WO2023181324A1 - Air conditioning control device, air conditioning system, air conditioning control method, and program - Google Patents

Air conditioning control device, air conditioning system, air conditioning control method, and program Download PDF

Info

Publication number
WO2023181324A1
WO2023181324A1 PCT/JP2022/014245 JP2022014245W WO2023181324A1 WO 2023181324 A1 WO2023181324 A1 WO 2023181324A1 JP 2022014245 W JP2022014245 W JP 2022014245W WO 2023181324 A1 WO2023181324 A1 WO 2023181324A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioning
air
control device
evaporation temperature
conditioning control
Prior art date
Application number
PCT/JP2022/014245
Other languages
French (fr)
Japanese (ja)
Inventor
翔 平井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/014245 priority Critical patent/WO2023181324A1/en
Publication of WO2023181324A1 publication Critical patent/WO2023181324A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • F24F11/47Responding to energy costs

Definitions

  • the present disclosure relates to an air conditioning control device, an air conditioning system, an air conditioning control method, and a program.
  • Patent Document 1 describes an air conditioning system that aims to promptly process latent heat in a room while preventing the temperature in the room from becoming excessively low.
  • the air conditioning system described in Patent Document 1 has an indoor unit and an outdoor unit, each of which individually performs a refrigeration cycle, and has a plurality of air conditioners that target the same room, and a plurality of air conditioners. a first operation in which the indoor units of all the air conditioners are controlled to cool the air to below the dew point temperature; and a first operation in which the indoor units of the at least one air conditioner are controlled to cool the air to is configured to be able to perform a second operation in which the indoor unit of the other air conditioner is controlled to cool the air to a temperature higher than the dew point temperature at the same time as the indoor unit of the other air conditioner is controlled to cool the air to a temperature higher than the dew point temperature. .
  • the control device determines the evaporation temperature of each air conditioner based on the current air temperature and air humidity, and the target temperature and target humidity (ie, based on the current air conditioning load).
  • the present disclosure has been made to solve the above problems, and aims to provide an air conditioning control device, an air conditioning system, an air conditioning control method, and a program that can improve energy saving without impairing user comfort. purpose.
  • the air conditioning control device includes: An air conditioning control device that controls multiple air conditioners that air condition the same air-conditioned space, Air conditioning load acquisition means for acquiring the air conditioning load of the air conditioning target space;
  • the air conditioner includes an evaporation temperature determining unit that determines the evaporation temperature of each of the plurality of air conditioners based on the air conditioning load and the operating characteristics of each of the plurality of air conditioners.
  • FIG. 1 A diagram showing the overall configuration of an air conditioning system in Embodiment 1 Block diagram showing the hardware configuration of the air conditioning control device in Embodiment 1 Block diagram showing the functional configuration of the air conditioning control device in Embodiment 1 A diagram showing an example of driving characteristic data in Embodiment 1 Flowchart showing the procedure of air conditioning control processing in Embodiment 1 A diagram showing the overall configuration of an air conditioning system in Embodiment 2 A diagram showing an example of an installation mode of a human sensor in Embodiment 2 Block diagram showing the functional configuration of an air conditioning control device in Embodiment 2 A diagram showing the overall configuration of an air conditioning system in Embodiment 3 Block diagram showing the functional configuration of an air conditioning control device in Embodiment 3 A diagram showing the overall configuration of an air conditioning system in Embodiment 4 Block diagram showing the functional configuration of an air conditioning control device in Embodiment 4 A diagram showing a display example of a notification screen in Embodiment 4
  • FIG. 1 is a diagram showing the overall configuration of an air conditioning system 1 in Embodiment 1 of the present disclosure.
  • Air conditioning system 1 is an example of an air conditioning system according to the present disclosure.
  • the air conditioning system 1 is a system that performs air conditioning for buildings such as buildings and stores, and includes an air conditioning control device 2 and two or more air conditioners 3.
  • the air conditioning control device 2 is an example of an air conditioning control device according to the present disclosure.
  • the air conditioning control device 2 is a computer that controls each air conditioner 3.
  • the air conditioning control device 2 includes a communication interface 20, a CPU (Central Processing Unit) 21, a ROM (Read Only Memory) 22, a RAM (Random Access Memory) 23, and an auxiliary storage device 24. Equipped with These components are interconnected via a bus 25.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the communication interface 20 is hardware for communicating with each air conditioner 3 by wire or wirelessly.
  • the CPU 21 controls the air conditioning control device 2 in an integrated manner. Details of the functions of the air conditioning control device 2 realized by the CPU 21 will be described later.
  • the ROM 22 stores a plurality of firmwares and data used when executing these firmwares.
  • RAM23 is used as a work area for CPU21.
  • the auxiliary storage device 24 is composed of a readable and writable nonvolatile semiconductor memory, an HDD (Hard Disk Drive), and the like. Examples of the readable and writable nonvolatile semiconductor memory include EEPROM (Electrically Erasable Programmable Read-Only Memory) and flash memory.
  • the auxiliary storage device 24 stores various programs including programs for controlling each air conditioner 3 (hereinafter referred to as "air conditioning control program”), and data used when executing these programs.
  • the air conditioning control device 2 can acquire the above air conditioning control program or an update program for updating the air conditioning control program from another device through communication.
  • these programs are compatible with CD-ROMs (Compact Disc Read Only Memory), DVDs (Digital Versatile Discs), magneto-optical discs, USB (Universal Serial Bus) memories, HDDs, SSDs (Solid State Drives), memory cards, etc. It is also possible to store and distribute it on a computer-readable recording medium. When such a recording medium is directly or indirectly attached to the air conditioning control device 2, it is also possible to read and import the air conditioning control program or update program from the recording medium.
  • Each air conditioner 3 is an example of an air conditioner according to the present disclosure.
  • Each air conditioner 3 is communicably connected to the air conditioning control device 2 by wire or wirelessly, and performs air conditioning on the floor F, which is an example of an air conditioning target space according to the present disclosure, according to commands from the air conditioning control device 2.
  • each air conditioner 3 includes a ceiling-embedded indoor unit installed on the floor F and an outdoor unit installed outdoors.
  • the indoor unit and the outdoor unit are communicably connected via a communication line (not shown), and are also connected via a refrigerant pipe (not shown) for circulating refrigerant.
  • FIG. 3 is a block diagram showing the functional configuration of the air conditioning control device 2.
  • the air conditioning control device 2 includes an operating state data acquisition section 200, an air conditioning load acquisition section 201, an evaporation temperature determination section 202, and an operation command section 203. These functional units are realized by the CPU 21 executing the above-mentioned air conditioning control program stored in the auxiliary storage device 24.
  • the operating state data acquisition unit 200 periodically obtains operating state data from each air conditioner 3. Specifically, the operating state data acquisition unit 200 requests operating state data from each air conditioner 3 periodically (for example, every minute). Upon receiving such a request, each air conditioner 3 transmits operating state data including the current date and time and its own operating state to the air conditioning control device 2.
  • the operating state includes suction temperature, suction humidity, fan air volume, etc.
  • the suction temperature is the temperature of air sucked in by the indoor unit of the air conditioner 3, and is measured by a temperature sensor included in the indoor unit.
  • the suction humidity is the humidity of the air sucked by the indoor unit of the air conditioner 3, and is measured by a humidity sensor included in the indoor unit.
  • the fan air volume indicates the current air volume of the fan included in the indoor unit of the air conditioner 3.
  • the operating state data acquisition unit 200 receives and acquires the operating state data sent from each air conditioner 3, separates the obtained operating state data of each air conditioner 3 in chronological order for each air conditioner 3, and obtains the operating state.
  • the data is stored in the data storage unit 240. That is, the operating state data storage unit 240 stores a history of operating state data for each air conditioner 3.
  • the operating state data storage unit 240 is a memory area provided by the auxiliary storage device 24.
  • the air conditioning load acquisition unit 201 is an example of an air conditioning load acquisition means according to the present disclosure.
  • the air conditioning load acquisition unit 201 acquires the air conditioning load on the floor F, which is the air conditioning target space. Specifically, the air conditioning load acquisition unit 201 calculates the sensible heat load (kW) and latent heat on the floor F based on the suction temperature and suction humidity measured by each air conditioner 3 and the set temperature and set humidity of the floor F. The load (kW) is calculated and obtained.
  • the air conditioning load acquisition unit 201 may calculate the air conditioning load by further taking into account the state of the outside air, the specification information of the building, and the like.
  • the building specification information includes, for example, the area of the floor F, the floor plan, the height of the room, the airtightness of the door, the insulation specifications of the walls and windows, and the like.
  • the evaporation temperature determination unit 202 is an example of evaporation temperature determination means according to the present disclosure.
  • the evaporation temperature determination unit 202 determines the evaporation temperature during operation of each air conditioner 3 based on the air conditioning load on the floor F acquired by the air conditioning load acquisition unit 201 and the operating characteristics of each air conditioner 3. Specifically, the evaporation temperature determining unit 202 determines whether each air conditioner 3 Determine the evaporation temperature of the heat exchanger included in the indoor unit.
  • the driving characteristics data storage unit 241 is a memory area provided by the auxiliary storage device 24, and is an example of driving characteristics data storage means according to the present disclosure.
  • the operating characteristic data is data indicating the operating characteristics of each air conditioner 3, and more specifically, it is data indicating the relationship between the evaporation temperature, air conditioning capacity, and power consumption in each air conditioner 3.
  • FIG. 4 shows an example of driving characteristic data in this embodiment.
  • the operating characteristic data of this example includes the calculation formula for evaporation temperature (°C) and sensible heat capacity (kW), the calculation formula for latent heat capacity (kW), and the power consumption (kW) for each air conditioner 3.
  • the formula for calculating the sensible heat capacity is a formula corresponding to the air conditioner 3 and the evaporation temperature, and is a formula using the suction temperature (t s ) and the fan air volume ( va ) as parameters.
  • the calculation formula for the latent heat capacity is a formula corresponding to the air conditioner 3 and the evaporation temperature, and is a formula using the suction humidity (h s ) and the fan air volume ( va ) as parameters.
  • the power consumption calculation formula is a formula corresponding to the air conditioner 3 and the evaporation temperature, and is a formula using the calculated sensible heat capacity and latent heat capacity as parameters.
  • the evaporation temperature determination unit 202 refers to the operating characteristic data and determines the sensible heat capacity and latent heat capacity for each evaporation temperature based on the latest suction temperature, latest suction humidity, and latest fan air volume for each air conditioner 3. and calculate power consumption. Next, the evaporation temperature determining unit 202 determines that the sum of the sensible heat capacities of all the air conditioners 3 is higher than the sensible heat load of the floor F based on the calculated sensible heat capacity and latent heat capacity for each evaporation temperature of each air conditioner 3. All combinations of the evaporation temperatures of the air conditioners 3 that are large and in which the sum of the latent heat capacities of all the air conditioners 3 is larger than the latent heat load of the floor F are extracted. Then, the evaporation temperature determination unit 202 determines the evaporation temperature of each air conditioner 3 by selecting the combination that minimizes power consumption from among all the extracted combinations of evaporation temperatures of each air conditioner 3.
  • the operation command unit 203 instructs each air conditioner 3 to operate at the evaporation temperature determined by the evaporation temperature determination unit 202. Specifically, the operation command unit 203 generates a control command for instructing operation at the evaporation temperature determined by the evaporation temperature determination unit 202, and transmits it to each air conditioner 3.
  • FIG. 5 is a flowchart showing the procedure of air conditioning control processing executed by the air conditioning control device 2. As shown in FIG. When the user performs an operation to instruct cooling operation or dehumidification operation in the energy saving mode via a remote controller (not shown) installed at the entrance/exit of floor F, the air conditioning control device 2 periodically (for example, every minute) The following air conditioning control process is executed.
  • Step S100 The air conditioning control device 2 acquires operating state data from each air conditioner 3. After that, the process of the air conditioning control device 2 transitions to step S101.
  • Step S101 The air conditioning control device 2 determines whether a certain period of time (for example, 10 minutes) has elapsed since the previous determination of the evaporation temperature for each air conditioner 3. If a certain period of time has not passed since the previous determination of the evaporation temperature (step S101; NO), the air conditioning control device 2 ends the air conditioning control process in this cycle. On the other hand, if a certain period of time has passed since the previous determination of the evaporation temperature (step S101; YES), the process of the air conditioning control device 2 transitions to step S102.
  • a certain period of time for example, 10 minutes
  • Step S102 The air conditioning control device 2 acquires the air conditioning load of the floor F, which is the space to be air conditioned, that is, the sensible heat load and the latent heat load. After that, the process of the air conditioning control device 2 transitions to step S103.
  • Step S103 The air conditioning control device 2 calculates the sensible heat capacity, latent heat capacity, and power consumption for each evaporation temperature for each air conditioner 3 based on the latest suction temperature, the latest suction humidity, and the latest fan air volume. After that, the process of the air conditioning control device 2 transitions to step S104.
  • Step S104 Based on the sensible heat capacity and latent heat capacity for each evaporation temperature in each air conditioner 3, the air conditioning control device 2 determines that the sum of the sensible heat capacities of all the air conditioners 3 is greater than the sensible heat load of the floor F, and that all the air conditioners All combinations of evaporation temperatures of the air conditioners 3 in which the total value of the latent heat capacity of the machines 3 is larger than the latent heat load of the floor F are extracted. After that, the process of the air conditioning control device 2 transitions to step S105.
  • Step S105 The air conditioning control device 2 determines the evaporation temperature of each air conditioner 3 by selecting the combination that minimizes power consumption from among all extracted combinations of evaporation temperatures of each air conditioner 3. After that, the process of the air conditioning control device 2 transitions to step S106.
  • Step S106 The air conditioning control device 2 instructs each air conditioner 3 to operate at the determined evaporation temperature. After that, the air conditioning control device 2 ends the air conditioning control process in this cycle.
  • the air conditioning control device 2 calculates the air conditioning load (i.e., sensible heat load and latent heat load) of the floor F, which is the space to be air conditioned, and the operating characteristic data storage unit 241.
  • the evaporation temperature of the heat exchanger included in the indoor unit of each air conditioner 3 is determined based on the operating characteristic data stored in the .
  • the air conditioning control device 2 determines the evaporation temperature of each air conditioner 3 by selecting the combination that minimizes power consumption from among the combinations of evaporation temperatures that provide an air conditioning capacity greater than the air conditioning load on the floor F. . Therefore, it is possible to improve energy saving without impairing user comfort.
  • All or part of the functional units (see FIG. 3) of the air conditioning control device 2 may be realized by dedicated hardware.
  • the dedicated hardware is, for example, a single circuit, a composite circuit, a programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
  • Embodiment 2 Next, a second embodiment of the present disclosure will be described. Note that in the following description, the same components and the like as those in Embodiment 1 are given the same reference numerals, and the description thereof will be omitted.
  • FIG. 6 is a diagram showing the overall configuration of an air conditioning system 1A in Embodiment 2 of the present disclosure.
  • the air conditioning system 1A is an example of an air conditioning system according to the present disclosure.
  • the air conditioning system 1A is a system that performs air conditioning for buildings such as buildings and stores, and includes an air conditioning control device 2A, two or more air conditioners 3, and two or more human sensors 4.
  • the air conditioning control device 2A is an example of an air conditioning control device according to the present disclosure.
  • the air conditioning control device 2A is a computer that controls each air conditioner 3.
  • the hardware configuration of the air conditioning control device 2A is the same as that of the air conditioning control device 2 of Embodiment 1 (see FIG. 2). Details of the functions of the air conditioning control device 2A will be described later.
  • the human sensors 4 are sensors that detect people using infrared rays, visible light, sound waves, sound, etc., and are installed so as to be scattered on the ceiling of the floor F. As shown in FIG. 7, the human sensor 4 is installed at a position close to the indoor unit of each air conditioner 3. The human sensor 4 is communicably connected to the air conditioning control device 2A by wire or wirelessly, and periodically transmits detection data including human detection results to the air conditioning control device 2A. Note that the number and location of the human sensors 4 to be installed are arbitrary design matters.
