WO2023181193A1 - Impeller and blower - Google Patents

Impeller and blower Download PDF

Info

Publication number
WO2023181193A1
WO2023181193A1 PCT/JP2022/013588 JP2022013588W WO2023181193A1 WO 2023181193 A1 WO2023181193 A1 WO 2023181193A1 JP 2022013588 W JP2022013588 W JP 2022013588W WO 2023181193 A1 WO2023181193 A1 WO 2023181193A1
Authority
WO
WIPO (PCT)
Prior art keywords
main plate
shaft
fixing member
axial direction
contact
Prior art date
Application number
PCT/JP2022/013588
Other languages
French (fr)
Japanese (ja)
Inventor
一輝 岡本
勇児 秋場
和真 宮本
友祐 澤野
周平 横山
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/013588 priority Critical patent/WO2023181193A1/en
Priority to JP2024509534A priority patent/JPWO2023181193A5/en
Publication of WO2023181193A1 publication Critical patent/WO2023181193A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps

Definitions

  • the present disclosure relates to an impeller including a main plate and a plurality of blades, and a blower including the impeller.
  • the impeller of the blower includes a main plate that rotates as the motor rotates, and a plurality of blades that are spaced apart from each other along the outer periphery of the main plate.
  • the main plate is attached to the motor shaft.
  • the direction parallel to the shaft of the motor will be referred to as the axial direction.
  • the axial position of the main plate on the shaft is fixed using a fixing member such as a washer that is passed through the motor shaft.
  • the present disclosure has been made in view of the above, and aims to provide an impeller that can reduce resonance without using a damping material.
  • an impeller includes a main plate having a main plate insertion hole into which a shaft is inserted, and a main plate provided at intervals along the outer periphery of the main plate. and a plurality of wings extending in the axial direction of the shaft.
  • a contact part provided at a position away from the main plate insertion hole in the radial direction, which is a direction perpendicular to the axial direction, and a contact part provided from the main plate insertion hole to the contact part.
  • a separation part is provided and located on the other side of the contact part along the axial direction.
  • the impeller according to the present disclosure has the effect that resonance can be reduced without using a damping material.
  • a perspective view showing a blower according to Embodiment 1 A cross-sectional view taken along the line II-II shown in Figure 1.
  • a perspective view showing an impeller according to Embodiment 1 A perspective view showing a motor and a fixing member according to Embodiment 1 2 is a cross-sectional view showing a blower according to a comparative example, and corresponds to a cross-sectional view taken along the line II-II shown in FIG. 1.
  • a perspective view showing an impeller according to a comparative example FIG. 2 is a perspective view showing a blower according to a second embodiment, and a perspective view showing a motor and a fixing member according to the second embodiment.
  • FIG. 2 is a cross-sectional view showing the blower according to the second embodiment, and corresponds to the cross-sectional view taken along the line II-II shown in FIG. 1.
  • a perspective view showing a fixing member according to a modification of the second embodiment 2 is a cross-sectional view showing the blower according to Embodiment 3, and corresponds to the cross-sectional view taken along the line II-II shown in FIG. 1.
  • this is a graph showing the relationship between the amount of deformation in the circumferential direction of the impeller and the natural frequency when the radial dimension of the fixed member is changed, and is a graph based on frequency response analysis.
  • 2 is a sectional view showing a blower according to Modification 1 of Embodiment 3, and corresponds to a sectional view taken along line II-II shown in FIG. 1.
  • a perspective view showing an impeller according to Modification 1 of Embodiment 3 2 is a cross-sectional view showing a blower according to a second modification of the third embodiment, and corresponds to a cross-sectional view taken along the line II-II shown in FIG. 1.
  • FIG. 2 is a sectional view showing the blower according to Embodiment 4, and corresponds to the sectional view taken along the line II-II shown in FIG. 1.
  • a perspective view showing an impeller according to Embodiment 4 A perspective view showing an impeller according to Modification 1 of Embodiment 4
  • FIG. 1 is a perspective view showing a blower 1 according to the first embodiment.
  • FIG. 2 is a cross-sectional view taken along line II-II shown in FIG.
  • the outer appearance of the housing 2b is shown instead of a cross section for the sake of simplification.
  • the blower 1 includes a motor 2, an impeller 3, a fixing member 4, and a casing 5.
  • the motor 2 has a shaft 2a and a housing 2b.
  • the shaft 2a is formed into a cylindrical shape having a central axis C.
  • the axial direction is the axial direction of the shaft 2a of the motor 2.
  • the radial direction is a direction perpendicular to the axial direction.
  • the circumferential direction is the rotation direction of the shaft 2a.
  • the direction from the shaft 2a toward the housing 2b along the axial direction is defined as one side along the axial direction, and the side opposite to the one along the axial direction is defined as the other side along the axial direction.
  • the axial direction may coincide with the vertical direction, may coincide with the horizontal direction, or may intersect obliquely with respect to the vertical direction and the horizontal direction.
  • the casing 5 is a member that houses the impeller 3.
  • the casing 5 rectifies the airflow generated by the rotation of the impeller 3.
  • the casing 5 has a pair of casing side walls 5a, a casing peripheral wall 5b, and an air outlet 5c.
  • the pair of casing side walls 5a cover the impeller 3 from the axial direction.
  • the pair of casing side wall portions 5a are separated from each other in the axial direction.
  • the impeller 3 is arranged between the pair of casing side walls 5a.
  • a suction port 5d for sucking air into the casing 5 is formed in one of the casing side walls 5a.
  • a fixing hole 5e to which the motor 2 is attached is formed in the other casing side wall portion 5a.
  • the other casing side wall portion 5a serves as a fixing wall for fixing the motor 2.
  • the casing peripheral wall portion 5b covers the impeller 3 from the radial direction.
  • the air outlet 5c is a part for blowing out the airflow generated by the impeller 3 to the outside of the casing 5.
  • the air outlet 5c is formed by extending a part of the casing peripheral wall part 5b and a part of the casing side wall part 5a outward in the radial direction.
  • the casing peripheral wall portion 5b is not provided in the portion of the casing 5 where the air outlet 5c is formed.
  • the motor 2 is a member that rotates an impeller 3 disposed within the casing 5.
  • the housing 2b is a metal member that forms the outer shell of the motor 2.
  • the housing 2b accommodates a stator, a rotor, and the like in addition to a portion of the shaft 2a.
  • a flange portion 2c extending radially outward is formed on the outer peripheral surface of the housing 2b.
  • the housing 2b is inserted into the fixing hole 5e of the casing 5, and is installed across the inside and outside of the casing 5.
  • the flange portion 2c of the housing 2b and the casing side wall portion 5a are superimposed on each other and fixed with bolts or the like (not shown).
  • the suction port 5d and the fixing hole 5e are separated from each other in the axial direction.
  • the remainder of the shaft 2a protrudes to the outside of the housing 2b.
  • a main plate 6 of the impeller 3, which will be described later, is attached to a portion of the shaft 2a located outside the housing 2b. The main plate 6 rotates as the shaft 2a rotates.
  • the impeller 3 is a member that is rotated by the motor 2 with the central axis C as a rotation axis. As the impeller 3 rotates, air sucked in from the suction port 5d becomes an airflow and is blown out of the casing 5 from the blowout port 5c.
  • the impeller 3 is made of, for example, metal or resin.
  • FIG. 3 is a perspective view showing the impeller 3 according to the first embodiment.
  • the impeller 3 includes a main plate 6, a plurality of blades 7, and a reinforcing ring 8.
  • the main plate 6 has a circular shape when viewed along the axial direction.
  • the plurality of wings 7 are provided along the outer peripheral edge of the main plate 6 at intervals.
  • Each of the plurality of blades 7 extends in the axial direction.
  • the reinforcing ring 8 has an annular shape when viewed along the axial direction.
  • the reinforcing ring 8 is provided at a position apart from the main plate 6 in the axial direction.
  • the reinforcing ring 8 surrounds the plurality of wings 7.
  • the fixing member 4 is a member that is attached to the shaft 2a between the main plate 6 and the housing 2b, contacts the main plate 6, and fixes the axial position of the impeller 3.
  • the fixing member 4 is made of, for example, metal or resin.
  • the fixing member 4 is, for example, a washer.
  • FIG. 4 is a perspective view showing the motor 2 and fixing member 4 according to the first embodiment.
  • the shape of the fixing member 4 when viewed along the axial direction is circular.
  • a fixed insertion hole 4a through which the shaft 2a is inserted is formed in the center of the fixed member 4.
  • the fixed member 4 has a first fixed shaft end surface 4b and a second fixed shaft end surface 4c.
  • the first fixed shaft end surface 4b is a surface of the fixed member 4 that faces the other side along the axial direction.
  • the second fixed shaft end surface 4c is a surface facing one side of the fixed member 4 along the axial direction.
  • the main plate 6 has a main plate bottom wall part 6a, a main plate side wall part 6b, and a main plate peripheral wall part 6c.
  • the main plate bottom wall portion 6a extends in the radial direction.
  • the main plate bottom wall portion 6a has a circular shape when viewed along the axial direction.
  • a boss portion 6d that is thicker in the axial direction than other portions is formed at the center of the main plate bottom wall portion 6a.
  • a main plate insertion hole 6e through which the shaft 2a is inserted is formed in the boss portion 6d. The main plate insertion hole 6e is formed to penetrate the main plate bottom wall portion 6a in the axial direction.
  • the main plate side wall portion 6b extends from the outer peripheral edge of the main plate bottom wall portion 6a toward the housing 2b, and reaches the radially outer side of the housing 2b.
  • the main plate side wall portion 6b is spaced apart from the housing 2b in the radial direction.
  • the main plate side wall portion 6b is formed in a tapered shape whose diameter increases from the outer peripheral edge of the main plate bottom wall portion 6a toward the housing 2b.
  • the main plate peripheral wall portion 6c extends radially outward from the tip edge of the main plate side wall portion 6b.
  • the main plate peripheral wall portion 6c has an annular shape when viewed along the axial direction.
  • the main plate bottom wall portion 6a has a main plate shaft end face 6f facing toward the fixing member 4.
  • the main plate axial end surface 6f is a surface facing one side of the main plate 6 along the axial direction.
  • a contact portion 6g and a separation portion 6h are formed on the main plate shaft end surface 6f.
  • the contact portion 6g is provided at a position apart from the shaft 2a in the radial direction and contacts the fixing member 4.
  • the contact portion 6g is an annular plane.
  • the separating portion 6h is provided from the shaft 2a to the contact portion 6g, and is separated from the fixing member 4 while the contact portion 6g is in contact with the fixing member 4.
  • the separating portion 6h is provided from the edge of the portion of the main plate insertion hole 6e that opens to the main plate shaft end face 6f to a plane that becomes the contact portion 6g.
  • the separation part 6h is located on the other side of the contact part 6g along the axial direction.
  • the separation part 6h is located on the side farther away from the housing 2b than the contact part 6g.
  • the separating portion 6h is an annular recessed portion recessed from one side toward the other along the axial direction.
  • the vibrations generated in the impeller 3 are mainly axial vibrations of shaft vibrations and torsional vibrations in the circumferential direction. Since the main plate 6 holds a plurality of blades 7 and the plurality of blades 7 are provided on the outer peripheral edge of the main plate 6 and the outer peripheral edge of the main plate 6 has a heavy mass, the main plate 6 is an impeller. 3. It has a large effect on the overall vibration.
  • the natural frequency of the impeller 3 can be changed by changing the location of the main plate 6 that contacts the fixed member 4, which affects this vibration.
  • the main plate shaft end surface 6f includes a contact portion 6g that is provided at a position radially away from the main plate insertion hole 6e and contacts the fixing member 4, and a contact portion 6g extending from the main plate insertion hole 6e to the contact portion 6g.
  • a separating part 6h is formed so that the contact part 6g is separated from the fixing member 4 while being in contact with the fixing member 4.
  • the natural frequency of the impeller 3 can be changed so as to deviate from the resonant frequency.
  • the impeller 3's characteristic The frequency can be removed from the resonant frequency. Therefore, the resonance in the blower 1 can be avoided or the resonance in the blower 1 can be reduced without using a damping material.
  • the amplitude of vibration of the impeller 3 can be changed.
  • the contact point between the main plate 6 and the fixing member 4 can be brought close to a large area. Thereby, the vibration of the impeller 3 can be suppressed from becoming dominant.
  • FIG. 5 is a cross-sectional view showing the blower 10 according to the comparative example, and corresponds to the cross-sectional view taken along the line II-II shown in FIG. 1.
  • FIG. 6 is a perspective view showing an impeller 3 according to a comparative example.
  • the main plate shaft end surface 6f does not have the separation part 6h, and the main plate shaft end surface 6f and the first fixed shaft end surface 4b are apparently flat.
  • the location where the main plate 6 and the fixed member 4 come into contact changes depending on the flatness of the main plate shaft end surface 6f and the first fixed shaft end surface 4b.
  • the shortest distance in the radial direction from the central axis C of the shaft 2a to the point where the main plate 6 and the fixed member 4 contact is not clearly determined. Therefore, since the natural frequency of the impeller 3 changes depending on the flatness of the main plate shaft end surface 6f and the first fixed shaft end surface 4b, the location where the electromagnetic vibration of the motor 2 is propagated to the impeller 3 is intentionally changed. It is difficult to intentionally change the natural frequency of the impeller 3.
  • a separation part 6h is formed on the main plate shaft end face 6f radially inward from the contact part 6g, so that the main plate 6 and the fixing member 4 can be connected to each other.
  • the main plate 6 and the fixing member 4 are reliably separated from each other on the radially inner side of the point where they contact each other. Therefore, the shortest distance L in the radial direction from the central axis C of the shaft 2a to the point where the main plate 6 and the fixed member 4 contact is clearly determined. Therefore, by intentionally changing the location where the electromagnetic vibrations of the motor 2 propagate to the impeller 3, the natural frequency of the impeller 3 can be intentionally changed.
  • the radially innermost location of the contact points between the main plate 6 and the fixing member 4 be sufficiently spaced radially outward from the central axis C of the shaft 2a.
  • the radius of the shaft 2a is R
  • the relationship L ⁇ 2 ⁇ R holds true. That is, of the locations where the main plate 6 and the fixing member 4 come into contact, it is desirable that the radially innermost location be located at least twice the radius R of the shaft 2a from the central axis C of the shaft 2a.
  • one of the main plate shaft end surface 6f and the fixing member 4 is provided at a position away from the shaft 2a in the radial direction, which is a direction perpendicular to the axial direction. It is only necessary that a contact portion 6g that contacts one or the other is formed. Further, either one of the main plate shaft end surface 6f and the fixing member 4 is provided extending from the shaft 2a to the contact portion 6g, so that the contact portion 6g contacts the other of the main plate shaft end surface 6f and the fixing member 4. It is only necessary that a separating portion 6h be formed to be separated from the other of the main plate shaft end surface 6f and the fixing member 4 in this state.
  • FIG. 7 is a perspective view showing the blower 1A according to the second embodiment, and is a perspective view showing the motor 2 and the fixing member 4 according to the second embodiment.
  • FIG. 8 is a cross-sectional view showing the blower 1A according to the second embodiment, and corresponds to the cross-sectional view taken along the line II-II shown in FIG.
  • the first fixed shaft end surface 4b is the surface of the fixed member 4 that faces the other side along the axial direction
  • the second fixed shaft end surface 4c is the surface of the fixed member 4 that faces the other side along the axial direction. This is the surface facing one side along the axial direction.
  • a plurality of contact portions 4d and a separation portion 4e are formed on the first fixed shaft end surface 4b.
  • the second fixed shaft end surface 4c is a plane extending in the radial direction.
  • the first fixed shaft end surface 4b and the second fixed shaft end surface 4c have an asymmetrical shape. That is, the shape of the fixing member 4 is not symmetrical between the front and the back.
  • the contact portion 4d is a protrusion portion 4f that protrudes toward the main plate shaft end surface 6f in this embodiment.
  • the protrusions 4f are provided at positions separated from the shaft 2a in the radial direction and spaced apart from each other along the circumferential direction.
  • the protruding portion 4f has a convex shape on the main plate shaft end face 6f side and a concave shape on the housing 2b side.
  • the protrusion 4f is provided by locally bending the fixing member 4 without changing the overall plate thickness of the fixing member 4. It may be provided. As shown in FIG.
  • the protruding portion 4f is formed in a truncated conical shape whose diameter decreases as it moves away from the first fixed shaft end surface 4b in the axial direction.
