WO2023181377A1 - 無線中継装置及び通信方法 - Google Patents

無線中継装置及び通信方法 Download PDF

Info

Publication number
WO2023181377A1
WO2023181377A1 PCT/JP2022/014540 JP2022014540W WO2023181377A1 WO 2023181377 A1 WO2023181377 A1 WO 2023181377A1 JP 2022014540 W JP2022014540 W JP 2022014540W WO 2023181377 A1 WO2023181377 A1 WO 2023181377A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
base station
function
repeater
terminal
Prior art date
Application number
PCT/JP2022/014540
Other languages
English (en)
French (fr)
Inventor
大輔 栗田
浩樹 原田
ウェイチー スン
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/014540 priority Critical patent/WO2023181377A1/ja
Publication of WO2023181377A1 publication Critical patent/WO2023181377A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/46TPC being performed in particular situations in multi hop networks, e.g. wireless relay networks

Definitions

  • the present invention relates to a wireless relay device and a communication method in a wireless communication system.
  • 5G or NR New Radio
  • 5G various wireless technologies and network architectures are being studied in order to meet the requirements of achieving a throughput of 10 Gbps or more and reducing the delay in the wireless section to 1 ms or less (for example, Non-Patent Document 1).
  • Next-generation communications are expected to use high frequency bands. Due to the characteristics of the high frequency band, improvement in communication quality is required from the viewpoints of reducing the number of scatterers, reducing shadowing effects, increasing distance attenuation, and the like. It is assumed that beam control and environment that ensure communication quality will be required.
  • Non-Patent Document 2 For example, in high frequency bands, there is a problem that dead zones are likely to occur due to the strong straightness of radio waves. Therefore, attempts have been made to improve communication quality in a multipath environment using passive repeaters, active reflectors (RIS: Reconfigurable Intelligent Surface), smart repeaters that receive, amplify, and re-radiate signals, etc. (For example, Non-Patent Document 2).
  • wireless relay devices such as reflectors or smart repeaters that reflect or transmit radio waves from a radio wave generation source such as a base station to a radio wave receiving destination such as a terminal and relay the radio waves are being considered.
  • a wireless relay device controlled by a network controls transmission power when relaying wireless signals between base station terminals.
  • the present invention has been made in view of the above points, and an object of the present invention is to determine the transmission power of a wireless signal relayed by a wireless relay device in a wireless communication system.
  • a communication unit that executes a terminal function of receiving a first signal including control information related to a relay function from a base station and transmitting a second signal to the base station; a controller configured to receive a third signal from the base station, transmit the third signal to a terminal, receive a fourth signal from the terminal, and receive a third signal from the base station; a relay unit that performs a relay function of transmitting a signal to the base station, and when the second signal and the fourth signal are not transmitted to the base station at the same time, the control unit
  • a wireless relay device is provided that determines transmission power to be applied to the fourth signal based on at least one of the transmission powers to be applied to the second signal.
  • FIG. 1 is a diagram for explaining a wireless communication system in an embodiment of the present invention.
  • 1 is a diagram showing an example of a functional configuration of a base station 10 in an embodiment of the present invention. It is a diagram showing an example of a functional configuration of a terminal 20 in an embodiment of the present invention. It is a diagram showing an example of the functional configuration of a wireless relay device 30 in an embodiment of the present invention. It is a figure showing an example of operation of wireless relay device 30 in an embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of communication in a high frequency band.
  • FIG. 3 is a diagram showing an example of a reflective wireless relay device 30 according to an embodiment of the present invention.
  • FIG 3 is a diagram showing an example of a transparent wireless relay device 30 according to an embodiment of the present invention. It is a figure showing example (1) of communication in an embodiment of the present invention. It is a figure which shows the example (2) of communication in embodiment of this invention. It is a flowchart for explaining example (1) of determining transmission power in an embodiment of the present invention. It is a flowchart for explaining example (2) of determining transmission power in an embodiment of the present invention. It is a diagram showing an example of the hardware configuration of a base station 10, a terminal 20, or a wireless relay device 30 in an embodiment of the present invention. It is a figure showing an example of composition of vehicle 2001 in an embodiment of the present invention.
  • LTE Long Term Evolution
  • NR system after LTE-Advanced
  • SS Synchronization signal
  • PSS Primary SS
  • SSS Secondary SS
  • PBCH Physical broadcast channel
  • PRACH Physical Terms such as random access channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (for example, Flexible Duplex, etc.). This method may also be used.
  • configure the wireless parameters etc. may mean pre-configuring a predetermined value, or may mean that the base station 10 or Wireless parameters notified from the terminal 20 may also be set.
  • FIG. 1 is a diagram for explaining a wireless communication system according to an embodiment of the present invention.
  • a wireless communication system according to an embodiment of the present invention includes a base station 10 and a terminal 20, as shown in FIG. There may be a plurality of base stations 10 and a plurality of terminals 20, respectively.
  • the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
  • the physical resources of a radio signal are defined in the time domain and frequency domain, and the time domain may be defined by the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols, and the frequency domain may be defined by the number of subcarriers or resource blocks. Good too.
  • a TTI Transmission Time Interval
  • a TTI Transmission Time Interval
  • a TTI Transmission Time Interval
  • the base station 10 is capable of performing carrier aggregation in which multiple cells (multiple CCs (component carriers)) are bundled to communicate with the terminal 20.
  • multiple CCs component carriers
  • carrier aggregation one primary cell (PCell, Primary Cell) and one or more secondary cells (SCell, Secondary Cell) are used.
  • the base station 10 transmits a synchronization signal, system information, etc. to the terminal 20.
  • the synchronization signals are, for example, NR-PSS and NR-SSS.
  • System information is transmitted, for example, on NR-PBCH or PDSCH, and is also referred to as broadcast information.
  • the base station 10 transmits a control signal or data to the terminal 20 on the DL (Downlink), and receives the control signal or data from the terminal 20 on the UL (Uplink).
  • control channels such as PUCCH and PDCCH
  • data shared channels
  • the terminal 20 is a communication device equipped with a wireless communication function, such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives control signals or data from the base station 10 via DL, and transmits control signals or data to the base station 10 via UL, thereby receiving various types of information provided by the wireless communication system. Use communication services. Note that the terminal 20 may be called a UE, and the base station 10 may be called a gNB.
  • the terminal 20 is capable of performing carrier aggregation, which bundles multiple cells (multiple CCs) and communicates with the base station 10.
  • Carrier aggregation uses one primary cell and one or more secondary cells. Also, a PUCCH-SCell with PUCCH may be used.
  • the base station 10 is a wireless base station operated in 5G or 6G, for example, and forms a cell.
  • the cell is a relatively large cell and is called a macro cell.
  • the base stations 10A to 10D are base stations operated in 5G or 6G.
  • Base station 10A to base station 10D form cells CA to D, respectively, which are smaller in size than the macro cell.
  • Cells A to D may be called small cells, macro cells, or the like. As shown in FIG. 1, cells A to D may be formed to be included in a macro cell.
  • a macro cell may generally be interpreted as a communicable area with a radius of several hundred meters to several tens of kilometers covered by one base station. Furthermore, a small cell may be interpreted as a general term for cells that have low transmission power and cover a smaller area compared to a macro cell.
  • the base station 10 and base stations 0A to 10D may be expressed as gNodeB (gNB) or BS (Base Station). Further, the terminal 20 may be expressed as UE, MS, or the like. Furthermore, the specific configuration of the wireless communication system, including the number and types of base stations and terminals, is not limited to the example shown in FIG.
  • the wireless communication system is not necessarily limited to a wireless communication system compliant with 5G or 6G.
  • the wireless communication system may be a 6G next generation wireless communication system or a wireless communication system compliant with LTE.
  • the base station 10 and the base stations 10A to 10D perform wireless communication with the terminal 20 according to 5G or 6G, for example.
  • the base station 10 and the base station 10A to the base station 10D and the terminal 20 use Massive MIMO (Massive MIMO), which generates beams with higher directivity by controlling radio signals transmitted from multiple antenna elements.
  • Massive MIMO Massive MIMO
  • Carrier aggregation (CA) that uses a bundle of component carriers (CC), dual connectivity (DC) that simultaneously communicates between the terminal 20 and each of two NG-RAN nodes, and wireless communication between wireless communication nodes such as gNB It may also support IAB (Integrated Access and Backhaul) in which backhaul and wireless access to the terminal 20 are integrated.
  • IAB Integrated Access and Backhaul
  • the wireless communication system can also support a high frequency band higher than the frequency range (FR) defined in 3GPP Release 15 below.
  • FR1 may correspond to 410 MHz to 7.125 GHz
  • FR2 may correspond to 24.25 GHz to 52.6 GHz.
  • the wireless communication system may support frequency bands greater than 52.6 GHz and up to 114.25 GHz.
  • the frequency band may be called a millimeter wave band.
  • the base station 10 that supports massive MIMO can transmit a beam.
  • Massive MIMO generally refers to MIMO communication using an antenna having 100 or more antenna elements, and enables faster wireless communication than before due to the multiplexing effect of multiple streams. It also enables advanced beamforming.
  • the beam width can be dynamically changed depending on the frequency band used or the status of the terminal 20. Further, by using a narrow beam, the received signal power can be increased due to beamforming gain. Furthermore, effects such as reduction of interference and effective use of radio resources are expected.
  • the wireless communication system may include a wireless relay device 30.
  • the wireless relay device 30 may be, for example, a reflector (RIS), a phase control reflector, a passive repeater, an IRS (Intelligent Reflecting Surface), or the like.
  • RIS Reconfigurable Intelligent Surface
  • Specific examples of the reflector may include those called metamaterial reflectors, dynamic metasurfaces, metasurface lenses, etc. (for example, Non-Patent Document 2).
  • the wireless relay device 30 relays a wireless signal transmitted from the base station 10A, for example.
  • “relay” may refer to at least one of “reflection”, “transmission”, “concentration (concentrating radio waves at approximately one point)", and “diffraction”.
  • the terminal 20 can receive the wireless signal relayed by the wireless relay device 30.
  • the wireless relay device 30 may relay the wireless signal transmitted from the terminal 20 or the wireless signal transmitted from the base station 10.
  • the wireless relay device 30 can change the phase of a wireless signal relayed toward the terminal 20. From this point of view, the wireless relay device 30 may be called a phase variable reflector. Note that in this embodiment, the wireless relay device 30 may have a function of changing the phase of a wireless signal and relaying the signal, but the present invention is not limited to this. Furthermore, the wireless relay device 30 may be called a repeater, a relay device, a reflect array, an IRS, a transmit array, or the like.
  • the wireless relay device 30 such as RIS may be called a batteryless device, a metamaterial function device, an intelligent reflecting surface, a smart repeater, or the like.
  • the wireless relay device 30 such as RIS or smart repeater may be defined as having the functions shown in 1) to 5) below.
  • the signals may have a function of receiving signals transmitted from the base station 10.
  • the signals are DL signals, SSB (SS/PBCH block), PDCCH, PDSCH, DM-RS (Demodulation Reference Signal), PT-RS (Phase Tracking Reference Signal), and CSI-RS (Channel Status Information Reference Signal).
  • SSB SS/PBCH block
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • DM-RS Demodulation Reference Signal
  • PT-RS Phase Tracking Reference Signal
  • CSI-RS Channel Status Information Reference Signal
  • RIS-dedicated signal etc. It may also have a function of receiving a signal carrying information related to the metamaterial function. Note that it may also have a transmission function to transmit the signal to the terminal 20.
  • the SSB may be a signal including a synchronization signal and broadcast information.
  • the signal may have a function of transmitting signals to the base station 10.
  • the signal may be a UL signal such as PRACH, PUCCH, PUSCH, DM-RS, PT-RS, SRS, or RIS-dedicated signal. It may also have a function of transmitting information related to the metamaterial function. Note that it may have a receiving function to receive the signal from the terminal 20.
  • It may have a frame synchronization function with the base station 10. Note that it may also have a frame synchronization function with the terminal 20.
  • the reflection function includes a function related to phase change, a function related to beam control (for example, a function related to control of TCI (Transmission Configuration Indication)-state, QCL (Quasi Co Location), beam selection application, spatial filter/ selective application of precoding weights).
  • the power change function may be power amplification.
  • receiving and transmitting or “relaying” in the wireless relay device 30 such as RIS or smart repeater means that the following function A is performed, but the following function B is not performed and the transmission is performed. You may.
  • Function A Apply phase shifter.
  • Function B No compensation circuit (eg, amplification, filter) is involved.
  • Function A Apply phase shifter and compensation circuit.
  • Function B No frequency conversion involved.
  • the wireless relay device 30 when the phase is changed, the amplitude may be amplified.
  • “relay” in the wireless relay device 30 such as RIS means to transmit a received signal as is without performing processing at the layer 2 or layer 3 level, or to transmit a signal received at the physical layer level as is. Alternatively, it may mean transmitting the received signal as it is without interpreting the signal (in this case, the phase may be changed, the amplitude may be amplified, etc.).
  • the base station 10, the terminal 20, and the wireless relay device 30 include a function to execute the embodiment described later.
  • the base station 10, the terminal 20, and the wireless relay device 30 may each have only one of the functions of the embodiments.
  • FIG. 2 is a diagram showing an example of the functional configuration of the base station 10.
  • base station 10 includes a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140.
  • the functional configuration shown in FIG. 2 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
  • the transmitting section 110 and the receiving section 120 may also be called a communication section.
  • the transmitting unit 110 includes a function of generating a signal to be transmitted to the terminal 20 side and transmitting the signal wirelessly.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 and acquiring, for example, information on a higher layer from the received signals.
  • the transmitter 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, DL data, etc. to the terminal 20. Further, the transmitter 110 transmits setting information and the like that will be explained in the embodiment.
  • the setting unit 130 stores preset setting information and various setting information to be sent to the terminal 20 in a storage device, and reads them from the storage device as necessary.
  • the control unit 140 performs, for example, resource allocation, overall control of the base station 10, and the like. Note that the functional unit related to signal transmission in the control unit 140 may be included in the transmitting unit 110, and the functional unit related to signal reception in the control unit 140 may be included in the receiving unit 120. Further, the transmitter 110 and the receiver 120 may be called a transmitter and a receiver, respectively.
  • FIG. 3 is a diagram showing an example of the functional configuration of the terminal 20.
  • the terminal 20 includes a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240.
  • the functional configuration shown in FIG. 3 is only an example. As long as the operations according to the embodiments of the present invention can be executed, the functional divisions and functional parts may have any names.
  • the transmitting section 210 and the receiving section 220 may also be called a communication section.
  • the transmitter 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and obtains higher layer signals from the received physical layer signals. Further, the transmitter 210 transmits HARQ-ACK, and the receiver 220 receives configuration information and the like that will be explained in the embodiment.
  • the setting unit 230 stores various setting information received from the base station 10 by the receiving unit 220 in a storage device, and reads it from the storage device as necessary.
  • the setting unit 230 also stores setting information that is set in advance.
  • the control unit 240 controls the entire terminal 20 and the like. Note that a functional unit related to signal transmission in the control unit 240 may be included in the transmitting unit 210, and a functional unit related to signal reception in the control unit 240 may be included in the receiving unit 220. Further, the transmitter 210 and the receiver 220 may be called a transmitter and a receiver, respectively.
  • FIG. 4 is a diagram showing an example of the functional configuration of the wireless relay device 30 in the embodiment of the present invention.
  • the wireless relay device 30 includes a transmitting section 310, a receiving section 320, a control section 330, a variable section 340, and an antenna section 350.
  • the functional divisions and functional parts may have any names.
  • the transmitting section 310 and the receiving section 320 may also be called a communication section.
  • the antenna section 350 includes at least one antenna connected to the variable section 340.
  • the antenna section 350 may be arranged as an array antenna.
  • antenna section 350 may be particularly referred to as a relay antenna.
  • the variable section 340 and the antenna section 350 may also be referred to as a relay section.
  • the variable section 340 is connected to the antenna section 350 and can change the phase, load, amplitude, etc.
  • the variable section 340 may be a variable phase shifter, a phase shifter, an amplifier, or the like. For example, by changing the phase of radio waves that reach a relay antenna from a radio wave generation source, the direction or beam of the radio waves can be changed.
  • the control section 330 is a control means that controls the variable section 340.
  • the control unit 330 functions as a control unit that controls the relay state when radio waves from the base station 10 or the terminal 20 are relayed without signal interpretation.
  • the control unit 330 may change the relay state based on control information received from the base station 10 or the terminal 20 via the communication unit, and may change the relay state based on the reception state of radio waves from the base station 10 or the terminal 20.
  • the relay state may also be changed.
  • the control unit 330 may select an appropriate reception beam and transmission beam (direction thereof) based on control information such as SSB, and control the variable unit 340.
  • the control section 330 may select an appropriate combination of reception direction and transmission direction from the reception state based on criteria such as reception quality or maximum reception power, and control the variable section 340.
  • the control unit 330 also provides information regarding the propagation path between the terminal 20 or the base station 10A and the antenna unit 350 (including information estimated based on the reception state and control information; the same applies hereinafter). ), the variable section 340 can be controlled.
  • the control unit 330 uses a publicly known method such as an active repeater or RIS to change the phase of the radio waves received from the base station 10A without using transmission power, so that the control unit 330 changes the phase of the radio waves received from the base station 10A without using the transmission power. 20) etc. can be relayed in a specific direction.
  • the control unit 330 controls the phase of the radio signal for relaying toward the terminal 20 or the base station 10A based on the estimated propagation path information H PT and H RP . That is, by changing the phase of an array antenna or the like, radio waves can be relayed in a specific direction using the same principle as beamforming or the like.
  • the wireless relay device 30 controls (changes) only the phase of the wireless signal (radio wave) by the control unit 330, and relays the wireless signal without power supply without amplifying the power of the wireless signal to be relayed. You may.
  • control unit 330 may acquire information based on the reception state. Further, the receiving unit 320 may acquire control information from the base station 10A or the terminal 20. For example, the receiving unit 320 may receive various signals such as SSB (including the various signals exemplified in the above functions) transmitted from the base station 10A or the terminal 20 as the control information.
  • SSB including the various signals exemplified in the above functions
  • control unit 330 controls the propagation path between the radio wave generation source (for example, the base station 10A or the terminal 20) and the antenna unit 350 based on the reception state (for example, change in received power, etc.) during control of the variable unit 340.
