WO2023181360A1 - Rectenna device - Google Patents

Rectenna device Download PDF

Info

Publication number
WO2023181360A1
WO2023181360A1 PCT/JP2022/014430 JP2022014430W WO2023181360A1 WO 2023181360 A1 WO2023181360 A1 WO 2023181360A1 JP 2022014430 W JP2022014430 W JP 2022014430W WO 2023181360 A1 WO2023181360 A1 WO 2023181360A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
output voltage
circuits
power conversion
rectifier
Prior art date
Application number
PCT/JP2022/014430
Other languages
French (fr)
Japanese (ja)
Inventor
将司 ▲高▼橋
和裕 ▲高▼橋
一義 花房
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to PCT/JP2022/014430 priority Critical patent/WO2023181360A1/en
Publication of WO2023181360A1 publication Critical patent/WO2023181360A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • H02J50/27Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of receiving antennas, e.g. rectennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices

Definitions

  • the present invention relates to a rectenna device used for wireless power transmission using microwaves.
  • Patent Document 1 discloses a technique in which power received by an antenna is distributed to a plurality of rectifier circuits via a transmission line in a rectenna device that receives microwaves.
  • a rectenna device includes an antenna section, a plurality of rectifier circuits, a plurality of power conversion circuits, a power output terminal, and a plurality of correction control circuits.
  • the antenna section is configured to be able to receive microwaves.
  • Each of the plurality of rectifier circuits is connected to the antenna section and configured to be able to rectify the power signal supplied from the antenna section.
  • the plurality of power conversion circuits are provided corresponding to the plurality of rectifier circuits, respectively, and each is configured to be able to generate DC power based on the output power of the corresponding rectifier circuit.
  • the power output terminal is connected to output terminals of the plurality of power conversion circuits.
  • the plurality of correction control circuits are provided corresponding to the plurality of rectifier circuits, respectively, and are provided corresponding to the plurality of power conversion circuits, and each corrects the output voltage, output current, and circuit of the corresponding rectifier circuit.
  • the output voltage of the corresponding power conversion circuit can be corrected based on one or more of the temperatures.
  • circuit components can be protected.
  • FIG. 1 is a block diagram illustrating a configuration example of a rectenna device according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram showing a configuration example of the rectifier circuit shown in FIG. 1.
  • FIG. FIG. 2 is a circuit diagram showing another configuration example of the rectifier circuit shown in FIG. 1.
  • FIG. FIG. 2 is a circuit diagram showing another configuration example of the rectifier circuit shown in FIG. 1.
  • FIG. FIG. 2 is a circuit diagram illustrating a configuration example of a rectifier circuit, a sensor circuit, a correction control circuit, and a DC/DC converter illustrated in FIG. 1.
  • FIG. FIG. 2 is an explanatory diagram showing an example of mounting the rectenna device shown in FIG. 1;
  • FIG. 2 is an explanatory diagram showing an example of mounting the rectenna device shown in FIG. 1;
  • FIG. 1 is a block diagram illustrating a configuration example of a rectenna device according to an embodiment of the present invention.
  • FIG. 2 is
  • FIG. 2 is another explanatory diagram showing an example of mounting the rectenna device shown in FIG. 1;
  • 2 is a characteristic diagram showing an example of the operation of the rectenna device shown in FIG. 1.
  • FIG. 2 is a characteristic diagram showing an example of the characteristics of the rectifier circuit shown in FIG. 1.
  • FIG. 2 is a characteristic diagram showing another example of the operation of the rectenna device shown in FIG. 1.
  • FIG. 2 is a characteristic diagram showing another example of the operation of the rectenna device shown in FIG. 1.
  • FIG. FIG. 2 is a characteristic diagram showing another example of the characteristics of the rectifier circuit shown in FIG. 1;
  • It is a block diagram showing one example of composition of a rectenna device concerning a modification.
  • FIG. 15 is an explanatory diagram showing an example of mounting the rectenna device shown in FIG. 14.
  • FIG. 15 is another explanatory diagram showing an example of mounting the rectenna device shown in FIG. 14.
  • FIG. 15 is another explanatory diagram showing an example of mounting the rectenna device shown in FIG. 14.
  • FIG. 1 shows an example of the configuration of a rectenna device (rectenna device 1) according to a first embodiment of the present invention.
  • the rectenna device 1 is a power receiving device used in a wireless power transmission system that transmits power using microwaves.
  • the rectenna device 1 is configured to generate DC power based on the power transmitted by microwaves, and to supply the generated DC power to the load device 9.
  • the rectenna device 1 includes an antenna unit 10, a plurality of rectifier circuits 12 (four rectifier circuits 12A to 12D in this example), a plurality of sensor circuits 13 (four sensor circuits 13A to 13D in this example), and a plurality of rectifier circuits 12 (four rectifier circuits 12A to 12D in this example).
  • a correction control circuit 14 (four correction control circuits 14A to 14D in this example), a plurality of DC/DC converters 15 (four DC/DC converters 15A to 15D in this example), a converter control circuit 16, and a power output It is equipped with a terminal T.
  • the antenna section 10 is configured to receive microwaves.
  • the antenna section 10 has a plurality of antennas 11 (four antennas 11A to 11D in this example). Each of the antennas 11A to 11D can be configured using, for example, a patch antenna. Output terminals of antennas 11A to 11D are connected to each other and to input terminals of rectifier circuits 12A to 12D.
  • the rectifier circuit 12A is connected to the antenna section 10 and is configured to rectify the power signal supplied from the antenna section 10.
  • the rectifier circuit 12B is connected to the antenna section 10 and configured to rectify the power signal supplied from the antenna section 10.
  • the rectifier circuit 12C is connected to the antenna section 10 and is configured to rectify the power signal supplied from the antenna section 10.
  • the rectifier circuit 12D is connected to the antenna section 10 and is configured to rectify the power signal supplied from the antenna section 10.
  • the input terminals of the rectifier circuits 12A to 12D are connected to each other and to the output terminals of the antennas 11A to 11D of the antenna section 10.
  • FIG. 2 shows an example of the configuration of the rectifier circuit 12.
  • the antenna section 10 at the front stage is connected to the left of the rectifier circuit 12, and the sensor circuit 13 at the rear stage is connected to the right of the rectifier circuit 12.
  • This rectifier circuit 12 is a so-called single shunt type rectifier circuit, and includes a diode D1, a transmission line TL, and a capacitor C1.
  • the voltage line L1 and the reference voltage line L2 are guided to the antenna 11 at the front stage and to the sensor circuit 13 at the rear stage.
  • the anode of the diode D1 is connected to the reference voltage line L2, and the cathode is connected to one end of the transmission line TL in the voltage line L1.
  • the transmission line TL is a transmission line with a line length of ⁇ /4, is provided on the voltage line L1, has one end connected to the cathode of the diode D1, and has the other end connected to one end of the capacitor C1.
  • One end of the capacitor C1 is connected to the other end of the transmission line TL on the voltage line L1, and the other end is connected to the reference voltage line L2.
  • FIG. 3 shows a configuration example of another rectifier circuit 12.
  • the rectifier circuit 12 is a so-called half-wave voltage doubler type rectifier circuit, and includes a capacitor C2, a diode D1, a diode D2, and a capacitor C1.
  • Capacitor C2 is provided on voltage line L1, one end is connected to the preceding antenna section 10, and the other end is connected to the cathode of diode D1 and the anode of diode D2.
  • the anode of diode D1 is connected to reference voltage line L2, and the cathode is connected to the other end of capacitor C2 and the anode of diode D2 on voltage line L1.
  • Diode D2 is provided on voltage line L1, its anode is connected to the other end of capacitor C2 and the cathode of diode D1, and its cathode is connected to one end of capacitor C1.
  • One end of the capacitor C1 is connected to the cathode of the diode D2 on the voltage line L1, and the other end is connected to the reference voltage line L2.
  • FIG. 4 shows a configuration example of another rectifier circuit 12.
  • This rectifier circuit 12 is a so-called full-wave rectifier type rectifier circuit, and includes diodes D3 to D6 and a capacitor C1.
  • the voltage line L1 and the reference voltage line L3 are led to the antenna section 10 at the front stage, and the voltage line L1 and the reference voltage line L2 are led to the sensor circuit 13 at the rear stage.
  • the anode of diode D3 is connected to reference voltage line L2, and the cathode is connected to the anode of diode D4 on voltage line L1.
  • Diode D4 is provided on voltage line L1, has an anode connected to the cathode of diode D3, and a cathode connected to the cathode of diode D6 and one end of capacitor C1.
  • the anode of the diode D5 is connected to the reference voltage line L2, and the cathode is connected to the reference voltage line L3.
  • the anode of diode D6 is connected to reference voltage line L3, and the cathode is connected to voltage line L1 to the cathode of diode D4 and one end of capacitor C1.
  • One end of the capacitor C1 is connected to the cathodes of diodes D4 and D6 on the voltage line L1, and the other end is connected to the reference voltage line L2.
  • the rectifier circuit 12 for example, the circuits shown in FIGS. 2 to 4 can be used. Note that the circuit is not limited to these, and other circuits may be used.
  • the rectifier circuit 12 has a temperature sensor that detects the circuit temperature of the rectifier circuit 12, as described later.
  • the rectifier circuits 12A to 12D are configured to supply the detection results of the temperature sensors to the correction control circuits 14A to 14D, respectively.
  • the four sensor circuits 13A to 13D are provided corresponding to the four rectifier circuits 12A to 12D, respectively.
  • the sensor circuit 13A is configured to detect the output voltage of the rectifier circuit 12A (output voltage Vo_rect described later) and the output current of the rectifier circuit 12A (output current Io_rect described later), and supply the detection results to the correction control circuit 14A. be done.
  • the sensor circuit 13B is configured to detect the output voltage and output current of the rectifier circuit 12B, and supply the detection results to the correction control circuit 14B.
  • the sensor circuit 13C is configured to detect the output voltage and output current of the rectifier circuit 12C, and supply the detection results to the correction control circuit 14C.
  • the sensor circuit 13D is configured to detect the output voltage and output current of the rectifier circuit 12D, and supply the detection results to the correction control circuit 14D.
  • the correction control circuit 14A adjusts the output of the DC/DC converter 15A based on the detection results of the output voltage and output current of the rectifier circuit 12A supplied from the sensor circuit 13A and the detection result of the circuit temperature supplied from the rectifier circuit 12A. It is configured to generate a correction command value indicating the amount of correction of the voltage (output voltage Vo_dcdc described later).
  • the correction control circuit 14B adjusts the amount of correction for the output voltage of the DC/DC converter 15B based on the detection results of the output voltage and output current supplied from the sensor circuit 13B and the detection result of the circuit temperature supplied from the rectifier circuit 12B.
  • the correction command value is configured to generate a correction command value indicating.
  • the correction control circuit 14C adjusts the output of the DC/DC converter 15C based on the output voltage and output current of the rectifier circuit 12C supplied from the sensor circuit 13C and the detection result of the circuit temperature supplied from the rectifier circuit 12C. It is configured to generate a correction command value indicating a voltage correction amount.
  • the correction control circuit 14D adjusts the output of the DC/DC converter 15D based on the detection results of the output voltage and output current of the rectifier circuit 12D supplied from the sensor circuit 13D and the detection result of the circuit temperature supplied from the rectifier circuit 12D. It is configured to generate a correction command value indicating a voltage correction amount.
  • the four DC/DC converters 15A to 15D are provided corresponding to the four rectifier circuits 12A to 12D, the four sensor circuits 13A to 13D, and the four correction control circuits 14A to 14D, respectively.
  • the DC/DC converter 15A is configured to generate DC power based on the output power of the rectifier circuit 12A, and to correct the output voltage based on the correction command value supplied from the correction control circuit 14A.
  • the DC/DC converter 15B is configured to generate DC power based on the output power of the rectifier circuit 12B, and to correct the output voltage based on the correction command value supplied from the correction control circuit 14B. .
  • the DC/DC converter 15C is configured to generate DC power based on the output power of the rectifier circuit 12C, and to correct the output voltage based on the correction command value supplied from the correction control circuit 14C.
  • the DC/DC converter 15D is configured to generate DC power based on the output power of the rectifier circuit 12D, and to correct the output voltage based on the correction command value supplied from the correction control circuit 14D.
  • the output terminals of the four DC/DC converters 15A to 15D are connected to each other and to the power output terminal T.
  • the converter control circuit 16 is configured to control the operations of the four DC/DC converters 15A to 15D. Specifically, the converter control circuit 16 controls the four DC/DC converters 15A to 15D so that, for example, the four DC/DC converters 15A to 15D perform switching operations at the same switching frequency and different phases. Controls the operation of 15D.
  • the four DC/DC converters 15A to 15D perform switching operations at the same switching frequency, for example, when a noise reduction filter is provided between the rectenna device 1 and the load device 9, this filter Noise caused by switching operations can be easily reduced. Further, by performing switching operations in different phases of the four DC/DC converters 15A to 15D, ripples in the output voltage of the rectenna device 1 can be reduced.
  • the power output terminal T is a terminal that outputs the power generated by the four DC/DC converters 15A to 15D, and is connected to the load device 9.
  • FIG. 5 shows an example of the configuration of the rectifier circuit 12A, the sensor circuit 13A, the correction control circuit 14A, and the DC/DC converter 15A.
  • the rectifier circuit 12A has a temperature sensor 19.
  • the temperature sensor 19 is configured to detect the circuit temperature T_rect of the rectifier circuit 12A.
  • Temperature sensor 19 is constructed using, for example, a thermistor, and is placed, for example, near the diode shown in FIGS. 2-4.
  • the temperature sensor 19 is configured to generate a detection voltage according to the circuit temperature T_rect of the rectifier circuit 12A.
  • the sensor circuit 13A includes resistance elements 21 and 22 and a current sensor 23.
  • the resistive elements 21 and 22 constitute a resistive voltage divider circuit, and are configured to divide the output voltage Vo_rect of the rectifier circuit 12A to generate a detection voltage according to the output voltage Vo_rect.
  • the current sensor 23 is provided on the voltage line L1, and is configured to detect the output current Io_rect of the rectifier circuit 12A flowing from the rectifier circuit 12A toward the DC/DC converter 15A, and to generate a detection voltage according to this output current Io_rect. It is composed of
  • the correction control circuit 14A has correction command value generation circuits 26 to 28.
  • the DC/DC converter 15A includes a capacitor 31, transistors 32 and 33, an inductor 34, resistance elements 35 and 36, a capacitor 37, a voltage command value generation circuit 38, an addition circuit 39, and a voltage generation circuit 41. , an operational amplifier circuit 42, a resistance element 43, capacitors 44, 45, and a controller 46.
  • One end of the capacitor 31 is connected to the voltage line L1, and the other end is connected to the reference voltage line L2.
  • the transistors 32 and 33 are configured using, for example, N-type field effect transistors (FETs). Each of transistors 32, 33 has a diode having an anode connected to a source and a cathode connected to a drain. Note that although an N-type field effect transistor is used in this example, any switching element may be used.
  • the gate signal G1 is supplied to the gate of the transistor 32, the drain is connected to the voltage line L1, and the source is connected to the voltage line L4.
  • the gate signal G2 is supplied to the gate of the transistor 33, the drain is connected to the voltage line L4, and the source is connected to the reference voltage line L2.
  • the inductor 34 is provided on the voltage line L4, one end is connected to the source of the transistor 32 and the drain of the transistor 33, and the other end is connected to one end of the resistive element 35 and one end of the capacitor 37.
  • the resistive elements 35 and 36 constitute a resistive voltage divider circuit, and are configured to divide the output voltage Vo_dcdc of the DC/DC converter 15 to generate a detection voltage according to the output voltage Vo_dcdc.
  • One end of the capacitor 37 is connected to the voltage line L4, and the other end is connected to the reference voltage line L2.
  • the voltage command value generation circuit 38 is configured to generate a voltage command value Vref indicating a reference voltage of the output voltage Vo_dcdc of the DC/DC converter 15A.
  • the voltage generation circuit 41 is configured to generate the voltage Vvr based on the voltage command value Vref1 of the target voltage.
  • a voltage Vvr is supplied to the positive input terminal of the operational amplifier circuit 42, and a detection voltage corresponding to the output voltage Vo_dcdc, which is divided by the resistive elements 35 and 36, is supplied to the negative input terminal.
  • One end of the resistive element 43 is connected to the negative input terminal of the operational amplifier circuit 42, and the other end is connected to one end of the capacitor 44.
  • One end of the capacitor 44 is connected to the other end of the resistance element 43, and the other end is connected to the output terminal of the operational amplifier circuit 42.
  • One end of the capacitor 44 is connected to the negative input terminal of the operational amplifier circuit 42, and the other end is connected to the output terminal of the operational amplifier circuit 42.
  • the operational amplifier circuit 42 generates a control voltage and supplies this control voltage to the controller 46.
  • the controller 46 is configured to control the operation of the DC/DC converter 15A based on the control voltage supplied from the operational amplifier circuit 42. Specifically, the controller 46 generates gate signals G1 and G2 based on the control voltage supplied from the operational amplifier circuit 42, and controls the switching operations of the transistors 32 and 33 using the gate signals G1 and G2. Accordingly, the output voltage Vo_dcdc of the DC/DC converter 15A is controlled to become the target voltage.
  • the controller 46 is configured using, for example, an MCU (Micro Controller Unit).
  • FIG. 6 and 7 represent implementation examples of four antennas 11, four rectifier circuits 12, four sensor circuits 13, four correction control circuits 14, and four DC/DC converters 15 in the rectenna device 1.
  • Four antennas 11, four rectifier circuits 12, four sensor circuits 13, four correction control circuits 14, and four DC/DC converters 15 are mounted on a substrate 100, which is a printed circuit board in this example.
  • FIG. 6 shows a substrate side 100A of the substrate 100
  • FIG. 7 shows a substrate side 100B of the substrate 100 opposite to the substrate side 100A.
  • four antennas 11 are mounted on the substrate surface 100A, and four rectifier circuits 12, four sensor circuits 13, four correction control circuits 14, and four DC/DC converters 15 are mounted on the substrate surface 100B. Ru.
  • the four antennas 11 are arranged in two rows and two columns in this example.
  • the four antennas 11 are connected to each other via a transmission line 102 and guided to a feeding point 101.
  • the transmission line 102 combines the power output from each of the four antennas 11 and supplies the combined power to the feed point 101 .
  • a transmission line 102 arranged on the substrate surface 100A and a transmission line 103 arranged on the substrate surface 100B are connected to each other via a via (not shown) provided in the substrate 100.
  • the four rectifier circuits 12 are connected to each other via a transmission line 103 and guided to a feeding point 101.
  • power supplied from four antennas 11 is distributed by this transmission line 103 and supplied to four rectifier circuits 12A to 12D.
  • Transmission line 103 distributes power so that the power supplied to four rectifier circuits 12A to 12D is equal to each other.
  • the transmission line from the feed point 101 to the rectifier circuit 12A and the transmission line from the feed point 101 to the rectifier circuit 12C have shapes that are symmetrical to each other.
  • the transmission line from the feed point 101 to the rectifier circuit 12B and the transmission line from the feed point 101 to the rectifier circuit 12D have mutually symmetrical shapes.
  • the rectifier circuit 12 is configured as one circuit
  • the sensor circuit 13 and the correction control circuit 14 are configured as one circuit
  • the DC/DC converter 15 is configured as one circuit.
  • the rectifier circuit 12, the sensor circuit 13, the correction control circuit 14, and the DC/DC converter 15 may be configured as one circuit.
  • four antennas 11 are mounted on the substrate surface 100A, and four rectifier circuits 12, four sensor circuits 13, four correction control circuits 14, and four DC/DC converters 15 are mounted on the substrate surface 100B. Although implemented, it is not limited to this. Alternatively, for example, four antennas 11, four rectifier circuits 12, four sensor circuits 13, four correction control circuits 14, and four DC/DC converters 15 may be mounted on the same substrate surface. .
  • the antenna section 10 corresponds to a specific example of the "antenna section” in the present disclosure.
  • the antenna 11 corresponds to a specific example of "antenna” in the present disclosure.
  • the rectifier circuit 12 corresponds to a specific example of a “rectifier circuit” in the present disclosure.
  • the correction control circuit 14 corresponds to a specific example of a "correction control circuit” in the present disclosure.
  • the output voltage Vo_rect corresponds to a specific example of "output voltage of a rectifier circuit” in the present disclosure.