  • FIG. 8 is a block diagram showing the functional configuration of the air conditioning control device 2A.
  • the air conditioning control device 2A includes an operating state data acquisition section 200, an air conditioning load acquisition section 201, an evaporation temperature determination section 202A, an operation command section 203, and a user position information acquisition section 204.
  • These functional units are realized by the CPU 21 included in the air conditioning control device 2A executing an air conditioning control program, which is a program for controlling each air conditioner 3, stored in the auxiliary storage device 24.
  • the user location information acquisition unit 204 is an example of user location information acquisition means according to the present disclosure.
  • the user position information acquisition unit 204 receives the detection data sent from each human sensor 4, and acquires user position information indicating the user's position on the floor F based on each received detection data.
  • the user location information acquisition unit 204 adds the current time to the acquired user location information, sorts it in chronological order, and stores it in the user location information storage unit 242. That is, the user location information storage section 242 stores a history of user location information.
  • the user position information storage unit 242 is a memory area provided by the auxiliary storage device 24.
  • the evaporation temperature determination unit 202A is an example of evaporation temperature determination means according to the present disclosure.
  • the evaporation temperature determining unit 202A determines the air conditioning load (that is, sensible heat load and latent heat load) on the floor F, the operating characteristic data stored in the operating characteristic data storage unit 241, and the user information stored in the user position information storage unit 242. Based on the position information, the evaporation temperature of the heat exchanger included in the indoor unit of each air conditioner 3 is determined.
  • the evaporation temperature determination unit 202A calculates the sensible heat capacity, latent heat capacity, and power consumption for each evaporation temperature based on the latest suction temperature, latest suction humidity, and latest fan air volume for each air conditioner 3. .
  • the evaporation temperature determining unit 202A determines that the sum of the sensible heat capacities of all the air conditioners 3 is higher than the sensible heat load of the floor F based on the calculated sensible heat capacity and latent heat capacity for each evaporation temperature of each air conditioner 3. All combinations of the evaporation temperatures of the air conditioners 3 that are large and in which the sum of the latent heat capacities of all the air conditioners 3 is larger than the latent heat load of the floor F are extracted.
  • the evaporation temperature determining unit 202A obtains the number of users in each area where the floor F is divided into a plurality of areas based on the user position information stored in the user position information storage unit 242. Information regarding the floor plan of the floor F is stored in advance in the auxiliary storage device 24. The evaporation temperature determining unit 202A determines that the evaporation temperature of the air conditioner 3 corresponding to an area where the number of users is greater than or equal to a predetermined number is equal to or higher than a predetermined temperature among all extracted combinations of evaporation temperatures of each air conditioner 3. Select a combination that will. Information regarding the installation position of each air conditioner 3 is stored in advance in the auxiliary storage device 24. Then, the evaporation temperature determination unit 202A determines the evaporation temperature of each air conditioner 3 by selecting the combination that minimizes power consumption from among all the selected combinations of evaporation temperatures of each air conditioner 3.
  • the air conditioning control device 2A calculates the air conditioning load (i.e., sensible heat load and latent heat load) of the floor F, which is the space to be air conditioned, and the operating characteristic data storage unit 241.
  • the evaporation temperature of the heat exchanger included in the indoor unit of each air conditioner 3 is determined based on the operating characteristic data stored in , and the user position information stored in the user position information storage unit 242 .
  • the air conditioning control device 2A determines in advance that among the combinations of evaporation temperatures that result in an air conditioning capacity greater than the air conditioning load on the floor F, the evaporation temperature of the air conditioner 3 corresponding to the area where the number of users is greater than or equal to the predetermined number is determined in advance. Select a combination that will result in a temperature higher than the specified temperature. Then, the air conditioning control device 2A determines the evaporation temperature of each air conditioner 3 by selecting the combination that minimizes power consumption from among the selected combinations.
  • the evaporation temperature determination unit 202A selects a combination of evaporation temperatures that results in a lower evaporation temperature of the air conditioner 3 corresponding to an area with a smaller number of users from among the combinations of evaporation temperatures that result in an air conditioning capacity greater than the air conditioning load on the floor F.
  • the evaporation temperature of each air conditioner 3 may be determined by selecting a combination that minimizes power consumption from among the selected combinations.
  • the method of acquiring user position information by the user position information acquisition unit 204 is an arbitrary design matter.
  • multiple transmitters are installed scattered on floor F, and a mobile terminal such as a mobile phone or smartphone owned by each user detects the user's position based on wireless communication with each transmitter.
  • data indicating the detected results may be transmitted to the air conditioning control device 2A, and the user position information acquisition unit 204 may acquire user position information based on data from each mobile terminal.
  • the seating chart data may be input in advance to the air conditioning control device 2A by the operator, and the user position information acquisition unit 204 may obtain the user position information based on the seating chart data.
  • All or part of the functional units (see FIG. 8) of the air conditioning control device 2A may be realized by dedicated hardware.
  • Dedicated hardware can be, for example, a single circuit, a complex circuit, a programmed processor, an ASIC, an FPGA, or a combination thereof.
  • Embodiment 3 Next, Embodiment 3 of the present disclosure will be described. Note that in the following description, the same components and the like as those in Embodiment 1 are given the same reference numerals, and the description thereof will be omitted.
  • FIG. 9 is a diagram showing the overall configuration of an air conditioning system 1B in Embodiment 3 of the present disclosure.
  • Air conditioning system 1B is an example of an air conditioning system according to the present disclosure.
  • the air conditioning system 1B is a system that performs air conditioning for buildings such as buildings and stores, and includes an air conditioning control device 2B, two or more air conditioners 3, and two or more temperature sensors 5.
  • the air conditioning control device 2B is an example of an air conditioning control device according to the present disclosure.
  • the air conditioning control device 2B is a computer that controls each air conditioner 3.
  • the hardware configuration of the air conditioning control device 2B is the same as that of the air conditioning control device 2 of Embodiment 1 (see FIG. 2). Details of the functions of the air conditioning control device 2B will be described later.
  • the temperature sensors 5 are installed scattered on the floor F, which is an air-conditioned space, and periodically measure the air temperature of the installed space.
  • the temperature sensor 5 is communicably connected to the air conditioning control device 2B by wire or wirelessly, and transmits temperature data in which the measured air temperature is stored to the air conditioning control device 2B.
  • FIG. 10 is a block diagram showing the functional configuration of the air conditioning control device 2B.
  • the air conditioning control device 2B includes an operating state data acquisition section 200, an air conditioning load acquisition section 201, an evaporation temperature determination section 202B, an operation command section 203, and a temperature distribution information acquisition section 205.
  • These functional units are realized by the CPU 21 included in the air conditioning control device 2B executing an air conditioning control program, which is a program for controlling each air conditioner 3, stored in the auxiliary storage device 24.
  • the temperature distribution information acquisition unit 205 is an example of temperature distribution information acquisition means according to the present disclosure.
  • the temperature distribution information acquisition unit 205 acquires temperature distribution information indicating the distribution of air temperature in the floor F, which is the air-conditioned space, based on the temperature data sent from each temperature sensor 5.
  • the temperature distribution information includes the air temperature of each area where the floor F is divided into a plurality of areas. Information regarding the floor plan of the floor F is stored in advance in the auxiliary storage device 24.
  • the temperature distribution information acquisition unit 205 stores the acquired temperature distribution information in the temperature distribution information storage unit 243.
  • the temperature distribution information storage unit 243 is a memory area provided by the auxiliary storage device 24.
  • the evaporation temperature determination unit 202B is an example of evaporation temperature determination means according to the present disclosure.
  • the evaporation temperature determining unit 202B calculates the air conditioning load (that is, the sensible heat load and the latent heat load) on the floor F, the operating characteristic data stored in the operating characteristic data storage unit 241, and the temperature stored in the temperature distribution information storage unit 243. Based on the distribution information, the evaporation temperature of the heat exchanger included in the indoor unit of each air conditioner 3 is determined.
  • the evaporation temperature determination unit 202B calculates the sensible heat capacity, latent heat capacity, and power consumption for each evaporation temperature based on the latest suction temperature, latest suction humidity, and latest fan air volume for each air conditioner 3. .
  • the evaporation temperature determining unit 202B determines that the sum of the sensible heat capacities of all the air conditioners 3 is higher than the sensible heat load of the floor F based on the calculated sensible heat capacity and latent heat capacity for each evaporation temperature of each air conditioner 3. All combinations of the evaporation temperatures of the air conditioners 3 that are large and in which the sum of the latent heat capacities of all the air conditioners 3 is larger than the latent heat load of the floor F are extracted.
  • the evaporation temperature determination unit 202B reads and acquires the temperature distribution information stored in the temperature distribution information storage unit 243.
  • the evaporation temperature determining unit 202B determines that the evaporation temperature of the air conditioner 3 corresponding to an area where the air temperature is higher than other areas corresponds to the other area from among all extracted combinations of evaporation temperatures of each air conditioner 3. A combination is selected such that the evaporation temperature is lower than that of other air conditioners 3.
  • Information regarding the installation position of each air conditioner 3 is stored in advance in the auxiliary storage device 24. Then, the evaporation temperature determining unit 202B determines the evaporation temperature of each air conditioner 3 by selecting the combination that minimizes power consumption from among all the selected combinations of evaporation temperatures of each air conditioner 3.
  • the air conditioning control device 2B calculates the air conditioning load (i.e., sensible heat load and latent heat load) of the floor F, which is the space to be air conditioned, and the operating characteristic data storage unit 241.
  • the evaporation temperature of the heat exchanger included in the indoor unit of each air conditioner 3 is determined based on the operating characteristic data stored in , and the temperature distribution information stored in the temperature distribution information storage section 243 .
  • the air conditioning control device 2B determines that the evaporation temperature of the air conditioner 3 corresponding to the area where the air temperature is higher than that of other areas among the combinations of evaporation temperatures that result in an air conditioning capacity greater than the air conditioning load of the floor F is A combination is selected such that the evaporation temperature is lower than the evaporation temperature of other air conditioners 3 corresponding to the area. Then, the air conditioning control device 2B determines the evaporation temperature of each air conditioner 3 by selecting the combination that minimizes power consumption from among the selected combinations.
  • the temperature distribution information may be generated in advance by airflow analysis on the floor F and stored in the temperature distribution information storage section 243.
  • the temperature distribution information acquisition unit 205 may receive the user's location and the user's thermal sensation report (hot, cold, comfortable, etc.) transmitted from a mobile terminal such as a mobile phone or smartphone owned by each user. Temperature distribution information may be acquired based on the included data.
  • Modification 2 All or part of the functional units (see FIG. 10) of the air conditioning control device 2B may be realized by dedicated hardware.
  • Dedicated hardware can be, for example, a single circuit, a complex circuit, a programmed processor, an ASIC, an FPGA, or a combination thereof.
  • FIG. 11 is a diagram showing the overall configuration of an air conditioning system 1C in Embodiment 4 of the present disclosure.
  • Air conditioning system 1C is an example of an air conditioning system according to the present disclosure.
  • the air conditioning system 1C is a system that performs air conditioning for buildings such as buildings and stores, and includes an air conditioning control device 2C, two or more air conditioners 3, and a terminal device 6.
  • the air conditioning control device 2C is an example of an air conditioning control device according to the present disclosure.
  • the air conditioning control device 2C is a computer that controls each air conditioner 3.
  • the hardware configuration of the air conditioning control device 2C is the same as that of the air conditioning control device 2 of Embodiment 1 (see FIG. 2). Details of the functions of the air conditioning control device 2C will be described later.
  • the terminal device 6 is a computer equipped with a display including a display device such as a liquid crystal display or an organic EL display. It is installed in a location where it is easy to check the displayed information.
  • the terminal device 6 is communicably connected to the air conditioning control device 2C by wire or wirelessly, and displays information transmitted from the air conditioning control device 2C.
  • FIG. 12 is a block diagram showing the functional configuration of the air conditioning control device 2C.
  • the air conditioning control device 2C includes an operating state data acquisition section 200, an air conditioning load acquisition section 201, an evaporation temperature determination section 202, an operation command section 203, and a user notification section 206. These functional units are realized by the CPU 21 included in the air conditioning control device 2C executing an air conditioning control program that is a program for controlling each air conditioner 3, which is stored in the auxiliary storage device 24.
  • the user notification unit 206 is an example of notification means according to the present disclosure.
  • the user notification unit 206 provides information to be notified to the user (hereinafter referred to as “user information”) based on the evaporation temperature and installation position of each air conditioner 3. (referred to as “notification information”) and transmits it to the terminal device 6.
  • user information information to be notified to the user
  • notification information information regarding the installation position of each air conditioner 3 and information regarding the floor plan of the floor F are stored in the auxiliary storage device 24 in advance.
  • the user notification unit 206 includes an area corresponding to an air conditioner 3 whose evaporation temperature is equal to or lower than a predetermined first temperature, and an area corresponding to an air conditioner 3 whose evaporation temperature is equal to or higher than a predetermined second temperature (first temperature ⁇ second temperature).
  • Screen data indicating the area corresponding to 3 is generated as notification information and transmitted to the terminal device 6.
  • the terminal device 6 that has received the notification information displays a notification screen as shown in FIG. 13.
  • the air conditioning control device 2C calculates the air conditioning load (i.e., sensible heat load and latent heat load) of the floor F, which is the air-conditioned space, and the operating characteristic data storage unit 241.
  • the evaporation temperature of the heat exchanger included in the indoor unit of each air conditioner 3 is determined based on the operating characteristic data stored in the .
  • the air conditioning control device 2 determines the evaporation temperature of each air conditioner 3 by selecting the combination that minimizes power consumption from among the combinations of evaporation temperatures that provide an air conditioning capacity greater than the air conditioning load on the floor F. . Therefore, it is possible to improve energy saving without impairing user comfort.
  • the air conditioning control device 2C provides information based on the evaporation temperature and installation position of each air conditioner 3, for example, an area corresponding to an air conditioner 3 whose evaporation temperature is a first temperature or lower, and an area where the evaporation temperature is a second temperature (a first temperature).
  • the user is notified via the terminal device 6 of information indicating the area corresponding to the air conditioner 3 where the temperature is equal to or higher than the second temperature.
  • the user can easily recognize areas where the air temperature is high and areas where the air temperature is low, and, for example, can move to an area according to his/her preference and perform work. Therefore, user convenience is improved.
  • the user notification unit 206 may notify the user of information based on the evaporation temperature and installation position of each air conditioner 3 by voice via the terminal device 6.
  • the user notification unit 206 may notify the user of information based on the evaporation temperature and installation position of each air conditioner 3 in a predetermined manner via a mobile terminal such as a mobile phone or a smartphone owned by each user.
  • a mobile terminal such as a mobile phone or a smartphone owned by each user.
  • the user notification unit 206 sends information indicating an area where the user feels comfortable. may be notified to the user via the mobile terminal.
  • All or part of the functional units (see FIG. 12) of the air conditioning control device 2C may be realized by dedicated hardware.
  • Dedicated hardware can be, for example, a single circuit, a complex circuit, a programmed processor, an ASIC, an FPGA, or a combination thereof.
  • the present disclosure can be suitably employed in a system that air-conditions the same air-conditioned space using multiple air conditioners.

