WO2023181091A1 - Air-conditioning/hot-water-supply system, and collective air-conditioning/hot-water-supply system - Google Patents

Air-conditioning/hot-water-supply system, and collective air-conditioning/hot-water-supply system Download PDF

Info

Publication number
WO2023181091A1
WO2023181091A1 PCT/JP2022/012942 JP2022012942W WO2023181091A1 WO 2023181091 A1 WO2023181091 A1 WO 2023181091A1 JP 2022012942 W JP2022012942 W JP 2022012942W WO 2023181091 A1 WO2023181091 A1 WO 2023181091A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
water supply
hot water
air conditioning
heat medium
Prior art date
Application number
PCT/JP2022/012942
Other languages
French (fr)
Japanese (ja)
Inventor
泰光 野村
慶郎 青▲柳▼
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/012942 priority Critical patent/WO2023181091A1/en
Priority to JP2024508826A priority patent/JPWO2023181091A1/ja
Publication of WO2023181091A1 publication Critical patent/WO2023181091A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/18Hot-water central heating systems using heat pumps

Definitions

  • the present disclosure relates to an air conditioning hot water supply system and a collective air conditioning hot water supply system.
  • Patent Document 1 describes a heat pump water heater and a heat pump water heater that increase the temperature by compressing the heat medium that has received the heat amount using a compressor, and supplying hot water by giving the heat amount to city water using a heat exchanger. The system is described.
  • a heat medium that receives exhaust heat from a data center or the like is circulated to supply heat to each heat pump water heater.
  • piping resistance acts in the piping through which the heating medium circulates, the pressure of the heating medium in the piping decreases as the distance from the pump that pumps the heating medium increases.
  • a heat pump water heater that is far away from the pump receives a smaller flow rate of heat medium than a heat pump water heater that is closer to the pump, resulting in a reduction in heat pump performance.
  • one of the objects of the present disclosure is to provide an air conditioning hot water supply system and a collective air conditioning hot water supply system that can maintain substantially constant heat pump capacity regardless of the installation position of the air conditioning hot water supply equipment.
  • the air conditioning hot water supply equipment includes a first circulation circuit that circulates a medium, a second circulation circuit that circulates a second heat medium, a branch pipe connected to the first circulation circuit, and a branch pipe that is connected to the first circulation circuit.
  • a heat pump that transfers heat from the pipeline to the second circulation circuit; and a heat pump that is provided in the branch pipeline and adjusts the pressure of the first heat medium flowing through the branch pipeline to a predetermined pressure.
  • One aspect of the collective air conditioning hot water supply system includes a second heat supply equipment that supplies heat, and a plurality of air conditioning hot water supply systems that receive heat from the second heat supply equipment, and At least one of the air conditioning and hot water supply systems includes the air conditioning and hot water supply system described above.
  • the heat pump capacity can be made substantially constant regardless of the installation position of the air conditioning hot water supply equipment.
  • FIG. 1 is a schematic diagram showing the configuration of a collective air conditioning hot water supply system in Embodiment 1.
  • FIG. 1 is a schematic diagram showing the configuration of an air conditioning hot water supply facility in Embodiment 1.
  • FIG. 2 is a block diagram showing the configuration of a control device in Embodiment 1.
  • FIG. 5 is a flowchart showing control of the control device in the first embodiment.
  • 7 is a graph showing the relationship between the flow rate of the heat medium flowing inside the branch pipe line and the temperature of the heat medium flowing into the heat exchanger on the primary side of the heat pump in Embodiment 1.
  • FIG. FIG. 2 is a schematic diagram showing the configuration of an air conditioning hot water supply facility in Embodiment 2.
  • FIG. 3 is a schematic diagram showing the configuration of a collective air conditioning hot water supply system in Embodiment 3.
  • FIG. 1 is a schematic diagram showing the configuration of a collective air conditioning and hot water supply system 1 in the first embodiment.
  • FIG. 1 shows an example of a collective air conditioning and hot water supply system 1 installed in a high-rise housing complex such as a condominium.
  • the collective air conditioning hot water supply system 1 shown in FIG. A plurality of air conditioning hot water supply systems 3 receiving heat from the equipment 2 are provided.
  • the central heat supply facility 2 includes a heat pump 11, a circulation circuit 12, a pump 13, an expansion tank 14, and a heat exchanger 15.
  • a plurality of heat pumps 11 are installed on the roof of an apartment complex.
  • the heat pump 11 collects heat from the atmosphere and heats the heat medium in the piping of the circulation circuit 12.
  • the circulation circuit 12 connects the heat pump 11, the pump 13, the expansion tank 14, and the heat exchanger 15.
  • the piping of the circulation circuit 12 is filled with a heat medium.
  • An example of a heat medium is water.
  • the pump 13 circulates the heat medium in the piping of the circulation circuit 12 and supplies the heat medium heated by the heat pump 11 to the heat exchanger 15 .
  • the temperature of the heat medium is 20° C. before being heated by the heat pump 11, and the temperature is 25° C. after being heated.
  • the expansion tank 14 absorbs a part of the heat medium whose volume has increased due to the temperature rise from the circulation circuit 12.
  • the expansion tank 14 is, for example, a closed tank. Since the heat medium in the closed tank does not come into contact with the atmosphere, using a closed tank can suppress evaporation and oxidation of the heat medium in the closed tank to the atmosphere.
  • the heat exchanger 15 is installed on each floor of the apartment complex.
  • Heat exchanger 15 is, for example, a plate heat exchanger.
  • the heat medium radiates heat in the heat exchanger 15 on each floor, and the air conditioning and hot water supply system 3 on each floor receives the heat.
  • the temperature of the heat medium is 25° C. before the heat is radiated by the heat exchanger 15, and the temperature is 20° C. after the heat is radiated.
  • the air conditioning and hot water supply system 3 is installed on each floor of the apartment complex. In other words, the air conditioning and hot water supply systems 3 are installed in parallel in the vertical direction. A plurality of residential units are arranged horizontally on each floor, and air conditioning and hot water supply equipment 30 is installed corresponding to each residential unit.
  • the air conditioning hot water supply system 3 includes a heat supply facility 20 (also referred to as branch heat supply facility) that relays the heat received from the central heat supply facility 2 and supplies it to each dwelling unit, and a plurality of air conditioning hot water supplies that receive heat from the heat supply facility 20. It is equipped with equipment 30.
  • the heat supply equipment 20 includes a circulation circuit 21, a pump 22, and an expansion tank 23.
  • the circulation circuit 21 connects the pump 22, the expansion tank 23, and the air conditioning hot water supply equipment 30.
  • the piping of the circulation circuit 21 is filled with a heat medium.
  • An example of a heat medium is water.
  • the pump 22 circulates the heat medium in the piping of the circulation circuit 21 and supplies the heat medium heated by the heat exchanger 15 to the air conditioning hot water supply equipment 30.
  • the heat medium has a temperature of 15° C. before being heated by the heat exchanger 15, and a temperature of 20° C. after being heated.
  • the expansion tank 23 absorbs a part of the heat medium whose volume has increased due to the temperature rise from the circulation circuit 21.
  • the expansion tank 23 is, for example, a closed tank. Since the heat medium in the closed tank does not come into contact with the atmosphere, using a closed tank can suppress evaporation and oxidation of the heat medium in the closed tank to the atmosphere.
  • FIG. 2 is a schematic diagram showing the configuration of the air conditioning hot water supply equipment 30 in the first embodiment.
  • the air conditioning and hot water supply equipment 30 shown in FIG. 2 is installed within the dwelling unit 5. Note that the air conditioning and hot water supply equipment 30 may be installed outside the housing unit 5 as long as it is installed for each housing unit 5. Inside the dwelling unit 5, an air conditioning terminal 6 and a hot water supply terminal 7 are installed.
  • the air conditioning terminal 6 includes, for example, a radiator panel, and air-conditions the inside of the dwelling unit 5 using the heat of hot water or water supplied from the air conditioning hot water supply equipment 30.
  • the hot water supply terminal 7 includes, for example, a shower, and dispenses hot water supplied from the air conditioning hot water supply equipment 30. Note that at least one of the air conditioning terminal 6 and the hot water supply terminal 7 may be connected to the air conditioning and hot water supply equipment 30 .
  • the air conditioning and hot water supply equipment 30 includes a transformer 31, a control device 32, a tank 33, a circulation circuit 40, a branch pipe 50, and a heat pump 60.
  • the tank 33 includes a tank heat exchanger 43a inside and stores water. Below, the water stored inside the tank 33 will be referred to as tank water.
  • the tank 33 is connected to the hot water supply terminal 7.
  • the circulation circuit 40 includes an air conditioning circuit 42 connected to the air conditioning terminal 6 and a hot water supply circuit 43 connected to the tank heat exchanger 43a.
  • the piping of the circulation circuit 40 is filled with a heat medium.
  • a heat medium is water.
  • the circulation circuit 40 is provided with a pump 41 that circulates the heat medium, and a flow path switching mechanism 44 that switches the circulation path of the heat medium to the air conditioning circuit 42 or the hot water supply circuit 43.
  • the flow path switching mechanism 44 is, for example, a three-way switching valve, and communicates two of the three-way flow paths and blocks one.
  • the flow path switching mechanism 44 can communicate with the air conditioning circuit 42 and cut off the hot water supply circuit 43.
  • the heat medium in the piping of the circulation circuit 40 circulates in the order of the heat exchanger 64 on the secondary side of the heat pump 60, the flow path switching mechanism 44, the air conditioning circuit 42, and the air conditioning terminal 6.
  • the heat medium radiates heat at the air conditioning terminal 6 and warms the inside of the dwelling unit 5.
  • the flow path switching mechanism 44 can communicate with the hot water supply circuit 43 and can shut off the air conditioning circuit 42.
  • the heat medium in the piping of the circulation circuit 40 circulates in the order of the heat exchanger 64 on the secondary side of the heat pump 60, the flow path switching mechanism 44, the hot water supply circuit 43, and the tank heat exchanger 43a.
  • the heat medium radiates heat in the tank heat exchanger 43a and heats the tank water.
  • the heated tank water is used at the hot water supply terminal 7.
  • a temperature sensor 45 is provided in the circulation circuit 40.