  • the output current Io_rect corresponds to a specific example of "output current” in the present disclosure.
  • the circuit temperature T_rect corresponds to a specific example of "circuit temperature” in the present disclosure.
  • the correction command value ⁇ Va corresponds to a specific example of the "first correction command value” in the present disclosure.
  • the correction command value ⁇ Vb corresponds to a specific example of the "second correction command value” in the present disclosure.
  • the correction command value ⁇ Vc corresponds to a specific example of the "third correction command value” in the present disclosure.
  • the DC/DC converter 15 corresponds to a specific example of a "power conversion circuit” in the present disclosure.
  • the output voltage Vo_dcdc corresponds to a specific example of "output voltage of the power conversion circuit” in the present disclosure.
  • Converter control circuit 16 corresponds to a specific example of a "power conversion control circuit” in the present disclosure.
  • the power output terminal T corresponds to a specific example of a "power output terminal” in the present disclosure.
  • Antenna section 10 receives microwaves.
  • the rectifier circuit 12A rectifies the power signal supplied from the antenna section 10. Further, the rectifier circuit 12A detects the circuit temperature T_rect of the rectifier circuit 12A, and supplies the detection result to the correction control circuit 14A.
  • the sensor circuit 13A detects the output voltage Vo_rect and the output current Io_rect of the rectifier circuit 12A, and supplies the detection results to the correction control circuit 14A.
  • the correction control circuit 14A controls the DC/DC converter based on the detection results of the output voltage Vo_rect and the output current Io_rect of the rectifier circuit 12A supplied from the sensor circuit 13A, and the detection result of the circuit temperature T_rect supplied from the rectification circuit 12A.
  • a correction command value indicating the correction amount of the output voltage Vo_dcdc of 15A is generated.
  • the DC/DC converter 15A generates DC power based on the output power of the rectifier circuit 12A, and corrects the output voltage Vo_dcdc of the DC/DC converter 15A based on the correction command value supplied from the correction control circuit 14A.
  • the converter control circuit 16 controls the operation of the four DC/DC converters 15A to 15D so that the four DC/DC converters 15A to 15D perform switching operations at the same switching frequency and different phases.
  • Rectenna device 1 supplies DC power generated by four DC/DC converters 15A to 15D to load device 9 via power output terminal T.
  • the power output from each of the antennas 11A to 11D is once combined, and the combined power is distributed to the four rectifier circuits 12A to 12D.
  • the four rectifier circuits 12A to 12D Due to variations in the characteristics of the paths to the four rectifier circuits 12A to 12D in the transmission line 103 or variations in the characteristics of the four rectifier circuits 12A to 12D, a large amount of current flows into one of the four rectifier circuits 12A to 12D. It can flow. For example, if an excessive current flows through any one of the rectifier circuits 12A to 12D, the characteristics of the diode in the rectifier circuit 12 may deteriorate or the diode may fail.
  • the correction control circuit 14A uses the detection results of the output voltage Vo_rect and output current Io_rect of the rectifier circuit 12A supplied from the sensor circuit 13A, and the detection result of the circuit temperature T_rect supplied from the rectifier circuit 12A. Based on this, a correction command value indicating the amount of correction of the output voltage Vo_dcdc of the DC/DC converter 15A is generated.
  • the DC/DC converter 15A corrects the output voltage based on the correction command value supplied from the correction control circuit 14A. Thereby, in the rectenna device 1, the diode of the rectifier circuit 12A can be protected. This operation will be explained in detail below.
  • FIG. 8 shows a correction operation of the output voltage Vo_dcdc of the DC/DC converter 15A based on the output voltage Vo_rect of the rectifier circuit 12A.
  • the correction command value generation circuit 26 uses equation EQ1 to generate a correction command value ⁇ Va based on the output voltage Vo_rect of the rectifier circuit 12A.
  • the addition circuit 39 generates the voltage command value Vref1 of the target voltage using equation EQ4.
  • the output voltage Vo_dcdc of the DC/DC converter 15A increases as the output voltage Vo_rect of the rectifier circuit 12A increases.
  • the DC/DC converter 15A sets the output voltage Vo_dcdc of the DC/DC converter 15A to the voltage Vo1
  • the output voltage Vo_rect of the rectifier circuit 12A becomes the voltage V1.
  • the output voltage Vo_dcdc of the DC/DC converter 15A is set to a voltage Vo2 higher than the voltage Vo1.
  • the rectenna device 1 can cooperatively supply DC power to the load device 9 while protecting the diode of the rectifier circuit 12A, as described below.
  • FIG. 9 shows characteristics showing the relationship between the output voltage Vo_rect and the output current Io_rect of the rectifier circuit 12A when the received power is a predetermined value.
  • Characteristic W1 shows the characteristic when the received power is power P1
  • characteristic W2 shows the characteristic when the received power is power P2 which is larger than power P1
  • characteristic W3 shows the characteristic when the received power is power P2 which is larger than power P1. The characteristics when the power is small P3 are shown.
  • the output current Io_rect of the rectifier circuit 12A when the output voltage Vo_rect of the rectifier circuit 12A is low, the output current Io_rect of the rectifier circuit 12A is large.
  • the diodes of the rectifier circuit 12A have little margin in terms of current capacity. For example, if the output current Io_rect is excessive, the characteristics of the diode in the rectifier circuit 12A may deteriorate or the diode may fail. Therefore, the DC/DC converter 15A lowers the output voltage Vo_dcdc as the output voltage Vo_rect of the rectifier circuit 12A becomes lower.
  • the output current of the DC/DC converter 15A decreases, and the output currents of the DC/DC converters 15B, 15C, and 15D increase to compensate for the decrease.
  • the output current of the DC/DC converter 15A decreases in this way, the input current of the DC/DC converter 15A decreases, and the output current Io_rect of the rectifier circuit 12A decreases.
  • the output current Io_rect of the rectifier circuit 12A can be suppressed low, and the diode of the rectifier circuit 12A can be protected.
  • the four DC/DC converters 15A to 15D can cooperatively supply DC power to the load device 9.
  • the DC/DC converter 15A increases the output voltage Vo_dcdc as the output voltage Vo_rect of the rectifier circuit 12A increases.
  • the output current of the DC/DC converter 15A increases, and the output currents of the DC/DC converters 15B, 15C, and 15D decrease by the increased amount.
  • the four DC/DC converters 15A to 15D can cooperate to supply DC power to the load device 9.
  • FIG. 10 shows a correction operation for the output voltage Vo_dcdc of the DC/DC converter 15A based on the output current Io_rect of the rectifier circuit 12A.
  • the correction command value generation circuit 27 uses equation EQ2 to generate a correction command value ⁇ Vb based on the output current Io_rect of the rectifier circuit 12A.
  • the addition circuit 39 generates the voltage command value Vref1 of the target voltage using equation EQ4.
  • the output voltage Vo_dcdc of the DC/DC converter 15A increases as the output current Io_rect of the rectifier circuit 12A increases.
  • the DC/DC converter 15A sets the output voltage Vo_dcdc of the DC/DC converter 15A to the voltage Vo3, and the output current Io_rect of the rectifier circuit 12A becomes the current I1.
  • the output voltage Vo_dcdc of the DC/DC converter 15A is set to a voltage Vo4 lower than the voltage Vo3.
  • the rectenna device 1 can cooperatively supply DC power to the load device 9 while protecting the diode of the rectifier circuit 12A, as described below.
  • the DC/DC converter 15A lowers the output voltage Vo_dcdc as the output current Io_rect of the rectifier circuit 12A increases.
  • the output voltage Vo_dcdc of the DC/DC converter 15A decreases, the output current of the DC/DC converter 15A decreases, and the output currents of the DC/DC converters 15B, 15C, and 15D increase to compensate for the decrease.
  • the output current of the DC/DC converter 15A decreases in this way, the input current of the DC/DC converter 15A decreases, and the output current Io_rect of the rectifier circuit 12A decreases. In this way, in the rectenna device 1, the output current Io_rect of the rectifier circuit 12A can be suppressed low, and the diode of the rectifier circuit 12A can be protected. In the rectenna device 1, the four DC/DC converters 15A to 15D can cooperatively supply DC power to the load device 9.
  • the DC/DC converter 15A increases the output voltage Vo_dcdc as the output current Io_rect of the rectifier circuit 12A decreases.
  • the output voltage Vo_dcdc of the DC/DC converter 15A increases, the output current of the DC/DC converter 15A increases, and the output currents of the DC/DC converters 15B, 15C, and 15D decrease by the increased amount.
  • the four DC/DC converters 15A to 15D can cooperate to supply DC power to the load device 9.
  • FIG. 11 shows a correction operation of the output voltage Vo_dcdc of the DC/DC converter 15A based on the circuit temperature T_rect of the rectifier circuit 12A.
  • the correction command value generation circuit 28 uses equation EQ3 to generate a correction command value ⁇ Vc based on the circuit temperature T_rect of the rectifier circuit 12A.
  • the addition circuit 39 generates the voltage command value Vref1 of the target voltage using equation EQ4.
  • the output voltage Vo_dcdc of the DC/DC converter 15A becomes lower as the circuit temperature T_rect of the rectifier circuit 12A becomes higher.
  • the DC/DC converter 15A sets the output voltage Vo_dcdc of the DC/DC converter 15A to the voltage Vo5
  • the circuit temperature To_rect of the rectifier circuit 12A is the temperature T1.
  • the output voltage Vo_dcdc of the DC/DC converter 15A is set to a voltage Vo6 lower than the voltage Vo5.
  • the rectenna device 1 can cooperatively supply DC power to the load device 9 while protecting the diode of the rectifier circuit 12A, as described below.
  • FIG. 12 shows characteristics showing the relationship between the output current Io_rect of the rectifier circuit 12A and the circuit temperature T_rect. For example, the greater the output current Io_rect of the rectifier circuit 12A, the greater the energy loss in the diode and the higher the circuit temperature T_rect. In particular, in this example, in a region where the output current Io_rect is large, the circuit temperature T_rect increases rapidly as the output current Io_rect increases.
  • the output current Io_rect of the rectifier circuit 12A is large.
  • the diodes of the rectifier circuit 12A have little margin in terms of current capacity. For example, if the output current Io_rect is excessive, the characteristics of the diode in the rectifier circuit 12A may deteriorate or the diode may fail. Therefore, the DC/DC converter 15A lowers the output voltage Vo_dcdc as the circuit temperature T_rect of the rectifier circuit 12A increases.
  • the output current of the DC/DC converter 15A decreases, and the output currents of the DC/DC converters 15B, 15C, and 15D increase to compensate for the decrease.
  • the output current of the DC/DC converter 15A decreases in this way, the input current of the DC/DC converter 15A decreases, and the output current Io_rect of the rectifier circuit 12A decreases.
  • the output current Io_rect of the rectifier circuit 12A can be suppressed low, and the diode of the rectifier circuit 12A can be protected.
  • the four DC/DC converters 15A to 15D can cooperatively supply DC power to the load device 9.
  • the DC/DC converter 15A increases the output voltage Vo_dcdc as the output current Io_rect of the rectifier circuit 12A decreases.
  • the output voltage Vo_dcdc of the DC/DC converter 15A increases, the output current of the DC/DC converter 15A increases, and the output currents of the DC/DC converters 15B, 15C, and 15D decrease by the increased amount.
  • the four DC/DC converters 15A to 15D can cooperate to supply DC power to the load device 9.
  • the rectifier circuit 12A, the sensor circuit 13A, the correction control circuit 14A, and the DC/DC converter 15A have been explained above as examples, the rectifier circuit 12B, the sensor circuit 13B, the correction control circuit 14B, and the DC/DC converter The same applies to converter 15B, the same applies to rectifier circuit 12C, sensor circuit 13C, correction control circuit 14C, and DC/DC converter 15C, and the same applies to rectifier circuit 12D, sensor circuit 13D, correction control circuit 14D, and DC/DC converter 15C. The same applies to converter 15D.
  • the rectenna device 1 includes the antenna section 10 capable of receiving microwaves, the four rectifier circuits 12 each connected to the antenna section 10 and capable of rectifying the power signal supplied from the antenna section 10, Four DC/DC converters 15 are provided corresponding to the four rectifier circuits 12, and each of the four DC/DC converters 15 is capable of generating DC power based on the output power of the corresponding rectifier circuit 12.
  • the power output terminal T connected to the output terminal is provided corresponding to each of the four rectifier circuits 12, and is provided corresponding to each of the four DC/DC converters 15.
  • four correction control circuits 14 capable of correcting the output voltage of the corresponding DC/DC converter 15 based on one or more of output voltage, output current, and circuit temperature.
  • each of the four correction control circuits 14 outputs the output of the corresponding DC/DC converter 15 when the output voltage Vo_rect of the corresponding rectifier circuit 12 is the first voltage (for example, voltage V1).
  • the voltage Vo_dcdc is set to the first output voltage (for example, voltage Vo1) and the output voltage Vo_rect of the corresponding rectifier circuit 12 is a second voltage (for example, voltage V2) higher than the first voltage
  • the output voltage Vo_dcdc of the corresponding DC/DC converter 15 can be corrected so that the output voltage Vo_dcdc of the DC converter 15 becomes a second output voltage (for example, voltage Vo2) higher than the first output voltage.
  • the output current Io_rect of the rectifier circuit 12 can be suppressed low, so that the diode of the rectifier circuit 12 can be protected. can.
  • each of the four correction control circuits 14 outputs the output of the corresponding DC/DC converter 15 when the output current Io_rect of the corresponding rectifier circuit 12 is the first current (for example, current I1).
  • the voltage Vo_dcdc is set to the third output voltage (for example, the voltage Vo3) and the output current Io_rect of the corresponding rectifier circuit 12 is a second current (for example, the current I2) that is larger than the first current
  • the output voltage Vo_dcdc of the corresponding DC/DC converter 15 can be corrected so that the output voltage Vo_dcdc of the DC converter 15 becomes the fourth output voltage (voltage Vo4) lower than the third output voltage.
  • the output current Io_rect of the corresponding rectifier circuit 12 when the output current Io_rect of the corresponding rectifier circuit 12 is large, the output current Io_rect of the corresponding rectifier circuit 12 can be suppressed to a low level, so that the diode of the rectifier circuit 12 can be protected. can.
  • each of the four correction control circuits 14 outputs the output of the corresponding DC/DC converter 15 when the circuit temperature T_rect of the corresponding rectifier circuit 12 is the first temperature (for example, temperature T1).
  • the voltage Vo_dcdc is set to the fifth output voltage (for example, voltage Vo5) and the circuit temperature T_rect of the corresponding rectifier circuit 12 is a second temperature (for example, temperature T2) higher than the first temperature
  • the output voltage Vo_dcdc of the corresponding DC/DC converter 15 can be corrected so that the output voltage Vo_dcdc of the DC converter 15 becomes a sixth output voltage (for example, voltage Vo6) lower than the fifth output voltage. .
  • the rectenna device 1 for example, when the circuit temperature T_rect of the corresponding rectifier circuit 12 is high, the output current Io_rect of the rectifier circuit 12 can be suppressed to a low level, so that the diode of the rectifier circuit 12 can be protected. can.
  • this embodiment includes an antenna unit capable of receiving microwaves, four rectifier circuits each connected to the antenna unit and capable of rectifying the power signal supplied from the antenna unit, and four rectifier circuits each connected to the antenna unit and capable of rectifying the power signal supplied from the antenna unit.
  • Four DC/DC converters each of which is provided corresponding to the circuit, and each capable of generating DC power based on the output power of the corresponding rectifier circuit, and power connected to the output terminals of the four DC/DC converters.
  • the output terminal is provided corresponding to each of the four rectifier circuits, and is provided corresponding to each of the four DC/DC converters. Since four correction control circuits capable of correcting the output voltage of the corresponding DC/DC converter based on one or more of them are provided, the diodes of the rectifier circuit can be protected.
  • each of the four correction control circuits sets the output voltage of the corresponding DC/DC converter to the first output voltage when the output voltage of the corresponding rectifier circuit is the first voltage.
  • the output voltage of the rectifier circuit is a second voltage higher than the first voltage
  • the output voltage of the corresponding DC/DC converter is set to a second output voltage higher than the first output voltage, Since the output voltage of the corresponding DC/DC converter can be corrected, the diode of the rectifier circuit can be protected.
  • each of the four correction control circuits sets the output voltage of the corresponding DC/DC converter to the third output voltage when the output current of the corresponding rectifier circuit is the first current, and When the output current of the rectifier circuit is a second current larger than the first current, the output voltage of the corresponding DC/DC converter is set to a fourth output voltage lower than the third output voltage, Since the output voltage of the corresponding DC/DC converter can be corrected, the diode of the rectifier circuit can be protected.
  • each of the four correction control circuits sets the output voltage of the corresponding DC/DC converter to the fifth output voltage when the circuit temperature of the corresponding rectifier circuit is the first temperature.
  • the output voltage of the corresponding DC/DC converter is set to a sixth output voltage lower than the fifth output voltage, Since the output voltage of the corresponding DC/DC converter can be corrected, the diode of the rectifier circuit can be protected.
  • antennas 11A to 11D are provided as shown in FIG.
  • five or more antennas 11 may be provided.
  • one antenna 11 may be provided like a rectenna device 1A shown in FIG. 13. In this case, the power output from antenna 11 is distributed to four rectifier circuits 12A to 12D.
  • the output terminal of the antenna 11A is connected to the input terminal of the rectifier circuit 12A
  • the output terminal of the antenna 11B is connected to the input terminal of the rectifier circuit 12B
  • the output terminal of the antenna 11C is connected to the input terminal of the rectifier circuit 12C.
  • the output terminal of the antenna 11D is connected to the input terminal of the rectifier circuit 12D.
  • 15 and 16 represent implementation examples of four antennas 11, four rectifier circuits 12, four sensor circuits 13, four correction control circuits 14, and four DC/DC converters 15 in the rectenna device 1B.
  • Four antennas 11, four rectifier circuits 12, four sensor circuits 13, four correction control circuits 14, and four DC/DC converters 15 are mounted on a substrate 110, which is a printed circuit board in this example.
  • 10 shows a substrate side 110A of the substrate 110
  • FIG. 11 shows a substrate side 110B of the substrate 110 opposite the substrate side 110A.
  • four antennas 11 are mounted on the substrate surface 110A
  • four rectifier circuits 12, four sensor circuits 13, four correction control circuits 14, and four DC/DC converters 15 are mounted on the substrate surface 110B.
  • the four antennas 11 are arranged in two rows and two columns in this example.
  • the four antennas 11 are guided to four feeding points 111, respectively.
  • circuit groups including the rectifier circuit 12, the sensor circuit 13, the correction control circuit 14, and the DC/DC converter 15 are arranged in two rows and two columns in this example. Ru.
  • the four rectifier circuits 12 are respectively guided to four feed points 111.
  • a large amount of current may flow through any one of the four rectifier circuits 12A to 12D due to variations in the characteristics of the four rectifier circuits 12A to 12D.
  • the characteristics of the diode in the rectifier circuit 12 may deteriorate or the diode may fail.
  • the correction control circuit 14A detects the output voltage Vo_rect and output current Io_rect of the rectifier circuit 12A supplied from the sensor circuit 13A, and the detection results from the rectifier circuit 12A. Based on the detection result of the supplied circuit temperature T_rect, a correction command value indicating the amount of correction of the output voltage Vo_dcdc of the DC/DC converter 15A is generated.
  • the DC/DC converter 15A corrects the output voltage based on the correction command value supplied from the correction control circuit 14A. This prevents excessive current from flowing through the diodes of the rectifier circuit 12A, thereby reducing the possibility that the characteristics of the diodes will deteriorate or that the diodes will fail.
  • the four DC/DC converters 15A to 15D can cooperatively supply DC power to the load device 9.
  • the output voltage Vo_dcdc of the DC/DC converter 15 is changed linearly according to the change in the output voltage Vo_rect of the rectifier circuit 12, but the present invention is not limited to this. Instead of this, for example, the output voltage Vo_dcdc may change nonlinearly in response to changes in the output voltage Vo_rect.
  • the output voltage Vo_dcdc of the DC/DC converter 15 is changed linearly according to the change in the output current Io_rect of the rectifier circuit 12.
  • the output voltage Vo_dcdc is not limited to this, and instead, for example, the output voltage Vo_dcdc may change nonlinearly in accordance with the change in the output current Io_rect.
  • the output voltage Vo_dcdc of the DC/DC converter 15 is changed linearly according to the change in the circuit temperature T_rect of the rectifier circuit 12.
  • the output voltage Vo_dcdc is not limited to this, and instead, for example, the output voltage Vo_dcdc may change nonlinearly in accordance with a change in the circuit temperature T_rect.
  • circuit groups each including the rectifier circuit 12, the sensor circuit 13, the correction control circuit 14, and the DC/DC converter 15 are provided, but the present invention is not limited to this. Instead, three or less circuit groups may be provided, or five or more circuit groups may be provided.