Abstract

This air conditioning control device (2) comprises an air conditioning load acquisition unit (201) and an evaporation temperature determination unit (202). The air conditioning load acquisition unit (201) acquires an air conditioning load of a space being air-conditioned. The evaporation temperature determination unit (202) determines the evaporation temperature of each of a plurality of air conditioners (3), which are for air-conditioning the space being air-conditioned, on the basis of the air conditioning load acquired by the air conditioning load acquisition unit (201) and the operation characteristics of each of the plurality of air conditioners (3), the operation characteristics having been stored in an operation characteristic data storage unit (241). This makes it possible to improve energy-saving properties without compromising the comfort of a user.

Description

空調制御装置、空調システム、空調制御方法及びプログラムAir conditioning control device, air conditioning system, air conditioning control method and program
 本開示は、空調制御装置、空調システム、空調制御方法及びプログラムに関する。 The present disclosure relates to an air conditioning control device, an air conditioning system, an air conditioning control method, and a program.
 ビル、店舗等の建物等において、複数の空調機によって一の空間の空気調和を行うように構成された空調システムは周知であり、従来、様々な提案がなされている。例えば、特許文献1には、室内の潜熱を速やかに処理しつつ、室内の温度を過剰に低くしないようにすることを目的とした空調システムが記載されている。 BACKGROUND ART Air conditioning systems configured to air condition a single space using multiple air conditioners in buildings, stores, etc. are well known, and various proposals have been made in the past. For example, Patent Document 1 describes an air conditioning system that aims to promptly process latent heat in a room while preventing the temperature in the room from becoming excessively low.
 特許文献1に記載の空調システムは、室内ユニット及び室外ユニットをそれぞれ有し、各々が個別に冷凍サイクルを行うとともに互いに同一の室内を対象とする複数の空気調和機と、複数の空気調和機を制御する制御装置とを備え、制御装置は、全ての空気調和機の室内ユニットが空気を露点温度以下まで冷却するように制御される第1運転と、少なくとも1つの空気調和機の室内ユニットが空気を露点温度以下まで冷却するように制御されると同時に、他の空気調和機の室内ユニットが空気を露点温度より高い温度で冷却するように制御される第2運転とを実行可能に構成される。 The air conditioning system described in Patent Document 1 has an indoor unit and an outdoor unit, each of which individually performs a refrigeration cycle, and has a plurality of air conditioners that target the same room, and a plurality of air conditioners. a first operation in which the indoor units of all the air conditioners are controlled to cool the air to below the dew point temperature; and a first operation in which the indoor units of the at least one air conditioner are controlled to cool the air to is configured to be able to perform a second operation in which the indoor unit of the other air conditioner is controlled to cool the air to a temperature higher than the dew point temperature at the same time as the indoor unit of the other air conditioner is controlled to cool the air to a temperature higher than the dew point temperature. .
 第2運転では、一部の空気調和機により空気の潜熱が優先的に処理されると同時に、他の空気調和機により空気の顕熱が処理される。この場合、制御装置は、現在の空気温度及び空気湿度と、目標温度及び目標湿度とに基づいて(すなわち、現在の空調負荷に基づいて)、各空気調和機の蒸発温度を決定する。 In the second operation, some air conditioners preferentially process the latent heat of the air, and at the same time, other air conditioners process the sensible heat of the air. In this case, the control device determines the evaporation temperature of each air conditioner based on the current air temperature and air humidity, and the target temperature and target humidity (ie, based on the current air conditioning load).
特開2018-194291号公報Japanese Patent Application Publication No. 2018-194291
 ところで、一の部屋を複数の空調機で空気調和する空調システムにおいて、全ての空調機の機種が同一であるとは限らず、機種が異なる空調機が含まれるケースも珍しくない。一般に、機種が異なると運転特性も異なるため、単に空調負荷で蒸発温度を決定する手法では、省エネ性の最適化が困難であるという課題がある。 By the way, in an air conditioning system that uses multiple air conditioners to condition the air in one room, not all of the air conditioners are of the same model, and it is not uncommon for air conditioners to include air conditioners of different models. Generally, different models have different operating characteristics, so a method that simply determines the evaporation temperature based on the air conditioning load has a problem in that it is difficult to optimize energy savings.
 本開示は、上記課題を解決するためのなされたものであり、ユーザの快適性を損なわずに、省エネ性の向上が可能な空調制御装置、空調システム、空調制御方法及びプログラムを提供することを目的とする。 The present disclosure has been made to solve the above problems, and aims to provide an air conditioning control device, an air conditioning system, an air conditioning control method, and a program that can improve energy saving without impairing user comfort. purpose.
 上記目的を達成するため、本開示に係る空調制御装置は、
 同一の空調対象空間を空調する複数の空調機を制御する空調制御装置であって、
 前記空調対象空間の空調負荷を取得する空調負荷取得手段と、
 前記空調負荷と、前記複数の空調機の各々の運転特性とに基づいて、前記複数の空調機の各々の蒸発温度を決定する蒸発温度決定手段と、を備える。
In order to achieve the above object, the air conditioning control device according to the present disclosure includes:
An air conditioning control device that controls multiple air conditioners that air condition the same air-conditioned space,
Air conditioning load acquisition means for acquiring the air conditioning load of the air conditioning target space;
The air conditioner includes an evaporation temperature determining unit that determines the evaporation temperature of each of the plurality of air conditioners based on the air conditioning load and the operating characteristics of each of the plurality of air conditioners.
 本開示によれば、ユーザの快適性を損なわずに、省エネ性の向上が可能となる。 According to the present disclosure, it is possible to improve energy saving without impairing user comfort.
実施の形態1における空調システムの全体構成を示す図A diagram showing the overall configuration of an air conditioning system in Embodiment 1 実施の形態1における空調制御装置のハードウェア構成を示すブロック図Block diagram showing the hardware configuration of the air conditioning control device in Embodiment 1 実施の形態1における空調制御装置の機能構成を示すブロック図Block diagram showing the functional configuration of the air conditioning control device in Embodiment 1 実施の形態1における運転特性データの一例を示す図A diagram showing an example of driving characteristic data in Embodiment 1 実施の形態1における空調制御処理の手順を示すフローチャートFlowchart showing the procedure of air conditioning control processing in Embodiment 1 実施の形態2における空調システムの全体構成を示す図A diagram showing the overall configuration of an air conditioning system in Embodiment 2 実施の形態2における人感センサの設置態様の一例を示す図A diagram showing an example of an installation mode of a human sensor in Embodiment 2 実施の形態2における空調制御装置の機能構成を示すブロック図Block diagram showing the functional configuration of an air conditioning control device in Embodiment 2 実施の形態3における空調システムの全体構成を示す図A diagram showing the overall configuration of an air conditioning system in Embodiment 3 実施の形態3における空調制御装置の機能構成を示すブロック図Block diagram showing the functional configuration of an air conditioning control device in Embodiment 3 実施の形態4における空調システムの全体構成を示す図A diagram showing the overall configuration of an air conditioning system in Embodiment 4 実施の形態4における空調制御装置の機能構成を示すブロック図Block diagram showing the functional configuration of an air conditioning control device in Embodiment 4 実施の形態4において通知画面の表示例を示す図A diagram showing a display example of a notification screen in Embodiment 4
 以下、本開示の実施の形態について図面を参照して詳細に説明する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings.
(実施の形態1)
 図1は、本開示の実施の形態1における空調システム1の全体構成を示す図である。空調システム1は、本開示に係る空調システムの一例である。空調システム1は、例えば、ビル、店舗等の建物の空気調和を行うシステムであり、空調制御装置2と、2台以上の空調機3とを備える。
(Embodiment 1)
FIG. 1 is a diagram showing the overall configuration of an air conditioning system 1 in Embodiment 1 of the present disclosure. Air conditioning system 1 is an example of an air conditioning system according to the present disclosure. The air conditioning system 1 is a system that performs air conditioning for buildings such as buildings and stores, and includes an air conditioning control device 2 and two or more air conditioners 3.
<空調制御装置2>
 空調制御装置2は、本開示に係る空調制御装置の一例である。空調制御装置2は、各空調機3を制御するコンピュータである。図2に示すように、空調制御装置2は、通信インタフェース20と、CPU(Central Processing Unit)21と、ROM(Read Only Memory)22と、RAM(Random Access Memory)23と、補助記憶装置24とを備える。これらの構成部は、バス25を介して相互に接続される。
<Air conditioning control device 2>
The air conditioning control device 2 is an example of an air conditioning control device according to the present disclosure. The air conditioning control device 2 is a computer that controls each air conditioner 3. As shown in FIG. 2, the air conditioning control device 2 includes a communication interface 20, a CPU (Central Processing Unit) 21, a ROM (Read Only Memory) 22, a RAM (Random Access Memory) 23, and an auxiliary storage device 24. Equipped with These components are interconnected via a bus 25.
 通信インタフェース20は、各空調機3と有線又は無線により通信するためのハードウェアである。CPU21は、空調制御装置2を統括的に制御する。CPU21によって実現される空調制御装置2の機能の詳細については後述する。ROM22は、複数のファームウェア及びこれらのファームウェアの実行時に使用されるデータを記憶する。RAM23は、CPU21の作業領域として使用される。 The communication interface 20 is hardware for communicating with each air conditioner 3 by wire or wirelessly. The CPU 21 controls the air conditioning control device 2 in an integrated manner. Details of the functions of the air conditioning control device 2 realized by the CPU 21 will be described later. The ROM 22 stores a plurality of firmwares and data used when executing these firmwares. RAM23 is used as a work area for CPU21.
 補助記憶装置24は、読み書き可能な不揮発性の半導体メモリ、HDD(Hard Disk Drive)等で構成される。読み書き可能な不揮発性の半導体メモリは、例えば、EEPROM(Electrically Erasable Programmable Read-Only Memory)、フラッシュメモリ等である。補助記憶装置24には、各空調機3を制御するためのプログラム(以下「空調制御プログラム」という。)を含む各種のプログラムと、これらのプログラムの実行時に使用されるデータとが記憶される。 The auxiliary storage device 24 is composed of a readable and writable nonvolatile semiconductor memory, an HDD (Hard Disk Drive), and the like. Examples of the readable and writable nonvolatile semiconductor memory include EEPROM (Electrically Erasable Programmable Read-Only Memory) and flash memory. The auxiliary storage device 24 stores various programs including programs for controlling each air conditioner 3 (hereinafter referred to as "air conditioning control program"), and data used when executing these programs.
 空調制御装置2は、上記の空調制御プログラム又は空調制御プログラムを更新するための更新プログラムを他の装置から通信により取得することが可能である。また、これらのプログラムは、CD-ROM(Compact Disc Read Only Memory)、DVD(Digital Versatile Disc)、光磁気ディスク、USB(Universal Serial Bus)メモリ、HDD、SSD(Solid State Drive)、メモリカード等のコンピュータ読み取り可能な記録媒体に格納して配布することも可能である。空調制御装置2は、そのような記録媒体が自身に直接又は間接的に装着されると、当該記録媒体から空調制御プログラム又は更新プログラムを読み出して取り込むことも可能である。 The air conditioning control device 2 can acquire the above air conditioning control program or an update program for updating the air conditioning control program from another device through communication. In addition, these programs are compatible with CD-ROMs (Compact Disc Read Only Memory), DVDs (Digital Versatile Discs), magneto-optical discs, USB (Universal Serial Bus) memories, HDDs, SSDs (Solid State Drives), memory cards, etc. It is also possible to store and distribute it on a computer-readable recording medium. When such a recording medium is directly or indirectly attached to the air conditioning control device 2, it is also possible to read and import the air conditioning control program or update program from the recording medium.
<空調機3>
 各空調機3は、本開示に係る空調機の一例である。各空調機3は、空調制御装置2と有線又は無線により通信可能に接続され、空調制御装置2からの指令に従って、本開示に係る空調対象空間の一例であるフロアFの空気調和を行う。各空調機3は、いずれも図示しないが、フロアFに設置される天井埋込タイプの室内機と、屋外に設置される室外機とを備える。室内機と室外機とは、図示しない通信線を介して通信可能に接続されるとともに、冷媒を循環させるための図示しない冷媒配管を介して接続される。
<Air conditioner 3>
Each air conditioner 3 is an example of an air conditioner according to the present disclosure. Each air conditioner 3 is communicably connected to the air conditioning control device 2 by wire or wirelessly, and performs air conditioning on the floor F, which is an example of an air conditioning target space according to the present disclosure, according to commands from the air conditioning control device 2. Although not shown, each air conditioner 3 includes a ceiling-embedded indoor unit installed on the floor F and an outdoor unit installed outdoors. The indoor unit and the outdoor unit are communicably connected via a communication line (not shown), and are also connected via a refrigerant pipe (not shown) for circulating refrigerant.
<空調制御装置2の機能構成>
 図3は、空調制御装置2の機能構成を示すブロック図である。図3に示すように、空調制御装置2は、運転状態データ取得部200と、空調負荷取得部201と、蒸発温度決定部202と、運転指令部203とを備える。これらの機能部は、CPU21が補助記憶装置24に記憶されている上述した空調制御プログラムを実行することで実現される。
<Functional configuration of air conditioning control device 2>
FIG. 3 is a block diagram showing the functional configuration of the air conditioning control device 2. As shown in FIG. As shown in FIG. 3, the air conditioning control device 2 includes an operating state data acquisition section 200, an air conditioning load acquisition section 201, an evaporation temperature determination section 202, and an operation command section 203. These functional units are realized by the CPU 21 executing the above-mentioned air conditioning control program stored in the auxiliary storage device 24.
 運転状態データ取得部200は、各空調機3から周期的に運転状態データを取得する。具体的には、運転状態データ取得部200は、各空調機3に対して周期的(例えば1分毎)に運転状態データを要求する。かかる要求を受けると、各空調機3は、現在日時と自身の運転状態とを含む運転状態データを空調制御装置2に送信する。運転状態には、吸込温度、吸込湿度、ファン風量等が含まれる。吸込温度は、当該空調機3の室内機によって吸い込まれた空気の温度であり、当該室内機が備える温度センサによって計測される。吸込湿度は、当該空調機3の室内機によって吸い込まれた空気の湿度であり、当該室内機が備える湿度センサによって計測される。ファン風量は、当該空調機3の室内機が備えるファンの現在の風量を示す。 The operating state data acquisition unit 200 periodically obtains operating state data from each air conditioner 3. Specifically, the operating state data acquisition unit 200 requests operating state data from each air conditioner 3 periodically (for example, every minute). Upon receiving such a request, each air conditioner 3 transmits operating state data including the current date and time and its own operating state to the air conditioning control device 2. The operating state includes suction temperature, suction humidity, fan air volume, etc. The suction temperature is the temperature of air sucked in by the indoor unit of the air conditioner 3, and is measured by a temperature sensor included in the indoor unit. The suction humidity is the humidity of the air sucked by the indoor unit of the air conditioner 3, and is measured by a humidity sensor included in the indoor unit. The fan air volume indicates the current air volume of the fan included in the indoor unit of the air conditioner 3.
 運転状態データ取得部200は、各空調機3から送られてくる運転状態データを受信して取得し、取得した各空調機3の運転状態データを空調機3毎に時系列で分別して運転状態データ記憶部240に保存する。つまり、運転状態データ記憶部240には、空調機3毎の運転状態データの履歴が保存される。運転状態データ記憶部240は、補助記憶装置24によって提供されるメモリ領域である。 The operating state data acquisition unit 200 receives and acquires the operating state data sent from each air conditioner 3, separates the obtained operating state data of each air conditioner 3 in chronological order for each air conditioner 3, and obtains the operating state. The data is stored in the data storage unit 240. That is, the operating state data storage unit 240 stores a history of operating state data for each air conditioner 3. The operating state data storage unit 240 is a memory area provided by the auxiliary storage device 24.