  • the temperature sensor 45 is arranged in the circulation circuit 40 on the downstream side of the heat exchanger 64 on the secondary side of the heat pump 60 and on the upstream side of the flow path switching mechanism 44 .
  • the temperature sensor 45 measures the temperature of the heat medium flowing out from the heat exchanger 64 on the secondary side of the heat pump 60 (output hot water temperature).
  • the heat pump 60 transfers heat from the branch pipe 50 connected to the circulation circuit 21 of the heat supply equipment 20 to the circulation circuit 40.
  • the heat pump 60 includes a circulation circuit 61, a compressor 62, an expansion mechanism 63, a secondary heat exchanger 64, a primary heat exchanger 65, and a flow path switching mechanism 66.
  • the circulation circuit 61 connects the compressor 62, the expansion mechanism 63, the secondary heat exchanger 64, the primary heat exchanger 65, and the flow path switching mechanism 66.
  • the piping of the circulation circuit 61 is filled with a heat medium.
  • An example of a heat transfer medium is difluoromethane or propane.
  • the compressor 62 compresses and discharges the heat medium in the piping of the circulation circuit 61, thereby circulating the heat medium.
  • the primary heat exchanger 65 is thermally connected to the circulation circuit 21 of the heat supply equipment 20 via a branch pipe 50. Further, the secondary side heat exchanger 64 is thermally connected to the circulation circuit 40 of the air conditioning terminal 6 and the hot water supply terminal 7.
  • the expansion mechanism 63 is, for example, an expansion valve, and expands the heat medium that has passed through the secondary heat exchanger 64 to lower the temperature.
  • the heat medium in the piping of the circulation circuit 61 radiates heat in the heat exchanger 64 on the secondary side.
  • the heat medium that has radiated heat passes through the expansion mechanism 63, its temperature decreases and flows into the primary side heat exchanger 65.
  • the heat medium flowing into the primary heat exchanger 65 absorbs heat from the branch pipe 50 in the primary heat exchanger 65 .
  • the heat medium that has absorbed heat flows into the compressor 62 again.
  • the heat pump 60 repeats this cycle to transfer the heat from the branch pipe 50 to the circulation circuit 40.
  • An example of the temperature of the heat medium in the piping of the branch pipe line 50 is 20° C. before the heat is radiated by the primary side heat exchanger 65, and 15° C. after the heat is radiated. Further, an example of the temperature of the heat medium in the circulation circuit 40 is 45° C. before heat is absorbed by the secondary side heat exchanger 64, and 50° C. after heat is absorbed.
  • the amount of heat (watts) that the heat pump 60 provides from the branch pipe line 50 to the circulation circuit 40 is called heat pump capacity.
  • the heat pump capacity can be changed. Specifically, by changing at least one of the rotation speed of the compressor 62 and the opening degree of the expansion mechanism 63, the circulation flow rate (heat pump capacity) of the heat medium in the circulation circuit 61 can be changed. By changing the heat pump capacity, the hot water temperature can be increased or decreased.
  • the flow path switching mechanism 66 is, for example, a four-way switching valve, and switches the flow path of the circulation circuit 61 to form a heating circuit and a cooling circuit.
  • the heating circuit is a circuit that transfers heat from the branch pipe line 50 to the circulation circuit 40.
  • the cooling circuit is a circuit that transfers heat from the circulation circuit 40 to the branch pipe line 50. In the following description, an example will be described in which the flow path switching mechanism 66 forms a heating circuit.
  • the branch pipe line 50 connects the circulation circuit 21 of the heat supply equipment 20 and the heat exchanger 65 on the primary side of the heat pump 60.
  • the branch pipe line 50 is connected to the outgoing side of the circulation circuit 21 via a connection point 50a provided in the dwelling unit 5, and connected to the primary side heat exchanger 65 via a connection point 50b provided in the air conditioning hot water supply equipment 30. Connected to the upstream side.
  • the branch pipe line 50 is connected to the return side of the circulation circuit 21 via a connection point 50d provided in the dwelling unit 5, and is connected to the primary side heat exchanger via a connection point 50c provided in the air conditioning hot water supply equipment 30. 65 on the downstream side. That is, the branch pipe line 50 connects the outgoing side and the incoming side of the circulation circuit 21, and forms a flow path that passes through the heat exchanger 65 on the primary side of the air conditioning hot water supply equipment 30.
  • the branch pipe line 50 is provided with a pressure adjustment mechanism 51 and a flow rate adjustment mechanism 52.
  • the pressure adjustment mechanism 51 adjusts the pressure of the heat medium flowing inside the branch pipe 50 to a predetermined pressure.
  • the predetermined pressure is a pressure at which the differential pressure between the heat medium before and after the pressure adjustment mechanism 51 is approximately constant.
  • the pressure adjustment mechanism 51 is, for example, a differential pressure adjustment valve equipped with a spring, and uses the spring to reduce the pressure of the inflowing heat medium to adjust the pressure difference between the heat medium before and after the pressure adjustment mechanism 51 to be approximately constant. .
  • the pressure adjustment mechanism 51 is not limited to a spring, but may be reduced by an elastic member such as rubber, as long as the pressure of the heat medium flowing inside the branch pipe 50 can be reduced, or it may be reduced by using hydraulic pressure or pneumatic pressure. The pressure may be reduced.
  • the flow rate adjustment mechanism 52 is provided downstream of the pressure adjustment mechanism 51 in the branch line 50 and adjusts the flow rate of the heat medium flowing inside the branch line 50.
  • the flow rate adjustment mechanism 52 includes, for example, an on-off valve, and changes the flow rate of the heat medium by changing the degree of opening of the branch pipe 50 through which the heat medium flows.
  • the flow rate of the heat medium flowing through the flow rate adjustment mechanism 52 and the branch pipe 50 decreases as the opening of the branch pipe 50 becomes smaller, and increases as the opening of the branch pipe 50 increases.
  • the flow rate adjustment mechanism 52 further includes an electric motor and a communication device.
  • the electric motor is, for example, a stepping motor driven by 24V, and drives the above-mentioned on-off valve to change the degree of opening of the branch pipe 50.
  • the communication device communicates with the control device 32.
  • the communication device receives a target opening degree, which is a target value of the opening degree of the branch pipe 50, from the control device 32.
  • the flow rate adjustment mechanism 52 drives the electric motor so that the opening degree of the on-off valve becomes the target opening degree.
  • the transformer 31 is connected to a power source and supplies power to the flow rate adjustment mechanism 52.
  • the transformer 31 changes the voltage by, for example, electromagnetic induction.
  • the voltage of the power supply is, for example, 240V, and the transformer 31 transforms the voltage of the power supply to 24V, which is the drive voltage of the flow rate adjustment mechanism 52.
  • a temperature sensor 53 is provided in the branch pipe 50.
  • the temperature sensor 53 is arranged in the branch pipe line 50 on the downstream side of the flow rate adjustment mechanism 52 and on the upstream side of the heat exchanger 65 on the primary side of the heat pump 60.
  • the temperature sensor 53 measures the temperature of the heat medium flowing into the heat exchanger 65 on the primary side of the heat pump 60.
  • FIG. 3 is a block diagram showing the configuration of the control device 32 in the first embodiment.
  • the control device 32 is connected to the temperature sensors 45, 53 described above, and receives measurement results from the temperature sensors 45, 53. Further, the control device 32 is connected to the compressor 62, the expansion mechanism 63, and the flow path switching mechanism 66 described above, and controls switching between the heating circuit and the cooling circuit and the heat pump capacity of the heat pump 60.
  • control device 32 is connected to the pump 41 and the flow path switching mechanism 44 described above, and controls switching between the air conditioning circuit 42 and the hot water supply circuit 43 and the circulation or stopping of the heat medium to the air conditioning circuit 42 and the hot water supply circuit 43. . Furthermore, the control device 32 is connected to the above-mentioned flow rate adjustment mechanism 52 and adjusts the flow rate of the heat medium flowing inside the branch pipe 50 to supply the heat medium to the heat exchanger 65 on the primary side of the heat pump 60. control the flow rate.
  • the control device 32 changes the target opening degree of the branch pipe 50 based on the temperature measured by the temperature sensor 53 provided in the branch pipe 50.
  • the control device 32 decreases the target opening degree of the branch pipe line 50 when the temperature measured by the temperature sensor 53 increases, and increases the target opening degree of the branch pipe line 50 when the temperature measured by the temperature sensor 53 decreases.
  • the target opening degree of the branch pipe line 50 can be selected, for example, between 0% (fully closed) and 100% (fully open).
  • control device 32 has a target temperature as a control parameter.
  • the target temperature is a target value of the hot water temperature, and is set to, for example, 50°C.
  • the target temperature is usually set based on the temperature that the resident of the dwelling unit 5 would like to use at the hot water supply terminal 7 or the air conditioning terminal 6.
  • the control device 32 changes the rotation speed of the compressor 62, the opening degree of the expansion mechanism 63, and the target opening degree of the branch pipe 50 so that the outlet hot water temperature reaches the target temperature.
  • control device 32 has, as control parameters, an upper limit rotation speed that is an upper limit value of the rotation speed of the compressor 62, and a lower limit rotation speed that is a lower limit value of the rotation speed of the compressor 62.
  • the control device 32 increases the target opening degree of the branch pipe line 50 when the rotation speed of the compressor 62 reaches the upper limit rotation speed, and increases the target opening degree of the branch pipe line 50 when the rotation speed of the compressor 62 reaches the lower limit rotation speed.
  • the target opening degree of the conduit 50 is decreased.
  • the control device 32 may increase (or decrease) the target opening degree of the branch pipe 50 immediately before the rotation speed of the compressor 62 reaches the upper limit (or lower limit) of the rotation speed.
  • control device 32 has, as control parameters, an upper limit opening that is the upper limit of the target opening of the branch pipe 50, and a lower limit opening that is the lower limit of the target opening of the branch pipe 50.
  • the upper limit opening degree and the lower limit opening degree may be set values selected between 0% (fully closed) and 100% (fully open), or the upper limit opening degree may be 100% (fully open) and the lower limit opening degree may be set values selected between 0% (fully closed) and 100% (fully open). It may be 0% (fully closed).