Abstract

This rectenna device according to one embodiment of the present invention comprises: an antenna unit that is able to receive microwaves; a plurality of rectifying circuits that are each connected to the antenna unit and capable of rectifying power signals supplied from the antenna unit; a plurality of power conversion circuits that are respectively provided in correspondence to the plurality of rectifying circuits and are capable of generating direct current power on the basis of the output power of the corresponding rectifying circuit; a power output terminal that is connected to output terminals of the plurality of power conversion circuits; and a plurality of correction control circuits that are respectively provided in correspondence to the plurality of rectifying circuits and respectively provided in correspondence to the plurality of power conversion circuits, and that are each capable of correcting the output voltage of the corresponding power conversion circuit on the basis of one or more of the output voltage, the output current, and the circuit temperature of the corresponding rectifying circuit.

Description

レクテナ装置rectenna device
 本発明は、マイクロ波によるワイヤレス電力伝送に用いられるレクテナ装置に関する。 The present invention relates to a rectenna device used for wireless power transmission using microwaves.
 ワイヤレス電力伝送には、マイクロ波を用いたものがある。ワイヤレス電力伝送では、伝送可能な電力を大きくすることが望まれている。例えば、特許文献1には、マイクロ波を受信するレクテナ装置において、アンテナが受電した電力を、伝送線路を介して複数の整流回路に分配する技術が開示されている。 Some wireless power transmission uses microwaves. In wireless power transmission, it is desired to increase the amount of power that can be transmitted. For example, Patent Document 1 discloses a technique in which power received by an antenna is distributed to a plurality of rectifier circuits via a transmission line in a rectenna device that receives microwaves.
特開2002-84865号公報Japanese Patent Application Publication No. 2002-84865
 アンテナと複数の整流回路とを結ぶ伝送線路の特性や、複数の整流回路の特性にばらつきがある場合には、例えば複数の整流回路のうちの一部に多くの電力が供給される可能性がある。この場合には、例えば、多くの電力が供給された整流回路の回路部品の特性が劣化し、あるいは回路部品が故障する可能性がある。よって、回路部品を保護することができることが望まれている。 If there are variations in the characteristics of the transmission line connecting the antenna and multiple rectifier circuits or the characteristics of multiple rectifier circuits, for example, there is a possibility that a large amount of power is supplied to some of the multiple rectifier circuits. be. In this case, for example, the characteristics of the circuit components of the rectifier circuit to which a large amount of power is supplied may deteriorate, or the circuit components may break down. Therefore, it is desired to be able to protect circuit components.
 回路部品を保護することができるレクテナ装置を提供することが望ましい。 It is desirable to provide a rectenna device that can protect circuit components.
 本発明の一実施の形態に係るレクテナ装置は、アンテナ部と、複数の整流回路と、複数の電力変換回路と、電力出力端子と、複数の補正制御回路とを備えている。アンテナ部は、マイクロ波を受信することができるように構成される。複数の整流回路のそれぞれは、アンテナ部に接続され、アンテナ部から供給された電力信号を整流することができるように構成される。複数の電力変換回路は、複数の整流回路にそれぞれ対応して設けられ、それぞれが、対応する整流回路の出力電力に基づいて直流電力を生成することができるように構成される。電力出力端子は、複数の電力変換回路の出力端子に接続される。複数の補正制御回路は、複数の整流回路にそれぞれ対応して設けられるとともに、複数の電力変換回路にそれぞれ対応して設けられ、それぞれが、対応する整流回路の、出力電圧、出力電流、および回路温度のうちの1以上に基づいて、対応する電力変換回路の出力電圧を補正することができるように構成される。 A rectenna device according to an embodiment of the present invention includes an antenna section, a plurality of rectifier circuits, a plurality of power conversion circuits, a power output terminal, and a plurality of correction control circuits. The antenna section is configured to be able to receive microwaves. Each of the plurality of rectifier circuits is connected to the antenna section and configured to be able to rectify the power signal supplied from the antenna section. The plurality of power conversion circuits are provided corresponding to the plurality of rectifier circuits, respectively, and each is configured to be able to generate DC power based on the output power of the corresponding rectifier circuit. The power output terminal is connected to output terminals of the plurality of power conversion circuits. The plurality of correction control circuits are provided corresponding to the plurality of rectifier circuits, respectively, and are provided corresponding to the plurality of power conversion circuits, and each corrects the output voltage, output current, and circuit of the corresponding rectifier circuit. The output voltage of the corresponding power conversion circuit can be corrected based on one or more of the temperatures.
 本発明の一実施の形態に係るレクテナ装置によれば、回路部品を保護することができる。 According to the rectenna device according to an embodiment of the present invention, circuit components can be protected.
本発明の一実施の形態に係るレクテナ装置の一構成例を表すブロック図である。FIG. 1 is a block diagram illustrating a configuration example of a rectenna device according to an embodiment of the present invention. 図1に示した整流回路の一構成例を表す回路図である。FIG. 2 is a circuit diagram showing a configuration example of the rectifier circuit shown in FIG. 1. FIG. 図1に示した整流回路の他の一構成例を表す回路図である。FIG. 2 is a circuit diagram showing another configuration example of the rectifier circuit shown in FIG. 1. FIG. 図1に示した整流回路の他の一構成例を表す回路図である。FIG. 2 is a circuit diagram showing another configuration example of the rectifier circuit shown in FIG. 1. FIG. 図1に示した整流回路、センサ回路、補正制御回路、およびDC/DCコンバータの一構成例を表す回路図である。FIG. 2 is a circuit diagram illustrating a configuration example of a rectifier circuit, a sensor circuit, a correction control circuit, and a DC/DC converter illustrated in FIG. 1. FIG. 図1に示したレクテナ装置の一実装例を表す説明図である。FIG. 2 is an explanatory diagram showing an example of mounting the rectenna device shown in FIG. 1; 図1に示したレクテナ装置の一実装例を表す他の説明図である。FIG. 2 is another explanatory diagram showing an example of mounting the rectenna device shown in FIG. 1; 図1に示したレクテナ装置の一動作例を表す特性図である。2 is a characteristic diagram showing an example of the operation of the rectenna device shown in FIG. 1. FIG. 図1に示した整流回路の一特性例を表す特性図である。2 is a characteristic diagram showing an example of the characteristics of the rectifier circuit shown in FIG. 1. FIG. 図1に示したレクテナ装置の他の一動作例を表す特性図である。2 is a characteristic diagram showing another example of the operation of the rectenna device shown in FIG. 1. FIG. 図1に示したレクテナ装置の他の一動作例を表す特性図である。2 is a characteristic diagram showing another example of the operation of the rectenna device shown in FIG. 1. FIG. 図1に示した整流回路の他の一特性例を表す特性図である。FIG. 2 is a characteristic diagram showing another example of the characteristics of the rectifier circuit shown in FIG. 1; 変形例に係るレクテナ装置の一構成例を表すブロック図である。It is a block diagram showing one example of composition of a rectenna device concerning a modification. 他の変形例に係るレクテナ装置の一構成例を表すブロック図である。It is a block diagram showing one example of composition of a rectenna device concerning another modification. 図14に示したレクテナ装置の一実装例を表す説明図である。15 is an explanatory diagram showing an example of mounting the rectenna device shown in FIG. 14. FIG. 図14に示したレクテナ装置の一実装例を表す他の説明図である。15 is another explanatory diagram showing an example of mounting the rectenna device shown in FIG. 14. FIG.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
<実施の形態>
[構成例]
 図1は、本発明の第1の実施の形態に係るレクテナ装置(レクテナ装置1)の一構成例を表すものである。レクテナ装置1は、マイクロ波により電力伝送を行うワイヤレス電力伝送システムおいて用いられる受電装置である。レクテナ装置1は、マイクロ波により伝送された電力に基づいて直流電力を生成し、生成した直流電力を負荷装置9に供給するように構成される。レクテナ装置1は、アンテナ部10と、複数の整流回路12(この例では4つの整流回路12A~12D)と、複数のセンサ回路13(この例では4つのセンサ回路13A~13D)と、複数の補正制御回路14(この例では4つの補正制御回路14A~14D)と、複数のDC/DCコンバータ15(この例では4つのDC/DCコンバータ15A~15D)と、コンバータ制御回路16と、電力出力端子Tとを備えている。
<Embodiment>
[Configuration example]
FIG. 1 shows an example of the configuration of a rectenna device (rectenna device 1) according to a first embodiment of the present invention. The rectenna device 1 is a power receiving device used in a wireless power transmission system that transmits power using microwaves. The rectenna device 1 is configured to generate DC power based on the power transmitted by microwaves, and to supply the generated DC power to the load device 9. The rectenna device 1 includes an antenna unit 10, a plurality of rectifier circuits 12 (four rectifier circuits 12A to 12D in this example), a plurality of sensor circuits 13 (four sensor circuits 13A to 13D in this example), and a plurality of rectifier circuits 12 (four rectifier circuits 12A to 12D in this example). A correction control circuit 14 (four correction control circuits 14A to 14D in this example), a plurality of DC/DC converters 15 (four DC/DC converters 15A to 15D in this example), a converter control circuit 16, and a power output It is equipped with a terminal T.
 アンテナ部10は、マイクロ波を受信するように構成される。アンテナ部10は、複数のアンテナ11(この例では4つのアンテナ11A~11D)を有する。アンテナ11A~11Dのそれぞれは、例えばパッチアンテナを用いて構成することができる。アンテナ11A~11Dの出力端子は、互いに接続されるとともに、整流回路12A~12Dの入力端子に接続される。 The antenna section 10 is configured to receive microwaves. The antenna section 10 has a plurality of antennas 11 (four antennas 11A to 11D in this example). Each of the antennas 11A to 11D can be configured using, for example, a patch antenna. Output terminals of antennas 11A to 11D are connected to each other and to input terminals of rectifier circuits 12A to 12D.
 整流回路12Aは、アンテナ部10に接続され、アンテナ部10から供給された電力信号を整流するように構成される。同様に、整流回路12Bは、アンテナ部10に接続され、アンテナ部10から供給された電力信号を整流するように構成される。整流回路12Cは、アンテナ部10に接続され、アンテナ部10から供給された電力信号を整流するように構成される。整流回路12Dは、アンテナ部10に接続され、アンテナ部10から供給された電力信号を整流するように構成される。整流回路12A~12Dの入力端子は、互いに接続されるとともに、アンテナ部10のアンテナ11A~11Dの出力端子に接続される。 The rectifier circuit 12A is connected to the antenna section 10 and is configured to rectify the power signal supplied from the antenna section 10. Similarly, the rectifier circuit 12B is connected to the antenna section 10 and configured to rectify the power signal supplied from the antenna section 10. The rectifier circuit 12C is connected to the antenna section 10 and is configured to rectify the power signal supplied from the antenna section 10. The rectifier circuit 12D is connected to the antenna section 10 and is configured to rectify the power signal supplied from the antenna section 10. The input terminals of the rectifier circuits 12A to 12D are connected to each other and to the output terminals of the antennas 11A to 11D of the antenna section 10.
 図2は、整流回路12の一構成例を表すものである。この図2において、整流回路12の左に、前段のアンテナ部10が接続され、整流回路12の右に、後段のセンサ回路13が接続される。この整流回路12は、いわゆるシングルシャント型の整流回路であり、ダイオードD1と、伝送線路TLと、キャパシタC1とを有する。電圧線L1および基準電圧線L2は、前段のアンテナ11に導かれるとともに、後段のセンサ回路13に導かれる。ダイオードD1のアノードは基準電圧線L2に接続され、カソードは電圧線L1において伝送線路TLの一端に接続される。伝送線路TLは、線路長がλ/4である伝送線路であり、電圧線L1に設けられ、一端はダイオードD1のカソードに接続され、他端はキャパシタC1の一端に接続される。キャパシタC1の一端は電圧線L1において伝送線路TLの他端に接続され、他端は基準電圧線L2に接続される。 FIG. 2 shows an example of the configuration of the rectifier circuit 12. In FIG. 2, the antenna section 10 at the front stage is connected to the left of the rectifier circuit 12, and the sensor circuit 13 at the rear stage is connected to the right of the rectifier circuit 12. This rectifier circuit 12 is a so-called single shunt type rectifier circuit, and includes a diode D1, a transmission line TL, and a capacitor C1. The voltage line L1 and the reference voltage line L2 are guided to the antenna 11 at the front stage and to the sensor circuit 13 at the rear stage. The anode of the diode D1 is connected to the reference voltage line L2, and the cathode is connected to one end of the transmission line TL in the voltage line L1. The transmission line TL is a transmission line with a line length of λ/4, is provided on the voltage line L1, has one end connected to the cathode of the diode D1, and has the other end connected to one end of the capacitor C1. One end of the capacitor C1 is connected to the other end of the transmission line TL on the voltage line L1, and the other end is connected to the reference voltage line L2.
 図3は、他の整流回路12の一構成例を表すものである。この整流回路12は、いわゆる半波倍電圧型の整流回路であり、キャパシタC2と、ダイオードD1と、ダイオードD2と、キャパシタC1とを有する。キャパシタC2は電圧線L1に設けられ、一端は前段のアンテナ部10に接続され、他端はダイオードD1のカソードおよびダイオードD2のアノードに接続される。ダイオードD1のアノードは基準電圧線L2に接続され、カソードは電圧線L1においてキャパシタC2の他端およびダイオードD2のアノードに接続される。ダイオードD2は電圧線L1に設けられ、アノードはキャパシタC2の他端およびダイオードD1のカソードに接続され、カソードはキャパシタC1の一端に接続される。キャパシタC1の一端は電圧線L1においてダイオードD2のカソードに接続され、他端は基準電圧線L2に接続される。 FIG. 3 shows a configuration example of another rectifier circuit 12. The rectifier circuit 12 is a so-called half-wave voltage doubler type rectifier circuit, and includes a capacitor C2, a diode D1, a diode D2, and a capacitor C1. Capacitor C2 is provided on voltage line L1, one end is connected to the preceding antenna section 10, and the other end is connected to the cathode of diode D1 and the anode of diode D2. The anode of diode D1 is connected to reference voltage line L2, and the cathode is connected to the other end of capacitor C2 and the anode of diode D2 on voltage line L1. Diode D2 is provided on voltage line L1, its anode is connected to the other end of capacitor C2 and the cathode of diode D1, and its cathode is connected to one end of capacitor C1. One end of the capacitor C1 is connected to the cathode of the diode D2 on the voltage line L1, and the other end is connected to the reference voltage line L2.
 図4は、他の整流回路12の一構成例を表すものである。この整流回路12は、いわゆる全波整流型の整流回路であり、ダイオードD3~D6と、キャパシタC1とを有する。電圧線L1および基準電圧線L3は、前段のアンテナ部10に導かれ、電圧線L1および基準電圧線L2は、後段のセンサ回路13に導かれる。ダイオードD3のアノードは基準電圧線L2に接続され、カソードは電圧線L1においてダイオードD4のアノードに接続される。ダイオードD4は電圧線L1に設けられ、アノードはダイオードD3のカソードに接続され、カソードはダイオードD6のカソードおよびキャパシタC1の一端に接続される。ダイオードD5のアノードは基準電圧線L2に接続され、カソードは基準電圧線L3に接続される。ダイオードD6のアノードは基準電圧線L3に接続され、カソードは電圧線L1おいてダイオードD4のカソードおよびキャパシタC1の一端に接続される。キャパシタC1の一端は電圧線L1においてダイオードD4,D6のカソードに接続され、他端は基準電圧線L2に接続される。 FIG. 4 shows a configuration example of another rectifier circuit 12. This rectifier circuit 12 is a so-called full-wave rectifier type rectifier circuit, and includes diodes D3 to D6 and a capacitor C1. The voltage line L1 and the reference voltage line L3 are led to the antenna section 10 at the front stage, and the voltage line L1 and the reference voltage line L2 are led to the sensor circuit 13 at the rear stage. The anode of diode D3 is connected to reference voltage line L2, and the cathode is connected to the anode of diode D4 on voltage line L1. Diode D4 is provided on voltage line L1, has an anode connected to the cathode of diode D3, and a cathode connected to the cathode of diode D6 and one end of capacitor C1. The anode of the diode D5 is connected to the reference voltage line L2, and the cathode is connected to the reference voltage line L3. The anode of diode D6 is connected to reference voltage line L3, and the cathode is connected to voltage line L1 to the cathode of diode D4 and one end of capacitor C1. One end of the capacitor C1 is connected to the cathodes of diodes D4 and D6 on the voltage line L1, and the other end is connected to the reference voltage line L2.
 整流回路12は、例えば、図2~4に示した回路を用いることができる。なお、これらに限定されるものではなく、他の回路を用いてもよい。 As the rectifier circuit 12, for example, the circuits shown in FIGS. 2 to 4 can be used. Note that the circuit is not limited to these, and other circuits may be used.
 整流回路12は、後述するように、整流回路12の回路温度を検出する温度センサを有している。整流回路12A~12Dは、温度センサの検出結果を、補正制御回路14A~14Dにそれぞれに供給するようになっている。 The rectifier circuit 12 has a temperature sensor that detects the circuit temperature of the rectifier circuit 12, as described later. The rectifier circuits 12A to 12D are configured to supply the detection results of the temperature sensors to the correction control circuits 14A to 14D, respectively.
 4つのセンサ回路13A~13D(図1)は、4つの整流回路12A~12Dにそれぞれ対応して設けられる。センサ回路13Aは、整流回路12Aの出力電圧(後述する出力電圧Vo_rect)および整流回路12Aの出力電流(後述する出力電流Io_rect)を検出し、その検出結果を補正制御回路14Aに供給するように構成される。同様に、センサ回路13Bは、整流回路12Bの出力電圧および出力電流を検出し、その検出結果を補正制御回路14Bに供給するように構成される。センサ回路13Cは、整流回路12Cの出力電圧および出力電流を検出し、その検出結果を補正制御回路14Cに供給するように構成される。センサ回路13Dは、整流回路12Dの出力電圧および出力電流を検出し、その検出結果を補正制御回路14Dに供給するように構成される。 The four sensor circuits 13A to 13D (FIG. 1) are provided corresponding to the four rectifier circuits 12A to 12D, respectively. The sensor circuit 13A is configured to detect the output voltage of the rectifier circuit 12A (output voltage Vo_rect described later) and the output current of the rectifier circuit 12A (output current Io_rect described later), and supply the detection results to the correction control circuit 14A. be done. Similarly, the sensor circuit 13B is configured to detect the output voltage and output current of the rectifier circuit 12B, and supply the detection results to the correction control circuit 14B. The sensor circuit 13C is configured to detect the output voltage and output current of the rectifier circuit 12C, and supply the detection results to the correction control circuit 14C. The sensor circuit 13D is configured to detect the output voltage and output current of the rectifier circuit 12D, and supply the detection results to the correction control circuit 14D.
 補正制御回路14Aは、センサ回路13Aから供給された整流回路12Aの出力電圧および出力電流の検出結果、および整流回路12Aから供給された回路温度の検出結果に基づいて、DC/DCコンバータ15Aの出力電圧(後述する出力電圧Vo_dcdc)の補正量を示す補正指令値を生成するように構成される。補正制御回路14Bは、センサ回路13Bから供給された出力電圧および出力電流の検出結果、および整流回路12Bから供給された回路温度の検出結果に基づいて、DC/DCコンバータ15Bの出力電圧の補正量を示す補正指令値を生成するように構成される。補正制御回路14Cは、センサ回路13Cから供給された整流回路12Cの出力電圧および出力電流、および整流回路12Cから供給された回路温度の検出結果の検出結果に基づいて、DC/DCコンバータ15Cの出力電圧の補正量を示す補正指令値を生成するように構成される。補正制御回路14Dは、センサ回路13Dから供給された整流回路12Dの出力電圧および出力電流の検出結果、および整流回路12Dから供給された回路温度の検出結果に基づいて、DC/DCコンバータ15Dの出力電圧の補正量を示す補正指令値を生成するように構成される。 The correction control circuit 14A adjusts the output of the DC/DC converter 15A based on the detection results of the output voltage and output current of the rectifier circuit 12A supplied from the sensor circuit 13A and the detection result of the circuit temperature supplied from the rectifier circuit 12A. It is configured to generate a correction command value indicating the amount of correction of the voltage (output voltage Vo_dcdc described later). The correction control circuit 14B adjusts the amount of correction for the output voltage of the DC/DC converter 15B based on the detection results of the output voltage and output current supplied from the sensor circuit 13B and the detection result of the circuit temperature supplied from the rectifier circuit 12B. The correction command value is configured to generate a correction command value indicating. The correction control circuit 14C adjusts the output of the DC/DC converter 15C based on the output voltage and output current of the rectifier circuit 12C supplied from the sensor circuit 13C and the detection result of the circuit temperature supplied from the rectifier circuit 12C. It is configured to generate a correction command value indicating a voltage correction amount. The correction control circuit 14D adjusts the output of the DC/DC converter 15D based on the detection results of the output voltage and output current of the rectifier circuit 12D supplied from the sensor circuit 13D and the detection result of the circuit temperature supplied from the rectifier circuit 12D. It is configured to generate a correction command value indicating a voltage correction amount.
 4つのDC/DCコンバータ15A~15Dは、4つの整流回路12A~12D、4つのセンサ回路13A~13D、および4つの補正制御回路14A~14Dにそれぞれ対応して設けられる。DC/DCコンバータ15Aは、整流回路12Aの出力電力に基づいて直流電力を生成するとともに、補正制御回路14Aから供給された補正指令値に基づいて出力電圧を補正するように構成される。同様に、DC/DCコンバータ15Bは、整流回路12Bの出力電力に基づいて直流電力を生成するとともに、補正制御回路14Bから供給された補正指令値に基づいて出力電圧を補正するように構成される。DC/DCコンバータ15Cは、整流回路12Cの出力電力に基づいて直流電力を生成するとともに、補正制御回路14Cから供給された補正指令値に基づいて出力電圧を補正するように構成される。DC/DCコンバータ15Dは、整流回路12Dの出力電力に基づいて直流電力を生成するとともに、補正制御回路14Dから供給された補正指令値に基づいて出力電圧を補正するように構成される。4つのDC/DCコンバータ15A~15Dの出力端子は、互いに接続されるとともに、電力出力端子Tに接続される。 The four DC/DC converters 15A to 15D are provided corresponding to the four rectifier circuits 12A to 12D, the four sensor circuits 13A to 13D, and the four correction control circuits 14A to 14D, respectively. The DC/DC converter 15A is configured to generate DC power based on the output power of the rectifier circuit 12A, and to correct the output voltage based on the correction command value supplied from the correction control circuit 14A. Similarly, the DC/DC converter 15B is configured to generate DC power based on the output power of the rectifier circuit 12B, and to correct the output voltage based on the correction command value supplied from the correction control circuit 14B. . The DC/DC converter 15C is configured to generate DC power based on the output power of the rectifier circuit 12C, and to correct the output voltage based on the correction command value supplied from the correction control circuit 14C. The DC/DC converter 15D is configured to generate DC power based on the output power of the rectifier circuit 12D, and to correct the output voltage based on the correction command value supplied from the correction control circuit 14D. The output terminals of the four DC/DC converters 15A to 15D are connected to each other and to the power output terminal T.