 空調負荷取得部201は、本開示に係る空調負荷取得手段の一例である。空調負荷取得部201は、空調対象空間であるフロアFにおける空調負荷を取得する。詳細には、空調負荷取得部201は、各空調機3により計測された吸込温度及び吸込湿度と、フロアFの設定温度及び設定湿度とに基づいて、フロアFにおける顕熱負荷(kW)と潜熱負荷(kW)とを算出して取得する。なお、空調負荷取得部201は、さらに外気の状態、当該建物の仕様情報等も加味して空調負荷を算出してもよい。建物の仕様情報には、例えば、フロアFの面積、間取り、室内の高さ、ドアの気密性、壁と窓の断熱仕様等が含まれる。 The air conditioning load acquisition unit 201 is an example of an air conditioning load acquisition means according to the present disclosure. The air conditioning load acquisition unit 201 acquires the air conditioning load on the floor F, which is the air conditioning target space. Specifically, the air conditioning load acquisition unit 201 calculates the sensible heat load (kW) and latent heat on the floor F based on the suction temperature and suction humidity measured by each air conditioner 3 and the set temperature and set humidity of the floor F. The load (kW) is calculated and obtained. Note that the air conditioning load acquisition unit 201 may calculate the air conditioning load by further taking into account the state of the outside air, the specification information of the building, and the like. The building specification information includes, for example, the area of the floor F, the floor plan, the height of the room, the airtightness of the door, the insulation specifications of the walls and windows, and the like.
 蒸発温度決定部202は、本開示に係る蒸発温度決定手段の一例である。蒸発温度決定部202は、空調負荷取得部201によって取得されたフロアFの空調負荷と、各空調機3の運転特性とに基づいて、各空調機3の運転時における蒸発温度を決定する。詳細には、蒸発温度決定部202は、フロアFの空調負荷(すなわち、顕熱負荷と潜熱負荷)と、運転特性データ記憶部241に記憶される運転特性データとに基づいて、各空調機3の室内機が備える熱交換器の蒸発温度を決定する。運転特性データ記憶部241は、補助記憶装置24によって提供されるメモリ領域であり、本開示にかかる運転特性データ記憶手段の一例である。 The evaporation temperature determination unit 202 is an example of evaporation temperature determination means according to the present disclosure. The evaporation temperature determination unit 202 determines the evaporation temperature during operation of each air conditioner 3 based on the air conditioning load on the floor F acquired by the air conditioning load acquisition unit 201 and the operating characteristics of each air conditioner 3. Specifically, the evaporation temperature determining unit 202 determines whether each air conditioner 3 Determine the evaporation temperature of the heat exchanger included in the indoor unit. The driving characteristics data storage unit 241 is a memory area provided by the auxiliary storage device 24, and is an example of driving characteristics data storage means according to the present disclosure.
 運転特性データは、各空調機3の運転特性を示すデータであり、詳細には、各空調機3における蒸発温度と空調能力と消費電力との関係を示すデータである。図4に本実施の形態における運転特性データの一例を示す。図4に示すように、本例の運転特性データは、空調機3毎に、蒸発温度(℃)と顕熱能力(kW)の算出式と潜熱能力(kW)の算出式と消費電力(kW)の算出式とが紐付けられたデータである。顕熱能力の算出式は、当該空調機3及び当該蒸発温度に対応する式であって、吸込温度(t)とファン風量(v)とをパラメータとした式である。潜熱能力の算出式は、当該空調機3及び当該蒸発温度に対応する式であって、吸込湿度(h)とファン風量(v)とをパラメータとした式である。消費電力の算出式は、当該空調機3及び当該蒸発温度に対応する式であって、それぞれ算出された顕熱能力と潜熱能力とをパラメータとした式である。 The operating characteristic data is data indicating the operating characteristics of each air conditioner 3, and more specifically, it is data indicating the relationship between the evaporation temperature, air conditioning capacity, and power consumption in each air conditioner 3. FIG. 4 shows an example of driving characteristic data in this embodiment. As shown in FIG. 4, the operating characteristic data of this example includes the calculation formula for evaporation temperature (°C) and sensible heat capacity (kW), the calculation formula for latent heat capacity (kW), and the power consumption (kW) for each air conditioner 3. ) is the data linked to the calculation formula. The formula for calculating the sensible heat capacity is a formula corresponding to the air conditioner 3 and the evaporation temperature, and is a formula using the suction temperature (t s ) and the fan air volume ( va ) as parameters. The calculation formula for the latent heat capacity is a formula corresponding to the air conditioner 3 and the evaporation temperature, and is a formula using the suction humidity (h s ) and the fan air volume ( va ) as parameters. The power consumption calculation formula is a formula corresponding to the air conditioner 3 and the evaporation temperature, and is a formula using the calculated sensible heat capacity and latent heat capacity as parameters.
 蒸発温度決定部202は、運転特性データを参照して、各空調機3について、最新の吸込温度と最新の吸込湿度と最新のファン風量とに基づいて、蒸発温度毎の顕熱能力、潜熱能力及び消費電力を算出する。次に、蒸発温度決定部202は、算出した各空調機3における蒸発温度毎の顕熱能力及び潜熱能力に基づいて、全空調機3の顕熱能力の合算値がフロアFの顕熱負荷より大きく、且つ、全空調機3の潜熱能力の合算値がフロアFの潜熱負荷より大きくなる、各空調機3の蒸発温度の組合せを全て抽出する。そして、蒸発温度決定部202は、抽出した全ての各空調機3の蒸発温度の組合せのうち、消費電力が最小となる組合せを選択することで、各空調機3の蒸発温度を決定する。 The evaporation temperature determination unit 202 refers to the operating characteristic data and determines the sensible heat capacity and latent heat capacity for each evaporation temperature based on the latest suction temperature, latest suction humidity, and latest fan air volume for each air conditioner 3. and calculate power consumption. Next, the evaporation temperature determining unit 202 determines that the sum of the sensible heat capacities of all the air conditioners 3 is higher than the sensible heat load of the floor F based on the calculated sensible heat capacity and latent heat capacity for each evaporation temperature of each air conditioner 3. All combinations of the evaporation temperatures of the air conditioners 3 that are large and in which the sum of the latent heat capacities of all the air conditioners 3 is larger than the latent heat load of the floor F are extracted. Then, the evaporation temperature determination unit 202 determines the evaporation temperature of each air conditioner 3 by selecting the combination that minimizes power consumption from among all the extracted combinations of evaporation temperatures of each air conditioner 3.
 運転指令部203は、各空調機3に対して、蒸発温度決定部202によって決定された蒸発温度での運転を指令する。詳細には、運転指令部203は、蒸発温度決定部202によって決定された蒸発温度での運転を指令するための制御コマンドを生成し、各空調機3に送信する。 The operation command unit 203 instructs each air conditioner 3 to operate at the evaporation temperature determined by the evaporation temperature determination unit 202. Specifically, the operation command unit 203 generates a control command for instructing operation at the evaporation temperature determined by the evaporation temperature determination unit 202, and transmits it to each air conditioner 3.
<空調制御処理>
 図5は、空調制御装置2によって実行される空調制御処理の手順を示すフローチャートである。空調制御装置2は、ユーザによってフロアFの出入口に設置された図示しないリモートコントローラを介して、省エネモードでの冷房運転又は除湿運転を指示する操作が行われると、周期的(例えば1分毎)に下記の空調制御処理を実行する。
<Air conditioning control processing>
FIG. 5 is a flowchart showing the procedure of air conditioning control processing executed by the air conditioning control device 2. As shown in FIG. When the user performs an operation to instruct cooling operation or dehumidification operation in the energy saving mode via a remote controller (not shown) installed at the entrance/exit of floor F, the air conditioning control device 2 periodically (for example, every minute) The following air conditioning control process is executed.
(ステップS100)
 空調制御装置2は、各空調機3から運転状態データを取得する。その後、空調制御装置2の処理は、ステップS101に遷移する。
(Step S100)
The air conditioning control device 2 acquires operating state data from each air conditioner 3. After that, the process of the air conditioning control device 2 transitions to step S101.
(ステップS101)
 空調制御装置2は、各空調機3についての前回の蒸発温度の決定から一定時間(例えば10分間)経過したか否かを判定する。前回の蒸発温度の決定から一定時間が経過していない場合(ステップS101;NO)、空調制御装置2は、本周期での空調制御処理を終了する。一方、前回の蒸発温度の決定から一定時間が経過した場合(ステップS101;YES)、空調制御装置2の処理は、ステップS102に遷移する。
(Step S101)
The air conditioning control device 2 determines whether a certain period of time (for example, 10 minutes) has elapsed since the previous determination of the evaporation temperature for each air conditioner 3. If a certain period of time has not passed since the previous determination of the evaporation temperature (step S101; NO), the air conditioning control device 2 ends the air conditioning control process in this cycle. On the other hand, if a certain period of time has passed since the previous determination of the evaporation temperature (step S101; YES), the process of the air conditioning control device 2 transitions to step S102.
(ステップS102)
 空調制御装置2は、空調対象空間であるフロアFの空調負荷、すなわち、顕熱負荷及び潜熱負荷を取得する。その後、空調制御装置2の処理は、ステップS103に遷移する。
(Step S102)
The air conditioning control device 2 acquires the air conditioning load of the floor F, which is the space to be air conditioned, that is, the sensible heat load and the latent heat load. After that, the process of the air conditioning control device 2 transitions to step S103.
(ステップS103)
 空調制御装置2は、各空調機3について、最新の吸込温度と最新の吸込湿度と最新のファン風量とに基づいて、蒸発温度毎の顕熱能力、潜熱能力及び消費電力を算出する。その後、空調制御装置2の処理は、ステップS104に遷移する。
(Step S103)
The air conditioning control device 2 calculates the sensible heat capacity, latent heat capacity, and power consumption for each evaporation temperature for each air conditioner 3 based on the latest suction temperature, the latest suction humidity, and the latest fan air volume. After that, the process of the air conditioning control device 2 transitions to step S104.
(ステップS104)
 空調制御装置2は、各空調機3における蒸発温度毎の顕熱能力及び潜熱能力に基づいて、全空調機3の顕熱能力の合算値がフロアFの顕熱負荷より大きく、且つ、全空調機3の潜熱能力の合算値がフロアFの潜熱負荷より大きくなる、各空調機3の蒸発温度の組合せを全て抽出する。その後、空調制御装置2の処理は、ステップS105に遷移する。
(Step S104)
Based on the sensible heat capacity and latent heat capacity for each evaporation temperature in each air conditioner 3, the air conditioning control device 2 determines that the sum of the sensible heat capacities of all the air conditioners 3 is greater than the sensible heat load of the floor F, and that all the air conditioners All combinations of evaporation temperatures of the air conditioners 3 in which the total value of the latent heat capacity of the machines 3 is larger than the latent heat load of the floor F are extracted. After that, the process of the air conditioning control device 2 transitions to step S105.
(ステップS105)
 空調制御装置2は、抽出した全ての各空調機3の蒸発温度の組合せのうち、消費電力が最小となる組合せを選択することで、各空調機3の蒸発温度を決定する。その後、空調制御装置2の処理は、ステップS106に遷移する。
(Step S105)
The air conditioning control device 2 determines the evaporation temperature of each air conditioner 3 by selecting the combination that minimizes power consumption from among all extracted combinations of evaporation temperatures of each air conditioner 3. After that, the process of the air conditioning control device 2 transitions to step S106.
(ステップS106)
 空調制御装置2は、各空調機3に対して、それぞれ決定した蒸発温度での運転を指令する。その後、空調制御装置2は、本周期での空調制御処理を終了する。
(Step S106)
The air conditioning control device 2 instructs each air conditioner 3 to operate at the determined evaporation temperature. After that, the air conditioning control device 2 ends the air conditioning control process in this cycle.
 以上説明したように、本実施の形態における空調システム1では、空調制御装置2は、空調対象空間であるフロアFの空調負荷(すなわち、顕熱負荷と潜熱負荷)と、運転特性データ記憶部241に記憶される運転特性データとに基づいて、各空調機3の室内機が備える熱交換器の蒸発温度を決定する。その際、空調制御装置2は、フロアFの空調負荷より大きい空調能力となる蒸発温度の組合せのうち、消費電力が最小となる組合せを選択することで、各空調機3の蒸発温度を決定する。このため、ユーザの快適性を損なわずに、省エネ性の向上が可能となる。 As explained above, in the air conditioning system 1 according to the present embodiment, the air conditioning control device 2 calculates the air conditioning load (i.e., sensible heat load and latent heat load) of the floor F, which is the space to be air conditioned, and the operating characteristic data storage unit 241. The evaporation temperature of the heat exchanger included in the indoor unit of each air conditioner 3 is determined based on the operating characteristic data stored in the . At this time, the air conditioning control device 2 determines the evaporation temperature of each air conditioner 3 by selecting the combination that minimizes power consumption from among the combinations of evaporation temperatures that provide an air conditioning capacity greater than the air conditioning load on the floor F. . Therefore, it is possible to improve energy saving without impairing user comfort.
(変形例)
 空調制御装置2の機能部(図3参照)の全部又は一部が、専用のハードウェアで実現されるようにしてもよい。専用のハードウェアとは、例えば、単一回路、複合回路、プログラム化されたプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)又はこれらの組合せである。
(Modified example)
All or part of the functional units (see FIG. 3) of the air conditioning control device 2 may be realized by dedicated hardware. The dedicated hardware is, for example, a single circuit, a composite circuit, a programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
(実施の形態2)
 続いて、本開示の実施の形態2について説明する。なお、以下の説明において、実施の形態1と共通する構成要素等については、同一の符号を付し、その説明を省略する。
(Embodiment 2)
Next, a second embodiment of the present disclosure will be described. Note that in the following description, the same components and the like as those in Embodiment 1 are given the same reference numerals, and the description thereof will be omitted.
 図6は、本開示の実施の形態2における空調システム1Aの全体構成を示す図である。空調システム1Aは、本開示に係る空調システムの一例である。空調システム1Aは、例えば、ビル、店舗等の建物の空気調和を行うシステムであり、空調制御装置2Aと、2台以上の空調機3と、2つ以上の人感センサ4とを備える。 FIG. 6 is a diagram showing the overall configuration of an air conditioning system 1A in Embodiment 2 of the present disclosure. The air conditioning system 1A is an example of an air conditioning system according to the present disclosure. The air conditioning system 1A is a system that performs air conditioning for buildings such as buildings and stores, and includes an air conditioning control device 2A, two or more air conditioners 3, and two or more human sensors 4.
<空調制御装置2A>
 空調制御装置2Aは、本開示に係る空調制御装置の一例である。空調制御装置2Aは、各空調機3を制御するコンピュータである。空調制御装置2Aのハードウェア構成は、実施の形態1の空調制御装置2と同様である(図2参照)。空調制御装置2Aの機能の詳細については後述する。
<Air conditioning control device 2A>
The air conditioning control device 2A is an example of an air conditioning control device according to the present disclosure. The air conditioning control device 2A is a computer that controls each air conditioner 3. The hardware configuration of the air conditioning control device 2A is the same as that of the air conditioning control device 2 of Embodiment 1 (see FIG. 2). Details of the functions of the air conditioning control device 2A will be described later.
<人感センサ4>
 人感センサ4は、赤外線、可視光、音波、音感等により人を検出するセンサであり、フロアFの天井に点在するように設置される。図7に示すように、人感センサ4は、各空調機3の室内機に近接した位置に設置される。人感センサ4は、空調制御装置2Aと有線又は無線により通信可能に接続され、周期的に人の検出結果を含む検出データを空調制御装置2Aに送信する。なお、人感センサ4の設置台数及び設置場所については任意の設計事項である。
<Human sensor 4>
The human sensors 4 are sensors that detect people using infrared rays, visible light, sound waves, sound, etc., and are installed so as to be scattered on the ceiling of the floor F. As shown in FIG. 7, the human sensor 4 is installed at a position close to the indoor unit of each air conditioner 3. The human sensor 4 is communicably connected to the air conditioning control device 2A by wire or wirelessly, and periodically transmits detection data including human detection results to the air conditioning control device 2A. Note that the number and location of the human sensors 4 to be installed are arbitrary design matters.
<空調制御装置2Aの機能構成>
 図8は、空調制御装置2Aの機能構成を示すブロック図である。図8に示すように、空調制御装置2Aは、運転状態データ取得部200と、空調負荷取得部201と、蒸発温度決定部202Aと、運転指令部203と、ユーザ位置情報取得部204とを備える。これらの機能部は、空調制御装置2Aが備えるCPU21が補助記憶装置24に記憶されている、各空調機3を制御するためのプログラムである空調制御プログラムを実行することで実現される。
<Functional configuration of air conditioning control device 2A>
FIG. 8 is a block diagram showing the functional configuration of the air conditioning control device 2A. As shown in FIG. 8, the air conditioning control device 2A includes an operating state data acquisition section 200, an air conditioning load acquisition section 201, an evaporation temperature determination section 202A, an operation command section 203, and a user position information acquisition section 204. . These functional units are realized by the CPU 21 included in the air conditioning control device 2A executing an air conditioning control program, which is a program for controlling each air conditioner 3, stored in the auxiliary storage device 24.