  • FIG. 4 is a flowchart showing control by the control device 32 in the first embodiment.
  • the control device 32 performs control so that the outlet hot water temperature becomes the target temperature.
  • the control device 32 compares the measurement result (output hot water temperature) of the temperature sensor 45 with a target temperature (step S1).
  • the control device 32 increases the rotation speed of the compressor 62 in order to raise the outlet hot water temperature (step S2).
  • the control device 32 compares the rotation speed of the compressor 62 and the upper limit rotation speed (step S3). If the rotational speed of the compressor 62 has not reached the upper limit rotational speed, the process returns to step S1 and the outlet hot water temperature is compared with the target temperature.
  • the control device 32 controls the target temperature of the branch pipe 50 as the next step to increase the outlet hot water temperature.
  • the opening degree is increased (step S4).
  • the control device 32 compares the target opening degree and the upper limit opening degree of the branch pipe 50 (step S5).
  • step S1 If the target opening degree of the branch pipe 50 has not reached the upper limit opening degree, the process returns to step S1 and compares the outlet hot water temperature and the target temperature. On the other hand, if the target opening degree of the branch pipe 50 reaches the upper limit opening degree before the outlet hot water temperature reaches the target temperature, the control device 32 ends the control.
  • step S1 the control device 32 compares the outlet temperature with the target temperature (step S6). If the outlet temperature is higher than the target temperature, the control device 32 reduces the rotation speed of the compressor 62 in order to lower the outlet temperature (step S7). Next, the control device 32 compares the rotation speed of the compressor 62 and the lower limit rotation speed (step S8).
  • step S9 If the rotation speed of the compressor 62 is not the lower limit rotation speed, the process returns to step S1 and the outlet hot water temperature is compared with the target temperature. On the other hand, if the rotation speed of the compressor 62 reaches the lower limit rotation speed before the outlet hot water temperature decreases to the target temperature, the control device 32 controls the branch pipe 50 as the next step to lower the outlet hot water temperature. The target opening degree is decreased (step S9).
  • the control device 32 compares the target opening degree and the lower limit opening degree of the branch pipe 50 (step S10). If the target opening degree of the branch pipe 50 has not reached the lower limit opening degree, the process returns to step S1 and compares the outlet hot water temperature and the target temperature. On the other hand, if the target opening degree of the branch pipe 50 reaches the lower limit opening degree before the outlet hot water temperature decreases to the target temperature, the control device 32 ends the control. As described above, the control device 32 performs control so that the hot water temperature reaches the target temperature.
  • piping resistance acts on the heat medium circulating inside the circulation circuit 21 of the heat supply equipment 20, so the heat decreases as the distance from the pump 22 increases.
  • the pressure of the medium decreases. Therefore, even if the pipe diameter of the circulation circuit 21 is constant, the closer the distance from the pump 22 is to the air conditioning hot water supply equipment 30, the more likely the flow rate of the heat medium will increase, and the farther the distance from the pump 22 is to the air conditioning hot water supply equipment 30, the more the flow rate of the heat source medium will increase. tends to decrease.
  • each air conditioning hot water supply equipment 30 changes depending on the flow rate of the heat medium; when the flow rate of the heat medium is high, the capacity increases, and when the flow rate is low, the capacity decreases. Therefore, each air conditioning hot water supply equipment 30 has a different heat pump capacity depending on its installation position.
  • a pressure adjustment mechanism 51 is provided to adjust the pressure to a predetermined pressure.
  • the differential pressure of the heat medium before and after the pressure adjustment mechanism 51 of each air conditioning hot water supply equipment 30 can be adjusted to a substantially constant value, so regardless of the distance from the pump 22 to the air conditioning water heating equipment 30, Regardless of the position of the dwelling unit 5, the flow rate of the heat medium flowing into the air conditioning hot water supply equipment 30 is substantially constant, and the heat pump capacity of the air conditioning hot water supply equipment 30 can be made substantially constant.
  • the air conditioning hot water supply system 3 of the first embodiment described above includes the heat supply equipment 20 that supplies heat, and the plurality of air conditioning hot water supply equipment 30 that receives heat from the heat supply equipment 20, and
  • the equipment 20 includes a circulation circuit 21 (first circulation circuit) that circulates a heat medium (first heat medium), and the air conditioning hot water supply equipment 30 includes a circulation circuit 40 that circulates a heat medium (second heat medium).
  • second circulation circuit a branch pipe 50 connected to the circulation circuit 21, a heat pump 60 that transfers heat from the branch pipe 50 to the circulation circuit 40, and a heat pump 60 provided in the branch pipe 50 and connected to the branch pipe
  • a pressure adjustment mechanism 51 is provided to adjust the pressure of the heat medium flowing inside the heating medium 50 to a predetermined pressure. According to this configuration, the heat pump capacity can be made substantially constant regardless of the installation position of the air conditioning hot water supply equipment 30.
  • the air conditioning hot water supply equipment 30 is provided downstream of the pressure adjustment mechanism 51 in the branch pipe 50, and is a flow rate adjuster that adjusts the flow rate of the heat medium flowing inside the branch pipe 50.
  • the control device 32 includes a mechanism 52 and a control device 32 that controls the flow rate adjustment mechanism 52.
  • the control device 32 changes the target opening degree of the branch pipe 50 based on the temperature measured by the temperature sensor 53.
  • the flow rate adjustment mechanism 52 drives the electric motor so that the opening degree of the on-off valve becomes the target opening degree. Through this operation, the control device 32 can control the opening degree of the on-off valve of the flow rate adjustment mechanism 52.
  • the pressure adjustment mechanism 51 adjusts the differential pressure on the upstream side of the flow rate adjustment mechanism 52, when the flow rate adjustment mechanism 52 changes the opening degree of the branch pipe 50, the air conditioning Regardless of the distance of the hot water supply equipment 30, that is, regardless of the position of the housing unit 5 of the apartment complex, the relationship between the opening degree of the branch pipe 50 and the flow rate of the heat medium is stable, and if the opening degree is the same, the flow rate will be the same. Become. Therefore, the heat pump capacity of the air conditioning hot water supply equipment 30 remains approximately constant.
  • the flow rate adjustment mechanism 52 causes the flow rate of the heat medium flowing through the branch pipe 50 to increase as the temperature of the heat medium flowing into the heat exchanger 65 on the primary side of the heat pump 60 increases.
  • the flow rate of the heat medium flowing through the branch pipe 50 increases.
  • the flow rate of the heat medium decreases as the temperature of the heat medium flowing into the primary heat exchanger 65 increases, so that excessive heat pump capacity can be suppressed.
  • the flow rate of the heat medium increases as the temperature of the heat medium flowing into the primary side heat exchanger 65 decreases, so that insufficient heat pump capacity can be suppressed.
  • the air conditioning hot water supply equipment 30 includes a temperature sensor 53 that is provided in the branch pipe line 50 and measures the temperature of the heat medium flowing into the heat exchanger 65 on the primary side of the heat pump 60.
  • the control device 32 controls the flow rate adjustment mechanism 52 based on the temperature measured by the temperature sensor 53. That is, the control device 32 changes the target opening degree of the branch pipe 50 based on the temperature measured by the temperature sensor 53.
  • the flow rate adjustment mechanism 52 drives the electric motor so that the opening degree of the on-off valve becomes the target opening degree. Through this operation, the control device 32 can control the opening degree of the on-off valve of the flow rate adjustment mechanism 52. According to this configuration, the amount of heat of the heat medium supplied to the heat pump 60 can be adjusted to widen the range of control over the outlet temperature.
  • FIG. 5 is a graph showing the relationship between the flow rate of the heat medium flowing inside the branch pipe line 50 and the temperature of the heat medium flowing into the heat exchanger 65 on the primary side of the heat pump 60 in the first embodiment. Note that the graph shown in FIG. 5 exemplifies a case where the temperature of the heat medium flowing into the heat exchanger 65 on the primary side of the heat pump 60 is 20° C., and the flow rate of the heat medium is 10 L/min. As shown in FIG. 5, when the temperature of the heat medium flowing through the branch pipe line 50 increases, the flow rate of the heat medium flowing into the heat exchanger 65 on the primary side of the heat pump 60 decreases.
  • the flow rate of the heat medium flowing into the heat exchanger 65 on the primary side of the heat pump 60 increases.
  • the temperature of the heat medium does not change at 20° C.
  • the number of rotations of the compressor 62 reaches the upper limit rotation speed, that is, when the rotation speed of the compressor 62 stops increasing
  • the primary The flow rate of the heat medium flowing into the side heat exchanger 65 increases.
  • the temperature of the heat medium does not change at 20° C.
  • the number of rotations of the compressor 62 reaches the lower limit rotation speed, that is, when the rotation speed of the compressor no longer decreases, the primary side of the heat pump 60
  • the flow rate of the heat medium flowing into the heat exchanger 65 decreases.
  • the heat pump capacity increases as the temperature of the heat medium flowing into the primary heat exchanger 65 increases and as the flow rate of the heat medium flowing into the primary heat exchanger 65 increases. Furthermore, the heat pump capacity decreases as the temperature of the heat medium flowing into the primary heat exchanger 65 decreases, and as the flow rate of the heat medium flowing into the primary heat exchanger 65 decreases.
  • the control device 32 reduces the target opening degree of the branch pipe 50 when the temperature measured by the temperature sensor 53 increases, and reduces the target opening degree of the branch pipe 50 when the temperature measured by the temperature sensor 53 decreases. Increase the target opening of 50.
  • the flow rate of the heat medium decreases as the temperature of the heat medium flowing into the primary heat exchanger 65 increases, so that excessive heat pump capacity can be suppressed.
  • the flow rate of the heat medium increases as the temperature of the heat medium flowing into the primary side heat exchanger 65 decreases, so that insufficient heat pump capacity can be suppressed.
  • the heat pump 60 operates between the circulation circuit 61 (third circulation circuit) in which the heat medium (third heat medium) circulates, and between the branch pipe line 50 and the circulation circuit 61. It is equipped with a heat exchanger 65 that exchanges heat, and a compressor 62 that is provided in the circulation circuit 61 and compresses the heat medium.