  • the tip of the protrusion 4f is a flat surface extending in the radial direction.
  • the number of protrusions 4f is eight in this embodiment. The eight protrusions 4f are arranged on the same circumference centered on the central axis C.
  • the separating portion 4e is provided extending from the shaft 2a to the protruding portion 4f.
  • the separating portion 4e is separated from the main plate shaft end surface 6f with the protruding portion 4f in contact with the main plate shaft end surface 6f.
  • the separating portion 4e is a plane extending in the radial direction.
  • the separating portion 4e is provided from the edge of the portion of the fixed insertion hole 4a that opens to the first fixed shaft end surface 4b to the protruding portion 4f.
  • the fixing member 4 may be manufactured by providing a protrusion 4f on a metal plate such as a flat washer, or may be manufactured from a resin material.
  • This embodiment also provides the same effects as the first embodiment described above.
  • a contact portion 4d and a separation portion 4e are formed on the first fixed shaft end surface 4b, and the second fixed shaft end surface 4c is a plane extending in the radial direction.
  • the fixing member 4 is attached to the shaft 2a so that the first fixed shaft end surface 4b faces the main plate shaft end surface 6f, or the second fixed shaft end surface 4c faces the main plate shaft end surface 6f.
  • the fixing member 4 By simply attaching the fixing member 4 to the shaft 2a, the shortest distance L in the radial direction from the central axis C of the shaft 2a to the point where the main plate 6 and the fixing member 4 contact can be changed. Therefore, the natural frequency of the impeller 3 can be easily changed by simply changing the location where the electromagnetic vibration of the motor 2 is propagated to the impeller 3.
  • FIG. 8 shows a case where the fixing member 4 is attached to the shaft 2a so that the first fixed shaft end surface 4b faces the main plate shaft end surface 6f.
  • the fixing member 4 is attached to the shaft 2a so that the second fixed shaft end surface 4c faces the main plate shaft end surface 6f
  • the first fixed shaft end surface 4b is attached to one of the fixing members 4 along the axial direction.
  • the second fixed shaft end surface 4c becomes the surface of the fixed member 4 that faces the other side along the axial direction.
  • the shortest radial distance L from the central axis C of the shaft 2a to the point where the main plate shaft end face 6f and the protrusion 4f of the fixing member 4 come into contact can be increased in the radial direction. Can be expanded.
  • the radial dimension of the fixed member 4 must be large enough to fit inside the plurality of blades 7 in the radial direction. It is desirable to set the
  • the location where the main plate shaft end surface 6f and the protruding portion 4f of the fixing member 4 come into contact serves as a fulcrum around which the impeller 3 rotates. Therefore, in order to suppress the vibration of the impeller 3 and stabilize the rotation of the impeller 3, it is desirable that the main plate shaft end surface 6f and the protruding portion 4f of the fixing member 4 contact each other in their planes.
  • the fixing member 4 may have the configuration shown in FIG. 9.
  • FIG. 9 is a perspective view showing a fixing member 4 according to a modification of the second embodiment.
  • the contact portion 4d is an annular plane.
  • the contact portion 4d is provided at a position apart from the shaft 2a shown in FIG. 8 in the radial direction and contacts the main plate shaft end surface 6f.
  • the separating portion 4e is a step-like stepped portion that is provided from the shaft 2a to the flat contact portion 4d, and is spaced apart from the main plate shaft end surface 6f as it goes from the outer side to the inner side in the radial direction. Even in this case, the same effects as in the first and second embodiments described above can be achieved.
  • FIG. 10 is a cross-sectional view showing the blower 1B according to the third embodiment, and corresponds to the cross-sectional view taken along the line II-II shown in FIG.
  • FIG. 11 is a perspective view showing the impeller 3 according to the third embodiment.
  • the central portion of the main plate shaft end surface 6f in the radial direction is formed in a step-like shape that becomes further away from the housing 2b from the outer side toward the inner side in the radial direction.
  • the main plate shaft end surface 6f is provided with a plurality of annular flat surfaces 61 arranged concentrically around the shaft 2a, and a stepped surface 62 connecting adjacent flat surfaces 61.
  • the thickness of the main plate bottom wall part 6a is made thicker than the thickness of the main plate side wall part 6b and the main plate peripheral wall part 6c, and the thickness of the main plate bottom wall part 6a is partially changed.
  • a plane 61 is formed.
  • Each of the plurality of planes 61 extends in the radial direction. Although the number of planes 61 may be increased or decreased as appropriate, it is three in this embodiment. When distinguishing the three planes 61, they are referred to as a plane 61a, a plane 61b, and a plane 61c in order from the outside in the radial direction to the inside.
  • the stepped surface 62 extends in the axial direction.
  • the stepped surface 62 connects the inner peripheral edge of the adjacent flat surface 61 and the outer peripheral edge of the flat surface 61.
  • the number of stepped surfaces 62 is two in this embodiment.
  • the number of stepped surfaces 62 increases or decreases depending on the number of flat surfaces 61. When distinguishing the two stepped surfaces 62, they are referred to as a stepped surface 62a and a stepped surface 62b in order from the one closest to the housing 2b in the axial direction.
  • the stepped surface 62a connects the inner circumferential edge of the plane 61a and the outer circumferential edge of the plane 61b.
  • the stepped surface 62b connects the inner circumferential edge of the plane 61b and the outer circumferential edge of the plane 61c.
  • the step surface 62b is located radially inner than the step surface 62a.
  • the central axis C of the shaft 2a is the normal line and the plane passing through the housing 2b is the reference plane S
  • the axial distance D between the plane 61 and the reference plane S is Among them, the one located on the inner side in the radial direction is longer. Note that in FIG. 10, only the distance D in the axial direction between the plane 61a and the reference plane S is illustrated.
  • the fixing member 4 is in contact with the plane 61a in this embodiment, it may be in contact with the plane 61b. That is, by changing the radial dimension of the fixing member 4, it is possible to bring the fixing member 4 into contact with the plane 61a, and it is also possible to bring the fixing member 4 into contact with the plane 61b.
  • the flat surface 61a becomes the contact portion 6g
  • the portion of the main plate shaft end surface 6f that is radially inner than the flat surface 61a becomes the separation portion 6h.
  • the flat surface 61b becomes the contact portion 6g
  • the portion of the main plate shaft end surface 6f that is radially inner than the flat surface 61b becomes the separation portion 6h.
  • one of the plurality of planes 61a and 61b serves as the contact portion 6g.
  • the plurality of planes 61 provided on the main plate shaft end surface 6f are such that the inner side in the radial direction is further away from the casing 2b in the axial direction, and one of the plurality of planes 61 is located at the contact portion. It will be 6g.
  • the shortest distance L in the radial direction from the central axis C of the shaft 2a to the point where the main plate 6 and the fixing member 4 contact can be changed. Therefore, the natural frequency of the impeller 3 can be easily changed by simply changing the location where the electromagnetic vibration of the motor 2 is propagated to the impeller 3.
  • FIG. 12 is a graph showing the relationship between the amount of axial deformation of the impeller 3 and the natural frequency when the radial dimension of the fixed member 4 is changed in the blower 1B according to the third embodiment, This is a graph obtained by frequency response analysis.
  • FIG. 13 is a graph showing the relationship between the amount of deformation in the circumferential direction of the impeller 3 and the natural frequency when the radial dimension of the fixed member 4 is changed in the blower 1B according to the third embodiment, This is a graph obtained by frequency response analysis.
  • the frequency response analysis shown in FIGS. 12 and 13 was conducted under the conditions that the radial dimension of the impeller 3 in Embodiment 3 was 180 mm, and the axial dimension of the impeller 3 was 100 mm.
  • the impeller 3 has both an axial vibration mode that vibrates in the axial direction and a torsional vibration mode that vibrates torsionally in the circumferential direction, and the amplitude becomes large at the natural frequency. I understand that. It can also be seen that by changing the radial dimension of the fixed member 4, the natural frequency of the impeller 3 can be changed.
  • the radial dimension of the fixed member 4 is as follows. It is desirable to have a size that fits inside the plurality of blades 7 in the radial direction.
  • FIG. 14 is a cross-sectional view showing a blower 1C according to the first modification of the third embodiment, and corresponds to the cross-sectional view taken along the line II-II shown in FIG.
  • FIG. 15 is a perspective view showing an impeller 3 according to a first modification of the third embodiment.
  • the main plate shaft end surface 6f is provided with a plurality of cylindrical ribs 63 arranged concentrically around the shaft 2a. As shown in FIG. 15, a portion of the main plate shaft end surface 6f other than the rib 63 is a flat surface 64. As shown in FIG. The rib 63 projects further toward the housing 2b than the plane 64. The tip of the rib 63 facing toward the housing 2b is a flat surface 61 that extends in the radial direction. Although the number of ribs 63 may be increased or decreased as appropriate, it is two in this modification.
  • rib 63a and a rib 63b When distinguishing the two ribs 63, they are referred to as a rib 63a and a rib 63b in order from the outside in the radial direction to the inside.
  • the plurality of ribs 63 are axially farther away from the housing 2b as they are located on the inner side in the radial direction.
  • the distance D in the axial direction between each rib 63 and the reference plane S is longer as the rib 63 is located on the inner side in the radial direction.
  • FIG. 14 only the distance D in the axial direction between the plane 61 of the rib 63a and the reference plane S is illustrated.
  • the fixing member 4 is in contact with the flat surface 61 of the rib 63a in this modification, it may be in contact with the flat surface 61 of the rib 63b. That is, by changing the radial dimension of the fixing member 4, it is possible to bring the fixing member 4 into contact with the flat surface 61 of the rib 63a, and it is also possible to bring the fixing member 4 into contact with the flat surface 61 of the rib 63b. be.
  • the plurality of planes 61 may have the configuration shown in FIG. 16.
  • FIG. 16 is a sectional view showing a blower 1D according to a second modification of the third embodiment, and corresponds to a sectional view taken along the line II-II shown in FIG.
  • a plurality of flat surfaces 61 may be provided by locally bending the main plate 6 while keeping the thickness of the entire main plate 6 constant. The more the plurality of planes 61 are located on the inner side in the radial direction, the further apart they are from the housing 2b in the axial direction.
  • FIG. 17 is a cross-sectional view showing a blower 1E according to the fourth embodiment, and corresponds to a cross-sectional view taken along the line II-II shown in FIG.
  • FIG. 18 is a perspective view showing the impeller 3 according to the fourth embodiment.
  • the main plate shaft end surface 6f is provided with a plurality of ribs 65 that extend radially from the shaft 2a and protrude toward the housing 2b.
  • the plurality of ribs 65 are spaced apart from each other in the circumferential direction.
  • the number of ribs 65 may be increased or decreased as appropriate, it is six in this embodiment.
  • a plurality of rectangular flat surfaces 66 arranged along the radial direction and a step surface 67 connecting adjacent flat surfaces 66 are provided on the surface of each rib 65 facing the housing 2b.
  • the shape of the surface of each rib 65 facing toward the housing 2b is rotationally symmetrical with the central axis C of the shaft 2a as an axis of symmetry. That is, the positions of the planes 66 of all the ribs 65 in the radial direction are the same.
  • the plane 66 extends in the radial direction. Although the number of planes 66 may be increased or decreased as appropriate, it is three in this embodiment. When distinguishing the three planes 66, they are referred to as a plane 66a, a plane 66b, and a plane 66c in order from the outside in the radial direction to the inside.
  • the stepped surface 67 extends in the axial direction.
  • the step surface 67 connects the inner edge of the adjacent plane 66 and the outer edge of the plane 66.
  • the number of stepped surfaces 67 is two in this embodiment.
  • the number of stepped surfaces 67 increases or decreases depending on the number of flat surfaces 66. When distinguishing the two stepped surfaces 67, they are referred to as a stepped surface 67a and a stepped surface 67b in order from the one closest to the housing 2b in the axial direction.
  • the stepped surface 67a connects the inner edge of the plane 66a and the outer edge of the plane 66b.
  • the stepped surface 67b connects the inner edge of the plane 66b and the outer edge of the plane 66c.
  • the plurality of planes 66 are axially farther away from the housing 2b as they are located on the inner side in the radial direction.
  • the distance D in the axial direction between each plane 66 and the reference plane S is longer as the plane 66 is located on the inner side in the radial direction. Note that in FIG. 17, only the distance D in the axial direction between the plane 66a and the reference plane S is illustrated.
  • the fixing member 4 is in contact with the plane 66a in this embodiment, it may be in contact with the plane 66b. That is, by changing the radial dimension of the fixing member 4, it is possible to bring the fixing member 4 into contact with the plane 66a, and it is also possible to bring the fixing member 4 into contact with the plane 66b.
  • the flat surface 66a becomes the contact portion 6g, and the portion of the main plate shaft end face 6f that is radially inner than the flat surface 66a becomes the separation portion 6h.
  • the flat surface 66b becomes the contact portion 6g, and the portion of the main plate shaft end surface 6f that is radially inner than the flat surface 66b becomes the separation portion 6h.
  • one of the plurality of planes 66a and 66b serves as the contact portion 6g.
  • the present embodiment can also achieve the same effects as the first, second, and third embodiments described above.
  • the plurality of planes 66 provided on the main plate shaft end surface 6f are such that the radially inner side thereof is further away from the housing 2b in the axial direction.
  • One of the contact portions 66 becomes the contact portion 6g.
  • the main plate shaft end surface 6f is provided with a plurality of ribs 65 that extend radially from the shaft 2a and protrude toward the housing 2b.
  • the plurality of planes 66 provided on the facing surfaces are axially farther away from the housing 2b as the planes are located on the inner side in the radial direction.
  • the contact point between the main plate 6 and the fixing member 4 can be changed not only in the radial direction but also in the circumferential direction. That is, by providing the main plate shaft end surface 6f with a plurality of ribs 65 that extend radially from the shaft 2a and protrude toward the housing 2b, the main plate 6 and the fixing member 4 are intermittently in contact with each other in the circumferential direction. do. Therefore, the natural frequency of the impeller 3 can be changed more finely.
  • FIG. 19 is a perspective view showing an impeller 3 according to a first modification of the fourth embodiment.
  • the positions of the planes 66 of each rib 65 in the radial direction are different from each other.
  • ribs 65 having a flat surface 66 on the radially outer portion of the rib 65 and ribs 65 having a flat surface 66 on the radially central portion of the rib 65 are alternately arranged in the circumferential direction. There is.
  • the ribs 65 adjacent to each other in the circumferential direction have flat surfaces 66 offset in the radial direction.
  • the point where the rib 65 and the fixing member 4 contact can be changed individually for each rib 65, and the radial direction from the central axis C of the shaft 2a to the point where the main plate 6 and the fixing member 4 make contact
  • the shortest distance L can be changed for each rib 65.
  • the main plate 6 may have the configuration shown in FIG. 20.
  • FIG. 20 is a perspective view showing an impeller 3 according to a second modification of the fourth embodiment.
  • the main plate side wall 6b is provided with an opening 6i that radially penetrates the main plate side wall 6b.
  • the opening 6i is provided for cooling the motor 2 with air. That is, a portion of the air sucked into the casing 5 from the suction port 5d hits the motor 2 through the opening 6i, thereby cooling the motor 2.
  • the contact point between the main plate 6 and the fixing member 4 can be changed not only in the radial direction but also in the circumferential direction. Therefore, even when the opening 6i is provided in the main plate 6, the location where the electromagnetic vibration of the motor 2 propagates to the impeller 3 is changed, and the natural frequency of the impeller 3 is changed so as to deviate from the resonant frequency. be able to. Therefore, the resonance in the blower 1 can be avoided or the resonance in the blower 1 can be reduced without using a damping material.
  • blowers 1 to 1E may be used for ventilation purposes, air conditioning purposes, and other purposes.
  • the impeller 3 is applied to a multi-blade blower, but the impeller 3 may be applied to a blower other than a multi-blade blower. That is, the impeller 3 is applicable to a general blower, regardless of whether it is a centrifugal blower or an axial blower.
  • blowers 1 to 1E are of the single suction type with one suction port 5d, but may be of the double suction type with two suction ports 5d.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