 ユーザ位置情報取得部204は、本開示に係るユーザ位置情報取得手段の一例である。ユーザ位置情報取得部204は、各人感センサ4から送られてくる検出データを受信し、受信した各検出データに基づいて、フロアFにおけるユーザの位置を示すユーザ位置情報を取得する。ユーザ位置情報取得部204は、取得したユーザ位置情報に現在時刻を付加して時系列で分別してユーザ位置情報記憶部242に保存する。つまり、ユーザ位置情報記憶部242には、ユーザ位置情報の履歴が保存される。ユーザ位置情報記憶部242は、補助記憶装置24によって提供されるメモリ領域である。 The user location information acquisition unit 204 is an example of user location information acquisition means according to the present disclosure. The user position information acquisition unit 204 receives the detection data sent from each human sensor 4, and acquires user position information indicating the user's position on the floor F based on each received detection data. The user location information acquisition unit 204 adds the current time to the acquired user location information, sorts it in chronological order, and stores it in the user location information storage unit 242. That is, the user location information storage section 242 stores a history of user location information. The user position information storage unit 242 is a memory area provided by the auxiliary storage device 24.
 蒸発温度決定部202Aは、本開示に係る蒸発温度決定手段の一例である。蒸発温度決定部202Aは、フロアFの空調負荷(すなわち、顕熱負荷と潜熱負荷)と、運転特性データ記憶部241に記憶される運転特性データと、ユーザ位置情報記憶部242に記憶されるユーザ位置情報とに基づいて、各空調機3の室内機が備える熱交換器の蒸発温度を決定する。 The evaporation temperature determination unit 202A is an example of evaporation temperature determination means according to the present disclosure. The evaporation temperature determining unit 202A determines the air conditioning load (that is, sensible heat load and latent heat load) on the floor F, the operating characteristic data stored in the operating characteristic data storage unit 241, and the user information stored in the user position information storage unit 242. Based on the position information, the evaporation temperature of the heat exchanger included in the indoor unit of each air conditioner 3 is determined.
 先ず、蒸発温度決定部202Aは、各空調機3について、最新の吸込温度と最新の吸込湿度と最新のファン風量とに基づいて、蒸発温度毎の顕熱能力、潜熱能力及び消費電力を算出する。次に、蒸発温度決定部202Aは、算出した各空調機3における蒸発温度毎の顕熱能力及び潜熱能力に基づいて、全空調機3の顕熱能力の合算値がフロアFの顕熱負荷より大きく、且つ、全空調機3の潜熱能力の合算値がフロアFの潜熱負荷より大きくなる、各空調機3の蒸発温度の組合せを全て抽出する。 First, the evaporation temperature determination unit 202A calculates the sensible heat capacity, latent heat capacity, and power consumption for each evaporation temperature based on the latest suction temperature, latest suction humidity, and latest fan air volume for each air conditioner 3. . Next, the evaporation temperature determining unit 202A determines that the sum of the sensible heat capacities of all the air conditioners 3 is higher than the sensible heat load of the floor F based on the calculated sensible heat capacity and latent heat capacity for each evaporation temperature of each air conditioner 3. All combinations of the evaporation temperatures of the air conditioners 3 that are large and in which the sum of the latent heat capacities of all the air conditioners 3 is larger than the latent heat load of the floor F are extracted.
 続いて、蒸発温度決定部202Aは、ユーザ位置情報記憶部242に記憶されるユーザ位置情報に基づいて、フロアFを複数に区画した各エリアに居るユーザの数を取得する。フロアFの間取りに関する情報は、予め補助記憶装置24に記憶されている。蒸発温度決定部202Aは、抽出した全ての各空調機3の蒸発温度の組合せのうち、ユーザの数が予め定めた数以上のエリアに対応する空調機3の蒸発温度が予め定めた温度以上となるような組合せを選択する。各空調機3の設置位置に関する情報は、予め補助記憶装置24に記憶されている。そして、蒸発温度決定部202Aは、選択した全ての各空調機3の蒸発温度の組合せのうち、消費電力が最小となる組合せを選択することで、各空調機3の蒸発温度を決定する。 Subsequently, the evaporation temperature determining unit 202A obtains the number of users in each area where the floor F is divided into a plurality of areas based on the user position information stored in the user position information storage unit 242. Information regarding the floor plan of the floor F is stored in advance in the auxiliary storage device 24. The evaporation temperature determining unit 202A determines that the evaporation temperature of the air conditioner 3 corresponding to an area where the number of users is greater than or equal to a predetermined number is equal to or higher than a predetermined temperature among all extracted combinations of evaporation temperatures of each air conditioner 3. Select a combination that will. Information regarding the installation position of each air conditioner 3 is stored in advance in the auxiliary storage device 24. Then, the evaporation temperature determination unit 202A determines the evaporation temperature of each air conditioner 3 by selecting the combination that minimizes power consumption from among all the selected combinations of evaporation temperatures of each air conditioner 3.
 以上説明したように、本実施の形態における空調システム1Aでは、空調制御装置2Aは、空調対象空間であるフロアFの空調負荷(すなわち、顕熱負荷と潜熱負荷)と、運転特性データ記憶部241に記憶される運転特性データと、ユーザ位置情報記憶部242に記憶されるユーザ位置情報とに基づいて、各空調機3の室内機が備える熱交換器の蒸発温度を決定する。その際、空調制御装置2Aは、フロアFの空調負荷より大きい空調能力となる蒸発温度の組合せのうち、ユーザの数が予め定めた数以上のエリアに対応する空調機3の蒸発温度が予め定めた温度以上となるような組合せを選択する。そして、空調制御装置2Aは、選択した組合せのうちから消費電力が最小となる組合せを選択することで、各空調機3の蒸発温度を決定する。 As described above, in the air conditioning system 1A according to the present embodiment, the air conditioning control device 2A calculates the air conditioning load (i.e., sensible heat load and latent heat load) of the floor F, which is the space to be air conditioned, and the operating characteristic data storage unit 241. The evaporation temperature of the heat exchanger included in the indoor unit of each air conditioner 3 is determined based on the operating characteristic data stored in , and the user position information stored in the user position information storage unit 242 . At this time, the air conditioning control device 2A determines in advance that among the combinations of evaporation temperatures that result in an air conditioning capacity greater than the air conditioning load on the floor F, the evaporation temperature of the air conditioner 3 corresponding to the area where the number of users is greater than or equal to the predetermined number is determined in advance. Select a combination that will result in a temperature higher than the specified temperature. Then, the air conditioning control device 2A determines the evaporation temperature of each air conditioner 3 by selecting the combination that minimizes power consumption from among the selected combinations.
 このため、全体としての省エネ性は確保しつつ、蒸発温度の低い室内機から低温の空気が吹き出すことによる不快感を和らげ、ユーザの快適性を向上させることが可能となる。 Therefore, while ensuring overall energy savings, it is possible to alleviate the discomfort caused by low-temperature air blowing out from the indoor unit with a low evaporation temperature, and improve user comfort.
(変形例1)
 蒸発温度決定部202Aは、フロアFの空調負荷より大きい空調能力となる蒸発温度の組合せのうち、ユーザの数がより少ないエリアに対応する空調機3の蒸発温度がより低くなるような組合せを選択し、選択した組合せのうちから消費電力が最小となる組合せを選択することで、各空調機3の蒸発温度を決定してもよい。
(Modification 1)
The evaporation temperature determination unit 202A selects a combination of evaporation temperatures that results in a lower evaporation temperature of the air conditioner 3 corresponding to an area with a smaller number of users from among the combinations of evaporation temperatures that result in an air conditioning capacity greater than the air conditioning load on the floor F. However, the evaporation temperature of each air conditioner 3 may be determined by selecting a combination that minimizes power consumption from among the selected combinations.
(変形例2)
 ユーザ位置情報取得部204によるユーザ位置情報の取得手法は、任意の設計事項である。例えば、フロアFに複数の発信機を点在するように設置し、各ユーザが所持する携帯電話、スマートフォン等の携帯端末が、各発信機との無線通信に基づいて当該ユーザの位置を検出し、検出した結果を示すデータを空調制御装置2Aに送信するようにし、ユーザ位置情報取得部204は、各携帯端末からのデータに基づいてユーザ位置情報を取得してもよい。あるいは、予め座席表データがオペレータによって空調制御装置2Aに入力され、ユーザ位置情報取得部204は、かかる座席表データに基づいてユーザ位置情報を取得してもよい。
(Modification 2)
The method of acquiring user position information by the user position information acquisition unit 204 is an arbitrary design matter. For example, multiple transmitters are installed scattered on floor F, and a mobile terminal such as a mobile phone or smartphone owned by each user detects the user's position based on wireless communication with each transmitter. , data indicating the detected results may be transmitted to the air conditioning control device 2A, and the user position information acquisition unit 204 may acquire user position information based on data from each mobile terminal. Alternatively, the seating chart data may be input in advance to the air conditioning control device 2A by the operator, and the user position information acquisition unit 204 may obtain the user position information based on the seating chart data.
(変形例3)
 空調制御装置2Aの機能部(図8参照)の全部又は一部が、専用のハードウェアで実現されるようにしてもよい。専用のハードウェアとは、例えば、単一回路、複合回路、プログラム化されたプロセッサ、ASIC、FPGA又はこれらの組合せである。
(Modification 3)
All or part of the functional units (see FIG. 8) of the air conditioning control device 2A may be realized by dedicated hardware. Dedicated hardware can be, for example, a single circuit, a complex circuit, a programmed processor, an ASIC, an FPGA, or a combination thereof.
 上記の各変形例に係る技術思想は、それぞれ単独で実現されてもよいし、適宜組み合わされて実現されてもよい。 The technical ideas related to each of the above-mentioned modifications may be realized individually, or may be realized in combination as appropriate.
(実施の形態3)
 続いて、本開示の実施の形態3について説明する。なお、以下の説明において、実施の形態1と共通する構成要素等については、同一の符号を付し、その説明を省略する。
(Embodiment 3)
Next, Embodiment 3 of the present disclosure will be described. Note that in the following description, the same components and the like as those in Embodiment 1 are given the same reference numerals, and the description thereof will be omitted.
 図9は、本開示の実施の形態3における空調システム1Bの全体構成を示す図である。空調システム1Bは、本開示に係る空調システムの一例である。空調システム1Bは、例えば、ビル、店舗等の建物の空気調和を行うシステムであり、空調制御装置2Bと、2台以上の空調機3と、2つ以上の温度センサ5とを備える。 FIG. 9 is a diagram showing the overall configuration of an air conditioning system 1B in Embodiment 3 of the present disclosure. Air conditioning system 1B is an example of an air conditioning system according to the present disclosure. The air conditioning system 1B is a system that performs air conditioning for buildings such as buildings and stores, and includes an air conditioning control device 2B, two or more air conditioners 3, and two or more temperature sensors 5.
<空調制御装置2B>
 空調制御装置2Bは、本開示に係る空調制御装置の一例である。空調制御装置2Bは、各空調機3を制御するコンピュータである。空調制御装置2Bのハードウェア構成は、実施の形態1の空調制御装置2と同様である(図2参照)。空調制御装置2Bの機能の詳細については後述する。
<Air conditioning control device 2B>
The air conditioning control device 2B is an example of an air conditioning control device according to the present disclosure. The air conditioning control device 2B is a computer that controls each air conditioner 3. The hardware configuration of the air conditioning control device 2B is the same as that of the air conditioning control device 2 of Embodiment 1 (see FIG. 2). Details of the functions of the air conditioning control device 2B will be described later.
<温度センサ5>
 温度センサ5は、空調対象空間であるフロアFに点在して設置され、設置された空間の空気温度を周期的に計測する。温度センサ5は、空調制御装置2Bと有線又は無線により通信可能に接続され、計測した空気温度が格納された温度データを空調制御装置2Bに送信する。
<Temperature sensor 5>
The temperature sensors 5 are installed scattered on the floor F, which is an air-conditioned space, and periodically measure the air temperature of the installed space. The temperature sensor 5 is communicably connected to the air conditioning control device 2B by wire or wirelessly, and transmits temperature data in which the measured air temperature is stored to the air conditioning control device 2B.
<空調制御装置2Bの機能構成>
 図10は、空調制御装置2Bの機能構成を示すブロック図である。図10に示すように、空調制御装置2Bは、運転状態データ取得部200と、空調負荷取得部201と、蒸発温度決定部202Bと、運転指令部203と、温度分布情報取得部205とを備える。これらの機能部は、空調制御装置2Bが備えるCPU21が補助記憶装置24に記憶されている、各空調機3を制御するためのプログラムである空調制御プログラムを実行することで実現される。
<Functional configuration of air conditioning control device 2B>
FIG. 10 is a block diagram showing the functional configuration of the air conditioning control device 2B. As shown in FIG. 10, the air conditioning control device 2B includes an operating state data acquisition section 200, an air conditioning load acquisition section 201, an evaporation temperature determination section 202B, an operation command section 203, and a temperature distribution information acquisition section 205. . These functional units are realized by the CPU 21 included in the air conditioning control device 2B executing an air conditioning control program, which is a program for controlling each air conditioner 3, stored in the auxiliary storage device 24.
 温度分布情報取得部205は、本開示に係る温度分布情報取得手段の一例である。温度分布情報取得部205は、各温度センサ5から送られてくる温度データに基づいて、空調対象空間であるフロアFにおける空気温度の分布を示す温度分布情報を取得する。温度分布情報には、フロアFを複数に区画した各エリアの空気温度が含まれている。フロアFの間取りに関する情報は、予め補助記憶装置24に記憶されている。温度分布情報取得部205は、取得した温度分布情報を温度分布情報記憶部243に保存する。温度分布情報記憶部243は、補助記憶装置24によって提供されるメモリ領域である。 The temperature distribution information acquisition unit 205 is an example of temperature distribution information acquisition means according to the present disclosure. The temperature distribution information acquisition unit 205 acquires temperature distribution information indicating the distribution of air temperature in the floor F, which is the air-conditioned space, based on the temperature data sent from each temperature sensor 5. The temperature distribution information includes the air temperature of each area where the floor F is divided into a plurality of areas. Information regarding the floor plan of the floor F is stored in advance in the auxiliary storage device 24. The temperature distribution information acquisition unit 205 stores the acquired temperature distribution information in the temperature distribution information storage unit 243. The temperature distribution information storage unit 243 is a memory area provided by the auxiliary storage device 24.
 蒸発温度決定部202Bは、本開示に係る蒸発温度決定手段の一例である。蒸発温度決定部202Bは、フロアFの空調負荷(すなわち、顕熱負荷及び潜熱負荷)と、運転特性データ記憶部241に記憶される運転特性データと、温度分布情報記憶部243に記憶される温度分布情報とに基づいて、各空調機3の室内機が備える熱交換器の蒸発温度を決定する。 The evaporation temperature determination unit 202B is an example of evaporation temperature determination means according to the present disclosure. The evaporation temperature determining unit 202B calculates the air conditioning load (that is, the sensible heat load and the latent heat load) on the floor F, the operating characteristic data stored in the operating characteristic data storage unit 241, and the temperature stored in the temperature distribution information storage unit 243. Based on the distribution information, the evaporation temperature of the heat exchanger included in the indoor unit of each air conditioner 3 is determined.
 先ず、蒸発温度決定部202Bは、各空調機3について、最新の吸込温度と最新の吸込湿度と最新のファン風量とに基づいて、蒸発温度毎の顕熱能力、潜熱能力及び消費電力を算出する。次に、蒸発温度決定部202Bは、算出した各空調機3における蒸発温度毎の顕熱能力及び潜熱能力に基づいて、全空調機3の顕熱能力の合算値がフロアFの顕熱負荷より大きく、且つ、全空調機3の潜熱能力の合算値がフロアFの潜熱負荷より大きくなる、各空調機3の蒸発温度の組合せを全て抽出する。 First, the evaporation temperature determination unit 202B calculates the sensible heat capacity, latent heat capacity, and power consumption for each evaporation temperature based on the latest suction temperature, latest suction humidity, and latest fan air volume for each air conditioner 3. . Next, the evaporation temperature determining unit 202B determines that the sum of the sensible heat capacities of all the air conditioners 3 is higher than the sensible heat load of the floor F based on the calculated sensible heat capacity and latent heat capacity for each evaporation temperature of each air conditioner 3. All combinations of the evaporation temperatures of the air conditioners 3 that are large and in which the sum of the latent heat capacities of all the air conditioners 3 is larger than the latent heat load of the floor F are extracted.