  • the flow rate of the heat medium flowing into the heat exchanger 65 increases, and when the rotational speed of the compressor 62 no longer decreases, the flow rate of the heat medium flowing into the heat exchanger 65 decreases.
  • the control device 32 controls the flow rate adjustment mechanism 52 based on the rotation speed of the compressor 62. That is, the control device 32 increases the target opening degree of the branch pipe 50 when the rotation speed of the compressor 62 reaches the upper limit rotation speed, and when the rotation speed of the compressor 62 reaches the lower limit rotation speed. , the target opening degree of the branch pipe line 50 is decreased.
  • the flow rate adjustment mechanism 52 drives the electric motor so that the opening degree of the on-off valve becomes the target opening degree.
  • the control device 32 can control the opening degree of the on-off valve of the flow rate adjustment mechanism 52. According to this configuration, the amount of heat of the heat medium supplied to the heat pump 60 can be adjusted, and the adjustment range of the heat pump capacity can be expanded to a wider range than the adjustment range of the heat pump capacity by the compressor 62.
  • the control device 32 increases the target opening degree of the branch pipe 50 so that the rotation speed of the compressor 62 reaches the lower limit rotation speed.
  • the target opening degree of the branch pipe 50 is decreased. For example, when the rotation speed of the compressor 62 is increased and the heat pump capacity is increased to the upper limit rotation speed of the compressor 62, the flow rate of the supplied heat medium further increases, so that the capacity adjustment in the compressor 62 is Heat pump capacity can be increased over a wide range.
  • the rotation speed of the compressor 62 is decreased and the heat pump capacity is lowered to the lower limit rotation speed of the compressor 62, so the flow rate of the supplied heat medium further decreases, so the capacity adjustment in the compressor 62 is performed.
  • the heat pump capacity can be reduced over a wider range.
  • the target temperature is usually set to a temperature that the residents of the dwelling unit 5 prefer
  • the heat pump capacity required for each dwelling unit 5 is different.
  • the air conditioning and hot water supply equipment 30 can individually adjust the heat pump capacity in each dwelling unit 5 according to the set value of the target temperature of each dwelling unit.
  • the air conditioning and hot water supply equipment 30 includes a transformer 31 that is connected to a power source and supplies power to the flow rate adjustment mechanism 52. According to this configuration, the voltage of the power supply can be changed to the voltage necessary for the electric motor of the flow rate adjustment mechanism 52. Therefore, in the dwelling unit 5, there is no need to perform electrical wiring with a voltage different from that of the power supply, which saves construction work.
  • the central heat supply equipment 2 (second heat supply equipment) that supplies heat
  • the plurality of air conditioning hot water supply systems 3 that receive heat from the central heat supply equipment 2
  • At least one (all in the first embodiment) of the plurality of air conditioning and hot water supply systems 3 includes an air conditioning and hot water supply equipment 30 including the pressure adjustment mechanism 51 described above.
  • the plurality of air conditioning and hot water supply systems 3 are installed side by side in the vertical direction. According to this configuration, even when the system is introduced into a high-rise apartment complex, the heat pump capacity can be kept substantially constant regardless of the installation position of the air conditioning hot water supply equipment 30.
  • FIG. 6 is a schematic diagram showing the configuration of the air conditioning hot water supply equipment 30 in the second embodiment. Note that, in the following description, the same components as those in the embodiment described above may be given the same reference numerals as appropriate, and the description thereof may be omitted.
  • the air conditioning hot water supply equipment 30 shown in FIG. 6 includes a pressure opening adjustment unit 34 that includes a pressure adjustment mechanism 51 and a flow rate adjustment mechanism 52, and an air conditioning hot water supply unit 35 that includes a heat pump 60 and a circulation circuit 40. Note that the air conditioning and hot water supply unit 35 further includes a transformer 31, a control device 32, a tank 33, and the like.
  • the branch pipe 50 connects the pressure opening degree adjustment unit 34 and the air conditioning hot water supply unit 35.
  • the arrangement of the pressure opening adjustment unit 34 and the air conditioning hot water supply unit 35 can be arranged arbitrarily for each dwelling unit 5. Can be adjusted to position. In this way, according to the second embodiment, the degree of freedom in installing the air conditioning hot water supply equipment 30 is improved.
  • FIG. 7 is a schematic diagram showing the configuration of the collective air conditioning and hot water supply system 1 in the third embodiment. Note that, in the following description, the same components as those in the embodiment described above may be given the same reference numerals as appropriate, and the description thereof may be omitted.
  • a pressure adjustment mechanism 25 is provided in each of a plurality of branch pipes 24 that connect the circulation circuit 12 of the central heat supply equipment 2 and the heat exchangers 15 on each floor. It is being The branch pipe line 24 is connected to the outbound side of the circulation circuit 12 via the connection point 24b, and connected to the return side of the circulation circuit 12 via the connection point 24a.
  • the pressure adjustment mechanism 25 adjusts the pressure of the heat medium flowing inside the branch pipe 24 to a predetermined pressure.
  • the pressure adjustment mechanism 25 is, for example, a differential pressure adjustment valve equipped with a spring, and uses the spring to reduce the pressure of the heat medium flowing in, thereby adjusting the pressure difference between the heat medium before and after the pressure adjustment mechanism 51 to be approximately constant.
  • the predetermined pressure is a pressure at which the differential pressure between the heat medium before and after the pressure adjustment mechanism 51 is approximately constant.
  • the pressure adjustment mechanism 25 is not limited to a spring, but may be reduced by an elastic member such as rubber, as long as the pressure of the heat medium flowing inside the branch pipe 24 can be reduced, or it may be reduced by using hydraulic pressure or pneumatic pressure. The pressure may be reduced.
  • the pressure of the heat medium is lower in higher floors, and higher in lower floors.
  • the pressure adjustment mechanism 25 is provided in the branch pipe line 24 connected to the heat exchanger 15 of each floor, the air conditioning and hot water supply system 3 of each floor can be adjusted regardless of the height difference.
  • the flow rate of the inflowing heat medium can be made substantially constant. Therefore, the capacity of the air conditioning hot water supply system 3 of each floor can be made substantially constant.
  • Each air conditioning hot water supply equipment 30 (each residential unit 5) of the air conditioning hot water supply system 3 does not need to be installed on the same floor, and may be installed across several floors.
  • One apartment building may be equipped with a plurality of collective air conditioning and hot water supply systems 1.
  • the central heat supply equipment 2 includes a heat pump 11 that collects heat from the atmosphere, but the heat source for heating the heat medium may be a gas or kerosene boiler. Furthermore, the heat pump 11 may be replaced by a heat exchanger so that the heat medium can be heated with heat generated in a waste incineration facility, power plant, data center, or the like.
  • the residential unit 5 is an example of a heat utilization space in which heat is utilized by the collective air conditioning and hot water supply system 1, and is not limited to a residence, but may be a commercial store or an office space.
  • the pressure adjustment mechanism 51, the flow rate adjustment mechanism 52, and the air conditioning hot water supply equipment 30 may be installed in each dwelling unit 5, and may be installed in the living space of each dwelling unit 5 (inside the so-called entrance), or may be installed in a pipe. It may also be outside the living space, such as in a shaft or meter box.
  • the pressure adjustment mechanism 51 and the flow rate adjustment mechanism 52 may be installed downstream of the heat exchanger 65 on the primary side of the heat pump 60 in the branch pipe line 50.
  • the flow rate adjustment mechanism 52 only needs to be installed downstream of the pressure adjustment mechanism 51.
  • the air conditioning hot water supply unit 35 may further include two units: a hot water supply circuit unit and an air conditioning circuit unit.
  • the tank heat exchanger 43a may be installed outside the tank 33. In that case, if a tank circulation pump is installed between the tank 33 and the tank heat exchanger 43a, tank water can be guided to the tank heat exchanger 43a.
  • the control device 32 includes a first control device that controls the flow rate adjustment mechanism 52 based on the temperature measured by the temperature sensor 53 and a second control device that controls the flow rate adjustment mechanism 52 based on the rotation speed of the compressor 62.
  • the control device may be divided into two control devices.
  • circulation circuit (second circulation circuit), 41 ... pump, 42 ... air conditioning circuit, 43 ... hot water supply circuit, 43a ... tank heat exchanger, 44 ... flow path switching mechanism, 45 ... temperature sensor, 50 ... branch pipe, 50a... Connection point, 50b... Connection point, 50c... Connection point, 50d... Connection point, 51... Pressure adjustment mechanism, 52... Flow rate adjustment mechanism, 53... Temperature sensor, 60... Heat pump, 61... Circulation circuit (third circulation circuit), 62...Compressor, 63...Expansion mechanism, 64...Heat exchanger, 65...Heat exchanger, 66...Flow path switching mechanism

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Abstract

One embodiment of this air-conditioning/hot-water-supply system comprises heat supply equipment for supplying heat, and a plurality of air-conditioning/hot-water-supply equipment for receiving heat from the heat supply equipment, the heat supply equipment being provided with a first circulation circuit for circulating a first heat medium, and the air-conditioning/hot-water-supply equipment being provided with a second circulation circuit for circulating a second heat medium, a branch pipeline connected to the first circulation circuit, a heat pump for moving heat from the branch pipeline to the second circulation circuit, and a pressure-adjusting mechanism for adjusting the pressure of the first heat medium flowing through the interior of the branch pipeline to a prescribed pressure, the pressure-adjusting mechanism being provided to the branch pipeline.

Description

空調給湯システム、および集合空調給湯システムAir conditioning hot water system and collective air conditioning hot water system
 本開示は、空調給湯システム、および集合空調給湯システムに関するものである。 The present disclosure relates to an air conditioning hot water supply system and a collective air conditioning hot water supply system.
 例えば、特許文献1には、熱量を受け取った熱媒体をコンプレッサにて圧縮することで温度を上昇させ、熱交換器にて市水に熱量を与えることで給湯を行うヒートポンプ給湯機及びヒートポンプ給湯機システムが記載されている。 For example, Patent Document 1 describes a heat pump water heater and a heat pump water heater that increase the temperature by compressing the heat medium that has received the heat amount using a compressor, and supplying hot water by giving the heat amount to city water using a heat exchanger. The system is described.