  • the information (H PT and H RP ) may be estimated.
  • Propagation path information regarding each propagation path is specifically information such as amplitude or phase, and in the embodiment of the present invention, information estimated regarding the propagation path of radio waves arriving at antenna section 350. It is.
  • the control unit 330 uses a principle similar to I/Q (In-phase/Quadrature) detection, and is based on the change in received power when the phase of the variable unit 340 of the array-shaped antenna unit 350 is switched orthogonally. Then, the propagation path information of the antenna section 350 may be estimated.
  • FIG. 5 is a diagram showing an example of the operation of the wireless relay device 30 in the embodiment of the present invention.
  • the wireless relay device 30 is interposed between the base station 10A (or another base station 10, etc.) and the terminal 20, and is interposed between the base station 10A and the terminal 20. Relays (reflects, transmits, aggregates, diffracts, etc.) wireless signals sent and received at
  • the base station 10A and the terminal 20 directly transmit and receive wireless signals without going through the wireless relay device 30 when the wireless quality is good.
  • the wireless relay device 30 relays the wireless signals transmitted and received between the base station 10A and the terminal 20. do.
  • the radio relay device 30 obtains propagation path information between a radio wave generation source such as the base station 10A or the terminal 20 and the relay antenna based on changes in received power during control of the variable unit 340 such as a variable phase shifter.
  • the wireless signal is relayed to the radio wave receiving destination such as the terminal 20 .
  • the wireless relay device 30 is not limited to estimating the propagation path information H PT and H RT , and controls the variable unit 340 such as a variable phase shifter based on the control information received from the base station 10A or the terminal 20. Accordingly, the wireless signal may be relayed to a radio wave reception destination such as the base station 10A or the terminal 20.
  • the propagation path or propagation channel is an individual communication path for wireless communication, and here, it is a communication path between each transmitting and receiving antenna (base station antenna, terminal antenna, etc. in the figure).
  • the wireless relay device 30 includes an antenna unit 350 having a small multi-element antenna compatible with massive MIMO, and a variable phase shifter or phase shifter that changes the phase of a wireless signal, essentially a radio wave, to a specific phase.
  • the variable unit 340 is used to control the phase of radio waves relayed to the terminal 20 or the base station 10A.
  • FIG. 6 is a diagram showing an example of communication in a high frequency band.
  • a dead zone is likely to occur due to the strong straightness of radio waves.
  • the distance between the base station 10A and the terminal 20 is visible, even when using the high frequency band, there is no effect on the wireless communication between the base station 10A and the terminal 20.
  • the line of sight between the base station 10A and the terminal 20 is blocked by a shielding object such as a building or a tree, the wireless quality will be significantly degraded. That is, if the terminal 20 moves to a blind zone where it is blocked by a shielding object, communication may be interrupted.
  • radio wave propagation control devices such as RIS or smart repeaters.
  • communication characteristics can be improved by controlling the propagation characteristics of base station signals, coverage can be expanded without the need for a signal source, and installation and operating costs can be reduced by adding more base stations.
  • radio wave propagation control devices There are two types of conventional radio wave propagation control devices: passive type and active type. Although the passive type has the advantage of not requiring control information, it cannot follow moving objects or environmental changes. On the other hand, although the active type has the disadvantage of requiring control information and increasing overhead, it can variably control the radio wave propagation characteristics by changing the load (phase) state of the control antenna, and it It is also possible to follow fluctuations, etc.
  • FB feedback
  • propagation path information standards There are two types of active radio wave propagation control devices and control methods: feedback (FB) standards and propagation path information standards.
  • FB feedback
  • propagation path information standards In the FB standard, a variable radio wave propagation control device searches for optimal conditions by having the terminal 20 or the like feed back the communication state when the load (phase) state is randomly changed.
  • the propagation path information norm the load state is determined based on the propagation path information between the base station and the radio wave propagation control device, and optimal radio wave propagation control is possible. In the embodiment of the present invention, any type can be applied.
  • Non-Patent Document 2 there are various types of relay methods such as reflection, transmission, diffraction, and aggregation. (see Non-Patent Document 2, etc.).
  • FIG. 7 is a diagram showing an example of a reflective wireless relay device 30 according to an embodiment of the present invention. An example of the system configuration of the reflective wireless relay device 30 will be described using FIG. 7.
  • FIG. 7 is a diagram showing the relationship among the transmitting antenna Tx of the base station 10A, etc., the relay antenna Sx of the transparent wireless relay device 30, and the receiving antenna Rx of the terminal 20, etc.
  • MIMO is taken as an example, and there are multiple propagation paths between Tx and Sx and multiple propagation paths between Sx and Rx.
  • the device 30 controls a variable section 340 having a variable phase shifter and the like of the relay antenna Sx to relay radio waves.
  • the array-shaped relay antennas are arranged facing in the same direction. Thereby, the propagation path of the relay antenna can be estimated based on the reception state observed when changing the phase condition of the relay antenna in multiple ways.
  • FIG. 8 is a diagram showing an example of a transparent wireless relay device 30 according to an embodiment of the present invention.
  • An example of the system configuration of the transparent wireless relay device 30 will be described using FIG. 8.
  • FIG. 8 is a diagram showing the relationship among the transmitting antenna Tx of the base station 10A, etc., the relay antenna Sx of the transparent wireless relay device 30, and the receiving antenna Rx of the terminal 20, etc.
  • MIMO is taken as an example, and there are multiple propagation paths between Tx and Sx and multiple propagation paths between Sx and Rx.
  • the relay device 30 relays the radio waves arriving from one side to the other side via a variable part 340 such as a variable phase shifter of the relay antenna Sx.
  • the reference antenna on the left side of the figure and the relay antenna on the right side of the figure are paired and oriented in opposite directions so that radio waves arriving from one side can be relayed to the other side. It is located.
  • the receiving state may be measured by configuring the relay antenna to be able to detect the power reaching the relay antenna using a power detector or the like.
  • the propagation path of the relay antenna can be estimated based on the received signal observed when the phase conditions of the relay antenna are changed in multiple ways.
  • future networks such as 6G will require even higher quality than 5G.
  • ultra-high speed on the order of terabps, high reliability and low delay on the level of optical communication, etc. are required.
  • a design that takes into account ultra-coverage expansion, ultra-long distance communication, ultra-reliable communication, virtual cells, flexible networks, mesh networks, side link reinforcement, RIS or smart repeaters is required.
  • terahertz waves very high frequencies
  • the advantages are expected to be higher speeds due to ultra-wideband use and lower delays due to short symbol lengths, but the advantages are that the coverage is narrower due to the large attenuation factor.
  • disadvantages such as a decrease in reliability due to high straightness are also expected. It is necessary to consider how to ensure redundancy for each location where 6G communication is required, that is, how to increase the number of communication transmission points.
  • the RIS reflects or transmits a beam transmitted from the base station 10 or terminal 20 in a predetermined direction and delivers it to the terminal 20 or base station 10.
  • a passive RIS is a device that does not change control of the reflection angle or beam width depending on the position of the mobile station, and while control information is unnecessary, precise beam control is difficult.
  • An active RIS is a device that changes control of the reflection angle, beam width, etc. according to the position of the mobile station, and while it is capable of precise beam control, it requires control information, which increases overhead. RIS allows for increased transmission points for communications.
  • RIS may have the names shown in 1) to 5) below, but is not limited to these.
  • the RIS may be any device that has a predetermined function, and the predetermined function may be, for example, at least one of functions 1) and 2) shown below.
  • UE function Receiving function of signals transmitted from the base station 10 (for example, DL signal, SSB, PDCCH, PDSCH, DM-RS, PT-RS, CSI-RS, RIS dedicated signal).
  • the receiving function may receive information related to the following 2) metamaterial function.
  • a function of transmitting signals to the base station 10 for example, UL signals, PRACH, PUCCH, PUSCH, DM-RS, PT-RS, SRS, RIS dedicated signals).
  • the transmission function may transmit information related to the following 2) metamaterial function.
  • Reflection function for example, phase change of the signal transmitted from the metamaterial function base station 10 or terminal 20.
  • the signal may be reflected by changing the phase of each of the plurality of reflection elements included in the RIS, or the signal may be reflected by changing the phase common to the plurality of reflection elements.
  • Functions related to beam control for example, functions related to TCI-state and QCL control, selective application of beams, selective application of spatial filters/precoding weights).
  • a function for changing the power of a signal transmitted from the base station 10 or the terminal 20 for example, power amplification).
  • a different power change may be made for each reflective element included in the RIS, or a common power change may be made for a plurality of reflective elements.
  • RIS Receiveive and transmit in RIS may mean reflecting radio waves/signals.
  • base station and “terminal” will be used hereinafter, the term “base station” and “terminal” are not limited to these, and may be replaced with communication device. RIS may be replaced by smart repeaters, repeaters, etc.
  • the RIS may operate under the assumptions shown in 1)-6) below. 1) Network operator configures RIS 2) RIS is fixed and does not move 3) RIS relays signals from only one base station 4) Capable of receiving and transmitting control signals 5) Half-duplex 6) Single RIS environment running on
  • a network-controlled repeater which is a wireless relay device controlled by a network
  • the following scenarios 1) to 4) are assumed. Note that hereinafter, the "network control repeater” will also be referred to as “repeater.”
  • Network controlled repeaters are used as in-band RF repeaters to extend the coverage of FR1 and FR2. Network controlled repeaters are also being considered with FR2 deployment in outdoor or O2I (outdoor to indoor) scenarios. 2) The network control repeater is assumed to be fixed and single-hop. 3) The network control repeater is transparent to the UE. 4) gNB-repeater link and repeater-UE link can be maintained simultaneously.
  • the side control information sent from the network to control the network control repeater may include, for example, the following: Information related to maximum transmission power, information related to beamforming, timing information for aligning transmission and reception boundaries, UL-DL-TDD settings, ON/OFF information of repeater function for interference control and power saving, interference control Power control information for.
  • L1/L2 signaling for notifying side control information is being considered.
  • management and cooperative operation by identifying and authenticating multiple network control repeaters is being considered.
  • FIG. 9 is a diagram showing an example (1) of communication in the embodiment of the present invention. As shown in FIG. 9, repeater transmissions can be classified into the following three types.
  • the repeater may determine the transmission power for the UL transmission in 2) above and the DL transmission in 3) above.
  • the transmission power for UL transmission in 2) above needs to be determined in consideration of the transmission power for UL transmission in 1) above.
  • the transmission power for DL transmission in 3) above may be determined separately from that for UL transmission.
  • repeater reception can be classified into the following three types.
  • FIG. 10 is a diagram showing an example (2) of communication in the embodiment of the present invention. As shown in FIG. 10, the following three cases are assumed for UL transmission by the network control repeater. Note that the transmission by the repeater function may further include DL transmission from the repeater to the UE.
  • FIG. 11 is a flowchart for explaining example (1) of determining transmission power in the embodiment of the present invention.
  • the network control repeater determines the transmit power of the UE function according to existing technology. For example, the network may control the transmit power of the UE function by sending side control information to the repeater.
  • the network control repeater determines the transmit power of the repeater function. Note that step S12 may be executed before step S11. The transmission power of the repeater function in step S12 may be determined as in 1)-4) shown below.
  • the transmit power of the repeater function may be determined by the repeater implementation.
  • the repeater may determine the transmit power of the repeater function based on data rate, frequency/time resources. For example, a maximum output power (MOP) for a repeater function may be reported to the network, or the network may set a maximum allowable transmit power for the repeater function to the repeater.
  • MOP maximum output power
  • the maximum transmit power or power headroom of the repeater function may be the same as the maximum transmit power or power headroom of the UE function.
  • the repeater may set a transmit power that does not exceed the maximum allowed transmit power.
  • the transmit power of the repeater function may be determined to be equal to the transmit power of the UE function.
  • the repeater may use the transmit power of the repeater function as the transmit power of the UE function of the nearest PUSCH or other UL channel or signal.
  • the repeater may determine the transmission power of the repeater function with reference to one or both of the total power (dBm) and the power spectral density (dBm/Hz).
  • the repeater may set the transmit power of the repeater function to be the transmit power of the UE function that applies the same beam as the beam applied to UL transmission of the repeater function.
  • the transmit power of the repeater function may be determined with reference to the transmit power of the UE function.
  • the repeater may set the transmit power of the repeater function to a value obtained by adding an offset value to the transmit power of the UE function of the most recent PUSCH or other UL channel or signal.
  • the offset value may be defined, set, or determined by the repeater implementation.
  • the repeater may refer to the transmit power of the UE function applying the same beam as the beam applied to the UL transmission of the repeater function to determine the transmit power of the repeater function.
  • the transmit power of the repeater function is set or controlled separately from the transmit power of the UE function from the network by RRC (Radio Resource Control) signaling, MAC (Medium Access Control) - CE (Control Element) or DCI (Downlink Control Information). may be done.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • CE Control Element
  • DCI Downlink Control Information
  • the transmission power of the repeater function may be semi-statically set by the network.
  • a repeater function may always transmit a signal with a set power, and some parameters may be common to those of the UE function.
  • the transmission power of the repeater function may be dynamically set from the network, for example, by setting the transmission power for each time resource.
  • the transmission power of the repeater function may be controlled by, for example, TPC (Transmission Power Control).
  • TPC Transmission Power Control
  • Control related to TPC may be common to TPC for UE, such as DCI format 2_2 or 2_3, or a new DCI format for TPC may be introduced for repeater function.
  • One closed loop may be supported for repeater functionality.
  • multiple closed loops may be supported for repeater functionality.
  • the number of closed loops supported for repeater functionality may be configurable.
  • a formula for determining the transmit power of the repeater function may be defined based on semi-static and dynamic parameters. Furthermore, different transmission powers may be notified or set semi-statically or dynamically for UL transmission beams with different repeater functions.
  • FIG. 12 is a flowchart for explaining example (2) of determining transmission power in the embodiment of the present invention.
  • the network control repeater jointly determines the transmit power of the UE function and the transmit power of the repeater function.
  • the transmission power of the repeater function in step S21 may be determined as in 1) and 2) shown below.
  • the transmit power of the repeater function may be determined by the repeater implementation.
  • the repeater may determine the transmit power of the repeater function based on data rate, frequency/time resources.
  • the maximum transmit power for a repeater function may be reported to the network, or the network may set a maximum allowable transmit power for the repeater function to the repeater.
  • the repeater may set a transmit power that does not exceed the maximum allowed transmit power.
  • the transmit power of the repeater function may be set or controlled by RRC signaling, MAC-CE or DCI from the network.
  • the transmission power of the repeater function may be semi-statically set by the network.
  • a repeater function may always transmit a signal with a set power, and some parameters may be common to those of the UE function.
  • the transmission power of the repeater function may be dynamically set from the network, for example, by setting the transmission power for each time resource.
  • the transmission power of the repeater function may be controlled by, for example, TPC.
  • Control related to TPC may be common to TPC for UE, such as DCI format 2_2 or 2_3, or a new DCI format for TPC may be introduced for repeater function.
  • One closed loop may be supported for repeater functionality.
  • multiple closed loops may be supported for repeater functionality.
  • the number of closed loops supported for repeater functionality may be configurable.
  • a formula for determining the transmit power of the repeater function may be defined based on semi-static and dynamic parameters. Furthermore, different transmission powers may be notified or set semi-statically or dynamically for UL transmission beams with different repeater functions.
  • the transmission power of the repeater function in step S12 shown in FIG. 11 may be determined as shown in 1)-4) below.
  • the transmit power of the repeater function may be determined by the repeater implementation.
  • the repeater may determine the transmit power of the repeater function based on data rate, frequency/time resources.
  • the maximum transmit power for a repeater function may be reported to the network, or the network may set a maximum allowable transmit power for the repeater function to the repeater.
  • the maximum transmit power or power headroom of the repeater function may be the same as the maximum transmit power or power headroom of the UE function.
  • the repeater may set a transmit power that does not exceed the maximum allowed transmit power.
  • a maximum transmit power for the entire repeater may be set or defined, and the maximum transmit power for the repeater function may be the maximum transmit power for the entire repeater minus the transmit power for the UE function.
  • the transmit power of the repeater function may be determined to be equal to the transmit power of the UE function.
  • the repeater may use the transmit power of the repeater function as the transmit power of the UE function of the nearest PUSCH or other UL channel or signal.
  • the repeater may determine the transmission power of the repeater function with reference to one or both of the total power (dBm) and the power spectral density (dBm/Hz).
  • the repeater may set the transmit power of the repeater function to be the transmit power of the UE function that applies the same beam as the beam applied to UL transmission of the repeater function.
  • the repeater may make the transmission power of the repeater function the same as the transmission power of the UE function.
  • the repeater may make the transmission power of the PUSCH transmitted by the UE function the same as the transmission power by the repeater function.
  • the transmit power of the entire repeater may be twice the transmit power of the UE function.
  • the transmit power of the repeater function may be determined with reference to the transmit power of the UE function.
  • the repeater may set the transmit power of the repeater function to a value obtained by adding an offset value to the transmit power of the UE function of the most recent PUSCH or other UL channel or signal.
  • the offset value may be defined, set, or determined by the repeater implementation.
  • the repeater may refer to the transmit power of the UE function applying the same beam as the beam applied to the UL transmission of the repeater function to determine the transmit power of the repeater function.
  • the transmission power of the repeater function may be set or controlled separately from the transmission power of the UE function by RRC signaling, MAC-CE, or DCI from the network.
  • the transmission power of the repeater function may be semi-statically set by the network.
  • a repeater function may always transmit a signal with a set power, and some parameters may be common to those of the UE function.
  • the transmission power of the repeater function may be dynamically set from the network, for example, by setting the transmission power for each time resource.