 続いて、蒸発温度決定部202Bは、温度分布情報記憶部243に記憶されている温度分布情報を読み出して取得する。蒸発温度決定部202Bは、抽出した全ての各空調機3の蒸発温度の組合せのうち、他のエリアに比べ空気温度が高いエリアに対応する空調機3の蒸発温度が当該他のエリアに対応する他の空調機3の蒸発温度より低くなるような組合せを選択する。各空調機3の設置位置に関する情報は、予め補助記憶装置24に記憶されている。そして、蒸発温度決定部202Bは、選択した全ての各空調機3の蒸発温度の組合せのうち、消費電力が最小となる組合せを選択することで、各空調機3の蒸発温度を決定する。 Subsequently, the evaporation temperature determination unit 202B reads and acquires the temperature distribution information stored in the temperature distribution information storage unit 243. The evaporation temperature determining unit 202B determines that the evaporation temperature of the air conditioner 3 corresponding to an area where the air temperature is higher than other areas corresponds to the other area from among all extracted combinations of evaporation temperatures of each air conditioner 3. A combination is selected such that the evaporation temperature is lower than that of other air conditioners 3. Information regarding the installation position of each air conditioner 3 is stored in advance in the auxiliary storage device 24. Then, the evaporation temperature determining unit 202B determines the evaporation temperature of each air conditioner 3 by selecting the combination that minimizes power consumption from among all the selected combinations of evaporation temperatures of each air conditioner 3.
 以上説明したように、本実施の形態における空調システム1Bでは、空調制御装置2Bは、空調対象空間であるフロアFの空調負荷(すなわち、顕熱負荷と潜熱負荷)と、運転特性データ記憶部241に記憶される運転特性データと、温度分布情報記憶部243に記憶される温度分布情報とに基づいて、各空調機3の室内機が備える熱交換器の蒸発温度を決定する。その際、空調制御装置2Bは、フロアFの空調負荷より大きい空調能力となる蒸発温度の組合せのうち、他のエリアに比べ空気温度が高いエリアに対応する空調機3の蒸発温度が当該他のエリアに対応する他の空調機3の蒸発温度より低くなるような組合せを選択する。そして、空調制御装置2Bは、選択した組合せのうちから消費電力が最小となる組合せを選択することで、各空調機3の蒸発温度を決定する。 As explained above, in the air conditioning system 1B according to the present embodiment, the air conditioning control device 2B calculates the air conditioning load (i.e., sensible heat load and latent heat load) of the floor F, which is the space to be air conditioned, and the operating characteristic data storage unit 241. The evaporation temperature of the heat exchanger included in the indoor unit of each air conditioner 3 is determined based on the operating characteristic data stored in , and the temperature distribution information stored in the temperature distribution information storage section 243 . At this time, the air conditioning control device 2B determines that the evaporation temperature of the air conditioner 3 corresponding to the area where the air temperature is higher than that of other areas among the combinations of evaporation temperatures that result in an air conditioning capacity greater than the air conditioning load of the floor F is A combination is selected such that the evaporation temperature is lower than the evaporation temperature of other air conditioners 3 corresponding to the area. Then, the air conditioning control device 2B determines the evaporation temperature of each air conditioner 3 by selecting the combination that minimizes power consumption from among the selected combinations.
 このため、全体としての省エネ性は確保しつつ、蒸発温度の低い室内機から低温の空気が吹き出すことによる不快感を和らげ、ユーザの快適性を向上させることが可能となる。 Therefore, while ensuring overall energy savings, it is possible to alleviate the discomfort caused by low-temperature air blowing out from the indoor unit with a low evaporation temperature, and improve user comfort.
(変形例1)
 温度分布情報は、フロアFの気流解析により事前に生成され、温度分布情報記憶部243に記憶されるようにしてもよい。あるいは、温度分布情報取得部205は、各ユーザが所持する携帯電話、スマートフォン等の携帯端末から送信される、当該ユーザの位置と当該ユーザによる温冷感申告(暑い、寒い、快適等)とを含むデータに基づいて温度分布情報を取得してもよい。
(Modification 1)
The temperature distribution information may be generated in advance by airflow analysis on the floor F and stored in the temperature distribution information storage section 243. Alternatively, the temperature distribution information acquisition unit 205 may receive the user's location and the user's thermal sensation report (hot, cold, comfortable, etc.) transmitted from a mobile terminal such as a mobile phone or smartphone owned by each user. Temperature distribution information may be acquired based on the included data.
(変形例2)
 空調制御装置2Bの機能部(図10参照)の全部又は一部が、専用のハードウェアで実現されるようにしてもよい。専用のハードウェアとは、例えば、単一回路、複合回路、プログラム化されたプロセッサ、ASIC、FPGA又はこれらの組合せである。
(Modification 2)
All or part of the functional units (see FIG. 10) of the air conditioning control device 2B may be realized by dedicated hardware. Dedicated hardware can be, for example, a single circuit, a complex circuit, a programmed processor, an ASIC, an FPGA, or a combination thereof.
 上記の各変形例に係る技術思想は、それぞれ単独で実現されてもよいし、適宜組み合わされて実現されてもよい。 The technical ideas related to each of the above-mentioned modifications may be realized individually, or may be realized in combination as appropriate.
(実施の形態4)
 続いて、本開示の実施の形態4について説明する。なお、以下の説明において、実施の形態1と共通する構成要素等については、同一の符号を付し、その説明を省略する。
(Embodiment 4)
Next, a fourth embodiment of the present disclosure will be described. Note that in the following description, the same components and the like as those in Embodiment 1 are given the same reference numerals, and the description thereof will be omitted.
 図11は、本開示の実施の形態4における空調システム1Cの全体構成を示す図である。空調システム1Cは、本開示に係る空調システムの一例である。空調システム1Cは、例えば、ビル、店舗等の建物の空気調和を行うシステムであり、空調制御装置2Cと、2台以上の空調機3と、端末装置6とを備える。 FIG. 11 is a diagram showing the overall configuration of an air conditioning system 1C in Embodiment 4 of the present disclosure. Air conditioning system 1C is an example of an air conditioning system according to the present disclosure. The air conditioning system 1C is a system that performs air conditioning for buildings such as buildings and stores, and includes an air conditioning control device 2C, two or more air conditioners 3, and a terminal device 6.
<空調制御装置2C>
 空調制御装置2Cは、本開示に係る空調制御装置の一例である。空調制御装置2Cは、各空調機3を制御するコンピュータである。空調制御装置2Cのハードウェア構成は、実施の形態1の空調制御装置2と同様である(図2参照)。空調制御装置2Cの機能の詳細については後述する。
<Air conditioning control device 2C>
The air conditioning control device 2C is an example of an air conditioning control device according to the present disclosure. The air conditioning control device 2C is a computer that controls each air conditioner 3. The hardware configuration of the air conditioning control device 2C is the same as that of the air conditioning control device 2 of Embodiment 1 (see FIG. 2). Details of the functions of the air conditioning control device 2C will be described later.
<端末装置6>
 端末装置6は、液晶ディスプレイ、有機ELディスプレイ等の表示デバイスを含んで構成されるディスプレイを備えたコンピュータであり、例えばフロアFの出入口等、フロアFを利用するユーザが当該端末装置6を介して表示される情報を確認しやすい場所に設置される。端末装置6は、空調制御装置2Cと有線又は無線により通信可能に接続され、空調制御装置2Cから送信される情報を表示する。
<Terminal device 6>
The terminal device 6 is a computer equipped with a display including a display device such as a liquid crystal display or an organic EL display. It is installed in a location where it is easy to check the displayed information. The terminal device 6 is communicably connected to the air conditioning control device 2C by wire or wirelessly, and displays information transmitted from the air conditioning control device 2C.
<空調制御装置2Cの機能構成>
 図12は、空調制御装置2Cの機能構成を示すブロック図である。図12に示すように、空調制御装置2Cは、運転状態データ取得部200と、空調負荷取得部201と、蒸発温度決定部202と、運転指令部203と、ユーザ通知部206とを備える。これらの機能部は、空調制御装置2Cが備えるCPU21が補助記憶装置24に記憶されている、各空調機3を制御するためのプログラムである空調制御プログラムを実行することで実現される。
<Functional configuration of air conditioning control device 2C>
FIG. 12 is a block diagram showing the functional configuration of the air conditioning control device 2C. As shown in FIG. 12, the air conditioning control device 2C includes an operating state data acquisition section 200, an air conditioning load acquisition section 201, an evaporation temperature determination section 202, an operation command section 203, and a user notification section 206. These functional units are realized by the CPU 21 included in the air conditioning control device 2C executing an air conditioning control program that is a program for controlling each air conditioner 3, which is stored in the auxiliary storage device 24.
 ユーザ通知部206は、本開示に係る通知手段の一例である。ユーザ通知部206は、蒸発温度決定部202によって、各空調機3の蒸発温度が決定されると、各空調機3の蒸発温度及び設置位置に基づいて、ユーザに通知すべき情報(以下「ユーザ通知情報」という。)を生成し、端末装置6に送信する。各空調機3の設置位置に関する情報と、フロアFの間取りに関する情報とは、予め補助記憶装置24に記憶されている。例えば、ユーザ通知部206は、蒸発温度が予め定めた第1温度以下の空調機3に対応するエリアと、蒸発温度が予め定めた第2温度(第1温度<第2温度)以上の空調機3に対応するエリアとを示す画面データを通知情報として生成し、端末装置6に送信する。かかる通知情報を受信した端末装置6は、図13に示すような通知画面を表示する。 The user notification unit 206 is an example of notification means according to the present disclosure. When the evaporation temperature of each air conditioner 3 is determined by the evaporation temperature determination unit 202, the user notification unit 206 provides information to be notified to the user (hereinafter referred to as “user information”) based on the evaporation temperature and installation position of each air conditioner 3. (referred to as "notification information") and transmits it to the terminal device 6. Information regarding the installation position of each air conditioner 3 and information regarding the floor plan of the floor F are stored in the auxiliary storage device 24 in advance. For example, the user notification unit 206 includes an area corresponding to an air conditioner 3 whose evaporation temperature is equal to or lower than a predetermined first temperature, and an area corresponding to an air conditioner 3 whose evaporation temperature is equal to or higher than a predetermined second temperature (first temperature < second temperature). Screen data indicating the area corresponding to 3 is generated as notification information and transmitted to the terminal device 6. The terminal device 6 that has received the notification information displays a notification screen as shown in FIG. 13.
 以上説明したように、本実施の形態における空調システム1Cでは、空調制御装置2Cは、空調対象空間であるフロアFの空調負荷(すなわち、顕熱負荷と潜熱負荷)と、運転特性データ記憶部241に記憶される運転特性データとに基づいて、各空調機3の室内機が備える熱交換器の蒸発温度を決定する。その際、空調制御装置2は、フロアFの空調負荷より大きい空調能力となる蒸発温度の組合せのうち、消費電力が最小となる組合せを選択することで、各空調機3の蒸発温度を決定する。このため、ユーザの快適性を損なわずに、省エネ性の向上が可能となる。 As explained above, in the air conditioning system 1C according to the present embodiment, the air conditioning control device 2C calculates the air conditioning load (i.e., sensible heat load and latent heat load) of the floor F, which is the air-conditioned space, and the operating characteristic data storage unit 241. The evaporation temperature of the heat exchanger included in the indoor unit of each air conditioner 3 is determined based on the operating characteristic data stored in the . At this time, the air conditioning control device 2 determines the evaporation temperature of each air conditioner 3 by selecting the combination that minimizes power consumption from among the combinations of evaporation temperatures that provide an air conditioning capacity greater than the air conditioning load on the floor F. . Therefore, it is possible to improve energy saving without impairing user comfort.
 さらに、空調制御装置2Cは、各空調機3の蒸発温度及び設置位置に基づく情報、例えば、蒸発温度が第1温度以下の空調機3に対応するエリアと、蒸発温度が第2温度(第1温度<第2温度)以上の空調機3に対応するエリアとを示す情報を端末装置6を介してユーザに通知する。これにより、ユーザは、空気温度が高いエリアと低いエリアとを容易に認識することができ、例えば、自身の好みに応じたエリアに移動し、作業等を行うことが可能となる。このため、ユーザの利便性が向上する。 Further, the air conditioning control device 2C provides information based on the evaporation temperature and installation position of each air conditioner 3, for example, an area corresponding to an air conditioner 3 whose evaporation temperature is a first temperature or lower, and an area where the evaporation temperature is a second temperature (a first temperature). The user is notified via the terminal device 6 of information indicating the area corresponding to the air conditioner 3 where the temperature is equal to or higher than the second temperature. Thereby, the user can easily recognize areas where the air temperature is high and areas where the air temperature is low, and, for example, can move to an area according to his/her preference and perform work. Therefore, user convenience is improved.
(変形例1)
 ユーザ通知部206は、端末装置6を介して、音声により各空調機3の蒸発温度及び設置位置に基づく情報をユーザに通知してもよい。
(Modification 1)
The user notification unit 206 may notify the user of information based on the evaporation temperature and installation position of each air conditioner 3 by voice via the terminal device 6.
(変形例2)
 ユーザ通知部206は、各ユーザが所持する携帯電話、スマートフォン等の携帯端末を介して、予め定めた態様により各空調機3の蒸発温度及び設置位置に基づく情報をユーザに通知してもよい。また、各ユーザの空気温度に対する感覚特性(例えば、暑がり、寒がり等)についての情報が空調制御装置2Cに登録されている場合、ユーザ通知部206は、当該ユーザが快適に感じるエリアを示す情報を携帯端末を介して当該ユーザに通知してもよい。
(Modification 2)
The user notification unit 206 may notify the user of information based on the evaporation temperature and installation position of each air conditioner 3 in a predetermined manner via a mobile terminal such as a mobile phone or a smartphone owned by each user. In addition, if information about each user's sensory characteristics regarding air temperature (for example, sensitivity to heat, sensitivity to cold, etc.) is registered in the air conditioning control device 2C, the user notification unit 206 sends information indicating an area where the user feels comfortable. may be notified to the user via the mobile terminal.
(変形例3)
 空調制御装置2Cの機能部(図12参照)の全部又は一部が、専用のハードウェアで実現されるようにしてもよい。専用のハードウェアとは、例えば、単一回路、複合回路、プログラム化されたプロセッサ、ASIC、FPGA又はこれらの組合せである。
(Modification 3)
All or part of the functional units (see FIG. 12) of the air conditioning control device 2C may be realized by dedicated hardware. Dedicated hardware can be, for example, a single circuit, a complex circuit, a programmed processor, an ASIC, an FPGA, or a combination thereof.
 上記の各変形例に係る技術思想は、それぞれ単独で実現されてもよいし、適宜組み合わされて実現されてもよい。 The technical ideas related to each of the above-mentioned modifications may be realized individually, or may be realized in combination as appropriate.
 本開示は、広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能である。また、上述した実施の形態は、本開示を説明するためのものであり、本開示の範囲を限定するものではない。つまり、本開示の範囲は、実施の形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の開示の意義の範囲内で施される様々な変形が、本開示の範囲内とみなされる。 Various embodiments and modifications can be made to the present disclosure without departing from its broad spirit and scope. Further, the embodiments described above are for explaining the present disclosure, and do not limit the scope of the present disclosure. In other words, the scope of the present disclosure is indicated by the claims rather than the embodiments. Various modifications made within the scope of the claims and the meaning of the disclosure equivalent thereto are considered to be within the scope of the present disclosure.
 本開示は、同一の空調対象空間を複数の空調機で空調するシステムに好適に採用され得る。 The present disclosure can be suitably employed in a system that air-conditions the same air-conditioned space using multiple air conditioners.
 1,1A,1B,1C 空調システム、2,2A,2B,2C 空調制御装置、3 空調機、4 人感センサ、5 温度センサ、6 端末装置、20 通信インタフェース、21 CPU、22 ROM、23 RAM、24 補助記憶装置、25 バス、200 運転状態データ取得部、201 空調負荷取得部、202,202A,202B 蒸発温度決定部、203 運転指令部、204 ユーザ位置情報取得部、205 温度分布情報取得部、206 ユーザ通知部、240 運転状態データ記憶部、241 運転特性データ記憶部,242 ユーザ位置情報記憶部、243 温度分布情報記憶部 1, 1A, 1B, 1C air conditioning system, 2, 2A, 2B, 2C air conditioning control device, 3 air conditioner, 4 human sensor, 5 temperature sensor, 6 terminal device, 20 communication interface, 21 CPU, 22 ROM, 23 RAM , 24 Auxiliary storage device, 25 Bus, 200 Operating status data acquisition unit, 201 Air conditioning load acquisition unit, 202, 202A, 202B Evaporation temperature determination unit, 203 Operation command unit, 204 User position information acquisition unit, 205 Temperature distribution information acquisition unit , 206 User notification section, 240 Operating state data storage section, 241 Operating characteristic data storage section, 242 User position information storage section, 243 Temperature distribution information storage section

