumption of the machine tool and peripheral equipment (not shown) is calculated for each machining parameter. The virtual numerical control device 10 outputs, to the real numerical control device 20, the machining parameter with the minimum power consumption among the power consumption calculated for each machining parameter. Thereby, the real numerical control device 20 can control machine tools and peripheral equipment (not shown) with minimum power consumption.
As shown in FIG. 1, the virtual numerical control device 10 includes an input section 110, a control section 120, and a storage section 130. Further, the control unit 120 includes a PLC simulation execution unit 121, a machining program simulation execution unit 122, and a power saving machining parameter calculation unit 123.
<入力部110>
 入力部110は、例えば、キーボードや液晶ディスプレイ等の前面に配置されるタッチパネル等であり、ユーザによる入力操作に基づいて加工プログラムと加工プログラムにより動作する図示しない工作機械の許容可能な最大許容加工時間とを入力する。
 図2は、加工プログラム及び最大許容加工時間を入力するユーザインタフェースの一例を示す図である。
 図2に示すように、ユーザインタフェースは、実行する加工プログラム(NCプログラム)を入力する入力欄、後述する加工プログラムシミュレーション実行部122により推定された入力された加工プログラムによる図示しない工作機械の推定最速加工時間の表示欄、及び最大許容加工時間を入力する入力欄等を有する。
<Input section 110>
The input unit 110 is, for example, a touch panel placed in front of a keyboard, a liquid crystal display, etc., and inputs a machining program and a maximum permissible machining time of a machine tool (not shown) that operates according to the machining program based on input operations by the user. Enter .
FIG. 2 is a diagram showing an example of a user interface for inputting a machining program and maximum allowable machining time.
As shown in FIG. 2, the user interface includes an input field for inputting a machining program (NC program) to be executed, and an estimated fastest speed of a machine tool (not shown) based on the input machining program estimated by a machining program simulation execution unit 122 described later. It has a display field for machining time, an input field for inputting the maximum allowable machining time, etc.
<記憶部130>
 記憶部130は、SSD(Solid State Drive)やHDD(Hard Disk Drive)等である。記憶部130には、制御部120が実行するオペレーティングシステム及びアプリケーションプログラム等とともに、加工プログラム131、装置電力消費プロファイル132、及び加工パラメータ133が記憶される。
 加工プログラム131は、例えば、図2のユーザインタフェースを介してユーザにより入力された加工プログラムである。
<Storage unit 130>
The storage unit 130 is an SSD (Solid State Drive), an HDD (Hard Disk Drive), or the like. The storage unit 130 stores a machining program 131, a device power consumption profile 132, and a machining parameter 133, as well as an operating system and application programs executed by the control unit 120.
The machining program 131 is, for example, a machining program input by the user via the user interface shown in FIG.
 装置電力消費プロファイル132は、例えば、後述するリアル数値制御装置20による図示しない周辺機器に対する制御状態(PLC信号状態)に応じた単位時間当たりの予想消費電力が記録されたファイルである。
 すなわち、特許文献1のように、数値制御装置のシミュレーションではワーク切削ブロック・非切削ブロックに伴う切削主軸及び送り軸の軸制御の消費電力の予測は可能であったが、循環ポンプや冷却ファン等の周辺機器が消費する電力の算出は困難であった。
 そこで、本実施形態ではそれらの周辺機器稼働時の消費電力を装置電力消費プロファイル132として周辺機器の制御状態(PLC信号状態)に応じた予想消費電力を記憶部130に保持する。
The device power consumption profile 132 is, for example, a file in which expected power consumption per unit time is recorded according to a control state (PLC signal state) of a peripheral device (not shown) by the real numerical control device 20 described later.
In other words, as in Patent Document 1, it was possible to predict the power consumption of the axis control of the cutting spindle and feed axis associated with the workpiece cutting block and non-cutting block by simulation using a numerical control device, but it is possible to predict the power consumption of the axis control of the cutting spindle and feed axis associated with the workpiece cutting block and non-cutting block. It was difficult to calculate the power consumed by peripheral devices.
Therefore, in this embodiment, the power consumption during operation of these peripheral devices is stored as a device power consumption profile 132 in the storage unit 130, which is an estimated power consumption according to the control state (PLC signal state) of the peripheral device.
 図3は、装置電力消費プロファイル132の一例を示す図である。
 図3に示すように、装置電力消費プロファイル132は、「装置名」、「装置制御状態」、「予想消費電力」、及び「電力計」の格納領域を有する。
 装置電力消費プロファイル132内の「装置名」の格納領域には、例えば、「循環ポンプ」、「冷却ファン」等の装置名が格納される。
 装置電力消費プロファイル132内の「装置制御状態」の格納領域には、例えば、後述するリアル数値制御装置20のPLC装置210の各周辺機器に対する制御状態である、「Y31.0=TRUE」、「Y31.0=FALSE」、「M_TEMP<31」、「M_TEMP>=31」等が格納される。なお、「Y31.0=TRUE」は、PLC装置210の出力端子Y31に接続された循環ポンプ(図示しない)が動作中の制御状態を示し、「Y31.0=FALSE」は、PLC装置210の出力端子Y31に接続された循環ポンプ(図示しない)が待機中の制御状態を示す。また、「M_TEMP<31」は、温度が31度未満の場合の冷却ファン(図示しない)の制御状態を示し、「M_TEMP>=31」は、温度が31度以上の場合の冷却ファン(図示しない)の制御状態を示す。
 装置電力消費プロファイル132内の「予想消費電力」の格納領域には、「装置制御状態」の制御状態毎に予想される消費電力、例えば「1kW」、「0.2kW」、「2kW」、「3kW」等が格納される。
 装置電力消費プロファイル132内の「電力計」の格納領域には、「装置名」の周辺機器毎に配置される電力計測器30を示す、例えば「pom2-ch1」、「NA」等が格納される。なお、「pom2-ch1」は、循環ポンプに配置された電力計測器30を示す「pom2」と、当該電力計測器30が有する複数のチャンネルのうち1チャンネルを示す「ch1」と、の組み合わせである。
FIG. 3 is a diagram illustrating an example of the device power consumption profile 132.
As shown in FIG. 3, the device power consumption profile 132 has storage areas for "device name", "device control state", "expected power consumption", and "power meter".
The "device name" storage area in the device power consumption profile 132 stores, for example, device names such as "circulation pump" and "cooling fan."
In the storage area of "device control state" in the device power consumption profile 132, for example, "Y31.0=TRUE", "Y31.0=TRUE", ""Y31.0=FALSE","M_TEMP<31","M_TEMP>=31", etc. are stored. Note that "Y31.0=TRUE" indicates the control state in which the circulation pump (not shown) connected to the output terminal Y31 of the PLC device 210 is in operation, and "Y31.0=FALSE" indicates the control state in which the circulation pump (not shown) connected to the output terminal Y31 of the PLC device 210 is in operation. A circulating pump (not shown) connected to the output terminal Y31 is in a standby control state. Furthermore, "M_TEMP<31" indicates the control state of the cooling fan (not shown) when the temperature is less than 31 degrees, and "M_TEMP>=31" indicates the control state of the cooling fan (not shown) when the temperature is 31 degrees or higher. ) control status.