特開2012-42105号公報Japanese Patent Application Publication No. 2012-42105
 上記のようなヒートポンプ給湯機システムにおいては、データセンターなどから排熱を受け取った熱媒体を循環させ、各ヒートポンプ給湯機に熱を供給している。しかしながら、熱媒体が循環する配管内には配管抵抗が作用するため、熱媒体を圧送するポンプから距離が遠くなるに従って配管内の熱媒体の圧力は低下していく。そうすると、ポンプから距離が遠いヒートポンプ給湯機には、ポンプからの距離が近いヒートポンプ給湯機に比べて供給される熱媒体の流量が少なくなり、ヒートポンプ能力が低下してしまうことがあった。 In the heat pump water heater system as described above, a heat medium that receives exhaust heat from a data center or the like is circulated to supply heat to each heat pump water heater. However, since piping resistance acts in the piping through which the heating medium circulates, the pressure of the heating medium in the piping decreases as the distance from the pump that pumps the heating medium increases. In this case, a heat pump water heater that is far away from the pump receives a smaller flow rate of heat medium than a heat pump water heater that is closer to the pump, resulting in a reduction in heat pump performance.
 本開示は、上記の事情に鑑みて、空調給湯設備の設置位置によらずヒートポンプ能力を略一定にできる空調給湯システム、および集合空調給湯システムを提供することを目的の一つとする。 In view of the above circumstances, one of the objects of the present disclosure is to provide an air conditioning hot water supply system and a collective air conditioning hot water supply system that can maintain substantially constant heat pump capacity regardless of the installation position of the air conditioning hot water supply equipment.
 本開示に係る空調給湯システムの一つの態様は、熱を供給する熱供給設備と、前記熱供給設備から熱を受ける複数の空調給湯設備と、を備え、前記熱供給設備は、第1の熱媒体を循環させる第1の循環回路を備え、前記空調給湯設備は、第2の熱媒体を循環させる第2の循環回路と、前記第1の循環回路と接続された枝管路と、前記枝管路から前記第2の循環回路に熱を移動させるヒートポンプと、前記枝管路に設けられ、前記枝管路の内部を流通する前記第1の熱媒体の圧力を、所定の圧力に調整する圧力調整機構と、を備える。 One aspect of the air conditioning hot water supply system according to the present disclosure includes a heat supply facility that supplies heat, and a plurality of air conditioning hot water supply facilities that receive heat from the heat supply facility, and the heat supply facility is a first heat supply facility. The air conditioning hot water supply equipment includes a first circulation circuit that circulates a medium, a second circulation circuit that circulates a second heat medium, a branch pipe connected to the first circulation circuit, and a branch pipe that is connected to the first circulation circuit. a heat pump that transfers heat from the pipeline to the second circulation circuit; and a heat pump that is provided in the branch pipeline and adjusts the pressure of the first heat medium flowing through the branch pipeline to a predetermined pressure. A pressure adjustment mechanism.
 本開示に係る集合空調給湯システムの一つの態様は、熱を供給する第2の熱供給設備と、前記第2の熱供給設備から熱を受ける複数の空調給湯システムと、を備え、前記複数の空調給湯システムの少なくとも一つが、上記の空調給湯システムを備える。 One aspect of the collective air conditioning hot water supply system according to the present disclosure includes a second heat supply equipment that supplies heat, and a plurality of air conditioning hot water supply systems that receive heat from the second heat supply equipment, and At least one of the air conditioning and hot water supply systems includes the air conditioning and hot water supply system described above.
 本開示によれば、空調給湯設備の設置位置によらずヒートポンプ能力を略一定にできる。 According to the present disclosure, the heat pump capacity can be made substantially constant regardless of the installation position of the air conditioning hot water supply equipment.
実施の形態1における集合空調給湯システムの構成を示す模式図である。1 is a schematic diagram showing the configuration of a collective air conditioning hot water supply system in Embodiment 1. FIG. 実施の形態1における空調給湯設備の構成を示す模式図である。1 is a schematic diagram showing the configuration of an air conditioning hot water supply facility in Embodiment 1. FIG. 実施の形態1における制御装置の構成を示すブロック図である。2 is a block diagram showing the configuration of a control device in Embodiment 1. FIG. 実施の形態1における制御装置の制御を示すフローチャートである。5 is a flowchart showing control of the control device in the first embodiment. 実施の形態1における枝管路の内部を流通する熱媒体の流量と、ヒートポンプの一次側の熱交換器に流入する熱媒体の温度との関係を示すグラフである。7 is a graph showing the relationship between the flow rate of the heat medium flowing inside the branch pipe line and the temperature of the heat medium flowing into the heat exchanger on the primary side of the heat pump in Embodiment 1. FIG. 実施の形態2における空調給湯設備の構成を示す模式図である。FIG. 2 is a schematic diagram showing the configuration of an air conditioning hot water supply facility in Embodiment 2. FIG. 実施の形態3における集合空調給湯システムの構成を示す模式図である。FIG. 3 is a schematic diagram showing the configuration of a collective air conditioning hot water supply system in Embodiment 3.
 以下、図面を参照しながら、本開示の実施の形態について説明する。なお、本開示の範囲は、以下の実施の形態に限定されず、本開示の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、各構造における縮尺および数などを、実際の構造における縮尺および数などと異ならせる場合がある。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. Note that the scope of the present disclosure is not limited to the following embodiments, and can be arbitrarily modified within the scope of the technical idea of the present disclosure. Further, in the following drawings, in order to make each structure easier to understand, the scale and number of each structure may be different from the scale and number of the actual structure.
 実施の形態1.
 図1は、実施の形態1における集合空調給湯システム1の構成を示す模式図である。図1は、マンションなどの高層の集合住宅に設置された集合空調給湯システム1を例示している。
 図1に示す集合空調給湯システム1は、集合住宅の各階層に熱を供給するセントラル熱供給設備2(主熱供給設備とも言う)と、集合住宅の各階層のフロアに設けられ、セントラル熱供給設備2から熱を受ける複数の空調給湯システム3と、を備えている。
Embodiment 1.
FIG. 1 is a schematic diagram showing the configuration of a collective air conditioning and hot water supply system 1 in the first embodiment. FIG. 1 shows an example of a collective air conditioning and hot water supply system 1 installed in a high-rise housing complex such as a condominium.
The collective air conditioning hot water supply system 1 shown in FIG. A plurality of air conditioning hot water supply systems 3 receiving heat from the equipment 2 are provided.
 セントラル熱供給設備2は、ヒートポンプ11と、循環回路12と、ポンプ13と、膨張タンク14と、熱交換器15と、を備えている。
 ヒートポンプ11は、例えば、集合住宅の屋上に複数設置されている。ヒートポンプ11は、大気から集熱し、循環回路12の配管内の熱媒体を加熱する。
The central heat supply facility 2 includes a heat pump 11, a circulation circuit 12, a pump 13, an expansion tank 14, and a heat exchanger 15.
For example, a plurality of heat pumps 11 are installed on the roof of an apartment complex. The heat pump 11 collects heat from the atmosphere and heats the heat medium in the piping of the circulation circuit 12.
 循環回路12は、ヒートポンプ11と、ポンプ13と、膨張タンク14と、熱交換器15と、を接続している。循環回路12の配管内には、熱媒体が満たされている。熱媒体の一例は、水である。ポンプ13は、循環回路12の配管内の熱媒体を循環させ、ヒートポンプ11で加熱された熱媒体を、熱交換器15に供給する。 The circulation circuit 12 connects the heat pump 11, the pump 13, the expansion tank 14, and the heat exchanger 15. The piping of the circulation circuit 12 is filled with a heat medium. An example of a heat medium is water. The pump 13 circulates the heat medium in the piping of the circulation circuit 12 and supplies the heat medium heated by the heat pump 11 to the heat exchanger 15 .
 熱媒体は、例えば、ヒートポンプ11で加熱される前が20℃で、加熱された後は25℃になる。膨張タンク14は、温度上昇により体積が増加した熱媒体の一部を、循環回路12から吸収する。膨張タンク14は、例えば、密閉タンクである。密閉タンク内の熱媒体は大気と接触しないため、密閉タンクを用いると、密閉タンク内の熱媒体の、大気への蒸発、および酸化を抑制できる。 For example, the temperature of the heat medium is 20° C. before being heated by the heat pump 11, and the temperature is 25° C. after being heated. The expansion tank 14 absorbs a part of the heat medium whose volume has increased due to the temperature rise from the circulation circuit 12. The expansion tank 14 is, for example, a closed tank. Since the heat medium in the closed tank does not come into contact with the atmosphere, using a closed tank can suppress evaporation and oxidation of the heat medium in the closed tank to the atmosphere.
 熱交換器15は、集合住宅の各階層に設置されている。熱交換器15は、例えば、プレート熱交換器である。熱媒体は、各階層の熱交換器15で放熱し、各階層の空調給湯システム3がその熱を受け取る。熱媒体は、例えば、熱交換器15で放熱する前が25℃で、放熱した後は20℃になる。 The heat exchanger 15 is installed on each floor of the apartment complex. Heat exchanger 15 is, for example, a plate heat exchanger. The heat medium radiates heat in the heat exchanger 15 on each floor, and the air conditioning and hot water supply system 3 on each floor receives the heat. For example, the temperature of the heat medium is 25° C. before the heat is radiated by the heat exchanger 15, and the temperature is 20° C. after the heat is radiated.
 空調給湯システム3は、集合住宅の各階層のフロアに設けられている。つまり、空調給湯システム3は、鉛直方向に並んで設置されている。各階層のフロアには、複数の住戸が水平方向に並んでおり、各住戸に対応して空調給湯設備30が設置されている。 The air conditioning and hot water supply system 3 is installed on each floor of the apartment complex. In other words, the air conditioning and hot water supply systems 3 are installed in parallel in the vertical direction. A plurality of residential units are arranged horizontally on each floor, and air conditioning and hot water supply equipment 30 is installed corresponding to each residential unit.