  • the transmission power of the repeater function may be controlled by, for example, TPC.
  • Control related to TPC may be common to TPC for UE, such as DCI format 2_2 or 2_3, or a new DCI format for TPC may be introduced for repeater function.
  • One closed loop may be supported for repeater functionality.
  • multiple closed loops may be supported for repeater functionality.
  • the number of closed loops supported for repeater functionality may be configurable.
  • a formula for determining the transmit power of the repeater function may be defined based on semi-static and dynamic parameters. Furthermore, different transmission powers may be notified or set semi-statically or dynamically for UL transmission beams with different repeater functions.
  • the transmission power of the repeater function in step S21 shown in FIG. 12 may be determined as in 1) and 2) shown below.
  • the transmit power of the repeater function may be determined by the repeater implementation.
  • the repeater may determine the transmit power of the repeater function based on data rate, frequency/time resources.
  • the maximum transmit power of the repeater function may be reported to the network, and the network may set the maximum allowable transmit power of the repeater function and/or the UE function to the repeater.
  • the repeater may set the repeater function and/or the UE function to a transmit power that does not exceed the maximum allowable transmit power.
  • the transmit power of the repeater function may be set or controlled by RRC signaling, MAC-CE or DCI from the network.
  • the transmission power of the repeater function may be semi-statically set by the network.
  • a repeater function may always transmit a signal with a set power, and some parameters may be common to those of the UE function.
  • the transmission power of the repeater function may be dynamically set from the network, for example, by setting the transmission power for each time resource.
  • the transmission power of the repeater function may be controlled by, for example, TPC.
  • Control related to TPC may be common to TPC for UE, such as DCI format 2_2 or 2_3, or a new DCI format for TPC may be introduced for repeater function.
  • One closed loop may be supported for repeater functionality.
  • multiple closed loops may be supported for repeater functionality.
  • the number of closed loops supported for repeater functionality may be configurable.
  • a formula for determining the transmit power of the repeater function may be defined based on semi-static and dynamic parameters. Furthermore, different transmission powers may be notified or set semi-statically or dynamically for UL transmission beams with different repeater functions.
  • the transmit power of the repeater function may be determined as shown in 1)-3) below.
  • the transmit power of the repeater function may be determined by the repeater implementation.
  • the repeater may determine the transmit power of the repeater function based on data rate, frequency/time resources.
  • the maximum transmit power for a repeater function may be reported to the network, or the network may set a maximum allowable transmit power for the repeater function to the repeater.
  • the repeater may set a transmit power that does not exceed the maximum allowed transmit power.
  • the transmission power of the repeater function may always be a predetermined transmission power. Switching between transmission power for non-simultaneous transmission in the UE function and repeater function and transmission power for simultaneous transmission in the UE function and repeater function is determined.
  • the transmit power of the repeater function may be changed.
  • the transmit power for non-simultaneous transmission in the UE function and the repeater function and the transmit power for simultaneous transmission in the UE function and the repeater function may be determined by the same mechanism or formula.
  • the network controlled repeater may determine the transmission power based on the transmission environment or may determine the transmission power based on a notification from the network.
  • the repeater may report the target transmission power to the network in consideration of the power balance between the repeater function and the UE function, or the power balance between UL transmission and DL transmission.
  • the report may include at least one of the target transmit power of the entire repeater, the target transmit power of the repeater function, and the target transmit power of the UE function.
  • the report may be a target transmit power indicating a set transmit power or an offset from a maximum transmit power, or it may be a power headroom of a single value or a range of values.
  • the report may be transmitted from the repeater to the network via UCI (Uplink Control Information), MAC-CE, or RRC signaling.
  • UCI Uplink Control Information
  • MAC-CE Medium Access Control Information
  • the network may set the updated target transmit power to the repeater based on the report. For example, upon receiving such a report, the network may or may not explicitly respond to the repeater that the target transmit power has been updated.
  • the repeater may report its capabilities regarding transmission power management to the network. For example, a repeater may report to the network a capability indicating whether to support side control information related to transmission power control. For example, the maximum transmit power across the repeater, repeater function or UE function may be reported from the repeater to the network.
  • a repeater may report its capabilities to the network indicating whether it supports a frequency band or not. For example, a repeater may report to the network a single capability indicating whether it supports all frequency bands, respectively, or may report that single capability to the network as a repeater capability. . For example, repeaters may report their capabilities to the network on a per frequency band basis. For example, a repeater may report capabilities to the network by frequency range (eg, FR1, FR2, etc.).
  • a repeater may report a capability to the network indicating whether it supports a given duplex scheme. For example, a repeater may report to the network a single capability indicating whether it supports each of all duplex methods, or it may report that single capability to the network as a repeater capability. Good too. For example, a repeater may report capabilities to the network for each duplex method (eg, TDD, FDD, etc.).
  • the embodiments described above allow the network controlled repeater to determine the power of the signal that the repeater function transmits. Further, the network control repeater can determine the transmission power of each function based on the transmission status by the repeater function and the UE function.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, as (signing), but these are limited to I can't do it.
  • a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
  • the base station 10, terminal 20, wireless relay device 30, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 13 is a diagram illustrating an example of the hardware configuration of the base station 10, terminal 20, and wireless relay device 30 according to an embodiment of the present disclosure.
  • the base station 10, terminal 20, and wireless relay device 30 described above are physically computers that include a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. It may also be configured as a device.
  • the word “apparatus” can be read as a circuit, a device, a unit, etc.
  • the hardware configuration of the base station 10, terminal 20, and wireless relay device 30 may be configured to include one or more of each device shown in the figure, or may be configured without including some of the devices. good.
  • Each function in the base station 10, terminal 20, and wireless relay device 30 is performed by the processor 1001 and the communication device 1004 by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002. This is realized by controlling communication by the storage device 1002 and at least one of data writing in the storage device 1002 and the auxiliary storage device 1003.
  • the processor 1001 for example, operates an operating system to control the entire computer.
  • the processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control unit 140, control unit 240, etc. may be implemented by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes in accordance with these.
  • programs program codes
  • the control unit 140 of the base station 10 shown in FIG. 2 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
  • the control unit 240 of the terminal 20 shown in FIG. 3 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
  • the storage device 1002 is a computer-readable recording medium, such as a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), or an EEPROM (Electrically Erasable Program). by at least one of mable ROM), RAM (Random Access Memory), etc. may be configured.
  • the storage device 1002 may be called a register, cache, main memory, or the like.
  • the storage device 1002 can store executable programs (program codes), software modules, and the like to implement a communication method according to an embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk, etc.). -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc.
  • the above-mentioned storage medium may be, for example, a database including at least one of the storage device 1002 and the auxiliary storage device 1003, a server, or other suitable medium.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitting and receiving unit may be physically or logically separated into a transmitting unit and a receiving unit.
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10, the terminal 20, and the wireless relay device 30 are equipped with a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and a programmable device (PLD).
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable device
  • mable Logic Device FPGA (Field Programmable Gate Array ), etc., and a part or all of each functional block may be realized by the hardware.
  • processor 1001 may be implemented using at least one of these hardwares.
  • the radio relay device 30 may include a variable phase shifter, a phase shifter, an amplifier, an antenna, an array antenna, etc. as hardware that constitutes the variable section 340 and the antenna section 350, as necessary.
  • FIG. 14 shows an example of the configuration of the vehicle 2001.
  • the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013.
  • Each aspect/embodiment described in this disclosure may be applied to a communication device mounted on vehicle 2001, for example, may be applied to communication module 2013.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • the electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
  • the information service department 2012 includes various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide various information such as driving information, traffic information, and entertainment information, as well as one or more devices that control these devices. It consists of an ECU.
  • the information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like.
  • the driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden.
  • the system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
  • Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port.
  • the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 29 in the control unit 2010.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 2013 may be located either inside or outside the electronic control unit 2010.
  • the external device may be, for example, a base station, a mobile station, or the like.
  • the communication module 2013 transmits the current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication.
  • the communication module 2013 also receives the front wheel and rear wheel rotational speed signals inputted to the electronic control unit 2010 and acquired by the rotational speed sensor 2022, the front wheel and rear wheel air pressure signals acquired by the air pressure sensor 2023, and the vehicle speed sensor. 2024, an acceleration signal obtained by acceleration sensor 2025, an accelerator pedal depression amount signal obtained by accelerator pedal sensor 2029, a brake pedal depression amount signal obtained by brake pedal sensor 2026, and a shift lever.
  • a shift lever operation signal acquired by the sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028 are also transmitted to the external device via wireless communication.
  • the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001.
  • Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
  • the terminal function receives a first signal including control information related to a relay function from a base station, and transmits a second signal to the base station.
  • a communication unit that executes the communication, a control unit that controls a relay function based on the control information, a third signal that is received from the base station, the third signal that is transmitted to the terminal, and a fourth signal that is transmitted.
  • a relay unit that performs a relay function of receiving the fourth signal from the terminal and transmitting the fourth signal to the base station, and the control unit simultaneously transmits the second signal and the fourth signal to the base station.
  • a wireless relay device is provided that determines transmission power to be applied to the fourth signal based on at least one of the control information and the transmission power to be applied to the second signal.
  • the above configuration allows the network controlled repeater to determine the power of the signal transmitted by the repeater function. Further, the network control repeater can determine the transmission power of each function based on the transmission status by the repeater function and the UE function. That is, in a wireless communication system, it is possible to determine the transmission power of a wireless signal relayed by a wireless relay device.
  • the control unit may determine a maximum transmission power to be applied to the fourth signal. This configuration allows the network controlled repeater to determine the power of the signal transmitted by the repeater function. Further, the network control repeater can determine the transmission power of each function based on the transmission status by the repeater function and the UE function.
  • the control unit in both cases where the second signal and the fourth signal are not transmitted to the base station at the same time and when the second signal and the fourth signal are simultaneously transmitted to the base station,
  • the transmission power applied to the fourth signal may be constant.
  • This configuration allows the network controlled repeater to determine the power of the signal transmitted by the repeater function. Further, the network control repeater can determine the transmission power of each function based on the transmission status by the repeater function and the UE function.
  • the communication unit may transmit a report indicating at least one of a target transmission power related to a relay function and a target transmission power related to a terminal function to the base station via the second signal.
  • This configuration allows the network controlled repeater to determine the power of the signal transmitted by the repeater function. Further, the network control repeater can determine the transmission power of each function based on the transmission status by the repeater function and the UE function.
  • the communication unit may transmit a capability indicating whether or not to support transmission power control based on the control information to the base station via the second signal.
  • This configuration allows the network controlled repeater to determine the power of the signal transmitted by the repeater function. Further, the network control repeater can determine the transmission power of each function based on the transmission status by the repeater function and the UE function.
  • a relay procedure for performing a relay function of transmitting the fourth signal to the base station, and when the second signal and the fourth signal are not transmitted to the base station at the same time, the control information and the second signal are transmitted to the base station.
  • a communication method is provided in which a wireless relay device executes a procedure for determining a transmission power to be applied to the fourth signal based on at least one of transmission powers to be applied to the fourth signal.
  • the above configuration allows the network controlled repeater to determine the power of the signal transmitted by the repeater function. Further, the network control repeater can determine the transmission power of each function based on the transmission status by the repeater function and the UE function. That is, in a wireless communication system, it is possible to determine the transmission power of a wireless signal relayed by a wireless relay device.
  • the operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components.
  • the order of processing may be changed as long as there is no contradiction.
  • Software operated by the processor included in the base station 10 according to the embodiment of the present invention and software operated by the processor included in the terminal 20 according to the embodiment of the present invention are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
  • the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information may be physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling). , broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • Each aspect/embodiment described in this disclosure is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system). system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is an integer or decimal number, for example)), FRA (Future Radio Access), NR (new Radio), New radio access ( NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802 Systems that utilize .16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems, and that are extended, modified, created, and defined based on these.
  • the present invention may be
  • the base station 10 may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal 20 are performed by the base station 10 and other network nodes other than the base station 10. It is clear that this can be done by at least one of the following: for example, MME or S-GW (possible, but not limited to).
  • MME Mobility Management Entity
  • S-GW Packet Control Function
  • the other network node may be a combination of multiple other network nodes (for example, MME and S-GW).
  • the information, signals, etc. described in this disclosure can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
  • the input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
  • the determination in the present disclosure may be performed based on a value represented by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (e.g. , comparison with a predetermined value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • At least one of the channel and the symbol may be a signal.
  • the signal may be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” are used interchangeably.
  • radio resources may be indicated by an index.
  • Base Station BS
  • wireless base station base station
  • base station fixed station
  • NodeB eNodeB
  • gNodeB gNodeB
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services can also be provided by Remote Radio Head).
  • RRHs small indoor base stations
  • Communication services can also be provided by Remote Radio Head).
  • the term "cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, etc.
  • the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of terminals 20 (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • the terminal 20 may have the functions that the base station 10 described above has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be replaced with side channels.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station may have the functions that the user terminal described above has.
  • determining may encompass a wide variety of operations.
  • “Judgment” and “decision” include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a “judgment” or “decision.”
  • judgment and “decision” refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access.
  • (accessing) may include considering something as a “judgment” or “decision.”
  • judgment and “decision” refer to resolving, selecting, choosing, establishing, comparing, etc. as “judgment” and “decision”. may be included.
  • judgment and “decision” may include regarding some action as having been “judged” or “determined.”
  • judgment (decision) may be read as “assuming", “expecting", “considering”, etc.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements and to each other. It may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
  • the bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges, and the like.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot depending on the applied standard.
  • RS Reference Signal
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, and transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • transmitter/receiver transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
  • a slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a Transmission Time Interval (TTI)
  • TTI Transmission Time Interval
  • multiple consecutive subframes may be called a TTI
  • one slot or minislot may be called a TTI. It's okay.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each terminal 20
  • TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on newerology.
  • the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
  • PRBs physical resource blocks
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. May be called.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a bandwidth part (which may also be called a partial bandwidth or the like) may represent a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured for the terminal 20 within one carrier.
  • At least one of the configured BWPs may be active, and the terminal 20 does not need to assume that it transmits or receives a given signal/channel outside the active BWP.
  • Note that "cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • notification of prescribed information is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
  • variable section 340 and the antenna section 350 are examples of a relay section.
  • Base station 110 Transmitting section 120 Receiving section 130 Setting section 140 Control section 20 Terminal 210 Transmitting section 220 Receiving section 230 Setting section 240 Control section 30 Wireless relay device 310 Transmitting section 320 Receiving section 330 Control section 340 Variable section 350 Antenna section 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Drive section 2003 Steering section 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Front wheel 2008 Rear wheel 2009 Axle 2010 Electronic control section 2012 Information service section 2013 communication Module 2021 Current sensor 2022 Rotational speed sensor 2023 Air pressure sensor 2024 Vehicle speed sensor 2025 Acceleration sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving support system unit 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 Communication port (IO port)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