Claims (8)

  1.  同一の空調対象空間を空調する複数の空調機を制御する空調制御装置であって、
     前記空調対象空間の空調負荷を取得する空調負荷取得手段と、
     前記空調負荷と、前記複数の空調機の各々の運転特性とに基づいて、前記複数の空調機の各々の蒸発温度を決定する蒸発温度決定手段と、を備える、空調制御装置。
    An air conditioning control device that controls multiple air conditioners that air condition the same air-conditioned space,
    Air conditioning load acquisition means for acquiring the air conditioning load of the air conditioning target space;
    An air conditioning control device comprising: evaporation temperature determining means for determining the evaporation temperature of each of the plurality of air conditioners based on the air conditioning load and the operating characteristics of each of the plurality of air conditioners.
  2.  前記複数の空調機の各々について、蒸発温度と空調能力と消費電力との関係を示す運転特性データを記憶する運転特性データ記憶手段をさらに備え、
     前記蒸発温度決定手段は、前記空調負荷と前記運転特性データとに基づいて、前記複数の空調機の各々の蒸発温度を決定する、請求項1に記載の空調制御装置。
    Further comprising an operating characteristic data storage means for storing operating characteristic data indicating a relationship between evaporation temperature, air conditioning capacity, and power consumption for each of the plurality of air conditioners,
    The air conditioning control device according to claim 1, wherein the evaporation temperature determining means determines the evaporation temperature of each of the plurality of air conditioners based on the air conditioning load and the operating characteristic data.
  3.  前記空調対象空間におけるユーザの位置を示すユーザ位置情報を取得するユーザ位置情報取得手段をさらに備え、
     前記蒸発温度決定手段は、前記ユーザ位置情報も加味して前記複数の空調機の各々の蒸発温度を決定する、請求項1又は2に記載の空調制御装置。
    further comprising user position information acquisition means for acquiring user position information indicating the user's position in the air-conditioned space,
    The air conditioning control device according to claim 1 or 2, wherein the evaporation temperature determining means determines the evaporation temperature of each of the plurality of air conditioners, also taking into account the user position information.
  4.  前記空調対象空間における空気温度の分布を示す温度分布情報を取得する温度分布情報取得手段をさらに備え、
     前記蒸発温度決定手段は、前記温度分布情報も加味して前記複数の空調機の各々の蒸発温度を決定する、請求項1又は2に記載の空調制御装置。
    further comprising temperature distribution information acquisition means for acquiring temperature distribution information indicating the distribution of air temperature in the air-conditioned space,
    The air conditioning control device according to claim 1 or 2, wherein the evaporation temperature determining means determines the evaporation temperature of each of the plurality of air conditioners, also taking into account the temperature distribution information.
  5.  前記決定された複数の空調機の各々の蒸発温度と、前記複数の空調機の各々の設置位置とに基づく情報をユーザに通知する通知手段をさらに備える、請求項1から4のいずれか1項に記載の空調制御装置。 5. Any one of claims 1 to 4, further comprising notification means for notifying a user of information based on the determined evaporation temperature of each of the plurality of air conditioners and the installation position of each of the plurality of air conditioners. The air conditioning control device described in .
  6.  請求項1から5のいずれか1項に記載の空調制御装置と、
     複数の空調機と、を備える、空調システム。
    An air conditioning control device according to any one of claims 1 to 5,
    An air conditioning system that includes multiple air conditioners.
  7.  空調負荷取得手段が、空調対象空間の空調負荷を取得し、
     蒸発温度決定手段が、前記空調負荷と、前記空調対象空間を空調する複数の空調機の各々の運転特性とに基づいて、前記複数の空調機の各々の蒸発温度を決定する、空調制御方法。
    The air conditioning load acquisition means acquires the air conditioning load of the space to be air conditioned,
    An air conditioning control method, wherein the evaporation temperature determining means determines the evaporation temperature of each of the plurality of air conditioners based on the air conditioning load and the operating characteristics of each of the plurality of air conditioners that air condition the space to be air conditioned.
  8.  コンピュータを、
     空調対象空間の空調負荷を取得する空調負荷取得手段、
     前記空調負荷と、前記空調対象空間を空調する複数の空調機の各々の運転特性とに基づいて、前記複数の空調機の各々の蒸発温度を決定する蒸発温度決定手段、として機能させる、プログラム。
    computer,
    an air conditioning load acquisition means for acquiring an air conditioning load of an air conditioning target space;
    A program that functions as an evaporation temperature determining means that determines the evaporation temperature of each of the plurality of air conditioners based on the air conditioning load and the operating characteristics of each of the plurality of air conditioners that air condition the air conditioned space.
PCT/JP2022/014245 2022-03-25 2022-03-25 Air conditioning control device, air conditioning system, air conditioning control method, and program WO2023181324A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014245 WO2023181324A1 (en) 2022-03-25 2022-03-25 Air conditioning control device, air conditioning system, air conditioning control method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014245 WO2023181324A1 (en) 2022-03-25 2022-03-25 Air conditioning control device, air conditioning system, air conditioning control method, and program