 コンバータ制御回路16は、4つのDC/DCコンバータ15A~15Dの動作を制御するように構成される。具体的には、コンバータ制御回路16は、例えば、4つのDC/DCコンバータ15A~15Dが、互いに同じスイッチング周波数で、かつ互いに異なる位相でスイッチング動作を行うように、4つのDC/DCコンバータ15A~15Dの動作を制御する。4つのDC/DCコンバータ15A~15Dが、互いに同じスイッチング周波数でスイッチング動作を行うことにより、例えば、レクテナ装置1と負荷装置9との間にノイズ低減用のフィルタを設ける場合に、このフィルタは、スイッチング動作に起因するノイズを低減しやすくすることができる。また、4つのDC/DCコンバータ15A~15Dが、互いに異なる位相でスイッチング動作を行うことにより、レクテナ装置1の出力電圧のリップルを低減することができる。 The converter control circuit 16 is configured to control the operations of the four DC/DC converters 15A to 15D. Specifically, the converter control circuit 16 controls the four DC/DC converters 15A to 15D so that, for example, the four DC/DC converters 15A to 15D perform switching operations at the same switching frequency and different phases. Controls the operation of 15D. When the four DC/DC converters 15A to 15D perform switching operations at the same switching frequency, for example, when a noise reduction filter is provided between the rectenna device 1 and the load device 9, this filter Noise caused by switching operations can be easily reduced. Further, by performing switching operations in different phases of the four DC/DC converters 15A to 15D, ripples in the output voltage of the rectenna device 1 can be reduced.
 電力出力端子Tは、4つのDC/DCコンバータ15A~15Dが生成した電力を出力する端子であり、負荷装置9に接続される。 The power output terminal T is a terminal that outputs the power generated by the four DC/DC converters 15A to 15D, and is connected to the load device 9.
 図5は、整流回路12A、センサ回路13A、補正制御回路14A、およびDC/DCコンバータ15Aの一構成例を表すものである。なお、整流回路12B、センサ回路13B、補正制御回路14B、およびDC/DCコンバータ15Bについても同様であり、整流回路12C、センサ回路13C、補正制御回路14C、およびDC/DCコンバータ15Cについても同様であり、整流回路12D、センサ回路13D、補正制御回路14D、およびDC/DCコンバータ15Dについても同様である。 FIG. 5 shows an example of the configuration of the rectifier circuit 12A, the sensor circuit 13A, the correction control circuit 14A, and the DC/DC converter 15A. The same applies to the rectifier circuit 12B, sensor circuit 13B, correction control circuit 14B, and DC/DC converter 15B, and the same applies to the rectifier circuit 12C, sensor circuit 13C, correction control circuit 14C, and DC/DC converter 15C. The same applies to the rectifier circuit 12D, sensor circuit 13D, correction control circuit 14D, and DC/DC converter 15D.
 整流回路12Aは、温度センサ19を有している。温度センサ19は、整流回路12Aの回路温度T_rectを検出するように構成される。温度センサ19は、例えば、サーミスタを用いて構成され、例えば、図2~4に示したダイオードの近くに配置される。温度センサ19は、整流回路12Aの回路温度T_rectに応じた検出電圧を生成するようになっている。 The rectifier circuit 12A has a temperature sensor 19. The temperature sensor 19 is configured to detect the circuit temperature T_rect of the rectifier circuit 12A. Temperature sensor 19 is constructed using, for example, a thermistor, and is placed, for example, near the diode shown in FIGS. 2-4. The temperature sensor 19 is configured to generate a detection voltage according to the circuit temperature T_rect of the rectifier circuit 12A.
 センサ回路13Aは、抵抗素子21,22と、電流センサ23とを有する。 The sensor circuit 13A includes resistance elements 21 and 22 and a current sensor 23.
 抵抗素子21の一端は電圧線L1に接続され、他端は抵抗素子22の一端に接続される。抵抗素子22の一端は抵抗素子21の他端に接続され、他端は基準電圧線L2に接続される。抵抗素子21,22は、抵抗分圧回路を構成し、整流回路12Aの出力電圧Vo_rectを分圧することにより、出力電圧Vo_rectに応じた検出電圧を生成するように構成される。 One end of the resistance element 21 is connected to the voltage line L1, and the other end is connected to one end of the resistance element 22. One end of the resistance element 22 is connected to the other end of the resistance element 21, and the other end is connected to the reference voltage line L2. The resistive elements 21 and 22 constitute a resistive voltage divider circuit, and are configured to divide the output voltage Vo_rect of the rectifier circuit 12A to generate a detection voltage according to the output voltage Vo_rect.
 電流センサ23は、電圧線L1に設けられ、整流回路12AからDC/DCコンバータ15Aに向かって流れる、整流回路12Aの出力電流Io_rectを検出し、この出力電流Io_rectに応じた検出電圧を生成するように構成される。 The current sensor 23 is provided on the voltage line L1, and is configured to detect the output current Io_rect of the rectifier circuit 12A flowing from the rectifier circuit 12A toward the DC/DC converter 15A, and to generate a detection voltage according to this output current Io_rect. It is composed of
 補正制御回路14Aは、補正指令値生成回路26~28を有している。 The correction control circuit 14A has correction command value generation circuits 26 to 28.
 補正指令値生成回路26は、抵抗素子21,22により分圧された、整流回路12Aの出力電圧Vo_rectに応じた検出電圧に基づいて、DC/DCコンバータ15Aの出力電圧Vo_dcdcの補正量を示す補正指令値ΔVaを生成するように構成される。具体的には、補正指令値生成回路26は、以下の式EQ1を用いて、補正指令値ΔVaを生成する。
ΔVa = α・Vo_rect  …(EQ1)
ここで、αはゲインファクタを示す係数である。補正指令値生成回路26は、この式EQ1を用いて、整流回路12Aの出力電圧Vo_rectに比例する補正指令値ΔVaを生成するようになっている。
The correction command value generation circuit 26 performs a correction indicating the correction amount of the output voltage Vo_dcdc of the DC/DC converter 15A based on the detected voltage corresponding to the output voltage Vo_rect of the rectifier circuit 12A divided by the resistive elements 21 and 22. It is configured to generate a command value ΔVa. Specifically, the correction command value generation circuit 26 generates the correction command value ΔVa using the following equation EQ1.
ΔVa = α・Vo_rect…(EQ1)
Here, α is a coefficient indicating a gain factor. The correction command value generation circuit 26 uses this equation EQ1 to generate a correction command value ΔVa that is proportional to the output voltage Vo_rect of the rectifier circuit 12A.
 補正指令値生成回路27は、電流センサ23から供給された、整流回路12Aの出力電流Io_rectに応じた検出電圧に基づいて、DC/DCコンバータ15Aの出力電圧Vo_dcdcの補正量を示す補正指令値ΔVbを生成するように構成される。具体的には、補正指令値生成回路27は、以下の式EQ2を用いて、補正指令値ΔVbを生成する。
ΔVb = β・Io_rect  …(EQ2)
ここで、βはゲインファクタを示す係数である。補正指令値生成回路27は、この式EQ2を用いて、整流回路12Aの出力電流Io_rectに比例する補正指令値ΔVbを生成するようになっている。
The correction command value generation circuit 27 generates a correction command value ΔVb indicating the amount of correction of the output voltage Vo_dcdc of the DC/DC converter 15A based on the detected voltage supplied from the current sensor 23 and corresponding to the output current Io_rect of the rectifier circuit 12A. configured to generate. Specifically, the correction command value generation circuit 27 generates the correction command value ΔVb using the following equation EQ2.
ΔVb = β・Io_rect…(EQ2)
Here, β is a coefficient indicating a gain factor. The correction command value generation circuit 27 uses this equation EQ2 to generate a correction command value ΔVb that is proportional to the output current Io_rect of the rectifier circuit 12A.
 補正指令値生成回路28は、温度センサ19から供給された、整流回路12Aの回路温度T_rectに応じた検出電圧に基づいて、DC/DCコンバータ15Aの出力電圧Vo_dcdcの補正量を示す補正指令値ΔVcを生成するように構成される。具体的には、補正指令値生成回路28は、以下の式EQ3を用いて、補正指令値ΔVcを生成する。
ΔVc = Θ・T_rect  …(EQ3)
ここで、Θはゲインファクタを示す係数である。補正指令値生成回路28は、この式EQ3を用いて、整流回路12Aの回路温度T_rectに比例する補正指令値ΔVcを生成するようになっている。
The correction command value generation circuit 28 generates a correction command value ΔVc indicating the amount of correction of the output voltage Vo_dcdc of the DC/DC converter 15A based on the detected voltage according to the circuit temperature T_rect of the rectifier circuit 12A supplied from the temperature sensor 19. configured to generate. Specifically, the correction command value generation circuit 28 generates the correction command value ΔVc using the following equation EQ3.
ΔVc = Θ・T_rect…(EQ3)
Here, Θ is a coefficient indicating a gain factor. The correction command value generation circuit 28 uses this equation EQ3 to generate a correction command value ΔVc that is proportional to the circuit temperature T_rect of the rectifier circuit 12A.
 DC/DCコンバータ15Aは、キャパシタ31と、トランジスタ32,33と、インダクタ34と、抵抗素子35,36と、キャパシタ37と、電圧指令値生成回路38と、加算回路39と、電圧生成回路41と、演算増幅回路42と、抵抗素子43と、キャパシタ44,45と、コントローラ46とを有する。 The DC/DC converter 15A includes a capacitor 31, transistors 32 and 33, an inductor 34, resistance elements 35 and 36, a capacitor 37, a voltage command value generation circuit 38, an addition circuit 39, and a voltage generation circuit 41. , an operational amplifier circuit 42, a resistance element 43, capacitors 44, 45, and a controller 46.
 キャパシタ31の一端は電圧線L1に接続され、他端は基準電圧線L2に接続される。 One end of the capacitor 31 is connected to the voltage line L1, and the other end is connected to the reference voltage line L2.
 トランジスタ32,33は、例えばN型の電界効果トランジスタ(FET:Field Effect Transistor)を用いて構成される。トランジスタ32,33のそれぞれは、ソースに接続されたアノードと、ドレインに接続されたカソードとを有するダイオードを有している。なお、この例では、N型の電界効果トランジスタを用いたが、スイッチング素子であればどのようなものを用いてもよい。トランジスタ32のゲートにはゲート信号G1が供給され、ドレインは電圧線L1に接続され、ソースは電圧線L4に接続される。トランジスタ33のゲートにはゲート信号G2が供給され、ドレインは電圧線L4に接続され、ソースは基準電圧線L2に接続される。 The transistors 32 and 33 are configured using, for example, N-type field effect transistors (FETs). Each of transistors 32, 33 has a diode having an anode connected to a source and a cathode connected to a drain. Note that although an N-type field effect transistor is used in this example, any switching element may be used. The gate signal G1 is supplied to the gate of the transistor 32, the drain is connected to the voltage line L1, and the source is connected to the voltage line L4. The gate signal G2 is supplied to the gate of the transistor 33, the drain is connected to the voltage line L4, and the source is connected to the reference voltage line L2.
 インダクタ34は、電圧線L4に設けられ、一端はトランジスタ32のソースおよびトランジスタ33のドレインに接続され、他端は抵抗素子35の一端およびキャパシタ37の一端に接続される。 The inductor 34 is provided on the voltage line L4, one end is connected to the source of the transistor 32 and the drain of the transistor 33, and the other end is connected to one end of the resistive element 35 and one end of the capacitor 37.
 抵抗素子35の一端は電圧線L4に接続され、他端は抵抗素子36の一端に接続される。抵抗素子36の一端は抵抗素子35の他端に接続され、他端は基準電圧線L2に接続される。抵抗素子35,36は、抵抗分圧回路を構成し、DC/DCコンバータ15の出力電圧Vo_dcdcを分圧することにより、出力電圧Vo_dcdcに応じた検出電圧を生成するように構成される。 One end of the resistance element 35 is connected to the voltage line L4, and the other end is connected to one end of the resistance element 36. One end of the resistance element 36 is connected to the other end of the resistance element 35, and the other end is connected to the reference voltage line L2. The resistive elements 35 and 36 constitute a resistive voltage divider circuit, and are configured to divide the output voltage Vo_dcdc of the DC/DC converter 15 to generate a detection voltage according to the output voltage Vo_dcdc.
 キャパシタ37の一端は電圧線L4に接続され、他端は基準電圧線L2に接続される。 One end of the capacitor 37 is connected to the voltage line L4, and the other end is connected to the reference voltage line L2.
 電圧指令値生成回路38は、DC/DCコンバータ15Aの出力電圧Vo_dcdcのリファレンス電圧を示す電圧指令値Vrefを生成するように構成される。 The voltage command value generation circuit 38 is configured to generate a voltage command value Vref indicating a reference voltage of the output voltage Vo_dcdc of the DC/DC converter 15A.
 加算回路39は、リファレンス電圧の電圧指令値Vrefに対して、補正指令値ΔVa,ΔVb,ΔVcを用いて補正を行うことにより、目標電圧の電圧指令値Vref1を生成するように構成される。具体的には、加算回路39は、この例では、以下の式EQ4を用いて、目標電圧の電圧指令値Vref1を生成する。
Vref1 = Vref + ΔVa - ΔVb - ΔVc  …(EQ4)
The addition circuit 39 is configured to generate a voltage command value Vref1 of the target voltage by correcting the voltage command value Vref of the reference voltage using the correction command values ΔVa, ΔVb, and ΔVc. Specifically, in this example, the addition circuit 39 generates the voltage command value Vref1 of the target voltage using the following equation EQ4.
Vref1 = Vref + ΔVa - ΔVb - ΔVc...(EQ4)
 電圧生成回路41は、目標電圧の電圧指令値Vref1に基づいて、電圧Vvrを生成するように構成される。演算増幅回路42の正入力端子には、電圧Vvrが供給され、負入力端子には抵抗素子35,36により分圧された、出力電圧Vo_dcdcに応じた検出電圧が供給される。抵抗素子43の一端は演算増幅回路42の負入力端子に接続され、他端はキャパシタ44の一端に接続される。キャパシタ44の一端は抵抗素子43の他端に接続され、他端は演算増幅回路42の出力端子に接続される。キャパシタ44の一端は演算増幅回路42の負入力端子に接続され、他端は演算増幅回路42の出力端子に接続される。演算増幅回路42は、制御電圧を生成し、この制御電圧を、コントローラ46に供給するようになっている。 The voltage generation circuit 41 is configured to generate the voltage Vvr based on the voltage command value Vref1 of the target voltage. A voltage Vvr is supplied to the positive input terminal of the operational amplifier circuit 42, and a detection voltage corresponding to the output voltage Vo_dcdc, which is divided by the resistive elements 35 and 36, is supplied to the negative input terminal. One end of the resistive element 43 is connected to the negative input terminal of the operational amplifier circuit 42, and the other end is connected to one end of the capacitor 44. One end of the capacitor 44 is connected to the other end of the resistance element 43, and the other end is connected to the output terminal of the operational amplifier circuit 42. One end of the capacitor 44 is connected to the negative input terminal of the operational amplifier circuit 42, and the other end is connected to the output terminal of the operational amplifier circuit 42. The operational amplifier circuit 42 generates a control voltage and supplies this control voltage to the controller 46.
 コントローラ46は、演算増幅回路42から供給された制御電圧に基づいて、DC/DCコンバータ15Aの動作を制御するように構成される。具体的には、コントローラ46は、演算増幅回路42から供給された制御電圧に基づいてゲート信号G1,G2を生成し、ゲート信号G1,G2を用いてトランジスタ32,33のスイッチング動作を制御することにより、DC/DCコンバータ15Aの出力電圧Vo_dcdcが目標電圧になるように制御するようになっている。コントローラ46は、例えばMCU(Micro Controller Unit)を用いて構成される。 The controller 46 is configured to control the operation of the DC/DC converter 15A based on the control voltage supplied from the operational amplifier circuit 42. Specifically, the controller 46 generates gate signals G1 and G2 based on the control voltage supplied from the operational amplifier circuit 42, and controls the switching operations of the transistors 32 and 33 using the gate signals G1 and G2. Accordingly, the output voltage Vo_dcdc of the DC/DC converter 15A is controlled to become the target voltage. The controller 46 is configured using, for example, an MCU (Micro Controller Unit).
 次に、レクテナ装置1の実装例について説明する。 Next, an implementation example of the rectenna device 1 will be described.
 図6,7は、レクテナ装置1における、4つのアンテナ11、4つの整流回路12、4つのセンサ回路13、4つの補正制御回路14、および4つのDC/DCコンバータ15の実装例を表すものである。4つのアンテナ11、4つの整流回路12、4つのセンサ回路13、4つの補正制御回路14、および4つのDC/DCコンバータ15は、この例ではプリント基板である基板100に実装される。図6は、基板100の基板面100Aを示し、図7は、基板100の、基板面100Aとは反対の基板面100Bを示す。 6 and 7 represent implementation examples of four antennas 11, four rectifier circuits 12, four sensor circuits 13, four correction control circuits 14, and four DC/DC converters 15 in the rectenna device 1. be. Four antennas 11, four rectifier circuits 12, four sensor circuits 13, four correction control circuits 14, and four DC/DC converters 15 are mounted on a substrate 100, which is a printed circuit board in this example. FIG. 6 shows a substrate side 100A of the substrate 100, and FIG. 7 shows a substrate side 100B of the substrate 100 opposite to the substrate side 100A.
 この例では、4つのアンテナ11は基板面100Aに実装され、4つの整流回路12、4つのセンサ回路13、4つの補正制御回路14、および4つのDC/DCコンバータ15は基板面100Bに実装される。 In this example, four antennas 11 are mounted on the substrate surface 100A, and four rectifier circuits 12, four sensor circuits 13, four correction control circuits 14, and four DC/DC converters 15 are mounted on the substrate surface 100B. Ru.
 図6に示したように、基板面100Aにおいて、4つのアンテナ11は、この例では2行2列で配置される。4つのアンテナ11は、伝送線路102を介して互いに接続され、給電点101に導かれる。この伝送線路102により、4つのアンテナ11のそれぞれから出力された電力が結合され、給電点101に供給される。給電点101では、基板面100Aに配置された伝送線路102と、基板面100Bに配置された伝送線路103が、基板100に設けられた図示しないビアを介して互いに接続される。 As shown in FIG. 6, on the substrate surface 100A, the four antennas 11 are arranged in two rows and two columns in this example. The four antennas 11 are connected to each other via a transmission line 102 and guided to a feeding point 101. The transmission line 102 combines the power output from each of the four antennas 11 and supplies the combined power to the feed point 101 . At the feed point 101, a transmission line 102 arranged on the substrate surface 100A and a transmission line 103 arranged on the substrate surface 100B are connected to each other via a via (not shown) provided in the substrate 100.
 図7に示したように、基板面100Bにおいて、整流回路12、センサ回路13、補正制御回路14、およびDC/DCコンバータ15を含む4つの回路群は、この例では2行2列で配置される。4つの整流回路12は、伝送線路103を介して互いに接続され、給電点101に導かれる。このレクテナ装置1では、4つのアンテナ11から供給された電力は、この伝送線路103により分配され、4つの整流回路12A~12Dに供給される。伝送線路103は、4つの整流回路12A~12Dに供給される電力が、互いに等しくなるように電力を分配する。例えば、給電点101から整流回路12Aに至る伝送線路、および給電点101から整流回路12Cに至る伝送線路は、互いに対称な形状を有する。また、給電点101から整流回路12Bに至る伝送線路、および給電点101から整流回路12Dに至る伝送線路は、互いに対称な形状を有する。 As shown in FIG. 7, on the substrate surface 100B, four circuit groups including the rectifier circuit 12, the sensor circuit 13, the correction control circuit 14, and the DC/DC converter 15 are arranged in two rows and two columns in this example. Ru. The four rectifier circuits 12 are connected to each other via a transmission line 103 and guided to a feeding point 101. In this rectenna device 1, power supplied from four antennas 11 is distributed by this transmission line 103 and supplied to four rectifier circuits 12A to 12D. Transmission line 103 distributes power so that the power supplied to four rectifier circuits 12A to 12D is equal to each other. For example, the transmission line from the feed point 101 to the rectifier circuit 12A and the transmission line from the feed point 101 to the rectifier circuit 12C have shapes that are symmetrical to each other. Further, the transmission line from the feed point 101 to the rectifier circuit 12B and the transmission line from the feed point 101 to the rectifier circuit 12D have mutually symmetrical shapes.
 なお、この例では、図7に示したように、整流回路12を1つの回路として構成し、センサ回路13および補正制御回路14を1つの回路として構成し、DC/DCコンバータ15を1つの回路として構成したが、これに限定されるものではない。例えば、整流回路12、センサ回路13、補正制御回路14、およびDC/DCコンバータ15を1つの回路として構成してもよい。 In this example, as shown in FIG. 7, the rectifier circuit 12 is configured as one circuit, the sensor circuit 13 and the correction control circuit 14 are configured as one circuit, and the DC/DC converter 15 is configured as one circuit. Although it is configured as follows, it is not limited to this. For example, the rectifier circuit 12, the sensor circuit 13, the correction control circuit 14, and the DC/DC converter 15 may be configured as one circuit.
 また、この例では、4つのアンテナ11を基板面100Aに実装し、4つの整流回路12、4つのセンサ回路13、4つの補正制御回路14、および4つのDC/DCコンバータ15を基板面100Bに実装したが、これに限定されるものではない。これに代えて、例えば、4つのアンテナ11、4つの整流回路12、4つのセンサ回路13、4つの補正制御回路14、および4つのDC/DCコンバータ15を、同じ基板面に実装してもよい。 In this example, four antennas 11 are mounted on the substrate surface 100A, and four rectifier circuits 12, four sensor circuits 13, four correction control circuits 14, and four DC/DC converters 15 are mounted on the substrate surface 100B. Although implemented, it is not limited to this. Alternatively, for example, four antennas 11, four rectifier circuits 12, four sensor circuits 13, four correction control circuits 14, and four DC/DC converters 15 may be mounted on the same substrate surface. .
 ここで、アンテナ部10は、本開示における「アンテナ部」の一具体例に対応する。アンテナ11は、本開示における「アンテナ」の一具体例に対応する。整流回路12は、本開示における「整流回路」の一具体例に対応する。補正制御回路14は、本開示における「補正制御回路」の一具体例に対応する。出力電圧Vo_rectは、本開示における「整流回路の出力電圧」の一具体例に対応する。出力電流Io_rectは、本開示における「出力電流」の一具体例に対応する。回路温度T_rectは、本開示における「回路温度」の一具体例に対応する。補正指令値ΔVaは、本開示における「第1の補正指令値」の一具体例に対応する。補正指令値ΔVbは、本開示における「第2の補正指令値」の一具体例に対応する。補正指令値ΔVcは、本開示における「第3の補正指令値」の一具体例に対応する。DC/DCコンバータ15は、本開示における「電力変換回路」の一具体例に対応する。出力電圧Vo_dcdcは、本開示における「電力変換回路の出力電圧」の一具体例に対応する。コンバータ制御回路16は、本開示における「電力変換制御回路」の一具体例に対応する。電力出力端子Tは、本開示における「電力出力端子」の一具体例に対応する。 Here, the antenna section 10 corresponds to a specific example of the "antenna section" in the present disclosure. The antenna 11 corresponds to a specific example of "antenna" in the present disclosure. The rectifier circuit 12 corresponds to a specific example of a "rectifier circuit" in the present disclosure. The correction control circuit 14 corresponds to a specific example of a "correction control circuit" in the present disclosure. The output voltage Vo_rect corresponds to a specific example of "output voltage of a rectifier circuit" in the present disclosure. The output current Io_rect corresponds to a specific example of "output current" in the present disclosure. The circuit temperature T_rect corresponds to a specific example of "circuit temperature" in the present disclosure. The correction command value ΔVa corresponds to a specific example of the "first correction command value" in the present disclosure. The correction command value ΔVb corresponds to a specific example of the "second correction command value" in the present disclosure. The correction command value ΔVc corresponds to a specific example of the "third correction command value" in the present disclosure. The DC/DC converter 15 corresponds to a specific example of a "power conversion circuit" in the present disclosure. The output voltage Vo_dcdc corresponds to a specific example of "output voltage of the power conversion circuit" in the present disclosure. Converter control circuit 16 corresponds to a specific example of a "power conversion control circuit" in the present disclosure. The power output terminal T corresponds to a specific example of a "power output terminal" in the present disclosure.