無線中継装置は、中継機能に係る制御情報を含む第1の信号を基地局から受信し、第2の信号を前記基地局に送信する端末機能を実行する通信部と、前記制御情報に基づいて、中継機能を制御する制御部と、第3の信号を前記基地局から受信し、前記第3の信号を端末に送信し、第4の信号を前記端末から受信し、前記第4の信号を前記基地局に送信する中継機能を実行する中継部とを有し、前記制御部は、前記第2の信号及び前記第4の信号を同時に前記基地局に送信しない場合、前記制御情報及び前記第2の信号に適用する送信電力のうち少なくとも一つに基づいて、前記第4の信号に適用する送信電力を決定する。

Description

無線中継装置及び通信方法
 本発明は、無線通信システムにおける無線中継装置及び通信方法に関する。
 3GPP(3rd Generation Partnership Project)では、システム容量の更なる大容量化、データ伝送速度の更なる高速化、無線区間における更なる低遅延化等を実現するために、5GあるいはNR(New Radio)と呼ばれる無線通信方式(以下、当該無線通信方式を「NR」という。)の検討が進んでいる。5Gでは、10Gbps以上のスループットを実現しつつ無線区間の遅延を1ms以下にするという要求条件を満たすために、様々な無線技術及びネットワークアーキテクチャの検討が行われている(例えば非特許文献1)。
 次世代通信では、高周波数帯の使用が見込まれている。当該高周波数帯の特性による、散乱体数の減少、シャドーウィング効果の低下及び距離減衰の増加等の観点から、通信品質の改善が要求される。通信品質を担保するビーム制御及び環境等が必要とされると想定される。
 例えば、高周波数帯域では、電波の強い直進性等によって、不感地帯が発生しやすい問題がある。そこで、パッシブなリピータ又はアクティブ型の反射板(RIS:Reconfigurable Intelligent Surface)、信号を受信及び増幅し再放射するスマートリピータ等を用いて、マルチパス環境下において、通信品質を改善させる方法が試行されている(例えば非特許文献2)。
3GPP TS 38.300 V16.8.0 (2021-12) NTTドコモ,「ホワイトペーパー 5Gの高度化と6G」 (2021-02、3.0版) インターネット<URL: https://www.nttdocomo.co.jp/binary/pdf/corporate/technology/whitepaper_6g/DOCOMO_6G_White_PaperJP_20210203.pdf> 3GPP TS 38.331 V16.7.0 (2021-12)
 上記のように、基地局等の電波発生源から端末等の電波受信先に電波を反射させるか又は透過させて当該電波を中継する反射板又はスマートリピータ等の無線中継装置が検討されている。ここで、特にネットワークにより制御される無線中継装置が、基地局端末間の無線信号を中継するときの送信電力をどのように制御するかを明確にする必要がある。
 本発明は上記の点に鑑みてなされたものであり、無線通信システムにおいて、無線中継装置が中継する無線信号の送信電力を決定することを目的とする。
 開示の技術によれば、中継機能に係る制御情報を含む第1の信号を基地局から受信し、第2の信号を前記基地局に送信する端末機能を実行する通信部と、前記制御情報に基づいて、中継機能を制御する制御部と、第3の信号を前記基地局から受信し、前記第3の信号を端末に送信し、第4の信号を前記端末から受信し、前記第4の信号を前記基地局に送信する中継機能を実行する中継部とを有し、前記制御部は、前記第2の信号及び前記第4の信号を同時に前記基地局に送信しない場合、前記制御情報及び前記第2の信号に適用する送信電力のうち少なくとも一つに基づいて、前記第4の信号に適用する送信電力を決定する無線中継装置が提供される。
 開示の技術によれば、無線通信システムにおいて、無線中継装置が中継する無線信号の送信電力を決定することができる。
本発明の実施の形態における無線通信システムを説明するための図である。 本発明の実施の形態における基地局10の機能構成の一例を示す図である。 本発明の実施の形態における端末20の機能構成の一例を示す図である。 本発明の実施の形態における無線中継装置30の機能構成の一例を示す図である。 本発明の実施の形態における無線中継装置30の動作例を示す図である。 高周波数帯域における通信の例を示す図である。 本発明の実施の形態における反射型の無線中継装置30の例を示す図である。 本発明の実施の形態における透過型の無線中継装置30の例を示す図である。 本発明の実施の形態における通信の例(1)を示す図である。 本発明の実施の形態における通信の例(2)を示す図である。 本発明の実施の形態における送信電力を決定する例(1)を説明するためのフローチャートである。 本発明の実施の形態における送信電力を決定する例(2)を説明するためのフローチャートである。 本発明の実施の形態における基地局10、端末20又は無線中継装置30のハードウェア構成の一例を示す図である。 本発明の実施の形態における車両2001の構成の一例を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)を含む広い意味を有するものとする。
 また、以下で説明する本発明の実施の形態では、既存のLTEで使用されているSS(Synchronization signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical random access channel)、PDCCH(Physical Downlink Control Channel)、PDSCH(Physical Downlink Shared Channel)、PUCCH(Physical Uplink Control Channel)、PUSCH(Physical Uplink Shared Channel)等の用語を使用する。これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。また、NRにおける上述の用語は、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH等に対応する。ただし、NRに使用される信号であっても、必ずしも「NR-」と明記しない。
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。
 また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局10又は端末20から通知される無線パラメータが設定されることであってもよい。
 図1は、本発明の実施の形態における無線通信システムを説明するための図である。本発明の実施の形態における無線通信システムは、図1に示されるように、基地局10及び端末20を含む。基地局10及び端末20は、それぞれ複数であってもよい。
 基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDM(Orthogonal Frequency Division Multiplexing)シンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。また、時間領域におけるTTI(Transmission Time Interval)がスロット又はサブスロットであってもよいし、TTIがサブフレームであってもよい。
 基地局10は、複数のセル(複数のCC(コンポーネントキャリア))を束ねて端末20と通信を行うキャリアアグリゲーションを行うことが可能である。キャリアアグリゲーションでは、1つのプライマリセル(PCell, Primary Cell)と1以上のセカンダリセル(SCell, Secondary Cell)が使用される。
 基地局10は、同期信号及びシステム情報等を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHあるいはPDSCHにて送信され、ブロードキャスト情報ともいう。図1に示されるように、基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。なお、ここでは、PUCCH、PDCCH等の制御チャネルで送信されるものを制御信号と呼び、PUSCH、PDSCH等の共有チャネルで送信されるものをデータと呼んでいるが、このような呼び方は一例である。
 端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。なお、端末20をUEと呼び、基地局10をgNBと呼んでもよい。
 端末20は、複数のセル(複数のCC)を束ねて基地局10と通信を行うキャリアアグリゲーションを行うことが可能である。キャリアアグリゲーションでは、1つのプライマリセルと1以上のセカンダリセルが使用される。また、PUCCHを有するPUCCH-SCellが使用されてもよい。
 また、本発明の実施の形態における無線通信システムにおいて、基地局10は、一例として5G又は6Gで運用される無線基地局であり、セルを形成する。なお、セルは、比較的サイズの大きいセルであり、マクロセルと呼ばれる。
 基地局10A-基地局10Dは、5G又は6Gで運用される基地局である。基地局10A-基地局10Dは、マクロセルと比較してサイズが小さいセルCA-セルDをそれぞれ形成する。セルA-セルDは、スモールセル又はマクロセル等と呼ばれてもよい。図1に示されるように、セルA-セルDは、マクロセルに含まれるように形成されてもよい。
 マクロセルは、一般に1つの基地局がカバーする半径数百メートルから数十キロメートルの通信可能エリアと解釈されてもよい。また、スモールセルは、送信電力が小さく、マクロセルと比較して小さいエリアをカバーするセルの総称と解釈されてもよい。
 なお、基地局10及び基地局0A-基地局10Dは、gNodeB(gNB)またはBS(Base Station)などと表記されてもよい。また、端末20は、UE又はMS等と表記されてもよい。さらに、基地局及び端末の数や種類を含む無線通信システムの具体的な構成は、図1に示した例に限定されない。
 また、無線通信システムは、必ずしも5G又は6Gに従った無線通信システムに限定されない。例えば、無線通信システムは、6Gの次世代の無線通信システム、あるいはLTEに従った無線通信システムであってもよい。
 基地局10及び基地局10A-基地局10Dは、一例として、端末20と5G又は6Gに従った無線通信を実行する。基地局10及び基地局10A-基地局10D及び端末20は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するマッシブMIMO(Massive MIMO)、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、端末20と2つのNG-RANノードそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)、および、gNB等の無線通信ノード間の無線バックホールと端末20への無線アクセスとが統合されたIAB(Integrated Access and Backhaul)等に対応してもよい。
 また、無線通信システムは、3GPPリリース15において規定されている以下の周波数レンジ(Frequency Range, FR)よりも高い高周波数帯域にも対応し得る。例えば、FR1として、410MHz-7.125GHzに対応してもよいし、FR2として、24.25GHz-52.6GHzに対応してもよい。さらに、無線通信システムは、52.6GHzを超え、114.25GHzまでの周波数帯域に対応してもよい。当該周波数帯域はミリ波帯と呼ばれてもよい。
 ここで、マッシブMIMOに対応する基地局10は、ビームを送信できる。マッシブMIMOとは、一般的に、100素子以上のアンテナ素子を有するアンテナを用いたMIMO通信を意味し、複数ストリームの多重化効果などによって、従来よりも高速な無線通信が可能となる。また、高度なビームフォーミングも可能となる。ビーム幅は、使用する周波数帯域又は端末20の状態等に応じて動的に変更し得る。また、狭いビームを用いることによるビームフォーミング利得による受信信号電力の増加を図ることができる。さらに、与干渉の低減及び無線リソースの有効利用等の効果が見込まれる。
 また、無線通信システムは、無線中継装置30を含んでよい。本発明の実施の形態において、一例として、無線中継装置30は、反射板(RIS)、位相制御リフレクタ、パッシブリピータ、IRS(インテリジェント反射面:Intelligent Reflecting Surface)等であってもよい。反射板(RIS:Reconfigurable Intelligent Surface)の具体例として、メタマテリアル反射板、動的メタサーフェス、メタサーフェスレンズ等と呼ばれるものであってもよい(例えば非特許文献2)。
 本発明の実施の形態において、無線中継装置30は、例えば、基地局10Aから送信された無線信号を中継する。本発明の実施の形態の説明において「中継」とは、「反射」、「透過」、「集約(電波を略一点に集中させること)」及び「回折」のうち少なくとも一つを指してもよい。端末20は、無線中継装置30によって中継された無線信号を受信できる。さらに、無線中継装置30は、端末20から送信された無線信号を中継してもよいし、基地局10から送信された無線信号を中継してもよい。
 一例として、無線中継装置30は、端末20に向けて中継する無線信号の位相を変化させることができる。このような観点から、無線中継装置30は、位相可変リフレクタと呼ばれてもよい。なお、本実施の形態において、無線中継装置30は、無線信号の位相を変化させて中継する機能を有するものとする場合があるが、これに限られない。また、無線中継装置30は、リピータ、中継装置、リフレクトアレイ、IRS、或いはトランスミットアレイ等と呼ばれてもよい。
 また、本発明の実施の形態において、RIS等の無線中継装置30は、Battery less device、メタマテリアル機能装置、Intelligent reflecting surface、Smart repeater等と呼ばれてもよい。一例として、RIS又はスマートリピータ等の無線中継装置30は、以下1)-5)に示される機能を有するものとして定義されてもよい。
1)基地局10から送信される信号の受信機能を有してもよい。当該信号は、DL信号である、SSB(SS/PBCH block)、PDCCH、PDSCH、DM-RS(Demodulation Reference Signal)、PT-RS(Phase Tracking Reference Signal)、CSI-RS(Channel Status Information Reference Signal)、RIS専用信号等であってもよい。メタマテリアル機能に係る情報を運ぶ信号の受信機能を有してもよい。なお、当該信号を端末20に送信する送信機能を有してもよい。SSBは、同期信号及び報知情報を含む信号であってもよい。
2)基地局10への信号の送信機能を有してもよい。当該信号は、UL信号である、PRACH、PUCCH、PUSCH、DM-RS、PT-RS、SRS、RIS専用信号等であってもよい。メタマテリアル機能に係る情報の送信機能を有してもよい。なお、当該信号を端末20から受信する受信機能を有してもよい。
3)基地局10とのフレーム同期機能を有してもよい。なお、端末20とのフレーム同期機能を有してもよい。
4)基地局10又は端末20から送信された信号の反射機能を有してもよい。例えば、当該反射機能は、位相変更に係る機能、ビーム制御に係る機能(例えば、TCI(Transmission Configuration Indication)-state、QCL(Quasi Co Location)の制御に係る機能、ビームの選択適用、空間フィルタ/プリコーディングウェイトの選択適用)であってもよい。
5)基地局10又は端末20から送信された信号の電力変更機能を有してもよい。例えば、当該電力変更機能は、電力増幅であってもよい。