This impeller (3) has a main plate (6) in which is formed a main plate through-hole (6e) through which a shaft (2a) is inserted, and a plurality of vanes (7) that are provided at intervals therebetween along the outer circumferential edge of the main plate (6) and extend in the axial direction of the shaft (2a). On a surface of the main plate (6) that faces one side in the axial direction, there are formed: a contact part (6g) that is provided at a position spaced away from the main plate through-hole (6e) in a radial direction that is a direction perpendicular to the axial direction; and a separation part (6h) that is provided from the main plate through-hole (6e) up to the contact part (6g) and is positioned on one side along the axial direction from the contact part (6g).

Description

羽根車および送風機impeller and blower
 本開示は、主板と複数の翼とを備える羽根車およびこの羽根車を備える送風機に関する。 The present disclosure relates to an impeller including a main plate and a plurality of blades, and a blower including the impeller.
 送風機の羽根車は、モータの回転に伴って回転する主板と、主板の外周縁に沿って互いに間隔を空けて設けられた複数の翼とを備えている。主板は、モータのシャフトに取り付けられている。以下、モータのシャフトに平行な方向を軸方向とする。一般的に、モータのシャフトに通されたワッシャーなどの固定部材を用いて、シャフトにおける主板の軸方向の位置が固定されている。 The impeller of the blower includes a main plate that rotates as the motor rotates, and a plurality of blades that are spaced apart from each other along the outer periphery of the main plate. The main plate is attached to the motor shaft. Hereinafter, the direction parallel to the shaft of the motor will be referred to as the axial direction. Generally, the axial position of the main plate on the shaft is fixed using a fixing member such as a washer that is passed through the motor shaft.
 このような送風機の羽根車において、モータが加振源となる電磁振動が羽根車の固有周波数と一致すると、共振が生じて騒音となる。共振に伴う騒音を低減させる対策として、例えば、特許文献1のように制振材を用いてモータから羽根車への振動の伝播を低減させる技術が知られている。特許文献1に開示された技術では、2つの制振材で主板を軸方向から挟んでいる。各制振材は、ゴムとゴムを挟み込む2枚の板材とからなる。 In the impeller of such a blower, when the electromagnetic vibration caused by the motor as an excitation source matches the natural frequency of the impeller, resonance occurs, resulting in noise. As a countermeasure for reducing noise caused by resonance, a technique is known that uses a damping material to reduce the propagation of vibrations from a motor to an impeller, as disclosed in Patent Document 1, for example. In the technique disclosed in Patent Document 1, the main plate is sandwiched between two damping materials in the axial direction. Each damping material consists of rubber and two plates sandwiching the rubber.
特開平7-103191号公報Japanese Patent Application Publication No. 7-103191
 特許文献1に開示された技術では、制振材を用いることにより、モータから羽根車への振動の伝播を低減させて共振を低減させる効果が得られるものの、部品点数の増加、製造工数の増加といった問題がある。 In the technology disclosed in Patent Document 1, by using a damping material, it is possible to reduce the propagation of vibration from the motor to the impeller and reduce resonance, but the number of parts and manufacturing steps increase. There are problems like this.
 本開示は、上記に鑑みてなされたものであって、制振材を用いることなく共振を低減させることができる羽根車を得ることを目的とする。 The present disclosure has been made in view of the above, and aims to provide an impeller that can reduce resonance without using a damping material.
 上述した課題を解決し、目的を達成するために、本開示にかかる羽根車は、シャフトが挿通される主板挿通孔が形成された主板と、主板の外周縁に沿って互いに間隔を空けて設けられて、シャフトの軸方向に延びる複数の翼と、を有している。主板のうち軸方向に沿った一方を向く面には、軸方向と直交する方向である半径方向に主板挿通孔と離れた位置に設けられた接触部と、主板挿通孔から接触部に亘って設けられて接触部よりも軸方向に沿った他方に位置する離隔部とが形成されている。 In order to solve the above-mentioned problems and achieve the objects, an impeller according to the present disclosure includes a main plate having a main plate insertion hole into which a shaft is inserted, and a main plate provided at intervals along the outer periphery of the main plate. and a plurality of wings extending in the axial direction of the shaft. On the surface of the main plate facing one side along the axial direction, there is a contact part provided at a position away from the main plate insertion hole in the radial direction, which is a direction perpendicular to the axial direction, and a contact part provided from the main plate insertion hole to the contact part. A separation part is provided and located on the other side of the contact part along the axial direction.
 本開示にかかる羽根車は、制振材を用いることなく共振を低減させることができるという効果を奏する。 The impeller according to the present disclosure has the effect that resonance can be reduced without using a damping material.
実施の形態1にかかる送風機を示した斜視図A perspective view showing a blower according to Embodiment 1 図1に示されるII-II線に沿った断面図A cross-sectional view taken along the line II-II shown in Figure 1. 実施の形態1にかかる羽根車を示した斜視図A perspective view showing an impeller according to Embodiment 1 実施の形態1にかかるモータおよび固定部材を示した斜視図A perspective view showing a motor and a fixing member according to Embodiment 1 比較例にかかる送風機を示した断面図であって、図1に示されるII-II線に沿った断面図に相当する図2 is a cross-sectional view showing a blower according to a comparative example, and corresponds to a cross-sectional view taken along the line II-II shown in FIG. 1. 比較例にかかる羽根車を示した斜視図A perspective view showing an impeller according to a comparative example 実施の形態2にかかる送風機を示した斜視図であって、実施の形態2にかかるモータおよび固定部材を示した斜視図FIG. 2 is a perspective view showing a blower according to a second embodiment, and a perspective view showing a motor and a fixing member according to the second embodiment. 実施の形態2にかかる送風機を示した断面図であって、図1に示されるII-II線に沿った断面図に相当する図2 is a cross-sectional view showing the blower according to the second embodiment, and corresponds to the cross-sectional view taken along the line II-II shown in FIG. 1. 実施の形態2の変形例にかかる固定部材を示した斜視図A perspective view showing a fixing member according to a modification of the second embodiment 実施の形態3にかかる送風機を示した断面図であって、図1に示されるII-II線に沿った断面図に相当する図2 is a cross-sectional view showing the blower according to Embodiment 3, and corresponds to the cross-sectional view taken along the line II-II shown in FIG. 1. 実施の形態3にかかる羽根車を示した斜視図A perspective view showing an impeller according to Embodiment 3 実施の形態3にかかる送風機において、固定部材の半径方向の寸法を変えた際の羽根車における軸方向の変形量と固有周波数との関係を示したグラフであって、周波数応答解析によるグラフIn the blower according to Embodiment 3, this is a graph showing the relationship between the amount of axial deformation in the impeller and the natural frequency when the radial dimension of the fixed member is changed, and is a graph based on frequency response analysis. 実施の形態3にかかる送風機において、固定部材の半径方向の寸法を変えた際の羽根車における周方向の変形量と固有周波数との関係を示したグラフであって、周波数応答解析によるグラフIn the blower according to Embodiment 3, this is a graph showing the relationship between the amount of deformation in the circumferential direction of the impeller and the natural frequency when the radial dimension of the fixed member is changed, and is a graph based on frequency response analysis. 実施の形態3の変形例1にかかる送風機を示した断面図であって、図1に示されるII-II線に沿った断面図に相当する図2 is a sectional view showing a blower according to Modification 1 of Embodiment 3, and corresponds to a sectional view taken along line II-II shown in FIG. 1. 実施の形態3の変形例1にかかる羽根車を示した斜視図A perspective view showing an impeller according to Modification 1 of Embodiment 3 実施の形態3の変形例2にかかる送風機を示した断面図であって、図1に示されるII-II線に沿った断面図に相当する図2 is a cross-sectional view showing a blower according to a second modification of the third embodiment, and corresponds to a cross-sectional view taken along the line II-II shown in FIG. 1. 実施の形態4にかかる送風機を示した断面図であって、図1に示されるII-II線に沿った断面図に相当する図2 is a sectional view showing the blower according to Embodiment 4, and corresponds to the sectional view taken along the line II-II shown in FIG. 1. 実施の形態4にかかる羽根車を示した斜視図A perspective view showing an impeller according to Embodiment 4 実施の形態4の変形例1にかかる羽根車を示した斜視図A perspective view showing an impeller according to Modification 1 of Embodiment 4 実施の形態4の変形例2にかかる羽根車を示した斜視図A perspective view showing an impeller according to Modification 2 of Embodiment 4
 以下に、実施の形態にかかる羽根車および送風機を図面に基づいて詳細に説明する。 Below, an impeller and a blower according to an embodiment will be described in detail based on the drawings.
実施の形態1.
 図1は、実施の形態1にかかる送風機1を示した斜視図である。図2は、図1に示されるII-II線に沿った断面図である。なお、図2では、簡略化のため筐体2bは断面ではなく外観を示している。図1および図2に示すように、送風機1は、モータ2と、羽根車3と、固定部材4と、ケーシング5とを備えている。図2に示すように、モータ2は、シャフト2aと、筐体2bとを有している。シャフト2aは、中心軸Cを有する円柱形状に形成されている。
Embodiment 1.
FIG. 1 is a perspective view showing a blower 1 according to the first embodiment. FIG. 2 is a cross-sectional view taken along line II-II shown in FIG. In addition, in FIG. 2, the outer appearance of the housing 2b is shown instead of a cross section for the sake of simplification. As shown in FIGS. 1 and 2, the blower 1 includes a motor 2, an impeller 3, a fixing member 4, and a casing 5. As shown in FIG. 2, the motor 2 has a shaft 2a and a housing 2b. The shaft 2a is formed into a cylindrical shape having a central axis C.
 以下、送風機1の各構成要素について方向を説明するときには、中心軸Cと平行な方向を軸方向、中心軸Cと直交する方向を半径方向、中心軸Cを中心とする回転方向を周方向とする。軸方向は、モータ2のシャフト2aの軸方向である。半径方向は、軸方向と直交する方向である。周方向は、シャフト2aの回転方向である。また、軸方向に沿ってシャフト2aから筐体2bに向かう方を軸方向に沿った一方とし、軸方向に沿った一方の反対側を軸方向に沿った他方とする。軸方向は、鉛直方向に一致してもよいし、水平方向に一致してもよいし、鉛直方向および水平方向に対して斜交してもよい。 Hereinafter, when explaining the directions of each component of the blower 1, the direction parallel to the central axis C will be referred to as the axial direction, the direction perpendicular to the central axis C will be referred to as the radial direction, and the direction of rotation around the central axis C will be referred to as the circumferential direction. do. The axial direction is the axial direction of the shaft 2a of the motor 2. The radial direction is a direction perpendicular to the axial direction. The circumferential direction is the rotation direction of the shaft 2a. Further, the direction from the shaft 2a toward the housing 2b along the axial direction is defined as one side along the axial direction, and the side opposite to the one along the axial direction is defined as the other side along the axial direction. The axial direction may coincide with the vertical direction, may coincide with the horizontal direction, or may intersect obliquely with respect to the vertical direction and the horizontal direction.
 図1に示すように、ケーシング5は、羽根車3を収容する部材である。ケーシング5は、羽根車3が回転することにより生成される空気流を整流する。ケーシング5は、一対のケーシング側壁部5aと、ケーシング周壁部5bと、吹出口5cとを有している。 As shown in FIG. 1, the casing 5 is a member that houses the impeller 3. The casing 5 rectifies the airflow generated by the rotation of the impeller 3. The casing 5 has a pair of casing side walls 5a, a casing peripheral wall 5b, and an air outlet 5c.
 図2に示すように、一対のケーシング側壁部5aは、羽根車3を軸方向から覆う。一対のケーシング側壁部5aは、軸方向に互いに離れている。一対のケーシング側壁部5aの間には、羽根車3が配置されている。一方のケーシング側壁部5aには、ケーシング5の内部に空気を吸い込むための吸込口5dが形成されている。他方のケーシング側壁部5aには、モータ2が取り付けられる固定孔5eが形成されている。他方のケーシング側壁部5aは、モータ2を固定するための固定壁となる。ケーシング周壁部5bは、羽根車3を半径方向から覆う。 As shown in FIG. 2, the pair of casing side walls 5a cover the impeller 3 from the axial direction. The pair of casing side wall portions 5a are separated from each other in the axial direction. The impeller 3 is arranged between the pair of casing side walls 5a. A suction port 5d for sucking air into the casing 5 is formed in one of the casing side walls 5a. A fixing hole 5e to which the motor 2 is attached is formed in the other casing side wall portion 5a. The other casing side wall portion 5a serves as a fixing wall for fixing the motor 2. The casing peripheral wall portion 5b covers the impeller 3 from the radial direction.
 図1に示すように、吹出口5cは、羽根車3によって生成された空気流をケーシング5の外部に吹き出すための部分である。吹出口5cは、ケーシング周壁部5bの一部およびケーシング側壁部5aの一部を半径方向外側に張り出すことにより形成されている。ケーシング5のうち吹出口5cが形成される部分には、ケーシング周壁部5bが設けられていない。 As shown in FIG. 1, the air outlet 5c is a part for blowing out the airflow generated by the impeller 3 to the outside of the casing 5. The air outlet 5c is formed by extending a part of the casing peripheral wall part 5b and a part of the casing side wall part 5a outward in the radial direction. The casing peripheral wall portion 5b is not provided in the portion of the casing 5 where the air outlet 5c is formed.
 図2に示すように、モータ2は、ケーシング5内に配置された羽根車3を回転させる部材である。筐体2bは、モータ2の外郭を構成する金属製の部材である。具体的な図示は省略するが、筐体2bの内部には、シャフト2aの一部の他に、ステータ、ロータなどが収容される。筐体2bの外周面には、半径方向外側に延びるフランジ部2cが形成されている。筐体2bは、ケーシング5の固定孔5eに挿入されており、ケーシング5の内部と外部とに跨って設置されている。筐体2bのフランジ部2cとケーシング側壁部5aとは互いに重ね合わされて図示しないボルトなどにより固定されている。 As shown in FIG. 2, the motor 2 is a member that rotates an impeller 3 disposed within the casing 5. The housing 2b is a metal member that forms the outer shell of the motor 2. Although not shown in detail, the housing 2b accommodates a stator, a rotor, and the like in addition to a portion of the shaft 2a. A flange portion 2c extending radially outward is formed on the outer peripheral surface of the housing 2b. The housing 2b is inserted into the fixing hole 5e of the casing 5, and is installed across the inside and outside of the casing 5. The flange portion 2c of the housing 2b and the casing side wall portion 5a are superimposed on each other and fixed with bolts or the like (not shown).
 吸込口5dと固定孔5eとは、軸方向に互いに離れている。シャフト2aの残部は、筐体2bの外部に突出している。シャフト2aのうち筐体2bの外部に位置する部分には、羽根車3の後記する主板6が取り付けられている。主板6は、シャフト2aの回転に伴って回転する。 The suction port 5d and the fixing hole 5e are separated from each other in the axial direction. The remainder of the shaft 2a protrudes to the outside of the housing 2b. A main plate 6 of the impeller 3, which will be described later, is attached to a portion of the shaft 2a located outside the housing 2b. The main plate 6 rotates as the shaft 2a rotates.
 羽根車3は、モータ2によって中心軸Cを回転軸として回転する部材である。羽根車3が回転することで、吸込口5dから吸い込まれた空気が空気流となって吹出口5cからケーシング5の外部に吹き出される。羽根車3の材料には、例えば、金属、樹脂が使用される。 The impeller 3 is a member that is rotated by the motor 2 with the central axis C as a rotation axis. As the impeller 3 rotates, air sucked in from the suction port 5d becomes an airflow and is blown out of the casing 5 from the blowout port 5c. The impeller 3 is made of, for example, metal or resin.
 図3は、実施の形態1にかかる羽根車3を示した斜視図である。図3に示すように、羽根車3は、主板6と、複数の翼7と、補強リング8とを有している。主板6の軸方向に沿って見たときの形状は、円形状である。複数の翼7は、主板6の外周縁に沿って互いに間隔を空けて設けられている。複数の翼7のそれぞれは、軸方向に延びている。補強リング8の軸方向に沿って見たときの形状は、環状である。補強リング8は、軸方向に主板6と離れた位置に設けられている。補強リング8は、複数の翼7の周囲を取り囲んでいる。 FIG. 3 is a perspective view showing the impeller 3 according to the first embodiment. As shown in FIG. 3, the impeller 3 includes a main plate 6, a plurality of blades 7, and a reinforcing ring 8. The main plate 6 has a circular shape when viewed along the axial direction. The plurality of wings 7 are provided along the outer peripheral edge of the main plate 6 at intervals. Each of the plurality of blades 7 extends in the axial direction. The reinforcing ring 8 has an annular shape when viewed along the axial direction. The reinforcing ring 8 is provided at a position apart from the main plate 6 in the axial direction. The reinforcing ring 8 surrounds the plurality of wings 7.
 図2に示すように、固定部材4は、主板6と筐体2bとの間でシャフト2aに取り付けられて、主板6に接触して羽根車3の軸方向の位置を固定する部材である。固定部材4の材料には、例えば、金属、樹脂が使用される。固定部材4は、例えば、ワッシャーである。 As shown in FIG. 2, the fixing member 4 is a member that is attached to the shaft 2a between the main plate 6 and the housing 2b, contacts the main plate 6, and fixes the axial position of the impeller 3. The fixing member 4 is made of, for example, metal or resin. The fixing member 4 is, for example, a washer.
 図4は、実施の形態1にかかるモータ2および固定部材4を示した斜視図である。図4に示すように、固定部材4の軸方向に沿って見たときの形状は、円形状である。固定部材4の中心には、シャフト2aが挿通される固定挿通孔4aが形成されている。固定部材4は、第1の固定軸端面4bと、第2の固定軸端面4cとを有している。第1の固定軸端面4bは、本実施の形態では固定部材4のうち軸方向に沿った他方を向く面である。第2の固定軸端面4cは、本実施の形態では固定部材4のうち軸方向に沿った一方を向く面である。 FIG. 4 is a perspective view showing the motor 2 and fixing member 4 according to the first embodiment. As shown in FIG. 4, the shape of the fixing member 4 when viewed along the axial direction is circular. A fixed insertion hole 4a through which the shaft 2a is inserted is formed in the center of the fixed member 4. The fixed member 4 has a first fixed shaft end surface 4b and a second fixed shaft end surface 4c. In this embodiment, the first fixed shaft end surface 4b is a surface of the fixed member 4 that faces the other side along the axial direction. In this embodiment, the second fixed shaft end surface 4c is a surface facing one side of the fixed member 4 along the axial direction.
 次に、主板6および固定部材4についてさらに詳しく説明する。 Next, the main plate 6 and the fixing member 4 will be explained in more detail.