The "expected power consumption" storage area in the device power consumption profile 132 stores the expected power consumption for each control state of the "device control state", for example, "1 kW", "0.2 kW", "2 kW", "3kW" etc. are stored.
In the storage area of "wattmeter" in the device power consumption profile 132, for example, "pom2-ch1", "NA", etc., indicating the power measuring device 30 arranged for each peripheral device of "device name" are stored. Ru. Note that "pom2-ch1" is a combination of "pom2" indicating the power meter 30 placed in the circulation pump and "ch1" indicating one channel among the plurality of channels that the power meter 30 has. be.
 加工パラメータ133は、例えば、後述するリアル数値制御装置20が加工プログラム131を実行するときの加工条件を示すパラメータである。具体的には、加工パラメータ133には、例えば、加工プログラム131にて指定された早送り速度を100%とした場合の割合を示すオーバーライドパラメータと、目標速度へ到達するための加減速度及び加減速方式を示す加減速度パラメータと、が含まれる。 The machining parameters 133 are, for example, parameters indicating machining conditions when the real numerical control device 20 (described later) executes the machining program 131. Specifically, the machining parameters 133 include, for example, an override parameter indicating the ratio when the rapid traverse speed specified in the machining program 131 is taken as 100%, and an acceleration/deceleration rate and acceleration/deceleration method for reaching the target speed. and acceleration/deceleration parameters indicating.
 制御部120は、CPU、ROM、RAM、CMOSメモリ等を有し、これらはバスを介して相互に通信可能に構成される、当業者にとって公知のものである。
 CPUは仮想数値制御装置10を全体的に制御するプロセッサである。CPUは、ROMに格納されたシステムプログラム及びアプリケーションプログラムを、バスを介して読み出し、システムプログラム及びアプリケーションプログラムに従って仮想数値制御装置10全体を制御する。これにより、図1に示すように、制御部120は、PLCシミュレーション実行部121、加工プログラムシミュレーション実行部122、及び省電力加工パラメータ算出部123の機能を実現するように構成される。RAMには一時的な計算データや表示データ等の各種データが格納される。CMOSメモリは図示しないバッテリでバックアップされ、仮想数値制御装置10の電源がオフされても記憶状態が保持される不揮発性メモリとして構成される。
The control unit 120 includes a CPU, ROM, RAM, CMOS memory, etc., which are configured to be able to communicate with each other via a bus, which are well known to those skilled in the art.
The CPU is a processor that controls the virtual numerical control device 10 as a whole. The CPU reads the system program and application program stored in the ROM via the bus, and controls the entire virtual numerical control device 10 according to the system program and application program. Thereby, as shown in FIG. 1, the control section 120 is configured to realize the functions of the PLC simulation execution section 121, the machining program simulation execution section 122, and the power saving machining parameter calculation section 123. Various data such as temporary calculation data and display data are stored in the RAM. The CMOS memory is backed up by a battery (not shown) and is configured as a nonvolatile memory that maintains its storage state even when the virtual numerical control device 10 is powered off.
 PLCシミュレーション実行部121は、公知の手法を用いて、入力された加工プログラム131に基づいて図示しない周辺機器の動作をシミュレーションする。すなわち、PLCシミュレーション実行部121は、加工プログラム131に基づいて図示しない周辺機器に対する制御状態(PLC信号状態)をシミュレーションする。PLCシミュレーション実行部121は、装置電力消費プロファイル132に基づいて、シミュレーションした制御状態(PLC信号状態)に応じた予想消費電力を加算することで、図示しない周辺機器の消費電力を予測する。 The PLC simulation execution unit 121 simulates the operation of peripheral equipment (not shown) based on the input machining program 131 using a known method. That is, the PLC simulation execution unit 121 simulates the control state (PLC signal state) for peripheral equipment (not shown) based on the machining program 131. Based on the device power consumption profile 132, the PLC simulation execution unit 121 predicts the power consumption of peripheral devices (not shown) by adding the expected power consumption according to the simulated control state (PLC signal state).
 加工プログラムシミュレーション実行部122は、公知の手法(例えば、特許文献2等)を用いて、入力された加工プログラム131と加工パラメータ133とに基づいて図示しない工作機械の駆動部のフィードバック情報を含めた図示しない工作機械の動作をシミュレーションする。すなわち、加工プログラムシミュレーション実行部122は、当該シミュレーションにおいて後述するリアル数値制御装置20が図示しない工作機械に出力するトルク値を疑似的に算出し、算出したトルク値に基づいて図示しない工作機械の消費電力をシミュレーションする。 The machining program simulation execution unit 122 uses a known method (for example, Patent Document 2) to include feedback information of the drive unit of the machine tool (not shown) based on the input machining program 131 and machining parameters 133. The operation of a machine tool (not shown) is simulated. That is, the machining program simulation execution unit 122 pseudo-calculates a torque value that the real numerical control device 20 (described later) outputs to a machine tool (not shown) in the simulation, and adjusts the consumption of the machine tool (not shown) based on the calculated torque value. Simulate power.
 省電力加工パラメータ算出部123は、加工パラメータ133を変化させて、変化させた加工パラメータ133毎にPLCシミュレーション実行部121及び加工プログラムシミュレーション実行部122にシミュレーションを実行させ、PLCシミュレーション実行部121及び加工プログラムシミュレーション実行部122のシミュレーション結果と装置電力消費プロファイル132とに基づいて消費電力を予測し、加えて最大許容加工時間以下となるもののうち予測した消費電力のうち最小となる消費電力の加工パラメータ133を算出し、算出された加工パラメータ133を提示する。
 具体的には、省電力加工パラメータ算出部123は、加工プログラムに基づいて図示しない工作機械及び動作させるにあたり、消費電力が最小となる条件を算出するために、試行加工条件である加工パラメータ133(例えば、オーバーライドパラメータ及び加減速度パラメータ等)をベイズ最適化や遺伝的アルゴリズム等により検索する。なお、消費電力予想値が開始時の予想値から大きく増加する場合には、最適な加工パラメータ133の検索を打ち切ってもよい。
The power-saving machining parameter calculation unit 123 changes the machining parameters 133, causes the PLC simulation execution unit 121 and the machining program simulation execution unit 122 to execute the simulation for each changed machining parameter 133, and causes the PLC simulation execution unit 121 and the machining program to execute the simulation. The power consumption is predicted based on the simulation result of the program simulation execution unit 122 and the device power consumption profile 132, and in addition, the machining parameter 133 of the power consumption that is the minimum among the predicted power consumption that is less than or equal to the maximum allowable machining time is calculated, and the calculated machining parameters 133 are presented.