 また、RIS又はスマートリピータ等の無線中継装置30における「受信して送信」や「中継」とは、以下の機能Aまで行われるが、以下の機能Bまでは行われずに送信されることを意味してもよい。
機能A:移相器を適用する。
機能B:補償回路(例えば、増幅、フィルタ)は介さない。
他の例として、
機能A:移相器及び補償回路を適用する。
機能B:周波数変換は介さない。
 なお、RIS等の無線中継装置30において、位相が変化されるとき、振幅が増幅されてもよい。また、RIS等の無線中継装置30における「中継」とは、レイヤ2又はレイア3レベルの処理を行わずに、受信した信号をそのまま送信すること、物理層レベルで受信した信号をそのまま送信すること、あるいは、信号を解釈せずに受信した信号をそのまま送信することを意味してもよい(その際、位相の変化や振幅の増幅等が行われてもよい)。
 (装置構成)
 次に、本発明の実施の形態における処理及び動作を実行する基地局10、端末20及び無線中継装置30の機能構成例を説明する。基地局10、端末20及び無線中継装置30は後述する実施例を実行する機能を含む。ただし、基地局10、端末20及び無線中継装置30はそれぞれ、実施例のうちのいずれかの機能のみを備えてもよい。
 <基地局10>
 図2は、基地局10の機能構成の一例を示す図である。図2に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図2に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部110と受信部120とを通信部と呼んでもよい。
 送信部110は、端末20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。受信部120は、端末20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、端末20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号、DLデータ等を送信する機能を有する。また、送信部110は、実施例で説明する設定情報等を送信する。
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。制御部140は、例えば、リソース割り当て、基地局10全体の制御等を行う。なお、制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。また、送信部110、受信部120をそれぞれ送信機、受信機と呼んでもよい。
 <端末20>
 図3は、端末20の機能構成の一例を示す図である。図3に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図3に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部210と受信部220とを通信部と呼んでもよい。
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、送信部210はHARQ-ACKを送信し、受信部220は、実施例で説明する設定情報等を受信する。
 設定部230は、受信部220により基地局10から受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。制御部240は、端末20全体の制御等を行う。なお、制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。また、送信部210、受信部220をそれぞれ送信機、受信機と呼んでもよい。
 <無線中継装置30>
 図4は、本発明の実施の形態における無線中継装置30の機能構成の一例を示す図である。図4に示されるように、無線中継装置30は、送信部310、受信部320、制御部330、可変部340及びアンテナ部350を有する。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。送信部310と受信部320とを通信部と呼んでもよい。
 アンテナ部350には、可変部340に接続された少なくとも1つのアンテナが含まれる。例えば、アンテナ部350は、アレイアンテナとして配置されてもよい。本発明の実施の形態において、アンテナ部350を特に中継アンテナと呼ぶ場合がある。なお、可変部340及びアンテナ部350を中継部と呼んでもよい。
 可変部340は、アンテナ部350に接続されており、位相、負荷、振幅等を変化させることができる。例えば、可変部340は、可変位相器、移相器、アンプ等であってもよい。例えば、電波発生源から中継アンテナに届いた電波の位相を変えることにより、電波の向き又はビーム等を変化させることができる。
 制御部330は、可変部340を制御する制御手段である。本発明の実施の形態において、制御部330は、基地局10又は端末20からの電波を信号解釈せず中継する際の中継状態を制御する制御部として機能する。ここで、制御部330は、基地局10又は端末20から通信部を介して受信した制御情報に基づいて中継状態を変化させてもよく、基地局10又は端末20からの電波の受信状態に基づいて、中継状態を変化させてもよい。例えば、制御部330は、SSB等の制御情報に基づいて、適切な受信ビームと送信ビーム(の向き)を選択し、可変部340を制御してもよい。同様に、制御部330は、受信状態から、受信品質あるいは受信電力が最も大きい等の基準に基づいて、適切な受信方向と送信方向の組み合わせを選択し、可変部340を制御してもよい。
 また、本発明の実施の形態において、制御部330は、例えば、端末20又は基地局10Aとアンテナ部350との間の伝搬路に関する情報(受信状態により推定した情報及び制御情報を含む。以下同様)に基づいて、可変部340を制御することができる。例えば、制御部330は、アクティブリピータ又はRIS等の公知手法を用いて、基地局10Aから受信した電波を、送信電力を用いずに、位相を変化させることによって、電波受信先(この場合は端末20)等の特定の方向へ中継することができる。具体的には、制御部330は、推定した伝搬路情報HPT及びHRPに基づいて、端末20又は基地局10Aに向けて中継するために無線信号の位相を制御する。すなわち、ビームフォーミング等と同様の原理で、アレーアンテナ等の位相を変化させることで、特定の方向へ電波を中継することができる。なお、無線中継装置30は、制御部330によって無線信号(電波)の位相のみを制御して(変化させて)おり、中継される無線信号の電力の増幅などを行うことなく、無給電で中継してもよい。
 また、制御部330は、本発明の実施の形態において、受信状態により情報を取得してもよい。また、受信部320は、基地局10A又は端末20からの制御情報を取得してもよい。例えば、受信部320は、基地局10A又は端末20から送信された、SSB等の各種の信号(上述の機能で例示した各種の信号を含む)を制御情報として受信してもよい。
 また、制御部330は、可変部340の制御時の受信状態(例えば、受信電力の変化等)に基づいて、電波発生源(例えば、基地局10A又は端末20)とアンテナ部350間の伝搬路情報(HPT及びHRP)を推定してもよい。
 各伝搬路に関する伝搬路情報(伝搬チャネル情報)は、具体的には、振幅又は位相等の情報であり、本発明の実施の形態において、アンテナ部350に到来する電波の伝搬路に関して推定した情報である。一例として、制御部330は、I/Q(In-phase/Quadrature)検波と同様の原理で、アレー状のアンテナ部350の可変部340の位相を直交に切り替えたときの受信電力の変化に基づいて、アンテナ部350の伝搬路情報を推定してもよい。
 図5は、本発明の実施の形態における無線中継装置30の動作例を示す図である。図5に示されるように、一例として、無線中継装置30は、基地局10A(他の基地局10等でもよい)と、端末20との間に介在し、基地局10Aと端末20との間において送受信される無線信号を中継(反射、透過、集約、回折等)する。
 具体例として、基地局10Aと端末20とは、無線品質が良好な場合には、無線中継装置30を経由せずに、直接、無線信号を送受信する。一方、基地局10Aと端末20との間に遮蔽物がある場合等、当該無線品質が劣化した場合、無線中継装置30は、基地局10Aと端末20との間において送受信される無線信号を中継する。
 具体的には、無線中継装置30は、可変位相器等の可変部340の制御時の受信電力の変化に基づいて、基地局10A又は端末20等の電波発生源と中継アンテナ間の伝搬路情報HPT、HRTを推定し、推定した伝搬路情報に基づいて、可変位相器などの可変部340を制御することにより端末20等の電波受信先に向けて無線信号を中継する。なお、伝搬路情報HPT、HRTを推定することに限られず、無線中継装置30は、基地局10A又は端末20から受信した制御情報に基づいて、可変位相器などの可変部340を制御することにより基地局10A又は端末20等の電波受信先に向けて無線信号を中継してもよい。
 ここで、伝搬路あるいは伝搬チャネルとは、無線通信の個々の通信路であり、ここでは、各送受信アンテナ(図中の基地局アンテナ及び端末アンテナ等)間の通信路である。
 一例として、無線中継装置30は、マッシブMIMOに対応した小型多素子アンテナを有するアンテナ部350と、無線信号、実質的には、電波の位相を特定の位相に変化させる可変位相器あるいは移相器を有する可変部340を備え、可変部340を用いて、端末20又は基地局10Aに中継される電波の位相を制御する。
 図6は、高周波数帯域における通信の例を示す図である。図6に示されるように、数GHz-数十GHz以上の高周波数帯域を用いる場合において、電波の強い直進性によって、不感地帯が発生しやすい。基地局10Aと端末20との間が見通せる場合、当該高周波数帯域を用いる場合でも、基地局10Aと端末20間の無線通信に影響はない。一方、例えば、建造物又は樹木など、遮蔽物によって、基地局10Aと端末20との間の見通しが遮蔽されると、無線品質が大幅に劣化する。すなわち、端末20が遮蔽物によって遮蔽される不感地帯に移動すると、通信が途絶えることになり得る。
 高速大容量、かつ低遅延特性を活かしたアプリケーション(遠隔操作等)の存在を考慮すると、不感地帯を解消し、無線通信システム内での通信が途絶えることなく、基地局と端末とが接続を確保することが重要である。
 そこで、RIS又はスマートリピータ等の電波伝搬制御装置のように、基地局10Aと端末20との間の電波を中継することができる技術が開発されている。このように、基地局信号の伝搬特性を制御することで通信特性を改善させることができ、信号源不要でカバレッジ拡大、基地局の増設による設置及び運用コストの減少を図ることができる。
 従来の電波伝搬制御装置では、パッシブ型とアクティブ型がある。パッシブ型は、制御情報が不要であるというメリットがあるものの、移動体又は環境変動等に追従することができない。一方、アクティブ型は、制御情報が必要でオーバヘッドが増加するデメリットがあるものの、制御アンテナの負荷(位相)状態を変化させて、電波の伝搬特性を可変的に制御可能であり、移動体及び環境変動等にも追従することができる。
 アクティブ型の電波伝搬制御装置と制御手法には、フィードバック(FB)規範と伝搬路情報規範の2つのタイプがある。FB規範では、可変型の電波伝搬制御装置が、負荷(位相)状態をランダムに変化させたときの通信状態を、端末20等にフィードバックしてもらい、最適条件を探索する。一方、伝搬路情報規範では、基地局と電波伝搬制御装置との間の伝搬路情報に基づいて負荷状態を決定し、最適な電波伝搬制御が可能となる。本発明の実施の形態においては、いずれのタイプであっても適用可能である。
 また、中継方法としては、反射、透過、回折、集約等のタイプがあるが、本実施の形態において、一例として、以下に、反射型と透過型の構成例について説明する(回折型と集約型は非特許文献2等参照)。
 図7は、本発明の実施の形態における反射型の無線中継装置30の例を示す図である。反射型の無線中継装置30のシステム構成の一例について、図7を用いて説明する。図7は、基地局10A等の送信アンテナTxと、透過型の無線中継装置30の中継アンテナSxと、端末20等の受信アンテナRxの関係を示した図である。図7に示すように、本発明の実施の形態においては、MIMOを一例としており、Tx-Sx間の複数の伝搬路と、Sx-Rx間の複数の伝搬路が存在しており、無線中継装置30は、中継アンテナSxの可変位相器等を有する可変部340を制御して電波を中継する。
 図7に示されるように、反射型の場合、アレー状の中継アンテナは、同じ方向に向けられて配置されている。これにより、中継アンテナの位相条件を複数変化させた際に観測される受信状態に基づいて、中継アンテナの伝搬路を推定することができる。
 図8は、本発明の実施の形態における透過型の無線中継装置30の例を示す図である。透過型の無線中継装置30のシステム構成の一例について、図8を用いて説明する。図8は、基地局10A等の送信アンテナTxと、透過型の無線中継装置30の中継アンテナSxと、端末20等の受信アンテナRxの関係を示した図である。図8に示されるように、本発明の実施の形態においては、MIMOを一例としており、Tx-Sx間の複数の伝搬路と、Sx-Rx間の複数の伝搬路が存在しており、無線中継装置30は、図示の如く、中継アンテナSxの可変位相器等の可変部340を介して、一方の側から到来した電波を他方の側へ中継する。このように、透過型の場合、図左側の基準アンテナと図右側中継アンテナは、一方の側から到来した電波を他方の側へ中継することができるように、それぞれ一対で反対方向に向けられて配置されている。透過型、反射型のいずれであっても、電力検出器等により、中継アンテナに届いた電力を検出できるように構成して、受信状態を計測してもよい。また、中継アンテナの位相条件を複数変化させた際に観測される受信信号に基づいて、中継アンテナの伝搬路を推定することができる。
 例えば6G等の将来のネットワークでは、5Gと比較してさらに高い品質が要求される。例えば、テラbpsオーダの超高速、光通信レベルの高信頼低遅延等が求められる。また、超カバレッジ拡張、超長距離通信、超信頼性通信、仮想セル、フレキシブルネットワーク、メッシュネットワーク、サイドリンクの強化、RIS又はスマートリピータを考慮した設計が必要となる。
 当該品質の実現に向けて、非常に高い周波数、例えばテラHz波の利用が想定される。例えば、テラHz波のような非常に高い周波数を利用する場合、超広帯域利用による高速化、シンボル長の短さによる低遅延化が利点として想定される一方、減衰率の大きさによるカバレッジの狭さ、直進性の高さによる信頼性の低下等の欠点も想定される。6G通信が必要とされる各地点に対して、どのように冗長性を確保するか、すなわちどのように通信の送信ポイントを増加させるかを検討することが要求される。
 上述のように、RISは、基地局10又は端末20から送信されるビームを所定の方向に反射又は透過し、端末20又は基地局10に届ける。パッシブ型RISは、移動局の位置に応じて反射角度又はビーム幅等の制御を変更しない装置であって、制御情報が不必要である一方、精密なビーム制御が困難である。アクティブ型RISは、移動局の位置に応じて反射角度及びビーム幅等の制御を変更する装置であって、精密なビーム制御が可能である一方、制御情報が必要なためオーバヘッドば増大する。RISにより、通信の送信ポイントを増加させることができる。
 なお、RISは、以下1)-5)に示される名称であってもよく、これらに限定されない。
1)バッテリレスデバイス(Battery less device)
2)メタマテリアル機能装置
3)インテリジェント反射板(Intelligent reflecting surface)
4)スマートリピータ(Smart repeater)
5)ネットワーク制御リピータ(Network-controlled repeater)
 RISは、所定の機能を有する装置であればよく、当該所定の機能は例えば以下に示される1)及び2)の少なくとも一つの機能であってもよい。
1)UE機能