[動作および作用]
 続いて、本実施の形態のレクテナ装置1の動作および作用について説明する。
[Operation and effect]
Next, the operation and effect of the rectenna device 1 of this embodiment will be explained.
(全体動作概要)
 まず、図1を参照して、レクテナ装置1の全体動作概要を説明する。アンテナ部10は、マイクロ波を受信する。例えば、整流回路12Aは、アンテナ部10から供給された電力信号を整流する。また、整流回路12Aは、整流回路12Aの回路温度T_rectを検出し、その検出結果を補正制御回路14Aに供給する。センサ回路13Aは、整流回路12Aの出力電圧Vo_rectおよび出力電流Io_rectを検出し、その検出結果を補正制御回路14Aに供給する。補正制御回路14Aは、センサ回路13Aから供給された整流回路12Aの出力電圧Vo_rectおよび出力電流Io_rectの検出結果、および整流回路12Aから供給された回路温度T_rectの検出結果に基づいて、DC/DCコンバータ15Aの出力電圧Vo_dcdcの補正量を示す補正指令値を生成する。DC/DCコンバータ15Aは、整流回路12Aの出力電力に基づいて直流電力を生成するとともに、補正制御回路14Aから供給された補正指令値に基づいてDC/DCコンバータ15Aの出力電圧Vo_dcdcを補正する。整流回路12B、センサ回路13B、補正制御回路14B、およびDC/DCコンバータ15Bについても同様であり、整流回路12C、センサ回路13C、補正制御回路14C、およびDC/DCコンバータ15Cについても同様であり、整流回路12D、センサ回路13D、補正制御回路14D、およびDC/DCコンバータ15Dについても同様である。コンバータ制御回路16は、4つのDC/DCコンバータ15A~15Dが、互いに同じスイッチング周波数で、かつ互いに異なる位相でスイッチング動作を行うように、4つのDC/DCコンバータ15A~15Dの動作を制御する。レクテナ装置1は、電力出力端子Tを介して、4つのDC/DCコンバータ15A~15Dが生成した直流電力を負荷装置9に供給する。
(Overview of overall operation)
First, an overview of the overall operation of the rectenna device 1 will be explained with reference to FIG. Antenna section 10 receives microwaves. For example, the rectifier circuit 12A rectifies the power signal supplied from the antenna section 10. Further, the rectifier circuit 12A detects the circuit temperature T_rect of the rectifier circuit 12A, and supplies the detection result to the correction control circuit 14A. The sensor circuit 13A detects the output voltage Vo_rect and the output current Io_rect of the rectifier circuit 12A, and supplies the detection results to the correction control circuit 14A. The correction control circuit 14A controls the DC/DC converter based on the detection results of the output voltage Vo_rect and the output current Io_rect of the rectifier circuit 12A supplied from the sensor circuit 13A, and the detection result of the circuit temperature T_rect supplied from the rectification circuit 12A. A correction command value indicating the correction amount of the output voltage Vo_dcdc of 15A is generated. The DC/DC converter 15A generates DC power based on the output power of the rectifier circuit 12A, and corrects the output voltage Vo_dcdc of the DC/DC converter 15A based on the correction command value supplied from the correction control circuit 14A. The same applies to the rectifier circuit 12B, sensor circuit 13B, correction control circuit 14B, and DC/DC converter 15B, and the same applies to the rectifier circuit 12C, sensor circuit 13C, correction control circuit 14C, and DC/DC converter 15C. The same applies to the rectifier circuit 12D, the sensor circuit 13D, the correction control circuit 14D, and the DC/DC converter 15D. The converter control circuit 16 controls the operation of the four DC/DC converters 15A to 15D so that the four DC/DC converters 15A to 15D perform switching operations at the same switching frequency and different phases. Rectenna device 1 supplies DC power generated by four DC/DC converters 15A to 15D to load device 9 via power output terminal T.
(詳細動作)
 図6,7に示したように、アンテナ11A~11Dのそれぞれから出力された電力は一旦結合され、結合された電力は4つの整流回路12A~12Dに分配される。例えば、伝送線路103における4つの整流回路12A~12Dへの経路の特性ばらつきや、4つの整流回路12A~12Dの特性ばらつきにより、4つの整流回路12A~12Dのいずれか1つに多くの電流が流れることがあり得る。例えば、整流回路12A~12Dのいずれか1つに過大な電流が流れた場合には、その整流回路12におけるダイオードの特性が劣化し、あるいはダイオードが故障する可能性がある。
(Detailed operation)
As shown in FIGS. 6 and 7, the power output from each of the antennas 11A to 11D is once combined, and the combined power is distributed to the four rectifier circuits 12A to 12D. For example, due to variations in the characteristics of the paths to the four rectifier circuits 12A to 12D in the transmission line 103 or variations in the characteristics of the four rectifier circuits 12A to 12D, a large amount of current flows into one of the four rectifier circuits 12A to 12D. It can flow. For example, if an excessive current flows through any one of the rectifier circuits 12A to 12D, the characteristics of the diode in the rectifier circuit 12 may deteriorate or the diode may fail.
 レクテナ装置1では、例えば、補正制御回路14Aは、センサ回路13Aから供給された整流回路12Aの出力電圧Vo_rectおよび出力電流Io_rectの検出結果、および整流回路12Aから供給された回路温度T_rectの検出結果に基づいて、DC/DCコンバータ15Aの出力電圧Vo_dcdcの補正量を示す補正指令値を生成する。DC/DCコンバータ15Aは、補正制御回路14Aから供給された補正指令値に基づいて、出力電圧を補正する。これにより、レクテナ装置1では、整流回路12Aのダイオードを保護することができる。以下に、この動作について詳細に説明する。 In the rectenna device 1, for example, the correction control circuit 14A uses the detection results of the output voltage Vo_rect and output current Io_rect of the rectifier circuit 12A supplied from the sensor circuit 13A, and the detection result of the circuit temperature T_rect supplied from the rectifier circuit 12A. Based on this, a correction command value indicating the amount of correction of the output voltage Vo_dcdc of the DC/DC converter 15A is generated. The DC/DC converter 15A corrects the output voltage based on the correction command value supplied from the correction control circuit 14A. Thereby, in the rectenna device 1, the diode of the rectifier circuit 12A can be protected. This operation will be explained in detail below.
(出力電圧Vo_rectに基づく補正動作)
 図8は、整流回路12Aの出力電圧Vo_rectに基づく、DC/DCコンバータ15Aの出力電圧Vo_dcdcの補正動作を表すものである。
(Correction operation based on output voltage Vo_rect)
FIG. 8 shows a correction operation of the output voltage Vo_dcdc of the DC/DC converter 15A based on the output voltage Vo_rect of the rectifier circuit 12A.
 補正指令値生成回路26は、式EQ1を用いて、整流回路12Aの出力電圧Vo_rectに基づいて、補正指令値ΔVaを生成する。加算回路39は、式EQ4を用いて、目標電圧の電圧指令値Vref1を生成する。これにより、DC/DCコンバータ15Aの出力電圧Vo_dcdcは、図8に示したように、整流回路12Aの出力電圧Vo_rectが高くなるほど高くなる。具体的には、DC/DCコンバータ15Aは、整流回路12Aの出力電圧Vo_rectが電圧V1である場合にDC/DCコンバータ15Aの出力電圧Vo_dcdcを電圧Vo1にし、整流回路12Aの出力電圧Vo_rectが電圧V1より高い電圧V2である場合にDC/DCコンバータ15Aの出力電圧Vo_dcdcを電圧Vo1より高い電圧Vo2にする。これにより、レクテナ装置1では、以下に説明するように、整流回路12Aのダイオードを保護しつつ、負荷装置9に対して協調して直流電力を供給することができる。 The correction command value generation circuit 26 uses equation EQ1 to generate a correction command value ΔVa based on the output voltage Vo_rect of the rectifier circuit 12A. The addition circuit 39 generates the voltage command value Vref1 of the target voltage using equation EQ4. Thereby, as shown in FIG. 8, the output voltage Vo_dcdc of the DC/DC converter 15A increases as the output voltage Vo_rect of the rectifier circuit 12A increases. Specifically, when the output voltage Vo_rect of the rectifier circuit 12A is the voltage V1, the DC/DC converter 15A sets the output voltage Vo_dcdc of the DC/DC converter 15A to the voltage Vo1, and the output voltage Vo_rect of the rectifier circuit 12A becomes the voltage V1. When the voltage V2 is higher, the output voltage Vo_dcdc of the DC/DC converter 15A is set to a voltage Vo2 higher than the voltage Vo1. Thereby, the rectenna device 1 can cooperatively supply DC power to the load device 9 while protecting the diode of the rectifier circuit 12A, as described below.
 図9は、受電電力が所定の値である場合における、整流回路12Aの出力電圧Vo_rectおよび出力電流Io_rectの関係を示す特性を表すものである。特性W1は、受電電力が電力P1である場合の特性を示し、特性W2は、受電電力が電力P1よりも大きい電力P2である場合の特性を示し、特性W3は、受電電力が電力P1よりも小さい電力P3である場合の特性を示す。受電電力が一定である場合には、整流回路12Aの出力電圧Vo_rectが高いほど、整流回路12Aの出力電流Io_rectは少なく、整流回路12Aの出力電圧Vo_rectが低いほど、整流回路12Aの出力電流Io_rectは多い。 FIG. 9 shows characteristics showing the relationship between the output voltage Vo_rect and the output current Io_rect of the rectifier circuit 12A when the received power is a predetermined value. Characteristic W1 shows the characteristic when the received power is power P1, characteristic W2 shows the characteristic when the received power is power P2 which is larger than power P1, and characteristic W3 shows the characteristic when the received power is power P2 which is larger than power P1. The characteristics when the power is small P3 are shown. When the received power is constant, the higher the output voltage Vo_rect of the rectifier circuit 12A, the lower the output current Io_rect of the rectifier circuit 12A, and the lower the output voltage Vo_rect of the rectifier circuit 12A, the lower the output current Io_rect of the rectifier circuit 12A. many.
 例えば、整流回路12Aの出力電圧Vo_rectが低い場合には、整流回路12Aの出力電流Io_rectは多い。このように整流回路12Aの出力電流Io_rectが多い場合には、整流回路12Aのダイオードでは、電流容量の観点から余裕が少ない。例えば、出力電流Io_rectが過大である場合には、整流回路12Aにおけるダイオードの特性が劣化し、あるいはダイオードが故障する可能性がある。よって、DC/DCコンバータ15Aは、整流回路12Aの出力電圧Vo_rectが低いほど、出力電圧Vo_dcdcを低くする。DC/DCコンバータ15Aの出力電圧Vo_dcdcが低くなると、DC/DCコンバータ15Aの出力電流が低下し、その低下分を補うように、DC/DCコンバータ15B,15C,15Dの出力電流が増加する。このようにDC/DCコンバータ15Aの出力電流が少なくなると、DC/DCコンバータ15Aの入力電流が少なくなり、整流回路12Aの出力電流Io_rectが少なくなる。このようにして、レクテナ装置1では、整流回路12Aの出力電流Io_rectを低く抑えることができ、整流回路12Aのダイオードを保護することができる。そして、レクテナ装置1では、4つのDC/DCコンバータ15A~15Dが、負荷装置9に対して協調して直流電力を供給することができる。 For example, when the output voltage Vo_rect of the rectifier circuit 12A is low, the output current Io_rect of the rectifier circuit 12A is large. When the output current Io_rect of the rectifier circuit 12A is large as described above, the diodes of the rectifier circuit 12A have little margin in terms of current capacity. For example, if the output current Io_rect is excessive, the characteristics of the diode in the rectifier circuit 12A may deteriorate or the diode may fail. Therefore, the DC/DC converter 15A lowers the output voltage Vo_dcdc as the output voltage Vo_rect of the rectifier circuit 12A becomes lower. When the output voltage Vo_dcdc of the DC/DC converter 15A decreases, the output current of the DC/DC converter 15A decreases, and the output currents of the DC/ DC converters 15B, 15C, and 15D increase to compensate for the decrease. When the output current of the DC/DC converter 15A decreases in this way, the input current of the DC/DC converter 15A decreases, and the output current Io_rect of the rectifier circuit 12A decreases. In this way, in the rectenna device 1, the output current Io_rect of the rectifier circuit 12A can be suppressed low, and the diode of the rectifier circuit 12A can be protected. In the rectenna device 1, the four DC/DC converters 15A to 15D can cooperatively supply DC power to the load device 9.
 一方、例えば、整流回路12Aの出力電圧Vo_rectが高い場合には、整流回路12Aの出力電流Io_rectは少ない。このように整流回路12Aの出力電流Io_rectが少ない場合には、整流回路12Aのダイオードでは、電流容量の観点から余裕があり、より多くの電流を流すことができる。よって、DC/DCコンバータ15Aは、整流回路12Aの出力電圧Vo_rectが高いほど、出力電圧Vo_dcdcを高くする。DC/DCコンバータ15Aの出力電圧Vo_dcdcが高くなると、DC/DCコンバータ15Aの出力電流が多くなり、その増加分だけ、DC/DCコンバータ15B,15C,15Dの出力電流が低下する。このようにDC/DCコンバータ15Aの出力電流が多くなると、DC/DCコンバータ15Aの入力電流が多くなり、整流回路12Aの出力電流Io_rectが多くなる。このようにして、レクテナ装置1では、4つのDC/DCコンバータ15A~15Dが、負荷装置9に対して協調して直流電力を供給することができる。 On the other hand, for example, when the output voltage Vo_rect of the rectifier circuit 12A is high, the output current Io_rect of the rectifier circuit 12A is small. In this way, when the output current Io_rect of the rectifier circuit 12A is small, the diodes of the rectifier circuit 12A have a margin in terms of current capacity and can allow more current to flow. Therefore, the DC/DC converter 15A increases the output voltage Vo_dcdc as the output voltage Vo_rect of the rectifier circuit 12A increases. When the output voltage Vo_dcdc of the DC/DC converter 15A increases, the output current of the DC/DC converter 15A increases, and the output currents of the DC/ DC converters 15B, 15C, and 15D decrease by the increased amount. When the output current of the DC/DC converter 15A increases in this way, the input current of the DC/DC converter 15A increases, and the output current Io_rect of the rectifier circuit 12A increases. In this way, in the rectenna device 1, the four DC/DC converters 15A to 15D can cooperate to supply DC power to the load device 9.
(出力電流Io_rectに基づく補正動作)
 図10は、整流回路12Aの出力電流Io_rectに基づく、DC/DCコンバータ15Aの出力電圧Vo_dcdcの補正動作を表すものである。
(Correction operation based on output current Io_rect)
FIG. 10 shows a correction operation for the output voltage Vo_dcdc of the DC/DC converter 15A based on the output current Io_rect of the rectifier circuit 12A.
 補正指令値生成回路27は、式EQ2を用いて、整流回路12Aの出力電流Io_rectに基づいて、補正指令値ΔVbを生成する。加算回路39は、式EQ4を用いて、目標電圧の電圧指令値Vref1を生成する。これにより、DC/DCコンバータ15Aの出力電圧Vo_dcdcは、図10に示したように、整流回路12Aの出力電流Io_rectが多くなるほど高くなる。具体的には、DC/DCコンバータ15Aは、整流回路12Aの出力電流Io_rectが電流I1である場合にDC/DCコンバータ15Aの出力電圧Vo_dcdcを電圧Vo3にし、整流回路12Aの出力電流Io_rectが電流I1より多い電流I2である場合にDC/DCコンバータ15Aの出力電圧Vo_dcdcを電圧Vo3より低い電圧Vo4にする。これにより、レクテナ装置1では、以下に説明するように、整流回路12Aのダイオードを保護しつつ、負荷装置9に対して協調して直流電力を供給することができる。 The correction command value generation circuit 27 uses equation EQ2 to generate a correction command value ΔVb based on the output current Io_rect of the rectifier circuit 12A. The addition circuit 39 generates the voltage command value Vref1 of the target voltage using equation EQ4. Thereby, as shown in FIG. 10, the output voltage Vo_dcdc of the DC/DC converter 15A increases as the output current Io_rect of the rectifier circuit 12A increases. Specifically, when the output current Io_rect of the rectifier circuit 12A is the current I1, the DC/DC converter 15A sets the output voltage Vo_dcdc of the DC/DC converter 15A to the voltage Vo3, and the output current Io_rect of the rectifier circuit 12A becomes the current I1. When the current I2 is larger, the output voltage Vo_dcdc of the DC/DC converter 15A is set to a voltage Vo4 lower than the voltage Vo3. Thereby, the rectenna device 1 can cooperatively supply DC power to the load device 9 while protecting the diode of the rectifier circuit 12A, as described below.
 すなわち、例えば、整流回路12Aの出力電流Io_rectが多い場合には、整流回路12Aのダイオードでは、電流容量の観点から余裕が少ない。例えば、出力電流Io_rectが過大である場合には、整流回路12Aにおけるダイオードの特性が劣化し、あるいはダイオードが故障する可能性がある。よって、DC/DCコンバータ15Aは、整流回路12Aの出力電流Io_rectが多いほど、出力電圧Vo_dcdcを低くする。DC/DCコンバータ15Aの出力電圧Vo_dcdcが低くなると、DC/DCコンバータ15Aの出力電流が低下し、その低下分を補うように、DC/DCコンバータ15B,15C,15Dの出力電流が増加する。このようにDC/DCコンバータ15Aの出力電流が少なくなると、DC/DCコンバータ15Aの入力電流が少なくなり、整流回路12Aの出力電流Io_rectが少なくなる。このようにして、レクテナ装置1では、整流回路12Aの出力電流Io_rectを低く抑えることができ、整流回路12Aのダイオードを保護することができる。そして、レクテナ装置1では、4つのDC/DCコンバータ15A~15Dが、負荷装置9に対して協調して直流電力を供給することができる。 That is, for example, when the output current Io_rect of the rectifier circuit 12A is large, the diodes of the rectifier circuit 12A have little margin in terms of current capacity. For example, if the output current Io_rect is excessive, the characteristics of the diode in the rectifier circuit 12A may deteriorate or the diode may fail. Therefore, the DC/DC converter 15A lowers the output voltage Vo_dcdc as the output current Io_rect of the rectifier circuit 12A increases. When the output voltage Vo_dcdc of the DC/DC converter 15A decreases, the output current of the DC/DC converter 15A decreases, and the output currents of the DC/ DC converters 15B, 15C, and 15D increase to compensate for the decrease. When the output current of the DC/DC converter 15A decreases in this way, the input current of the DC/DC converter 15A decreases, and the output current Io_rect of the rectifier circuit 12A decreases. In this way, in the rectenna device 1, the output current Io_rect of the rectifier circuit 12A can be suppressed low, and the diode of the rectifier circuit 12A can be protected. In the rectenna device 1, the four DC/DC converters 15A to 15D can cooperatively supply DC power to the load device 9.
 一方、例えば、整流回路12Aの出力電流Io_rectが少ない場合には、整流回路12Aのダイオードでは、電流容量の観点から余裕があり、より多くの電流を流すことができる。よって、DC/DCコンバータ15Aは、整流回路12Aの出力電流Io_rectが少ないほど、出力電圧Vo_dcdcを高くする。DC/DCコンバータ15Aの出力電圧Vo_dcdcが高くなると、DC/DCコンバータ15Aの出力電流が多くなり、その増加分だけ、DC/DCコンバータ15B,15C,15Dの出力電流が低下する。このようにDC/DCコンバータ15Aの出力電流が多くなると、DC/DCコンバータ15Aの入力電流が多くなり、整流回路12Aの出力電流Io_rectが多くなる。このようにして、レクテナ装置1では、4つのDC/DCコンバータ15A~15Dが、負荷装置9に対して協調して直流電力を供給することができる。 On the other hand, for example, when the output current Io_rect of the rectifier circuit 12A is small, the diodes of the rectifier circuit 12A have a margin in terms of current capacity and can allow more current to flow. Therefore, the DC/DC converter 15A increases the output voltage Vo_dcdc as the output current Io_rect of the rectifier circuit 12A decreases. When the output voltage Vo_dcdc of the DC/DC converter 15A increases, the output current of the DC/DC converter 15A increases, and the output currents of the DC/ DC converters 15B, 15C, and 15D decrease by the increased amount. When the output current of the DC/DC converter 15A increases in this way, the input current of the DC/DC converter 15A increases, and the output current Io_rect of the rectifier circuit 12A increases. In this way, in the rectenna device 1, the four DC/DC converters 15A to 15D can cooperate to supply DC power to the load device 9.
(回路温度T_rectに基づく補正動作)
 図11は、整流回路12Aの回路温度T_rectに基づく、DC/DCコンバータ15Aの出力電圧Vo_dcdcの補正動作を表すものである。
(Correction operation based on circuit temperature T_rect)
FIG. 11 shows a correction operation of the output voltage Vo_dcdc of the DC/DC converter 15A based on the circuit temperature T_rect of the rectifier circuit 12A.
 補正指令値生成回路28は、式EQ3を用いて、整流回路12Aの回路温度T_rectに基づいて、補正指令値ΔVcを生成する。加算回路39は、式EQ4を用いて、目標電圧の電圧指令値Vref1を生成する。これにより、DC/DCコンバータ15Aの出力電圧Vo_dcdcは、図11に示したように、整流回路12Aの回路温度T_rectが高くなるほど低くなる。具体的には、DC/DCコンバータ15Aは、整流回路12Aの回路温度T_rectが温度T1である場合にDC/DCコンバータ15Aの出力電圧Vo_dcdcを電圧Vo5にし、整流回路12Aの回路温度To_rectが温度T1より高い温度T2である場合にDC/DCコンバータ15Aの出力電圧Vo_dcdcを電圧Vo5より低い電圧Vo6にする。これにより、レクテナ装置1では、以下に説明するように、整流回路12Aのダイオードを保護しつつ、負荷装置9に対して協調して直流電力を供給することができる。 The correction command value generation circuit 28 uses equation EQ3 to generate a correction command value ΔVc based on the circuit temperature T_rect of the rectifier circuit 12A. The addition circuit 39 generates the voltage command value Vref1 of the target voltage using equation EQ4. Thereby, as shown in FIG. 11, the output voltage Vo_dcdc of the DC/DC converter 15A becomes lower as the circuit temperature T_rect of the rectifier circuit 12A becomes higher. Specifically, when the circuit temperature T_rect of the rectifier circuit 12A is the temperature T1, the DC/DC converter 15A sets the output voltage Vo_dcdc of the DC/DC converter 15A to the voltage Vo5, and the circuit temperature To_rect of the rectifier circuit 12A is the temperature T1. When the temperature T2 is higher, the output voltage Vo_dcdc of the DC/DC converter 15A is set to a voltage Vo6 lower than the voltage Vo5. Thereby, the rectenna device 1 can cooperatively supply DC power to the load device 9 while protecting the diode of the rectifier circuit 12A, as described below.
 図12は、整流回路12Aの出力電流Io_rectおよび回路温度T_rectの関係を示す特性を表すものである。例えば、整流回路12Aの出力電流Io_rectが多いほど、ダイオードにおけるエネルギー損失が大きくなり、回路温度T_rectは高くなる。特に、この例では、出力電流Io_rectが多い領域では、出力電流Io_rectの増加に応じて、回路温度T_rectが急激に高くなる。 FIG. 12 shows characteristics showing the relationship between the output current Io_rect of the rectifier circuit 12A and the circuit temperature T_rect. For example, the greater the output current Io_rect of the rectifier circuit 12A, the greater the energy loss in the diode and the higher the circuit temperature T_rect. In particular, in this example, in a region where the output current Io_rect is large, the circuit temperature T_rect increases rapidly as the output current Io_rect increases.
 例えば、整流回路12Aの回路温度T_rectが高い場合には、整流回路12Aの出力電流Io_rectは多い。このように整流回路12Aの出力電流Io_rectが多い場合には、整流回路12Aのダイオードでは、電流容量の観点から余裕が少ない。例えば、出力電流Io_rectが過大である場合には、整流回路12Aにおけるダイオードの特性が劣化し、あるいはダイオードが故障する可能性がある。よって、DC/DCコンバータ15Aは、整流回路12Aの回路温度T_rectが高いほど、出力電圧Vo_dcdcを低くする。DC/DCコンバータ15Aの出力電圧Vo_dcdcが低くなると、DC/DCコンバータ15Aの出力電流が低下し、その低下分を補うように、DC/DCコンバータ15B,15C,15Dの出力電流が増加する。このようにDC/DCコンバータ15Aの出力電流が少なくなると、DC/DCコンバータ15Aの入力電流が少なくなり、整流回路12Aの出力電流Io_rectが少なくなる。このようにして、レクテナ装置1では、整流回路12Aの出力電流Io_rectを低く抑えることができ、整流回路12Aのダイオードを保護することができる。そして、レクテナ装置1では、4つのDC/DCコンバータ15A~15Dが、負荷装置9に対して協調して直流電力を供給することができる。 For example, when the circuit temperature T_rect of the rectifier circuit 12A is high, the output current Io_rect of the rectifier circuit 12A is large. When the output current Io_rect of the rectifier circuit 12A is large as described above, the diodes of the rectifier circuit 12A have little margin in terms of current capacity. For example, if the output current Io_rect is excessive, the characteristics of the diode in the rectifier circuit 12A may deteriorate or the diode may fail. Therefore, the DC/DC converter 15A lowers the output voltage Vo_dcdc as the circuit temperature T_rect of the rectifier circuit 12A increases. When the output voltage Vo_dcdc of the DC/DC converter 15A decreases, the output current of the DC/DC converter 15A decreases, and the output currents of the DC/ DC converters 15B, 15C, and 15D increase to compensate for the decrease. When the output current of the DC/DC converter 15A decreases in this way, the input current of the DC/DC converter 15A decreases, and the output current Io_rect of the rectifier circuit 12A decreases. In this way, in the rectenna device 1, the output current Io_rect of the rectifier circuit 12A can be suppressed low, and the diode of the rectifier circuit 12A can be protected. In the rectenna device 1, the four DC/DC converters 15A to 15D can cooperatively supply DC power to the load device 9.