 図2に示すように、主板6は、主板底壁部6aと、主板側壁部6bと、主板周壁部6cとを有している。主板底壁部6aは、半径方向に延びている。主板底壁部6aの軸方向に沿って見たときの形状は、円形状である。主板底壁部6aの中心には、他の部分よりも軸方向に肉厚なボス部6dが形成されている。ボス部6dには、シャフト2aが挿通される主板挿通孔6eが形成されている。主板挿通孔6eは、主板底壁部6aを軸方向に貫通して形成されている。 As shown in FIG. 2, the main plate 6 has a main plate bottom wall part 6a, a main plate side wall part 6b, and a main plate peripheral wall part 6c. The main plate bottom wall portion 6a extends in the radial direction. The main plate bottom wall portion 6a has a circular shape when viewed along the axial direction. A boss portion 6d that is thicker in the axial direction than other portions is formed at the center of the main plate bottom wall portion 6a. A main plate insertion hole 6e through which the shaft 2a is inserted is formed in the boss portion 6d. The main plate insertion hole 6e is formed to penetrate the main plate bottom wall portion 6a in the axial direction.
 主板側壁部6bは、主板底壁部6aの外周縁から筐体2bの方に向かって延びていて、筐体2bの半径方向外側まで達している。主板側壁部6bは、筐体2bと半径方向に間隔を空けて配置されている。主板側壁部6bは、主板底壁部6aの外周縁から筐体2bの方に向かうにつれて拡径するテーパ状に形成されている。主板周壁部6cは、主板側壁部6bの先端縁から半径方向外側に向かって延びている。主板周壁部6cの軸方向に沿って見たときの形状は、環状である。 The main plate side wall portion 6b extends from the outer peripheral edge of the main plate bottom wall portion 6a toward the housing 2b, and reaches the radially outer side of the housing 2b. The main plate side wall portion 6b is spaced apart from the housing 2b in the radial direction. The main plate side wall portion 6b is formed in a tapered shape whose diameter increases from the outer peripheral edge of the main plate bottom wall portion 6a toward the housing 2b. The main plate peripheral wall portion 6c extends radially outward from the tip edge of the main plate side wall portion 6b. The main plate peripheral wall portion 6c has an annular shape when viewed along the axial direction.
 主板底壁部6aは、固定部材4の方を向く主板軸端面6fを有している。主板軸端面6fは、主板6のうち軸方向に沿った一方を向く面である。主板軸端面6fには、接触部6gと離隔部6hとが形成されている。接触部6gは、半径方向にシャフト2aと離れた位置に設けられて固定部材4に接触する。接触部6gは、本実施の形態では、環状の平面である。 The main plate bottom wall portion 6a has a main plate shaft end face 6f facing toward the fixing member 4. The main plate axial end surface 6f is a surface facing one side of the main plate 6 along the axial direction. A contact portion 6g and a separation portion 6h are formed on the main plate shaft end surface 6f. The contact portion 6g is provided at a position apart from the shaft 2a in the radial direction and contacts the fixing member 4. In this embodiment, the contact portion 6g is an annular plane.
 離隔部6hは、シャフト2aから接触部6gに亘って設けられて接触部6gが固定部材4に接触した状態で固定部材4から離隔する。離隔部6hは、主板挿通孔6eのうち主板軸端面6fに開口した部分の縁から接触部6gとなる平面に亘って設けられている。離隔部6hは、接触部6gよりも軸方向に沿った他方に位置する。離隔部6hは、接触部6gよりも筐体2bから離隔する側に位置している。離隔部6hは、本実施の形態では軸方向に沿った一方から他方に向かって凹んだ環状の凹部である。 The separating portion 6h is provided from the shaft 2a to the contact portion 6g, and is separated from the fixing member 4 while the contact portion 6g is in contact with the fixing member 4. The separating portion 6h is provided from the edge of the portion of the main plate insertion hole 6e that opens to the main plate shaft end face 6f to a plane that becomes the contact portion 6g. The separation part 6h is located on the other side of the contact part 6g along the axial direction. The separation part 6h is located on the side farther away from the housing 2b than the contact part 6g. In this embodiment, the separating portion 6h is an annular recessed portion recessed from one side toward the other along the axial direction.
 次に、本実施の形態にかかる送風機1の効果について説明する。 Next, the effects of the blower 1 according to this embodiment will be explained.
 図2に示される羽根車3がモータ2によって回転する際には、モータ2の電磁振動がシャフト2aから固定部材4を介して羽根車3の主板6へと伝播し、この電磁振動が羽根車3の固有周波数と一致すると共振を生じて、騒音が発生する。このとき、羽根車3において発生する振動は、主に軸振動の軸方向振動と周方向のねじり振動である。主板6が複数の翼7を保持していること、および、複数の翼7が主板6のうち外周縁に設けられていて主板6のうち外周縁の質量が重いことから、主板6が羽根車3全体の振動に与える影響が大きい。この振動に影響する主板6の、固定部材4と接触する箇所を変えれば、羽根車3の固有周波数を変えることができる。 When the impeller 3 shown in FIG. 2 is rotated by the motor 2, the electromagnetic vibration of the motor 2 is propagated from the shaft 2a to the main plate 6 of the impeller 3 via the fixed member 4, and this electromagnetic vibration is transmitted to the impeller 3. When it matches the natural frequency of No. 3, resonance occurs and noise is generated. At this time, the vibrations generated in the impeller 3 are mainly axial vibrations of shaft vibrations and torsional vibrations in the circumferential direction. Since the main plate 6 holds a plurality of blades 7 and the plurality of blades 7 are provided on the outer peripheral edge of the main plate 6 and the outer peripheral edge of the main plate 6 has a heavy mass, the main plate 6 is an impeller. 3. It has a large effect on the overall vibration. The natural frequency of the impeller 3 can be changed by changing the location of the main plate 6 that contacts the fixed member 4, which affects this vibration.
 本実施の形態では、主板軸端面6fには、半径方向に主板挿通孔6eと離れた位置に設けられて固定部材4に接触する接触部6gと、主板挿通孔6eから接触部6gに亘って設けられて接触部6gが固定部材4に接触した状態で固定部材4から離隔する離隔部6hとが形成されている。これにより、離隔部6hの半径方向の寸法を適宜変更して、シャフト2aの中心軸Cから主板6と固定部材4とが接触する箇所までの半径方向の最短距離Lを変えることができる。そのため、モータ2の電磁振動が羽根車3へと伝播する箇所を変更して、共振周波数から外れるように羽根車3の固有周波数を変えることができる。例えば、より多くの換気風量を得るためにモータ2の出力を変更した場合のように、送風機1の使用条件が変わる場合には、モータ2の電磁振動の変化に対して、羽根車3の固有周波数を共振周波数から外すことができる。したがって、制振材を用いることなく、送風機1における共振を避けることができるか、あるいは、送風機1における共振を低減させることができる。 In this embodiment, the main plate shaft end surface 6f includes a contact portion 6g that is provided at a position radially away from the main plate insertion hole 6e and contacts the fixing member 4, and a contact portion 6g extending from the main plate insertion hole 6e to the contact portion 6g. A separating part 6h is formed so that the contact part 6g is separated from the fixing member 4 while being in contact with the fixing member 4. Thereby, the shortest distance L in the radial direction from the central axis C of the shaft 2a to the point where the main plate 6 and the fixing member 4 contact can be changed by appropriately changing the radial dimension of the separating portion 6h. Therefore, by changing the location where the electromagnetic vibration of the motor 2 propagates to the impeller 3, the natural frequency of the impeller 3 can be changed so as to deviate from the resonant frequency. For example, when the operating conditions of the blower 1 change, such as when changing the output of the motor 2 to obtain a larger ventilation air volume, the impeller 3's characteristic The frequency can be removed from the resonant frequency. Therefore, the resonance in the blower 1 can be avoided or the resonance in the blower 1 can be reduced without using a damping material.
 また、本実施の形態では、シャフト2aの中心軸Cから主板6と固定部材4とが接触する箇所までの半径方向の最短距離Lを変えることができるため、羽根車3のうち振動の振幅が大きい領域に、主板6と固定部材4とが接触する箇所を近づけることができる。これにより、羽根車3の振動が卓越することを抑えられる。 Further, in this embodiment, since the shortest distance L in the radial direction from the central axis C of the shaft 2a to the point where the main plate 6 and the fixed member 4 contact can be changed, the amplitude of vibration of the impeller 3 can be changed. The contact point between the main plate 6 and the fixing member 4 can be brought close to a large area. Thereby, the vibration of the impeller 3 can be suppressed from becoming dominant.
 図5は、比較例にかかる送風機10を示した断面図であって、図1に示されるII-II線に沿った断面図に相当する図である。図6は、比較例にかかる羽根車3を示した斜視図である。図5および図6に示すように、比較例にかかる送風機10では、主板軸端面6fに離隔部6hがなく、主板軸端面6fおよび第1の固定軸端面4bが見かけ上は平面となっている。図5に示すように、比較例にかかる送風機10では、主板6と固定部材4とが接触する箇所が主板軸端面6fおよび第1の固定軸端面4bの平面度によって変わる。そのため、シャフト2aの中心軸Cから主板6と固定部材4とが接触する箇所までの半径方向の最短距離が明確に定まらない。したがって、主板軸端面6fおよび第1の固定軸端面4bの平面度によって羽根車3の固有周波数が変わるため、モータ2の電磁振動が羽根車3へと伝播する箇所を意図的に変更して、羽根車3の固有周波数を意図的に変えることは困難である。 FIG. 5 is a cross-sectional view showing the blower 10 according to the comparative example, and corresponds to the cross-sectional view taken along the line II-II shown in FIG. 1. FIG. 6 is a perspective view showing an impeller 3 according to a comparative example. As shown in FIGS. 5 and 6, in the blower 10 according to the comparative example, the main plate shaft end surface 6f does not have the separation part 6h, and the main plate shaft end surface 6f and the first fixed shaft end surface 4b are apparently flat. . As shown in FIG. 5, in the blower 10 according to the comparative example, the location where the main plate 6 and the fixed member 4 come into contact changes depending on the flatness of the main plate shaft end surface 6f and the first fixed shaft end surface 4b. Therefore, the shortest distance in the radial direction from the central axis C of the shaft 2a to the point where the main plate 6 and the fixed member 4 contact is not clearly determined. Therefore, since the natural frequency of the impeller 3 changes depending on the flatness of the main plate shaft end surface 6f and the first fixed shaft end surface 4b, the location where the electromagnetic vibration of the motor 2 is propagated to the impeller 3 is intentionally changed. It is difficult to intentionally change the natural frequency of the impeller 3.
 これに対して、図2に示すように、本実施の形態では、主板軸端面6fにおいて接触部6gよりも半径方向内側に離隔部6hが形成されていることにより、主板6と固定部材4とが接触する箇所の半径方向内側では、主板6と固定部材4とが確実に離れる。そのため、シャフト2aの中心軸Cから主板6と固定部材4とが接触する箇所までの半径方向の最短距離Lが明確に定まる。したがって、モータ2の電磁振動が羽根車3へと伝播する箇所を意図的に変更して、羽根車3の固有周波数を意図的に変えることができる。 On the other hand, as shown in FIG. 2, in the present embodiment, a separation part 6h is formed on the main plate shaft end face 6f radially inward from the contact part 6g, so that the main plate 6 and the fixing member 4 can be connected to each other. The main plate 6 and the fixing member 4 are reliably separated from each other on the radially inner side of the point where they contact each other. Therefore, the shortest distance L in the radial direction from the central axis C of the shaft 2a to the point where the main plate 6 and the fixed member 4 contact is clearly determined. Therefore, by intentionally changing the location where the electromagnetic vibrations of the motor 2 propagate to the impeller 3, the natural frequency of the impeller 3 can be intentionally changed.
 ここで、主板6と固定部材4とが接触する箇所のうち最も半径方向内側に位置する箇所は、シャフト2aの中心軸Cから半径方向外側に十分に離すことが望ましい。具体的には、シャフト2aの半径をRとしたときに、L≧2×Rの関係が成り立つようにすることが望ましい。すなわち、主板6と固定部材4とが接触する箇所のうち最も半径方向内側に位置する箇所は、シャフト2aの中心軸Cからシャフト2aの半径Rの2倍以上の位置にあることが望ましい。このようにすることで、羽根車3の固有周波数を確実に変えることができる。 Here, it is desirable that the radially innermost location of the contact points between the main plate 6 and the fixing member 4 be sufficiently spaced radially outward from the central axis C of the shaft 2a. Specifically, when the radius of the shaft 2a is R, it is desirable that the relationship L≧2×R holds true. That is, of the locations where the main plate 6 and the fixing member 4 come into contact, it is desirable that the radially innermost location be located at least twice the radius R of the shaft 2a from the central axis C of the shaft 2a. By doing so, the natural frequency of the impeller 3 can be changed reliably.
 なお、主板軸端面6fおよび固定部材4のうちいずれか一方には、軸方向と直交する方向である半径方向にシャフト2aと離れた位置に設けられて主板軸端面6fおよび固定部材4のうちいずれか他方に接触する接触部6gが形成されていればよい。また、主板軸端面6fおよび固定部材4のうちいずれか一方には、シャフト2aから接触部6gに亘って設けられて接触部6gが主板軸端面6fおよび固定部材4のうちいずれか他方に接触した状態で主板軸端面6fおよび固定部材4のうちいずれか他方から離隔する離隔部6hが形成されていればよい。 In addition, one of the main plate shaft end surface 6f and the fixing member 4 is provided at a position away from the shaft 2a in the radial direction, which is a direction perpendicular to the axial direction. It is only necessary that a contact portion 6g that contacts one or the other is formed. Further, either one of the main plate shaft end surface 6f and the fixing member 4 is provided extending from the shaft 2a to the contact portion 6g, so that the contact portion 6g contacts the other of the main plate shaft end surface 6f and the fixing member 4. It is only necessary that a separating portion 6h be formed to be separated from the other of the main plate shaft end surface 6f and the fixing member 4 in this state.
実施の形態2.
 次に、図7および図8を参照して、実施の形態2にかかる送風機1Aについて説明する。本実施の形態では、接触部4dおよび離隔部4eを固定部材4に設けた点が前記した実施の形態1と相違する。なお、実施の形態2では、前記した実施の形態1と重複する部分については、同一符号を付して説明を省略する。図7は、実施の形態2にかかる送風機1Aを示した斜視図であって、実施の形態2にかかるモータ2および固定部材4を示した斜視図である。図8は、実施の形態2にかかる送風機1Aを示した断面図であって、図1に示されるII-II線に沿った断面図に相当する図である。
Embodiment 2.
Next, with reference to FIGS. 7 and 8, a blower 1A according to a second embodiment will be described. This embodiment differs from the first embodiment described above in that a contact portion 4d and a separation portion 4e are provided on the fixing member 4. In addition, in the second embodiment, the same reference numerals are given to the same parts as those in the first embodiment described above, and the description thereof will be omitted. FIG. 7 is a perspective view showing the blower 1A according to the second embodiment, and is a perspective view showing the motor 2 and the fixing member 4 according to the second embodiment. FIG. 8 is a cross-sectional view showing the blower 1A according to the second embodiment, and corresponds to the cross-sectional view taken along the line II-II shown in FIG.
 図7に示すように、本実施の形態では、第1の固定軸端面4bが固定部材4のうち軸方向に沿った他方を向く面であり、第2の固定軸端面4cが固定部材4のうち軸方向に沿った一方を向く面である。第1の固定軸端面4bには、複数の接触部4dと、離隔部4eとが形成されている。図8に示すように、第2の固定軸端面4cは、半径方向に延びる平面である。第1の固定軸端面4bと第2の固定軸端面4cとは、非対称形状である。すなわち、固定部材4の形状は、裏表対称となっていない。 As shown in FIG. 7, in this embodiment, the first fixed shaft end surface 4b is the surface of the fixed member 4 that faces the other side along the axial direction, and the second fixed shaft end surface 4c is the surface of the fixed member 4 that faces the other side along the axial direction. This is the surface facing one side along the axial direction. A plurality of contact portions 4d and a separation portion 4e are formed on the first fixed shaft end surface 4b. As shown in FIG. 8, the second fixed shaft end surface 4c is a plane extending in the radial direction. The first fixed shaft end surface 4b and the second fixed shaft end surface 4c have an asymmetrical shape. That is, the shape of the fixing member 4 is not symmetrical between the front and the back.
 図8に示すように、接触部4dは、本実施の形態では主板軸端面6fに向かって突出する突出部4fである。突出部4fは、半径方向にシャフト2aと離れた位置に、かつ、周方向に沿って互いに間隔を空けて設けられている。突出部4fは、主板軸端面6f側が凸状となり筐体2b側が凹状となっている。本実施の形態では、固定部材4全体の板厚を変えることなく固定部材4を局所的に折り曲げて突出部4fを設けているが、固定部材4を局所的に肉厚にして突出部4fを設けてもよい。図7に示すように、突出部4fは、軸方向に第1の固定軸端面4bから離れるにつれて縮径する円錐台形状に形成されている。突出部4fの先端は、半径方向に延びる平面となっている。突出部4fの数は、本実施の形態では8個である。8個の突出部4fは、中心軸Cを中心とした同一円周上に配置されている。 As shown in FIG. 8, the contact portion 4d is a protrusion portion 4f that protrudes toward the main plate shaft end surface 6f in this embodiment. The protrusions 4f are provided at positions separated from the shaft 2a in the radial direction and spaced apart from each other along the circumferential direction. The protruding portion 4f has a convex shape on the main plate shaft end face 6f side and a concave shape on the housing 2b side. In this embodiment, the protrusion 4f is provided by locally bending the fixing member 4 without changing the overall plate thickness of the fixing member 4. It may be provided. As shown in FIG. 7, the protruding portion 4f is formed in a truncated conical shape whose diameter decreases as it moves away from the first fixed shaft end surface 4b in the axial direction. The tip of the protrusion 4f is a flat surface extending in the radial direction. The number of protrusions 4f is eight in this embodiment. The eight protrusions 4f are arranged on the same circumference centered on the central axis C.
 図8に示すように、離隔部4eは、シャフト2aから突出部4fに亘って設けられている。離隔部4eは、突出部4fが主板軸端面6fに接触した状態で主板軸端面6fから離隔する。離隔部4eは、本実施の形態では半径方向に延びる平面である。離隔部4eは、固定挿通孔4aのうち第1の固定軸端面4bに開口した部分の縁から突出部4fに亘って設けられている。固定部材4は、平座金のような金属板に突出部4fを設けることで製造されてもよいし、樹脂材料で製造されてもよい。 As shown in FIG. 8, the separating portion 4e is provided extending from the shaft 2a to the protruding portion 4f. The separating portion 4e is separated from the main plate shaft end surface 6f with the protruding portion 4f in contact with the main plate shaft end surface 6f. In this embodiment, the separating portion 4e is a plane extending in the radial direction. The separating portion 4e is provided from the edge of the portion of the fixed insertion hole 4a that opens to the first fixed shaft end surface 4b to the protruding portion 4f. The fixing member 4 may be manufactured by providing a protrusion 4f on a metal plate such as a flat washer, or may be manufactured from a resin material.