基地局10から送信される信号の受信機能(例えば、DL信号、SSB、PDCCH、PDSCH、DM-RS、PT-RS、CSI-RS、RIS専用信号)。当該受信機能により、下記2)メタマテリアル機能に係る情報を受信してもよい。基地局10への信号の送信機能(例えば、UL信号、PRACH、PUCCH、PUSCH、DM-RS、PT-RS、SRS、RIS専用信号)。当該送信機能により、下記2)メタマテリアル機能に係る情報を送信してもよい。基地局10とのフレーム同期機能。
2)メタマテリアル機能
基地局10又は端末20から送信された信号の反射機能(例えば、位相変更)。RISが有する複数の反射素子ごとに位相を変更して信号の反射を行ってもよいし、複数の反射素子で共通の位相変更を行って信号の反射を行ってもよい。ビーム制御に係る機能(例えば、TCI-state、QCLの制御に係る機能、ビームの選択適用、空間フィルタ/プリコーディングウェイトの選択適用)。基地局10又は端末20から送信された信号の電力変更機能(例えば、電力増幅)。RISが有する反射素子ごとに異なる電力変更を行ってもよいし、複数の反射素子で共通の電力変更を行ってもよい。
 RISにおける「受信して送信」は、電波/信号を反射することを意味してもよい。以降では「基地局」、「端末」の用語を使用するが、これらに限定されず、通信装置に置換されてもよい。RISはスマートリピータ、中継機等に置換されてもよい。
 例えば、RISは、以下1)-6)に示される想定で動作してもよい。
1)ネットワークオペレータがRISを設定する
2)RISは固定されており移動しない
3)RISは一つのみの基地局からの信号を中継する
4)制御信号の受信及び送信が可能
5)半二重複信で動作する
6)単一のRIS環境
 ここで、ネットワークに制御される無線中継装置であるネットワーク制御リピータが検討されている。例えば、ネットワーク制御リピータに関して、以下1)-4)に示されるシナリオが想定される。なお、以下、「ネットワーク制御リピータ」を「リピータ」とも記載する。
1)ネットワーク制御リピータは、インバンドRFリピータとしてFR1及びFR2のカバレッジの拡張に使用される。また、ネットワーク制御リピータは、アウトドア又はO2I(outdoor to indoor)シナリオにおけるFR2の配置と共に検討されている。
2)ネットワーク制御リピータは固定式であって、シングルホップを想定する。
3)ネットワーク制御リピータは、UEに対し透過的である。
4)gNB-リピータリンク及びリピータ-UEリンクを同時に維持することができる。
 また、ネットワークからネットワーク制御リピータを制御するために送信されるサイド制御情報は、例えば、以下を含んでもよい。最大送信電力に係る情報、ビームフォーミングに係る情報、送受信の境界を整列させるためのタイミング情報、UL-DL-TDD設定、干渉制御及び省電力のためのリピータ機能のON-OFF情報、干渉制御のための電力制御情報。
 また、サイド制御情報を通知するためのL1/L2シグナリングが検討されている。また、複数のネットワーク制御リピータを識別し認証することによる管理及び協調動作が検討されている。
 図9は、本発明の実施の形態における通信の例(1)を示す図である。図9に示されるように、リピータの送信は、以下の3タイプに分類することができる。
1)リピータのUE機能からgNBへのUL送信
2)リピータのリピータ機能からgNBへのUL送信
3)リピータのリピータ機能からUEへのDL送信
 例えば、ネットワーク制御リピータではないリピータすなわちUE機能を有しないリピータでは、上記2)のUL送信及び上記3)のDL送信の送信電力をリピータが決定してもよい。
 一方、ネットワーク制御リピータでは、上記2)のUL送信の送信電力を、上記1)のUL送信の送信電力を考慮して決定する必要がある。なお、上記3)のDL送信の送信電力は、UL送信とは分離して決定されてもよい。
 なお、図9に示されるように、リピータの受信は、以下の3タイプに分類することができる。
1)gNBからリピータのUE機能へのDL送信
2)gNBからリピータのリピータ機能へのDL送信
3)UEからリピータのリピータ機能へのUL送信
 図10は、本発明の実施の形態における通信の例(2)を示す図である。図10に示されるように、ネットワーク制御リピータのUL送信は、以下の3ケースが想定される。なお、リピータ機能による送信に、さらにリピータからUEへのDL送信が含まれてもよい。
ケース1)UE機能による送信とリピータ機能による送信を同時に実行しない。すなわち、UE機能による送信とリピータ機能による送信はある時点においていずれかのみが実行される。
ケース2)UE機能による送信とリピータ機能による送信を同時に実行する。
ケース3)UE機能による送信とリピータ機能による送信を同時に実行しない動作と、UE機能による送信とリピータ機能による送信を同時に実行する動作の両方を行う。
 以下、ケース1)、ケース2)及びケース3)におけるネットワーク制御リピータの動作を説明する。また、ネットワーク制御リピータからターゲット送信電力に係る報告をネットワークに行う動作を説明する。また、ネットワーク制御リピータによる送信電力管理に係るUE能力のネットワークへの報告を説明する。
 以下、ケース1)におけるネットワーク制御リピータの動作を説明する。
 図11は、本発明の実施の形態における送信電力を決定する例(1)を説明するためのフローチャートである。ステップS11において、ネットワーク制御リピータは、UE機能の送信電力を既存技術により決定する。例えば、ネットワークが、サイド制御情報をリピータに送信することにより、UE機能の送信電力を制御してもよい。ステップS12において、ネットワーク制御リピータは、リピータ機能の送信電力を決定する。なお、ステップS12はステップS11よりも先に実行されてもよい。ステップS12におけるリピータ機能の送信電力は、以下に示される1)-4)のように決定されてもよい。
1)リピータ機能の送信電力は、リピータ実装により決定されてもよい。例えば、データレート、周波数/時間リソースに基づいてリピータがリピータ機能の送信電力を決定してもよい。例えば、リピータ機能の最大送信電力(MOP、Maximum output power)は、ネットワークに報告されてもよいし、ネットワークはリピータ機能の許容される最大送信電力をリピータに設定してもよい。リピータ機能の最大送信電力又はパワーヘッドルームは、UE機能の最大送信電力又はパワーヘッドルームと同一であってもよい。例えば、リピータは許容される最大送信電力を超えない送信電力を設定してもよい。
2)リピータ機能の送信電力は、UE機能の送信電力と等しく決定されてもよい。例えば、リピータは、リピータ機能の送信電力を、直近のPUSCH又は他のULチャネル又は信号のUE機能の送信電力としてもよい。また、リピータは、リピータ機能の送信電力を、総電力(dBm)と、パワースペクトル密度(dBm/Hz)の一方又は両方を参照して決定してもよい。例えば、リピータは、リピータ機能の送信電力を、リピータ機能のUL送信に適用されるビームと同一のビームを適用するUE機能の送信電力としてもよい。
3)リピータ機能の送信電力は、UE機能の送信電力を参照して決定されてもよい。例えば、リピータは、リピータ機能の送信電力を、直近のPUSCH又は他のULチャネル又は信号のUE機能の送信電力にオフセット値を加えた値としてもよい。当該オフセット値は、定義されてもよいし、設定されてもよいし、リピータの実装により決定されてもよい。リピータは、リピータ機能の送信電力の決定に、リピータ機能のUL送信に適用されるビームと同一のビームを適用するUE機能の送信電力を参照してもよい。
4)リピータ機能の送信電力は、UE機能の送信電力とは別途ネットワークからRRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)-CE(Control Element)又はDCI(Downlink Control Information)により設定又は制御されてもよい。
 リピータ機能の送信電力は、ネットワークからセミスタティックに設定されてもよい。例えば、リピータ機能は常に設定された電力で信号を送信してもよいし、いくつかのパラメータはUE機能のパラメータと共通であってもよい。
 リピータ機能の送信電力は、例えば時間リソースごとに送信電力を設定するように、ネットワークから動的に設定されてもよい。リピータ機能の送信電力は、例えばTPC(Transmission power control)により制御されてもよい。TPCに係る制御は、例えばDCIフォーマット2_2又は2_3のようにUE向けのTPCと共通であってもよいし、リピータ機能向けにTPCのための新たなDCIフォーマットが導入されてもよい。リピータ機能向けに、1つのクローズドループがサポートされてもよい。また、リピータ機能向けに複数のクローズドループがサポートされてもよい。また、リピータ機能向けにサポートされるクローズドループの数が設定可能であってもよい。
 セミスタティックなパラメータ及び動的なパラメータに基づいて、リピータ機能の送信電力を決定する数式が定義されてもよい。また、リピータ機能の異なるUL送信ビームに対して、セミスタティック又は動的に異なる送信電力が通知又は設定されてもよい。
 図12は、本発明の実施の形態における送信電力を決定する例(2)を説明するためのフローチャートである。ステップS21において、ネットワーク制御リピータは、UE機能の送信電力とリピータ機能の送信電力を共同で決定する。ステップS21におけるリピータ機能の送信電力は、以下に示される1)及び2)のように決定されてもよい。
1)リピータ機能の送信電力は、リピータ実装により決定されてもよい。例えば、データレート、周波数/時間リソースに基づいてリピータがリピータ機能の送信電力を決定してもよい。例えば、リピータ機能の最大送信電力は、ネットワークに報告されてもよいし、ネットワークはリピータ機能の許容される最大送信電力をリピータに設定してもよい。例えば、リピータは許容される最大送信電力を超えない送信電力を設定してもよい。
2)リピータ機能の送信電力は、ネットワークからRRCシグナリング、MAC-CE又はDCIにより設定又は制御されてもよい。
 リピータ機能の送信電力は、ネットワークからセミスタティックに設定されてもよい。例えば、リピータ機能は常に設定された電力で信号を送信してもよいし、いくつかのパラメータはUE機能のパラメータと共通であってもよい。
 リピータ機能の送信電力は、例えば時間リソースごとに送信電力を設定するように、ネットワークから動的に設定されてもよい。リピータ機能の送信電力は、例えばTPCにより制御されてもよい。TPCに係る制御は、例えばDCIフォーマット2_2又は2_3のようにUE向けのTPCと共通であってもよいし、リピータ機能向けにTPCのための新たなDCIフォーマットが導入されてもよい。リピータ機能向けに、1つのクローズドループがサポートされてもよい。また、リピータ機能向けに複数のクローズドループがサポートされてもよい。また、リピータ機能向けにサポートされるクローズドループの数が設定可能であってもよい。
 セミスタティックなパラメータ及び動的なパラメータに基づいて、リピータ機能の送信電力を決定する数式が定義されてもよい。また、リピータ機能の異なるUL送信ビームに対して、セミスタティック又は動的に異なる送信電力が通知又は設定されてもよい。
 以下、ケース2)におけるネットワーク制御リピータの動作を説明する。
 図11に示されるステップS12におけるリピータ機能の送信電力は、以下に示される1)-4)のように決定されてもよい。
1)リピータ機能の送信電力は、リピータ実装により決定されてもよい。例えば、データレート、周波数/時間リソースに基づいてリピータがリピータ機能の送信電力を決定してもよい。例えば、リピータ機能の最大送信電力は、ネットワークに報告されてもよいし、ネットワークはリピータ機能の許容される最大送信電力をリピータに設定してもよい。リピータ機能の最大送信電力又はパワーヘッドルームは、UE機能の最大送信電力又はパワーヘッドルームと同一であってもよい。例えば、リピータは許容される最大送信電力を超えない送信電力を設定してもよい。例えば、リピータ全体の最大送信電力が設定又は定義されてもよく、リピータ機能の最大送信電力は、リピータ全体の最大送信電力からUE機能の送信電力を減じた電力であってもよい。
2)リピータ機能の送信電力は、UE機能の送信電力と等しく決定されてもよい。例えば、リピータは、リピータ機能の送信電力を、直近のPUSCH又は他のULチャネル又は信号のUE機能の送信電力としてもよい。また、リピータは、リピータ機能の送信電力を、総電力(dBm)と、パワースペクトル密度(dBm/Hz)の一方又は両方を参照して決定してもよい。例えば、リピータは、リピータ機能の送信電力を、リピータ機能のUL送信に適用されるビームと同一のビームを適用するUE機能の送信電力としてもよい。また、リピータは、リピータ機能の送信電力を、UE機能の送信電力と同一にしてもよい。例えば、リピータは、UE機能により送信されるPUSCHの送信電力を、リピータ機能による送信電力と同一にしてもよい。リピータ全体の送信電力は、UE機能の送信電力の2倍であってもよい。
3)リピータ機能の送信電力は、UE機能の送信電力を参照して決定されてもよい。例えば、リピータは、リピータ機能の送信電力を、直近のPUSCH又は他のULチャネル又は信号のUE機能の送信電力にオフセット値を加えた値としてもよい。当該オフセット値は、定義されてもよいし、設定されてもよいし、リピータの実装により決定されてもよい。リピータは、リピータ機能の送信電力の決定に、リピータ機能のUL送信に適用されるビームと同一のビームを適用するUE機能の送信電力を参照してもよい。
4)リピータ機能の送信電力は、UE機能の送信電力とは別途ネットワークからRRCシグナリング、MAC-CE又はDCIにより設定又は制御されてもよい。
 リピータ機能の送信電力は、ネットワークからセミスタティックに設定されてもよい。例えば、リピータ機能は常に設定された電力で信号を送信してもよいし、いくつかのパラメータはUE機能のパラメータと共通であってもよい。
 リピータ機能の送信電力は、例えば時間リソースごとに送信電力を設定するように、ネットワークから動的に設定されてもよい。リピータ機能の送信電力は、例えばTPCにより制御されてもよい。TPCに係る制御は、例えばDCIフォーマット2_2又は2_3のようにUE向けのTPCと共通であってもよいし、リピータ機能向けにTPCのための新たなDCIフォーマットが導入されてもよい。リピータ機能向けに、1つのクローズドループがサポートされてもよい。また、リピータ機能向けに複数のクローズドループがサポートされてもよい。また、リピータ機能向けにサポートされるクローズドループの数が設定可能であってもよい。
 セミスタティックなパラメータ及び動的なパラメータに基づいて、リピータ機能の送信電力を決定する数式が定義されてもよい。また、リピータ機能の異なるUL送信ビームに対して、セミスタティック又は動的に異なる送信電力が通知又は設定されてもよい。
 図12に示されるステップS21におけるリピータ機能の送信電力は、以下に示される1)及び2)のように決定されてもよい。
1)リピータ機能の送信電力は、リピータ実装により決定されてもよい。例えば、データレート、周波数/時間リソースに基づいてリピータがリピータ機能の送信電力を決定してもよい。例えば、リピータ機能の最大送信電力は、ネットワークに報告されてもよいし、ネットワークはリピータ機能及び/又はUE機能の許容される最大送信電力をリピータに設定してもよい。例えば、リピータは許容される最大送信電力を超えない送信電力をリピータ機能及び/又はUE機能に設定してもよい。
2)リピータ機能の送信電力は、ネットワークからRRCシグナリング、MAC-CE又はDCIにより設定又は制御されてもよい。
 リピータ機能の送信電力は、ネットワークからセミスタティックに設定されてもよい。例えば、リピータ機能は常に設定された電力で信号を送信してもよいし、いくつかのパラメータはUE機能のパラメータと共通であってもよい。