Specifically, the power-saving machining parameter calculation unit 123 calculates machining parameters 133 (which are trial machining conditions) in order to calculate conditions that minimize power consumption when operating a machine tool (not shown) based on a machining program. For example, override parameters, acceleration/deceleration parameters, etc.) are searched for using Bayesian optimization, genetic algorithms, etc. Note that if the predicted power consumption value increases significantly from the predicted value at the start, the search for the optimal machining parameters 133 may be discontinued.
 図4は、加工パラメータ133を変化させた場合の速度指令値の一例を示す図である。図4では、加工パラメータ133を変化させることなく入力された加工プログラム131そのままの速度指令値を実線で示し、加工パラメータ133を変化させた場合の速度指令値を破線で示す。すなわち、図4に示すように、加工パラメータ133を変化させた場合の速度指令値は、加工プログラム131そのままの速度指令値と比べて、緩やかに加速し低い速度に達する。
 省電力加工パラメータ算出部123は、PLCシミュレーション実行部121及び加工プログラムシミュレーション実行部122に対して、変化させた加工パラメータ133毎にシミュレーションを実行させ、加工時間Tcur及び消費電力Pcurを予測する。なお、省電力加工パラメータ算出部123は、加工パラメータ133を変化させることなく入力された加工プログラム131そのままでPLCシミュレーション実行部121及び加工プログラムシミュレーション実行部122のシミュレーションにより予測した加工時間及び消費電力を、加工時間Tmin及び消費電力Pstdとして取得する。
FIG. 4 is a diagram showing an example of the speed command value when the machining parameter 133 is changed. In FIG. 4, the solid line shows the speed command value as it is in the machining program 131 input without changing the machining parameter 133, and the broken line shows the speed command value when the machining parameter 133 is changed. That is, as shown in FIG. 4, the speed command value when the machining parameter 133 is changed accelerates gently and reaches a lower speed than the speed command value when the machining program 131 is unchanged.
The power-saving machining parameter calculation unit 123 causes the PLC simulation execution unit 121 and the machining program simulation execution unit 122 to execute a simulation for each changed machining parameter 133, and predicts machining time T cur and power consumption P cur . . Note that the power-saving machining parameter calculation unit 123 calculates the machining time and power consumption predicted by the simulation of the PLC simulation execution unit 121 and the machining program simulation execution unit 122 using the input machining program 131 without changing the machining parameters 133. , machining time T min and power consumption P std .
 図5は、加工パラメータ133の変化に応じた加工時間Tcurと消費電力Pcurとの関係の一例を示す図である。
 図5に示すように、省電力加工パラメータ算出部123は、変化させた加工パラメータ133毎にPLCシミュレーション実行部121及び加工プログラムシミュレーション実行部122のシミュレーションにより予測された消費電力Pcurのうち入力された最大許容加工時間Tmaxの範囲内で最小の消費電力Pminとなるときの加工パラメータ133を算出(選択)する。そして、省電力加工パラメータ算出部123は、算出(選択)した加工パラメータ133(加工条件)と加工時間Tcurとを、仮想数値制御装置10に含まれる液晶ディスプレイ等の表示部(図示しない)に表示しユーザに提示する。
FIG. 5 is a diagram illustrating an example of the relationship between machining time T cur and power consumption P cur depending on changes in machining parameter 133.
As shown in FIG. 5, the power saving machining parameter calculation unit 123 calculates the input power consumption P cur predicted by the simulation of the PLC simulation execution unit 121 and the machining program simulation execution unit 122 for each changed machining parameter 133. The machining parameter 133 that provides the minimum power consumption P min within the maximum allowable machining time T max is calculated (selected). Then, the power-saving machining parameter calculation unit 123 displays the calculated (selected) machining parameters 133 (machining conditions) and machining time T cur on a display unit (not shown) such as a liquid crystal display included in the virtual numerical control device 10. Display and present to the user.
 図6は、消費電力最小加工を提示するユーザインタフェースの一例を示す図である。
 図6に示すように、ユーザインタフェースは、最小の消費電力Pminになるときの加工時間Tcur(電力消費削減適用時加工時間)を表示する表示欄、及び提示された加工パラメータ133(電力消費削減パラメータ)を適用するか否かを選択する選択欄等を有する。なお、ユーザインタフェースには、提示された加工パラメータ133を適用することでどの程度消費電力を削減できるかを示す表示欄を有してもよい。
 省電力加工パラメータ算出部123は、図6のユーザインタフェースを介してユーザにより提示した加工パラメータ133を適用するか否かの入力を受け付けると、加工プログラム131及び加工パラメータ133を後述するリアル数値制御装置20に出力する。
FIG. 6 is a diagram illustrating an example of a user interface that presents minimum power consumption processing.
As shown in FIG. 6, the user interface includes a display field that displays the machining time T cur (machining time when power consumption reduction is applied) when the minimum power consumption P min is reached, and the presented machining parameter 133 (power consumption It has a selection field etc. for selecting whether to apply the reduction parameter). Note that the user interface may include a display column showing how much power consumption can be reduced by applying the presented processing parameters 133.
When the power-saving machining parameter calculation unit 123 receives an input as to whether or not to apply the machining parameters 133 presented by the user via the user interface of FIG. Output to 20.
<リアル数値制御装置20>
 リアル数値制御装置20は、当業者にとって公知の数値制御装置であり、後述する加工プログラム231及び加工パラメータ233に基づいて指令を生成し、生成した指令を図示しない工作機械及び周辺機器に送信する。これにより、リアル数値制御装置20は、図示しない工作機械及び周辺機器の動作を制御する。
 図1に示すように、リアル数値制御装置20は、PLC装置210、制御部220及び記憶部230を有する。そして、制御部220は、加工プログラム実行部221を有する。
<Real numerical control device 20>
The real numerical control device 20 is a numerical control device known to those skilled in the art, and generates commands based on a machining program 231 and machining parameters 233, which will be described later, and transmits the generated commands to a machine tool and peripheral equipment (not shown). Thereby, the real numerical control device 20 controls the operation of the machine tool and peripheral equipment (not shown).
As shown in FIG. 1, the real numerical control device 20 includes a PLC device 210, a control section 220, and a storage section 230. The control unit 220 includes a machining program execution unit 221.
<記憶部230>
 記憶部230は、SSDやHDD等の記憶部である。記憶部230には、後述する制御部220が実行するオペレーティングシステム及びアプリケーションプログラム等とともに、加工プログラム231、装置電力消費計測結果232、及び加工パラメータ233が記憶される。
 加工プログラム231は、仮想数値制御装置10の入力部110を介して入力された加工プログラム131である。
 装置電力消費計測結果232は、後述するPLC装置210の制御に基づいて図示しない周辺機器が動作したときのPLC装置210の制御状態と電力計測器30により計測された図示しない周辺機器の消費電力とが対応付けて格納されたファイルである。なお、仮想数値制御装置10は、後述するように、装置電力消費計測結果232を取得し、装置電力消費プロファイル132と取得した装置電力消費計測結果232とを比較し、装置電力消費プロファイル132と装置電力消費計測結果232との差分(ズレ量)をエラー量として、装置電力消費プロファイル132を補正するようにしてもよい。
 そうすることで、仮想数値制御装置10は、より精度良く消費電力が最小となる加工パラメータ133を算出することができる。
 加工パラメータ233は、仮想数値制御装置10から取得された加工条件、すなわち電力消費削減が適用された(又は適用されていない)加工パラメータ133である。
<Storage unit 230>
The storage unit 230 is a storage unit such as an SSD or an HDD. The storage unit 230 stores a processing program 231, device power consumption measurement results 232, and processing parameters 233, as well as an operating system and application programs executed by the control unit 220, which will be described later.