 一方、例えば、整流回路12Aの回路温度T_rectが低い場合には、整流回路12Aの出力電流Io_rectは少ない。このように整流回路12Aの出力電流Io_rectが少ない場合には、整流回路12Aのダイオードでは、電流容量の観点から余裕があり、より多くの電流を流すことができる。よって、DC/DCコンバータ15Aは、整流回路12Aの出力電流Io_rectが少ないほど、出力電圧Vo_dcdcを高くする。DC/DCコンバータ15Aの出力電圧Vo_dcdcが高くなると、DC/DCコンバータ15Aの出力電流が多くなり、その増加分だけ、DC/DCコンバータ15B,15C,15Dの出力電流が低下する。このようにDC/DCコンバータ15Aの出力電流が多くなると、DC/DCコンバータ15Aの入力電流が多くなり、整流回路12Aの出力電流Io_rectが多くなる。このようにして、レクテナ装置1では、4つのDC/DCコンバータ15A~15Dが、負荷装置9に対して協調して直流電力を供給することができる。 On the other hand, for example, when the circuit temperature T_rect of the rectifier circuit 12A is low, the output current Io_rect of the rectifier circuit 12A is small. In this way, when the output current Io_rect of the rectifier circuit 12A is small, the diodes of the rectifier circuit 12A have a margin in terms of current capacity and can allow more current to flow. Therefore, the DC/DC converter 15A increases the output voltage Vo_dcdc as the output current Io_rect of the rectifier circuit 12A decreases. When the output voltage Vo_dcdc of the DC/DC converter 15A increases, the output current of the DC/DC converter 15A increases, and the output currents of the DC/ DC converters 15B, 15C, and 15D decrease by the increased amount. When the output current of the DC/DC converter 15A increases in this way, the input current of the DC/DC converter 15A increases, and the output current Io_rect of the rectifier circuit 12A increases. In this way, in the rectenna device 1, the four DC/DC converters 15A to 15D can cooperate to supply DC power to the load device 9.
 なお、以上では、整流回路12A、センサ回路13A、補正制御回路14A、およびDC/DCコンバータ15Aを例に挙げて説明したが、整流回路12B、センサ回路13B、補正制御回路14B、およびDC/DCコンバータ15Bについても同様であり、整流回路12C、センサ回路13C、補正制御回路14C、およびDC/DCコンバータ15Cについても同様であり、整流回路12D、センサ回路13D、補正制御回路14D、およびDC/DCコンバータ15Dについても同様である。 In addition, although the rectifier circuit 12A, the sensor circuit 13A, the correction control circuit 14A, and the DC/DC converter 15A have been explained above as examples, the rectifier circuit 12B, the sensor circuit 13B, the correction control circuit 14B, and the DC/DC converter The same applies to converter 15B, the same applies to rectifier circuit 12C, sensor circuit 13C, correction control circuit 14C, and DC/DC converter 15C, and the same applies to rectifier circuit 12D, sensor circuit 13D, correction control circuit 14D, and DC/DC converter 15C. The same applies to converter 15D.
 このように、レクテナ装置1では、マイクロ波を受信可能なアンテナ部10と、それぞれが、アンテナ部10に接続され、アンテナ部10から供給された電力信号を整流可能な4つの整流回路12と、4つの整流回路12にそれぞれ対応して設けられ、それぞれが、対応する整流回路12の出力電力に基づいて直流電力を生成可能な4つのDC/DCコンバータ15と、4つのDC/DCコンバータ15の出力端子に接続された電力出力端子Tと、4つの整流回路12にそれぞれ対応して設けられるとともに、4つのDC/DCコンバータ15にそれぞれ対応して設けられ、それぞれが、対応する整流回路12の、出力電圧、出力電流、および回路温度のうちの1以上に基づいて、対応するDC/DCコンバータ15の出力電圧を補正可能な4つの補正制御回路14とを備えるようにした。これにより、レクテナ装置1では、整流回路12の出力電流Io_rectを低く抑えることができ、整流回路12のダイオードを保護することができる。 In this way, the rectenna device 1 includes the antenna section 10 capable of receiving microwaves, the four rectifier circuits 12 each connected to the antenna section 10 and capable of rectifying the power signal supplied from the antenna section 10, Four DC/DC converters 15 are provided corresponding to the four rectifier circuits 12, and each of the four DC/DC converters 15 is capable of generating DC power based on the output power of the corresponding rectifier circuit 12. The power output terminal T connected to the output terminal is provided corresponding to each of the four rectifier circuits 12, and is provided corresponding to each of the four DC/DC converters 15. , four correction control circuits 14 capable of correcting the output voltage of the corresponding DC/DC converter 15 based on one or more of output voltage, output current, and circuit temperature. Thereby, in the rectenna device 1, the output current Io_rect of the rectifier circuit 12 can be suppressed low, and the diode of the rectifier circuit 12 can be protected.
 また、レクテナ装置1では、4つの補正制御回路14のそれぞれは、対応する整流回路12の出力電圧Vo_rectが第1の電圧(例えば電圧V1)である場合に、対応するDC/DCコンバータ15の出力電圧Vo_dcdcを第1の出力電圧(例えば電圧Vo1)にし、対応する整流回路12の出力電圧Vo_rectが第1の電圧よりも高い第2の電圧(例えば電圧V2)である場合に、対応するDC/DCコンバータ15の出力電圧Vo_dcdcを第1の出力電圧より高い第2の出力電圧(例えば電圧Vo2)にするように、対応するDC/DCコンバータ15の出力電圧Vo_dcdcを補正することができるようにした。これにより、レクテナ装置1では、例えば、対応する整流回路12の出力電圧Vo_rectが低い場合に、その整流回路12の出力電流Io_rectを低く抑えることができるので、整流回路12のダイオードを保護することができる。 Further, in the rectenna device 1, each of the four correction control circuits 14 outputs the output of the corresponding DC/DC converter 15 when the output voltage Vo_rect of the corresponding rectifier circuit 12 is the first voltage (for example, voltage V1). When the voltage Vo_dcdc is set to the first output voltage (for example, voltage Vo1) and the output voltage Vo_rect of the corresponding rectifier circuit 12 is a second voltage (for example, voltage V2) higher than the first voltage, the corresponding DC/ The output voltage Vo_dcdc of the corresponding DC/DC converter 15 can be corrected so that the output voltage Vo_dcdc of the DC converter 15 becomes a second output voltage (for example, voltage Vo2) higher than the first output voltage. . Thereby, in the rectenna device 1, for example, when the output voltage Vo_rect of the corresponding rectifier circuit 12 is low, the output current Io_rect of the rectifier circuit 12 can be suppressed low, so that the diode of the rectifier circuit 12 can be protected. can.
 また、レクテナ装置1では、4つの補正制御回路14のそれぞれは、対応する整流回路12の出力電流Io_rectが第1の電流(例えば電流I1)である場合に、対応するDC/DCコンバータ15の出力電圧Vo_dcdcを第3の出力電圧(例えば電圧Vo3)にし、対応する整流回路12の出力電流Io_rectが第1の電流よりも多い第2の電流(例えば電流I2)である場合に、対応するDC/DCコンバータ15の出力電圧Vo_dcdcを第3の出力電圧より低い第4の出力電圧(電圧Vo4)にするように、対応するDC/DCコンバータ15の出力電圧Vo_dcdcを補正することができるようにした。これにより、レクテナ装置1では、例えば、対応する整流回路12の出力電流Io_rectが多い場合に、その整流回路12の出力電流Io_rectを低く抑えることができるので、整流回路12のダイオードを保護することができる。 Furthermore, in the rectenna device 1, each of the four correction control circuits 14 outputs the output of the corresponding DC/DC converter 15 when the output current Io_rect of the corresponding rectifier circuit 12 is the first current (for example, current I1). When the voltage Vo_dcdc is set to the third output voltage (for example, the voltage Vo3) and the output current Io_rect of the corresponding rectifier circuit 12 is a second current (for example, the current I2) that is larger than the first current, the corresponding DC/ The output voltage Vo_dcdc of the corresponding DC/DC converter 15 can be corrected so that the output voltage Vo_dcdc of the DC converter 15 becomes the fourth output voltage (voltage Vo4) lower than the third output voltage. As a result, in the rectenna device 1, for example, when the output current Io_rect of the corresponding rectifier circuit 12 is large, the output current Io_rect of the corresponding rectifier circuit 12 can be suppressed to a low level, so that the diode of the rectifier circuit 12 can be protected. can.
 また、レクテナ装置1では、4つの補正制御回路14のそれぞれは、対応する整流回路12の回路温度T_rectが第1の温度(例えば温度T1)である場合に、対応するDC/DCコンバータ15の出力電圧Vo_dcdcを第5の出力電圧(例えば電圧Vo5)にし、対応する整流回路12の回路温度T_rectが第1の温度よりも高い第2の温度(例えば温度T2)である場合に、対応するDC/DCコンバータ15の出力電圧Vo_dcdcを第5の出力電圧より低い第6の出力電圧(例えば電圧Vo6)にするように、対応するDC/DCコンバータ15の出力電圧Vo_dcdcを補正することができるようにした。これにより、レクテナ装置1では、例えば、対応する整流回路12の回路温度T_rectが高い場合に、その整流回路12の出力電流Io_rectを低く抑えることができるので、整流回路12のダイオードを保護することができる。 In the rectenna device 1, each of the four correction control circuits 14 outputs the output of the corresponding DC/DC converter 15 when the circuit temperature T_rect of the corresponding rectifier circuit 12 is the first temperature (for example, temperature T1). When the voltage Vo_dcdc is set to the fifth output voltage (for example, voltage Vo5) and the circuit temperature T_rect of the corresponding rectifier circuit 12 is a second temperature (for example, temperature T2) higher than the first temperature, the corresponding DC/ The output voltage Vo_dcdc of the corresponding DC/DC converter 15 can be corrected so that the output voltage Vo_dcdc of the DC converter 15 becomes a sixth output voltage (for example, voltage Vo6) lower than the fifth output voltage. . As a result, in the rectenna device 1, for example, when the circuit temperature T_rect of the corresponding rectifier circuit 12 is high, the output current Io_rect of the rectifier circuit 12 can be suppressed to a low level, so that the diode of the rectifier circuit 12 can be protected. can.
[効果]
 以上のように本実施の形態では、マイクロ波を受信可能なアンテナ部と、それぞれが、アンテナ部に接続され、アンテナ部から供給された電力信号を整流可能な4つの整流回路と、4つの整流回路にそれぞれ対応して設けられ、それぞれが、対応する整流回路の出力電力に基づいて直流電力を生成可能な4つのDC/DCコンバータと、4つのDC/DCコンバータの出力端子に接続された電力出力端子と、4つの整流回路にそれぞれ対応して設けられるとともに、4つのDC/DCコンバータにそれぞれ対応して設けられ、それぞれが、対応する整流回路の、出力電圧、出力電流、および回路温度のうちの1以上に基づいて、対応するDC/DCコンバータの出力電圧を補正可能な4つの補正制御回路とを備えるようにしたので、整流回路のダイオードを保護することができる。
[effect]
As described above, this embodiment includes an antenna unit capable of receiving microwaves, four rectifier circuits each connected to the antenna unit and capable of rectifying the power signal supplied from the antenna unit, and four rectifier circuits each connected to the antenna unit and capable of rectifying the power signal supplied from the antenna unit. Four DC/DC converters, each of which is provided corresponding to the circuit, and each capable of generating DC power based on the output power of the corresponding rectifier circuit, and power connected to the output terminals of the four DC/DC converters. The output terminal is provided corresponding to each of the four rectifier circuits, and is provided corresponding to each of the four DC/DC converters. Since four correction control circuits capable of correcting the output voltage of the corresponding DC/DC converter based on one or more of them are provided, the diodes of the rectifier circuit can be protected.
 本実施の形態では、4つの補正制御回路のそれぞれは、対応する整流回路の出力電圧が第1の電圧である場合に、対応するDC/DCコンバータの出力電圧を第1の出力電圧にし、対応する整流回路の出力電圧が第1の電圧よりも高い第2の電圧である場合に、対応するDC/DCコンバータの出力電圧を第1の出力電圧より高い第2の出力電圧にするように、対応するDC/DCコンバータの出力電圧を補正することができるようにしたので、整流回路のダイオードを保護することができる。 In this embodiment, each of the four correction control circuits sets the output voltage of the corresponding DC/DC converter to the first output voltage when the output voltage of the corresponding rectifier circuit is the first voltage. When the output voltage of the rectifier circuit is a second voltage higher than the first voltage, the output voltage of the corresponding DC/DC converter is set to a second output voltage higher than the first output voltage, Since the output voltage of the corresponding DC/DC converter can be corrected, the diode of the rectifier circuit can be protected.
 本実施の形態では、4つの補正制御回路のそれぞれは、対応する整流回路の出力電流が第1の電流である場合に、対応するDC/DCコンバータの出力電圧を第3の出力電圧にし、対応する整流回路の出力電流が第1の電流よりも多い第2の電流である場合に、対応するDC/DCコンバータの出力電圧を第3の出力電圧より低い第4の出力電圧にするように、対応するDC/DCコンバータの出力電圧を補正することができるようにしたので、整流回路のダイオードを保護することができる。 In this embodiment, each of the four correction control circuits sets the output voltage of the corresponding DC/DC converter to the third output voltage when the output current of the corresponding rectifier circuit is the first current, and When the output current of the rectifier circuit is a second current larger than the first current, the output voltage of the corresponding DC/DC converter is set to a fourth output voltage lower than the third output voltage, Since the output voltage of the corresponding DC/DC converter can be corrected, the diode of the rectifier circuit can be protected.
 本実施の形態では、4つの補正制御回路のそれぞれは、対応する整流回路の回路温度が第1の温度である場合に、対応するDC/DCコンバータの出力電圧を第5の出力電圧にし、対応する整流回路の回路温度が第1の温度よりも高い第2の温度である場合に、対応するDC/DCコンバータの出力電圧を第5の出力電圧より低い第6の出力電圧にするように、対応するDC/DCコンバータの出力電圧を補正することができるようにしたので、整流回路のダイオードを保護することができる。 In this embodiment, each of the four correction control circuits sets the output voltage of the corresponding DC/DC converter to the fifth output voltage when the circuit temperature of the corresponding rectifier circuit is the first temperature. When the circuit temperature of the rectifier circuit is a second temperature higher than the first temperature, the output voltage of the corresponding DC/DC converter is set to a sixth output voltage lower than the fifth output voltage, Since the output voltage of the corresponding DC/DC converter can be corrected, the diode of the rectifier circuit can be protected.
[変形例1]
 上記実施の形態では、図1に示したように、4つのアンテナ11A~11Dを設けたが、これに限定されるものではなく、これに代えて、例えば3つ以下のアンテナ11を設けてもよいし、5つ以上のアンテナ11を設けてもよい。例えば、図13に示すレクテナ装置1Aのように、1つのアンテナ11を設けてもよい。この場合、アンテナ11から出力された電力は、4つの整流回路12A~12Dに分配される。
[Modification 1]
In the above embodiment, four antennas 11A to 11D are provided as shown in FIG. Alternatively, five or more antennas 11 may be provided. For example, one antenna 11 may be provided like a rectenna device 1A shown in FIG. 13. In this case, the power output from antenna 11 is distributed to four rectifier circuits 12A to 12D.
[変形例2]
 上記実施の形態では、図1に示したように、4つのアンテナ11A~11Dの4つの出力端子、および4つの整流回路12A~12Dの4つの入力端子を互いに接続したが、これに限定されるものではない。これに代えて、例えば、図14に示すレクテナ装置1Bのように、4つのアンテナ11A~11Dと、4つの整流回路12A~12Dとを、それぞれ1対1で接続してもよい。このレクテナ装置1Bでは、アンテナ11Aの出力端子は整流回路12Aの入力端子に接続され、アンテナ11Bの出力端子は整流回路12Bの入力端子に接続され、アンテナ11Cの出力端子は整流回路12Cの入力端子に接続され、アンテナ11Dの出力端子は整流回路12Dの入力端子に接続される。
[Modification 2]
In the above embodiment, as shown in FIG. 1, the four output terminals of the four antennas 11A to 11D and the four input terminals of the four rectifier circuits 12A to 12D are connected to each other, but the present invention is not limited to this. It's not a thing. Instead, for example, four antennas 11A to 11D and four rectifier circuits 12A to 12D may be connected one-to-one, as in a rectenna device 1B shown in FIG. 14, for example. In this rectenna device 1B, the output terminal of the antenna 11A is connected to the input terminal of the rectifier circuit 12A, the output terminal of the antenna 11B is connected to the input terminal of the rectifier circuit 12B, and the output terminal of the antenna 11C is connected to the input terminal of the rectifier circuit 12C. The output terminal of the antenna 11D is connected to the input terminal of the rectifier circuit 12D.
 図15,16は、レクテナ装置1Bにおける、4つのアンテナ11、4つの整流回路12、4つのセンサ回路13、4つの補正制御回路14、および4つのDC/DCコンバータ15の実装例を表すものである。4つのアンテナ11、4つの整流回路12、4つのセンサ回路13、4つの補正制御回路14、および4つのDC/DCコンバータ15は、この例ではプリント基板である基板110に実装される。図10は、基板110の基板面110Aを示し、図11は、基板110の、基板面110Aとは反対の基板面110Bを示す。この例では、4つのアンテナ11は基板面110Aに実装され、4つの整流回路12、4つのセンサ回路13、4つの補正制御回路14、および4つのDC/DCコンバータ15は基板面110Bに実装される。 15 and 16 represent implementation examples of four antennas 11, four rectifier circuits 12, four sensor circuits 13, four correction control circuits 14, and four DC/DC converters 15 in the rectenna device 1B. be. Four antennas 11, four rectifier circuits 12, four sensor circuits 13, four correction control circuits 14, and four DC/DC converters 15 are mounted on a substrate 110, which is a printed circuit board in this example. 10 shows a substrate side 110A of the substrate 110, and FIG. 11 shows a substrate side 110B of the substrate 110 opposite the substrate side 110A. In this example, four antennas 11 are mounted on the substrate surface 110A, and four rectifier circuits 12, four sensor circuits 13, four correction control circuits 14, and four DC/DC converters 15 are mounted on the substrate surface 110B. Ru.
 図15に示したように、基板面100Aにおいて、4つのアンテナ11は、この例では2行2列で配置される。4つのアンテナ11は、4つの給電点111にそれぞれ導かれる。 As shown in FIG. 15, on the substrate surface 100A, the four antennas 11 are arranged in two rows and two columns in this example. The four antennas 11 are guided to four feeding points 111, respectively.
 図16に示したように、基板面100Bにおいて、整流回路12、センサ回路13、補正制御回路14、およびDC/DCコンバータ15を含む4つの回路群は、この例では2行2列で配置される。4つの整流回路12は、4つの給電点111にそれぞれ導かれる。 As shown in FIG. 16, on the substrate surface 100B, four circuit groups including the rectifier circuit 12, the sensor circuit 13, the correction control circuit 14, and the DC/DC converter 15 are arranged in two rows and two columns in this example. Ru. The four rectifier circuits 12 are respectively guided to four feed points 111.
 この場合でも、例えば4つの整流回路12Aから12Dの特性ばらつきにより、4つの整流回路12A~12Dのいずれか1つに多くの電流が流れることがあり得る。例えば、整流回路12A~12Dのいずれか1つに過大な電流が流れた場合には、その整流回路12におけるダイオードの特性が劣化し、あるいはダイオードが故障する可能性がある。 Even in this case, for example, a large amount of current may flow through any one of the four rectifier circuits 12A to 12D due to variations in the characteristics of the four rectifier circuits 12A to 12D. For example, if an excessive current flows through any one of the rectifier circuits 12A to 12D, the characteristics of the diode in the rectifier circuit 12 may deteriorate or the diode may fail.
 レクテナ装置1Bでは、上記実施の形態の場合と同様に、例えば、補正制御回路14Aは、センサ回路13Aから供給された整流回路12Aの出力電圧Vo_rectおよび出力電流Io_rectの検出結果、および整流回路12Aから供給された回路温度T_rectの検出結果に基づいて、DC/DCコンバータ15Aの出力電圧Vo_dcdcの補正量を示す補正指令値を生成する。DC/DCコンバータ15Aは、補正制御回路14Aから供給された補正指令値に基づいて、出力電圧を補正する。これにより、整流回路12Aのダイオードには、過大な電流が流れないので、ダイオードの特性が劣化し、あるいはダイオードが故障する可能性を低減することができる。そして、4つのDC/DCコンバータ15A~15Dは、負荷装置9に対して協調して直流電力を供給することができる。 In the rectenna device 1B, as in the above embodiment, for example, the correction control circuit 14A detects the output voltage Vo_rect and output current Io_rect of the rectifier circuit 12A supplied from the sensor circuit 13A, and the detection results from the rectifier circuit 12A. Based on the detection result of the supplied circuit temperature T_rect, a correction command value indicating the amount of correction of the output voltage Vo_dcdc of the DC/DC converter 15A is generated. The DC/DC converter 15A corrects the output voltage based on the correction command value supplied from the correction control circuit 14A. This prevents excessive current from flowing through the diodes of the rectifier circuit 12A, thereby reducing the possibility that the characteristics of the diodes will deteriorate or that the diodes will fail. The four DC/DC converters 15A to 15D can cooperatively supply DC power to the load device 9.
[変形例3]
 上記実施の形態では、図8に示したように、DC/DCコンバータ15の出力電圧Vo_dcdcは、整流回路12の出力電圧Vo_rectの変化に応じて線形に変化するようにしたが、これに限定されるものではなく、これに代えて、例えば、出力電圧Vo_dcdcは、出力電圧Vo_rectの変化に応じて非線形的に変化してもよい。
[Modification 3]
In the above embodiment, as shown in FIG. 8, the output voltage Vo_dcdc of the DC/DC converter 15 is changed linearly according to the change in the output voltage Vo_rect of the rectifier circuit 12, but the present invention is not limited to this. Instead of this, for example, the output voltage Vo_dcdc may change nonlinearly in response to changes in the output voltage Vo_rect.
 同様に、上記実施の形態では、図10に示したように、DC/DCコンバータ15の出力電圧Vo_dcdcは、整流回路12の出力電流Io_rectの変化に応じて線形に変化するようにしたが、これに限定されるものではなく、これに代えて、例えば、出力電圧Vo_dcdcは、出力電流Io_rectの変化に応じて非線形的に変化してもよい。 Similarly, in the above embodiment, as shown in FIG. 10, the output voltage Vo_dcdc of the DC/DC converter 15 is changed linearly according to the change in the output current Io_rect of the rectifier circuit 12. The output voltage Vo_dcdc is not limited to this, and instead, for example, the output voltage Vo_dcdc may change nonlinearly in accordance with the change in the output current Io_rect.
 同様に、上記実施の形態では、図11に示したように、DC/DCコンバータ15の出力電圧Vo_dcdcは、整流回路12の回路温度T_rectの変化に応じて線形に変化するようにしたが、これに限定されるものではなく、これに代えて、例えば、出力電圧Vo_dcdcは、回路温度T_rectの変化に応じて非線形的に変化してもよい。 Similarly, in the above embodiment, as shown in FIG. 11, the output voltage Vo_dcdc of the DC/DC converter 15 is changed linearly according to the change in the circuit temperature T_rect of the rectifier circuit 12. The output voltage Vo_dcdc is not limited to this, and instead, for example, the output voltage Vo_dcdc may change nonlinearly in accordance with a change in the circuit temperature T_rect.
 以上、実施の形態および変形例を挙げて本発明を説明したが、本発明はこれらの実施の形態等には限定されず、種々の変形が可能である。 Although the present invention has been described above with reference to embodiments and modifications, the present invention is not limited to these embodiments, etc., and various modifications are possible.
 例えば、上記実施の形態では、それぞれが、整流回路12、センサ回路13、補正制御回路14、およびDC/DCコンバータ15を含む4つの回路群を設けたが、これに限定されたものではない。これに代えて、3つ以下の回路群を設けてもよいし、5つ以上の回路群を設けてもよい。 For example, in the above embodiment, four circuit groups each including the rectifier circuit 12, the sensor circuit 13, the correction control circuit 14, and the DC/DC converter 15 are provided, but the present invention is not limited to this. Instead, three or less circuit groups may be provided, or five or more circuit groups may be provided.