 リピータ機能の送信電力は、例えば時間リソースごとに送信電力を設定するように、ネットワークから動的に設定されてもよい。リピータ機能の送信電力は、例えばTPCにより制御されてもよい。TPCに係る制御は、例えばDCIフォーマット2_2又は2_3のようにUE向けのTPCと共通であってもよいし、リピータ機能向けにTPCのための新たなDCIフォーマットが導入されてもよい。リピータ機能向けに、1つのクローズドループがサポートされてもよい。また、リピータ機能向けに複数のクローズドループがサポートされてもよい。また、リピータ機能向けにサポートされるクローズドループの数が設定可能であってもよい。
 セミスタティックなパラメータ及び動的なパラメータに基づいて、リピータ機能の送信電力を決定する数式が定義されてもよい。また、リピータ機能の異なるUL送信ビームに対して、セミスタティック又は動的に異なる送信電力が通知又は設定されてもよい。
 以下、ケース3)におけるネットワーク制御リピータの動作を説明する。リピータ機能の送信電力は、以下に示される1)-3)のように決定されてもよい。
1)リピータ機能の送信電力は、リピータ実装により決定されてもよい。例えば、データレート、周波数/時間リソースに基づいてリピータがリピータ機能の送信電力を決定してもよい。例えば、リピータ機能の最大送信電力は、ネットワークに報告されてもよいし、ネットワークはリピータ機能の許容される最大送信電力をリピータに設定してもよい。例えば、リピータは許容される最大送信電力を超えない送信電力を設定してもよい。
2)リピータ機能の送信電力は、常に所定の送信電力であってもよい。UE機能及びリピータ機能における非同時送信向けの送信電力と、UE機能及びリピータ機能における同時送信向けの送信電力との切り替えが決定される。
3)リピータ機能の送信電力は、変更されてもよい。UE機能及びリピータ機能における非同時送信向けの送信電力と、UE機能及びリピータ機能における同時送信向けの送信電力とは、同一のメカニズム又は数式によって決定されてもよい。
 ケース3)において、ネットワーク制御リピータは、送信環境に基づいて送信電力を決定してもよいし、ネットワークからの通知によって送信電力を決定してもよい。
 また、リピータは、リピータ機能とUE機能との間の電力バランス、あるいはUL送信とDL送信との電力バランスを考慮してターゲット送信電力をネットワークに報告してもよい。例えば、当該報告は、リピータ全体のターゲット送信電力、リピータ機能のターゲット送信電力及びUE機能のターゲット送信電力の少なくとも一つを含んでもよい。例えば、当該報告は、設定された送信電力又は最大送信電力からのオフセットを示すターゲット送信電力であってもよいし、単一の値又は値の範囲のパワーヘッドルームであってもよい。例えば、当該報告は、UCI(Uplink Control Information)、MAC-CE、RRCシグナリングのいずれを介してリピータからネットワークに送信されてもよい。
 ネットワークは、当該報告に基づいて、更新されたターゲット送信電力をリピータに設定してもよい。例えば、ネットワークは、当該報告を受信した場合、ターゲット送信電力が更新されたことをリピータに応答してもよいし、明示的に応答しなくてもよい。
 リピータは、送信電力管理に係る能力をネットワークに報告してもよい。例えば、送信電力制御に係るサイド制御情報をサポートするか否かを示す能力が、リピータからネットワークに報告されてもよい。例えば、リピータ全体、リピータ機能又はUE機能における最大送信電力が、リピータからネットワークに報告されてもよい。
 リピータは、周波数バンドをサポートするか否かを示す能力をネットワークに報告してもよい。例えば、リピータは、すべての周波数バンドそれぞれをサポートするか否かを示す単一の能力をネットワークに報告してもよいし、当該単一の能力をリピータとしての能力としてネットワークに報告してもよい。例えば、リピータは、周波数バンドごとに能力をネットワークに報告してもよい。例えば、リピータは、周波数レンジ(例えばFR1、FR2等)ごとに能力をネットワークに報告してもよい。
 リピータは、所定の複信方式をサポートするか否かを示す能力をネットワークに報告してもよい。例えば、リピータは、すべての複信方式のそれぞれをサポートするか否かを示す単一の能力をネットワークに報告してもよいし、当該単一の能力をリピータとしての能力としてネットワークに報告してもよい。例えば、リピータは、複信方式(例えば、TDD、FDD等)ごとに能力をネットワークに報告してもよい。
 上述の実施例により、ネットワーク制御リピータは、リピータ機能が送信する信号の電力を決定することができる。また、ネットワーク制御リピータは、リピータ機能及びUE機能による送信状況に基づいて、各機能の送信電力を決定することができる。
 すなわち、無線通信システムにおいて、無線中継装置が中継する無線信号の送信電力を決定することができる。
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図2、図3及び図4)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)あるいは送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態における基地局10、端末20及び無線中継装置30等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、本開示の一実施の形態に係る基地局10、端末20及び無線中継装置30のハードウェア構成の一例を示す図である。上述の基地局10、端末20及び無線中継装置30は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10、端末20及び無線中継装置30のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 基地局10、端末20及び無線中継装置30における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図2に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図3に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インターフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10、端末20及び無線中継装置30は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 さらに、無線中継装置30は、可変部340及びアンテナ部350を構成するハードウェアとして、可変位相器、移相器、アンプ、アンテナ、アレイアンテナ等を必要に応じて有してもよい。
 図14に車両2001の構成例を示す。図14に示すように、車両2001は駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。本開示において説明した各態様/実施形態は、車両2001に搭載される通信装置に適用されてもよく、例えば、通信モジュール2013に適用されてもよい。
 駆動部2002は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両2001に備えられた各種センサ2021~2029からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでも良い。
 各種センサ2021~2029からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等がある。
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両2001の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSS等)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップ等)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)等)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031および車両2001の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~29との間でデータを送受信する。
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。
 通信モジュール2013は、電子制御部2010に入力された電流センサからの電流信号を、無線通信を介して外部装置へ送信する。また、通信モジュール2013は、電子制御部2010に入力された、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等についても無線通信を介して外部装置へ送信する。
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報等)を受信し、車両2001に備えられた情報サービス部2012へ表示する。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、センサ2021~2029等の制御を行ってもよい。
 (実施の形態のまとめ)
 以上、説明したように、本発明の実施の形態によれば、中継機能に係る制御情報を含む第1の信号を基地局から受信し、第2の信号を前記基地局に送信する端末機能を実行する通信部と、前記制御情報に基づいて、中継機能を制御する制御部と、第3の信号を前記基地局から受信し、前記第3の信号を端末に送信し、第4の信号を前記端末から受信し、前記第4の信号を前記基地局に送信する中継機能を実行する中継部とを有し、前記制御部は、前記第2の信号及び前記第4の信号を同時に前記基地局に送信しない場合、前記制御情報及び前記第2の信号に適用する送信電力のうち少なくとも一つに基づいて、前記第4の信号に適用する送信電力を決定する無線中継装置が提供される。
 上記の構成により、ネットワーク制御リピータは、リピータ機能が送信する信号の電力を決定することができる。また、ネットワーク制御リピータは、リピータ機能及びUE機能による送信状況に基づいて、各機能の送信電力を決定することができる。すなわち、無線通信システムにおいて、無線中継装置が中継する無線信号の送信電力を決定することができる。
 前記制御部は、前記第4の信号に適用する最大送信電力を決定してもよい。当該構成により、ネットワーク制御リピータは、リピータ機能が送信する信号の電力を決定することができる。また、ネットワーク制御リピータは、リピータ機能及びUE機能による送信状況に基づいて、各機能の送信電力を決定することができる。
 前記制御部は、前記第2の信号及び前記第4の信号を同時に前記基地局に送信しない場合及び前記第2の信号及び前記第4の信号を同時に前記基地局に送信する場合の双方で、前記第4の信号に適用する送信電力を一定としてもよい。当該構成により、ネットワーク制御リピータは、リピータ機能が送信する信号の電力を決定することができる。また、ネットワーク制御リピータは、リピータ機能及びUE機能による送信状況に基づいて、各機能の送信電力を決定することができる。
 前記通信部は、中継機能に係るターゲット送信電力及び端末機能に係るターゲット送信電力のうち少なくとも一つを示す報告を前記第2の信号を介して前記基地局に送信してもよい。当該構成により、ネットワーク制御リピータは、リピータ機能が送信する信号の電力を決定することができる。また、ネットワーク制御リピータは、リピータ機能及びUE機能による送信状況に基づいて、各機能の送信電力を決定することができる。
 前記通信部は、前記制御情報に基づいた送信電力制御をサポートするか否かを示す能力を前記第2の信号を介して前記基地局に送信してもよい。当該構成により、ネットワーク制御リピータは、リピータ機能が送信する信号の電力を決定することができる。また、ネットワーク制御リピータは、リピータ機能及びUE機能による送信状況に基づいて、各機能の送信電力を決定することができる。
 また、本発明の実施の形態によれば、中継機能に係る制御情報を含む第1の信号を基地局から受信し、第2の信号を前記基地局に送信する端末機能を実行する通信手順と、前記制御情報に基づいて、中継機能を制御する制御手順と、第3の信号を前記基地局から受信し、前記第3の信号を端末に送信し、第4の信号を前記端末から受信し、前記第4の信号を前記基地局に送信する中継機能を実行する中継手順と、前記第2の信号及び前記第4の信号を同時に前記基地局に送信しない場合、前記制御情報及び前記第2の信号に適用する送信電力のうち少なくとも一つに基づいて、前記第4の信号に適用する送信電力を決定する手順を無線中継装置が実行する通信方法が提供される。
 上記の構成により、ネットワーク制御リピータは、リピータ機能が送信する信号の電力を決定することができる。また、ネットワーク制御リピータは、リピータ機能及びUE機能による送信状況に基づいて、各機能の送信電力を決定することができる。すなわち、無線通信システムにおいて、無線中継装置が中継する無線信号の送信電力を決定することができる。
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング)、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、FRA(Future Radio Access)、NR(new Radio)、New radio access(NX)、Future generation radio access(FX)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張、修正、作成、規定された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。端末20に対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、端末20は、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において説明した各態様/実施形態は単独で用いられてもよいし、組み合わせて用いられてもよいし、実行に伴って切り替えて用いられてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 なお、本開示において、可変部340及びアンテナ部350は、中継部の一例である。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
10    基地局
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
210   送信部
220   受信部
230   設定部
240   制御部
30    無線中継装置
310   送信部
320   受信部
330   制御部
340   可変部
350   アンテナ部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置
2001  車両
2002  駆動部
2003  操舵部
2004  アクセルペダル
2005  ブレーキペダル
2006  シフトレバー
2007  前輪
2008  後輪
2009  車軸
2010  電子制御部
2012  情報サービス部
2013  通信モジュール
2021  電流センサ
2022  回転数センサ
2023  空気圧センサ
2024  車速センサ
2025  加速度センサ
2026  ブレーキペダルセンサ
2027  シフトレバーセンサ
2028  物体検出センサ
2029  アクセルペダルセンサ
2030  運転支援システム部
2031  マイクロプロセッサ
2032  メモリ(ROM,RAM)
2033  通信ポート(IOポート)