The machining program 231 is the machining program 131 input via the input unit 110 of the virtual numerical control device 10.
The device power consumption measurement result 232 includes the control state of the PLC device 210 when the peripheral device (not shown) operates based on the control of the PLC device 210, which will be described later, and the power consumption of the peripheral device (not shown) measured by the power meter 30. are files stored in association with each other. Note that, as described later, the virtual numerical control device 10 acquires the device power consumption measurement result 232, compares the device power consumption profile 132 with the acquired device power consumption measurement result 232, and compares the device power consumption profile 132 with the device power consumption measurement result 232. The device power consumption profile 132 may be corrected by using the difference (deviation amount) from the power consumption measurement result 232 as an error amount.
By doing so, the virtual numerical control device 10 can more accurately calculate the machining parameters 133 that minimize power consumption.
The machining parameters 233 are the machining conditions acquired from the virtual numerical control device 10, that is, the machining parameters 133 to which power consumption reduction is applied (or not applied).
<PLC装置210>
 PLC装置210は、当業者にとって公知のPLCであり、加工プログラム231に基づいて図示しない周辺機器の動作を制御する。また、PLC装置210は、図示しない周辺機器の動作に伴い電力計測器30により測定された図示しない周辺機器の消費電力を電力計測器30から受信し、受信した消費電力をPLC装置210の制御状態と対応付けて装置電力消費計測結果232に格納する。
<PLC device 210>
The PLC device 210 is a PLC well known to those skilled in the art, and controls the operation of peripheral devices (not shown) based on a machining program 231. Further, the PLC device 210 receives from the power meter 30 the power consumption of a peripheral device (not shown) measured by the power meter 30 as the peripheral device (not shown) operates, and determines the control state of the PLC device 210 based on the received power consumption. The device power consumption measurement result 232 is stored in association with the device power consumption measurement result 232.
<制御部220>
 制御部220は、CPU、ROM、RAM、CMOSメモリ等を有し、これらはバスを介して相互に通信可能に構成される、当業者にとって公知のものである。
 CPUはリアル数値制御装置20を全体的に制御するプロセッサである。CPUは、ROMに格納されたシステムプログラム及びアプリケーションプログラムを、バスを介して読み出し、システムプログラム及びアプリケーションプログラムに従ってリアル数値制御装置20全体を制御する。これにより、図1に示すように、制御部220は、加工プログラム実行部221の機能を実現するように構成される。
<Control unit 220>
The control unit 220 includes a CPU, ROM, RAM, CMOS memory, etc., which are configured to be able to communicate with each other via a bus, which are well known to those skilled in the art.
The CPU is a processor that controls the real numerical control device 20 as a whole. The CPU reads the system program and application program stored in the ROM via the bus, and controls the entire real numerical control device 20 according to the system program and application program. Thereby, as shown in FIG. 1, the control section 220 is configured to realize the functions of the machining program execution section 221.
 加工プログラム実行部221は、加工プログラム231及び加工パラメータ233に基づいて図示しない工作機械の動作を制御する。 The machining program execution unit 221 controls the operation of a machine tool (not shown) based on the machining program 231 and machining parameters 233.
<仮想数値制御装置10の加工パラメータ決定処理>
 次に、図7を参照しながら、仮想数値制御装置10の加工パラメータ決定処理の流れを説明する。
 図7は、仮想数値制御装置10の加工パラメータ決定処理について説明するフローチャートである。ここで示すフローは、加工プログラム131及び最大許容加工時間が入力される度に繰り返し実行される。
<Machining parameter determination process of virtual numerical control device 10>
Next, with reference to FIG. 7, the flow of processing parameter determination processing of the virtual numerical control device 10 will be explained.
FIG. 7 is a flowchart illustrating processing parameter determination processing of the virtual numerical control device 10. The flow shown here is repeatedly executed every time the machining program 131 and maximum allowable machining time are input.
 ステップS1において、入力部110は、ユーザの入力操作に基づいて、図2のユーザインタフェースを介して加工プログラム131を入力する。 In step S1, the input unit 110 inputs the machining program 131 via the user interface of FIG. 2 based on the user's input operation.
 ステップS2において、入力部110は、ユーザの入力操作に基づいて、図2のユーザインタフェースを介して最大許容加工時間Tmaxを入力する。 In step S2, the input unit 110 inputs the maximum allowable machining time T max via the user interface of FIG. 2 based on the user's input operation.
 ステップS3において、加工プログラムシミュレーション実行部122は、ステップS1で入力された加工プログラム131と変化させていない加工パラメータ133とに基づいて図示しない工作機械の動作のシミュレーションを実行する。また、PLCシミュレーション実行部121は、ステップS1で入力された加工プログラム131に基づいて図示しない周辺機器の動作のシミュレーションを実行する。 In step S3, the machining program simulation execution unit 122 executes a simulation of the operation of the machine tool (not shown) based on the machining program 131 input in step S1 and the machining parameters 133 that have not been changed. Furthermore, the PLC simulation execution unit 121 executes a simulation of the operation of a peripheral device (not shown) based on the machining program 131 input in step S1.
 ステップS4において、加工プログラムシミュレーション実行部122は、図示しない工作機械の加工時間Tstdを取得する。 In step S4, the machining program simulation execution unit 122 obtains a machining time T std of a machine tool (not shown).
 ステップS5において、加工プログラムシミュレーション実行部122は、図示しない工作機械の加工消費電力を算出する。また、PLCシミュレーション実行部121は、装置電力消費プロファイル132に基づいて、シミュレーションした制御状態(PLC信号状態)に応じた予想消費電力を加算することで、図示しない周辺機器の消費電力を算出する。 In step S5, the machining program simulation execution unit 122 calculates machining power consumption of a machine tool (not shown). Furthermore, the PLC simulation execution unit 121 calculates the power consumption of peripheral devices (not shown) by adding the expected power consumption according to the simulated control state (PLC signal state) based on the device power consumption profile 132.
 ステップS6において、省電力加工パラメータ算出部123は、ステップS5で算出された図示しない工作機械の加工消費電力と図示しない周辺機器の消費電力とを足し合わせて消費電力Pstdを取得する。 In step S6, the power-saving machining parameter calculation unit 123 adds together the machining power consumption of the machine tool (not shown) calculated in step S5 and the power consumption of the peripheral equipment (not shown) to obtain power consumption P std .