 空調給湯システム3は、セントラル熱供給設備2から受けた熱を中継して各住戸に供給する熱供給設備20(枝熱供給設備とも言う)と、熱供給設備20から熱を受ける複数の空調給湯設備30と、を備えている。熱供給設備20は、循環回路21と、ポンプ22と、膨張タンク23と、を備えている。 The air conditioning hot water supply system 3 includes a heat supply facility 20 (also referred to as branch heat supply facility) that relays the heat received from the central heat supply facility 2 and supplies it to each dwelling unit, and a plurality of air conditioning hot water supplies that receive heat from the heat supply facility 20. It is equipped with equipment 30. The heat supply equipment 20 includes a circulation circuit 21, a pump 22, and an expansion tank 23.
 循環回路21は、ポンプ22と、膨張タンク23と、空調給湯設備30と、を接続している。循環回路21の配管内には、熱媒体が満たされている。熱媒体の一例は、水である。ポンプ22は、循環回路21の配管内の熱媒体を循環させ、熱交換器15で加熱された熱媒体を、空調給湯設備30に供給する。 The circulation circuit 21 connects the pump 22, the expansion tank 23, and the air conditioning hot water supply equipment 30. The piping of the circulation circuit 21 is filled with a heat medium. An example of a heat medium is water. The pump 22 circulates the heat medium in the piping of the circulation circuit 21 and supplies the heat medium heated by the heat exchanger 15 to the air conditioning hot water supply equipment 30.
 熱媒体は、例えば、熱交換器15で加熱される前が15℃で、加熱された後は20℃になる。膨張タンク23は、温度上昇により体積が増加した熱媒体の一部を、循環回路21から吸収する。膨張タンク23は、例えば、密閉タンクである。密閉タンク内の熱媒体は大気と接触しないため、密閉タンクを用いると、密閉タンク内の熱媒体の、大気への蒸発、および酸化を抑制できる。 For example, the heat medium has a temperature of 15° C. before being heated by the heat exchanger 15, and a temperature of 20° C. after being heated. The expansion tank 23 absorbs a part of the heat medium whose volume has increased due to the temperature rise from the circulation circuit 21. The expansion tank 23 is, for example, a closed tank. Since the heat medium in the closed tank does not come into contact with the atmosphere, using a closed tank can suppress evaporation and oxidation of the heat medium in the closed tank to the atmosphere.
 図2は、実施の形態1における空調給湯設備30の構成を示す模式図である。
 図2に示す空調給湯設備30は、住戸5内に設置されている。なお、空調給湯設備30は、住戸5ごとに設置されていれば、住戸5の外に設置されていても構わない。住戸5内には、空調端末6と、給湯端末7と、が設置されている。
FIG. 2 is a schematic diagram showing the configuration of the air conditioning hot water supply equipment 30 in the first embodiment.
The air conditioning and hot water supply equipment 30 shown in FIG. 2 is installed within the dwelling unit 5. Note that the air conditioning and hot water supply equipment 30 may be installed outside the housing unit 5 as long as it is installed for each housing unit 5. Inside the dwelling unit 5, an air conditioning terminal 6 and a hot water supply terminal 7 are installed.
 空調端末6は、例えば、ラジエーターパネルを備え、空調給湯設備30から供給される湯または水の熱を用いて住戸5内を空調する。給湯端末7は、例えば、シャワーを備え、空調給湯設備30から供給される湯を出湯する。なお、空調給湯設備30には、空調端末6および給湯端末7の少なくとも一方が、単数または複数接続されていてもよい。 The air conditioning terminal 6 includes, for example, a radiator panel, and air-conditions the inside of the dwelling unit 5 using the heat of hot water or water supplied from the air conditioning hot water supply equipment 30. The hot water supply terminal 7 includes, for example, a shower, and dispenses hot water supplied from the air conditioning hot water supply equipment 30. Note that at least one of the air conditioning terminal 6 and the hot water supply terminal 7 may be connected to the air conditioning and hot water supply equipment 30 .
 空調給湯設備30は、変圧器31と、制御装置32と、タンク33と、循環回路40と、枝管路50と、ヒートポンプ60と、を備えている。
 タンク33は、内部にタンク熱交換器43aを備え、水を蓄えている。以下では、タンク33の内部に蓄えられている水をタンク水と呼ぶ。タンク33は、給湯端末7と接続されている。循環回路40は、空調端末6に接続された空調回路42と、タンク熱交換器43aに接続された給湯回路43と、を備えている。
The air conditioning and hot water supply equipment 30 includes a transformer 31, a control device 32, a tank 33, a circulation circuit 40, a branch pipe 50, and a heat pump 60.
The tank 33 includes a tank heat exchanger 43a inside and stores water. Below, the water stored inside the tank 33 will be referred to as tank water. The tank 33 is connected to the hot water supply terminal 7. The circulation circuit 40 includes an air conditioning circuit 42 connected to the air conditioning terminal 6 and a hot water supply circuit 43 connected to the tank heat exchanger 43a.
 循環回路40の配管内には、熱媒体が満たされている。熱媒体の一例は、水である。循環回路40には、熱媒体を循環させるポンプ41と、熱媒体の循環経路を、空調回路42または給湯回路43に切り替える流路切替機構44と、が設けられている。流路切替機構44は、例えば、三方切換弁であり、三方向の流路のうち、2つを連通して1つを遮断する。 The piping of the circulation circuit 40 is filled with a heat medium. An example of a heat medium is water. The circulation circuit 40 is provided with a pump 41 that circulates the heat medium, and a flow path switching mechanism 44 that switches the circulation path of the heat medium to the air conditioning circuit 42 or the hot water supply circuit 43. The flow path switching mechanism 44 is, for example, a three-way switching valve, and communicates two of the three-way flow paths and blocks one.
 具体的に、流路切替機構44は、空調回路42と連通すると共に給湯回路43を遮断することができる。この場合、循環回路40の配管内の熱媒体は、ヒートポンプ60の二次側の熱交換器64、流路切替機構44、空調回路42、空調端末6の順に循環する。熱媒体は、空調端末6で放熱し、住戸5内を温める。 Specifically, the flow path switching mechanism 44 can communicate with the air conditioning circuit 42 and cut off the hot water supply circuit 43. In this case, the heat medium in the piping of the circulation circuit 40 circulates in the order of the heat exchanger 64 on the secondary side of the heat pump 60, the flow path switching mechanism 44, the air conditioning circuit 42, and the air conditioning terminal 6. The heat medium radiates heat at the air conditioning terminal 6 and warms the inside of the dwelling unit 5.
 また、流路切替機構44は、給湯回路43と連通すると共に空調回路42を遮断することができる。この場合、循環回路40の配管内の熱媒体は、ヒートポンプ60の二次側の熱交換器64、流路切替機構44、給湯回路43、タンク熱交換器43aの順に循環する。熱媒体は、タンク熱交換器43aで放熱し、タンク水を加熱する。加熱されたタンク水は、給湯端末7で使用される。 Further, the flow path switching mechanism 44 can communicate with the hot water supply circuit 43 and can shut off the air conditioning circuit 42. In this case, the heat medium in the piping of the circulation circuit 40 circulates in the order of the heat exchanger 64 on the secondary side of the heat pump 60, the flow path switching mechanism 44, the hot water supply circuit 43, and the tank heat exchanger 43a. The heat medium radiates heat in the tank heat exchanger 43a and heats the tank water. The heated tank water is used at the hot water supply terminal 7.
 循環回路40には、温度センサ45が設けられている。温度センサ45は、循環回路40において、ヒートポンプ60の二次側の熱交換器64の下流側、かつ流路切替機構44の上流側に配置されている。温度センサ45は、ヒートポンプ60の二次側の熱交換器64から流出した熱媒体の温度(出湯温度)を測定する。 A temperature sensor 45 is provided in the circulation circuit 40. The temperature sensor 45 is arranged in the circulation circuit 40 on the downstream side of the heat exchanger 64 on the secondary side of the heat pump 60 and on the upstream side of the flow path switching mechanism 44 . The temperature sensor 45 measures the temperature of the heat medium flowing out from the heat exchanger 64 on the secondary side of the heat pump 60 (output hot water temperature).
 ヒートポンプ60は、熱供給設備20の循環回路21に接続された枝管路50の熱を、循環回路40に移動させる。ヒートポンプ60は、循環回路61と、圧縮機62と、膨張機構63と、二次側の熱交換器64と、一次側の熱交換器65と、流路切替機構66と、を備えている。 The heat pump 60 transfers heat from the branch pipe 50 connected to the circulation circuit 21 of the heat supply equipment 20 to the circulation circuit 40. The heat pump 60 includes a circulation circuit 61, a compressor 62, an expansion mechanism 63, a secondary heat exchanger 64, a primary heat exchanger 65, and a flow path switching mechanism 66.
 循環回路61は、圧縮機62と、膨張機構63と、二次側の熱交換器64と、一次側の熱交換器65と、流路切替機構66と、を接続している。循環回路61の配管内には、熱媒体が満たされている。熱媒体の一例は、ジフルオロメタン、またはプロパンである。圧縮機62は、循環回路61の配管内の熱媒体を圧縮して吐出し、熱媒体を循環させる。 The circulation circuit 61 connects the compressor 62, the expansion mechanism 63, the secondary heat exchanger 64, the primary heat exchanger 65, and the flow path switching mechanism 66. The piping of the circulation circuit 61 is filled with a heat medium. An example of a heat transfer medium is difluoromethane or propane. The compressor 62 compresses and discharges the heat medium in the piping of the circulation circuit 61, thereby circulating the heat medium.
 一次側の熱交換器65は、熱供給設備20の循環回路21に枝管路50を介して熱的に接続されている。また、二次側の熱交換器64は、空調端末6および給湯端末7の循環回路40に熱的に接続されている。膨張機構63は、例えば、膨張弁であり、二次側の熱交換器64を通過した熱媒体を膨張させ、温度を低下させる。 The primary heat exchanger 65 is thermally connected to the circulation circuit 21 of the heat supply equipment 20 via a branch pipe 50. Further, the secondary side heat exchanger 64 is thermally connected to the circulation circuit 40 of the air conditioning terminal 6 and the hot water supply terminal 7. The expansion mechanism 63 is, for example, an expansion valve, and expands the heat medium that has passed through the secondary heat exchanger 64 to lower the temperature.