 本実施の形態によっても、前記した実施の形態1と同様の効果を奏することができる。本実施の形態では、第1の固定軸端面4bには、接触部4dと離隔部4eとが形成され、第2の固定軸端面4cは、半径方向に延びる平面である。これにより、第1の固定軸端面4bが主板軸端面6fの方を向くように固定部材4をシャフト2aに取り付けるか、または、第2の固定軸端面4cが主板軸端面6fの方を向くように固定部材4をシャフト2aに取り付けるだけで、シャフト2aの中心軸Cから主板6と固定部材4とが接触する箇所までの半径方向の最短距離Lを変えることができる。そのため、モータ2の電磁振動が羽根車3へと伝播する箇所を簡易に変更して、羽根車3の固有周波数を簡易に変えることができる。 This embodiment also provides the same effects as the first embodiment described above. In this embodiment, a contact portion 4d and a separation portion 4e are formed on the first fixed shaft end surface 4b, and the second fixed shaft end surface 4c is a plane extending in the radial direction. As a result, the fixing member 4 is attached to the shaft 2a so that the first fixed shaft end surface 4b faces the main plate shaft end surface 6f, or the second fixed shaft end surface 4c faces the main plate shaft end surface 6f. By simply attaching the fixing member 4 to the shaft 2a, the shortest distance L in the radial direction from the central axis C of the shaft 2a to the point where the main plate 6 and the fixing member 4 contact can be changed. Therefore, the natural frequency of the impeller 3 can be easily changed by simply changing the location where the electromagnetic vibration of the motor 2 is propagated to the impeller 3.
 なお、図8では、第1の固定軸端面4bが主板軸端面6fの方を向くように固定部材4をシャフト2aに取り付けた場合を図示している。第2の固定軸端面4cが主板軸端面6fの方を向くように固定部材4をシャフト2aに取り付けた場合には、第1の固定軸端面4bが固定部材4のうち軸方向に沿った一方を向く面となり、第2の固定軸端面4cが固定部材4のうち軸方向に沿った他方を向く面となる。 Note that FIG. 8 shows a case where the fixing member 4 is attached to the shaft 2a so that the first fixed shaft end surface 4b faces the main plate shaft end surface 6f. When the fixing member 4 is attached to the shaft 2a so that the second fixed shaft end surface 4c faces the main plate shaft end surface 6f, the first fixed shaft end surface 4b is attached to one of the fixing members 4 along the axial direction. The second fixed shaft end surface 4c becomes the surface of the fixed member 4 that faces the other side along the axial direction.
 固定部材4の半径方向の寸法を大きくすることで、シャフト2aの中心軸Cから主板軸端面6fと固定部材4の突出部4fとが接触する箇所までの半径方向の最短距離Lを半径方向に広げることができる。ただし、送風機1Aの大型化を抑えながら、羽根車3をケーシング5内にて回転可能とするためには、固定部材4の半径方向の寸法は、複数の翼7よりも半径方向内側に収まる大きさにすることが望ましい。 By increasing the radial dimension of the fixing member 4, the shortest radial distance L from the central axis C of the shaft 2a to the point where the main plate shaft end face 6f and the protrusion 4f of the fixing member 4 come into contact can be increased in the radial direction. Can be expanded. However, in order to make the impeller 3 rotatable within the casing 5 while suppressing the enlargement of the blower 1A, the radial dimension of the fixed member 4 must be large enough to fit inside the plurality of blades 7 in the radial direction. It is desirable to set the
 また、主板軸端面6fと固定部材4の突出部4fとが接触する箇所は、羽根車3が回転する支点となる。したがって、羽根車3の振れを抑えて羽根車3の回転を安定させるためには、主板軸端面6fと固定部材4の突出部4fとは、互いの平面同士で接触することが望ましい。 Further, the location where the main plate shaft end surface 6f and the protruding portion 4f of the fixing member 4 come into contact serves as a fulcrum around which the impeller 3 rotates. Therefore, in order to suppress the vibration of the impeller 3 and stabilize the rotation of the impeller 3, it is desirable that the main plate shaft end surface 6f and the protruding portion 4f of the fixing member 4 contact each other in their planes.
 固定部材4は、図9に示される構成でもよい。図9は、実施の形態2の変形例にかかる固定部材4を示した斜視図である。接触部4dは、環状の平面である。接触部4dは、半径方向に図8に示されるシャフト2aと離れた位置に設けられて主板軸端面6fに接触する。離隔部4eは、シャフト2aから平面である接触部4dに亘って設けられて半径方向外側から内側に向かうほど主板軸端面6fから離隔する階段状の段差部である。このようにしても、前記した実施の形態1,2と同様の効果を奏することができる。 The fixing member 4 may have the configuration shown in FIG. 9. FIG. 9 is a perspective view showing a fixing member 4 according to a modification of the second embodiment. The contact portion 4d is an annular plane. The contact portion 4d is provided at a position apart from the shaft 2a shown in FIG. 8 in the radial direction and contacts the main plate shaft end surface 6f. The separating portion 4e is a step-like stepped portion that is provided from the shaft 2a to the flat contact portion 4d, and is spaced apart from the main plate shaft end surface 6f as it goes from the outer side to the inner side in the radial direction. Even in this case, the same effects as in the first and second embodiments described above can be achieved.
実施の形態3.
 次に、図10および図11を参照して、実施の形態3にかかる送風機1Bについて説明する。本実施の形態では、接触部6gおよび離隔部6hの構成が前記した実施の形態1と相違する。なお、実施の形態3では、前記した実施の形態1と重複する部分については、同一符号を付して説明を省略する。図10は、実施の形態3にかかる送風機1Bを示した断面図であって、図1に示されるII-II線に沿った断面図に相当する図である。図11は、実施の形態3にかかる羽根車3を示した斜視図である。
Embodiment 3.
Next, with reference to FIGS. 10 and 11, a blower 1B according to a third embodiment will be described. In this embodiment, the configurations of a contact portion 6g and a separation portion 6h are different from those in the first embodiment described above. In addition, in Embodiment 3, the same reference numerals are given to the same parts as in Embodiment 1 described above, and the description thereof will be omitted. FIG. 10 is a cross-sectional view showing the blower 1B according to the third embodiment, and corresponds to the cross-sectional view taken along the line II-II shown in FIG. FIG. 11 is a perspective view showing the impeller 3 according to the third embodiment.
 図10に示すように、主板軸端面6fのうち半径方向の中央部分は、半径方向外側から内側に向かうほど筐体2bから離隔する階段状に形成されている。主板軸端面6fには、シャフト2aを中心とした同心円状に配置された複数の環状の平面61と、隣り合う平面61同士を繋ぐ段差面62とが設けられている。なお、本実施の形態では、主板側壁部6bおよび主板周壁部6cの厚さよりも主板底壁部6aの厚さを厚くした上で、主板底壁部6aの厚みを部分的に変えることで複数の平面61を形成している。 As shown in FIG. 10, the central portion of the main plate shaft end surface 6f in the radial direction is formed in a step-like shape that becomes further away from the housing 2b from the outer side toward the inner side in the radial direction. The main plate shaft end surface 6f is provided with a plurality of annular flat surfaces 61 arranged concentrically around the shaft 2a, and a stepped surface 62 connecting adjacent flat surfaces 61. In addition, in this embodiment, the thickness of the main plate bottom wall part 6a is made thicker than the thickness of the main plate side wall part 6b and the main plate peripheral wall part 6c, and the thickness of the main plate bottom wall part 6a is partially changed. A plane 61 is formed.
 複数の平面61のそれぞれは、半径方向に延びている。平面61の数は、適宜増減してよいが、本実施の形態では3個である。3個の平面61を区別する場合には、半径方向外側から内側に向かって順番に、平面61a、平面61b、平面61cと称する。 Each of the plurality of planes 61 extends in the radial direction. Although the number of planes 61 may be increased or decreased as appropriate, it is three in this embodiment. When distinguishing the three planes 61, they are referred to as a plane 61a, a plane 61b, and a plane 61c in order from the outside in the radial direction to the inside.
 段差面62は、軸方向に延びている。段差面62は、隣り合う平面61の内周縁と平面61の外周縁とを繋いでいる。段差面62の数は、本実施の形態では2個である。段差面62の数は、平面61の数によって増減する。2個の段差面62を区別する場合には、軸方向において筐体2bに近い方から順番に、段差面62a、段差面62bと称する。段差面62aは、平面61aの内周縁と平面61bの外周縁とを繋いでいる。段差面62bは、平面61bの内周縁と平面61cの外周縁とを繋いでいる。段差面62bは、段差面62aよりも半径方向内側に位置している。 The stepped surface 62 extends in the axial direction. The stepped surface 62 connects the inner peripheral edge of the adjacent flat surface 61 and the outer peripheral edge of the flat surface 61. The number of stepped surfaces 62 is two in this embodiment. The number of stepped surfaces 62 increases or decreases depending on the number of flat surfaces 61. When distinguishing the two stepped surfaces 62, they are referred to as a stepped surface 62a and a stepped surface 62b in order from the one closest to the housing 2b in the axial direction. The stepped surface 62a connects the inner circumferential edge of the plane 61a and the outer circumferential edge of the plane 61b. The stepped surface 62b connects the inner circumferential edge of the plane 61b and the outer circumferential edge of the plane 61c. The step surface 62b is located radially inner than the step surface 62a.
 複数の平面61は、半径方向内側に位置するものほど軸方向に筐体2bから離隔している。換言すると、シャフト2aの中心軸Cを法線とし、かつ、筐体2bを通過する平面を基準平面Sとしたとき、平面61と基準平面Sとの軸方向の距離Dは、複数の平面61のうち半径方向内側に位置するものほど長い。なお、図10では、平面61aと基準平面Sとの軸方向の距離Dのみを図示している。 The more the plurality of planes 61 are located on the inner side in the radial direction, the further apart they are from the housing 2b in the axial direction. In other words, when the central axis C of the shaft 2a is the normal line and the plane passing through the housing 2b is the reference plane S, the axial distance D between the plane 61 and the reference plane S is Among them, the one located on the inner side in the radial direction is longer. Note that in FIG. 10, only the distance D in the axial direction between the plane 61a and the reference plane S is illustrated.
 固定部材4は、本実施の形態では平面61aに接触しているが、平面61bに接触していてもよい。すなわち、固定部材4の半径方向の寸法を変えることで、固定部材4を平面61aに接触させることが可能であるし、固定部材4を平面61bに接触させることも可能である。 Although the fixing member 4 is in contact with the plane 61a in this embodiment, it may be in contact with the plane 61b. That is, by changing the radial dimension of the fixing member 4, it is possible to bring the fixing member 4 into contact with the plane 61a, and it is also possible to bring the fixing member 4 into contact with the plane 61b.
 固定部材4を平面61aに接触させる場合には、平面61aが接触部6gとなり、主板軸端面6fのうち平面61aよりも半径方向内側の部分が離隔部6hとなる。一方、固定部材4を平面61bに接触させる場合には、平面61bが接触部6gとなり、主板軸端面6fのうち平面61bよりも半径方向内側の部分が離隔部6hとなる。本実施の形態では、複数の平面61a,61bのうち1つが接触部6gとなる。 When the fixing member 4 is brought into contact with the flat surface 61a, the flat surface 61a becomes the contact portion 6g, and the portion of the main plate shaft end surface 6f that is radially inner than the flat surface 61a becomes the separation portion 6h. On the other hand, when the fixing member 4 is brought into contact with the flat surface 61b, the flat surface 61b becomes the contact portion 6g, and the portion of the main plate shaft end surface 6f that is radially inner than the flat surface 61b becomes the separation portion 6h. In this embodiment, one of the plurality of planes 61a and 61b serves as the contact portion 6g.
 本実施の形態によっても、前記した実施の形態1と同様の効果を奏することができる。本実施の形態では、主板軸端面6fに設けられた複数の平面61は、半径方向内側に位置するものほど軸方向に筐体2bから離隔しており、複数の平面61のうち1つが接触部6gとなる。これにより、固定部材4の半径方向の寸法を変えることで、シャフト2aの中心軸Cから主板6と固定部材4とが接触する箇所までの半径方向の最短距離Lを変えることができる。そのため、モータ2の電磁振動が羽根車3へと伝播する箇所を簡易に変更して、羽根車3の固有周波数を簡易に変えることができる。 This embodiment also provides the same effects as the first embodiment described above. In the present embodiment, the plurality of planes 61 provided on the main plate shaft end surface 6f are such that the inner side in the radial direction is further away from the casing 2b in the axial direction, and one of the plurality of planes 61 is located at the contact portion. It will be 6g. Thereby, by changing the radial dimension of the fixing member 4, the shortest distance L in the radial direction from the central axis C of the shaft 2a to the point where the main plate 6 and the fixing member 4 contact can be changed. Therefore, the natural frequency of the impeller 3 can be easily changed by simply changing the location where the electromagnetic vibration of the motor 2 is propagated to the impeller 3.
 ここで、図12および図13を参照して、本実施の形態の効果についてさらに説明する。図12は、実施の形態3にかかる送風機1Bにおいて、固定部材4の半径方向の寸法を変えた際の羽根車3における軸方向の変形量と固有周波数との関係を示したグラフであって、周波数応答解析によるグラフである。図13は、実施の形態3にかかる送風機1Bにおいて、固定部材4の半径方向の寸法を変えた際の羽根車3における周方向の変形量と固有周波数との関係を示したグラフであって、周波数応答解析によるグラフである。図12および図13に示される周波数応答解析は、実施の形態3における羽根車3の半径方向の寸法がφ180mm、羽根車3の軸方向の寸法が100mmの条件で行った。 Here, the effects of this embodiment will be further explained with reference to FIGS. 12 and 13. FIG. 12 is a graph showing the relationship between the amount of axial deformation of the impeller 3 and the natural frequency when the radial dimension of the fixed member 4 is changed in the blower 1B according to the third embodiment, This is a graph obtained by frequency response analysis. FIG. 13 is a graph showing the relationship between the amount of deformation in the circumferential direction of the impeller 3 and the natural frequency when the radial dimension of the fixed member 4 is changed in the blower 1B according to the third embodiment, This is a graph obtained by frequency response analysis. The frequency response analysis shown in FIGS. 12 and 13 was conducted under the conditions that the radial dimension of the impeller 3 in Embodiment 3 was 180 mm, and the axial dimension of the impeller 3 was 100 mm.
 図12および図13に示される結果より、羽根車3は、軸方向に振動する軸振動モードと、周方向にねじれるように振動するねじり振動モードとを併せ持っており、固有周波数時に振幅が大きくなることが分かる。また、固定部材4の半径方向の寸法を変えることで、羽根車3の固有周波数を変えることができることも分かる。 From the results shown in FIGS. 12 and 13, the impeller 3 has both an axial vibration mode that vibrates in the axial direction and a torsional vibration mode that vibrates torsionally in the circumferential direction, and the amplitude becomes large at the natural frequency. I understand that. It can also be seen that by changing the radial dimension of the fixed member 4, the natural frequency of the impeller 3 can be changed.
 本実施の形態では、図10に示される接触部6gとなる平面61の数を増やすことで、主板6と固定部材4とが接触する箇所を細かく調整することができる。また、接触部6gとなる平面61の数を増やした場合でも、簡易な構造であるため製造コストを抑えることが可能である。また、羽根車3の材料に樹脂材料を用いれば、羽根車3と平面61とを一体成形で製造することも可能であるため、平面61の数を増やすことによる製造コストの増加を抑えることが可能である。 In this embodiment, by increasing the number of flat surfaces 61 that serve as the contact portions 6g shown in FIG. 10, it is possible to finely adjust the location where the main plate 6 and the fixing member 4 come into contact. Further, even when the number of flat surfaces 61 serving as the contact portions 6g is increased, the manufacturing cost can be suppressed due to the simple structure. Furthermore, if a resin material is used for the impeller 3, it is possible to manufacture the impeller 3 and the flat surface 61 by integral molding, so it is possible to suppress an increase in manufacturing costs due to an increase in the number of flat surfaces 61. It is possible.
 なお、固定部材4の半径方向の寸法を大きくすることで、シャフト2aの中心軸Cから主板6と固定部材4とが接触する箇所までの半径方向の最短距離Lを半径方向に広げることができる。ただし、送風機1Bの大型化を抑えながら、羽根車3をケーシング5内で回転可能とするためには、固定部材4の半径方向の寸法と複数の平面61のそれぞれの半径方向の寸法とは、複数の翼7よりも半径方向内側に収まる大きさにすることが望ましい。 Note that by increasing the radial dimension of the fixed member 4, the shortest radial distance L from the central axis C of the shaft 2a to the point where the main plate 6 and the fixed member 4 contact can be increased in the radial direction. . However, in order to make the impeller 3 rotatable within the casing 5 while suppressing the enlargement of the blower 1B, the radial dimension of the fixed member 4 and the radial dimension of each of the plurality of planes 61 are as follows. It is desirable to have a size that fits inside the plurality of blades 7 in the radial direction.
 複数の平面61は、図14および図15に示される構成でもよい。図14は、実施の形態3の変形例1にかかる送風機1Cを示した断面図であって、図1に示されるII-II線に沿った断面図に相当する図である。図15は、実施の形態3の変形例1にかかる羽根車3を示した斜視図である。 The plurality of planes 61 may have the configuration shown in FIGS. 14 and 15. FIG. 14 is a cross-sectional view showing a blower 1C according to the first modification of the third embodiment, and corresponds to the cross-sectional view taken along the line II-II shown in FIG. FIG. 15 is a perspective view showing an impeller 3 according to a first modification of the third embodiment.
 図14および図15に示すように、主板軸端面6fには、シャフト2aを中心とした同心円状に配置された複数の円筒状のリブ63が設けられている。図15に示すように、主板軸端面6fのうちリブ63以外の部分は、平面64となっている。リブ63は、平面64よりも筐体2bに向かって突出している。リブ63のうち筐体2bの方を向く先端部は、半径方向に延びる平面61となっている。リブ63の数は、適宜増減してよいが、本変形例では2個である。2個のリブ63を区別する場合には、半径方向外側から内側に向かって順番に、リブ63a、リブ63bと称する。複数のリブ63は、半径方向内側に位置するものほど軸方向に筐体2bから離隔している。各リブ63と基準平面Sとの軸方向の距離Dは、複数のリブ63のうち半径方向内側に位置するものほど長い。なお、図14では、リブ63aの平面61と基準平面Sとの軸方向の距離Dのみを図示している。 As shown in FIGS. 14 and 15, the main plate shaft end surface 6f is provided with a plurality of cylindrical ribs 63 arranged concentrically around the shaft 2a. As shown in FIG. 15, a portion of the main plate shaft end surface 6f other than the rib 63 is a flat surface 64. As shown in FIG. The rib 63 projects further toward the housing 2b than the plane 64. The tip of the rib 63 facing toward the housing 2b is a flat surface 61 that extends in the radial direction. Although the number of ribs 63 may be increased or decreased as appropriate, it is two in this modification. When distinguishing the two ribs 63, they are referred to as a rib 63a and a rib 63b in order from the outside in the radial direction to the inside. The plurality of ribs 63 are axially farther away from the housing 2b as they are located on the inner side in the radial direction. The distance D in the axial direction between each rib 63 and the reference plane S is longer as the rib 63 is located on the inner side in the radial direction. In addition, in FIG. 14, only the distance D in the axial direction between the plane 61 of the rib 63a and the reference plane S is illustrated.