 ステップS7において、省電力加工パラメータ算出部123は、ステップS6で取得した加工パラメータ133を変化させていない場合の消費電力Pstdを消費電力Pminとして保持する。 In step S7, the power saving machining parameter calculation unit 123 holds the power consumption P std when the machining parameter 133 acquired in step S6 is not changed as the power consumption P min .
 ステップS8において、省電力加工パラメータ算出部123は、試行加工条件である加工パラメータ133をベイズ最適化や遺伝的アルゴリズム等により検索し決定する。 In step S8, the power-saving machining parameter calculation unit 123 searches and determines the machining parameters 133, which are trial machining conditions, by Bayesian optimization, genetic algorithm, or the like.
 ステップS9において、加工プログラムシミュレーション実行部122は、ステップS1で入力された加工プログラム131とステップS8で検索(決定)された加工パラメータ133とに基づいて図示しない工作機械の動作のシミュレーションを実行する。また、PLCシミュレーション実行部121は、ステップS1で入力された加工プログラム131に基づいて図示しない周辺機器の動作のシミュレーションを実行する。 In step S9, the machining program simulation execution unit 122 executes a simulation of the operation of the machine tool (not shown) based on the machining program 131 input in step S1 and the machining parameters 133 retrieved (determined) in step S8. Furthermore, the PLC simulation execution unit 121 executes a simulation of the operation of a peripheral device (not shown) based on the machining program 131 input in step S1.
 ステップS10において、加工プログラムシミュレーション実行部122は、図示しない工作機械の加工時間Tcurを取得する。 In step S10, the machining program simulation execution unit 122 obtains a machining time T cur of a machine tool (not shown).
 ステップS11において、加工プログラムシミュレーション実行部122は、図示しない工作機械の加工消費電力を算出し、PLCシミュレーション実行部121は、装置電力消費プロファイル132に基づいて、シミュレーションした制御状態(PLC信号状態)に応じた予想消費電力を加算することで、図示しない周辺機器の消費電力を算出する。 In step S11, the machining program simulation execution unit 122 calculates the machining power consumption of a machine tool (not shown), and the PLC simulation execution unit 121 adjusts the simulated control state (PLC signal state) based on the device power consumption profile 132. The power consumption of peripheral devices (not shown) is calculated by adding the corresponding expected power consumption.
 ステップS12において、省電力加工パラメータ算出部123は、ステップS11で算出された図示しない工作機械の加工消費電力と図示しない周辺機器の消費電力とを足し合わせて消費電力Pcurを取得する。 In step S12, the power-saving machining parameter calculation unit 123 adds the machining power consumption of the machine tool (not shown) calculated in step S11 and the power consumption of the peripheral equipment (not shown) to obtain power consumption P cur .
 ステップS13において、省電力加工パラメータ算出部123は、ステップS10で算出された加工時間Tcurが最大許容加工時間Tmaxより大きいか否かを判定する。加工時間Tcurが最大許容加工時間Tmaxより大きい場合、省電力加工パラメータ算出部123は、加工パラメータ決定処理を終了し、後述するステップS15で保持された最小の消費電力Pminとなるときの加工パラメータ133を算出(選択)する。省電力加工パラメータ算出部123は、図6に示すように、算出(選択)した加工パラメータ133(加工条件)と加工時間Tcurとを、仮想数値制御装置10の表示部(図示しない)に表示しユーザに提示する。
 一方、加工時間Tcurが最大許容加工時間Tmax以下の場合、処理はステップS14に進む。
In step S13, the power-saving machining parameter calculation unit 123 determines whether the machining time T cur calculated in step S10 is larger than the maximum allowable machining time T max . If the machining time T cur is larger than the maximum allowable machining time T max , the power-saving machining parameter calculation unit 123 ends the machining parameter determination process and calculates the minimum power consumption P min held in step S15, which will be described later. Calculate (select) machining parameters 133. As shown in FIG. 6, the power-saving machining parameter calculation unit 123 displays the calculated (selected) machining parameters 133 (machining conditions) and machining time T cur on the display unit (not shown) of the virtual numerical control device 10. and present it to the user.
On the other hand, if the machining time T cur is less than or equal to the maximum allowable machining time T max , the process proceeds to step S14.
 ステップS14において、省電力加工パラメータ算出部123は、これまでの最小の消費電力PminがステップS12で取得された消費電力Pcurより大きいか否かを判定する。最小の消費電力Pminが消費電力Pcurより大きい場合、処理はステップS15に進む。一方、最小の消費電力Pminが消費電力Pcur以下の場合、処理はステップS8に戻る。 In step S14, the power saving machining parameter calculation unit 123 determines whether the minimum power consumption P min so far is larger than the power consumption P cur obtained in step S12. If the minimum power consumption P min is greater than the power consumption P cur , the process proceeds to step S15. On the other hand, if the minimum power consumption P min is less than or equal to the power consumption P cur , the process returns to step S8.
 ステップS15において、省電力加工パラメータ算出部123は、ステップS12で取得された消費電力Pcurを最小の消費電力Pminとして保持する。そして、処理は、ステップS8に戻る。 In step S15, the power saving machining parameter calculation unit 123 holds the power consumption P cur acquired in step S12 as the minimum power consumption P min . The process then returns to step S8.
<数値制御システム1の加工処理>
 次に、図8を参照しながら、数値制御システム1の加工処理の流れを説明する。
 図8は、数値制御システム1の加工処理について説明するフローチャートである。ここで示すフローは、加工プログラム131が入力される度に繰り返し実行される。
<Processing of numerical control system 1>
Next, the processing flow of the numerical control system 1 will be explained with reference to FIG.
FIG. 8 is a flowchart illustrating processing processing of the numerical control system 1. The flow shown here is repeatedly executed every time the machining program 131 is input.
 ステップS20において、リアル数値制御装置20(加工プログラム実行部221)は、図7に示した加工パラメータ決定処理の後に、仮想数値制御装置10から加工プログラム131(231)及び決定された加工パラメータ133(233)を取得する。 In step S20, after the machining parameter determination process shown in FIG. 233).
 ステップS21において、リアル数値制御装置20(加工プログラム実行部221及びPLC装置210)は、ステップS20で取得した加工パラメータ233に基づいて加工プログラム231を実行し、図示しない工作機械及び周辺機器を動作させ、加工処理を行う。 In step S21, the real numerical control device 20 (machining program execution unit 221 and PLC device 210) executes the machining program 231 based on the machining parameters 233 acquired in step S20, and operates the machine tool and peripheral equipment (not shown). , perform processing.
 ステップS22において、仮想数値制御装置10は、リアル数値制御装置20を介して電力計測処理を行い、装置電力消費プロファイル132を補正する。なお、電力計測処理の詳細なフローについては、後述する。
 また、ステップS21の処理とステップS22の処理とは、並列に実行されてもよく、時系列的に処理されてもよい。
In step S22, the virtual numerical control device 10 performs power measurement processing via the real numerical control device 20 and corrects the device power consumption profile 132. Note that the detailed flow of the power measurement process will be described later.