Claims (15)

  1.  マイクロ波を受信可能なアンテナ部と、
     それぞれが、前記アンテナ部に接続され、前記アンテナ部から供給された電力信号を整流可能な複数の整流回路と、
     前記複数の整流回路にそれぞれ対応して設けられ、それぞれが、対応する整流回路の出力電力に基づいて直流電力を生成可能な複数の電力変換回路と、
     前記複数の電力変換回路の出力端子に接続された電力出力端子と、
     前記複数の整流回路にそれぞれ対応して設けられるとともに、前記複数の電力変換回路にそれぞれ対応して設けられ、それぞれが、対応する整流回路の、出力電圧、出力電流、および回路温度のうちの1以上に基づいて、対応する電力変換回路の出力電圧を補正可能な複数の補正制御回路と
     を備えたレクテナ装置。
    An antenna section capable of receiving microwaves,
    a plurality of rectifier circuits each connected to the antenna section and capable of rectifying the power signal supplied from the antenna section;
    a plurality of power conversion circuits provided corresponding to the plurality of rectifier circuits, each of which is capable of generating DC power based on the output power of the corresponding rectifier circuit;
    a power output terminal connected to the output terminals of the plurality of power conversion circuits;
    It is provided correspondingly to each of the plurality of rectifier circuits, and is provided correspondingly to each of the plurality of power conversion circuits, and each one of the output voltage, output current, and circuit temperature of the corresponding rectifier circuit. Based on the above, a rectenna device comprising: a plurality of correction control circuits capable of correcting the output voltage of a corresponding power conversion circuit.
  2.  前記複数の補正制御回路のそれぞれは、対応する前記整流回路の出力電圧に基づいて、対応する前記電力変換回路の出力電圧を補正可能である
     請求項1に記載のレクテナ装置。
    The rectenna device according to claim 1, wherein each of the plurality of correction control circuits is capable of correcting the output voltage of the corresponding power conversion circuit based on the output voltage of the corresponding rectifier circuit.
  3.  前記複数の補正制御回路のそれぞれは、対応する整流回路の出力電圧に基づいて、対応する前記電力変換回路の出力電圧の補正値を示す第1の補正指令値を生成可能であり、
     前記複数の電力変換回路のそれぞれは、対応する補正制御回路から供給された前記第1の補正指令値に基づいて、その電力変換回路の出力電圧を補正可能である
     請求項2に記載のレクテナ装置。
    Each of the plurality of correction control circuits can generate a first correction command value indicating a correction value of the output voltage of the corresponding power conversion circuit based on the output voltage of the corresponding rectifier circuit,
    The rectenna device according to claim 2, wherein each of the plurality of power conversion circuits is capable of correcting the output voltage of the power conversion circuit based on the first correction command value supplied from the corresponding correction control circuit. .
  4.  前記複数の補正制御回路のそれぞれは、対応する整流回路の出力電圧が第1の電圧である場合に、対応する電力変換回路の出力電圧を第1の出力電圧にし、対応する整流回路の出力電圧が前記第1の電圧よりも高い第2の電圧である場合に、対応する電力変換回路の出力電圧を前記第1の出力電圧より高い第2の出力電圧にするように、対応する電力変換回路の出力電圧を補正可能である
     請求項2または請求項3に記載のレクテナ装置。
    Each of the plurality of correction control circuits sets the output voltage of the corresponding power conversion circuit to the first output voltage when the output voltage of the corresponding rectifier circuit is the first voltage, and adjusts the output voltage of the corresponding rectifier circuit to the first output voltage. is a second voltage higher than the first voltage, the corresponding power conversion circuit sets the output voltage of the corresponding power conversion circuit to a second output voltage higher than the first output voltage. The rectenna device according to claim 2 or 3, wherein the rectenna device is capable of correcting the output voltage of the rectenna device.
  5.  前記複数の補正制御回路のそれぞれは、対応する前記整流回路の出力電流に基づいて、対応する前記電力変換回路の出力電圧を補正可能である
     請求項1に記載のレクテナ装置。
    The rectenna device according to claim 1, wherein each of the plurality of correction control circuits is capable of correcting the output voltage of the corresponding power conversion circuit based on the output current of the corresponding rectifier circuit.
  6.  前記複数の補正制御回路のそれぞれは、対応する整流回路の出力電流に基づいて、対応する前記電力変換回路の出力電圧の補正値を示す第2の補正指令値を生成可能であり、
     前記複数の電力変換回路のそれぞれは、対応する補正制御回路から供給された前記第2の補正指令値に基づいて、その電力変換回路の出力電圧を補正可能である
     請求項5に記載のレクテナ装置。
    Each of the plurality of correction control circuits can generate a second correction command value indicating a correction value of the output voltage of the corresponding power conversion circuit based on the output current of the corresponding rectifier circuit,
    The rectenna device according to claim 5, wherein each of the plurality of power conversion circuits is capable of correcting the output voltage of the power conversion circuit based on the second correction command value supplied from the corresponding correction control circuit. .
  7.  前記複数の補正制御回路のそれぞれは、対応する整流回路の出力電流が第1の電流である場合に、対応する電力変換回路の出力電圧を第3の出力電圧にし、対応する整流回路の出力電流が前記第1の電流よりも多い第2の電流である場合に、対応する電力変換回路の出力電圧を前記第3の出力電圧より低い第4の出力電圧にするように、対応する電力変換回路の出力電圧を補正可能である
     請求項5または請求項6に記載のレクテナ装置。
    Each of the plurality of correction control circuits sets the output voltage of the corresponding power conversion circuit to a third output voltage when the output current of the corresponding rectifier circuit is the first current, and adjusts the output current of the corresponding rectifier circuit to a third output voltage. is a second current larger than the first current, the corresponding power converter circuit sets the output voltage of the corresponding power converter circuit to a fourth output voltage lower than the third output voltage. The rectenna device according to claim 5 or 6, wherein the rectenna device is capable of correcting the output voltage of the rectenna device.
  8.  前記複数の補正制御回路のそれぞれは、対応する前記整流回路の回路温度に基づいて、対応する前記電力変換回路の出力電圧を補正可能である
     請求項1に記載のレクテナ装置。
    The rectenna device according to claim 1, wherein each of the plurality of correction control circuits is capable of correcting the output voltage of the corresponding power conversion circuit based on the circuit temperature of the corresponding rectifier circuit.
  9.  前記複数の補正制御回路のそれぞれは、対応する整流回路の回路温度に基づいて、対応する前記電力変換回路の出力電圧の補正値を示す第3の補正指令値を生成可能であり、
     前記複数の電力変換回路のそれぞれは、対応する補正制御回路から供給された前記第3の補正指令値に基づいて、その電力変換回路の出力電圧を補正可能である
     請求項8に記載のレクテナ装置。
    Each of the plurality of correction control circuits can generate a third correction command value indicating a correction value of the output voltage of the corresponding power conversion circuit based on the circuit temperature of the corresponding rectifier circuit,
    The rectenna device according to claim 8, wherein each of the plurality of power conversion circuits is capable of correcting the output voltage of the power conversion circuit based on the third correction command value supplied from the corresponding correction control circuit. .
  10.  前記複数の補正制御回路のそれぞれは、対応する整流回路の回路温度が第1の温度である場合に、対応する電力変換回路の出力電圧を第5の出力電圧にし、対応する整流回路の回路温度が前記第1の温度よりも高い第2の温度である場合に、対応する電力変換回路の出力電圧を前記第5の出力電圧より低い第6の出力電圧にするように、対応する電力変換回路の出力電圧を補正可能である
     請求項8または請求項9に記載のレクテナ装置。
    Each of the plurality of correction control circuits sets the output voltage of the corresponding power conversion circuit to a fifth output voltage when the circuit temperature of the corresponding rectifier circuit is the first temperature, and the circuit temperature of the corresponding rectifier circuit is set to a fifth output voltage. is a second temperature higher than the first temperature, the corresponding power conversion circuit sets the output voltage of the corresponding power conversion circuit to a sixth output voltage lower than the fifth output voltage. The rectenna device according to claim 8 or 9, wherein the rectenna device is capable of correcting the output voltage of the rectenna device.
  11.  前記複数の電力変換回路の動作を制御する電力変換制御回路をさらに備え、
     前記電力変換制御回路は、前記複数の電力変換回路が、互いに同じスイッチング周波数で、かつ互いに異なる位相でスイッチング動作を行うように、前記複数の電力変換回路の動作を制御可能である
     請求項1に記載のレクテナ装置。
    further comprising a power conversion control circuit that controls the operation of the plurality of power conversion circuits,
    The power conversion control circuit is capable of controlling the operation of the plurality of power conversion circuits so that the plurality of power conversion circuits perform switching operations at the same switching frequency and different phases from each other. The rectenna device described.
  12.  前記アンテナ部、前記複数の整流回路、前記複数の制御回路、および前記複数の電力変換回路は、単一の基板に設けられた
     請求項1に記載のレクテナ装置。
    The rectenna device according to claim 1, wherein the antenna section, the plurality of rectifier circuits, the plurality of control circuits, and the plurality of power conversion circuits are provided on a single substrate.
  13.  前記アンテナ部は、1または複数のアンテナを有し、
     前記1または複数のアンテナの1または複数の出力端子および前記複数の整流回路の複数の入力端子は、互いに接続された
     請求項1に記載のレクテナ装置。
    The antenna section has one or more antennas,
    The rectenna device according to claim 1, wherein one or more output terminals of the one or more antennas and a plurality of input terminals of the plurality of rectifier circuits are connected to each other.
  14.  前記アンテナ部、前記複数の整流回路、前記複数の制御回路、および前記複数の電力変換回路は、単一の基板に設けられ、
     前記基板には、前記アンテナ部と前記複数の整流回路とを接続する伝送線路が設けられ、
     前記伝送線路は、前記アンテナ部から、前記複数の整流回路のうちの2つの整流回路へ導かれる、互いに対称な形状を有する2つの線路部分を含む
     請求項13に記載のレクテナ装置。
    The antenna section, the plurality of rectifier circuits, the plurality of control circuits, and the plurality of power conversion circuits are provided on a single substrate,
    The substrate is provided with a transmission line connecting the antenna section and the plurality of rectifier circuits,
    The rectenna device according to claim 13, wherein the transmission line includes two line portions that are symmetrical to each other and are guided from the antenna section to two of the plurality of rectifier circuits.
  15.  前記アンテナ部は、前記複数の整流回路にそれぞれ対応して設けられた複数のアンテナを有し、
     前記複数の整流回路のそれぞれは、前記複数のアンテナのうちの対応するアンテナから供給された電力信号を整流可能である
     請求項1に記載のレクテナ装置。
     