 固定部材4は、本変形例ではリブ63aの平面61に接触しているが、リブ63bの平面61に接触していてもよい。すなわち、固定部材4の半径方向の寸法を変えることで、固定部材4をリブ63aの平面61に接触させることが可能であるし、固定部材4をリブ63bの平面61に接触させることも可能である。 Although the fixing member 4 is in contact with the flat surface 61 of the rib 63a in this modification, it may be in contact with the flat surface 61 of the rib 63b. That is, by changing the radial dimension of the fixing member 4, it is possible to bring the fixing member 4 into contact with the flat surface 61 of the rib 63a, and it is also possible to bring the fixing member 4 into contact with the flat surface 61 of the rib 63b. be.
 固定部材4をリブ63aの平面61に接触させる場合には、リブ63aの平面61が接触部6gとなり、主板軸端面6fのうちリブ63aよりも半径方向内側に位置する部分が離隔部6hとなる。一方、固定部材4をリブ63bの平面61に接触させる場合には、リブ63bの平面61が接触部6gとなり、リブ63bよりも半径方向内側に位置する部分が離隔部6hとなる。本変形例では、複数のリブ63a,63bの平面61のうち1つが接触部6gとなる。このようにしても、前記した実施の形態1,2と同様の効果を奏することができる。 When the fixing member 4 is brought into contact with the flat surface 61 of the rib 63a, the flat surface 61 of the rib 63a becomes the contact portion 6g, and the portion of the main plate shaft end surface 6f located radially inward from the rib 63a becomes the separation portion 6h. . On the other hand, when the fixing member 4 is brought into contact with the flat surface 61 of the rib 63b, the flat surface 61 of the rib 63b becomes the contact portion 6g, and the portion located radially inward from the rib 63b becomes the separation portion 6h. In this modification, one of the flat surfaces 61 of the plurality of ribs 63a, 63b becomes the contact portion 6g. Even in this case, the same effects as in the first and second embodiments described above can be achieved.
 複数の平面61は、図16に示される構成にしてもよい。図16は、実施の形態3の変形例2にかかる送風機1Dを示した断面図であって、図1に示されるII-II線に沿った断面図に相当する図である。図16に示されるように、主板6全体の板厚を一定にして、主板6を局所的に折り曲げることで、複数の平面61を設けてもよい。複数の平面61は、半径方向内側に位置するものほど軸方向に筐体2bから離隔している。 The plurality of planes 61 may have the configuration shown in FIG. 16. FIG. 16 is a sectional view showing a blower 1D according to a second modification of the third embodiment, and corresponds to a sectional view taken along the line II-II shown in FIG. As shown in FIG. 16, a plurality of flat surfaces 61 may be provided by locally bending the main plate 6 while keeping the thickness of the entire main plate 6 constant. The more the plurality of planes 61 are located on the inner side in the radial direction, the further apart they are from the housing 2b in the axial direction.
実施の形態4.
 次に、図17および図18を参照して、実施の形態4にかかる送風機1Eについて説明する。本実施の形態では、接触部6gおよび離隔部6hの構成が前記した実施の形態1と相違する。なお、実施の形態4では、前記した実施の形態1と重複する部分については、同一符号を付して説明を省略する。図17は、実施の形態4にかかる送風機1Eを示した断面図であって、図1に示されるII-II線に沿った断面図に相当する図である。図18は、実施の形態4にかかる羽根車3を示した斜視図である。
Embodiment 4.
Next, a blower 1E according to a fourth embodiment will be described with reference to FIGS. 17 and 18. In this embodiment, the configurations of a contact portion 6g and a separation portion 6h are different from those in the first embodiment described above. In the fourth embodiment, the same parts as those in the first embodiment described above are given the same reference numerals and the explanation thereof will be omitted. FIG. 17 is a cross-sectional view showing a blower 1E according to the fourth embodiment, and corresponds to a cross-sectional view taken along the line II-II shown in FIG. FIG. 18 is a perspective view showing the impeller 3 according to the fourth embodiment.
 図17および図18に示すように、主板軸端面6fには、シャフト2aから半径方向に放射状に延びて筐体2bに向かって突出する複数のリブ65が設けられている。図18に示すように、複数のリブ65は、周方向に互いに間隔を空けて配置されている。リブ65の数は、適宜増減してよいが、本実施の形態では6個である。各リブ65のうち筐体2bの方を向く面には、半径方向に沿って配置された複数の矩形状の平面66と、隣り合う平面66同士を繋ぐ段差面67とが設けられている。各リブ65のうち筐体2bの方を向く面の形状は、シャフト2aの中心軸Cを対称軸とする回転対称形状である。すなわち、全てのリブ65の平面66の半径方向における位置は、同一である。 As shown in FIGS. 17 and 18, the main plate shaft end surface 6f is provided with a plurality of ribs 65 that extend radially from the shaft 2a and protrude toward the housing 2b. As shown in FIG. 18, the plurality of ribs 65 are spaced apart from each other in the circumferential direction. Although the number of ribs 65 may be increased or decreased as appropriate, it is six in this embodiment. A plurality of rectangular flat surfaces 66 arranged along the radial direction and a step surface 67 connecting adjacent flat surfaces 66 are provided on the surface of each rib 65 facing the housing 2b. The shape of the surface of each rib 65 facing toward the housing 2b is rotationally symmetrical with the central axis C of the shaft 2a as an axis of symmetry. That is, the positions of the planes 66 of all the ribs 65 in the radial direction are the same.
 平面66は、半径方向に延びている。平面66の数は、適宜増減してよいが、本実施の形態では3個である。3個の平面66を区別する場合には、半径方向外側から内側に向かって順番に、平面66a、平面66b、平面66cと称する。 The plane 66 extends in the radial direction. Although the number of planes 66 may be increased or decreased as appropriate, it is three in this embodiment. When distinguishing the three planes 66, they are referred to as a plane 66a, a plane 66b, and a plane 66c in order from the outside in the radial direction to the inside.
 段差面67は、軸方向に延びている。段差面67は、隣り合う平面66の内縁と平面66の外縁とを繋いでいる。段差面67の数は、本実施の形態では2個である。段差面67の数は、平面66の数によって増減する。2個の段差面67を区別する場合には、軸方向において筐体2bに近い方から順番に、段差面67a、段差面67bと称する。段差面67aは、平面66aの内縁と平面66bの外縁とを繋いでいる。段差面67bは、平面66bの内縁と平面66cの外縁とを繋いでいる。 The stepped surface 67 extends in the axial direction. The step surface 67 connects the inner edge of the adjacent plane 66 and the outer edge of the plane 66. The number of stepped surfaces 67 is two in this embodiment. The number of stepped surfaces 67 increases or decreases depending on the number of flat surfaces 66. When distinguishing the two stepped surfaces 67, they are referred to as a stepped surface 67a and a stepped surface 67b in order from the one closest to the housing 2b in the axial direction. The stepped surface 67a connects the inner edge of the plane 66a and the outer edge of the plane 66b. The stepped surface 67b connects the inner edge of the plane 66b and the outer edge of the plane 66c.
 図17に示すように、複数の平面66は、半径方向内側に位置するものほど軸方向に筐体2bから離隔している。各平面66と基準平面Sとの軸方向の距離Dは、複数の平面66のうち半径方向内側に位置するものほど長い。なお、図17では、平面66aと基準平面Sとの軸方向の距離Dのみを図示している。 As shown in FIG. 17, the plurality of planes 66 are axially farther away from the housing 2b as they are located on the inner side in the radial direction. The distance D in the axial direction between each plane 66 and the reference plane S is longer as the plane 66 is located on the inner side in the radial direction. Note that in FIG. 17, only the distance D in the axial direction between the plane 66a and the reference plane S is illustrated.
 固定部材4は、本実施の形態では平面66aに接触しているが、平面66bに接触していてもよい。すなわち、固定部材4の半径方向の寸法を変えることで、固定部材4を平面66aに接触させることが可能であるし、固定部材4を平面66bに接触させることも可能である。 Although the fixing member 4 is in contact with the plane 66a in this embodiment, it may be in contact with the plane 66b. That is, by changing the radial dimension of the fixing member 4, it is possible to bring the fixing member 4 into contact with the plane 66a, and it is also possible to bring the fixing member 4 into contact with the plane 66b.
 固定部材4を平面66aに接触させる場合には、平面66aが接触部6gとなり、主板軸端面6fのうち平面66aよりも半径方向内側の部分が離隔部6hとなる。一方、固定部材4を平面66bに接触させる場合には、平面66bが接触部6gとなり、主板軸端面6fのうち平面66bよりも半径方向内側の部分が離隔部6hとなる。本実施の形態では、複数の平面66a,66bのうち1つが接触部6gとなる。 When the fixing member 4 is brought into contact with the flat surface 66a, the flat surface 66a becomes the contact portion 6g, and the portion of the main plate shaft end face 6f that is radially inner than the flat surface 66a becomes the separation portion 6h. On the other hand, when the fixing member 4 is brought into contact with the flat surface 66b, the flat surface 66b becomes the contact portion 6g, and the portion of the main plate shaft end surface 6f that is radially inner than the flat surface 66b becomes the separation portion 6h. In this embodiment, one of the plurality of planes 66a and 66b serves as the contact portion 6g.
 本実施の形態によっても、前記した実施の形態1,2,3と同様の効果を奏することができる。本実施の形態では、図17に示すように、主板軸端面6fに設けられた複数の平面66は、半径方向内側に位置するものほど軸方向に筐体2bから離隔しており、複数の平面66のうち1つが接触部6gとなる。これにより、固定部材4の半径方向の寸法を変えることで、シャフト2aの中心軸Cから主板6と固定部材4とが接触する箇所までの半径方向の最短距離Lを変えることができる。そのため、モータ2の電磁振動が羽根車3へと伝播する箇所を簡易に変更して、羽根車3の固有周波数を簡易に変えることができる。 The present embodiment can also achieve the same effects as the first, second, and third embodiments described above. In this embodiment, as shown in FIG. 17, the plurality of planes 66 provided on the main plate shaft end surface 6f are such that the radially inner side thereof is further away from the housing 2b in the axial direction. One of the contact portions 66 becomes the contact portion 6g. Thereby, by changing the radial dimension of the fixing member 4, the shortest distance L in the radial direction from the central axis C of the shaft 2a to the point where the main plate 6 and the fixing member 4 contact can be changed. Therefore, the natural frequency of the impeller 3 can be easily changed by simply changing the location where the electromagnetic vibration of the motor 2 is propagated to the impeller 3.
 本実施の形態では、主板軸端面6fには、シャフト2aから半径方向に放射状に延びて筐体2bに向かって突出する複数のリブ65が設けられ、各リブ65のうち筐体2bの方を向く面に設けられた複数の平面66は、半径方向内側に位置するものほど軸方向に筐体2bから離隔している。これにより、主板6と固定部材4とが接触する箇所を、半径方向に変更できるだけでなく、周方向においても変更できる。すなわち、シャフト2aから半径方向に放射状に延びて筐体2bに向かって突出する複数のリブ65が主板軸端面6fに設けられることで、周方向において主板6と固定部材4とが断続的に接触する。そのため、羽根車3の固有周波数をさらに細かく変えることができる。 In this embodiment, the main plate shaft end surface 6f is provided with a plurality of ribs 65 that extend radially from the shaft 2a and protrude toward the housing 2b. The plurality of planes 66 provided on the facing surfaces are axially farther away from the housing 2b as the planes are located on the inner side in the radial direction. Thereby, the contact point between the main plate 6 and the fixing member 4 can be changed not only in the radial direction but also in the circumferential direction. That is, by providing the main plate shaft end surface 6f with a plurality of ribs 65 that extend radially from the shaft 2a and protrude toward the housing 2b, the main plate 6 and the fixing member 4 are intermittently in contact with each other in the circumferential direction. do. Therefore, the natural frequency of the impeller 3 can be changed more finely.
 本実施の形態では、リブ65の数を増やしたりリブ65の幅を変えたりすることで、周方向において主板6と固定部材4とが接触する箇所を細かく調整することができるため、羽根車3の固有周波数をさらに細かく変えることができる。また、リブ65の数を増やしたりリブ65の幅を細くしたりした場合でも、簡易な構造であるため製造コストを抑えることが可能である。また、羽根車3の材料に樹脂材料を用いれば、羽根車3とリブ65とを一体成形で製造することも可能であるため、リブ65の数を増やしたりリブ65の幅を細くしたりすることによる製造コストの増加を抑えることが可能である。 In this embodiment, by increasing the number of ribs 65 or changing the width of the ribs 65, it is possible to finely adjust the contact point between the main plate 6 and the fixed member 4 in the circumferential direction. The natural frequency of can be changed more precisely. Further, even if the number of ribs 65 is increased or the width of the ribs 65 is made thinner, the manufacturing cost can be kept down because of the simple structure. Furthermore, if a resin material is used for the material of the impeller 3, it is possible to manufacture the impeller 3 and the ribs 65 by integral molding, so it is possible to increase the number of ribs 65 or reduce the width of the ribs 65. It is possible to suppress the increase in manufacturing costs due to this.
 図19に示すように、各リブ65のうち筐体2bの方を向く面の形状は、シャフト2aの中心軸Cを中心とする回転非対称形状でもよい。図19は、実施の形態4の変形例1にかかる羽根車3を示した斜視図である。図19に示すように、各リブ65の平面66の半径方向における位置は、互いに異なっている。図示の例では、リブ65のうち半径方向の外側部分に平面66があるリブ65と、リブ65のうち半径方向の中央部に平面66があるリブ65とが、周方向に交互に配置されている。周方向に隣り合うリブ65では、平面66が半径方向にオフセットして設けられている。本変形例では、リブ65ごとにリブ65と固定部材4とが接触する箇所を個別に変えることができ、シャフト2aの中心軸Cから主板6と固定部材4とが接触する箇所までの半径方向の最短距離Lをリブ65ごとに変えることができる。 As shown in FIG. 19, the shape of the surface of each rib 65 facing toward the housing 2b may be a rotationally asymmetric shape about the central axis C of the shaft 2a. FIG. 19 is a perspective view showing an impeller 3 according to a first modification of the fourth embodiment. As shown in FIG. 19, the positions of the planes 66 of each rib 65 in the radial direction are different from each other. In the illustrated example, ribs 65 having a flat surface 66 on the radially outer portion of the rib 65 and ribs 65 having a flat surface 66 on the radially central portion of the rib 65 are alternately arranged in the circumferential direction. There is. The ribs 65 adjacent to each other in the circumferential direction have flat surfaces 66 offset in the radial direction. In this modification, the point where the rib 65 and the fixing member 4 contact can be changed individually for each rib 65, and the radial direction from the central axis C of the shaft 2a to the point where the main plate 6 and the fixing member 4 make contact The shortest distance L can be changed for each rib 65.
 主板6は、図20に示される構成でもよい。図20は、実施の形態4の変形例2にかかる羽根車3を示した斜視図である。主板側壁部6bには、主板側壁部6bを半径方向に貫通する開口部6iが設けられている。開口部6iは、モータ2を空冷するために設けられる。すなわち、吸込口5dからケーシング5内に吸い込まれた空気の一部は、開口部6iを通じてモータ2に当たることにより、モータ2が冷却される。 The main plate 6 may have the configuration shown in FIG. 20. FIG. 20 is a perspective view showing an impeller 3 according to a second modification of the fourth embodiment. The main plate side wall 6b is provided with an opening 6i that radially penetrates the main plate side wall 6b. The opening 6i is provided for cooling the motor 2 with air. That is, a portion of the air sucked into the casing 5 from the suction port 5d hits the motor 2 through the opening 6i, thereby cooling the motor 2.
 本変形例では、主板6と固定部材4とが接触する箇所を、半径方向に変更できるだけでなく、周方向においても変更できる。そのため、主板6に開口部6iを設けた場合であっても、モータ2の電磁振動が羽根車3へと伝播する箇所を変更して、共振周波数から外れるように羽根車3の固有周波数を変えることができる。したがって、制振材を用いることなく、送風機1における共振を避けることができるか、あるいは、送風機1における共振を低減させることができる。 In this modification, the contact point between the main plate 6 and the fixing member 4 can be changed not only in the radial direction but also in the circumferential direction. Therefore, even when the opening 6i is provided in the main plate 6, the location where the electromagnetic vibration of the motor 2 propagates to the impeller 3 is changed, and the natural frequency of the impeller 3 is changed so as to deviate from the resonant frequency. be able to. Therefore, the resonance in the blower 1 can be avoided or the resonance in the blower 1 can be reduced without using a damping material.
 以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the embodiments above are merely examples, and can be combined with other known techniques, or can be combined with other embodiments, within the scope of the gist. It is also possible to omit or change part of the configuration.
 例えば、前記した各実施の形態にかかる送風機1~1Eは、換気用途、空調用途、これら以外の用途で用いられてもよい。 For example, the blowers 1 to 1E according to each of the embodiments described above may be used for ventilation purposes, air conditioning purposes, and other purposes.
 前記した各実施の形態では、羽根車3を多翼送風機に適用した場合を例示したが、多翼送風機以外の送風機に適用してもよい。すなわち、羽根車3は、遠心送風機、軸流送風機を問わず、一般の送風機に適用可能である。 In each of the embodiments described above, the case where the impeller 3 is applied to a multi-blade blower is exemplified, but the impeller 3 may be applied to a blower other than a multi-blade blower. That is, the impeller 3 is applicable to a general blower, regardless of whether it is a centrifugal blower or an axial blower.
 前記した各実施の形態では、送風機1~1Eは、吸込口5dを1つ備えた片吸込型であったが、吸込口5dを2つ備えた両吸込型であってもよい。 In each of the embodiments described above, the blowers 1 to 1E are of the single suction type with one suction port 5d, but may be of the double suction type with two suction ports 5d.
 1,1A,1B,1C,1D,1E,10 送風機、2 モータ、2a シャフト、2b 筐体、2c フランジ部、3 羽根車、4 固定部材、4a 固定挿通孔、4b 第1の固定軸端面、4c 第2の固定軸端面、4d,6g 接触部、4e,6h 離隔部、4f 突出部、5 ケーシング、5a ケーシング側壁部、5b ケーシング周壁部、5c 吹出口、5d 吸込口、5e 固定孔、6 主板、6a 主板底壁部、6b 主板側壁部、6c 主板周壁部、6d ボス部、6e 主板挿通孔、6f 主板軸端面、6i 開口部、7 翼、8 補強リング、61,61a,61b,61c,64,66,66a,66b,66c 平面、62,62a,62b,67,67a,67b 段差面、63,63a,63b,65 リブ。 1, 1A, 1B, 1C, 1D, 1E, 10 blower, 2 motor, 2a shaft, 2b housing, 2c flange section, 3 impeller, 4 fixing member, 4a fixing insertion hole, 4b first fixed shaft end surface, 4c Second fixed shaft end surface, 4d, 6g contact part, 4e, 6h separation part, 4f protrusion part, 5 casing, 5a casing side wall part, 5b casing peripheral wall part, 5c outlet, 5d suction port, 5e fixing hole, 6 Main plate, 6a Main plate bottom wall, 6b Main plate side wall, 6c Main plate peripheral wall, 6d Boss, 6e Main plate insertion hole, 6f Main plate shaft end face, 6i Opening, 7 Wing, 8 Reinforcement ring, 61, 61a, 61b, 61c , 64, 66, 66a, 66b, 66c plane, 62, 62a, 62b, 67, 67a, 67b step surface, 63, 63a, 63b, 65 rib.