Claims (6)

  1.  中継機能に係る制御情報を含む第1の信号を基地局から受信し、第2の信号を前記基地局に送信する端末機能を実行する通信部と、
     前記制御情報に基づいて、中継機能を制御する制御部と、
     第3の信号を前記基地局から受信し、前記第3の信号を端末に送信し、第4の信号を前記端末から受信し、前記第4の信号を前記基地局に送信する中継機能を実行する中継部とを有し、
     前記制御部は、前記第2の信号及び前記第4の信号を同時に前記基地局に送信しない場合、前記制御情報及び前記第2の信号に適用する送信電力のうち少なくとも一つに基づいて、前記第4の信号に適用する送信電力を決定する無線中継装置。
  2.  前記制御部は、前記第4の信号に適用する最大送信電力を決定する請求項1記載の無線中継装置。
  3.  前記制御部は、前記第2の信号及び前記第4の信号を同時に前記基地局に送信しない場合及び前記第2の信号及び前記第4の信号を同時に前記基地局に送信する場合の双方で、前記第4の信号に適用する送信電力を一定とする請求項1記載の無線中継装置。
  4.  前記通信部は、中継機能に係るターゲット送信電力及び端末機能に係るターゲット送信電力のうち少なくとも一つを示す報告を前記第2の信号を介して前記基地局に送信する請求項1記載の無線中継装置。
  5.  前記通信部は、前記制御情報に基づいた送信電力制御をサポートするか否かを示す能力を前記第2の信号を介して前記基地局に送信する請求項1記載の無線中継装置。
  6.  中継機能に係る制御情報を含む第1の信号を基地局から受信し、第2の信号を前記基地局に送信する端末機能を実行する通信手順と、
     前記制御情報に基づいて、中継機能を制御する制御手順と、
     第3の信号を前記基地局から受信し、前記第3の信号を端末に送信し、第4の信号を前記端末から受信し、前記第4の信号を前記基地局に送信する中継機能を実行する中継手順と、
     前記第2の信号及び前記第4の信号を同時に前記基地局に送信しない場合、前記制御情報及び前記第2の信号に適用する送信電力のうち少なくとも一つに基づいて、前記第4の信号に適用する送信電力を決定する手順を無線中継装置が実行する通信方法。
PCT/JP2022/014540 2022-03-25 2022-03-25 無線中継装置及び通信方法 WO2023181377A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014540 WO2023181377A1 (ja) 2022-03-25 2022-03-25 無線中継装置及び通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014540 WO2023181377A1 (ja) 2022-03-25 2022-03-25 無線中継装置及び通信方法

Publications (1)

Publication Number Publication Date
WO2023181377A1 true WO2023181377A1 (ja) 2023-09-28

Family

ID=88100281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014540 WO2023181377A1 (ja) 2022-03-25 2022-03-25 無線中継装置及び通信方法

Country Status (1)

Country Link
WO (1) WO2023181377A1 (ja)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MODERATOR (QUALCOMM): "Summary of email discussions on NR Repeaters", 3GPP DRAFT; RP-202748, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20201207 - 20201211, 30 November 2020 (2020-11-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051963302 *

Similar Documents

Publication Publication Date Title
WO2023105802A1 (ja) 無線中継装置、基地局及び無線中継方法
WO2022195888A1 (ja) 無線中継装置および無線中継方法
WO2023181377A1 (ja) 無線中継装置及び通信方法
WO2023181378A1 (ja) 無線中継装置及び通信方法
WO2023067818A1 (ja) 無線中継装置及び通信方法
WO2023119533A1 (ja) 無線中継装置、通信装置及び無線中継方法
WO2023119534A1 (ja) 無線中継装置、通信装置及び無線中継方法
WO2023145029A1 (ja) 無線中継装置及び通信方法
WO2023145030A1 (ja) 無線中継装置及び通信方法
WO2024038596A1 (ja) 無線中継装置及び無線中継方法
WO2023175940A1 (ja) 無線中継装置、基地局及び無線中継方法
WO2024038597A1 (ja) 無線中継装置及び無線中継方法
WO2023105803A1 (ja) 通信装置、基地局及び通信方法
WO2023112106A1 (ja) 無線中継装置及び通信方法
WO2023127063A1 (ja) 無線中継装置、通信装置及び無線中継方法
WO2023145031A1 (ja) 無線中継装置及び通信方法
WO2023105804A1 (ja) 無線中継装置、基地局及び無線中継方法
WO2023209905A1 (ja) 無線中継装置及び通信方法
WO2023209924A1 (ja) 無線中継装置、基地局及び無線中継方法
WO2023073963A1 (ja) 基地局及び通信方法
WO2024018610A1 (ja) 無線中継装置及び通信方法
WO2023067819A1 (ja) 無線中継装置及び通信方法
WO2024080018A1 (ja) 無線中継装置及び無線中継方法
WO2023119383A1 (ja) 端末及び通信方法
WO2023037561A1 (ja) 無線中継装置、端末、無線通信システム及び無線中継方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933515

Country of ref document: EP

Kind code of ref document: A1