 具体的に、循環回路61の配管内の熱媒体は、二次側の熱交換器64で放熱する。放熱した熱媒体は、膨張機構63を通過すると温度が低下し、一次側の熱交換器65に流入する。一次側の熱交換器65に流入した熱媒体は、一次側の熱交換器65で枝管路50から吸熱する。吸熱した熱媒体は、再び圧縮機62へ流入する。 Specifically, the heat medium in the piping of the circulation circuit 61 radiates heat in the heat exchanger 64 on the secondary side. When the heat medium that has radiated heat passes through the expansion mechanism 63, its temperature decreases and flows into the primary side heat exchanger 65. The heat medium flowing into the primary heat exchanger 65 absorbs heat from the branch pipe 50 in the primary heat exchanger 65 . The heat medium that has absorbed heat flows into the compressor 62 again.
 ヒートポンプ60は、このサイクルを繰り返して、枝管路50の熱を循環回路40に移動させる。枝管路50の配管内の熱媒体の温度の一例は、一次側の熱交換器65で放熱する前が20℃で、放熱した後は15℃である。また、循環回路40内の熱媒体の温度の一例は、二次側の熱交換器64で吸熱する前が45℃で、吸熱した後は50℃である。ヒートポンプ60が枝管路50から循環回路40に与える熱量(ワット)をヒートポンプ能力と呼ぶ。 The heat pump 60 repeats this cycle to transfer the heat from the branch pipe 50 to the circulation circuit 40. An example of the temperature of the heat medium in the piping of the branch pipe line 50 is 20° C. before the heat is radiated by the primary side heat exchanger 65, and 15° C. after the heat is radiated. Further, an example of the temperature of the heat medium in the circulation circuit 40 is 45° C. before heat is absorbed by the secondary side heat exchanger 64, and 50° C. after heat is absorbed. The amount of heat (watts) that the heat pump 60 provides from the branch pipe line 50 to the circulation circuit 40 is called heat pump capacity.
 循環回路61での熱媒体の循環流量を変更することで、ヒートポンプ能力を変更することができる。具体的に、圧縮機62の回転数、および膨張機構63の開度の少なくとも一方を変更することで、循環回路61での熱媒体の循環流量(ヒートポンプ能力)を変更することができる。ヒートポンプ能力を変更することで、出湯温度を上昇または低下できる。 By changing the circulation flow rate of the heat medium in the circulation circuit 61, the heat pump capacity can be changed. Specifically, by changing at least one of the rotation speed of the compressor 62 and the opening degree of the expansion mechanism 63, the circulation flow rate (heat pump capacity) of the heat medium in the circulation circuit 61 can be changed. By changing the heat pump capacity, the hot water temperature can be increased or decreased.
 流路切替機構66は、例えば、四路切換弁であり、循環回路61の流路を切り替えて暖房回路と冷房回路とを形成する。暖房回路は、枝管路50の熱を循環回路40に移動させる回路である。冷房回路は、循環回路40の熱を枝管路50に移動させる回路である。以下の説明では、流路切替機構66が暖房回路を形成している場合を例に挙げて説明する。 The flow path switching mechanism 66 is, for example, a four-way switching valve, and switches the flow path of the circulation circuit 61 to form a heating circuit and a cooling circuit. The heating circuit is a circuit that transfers heat from the branch pipe line 50 to the circulation circuit 40. The cooling circuit is a circuit that transfers heat from the circulation circuit 40 to the branch pipe line 50. In the following description, an example will be described in which the flow path switching mechanism 66 forms a heating circuit.
 枝管路50は、熱供給設備20の循環回路21と、ヒートポンプ60の一次側の熱交換器65と、を接続している。枝管路50は、住戸5に設けられた接続点50aを介して循環回路21の往路側と接続され、空調給湯設備30に設けられた接続点50bを介して一次側の熱交換器65の上流側と接続されている。 The branch pipe line 50 connects the circulation circuit 21 of the heat supply equipment 20 and the heat exchanger 65 on the primary side of the heat pump 60. The branch pipe line 50 is connected to the outgoing side of the circulation circuit 21 via a connection point 50a provided in the dwelling unit 5, and connected to the primary side heat exchanger 65 via a connection point 50b provided in the air conditioning hot water supply equipment 30. Connected to the upstream side.
 また、枝管路50は、住戸5に設けられた接続点50dを介して循環回路21の復路側と接続され、空調給湯設備30に設けられた接続点50cを介して一次側の熱交換器65の下流側と接続されている。つまり、枝管路50は、循環回路21の往路側と復路側を接続し、空調給湯設備30の一次側の熱交換器65を通過する流路を形成している。 The branch pipe line 50 is connected to the return side of the circulation circuit 21 via a connection point 50d provided in the dwelling unit 5, and is connected to the primary side heat exchanger via a connection point 50c provided in the air conditioning hot water supply equipment 30. 65 on the downstream side. That is, the branch pipe line 50 connects the outgoing side and the incoming side of the circulation circuit 21, and forms a flow path that passes through the heat exchanger 65 on the primary side of the air conditioning hot water supply equipment 30.
 枝管路50には、圧力調整機構51と、流量調整機構52と、が設けられている。圧力調整機構51は、枝管路50の内部を流通する熱媒体の圧力を、所定の圧力に調整する。所定の圧力とは、圧力調整機構51の前後の熱媒体の差圧が略一定となる圧力である。圧力調整機構51は、例えば、バネを備えた差圧調整弁であり、流入する熱媒体の圧力をバネで減圧して、圧力調整機構51の前後の熱媒体の差圧を略一定に調整する。なお、圧力調整機構51は、枝管路50の内部を流通する熱媒体の圧力を減圧できれば、バネに限らずゴムなどの弾性部材で減圧してもよいし、油圧または空圧を利用して減圧してもよい。 The branch pipe line 50 is provided with a pressure adjustment mechanism 51 and a flow rate adjustment mechanism 52. The pressure adjustment mechanism 51 adjusts the pressure of the heat medium flowing inside the branch pipe 50 to a predetermined pressure. The predetermined pressure is a pressure at which the differential pressure between the heat medium before and after the pressure adjustment mechanism 51 is approximately constant. The pressure adjustment mechanism 51 is, for example, a differential pressure adjustment valve equipped with a spring, and uses the spring to reduce the pressure of the inflowing heat medium to adjust the pressure difference between the heat medium before and after the pressure adjustment mechanism 51 to be approximately constant. . Note that the pressure adjustment mechanism 51 is not limited to a spring, but may be reduced by an elastic member such as rubber, as long as the pressure of the heat medium flowing inside the branch pipe 50 can be reduced, or it may be reduced by using hydraulic pressure or pneumatic pressure. The pressure may be reduced.
 流量調整機構52は、枝管路50における圧力調整機構51の下流側に設けられ、枝管路50の内部を流通する熱媒体の流量を調整する。流量調整機構52は、例えば、開閉弁を備え、熱媒体が流通する枝管路50の開度を変更して熱媒体の流量を変更する。流量調整機構52、および枝管路50を流通する熱媒体の流量は、枝管路50の開度が小さいほど減少し、枝管路50の開度が大きいほど増加する。 The flow rate adjustment mechanism 52 is provided downstream of the pressure adjustment mechanism 51 in the branch line 50 and adjusts the flow rate of the heat medium flowing inside the branch line 50. The flow rate adjustment mechanism 52 includes, for example, an on-off valve, and changes the flow rate of the heat medium by changing the degree of opening of the branch pipe 50 through which the heat medium flows. The flow rate of the heat medium flowing through the flow rate adjustment mechanism 52 and the branch pipe 50 decreases as the opening of the branch pipe 50 becomes smaller, and increases as the opening of the branch pipe 50 increases.
 流量調整機構52は、さらに電動機と通信機とを備えている。電動機は、例えば、24Vで駆動するステッピングモーターであり、上述した開閉弁を駆動して、枝管路50の開度を変更する。通信機は、制御装置32と通信を行う。通信機は、制御装置32から枝管路50の開度の目標値である目標開度を受信する。 The flow rate adjustment mechanism 52 further includes an electric motor and a communication device. The electric motor is, for example, a stepping motor driven by 24V, and drives the above-mentioned on-off valve to change the degree of opening of the branch pipe 50. The communication device communicates with the control device 32. The communication device receives a target opening degree, which is a target value of the opening degree of the branch pipe 50, from the control device 32.
 流量調整機構52は、開閉弁の開度が目標開度になるように電動機を駆動させる。変圧器31は、電源と接続され、流量調整機構52に電力を供給する。変圧器31は、例えば、電磁誘導によって電圧を変更する。電源の電圧は、例えば、240Vであり、変圧器31が電源の電圧を、流量調整機構52の駆動電圧である24Vに変圧する。 The flow rate adjustment mechanism 52 drives the electric motor so that the opening degree of the on-off valve becomes the target opening degree. The transformer 31 is connected to a power source and supplies power to the flow rate adjustment mechanism 52. The transformer 31 changes the voltage by, for example, electromagnetic induction. The voltage of the power supply is, for example, 240V, and the transformer 31 transforms the voltage of the power supply to 24V, which is the drive voltage of the flow rate adjustment mechanism 52.
 枝管路50には、温度センサ53が設けられている。温度センサ53は、枝管路50において、流量調整機構52の下流側、かつヒートポンプ60の一次側の熱交換器65の上流側に配置されている。温度センサ53は、ヒートポンプ60の一次側の熱交換器65に流入する熱媒体の温度を測定する。 A temperature sensor 53 is provided in the branch pipe 50. The temperature sensor 53 is arranged in the branch pipe line 50 on the downstream side of the flow rate adjustment mechanism 52 and on the upstream side of the heat exchanger 65 on the primary side of the heat pump 60. The temperature sensor 53 measures the temperature of the heat medium flowing into the heat exchanger 65 on the primary side of the heat pump 60.
 図3は、実施の形態1における制御装置32の構成を示すブロック図である。
 図3に示すように、制御装置32は、上述した温度センサ45,53と接続され、温度センサ45,53から測定結果を受信する。また、制御装置32は、上述した圧縮機62、膨張機構63、流路切替機構66と接続され、暖房回路および冷房回路の切り替えと、ヒートポンプ60のヒートポンプ能力を制御する。
FIG. 3 is a block diagram showing the configuration of the control device 32 in the first embodiment.