     
     
     
     
    The antenna section has a plurality of antennas provided corresponding to the plurality of rectifier circuits, respectively,
    The rectenna device according to claim 1, wherein each of the plurality of rectifier circuits is capable of rectifying a power signal supplied from a corresponding one of the plurality of antennas.




PCT/JP2022/014430 2022-03-25 2022-03-25 Rectenna device WO2023181360A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014430 WO2023181360A1 (en) 2022-03-25 2022-03-25 Rectenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014430 WO2023181360A1 (en) 2022-03-25 2022-03-25 Rectenna device

Publications (1)

Publication Number Publication Date
WO2023181360A1 true WO2023181360A1 (en) 2023-09-28

Family

ID=88100805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014430 WO2023181360A1 (en) 2022-03-25 2022-03-25 Rectenna device

Country Status (1)

Country Link
WO (1) WO2023181360A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140008992A1 (en) * 2012-07-06 2014-01-09 DvineWave Inc. Receivers for wireless power transmission
JP2014014232A (en) * 2012-07-04 2014-01-23 Daihen Corp Dc power supply device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014014232A (en) * 2012-07-04 2014-01-23 Daihen Corp Dc power supply device
US20140008992A1 (en) * 2012-07-06 2014-01-09 DvineWave Inc. Receivers for wireless power transmission

Similar Documents

Publication Publication Date Title
US6194875B1 (en) Controller for DC-DC converter
JP4688227B2 (en) Power supply paralleling compensated droop method (C-droop method)
US6009000A (en) Shared-bus current sharing parallel connected current-mode DC to DC converters
US10581332B2 (en) Dimmer and power converter
US7336057B2 (en) DC/DC converter
US5118993A (en) Variable voltage regulator
JP2008197892A (en) Series regulator
CN111682763A (en) Voltage converter, controller and control method thereof
US20040120165A1 (en) DC-DC converter circuit having correction circuit for outputting voltage level inversely proportional to input voltage
US20080316785A1 (en) Power source apparatus
US6229291B1 (en) Current sharing control system of power supply and output voltage sensing circuit
US6664660B2 (en) Parallel power supply system with over-voltage protection circuit
US7795847B2 (en) Power supply device, in particular for redundant operation with a plurality of further power supply devices connected in parallel on the output side
WO2023181360A1 (en) Rectenna device
US9893608B2 (en) Power supply device
US7239533B2 (en) DC power supply apparatus
WO2023181359A1 (en) Rectenna device
US6498465B1 (en) Device for generating an adjustment signal for a D.C. converter
JP5086843B2 (en) Power supply circuit device and electronic device
JP2003180073A (en) Power supply circuit
JPH11206116A (en) Constant voltage constant current power unit
US10930959B2 (en) Fuel cell system
US20180301926A1 (en) Tunable power supply device and parallel power supply system
US10700518B2 (en) Constant current limiting protection for series coupled power supplies
JPH06245376A (en) Power source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933499

Country of ref document: EP

Kind code of ref document: A1