Publications (1)

Publication Number Publication Date
WO2023181324A1 true WO2023181324A1 (en) 2023-09-28

Family

ID=88100245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014245 WO2023181324A1 (en) 2022-03-25 2022-03-25 Air conditioning control device, air conditioning system, air conditioning control method, and program

Country Status (1)

Country Link
WO (1) WO2023181324A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150027151A1 (en) * 2013-07-26 2015-01-29 Whirlpool Corporation Air conditioning systems for at least two rooms using a single outdoor unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150027151A1 (en) * 2013-07-26 2015-01-29 Whirlpool Corporation Air conditioning systems for at least two rooms using a single outdoor unit

Similar Documents

Publication Publication Date Title
JP5436692B2 (en) Air conditioning control device, air conditioning control method and program
JP6125104B2 (en) Air conditioning control device, air conditioning control method, and program
JP6334299B2 (en) Air conditioning control device, air conditioning control method, and program
JP6494562B2 (en) Control device, air conditioning system, control method, and program
US20220170659A1 (en) Air conditioning control system, air conditioner, and machine learning device
JP6924613B2 (en) Air conditioners, terminals and air conditioning systems
JP6298323B2 (en) Temperature environment control system and apparatus
JP7086219B2 (en) Air conditioners, control devices, air conditioning systems, air conditioning control methods and programs
JP7062475B2 (en) Air conditioning control device, air conditioning system, air conditioning control method and program
WO2020003447A1 (en) Air-conditioning system
JP6948812B2 (en) Management equipment, air conditioning systems, management methods, and programs
JP6920991B2 (en) Controller, device control method, and program
WO2023181324A1 (en) Air conditioning control device, air conditioning system, air conditioning control method, and program
JP7126569B2 (en) air conditioning control system
JP6537705B2 (en) Control device, air conditioning system, air conditioning method and program
JP6288138B2 (en) Control device
JP7392394B2 (en) Air conditioning system and air conditioner
JP6698959B2 (en) Controller, radiation air conditioning equipment, control method and control program
JP5657289B2 (en) Controller, ventilation system, control method, and program
JP2021032478A (en) Data set for learning and machine learning method using the same
WO2022079866A1 (en) Air conditioner and air conditioning control method
WO2022059100A1 (en) Control device, ventilation system, air conditioner device, ventilation control method, and program
WO2021240604A1 (en) Air conditioning control device, air conditioning system, air conditioning method, and program
JP6116442B2 (en) Ventilation system and method for controlling ventilation system
JP7282447B2 (en) Air-conditioning system, air-conditioning control device, air-conditioning method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933464

Country of ref document: EP

Kind code of ref document: A1