Claims (9)

  1.  シャフトが挿通される主板挿通孔が形成された主板と、
     前記主板の外周縁に沿って互いに間隔を空けて設けられて、前記シャフトの軸方向に延びる複数の翼と、を有し、
     前記主板のうち前記軸方向に沿った一方を向く面には、前記軸方向と直交する方向である半径方向に前記主板挿通孔と離れた位置に設けられた接触部と、前記主板挿通孔から前記接触部に亘って設けられて前記接触部よりも前記軸方向に沿った他方に位置する離隔部とが形成されていることを特徴とする羽根車。
    a main plate having a main plate insertion hole through which the shaft is inserted;
    a plurality of wings provided at intervals along the outer periphery of the main plate and extending in the axial direction of the shaft;
    A contact portion provided on a surface facing one side along the axial direction of the main plate at a position away from the main plate insertion hole in a radial direction that is perpendicular to the axial direction; An impeller characterized in that a separation part is formed extending over the contact part and located on the other side of the contact part in the axial direction.
  2.  シャフトと、前記シャフトの一部を収容する筐体とを有するモータと、
     前記シャフトのうち前記筐体の外部に位置する部分に取り付けられて前記シャフトの回転に伴って回転する主板と、前記主板の外周縁に沿って互いに間隔を空けて設けられて前記シャフトの軸方向に延びる複数の翼とを有する羽根車と、
     前記主板と前記筐体との間で前記シャフトに取り付けられて、前記主板に接触して前記羽根車の前記軸方向の位置を固定する固定部材と、
     前記羽根車を収容するケーシングと、
     を備え、
     前記主板は、前記固定部材の方を向く主板軸端面を有し、
     前記主板軸端面および前記固定部材のうちいずれか一方には、前記軸方向と直交する方向である半径方向に前記シャフトと離れた位置に設けられて前記主板軸端面および前記固定部材のうちいずれか他方に接触する接触部と、前記シャフトから前記接触部に亘って設けられて前記接触部が前記主板軸端面および前記固定部材のうちいずれか他方に接触した状態で前記主板軸端面および前記固定部材のうちいずれか他方から離隔する離隔部とが形成されていることを特徴とする送風機。
    A motor having a shaft and a casing that accommodates a portion of the shaft;
    a main plate that is attached to a portion of the shaft located outside the housing and rotates as the shaft rotates; and a main plate that is provided at intervals along an outer peripheral edge of the main plate in the axial direction of the shaft. an impeller having a plurality of blades extending to;
    a fixing member that is attached to the shaft between the main plate and the housing and contacts the main plate to fix the axial position of the impeller;
    a casing that houses the impeller;
    Equipped with
    The main plate has a main plate axial end face facing the fixing member,
    Either one of the main plate shaft end face and the fixing member is provided at a position away from the shaft in a radial direction, which is a direction perpendicular to the axial direction, and one of the main plate shaft end face and the fixing member a contact portion that contacts the other; and a contact portion that is provided from the shaft to the contact portion and contacts the main plate shaft end surface and the fixing member in a state where the contact portion contacts the other of the main plate shaft end surface and the fixing member. A blower characterized in that a separating portion is formed to be separated from one of the two.
  3.  前記接触部は、前記半径方向に前記シャフトと離れた位置に設けられて前記固定部材に接触する環状の平面であり、
     前記離隔部は、前記シャフトから前記平面に亘って設けられて前記平面が前記固定部材に接触した状態で前記固定部材から離隔する凹部であることを特徴とする請求項2に記載の送風機。
    The contact portion is an annular plane provided at a position apart from the shaft in the radial direction and comes into contact with the fixing member,
    3. The blower according to claim 2, wherein the separation part is a recess that extends from the shaft to the plane and is spaced apart from the fixing member while the plane is in contact with the fixing member.
  4.  前記固定部材のうち前記軸方向に沿った一方を向く面および前記軸方向に沿った他方を向く面のいずれか一方には、前記接触部と前記離隔部とが形成され、
     前記固定部材のうち前記軸方向に沿った一方を向く面および前記軸方向に沿った他方を向く面のいずれか他方は、平面であることを特徴とする請求項2に記載の送風機。
    The contact portion and the separation portion are formed on either one of a surface facing one side along the axial direction and a surface facing the other side along the axial direction of the fixing member,
    The blower according to claim 2, wherein the other of the surface of the fixed member facing one direction along the axial direction and the surface facing the other direction along the axial direction is a flat surface.
  5.  前記接触部は、前記半径方向に前記シャフトと離れた位置に、かつ、前記シャフトの回転方向である周方向に沿って互いに間隔を空けて設けられて、前記主板軸端面に向かって突出する複数の突出部であり、
     前記離隔部は、前記シャフトから前記突出部に亘って設けられて前記突出部が前記主板軸端面に接触した状態で前記主板軸端面から離隔する平面であることを特徴とする請求項4に記載の送風機。
    The contact portions include a plurality of contact portions that are provided at positions apart from the shaft in the radial direction and spaced apart from each other along the circumferential direction, which is the rotational direction of the shaft, and protrude toward the main plate shaft end surface. is the protrusion of
    5. The separating portion is a plane provided extending from the shaft to the protruding portion and separating from the main plate shaft end surface while the protruding portion is in contact with the main plate shaft end surface. blower.
  6.  前記接触部は、前記半径方向に前記シャフトと離れた位置に設けられて前記主板軸端面に接触する環状の平面であり、
     前記離隔部は、前記シャフトから前記平面に亘って設けられて前記半径方向外側から内側に向かうほど前記軸方向に前記主板軸端面から離隔する階段状の段差部であることを特徴とする請求項4に記載の送風機。
    The contact portion is an annular plane that is provided at a position apart from the shaft in the radial direction and contacts the main plate shaft end surface,
    The separating portion is a stepped portion that is provided from the shaft to the plane and is spaced apart from the main plate shaft end face in the axial direction from the outer side to the inner side in the radial direction. 4. The blower according to item 4.
  7.  前記主板軸端面には、前記シャフトを中心とした同心円状に配置された複数の環状の平面が設けられ、
     複数の前記平面は、前記半径方向内側に位置するものほど前記軸方向に前記筐体から離隔しており、
     複数の前記平面のうち1つが前記接触部となることを特徴とする請求項2に記載の送風機。
    The main plate shaft end face is provided with a plurality of annular planes arranged concentrically around the shaft,
    The plurality of planes are further away from the casing in the axial direction as they are located on the inner side in the radial direction,
    The blower according to claim 2, wherein one of the plurality of planes serves as the contact portion.
  8.  前記主板軸端面には、前記シャフトから前記半径方向に放射状に延びて前記筐体に向かって突出する複数のリブが設けられ、
     各前記リブのうち前記筐体の方を向く面には、前記半径方向に沿って配置された複数の平面が設けられ、
     複数の前記平面は、前記半径方向内側に位置するものほど前記軸方向に前記筐体から離隔しており、
     複数の前記平面のうち1つが前記接触部となることを特徴とする請求項2に記載の送風機。
    The main plate shaft end surface is provided with a plurality of ribs that extend radially from the shaft in the radial direction and protrude toward the housing,
    A plurality of planes arranged along the radial direction are provided on the surface of each of the ribs facing the casing,
    The plurality of planes are further away from the casing in the axial direction as they are located on the inner side in the radial direction,
    The blower according to claim 2, wherein one of the plurality of planes serves as the contact portion.
  9.  各前記リブのうち前記筐体の方を向く面の形状は、前記シャフトの中心軸を中心とする回転非対称形状であることを特徴とする請求項8に記載の送風機。 The blower according to claim 8, wherein the shape of the surface of each of the ribs facing toward the housing is rotationally asymmetrical with respect to the central axis of the shaft.
PCT/JP2022/013588 2022-03-23 2022-03-23 Impeller and blower WO2023181193A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/013588 WO2023181193A1 (en) 2022-03-23 2022-03-23 Impeller and blower
JP2024509534A JPWO2023181193A5 (en) 2022-03-23 Blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/013588 WO2023181193A1 (en) 2022-03-23 2022-03-23 Impeller and blower