Furthermore, the processing in step S21 and the processing in step S22 may be executed in parallel or may be processed in chronological order.
 図9は、図8においてステップS22で示した電力計測処理の詳細な処理内容を説明するフローチャートである。 FIG. 9 is a flowchart illustrating detailed processing contents of the power measurement process shown in step S22 in FIG.
 ステップS221において、仮想数値制御装置10(省電力加工パラメータ算出部123)は、リアル数値制御装置20から装置電力消費計測結果232を取得する。 In step S221, the virtual numerical control device 10 (power-saving processing parameter calculation unit 123) obtains the device power consumption measurement result 232 from the real numerical control device 20.
 ステップS222において、仮想数値制御装置10(省電力加工パラメータ算出部123)は、ステップS221で取得した装置電力消費計測結果232が示す電力計測器30の電力計に基づいて装置電力消費プロファイル132において対応する周辺装置を検索する。 In step S222, the virtual numerical control device 10 (power saving processing parameter calculation unit 123) takes measures in the device power consumption profile 132 based on the wattmeter of the power meter 30 indicated by the device power consumption measurement result 232 acquired in step S221. Search for peripheral devices.
 ステップS223において、仮想数値制御装置10(省電力加工パラメータ算出部123)は、装置電力消費計測結果232が示すPLC装置210の制御状態(IO)を取得する。 In step S223, the virtual numerical control device 10 (power-saving processing parameter calculation unit 123) acquires the control state (IO) of the PLC device 210 indicated by the device power consumption measurement result 232.
 ステップS224において、仮想数値制御装置10(省電力加工パラメータ算出部123)は、ステップS222で検索した周辺装置における、ステップS223で取得した制御状態に対応する装置電力消費プロファイル132の予想消費電力と、装置電力消費計測結果232が示す実消費電力との差分(ズレ)であるエラー量を算出する。 In step S224, the virtual numerical control device 10 (power saving processing parameter calculation unit 123) calculates the expected power consumption of the device power consumption profile 132 corresponding to the control state obtained in step S223 in the peripheral device searched in step S222, An error amount that is a difference (deviation) from the actual power consumption indicated by the device power consumption measurement result 232 is calculated.
 ステップS225において、仮想数値制御装置10(省電力加工パラメータ算出部123)は、電力取得対象である周辺機器を切り替える。 In step S225, the virtual numerical control device 10 (power-saving processing parameter calculation unit 123) switches the peripheral device from which power is to be obtained.
 ステップS226において、仮想数値制御装置10(省電力加工パラメータ算出部123)は、リアル数値制御装置20による図示しない工作機械の加工が終了したか否かを判定する。加工が終了した場合、処理はステップS227に進む。一方、加工が終了していない場合、処理はステップS221に戻る。すなわち、仮想数値制御装置10(省電力加工パラメータ算出部123)は、加工プログラム231が実行されている間、消費電力の監視を繰り返し、周辺装置毎の制御状態の予想消費電力とのエラー量を取得する。 In step S226, the virtual numerical control device 10 (power-saving machining parameter calculation unit 123) determines whether machining of the machine tool (not shown) by the real numerical control device 20 has been completed. If the machining is completed, the process advances to step S227. On the other hand, if the machining is not completed, the process returns to step S221. That is, the virtual numerical control device 10 (power-saving machining parameter calculation unit 123) repeatedly monitors power consumption while the machining program 231 is being executed, and calculates the amount of error between the control state of each peripheral device and the expected power consumption. get.
 ステップS227において、仮想数値制御装置10(省電力加工パラメータ算出部123)は、周辺機器毎にステップS224で算出したエラー量に基づいて装置電力消費プロファイル132の予想消費電力を補正する。なお、仮想数値制御装置10(省電力加工パラメータ算出部123)は、この際、移動平均フィルタや係数演算の結果を反映するようにしてもよい。 In step S227, the virtual numerical control device 10 (power-saving processing parameter calculation unit 123) corrects the expected power consumption of the device power consumption profile 132 based on the error amount calculated in step S224 for each peripheral device. Note that the virtual numerical control device 10 (power-saving processing parameter calculation unit 123) may reflect the results of a moving average filter or coefficient calculation at this time.
 以上により、一実施形態に係る仮想数値制御装置10は、変化させた加工パラメータ133毎に加工プログラム131に基づいて図示しない工作機械及び周辺機器の消費電力Pcurを算出し、算出した消費電力Pcurのうち最小の消費電力Pminとなるときの加工パラメータ133を算出(選択)し、算出(選択)した加工パラメータ133と加工時間Tcurとを、仮想数値制御装置10の表示部(図示しない)に表示しユーザに提示する。これにより、仮想数値制御装置10は、加工プログラム131のシミュレーションにおいて周辺装置の電力消費をより精度良く算出し、消費電力削減効果を最大化する加工条件を求めることができる。
 また、仮想数値制御装置10は、生産量計画に応じた最適な加工パラメータ133をシミュレーションの繰り返し実行による探索を行うため、ユーザ(NCプログラム作成者・生産計画立案者等)の加工パラメータ調整の負担を軽減することができる。
As described above, the virtual numerical control device 10 according to one embodiment calculates the power consumption P cur of the machine tool and peripheral equipment (not shown) based on the machining program 131 for each changed machining parameter 133, The machining parameter 133 at which the power consumption P min is the minimum among cur is calculated (selected), and the calculated (selected) machining parameter 133 and machining time T cur are displayed on the display section (not shown) of the virtual numerical control device 10. ) and present it to the user. Thereby, the virtual numerical control device 10 can more accurately calculate the power consumption of peripheral devices in the simulation of the machining program 131, and can determine machining conditions that maximize the power consumption reduction effect.
In addition, since the virtual numerical control device 10 searches for the optimal machining parameters 133 according to the production volume plan by repeatedly executing simulations, the user (NC program creator, production planner, etc.) is burdened with adjusting the machining parameters. can be reduced.
 以上、一実施形態について説明したが、仮想数値制御装置10は、上述の実施形態に限定されるものではなく、目的を達成できる範囲での変形、改良等を含む。 Although one embodiment has been described above, the virtual numerical control device 10 is not limited to the above-described embodiment, and includes modifications, improvements, etc. within a range that can achieve the purpose.
<変形例>
 一実施形態では、仮想数値制御装置10と、リアル数値制御装置20とは、互いに異なる装置としたが、1つの数値制御装置であってもよい。また、仮想数値制御装置10、及びリアル数値制御装置20は、図示しない工作機械に含まれてもよい。
<Modified example>
In one embodiment, the virtual numerical control device 10 and the real numerical control device 20 are different devices from each other, but they may be one numerical control device. Furthermore, the virtual numerical control device 10 and the real numerical control device 20 may be included in a machine tool (not shown).