Publications (1)

Publication Number Publication Date
WO2023181193A1 true WO2023181193A1 (en) 2023-09-28

Family

ID=88100488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013588 WO2023181193A1 (en) 2022-03-23 2022-03-23 Impeller and blower

Country Status (1)

Country Link
WO (1) WO2023181193A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019015206A (en) * 2017-07-05 2019-01-31 日本電産株式会社 Vane wheel and blowing apparatus
JP2019203432A (en) * 2018-05-22 2019-11-28 富士工業株式会社 Mounting device of rotor, and range hood
JP2020090913A (en) * 2018-12-04 2020-06-11 リンナイ株式会社 Centrifugal fan
JP2020101153A (en) * 2018-12-25 2020-07-02 リンナイ株式会社 Blower fan

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019015206A (en) * 2017-07-05 2019-01-31 日本電産株式会社 Vane wheel and blowing apparatus
JP2019203432A (en) * 2018-05-22 2019-11-28 富士工業株式会社 Mounting device of rotor, and range hood
JP2020090913A (en) * 2018-12-04 2020-06-11 リンナイ株式会社 Centrifugal fan
JP2020101153A (en) * 2018-12-25 2020-07-02 リンナイ株式会社 Blower fan

Also Published As

Publication number Publication date
JPWO2023181193A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
KR100713996B1 (en) Blade wheel for centrifugal blower and centrifugal blower with the same
JP3698150B2 (en) Centrifugal blower
US7445423B2 (en) Counter-rotating axial-flow fan
JP3858744B2 (en) Centrifugal blower
JP5832804B2 (en) Centrifugal fan
EP1845603B1 (en) Axial fan motor
JP6493620B2 (en) Centrifugal blower
WO2013099906A1 (en) Axial flow fan
KR100432431B1 (en) Both directions indraft type centrigugal fan and cooling apparatus for computer using the centrigugal fan
WO2023181193A1 (en) Impeller and blower
US20210079923A1 (en) Electric blower
WO2021144942A1 (en) Centrifugal blower and air conditioning device
JP5309516B2 (en) Centrifugal blower
JP2003097488A (en) Centrifugal air blower and air conditioner
JP2019074030A (en) Centrifugal fan
JP2002005091A (en) Multi-blade fan
JP2002054594A (en) Centrifugal fan
JP3229273U (en) Blower
JPH08338396A (en) Centrifugal type air blower
WO2018016198A1 (en) Centrifugal blower
JP2003035298A (en) Centrifugal blower
EP4089286A1 (en) Reversible fan
JP6997672B2 (en) Blower
JP7423958B2 (en) Air blower
JP7476735B2 (en) Centrifugal Blower

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933336

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024509534

Country of ref document: JP