 なお、一実施形態における、仮想数値制御装置10に含まれる各機能は、ハードウェア、ソフトウェア又はこれらの組み合わせによりそれぞれ実現することができる。ここで、ソフトウェアによって実現されるとは、コンピュータがプログラムを読み込んで実行することにより実現されることを意味する。 Note that each function included in the virtual numerical control device 10 in one embodiment can be realized by hardware, software, or a combination thereof. Here, being realized by software means being realized by a computer reading and executing a program.
 プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(Non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(Tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えば、フレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM)を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(Transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は、無線通信路を介して、プログラムをコンピュータに供給できる。 The program can be stored and delivered to a computer using various types of non-transitory computer readable media. Non-transitory computer-readable media include various types of tangible storage media. Examples of non-transitory computer-readable media are magnetic recording media (e.g., flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (e.g., magneto-optical disks), CD-ROMs (Read Only Memory), CD-ROMs, R, CD-R/W, semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM). The program may also be provided to the computer on various types of transitory computer readable media. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves. The temporary computer-readable medium can provide the program to the computer via wired communication channels such as electrical wires and optical fibers, or via wireless communication channels.
 なお、記録媒体に記録されるプログラムを記述するステップは、その順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。 Note that the step of writing a program to be recorded on a recording medium includes not only processes that are performed in chronological order, but also processes that are not necessarily performed in chronological order but are executed in parallel or individually. It also includes.
 以上を換言すると、本開示の数値制御装置は、次のような構成を有する各種各様の実施形態を取ることができる。 In other words, the numerical control device of the present disclosure can take various embodiments having the following configurations.
 (1)本開示の仮想数値制御装置10は、少なくとも加工プログラム131と加工プログラム131に基づいて動作する工作機械の許容可能な最大許容加工時間とを入力する入力部110と、加工プログラム131に基づいて工作機械の動作をシミュレーションする加工プログラムシミュレーション実行部122と、加工プログラム131に基づいて工作機械周辺に配置された少なくとも1つの周辺機器の動作をシミュレーションするPLCシミュレーション実行部121と、周辺機器の制御状態に応じて予測される周辺機器毎の消費電力を装置電力消費プロファイル132として記憶する記憶部130と、加工パラメータ133を変化させて、変化させた加工パラメータ133毎に加工プログラムシミュレーション実行部122及びPLCシミュレーション実行部121にシミュレーションを実行させ、加工プログラムシミュレーション実行部122及びPLCシミュレーション実行部121のシミュレーション結果と最大許容加工時間と装置電力消費プロファイル132とに基づいて消費電力を予測し、予測した消費電力のうち最小となる消費電力の加工パラメータ133を算出し、算出された加工パラメータ133を提示する省電力加工パラメータ算出部123と、を備える。 (1) The virtual numerical control device 10 of the present disclosure includes an input unit 110 for inputting at least a machining program 131 and a maximum permissible machining time of a machine tool that operates based on the machining program 131; A machining program simulation execution unit 122 that simulates the operation of the machine tool based on the machining program 131, a PLC simulation execution unit 121 that simulates the operation of at least one peripheral device arranged around the machine tool based on the machining program 131, and peripheral device control. A storage unit 130 stores predicted power consumption of each peripheral device according to the state as a device power consumption profile 132, a machining program simulation execution unit 122 and a machining program simulation execution unit 122 for changing machining parameters 133 and The PLC simulation execution unit 121 executes the simulation, and the power consumption is predicted based on the simulation results of the machining program simulation execution unit 122 and the PLC simulation execution unit 121, the maximum allowable machining time, and the device power consumption profile 132. It includes a power-saving machining parameter calculation unit 123 that calculates a machining parameter 133 that consumes the least amount of power and presents the calculated machining parameter 133.
 この仮想数値制御装置10によれば、加工プログラムのシミュレーションにおいて周辺装置の電力消費をより精度良く算出し、消費電力削減効果を最大化する加工条件を求めることができる。 According to this virtual numerical control device 10, it is possible to more accurately calculate the power consumption of peripheral devices in the simulation of a machining program, and to determine the machining conditions that maximize the power consumption reduction effect.
 (2) (1)に記載の仮想数値制御装置10において、装置電力消費プロファイル132の消費電力は、算出された加工パラメータ133と加工プログラム131とに基づいて周辺機器を実際に動作させたときに測定された消費電力との差分に基づいて補正されてもよい。
 そうすることで、仮想数値制御装置10は、周辺機器消費電力をより精度良く予測することができる。
(2) In the virtual numerical control device 10 described in (1), the power consumption of the device power consumption profile 132 is calculated based on the calculated machining parameters 133 and the machining program 131 when the peripheral devices are actually operated. It may be corrected based on the difference from the measured power consumption.
By doing so, the virtual numerical control device 10 can predict power consumption of peripheral devices with higher accuracy.
 (3) (1)又は(2)に記載の仮想数値制御装置10において、加工パラメータ133は、少なくともオーバーライドパラメータ及び加減速度パラメータを含んでもよい。
 そうすることで、仮想数値制御装置10は、加工条件を容易に変化させることができる。
(3) In the virtual numerical control device 10 described in (1) or (2), the processing parameters 133 may include at least an override parameter and an acceleration/deceleration parameter.
By doing so, the virtual numerical control device 10 can easily change the processing conditions.
 1 数値制御システム
 10 仮想数値制御装置
 110 入力部
 120 制御部
 121 PLCシミュレーション実行部
 122 加工プログラムシミュレーション実行部
 123 省電力加工パラメータ算出部
 130 記憶部
 131 加工プログラム
 132 装置電力消費プロファイル
 133 加工パラメータ
 20 リアル数値制御装置
 210 PLC装置
 220 制御部
 221 加工プログラム実行部
 230 記憶部
 231 加工プログラム
 232 装置電力消費計測結果
 233 加工パラメータ
 30 電力計測器
1 Numerical control system 10 Virtual numerical control device 110 Input section 120 Control section 121 PLC simulation execution section 122 Machining program simulation execution section 123 Power-saving machining parameter calculation section 130 Storage section 131 Machining program 132 Device power consumption profile 133 Machining parameters 20 Real numerical values Control device 210 PLC device 220 Control unit 221 Machining program execution unit 230 Storage unit 231 Machining program 232 Device power consumption measurement result 233 Machining parameter 30 Power measuring instrument

Claims (3)

  1.  少なくとも加工プログラムと前記加工プログラムに基づいて動作する工作機械の許容可能な最大許容加工時間とを入力する入力部と、
     前記加工プログラムに基づいて前記工作機械の動作をシミュレーションする加工プログラムシミュレーション実行部と、
     前記加工プログラムに基づいて前記工作機械周辺に配置された少なくとも1つの周辺機器の動作をシミュレーションするPLCシミュレーション実行部と、
     前記周辺機器の制御状態に応じて予測される前記周辺機器毎の消費電力を装置電力消費プロファイルとして記憶する記憶部と、
     加工パラメータを変化させて、変化させた前記加工パラメータ毎に前記加工プログラムシミュレーション実行部及び前記PLCシミュレーション実行部にシミュレーションを実行させ、前記加工プログラムシミュレーション実行部及び前記PLCシミュレーション実行部のシミュレーション結果と前記最大許容加工時間と前記装置電力消費プロファイルとに基づいて消費電力を予測し、予測した前記消費電力のうち最小となる消費電力の前記加工パラメータを算出し、算出された前記加工パラメータを提示する省電力加工パラメータ算出部と、
     を備える数値制御装置。
    an input unit for inputting at least a machining program and a maximum allowable machining time of a machine tool that operates based on the machining program;
    a machining program simulation execution unit that simulates the operation of the machine tool based on the machining program;
    a PLC simulation execution unit that simulates the operation of at least one peripheral device arranged around the machine tool based on the machining program;
    a storage unit that stores predicted power consumption of each peripheral device according to a control state of the peripheral device as a device power consumption profile;
    Changing the machining parameters, causing the machining program simulation execution unit and the PLC simulation execution unit to execute a simulation for each of the changed machining parameters, and comparing the simulation results of the machining program simulation execution unit and the PLC simulation execution unit with the A saving method that predicts power consumption based on the maximum allowable machining time and the device power consumption profile, calculates the machining parameter with the minimum power consumption among the predicted power consumption, and presents the calculated machining parameter. A power processing parameter calculation unit,
    A numerical control device equipped with.
  2.  前記装置電力消費プロファイルの消費電力は、算出された前記加工パラメータと前記加工プログラムとに基づいて前記周辺機器を実際に動作させたときに測定された消費電力との差分に基づいて補正される、請求項1に記載の数値制御装置。 The power consumption of the device power consumption profile is corrected based on the difference between the power consumption measured when the peripheral device is actually operated based on the calculated machining parameters and the machining program, The numerical control device according to claim 1.
  3.  前記加工パラメータは、少なくともオーバーライドパラメータ及び加減速度パラメータを含む、請求項1又は請求項2に記載の数値制御装置。 The numerical control device according to claim 1 or 2, wherein the processing parameters include at least an override parameter and an acceleration/deceleration parameter.
PCT/JP2022/014621 2022-03-25 2022-03-25 Numerical control device WO2023181399A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014621 WO2023181399A1 (en) 2022-03-25 2022-03-25 Numerical control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014621 WO2023181399A1 (en) 2022-03-25 2022-03-25 Numerical control device

Publications (1)

Publication Number Publication Date
WO2023181399A1 true WO2023181399A1 (en) 2023-09-28

Family

ID=88100268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014621 WO2023181399A1 (en) 2022-03-25 2022-03-25 Numerical control device

Country Status (1)

Country Link
WO (1) WO2023181399A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005218226A (en) * 2004-01-29 2005-08-11 Yaskawa Electric Corp Method and apparatus for controlling motor
JP2010240800A (en) * 2009-04-09 2010-10-28 Fanuc Ltd Controller for controlling machine tool having consumed electric power reducing function
JP2010250697A (en) * 2009-04-17 2010-11-04 Fanuc Ltd Control device for machine tool
JP2013134563A (en) * 2011-12-26 2013-07-08 Jtekt Corp Flexible production system
JP2019037018A (en) * 2017-08-10 2019-03-07 ファナック株式会社 Motor controller for controlling motor in accordance with voltage drop amount of power supply voltage and machine tool system
JP2020042420A (en) * 2018-09-07 2020-03-19 株式会社牧野フライス製作所 Control device of machine tool
JP2021086405A (en) * 2019-11-28 2021-06-03 ファナック株式会社 Machine learning device, power consumption prediction device, and control device
CN113050541A (en) * 2021-03-24 2021-06-29 武汉科技大学 Numerical control machine tool energy consumption and processing state on-line monitoring system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005218226A (en) * 2004-01-29 2005-08-11 Yaskawa Electric Corp Method and apparatus for controlling motor
JP2010240800A (en) * 2009-04-09 2010-10-28 Fanuc Ltd Controller for controlling machine tool having consumed electric power reducing function
JP2010250697A (en) * 2009-04-17 2010-11-04 Fanuc Ltd Control device for machine tool
JP2013134563A (en) * 2011-12-26 2013-07-08 Jtekt Corp Flexible production system
JP2019037018A (en) * 2017-08-10 2019-03-07 ファナック株式会社 Motor controller for controlling motor in accordance with voltage drop amount of power supply voltage and machine tool system
JP2020042420A (en) * 2018-09-07 2020-03-19 株式会社牧野フライス製作所 Control device of machine tool
JP2021086405A (en) * 2019-11-28 2021-06-03 ファナック株式会社 Machine learning device, power consumption prediction device, and control device
CN113050541A (en) * 2021-03-24 2021-06-29 武汉科技大学 Numerical control machine tool energy consumption and processing state on-line monitoring system

Similar Documents

Publication Publication Date Title
JP6898371B2 (en) Machining condition adjustment device and machining condition adjustment system
JP6698603B2 (en) Numerical control system and method for detecting abnormal operation state
US8938316B2 (en) Numerical controller with machining time prediction unit and machining error prediction unit
CN109581962B (en) Numerical control system
JP6781242B2 (en) Controls, machine learning devices and systems
US7904287B2 (en) Method and system for real-time prediction of power usage for a change to another performance state
JP5992087B1 (en) Preventive maintenance management system for creating machine maintenance plans
JP7325356B2 (en) Information processing system and simulation method
US20200290169A1 (en) Gripping force adjustment device and gripping force adjustment system
US10268187B2 (en) Manufacturing cell machine management system based on component degree of consumption
WO2012124447A1 (en) Nc program generation method and cutting processing method
JP2019139755A (en) Polishing tool wear loss prediction device, machine learning device and system
US20230087886A1 (en) System and Method for Monitoring, Analyzing and Controlling Emissions in A Plant
JP7424807B2 (en) Machine learning device, power consumption prediction device, and control device
CN106970591B (en) Cooling mechanism for machine
JP2019082894A (en) Working condition adjusting device and machine learning device
KR20150074258A (en) Method and Apparatus for Monitoring Cutting Load of Machine Tool
JP2019185742A (en) Controller and control method
WO2023181399A1 (en) Numerical control device
JP7053518B2 (en) Cutting fluid amount adjustment device and cutting fluid amount adjustment system
JP2014219911A (en) Simulation device and simulation program
CN104884809A (en) Optimized technique for staging and de-staging pumps in a multiple pump system
JP7110624B2 (en) Operation planning method, operation planning device and program
WO2022210472A1 (en) Machining condition adjustment device
WO2023286151A1 (en) Machining time estimation method, machining time estimation device, computer program, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933537

Country of ref document: EP

Kind code of ref document: A1