As shown in FIG. 3, the control device 32 is connected to the temperature sensors 45, 53 described above, and receives measurement results from the temperature sensors 45, 53. Further, the control device 32 is connected to the compressor 62, the expansion mechanism 63, and the flow path switching mechanism 66 described above, and controls switching between the heating circuit and the cooling circuit and the heat pump capacity of the heat pump 60.
 また、制御装置32は、上述したポンプ41、流路切替機構44と接続され、空調回路42および給湯回路43の切り替えと、空調回路42と給湯回路43への熱媒体の循環または停止を制御する。さらに、制御装置32は、上述した流量調整機構52と接続され、枝管路50の内部を流通する熱媒体の流量を調整し、ヒートポンプ60の一次側の熱交換器65へ供給される熱媒体の流量を制御する。 Further, the control device 32 is connected to the pump 41 and the flow path switching mechanism 44 described above, and controls switching between the air conditioning circuit 42 and the hot water supply circuit 43 and the circulation or stopping of the heat medium to the air conditioning circuit 42 and the hot water supply circuit 43. . Furthermore, the control device 32 is connected to the above-mentioned flow rate adjustment mechanism 52 and adjusts the flow rate of the heat medium flowing inside the branch pipe 50 to supply the heat medium to the heat exchanger 65 on the primary side of the heat pump 60. control the flow rate.
 制御装置32は、枝管路50に設けられた温度センサ53の測定温度に基づいて、枝管路50の目標開度を変更する。制御装置32は、温度センサ53の測定温度が上昇した場合、枝管路50の目標開度を減少させ、温度センサ53の測定温度が低下した場合、枝管路50の目標開度を増加させる。枝管路50の目標開度は、例えば、0%(全閉)から100%(全開)の間で選択できる。 The control device 32 changes the target opening degree of the branch pipe 50 based on the temperature measured by the temperature sensor 53 provided in the branch pipe 50. The control device 32 decreases the target opening degree of the branch pipe line 50 when the temperature measured by the temperature sensor 53 increases, and increases the target opening degree of the branch pipe line 50 when the temperature measured by the temperature sensor 53 decreases. . The target opening degree of the branch pipe line 50 can be selected, for example, between 0% (fully closed) and 100% (fully open).
 また、制御装置32は、制御パラメータとして、目標温度を有している。目標温度は、出湯温度の目標値で、例えば50℃に設定されている。目標温度は、通常、住戸5の住人が、給湯端末7、または空調端末6で使用したい温度に基づいて設定されている。詳細は後述するが、制御装置32は、出湯温度が目標温度になるように、圧縮機62の回転数、膨張機構63の開度、枝管路50の目標開度を変更する。 Furthermore, the control device 32 has a target temperature as a control parameter. The target temperature is a target value of the hot water temperature, and is set to, for example, 50°C. The target temperature is usually set based on the temperature that the resident of the dwelling unit 5 would like to use at the hot water supply terminal 7 or the air conditioning terminal 6. Although details will be described later, the control device 32 changes the rotation speed of the compressor 62, the opening degree of the expansion mechanism 63, and the target opening degree of the branch pipe 50 so that the outlet hot water temperature reaches the target temperature.
 また、制御装置32は、制御パラメータとして、圧縮機62の回転数の上限値である上限回転数、圧縮機62の回転数の下限値である下限回転数を有している。制御装置32は、圧縮機62の回転数が上限の回転数に達したとき、枝管路50の目標開度を増加させ、圧縮機62の回転数が下限の回転数に達したとき、枝管路50の目標開度を減少させる。なお、制御装置32は、圧縮機62の回転数が上限(または下限)の回転数に達する直前に、枝管路50の目標開度を増加(または減少)させても構わない。 Furthermore, the control device 32 has, as control parameters, an upper limit rotation speed that is an upper limit value of the rotation speed of the compressor 62, and a lower limit rotation speed that is a lower limit value of the rotation speed of the compressor 62. The control device 32 increases the target opening degree of the branch pipe line 50 when the rotation speed of the compressor 62 reaches the upper limit rotation speed, and increases the target opening degree of the branch pipe line 50 when the rotation speed of the compressor 62 reaches the lower limit rotation speed. The target opening degree of the conduit 50 is decreased. Note that the control device 32 may increase (or decrease) the target opening degree of the branch pipe 50 immediately before the rotation speed of the compressor 62 reaches the upper limit (or lower limit) of the rotation speed.
 さらに、制御装置32は、制御パラメータとして、枝管路50の目標開度の上限値である上限開度、および枝管路50の目標開度の下限値である下限開度を有している。上限開度および下限開度は、0%(全閉)から100%(全開)の間で選択された設定値であってもよいし、上限開度が100%(全開)、下限開度が0%(全閉)であってもよい。 Further, the control device 32 has, as control parameters, an upper limit opening that is the upper limit of the target opening of the branch pipe 50, and a lower limit opening that is the lower limit of the target opening of the branch pipe 50. . The upper limit opening degree and the lower limit opening degree may be set values selected between 0% (fully closed) and 100% (fully open), or the upper limit opening degree may be 100% (fully open) and the lower limit opening degree may be set values selected between 0% (fully closed) and 100% (fully open). It may be 0% (fully closed).
 図4は、実施の形態1における制御装置32の制御を示すフローチャートである。以下の説明では、出湯温度が目標温度になるように、制御装置32が制御を行う。
 先ず、制御装置32は、温度センサ45の測定結果(出湯温度)と目標温度とを比較する(ステップS1)。
FIG. 4 is a flowchart showing control by the control device 32 in the first embodiment. In the following explanation, the control device 32 performs control so that the outlet hot water temperature becomes the target temperature.
First, the control device 32 compares the measurement result (output hot water temperature) of the temperature sensor 45 with a target temperature (step S1).
 出湯温度が目標温度よりも低い場合、制御装置32は、出湯温度を上昇させるために圧縮機62の回転数を増加させる(ステップS2)。次に、制御装置32は、圧縮機62の回転数と上限回転数とを比較する(ステップS3)。圧縮機62の回転数が上限回転数に達していなければ、ステップS1に戻り、出湯温度と目標温度を比較する。 If the outlet hot water temperature is lower than the target temperature, the control device 32 increases the rotation speed of the compressor 62 in order to raise the outlet hot water temperature (step S2). Next, the control device 32 compares the rotation speed of the compressor 62 and the upper limit rotation speed (step S3). If the rotational speed of the compressor 62 has not reached the upper limit rotational speed, the process returns to step S1 and the outlet hot water temperature is compared with the target temperature.
 一方、出湯温度が目標温度に達する前に、圧縮機62の回転数が上限回転数に達してしまった場合、制御装置32は、出湯温度を上昇させる次のステップとして、枝管路50の目標開度を増加させる(ステップS4)。次に、制御装置32は、枝管路50の目標開度と上限開度とを比較する(ステップS5)。 On the other hand, if the rotation speed of the compressor 62 reaches the upper limit rotation speed before the outlet hot water temperature reaches the target temperature, the control device 32 controls the target temperature of the branch pipe 50 as the next step to increase the outlet hot water temperature. The opening degree is increased (step S4). Next, the control device 32 compares the target opening degree and the upper limit opening degree of the branch pipe 50 (step S5).
 枝管路50の目標開度が上限開度に達していなければ、ステップS1に戻り、出湯温度と目標温度を比較する。一方、出湯温度が目標温度に達する前に、枝管路50の目標開度が上限開度に達してしまった場合、制御装置32は制御を終了する。 If the target opening degree of the branch pipe 50 has not reached the upper limit opening degree, the process returns to step S1 and compares the outlet hot water temperature and the target temperature. On the other hand, if the target opening degree of the branch pipe 50 reaches the upper limit opening degree before the outlet hot water temperature reaches the target temperature, the control device 32 ends the control.
 ステップS1においてNOの判定の場合、制御装置32は、出湯温度と目標温度とを比較する(ステップS6)。出湯温度が目標温度よりも高い場合、制御装置32は、出湯温度を低下させるために圧縮機62の回転数を減少させる(ステップS7)。次に、制御装置32は、圧縮機62の回転数と下限回転数とを比較する(ステップS8)。 If the determination is NO in step S1, the control device 32 compares the outlet temperature with the target temperature (step S6). If the outlet temperature is higher than the target temperature, the control device 32 reduces the rotation speed of the compressor 62 in order to lower the outlet temperature (step S7). Next, the control device 32 compares the rotation speed of the compressor 62 and the lower limit rotation speed (step S8).
 圧縮機62の回転数が下限回転数でなければ、ステップS1へ戻り、出湯温度と目標温度を比較する。一方、出湯温度が目標温度に低下する前に、圧縮機62の回転数が下限回転数に達してしまった場合、制御装置32は、出湯温度を低下させる次のステップとして、枝管路50の目標開度を減少させる(ステップS9)。 If the rotation speed of the compressor 62 is not the lower limit rotation speed, the process returns to step S1 and the outlet hot water temperature is compared with the target temperature. On the other hand, if the rotation speed of the compressor 62 reaches the lower limit rotation speed before the outlet hot water temperature decreases to the target temperature, the control device 32 controls the branch pipe 50 as the next step to lower the outlet hot water temperature. The target opening degree is decreased (step S9).
 次に、制御装置32は、枝管路50の目標開度と下限開度とを比較する(ステップS10)。枝管路50の目標開度が下限開度に達していなければ、ステップS1に戻り、出湯温度と目標温度を比較する。一方、出湯温度が目標温度に低下する前に、枝管路50の目標開度が下限開度に達してしまった場合、制御装置32は制御を終了する。
 以上のようにして、制御装置32は、出湯温度が目標温度になるように制御を行う。
Next, the control device 32 compares the target opening degree and the lower limit opening degree of the branch pipe 50 (step S10). If the target opening degree of the branch pipe 50 has not reached the lower limit opening degree, the process returns to step S1 and compares the outlet hot water temperature and the target temperature. On the other hand, if the target opening degree of the branch pipe 50 reaches the lower limit opening degree before the outlet hot water temperature decreases to the target temperature, the control device 32 ends the control.
As described above, the control device 32 performs control so that the hot water temperature reaches the target temperature.
 上述した空調給湯システム3においては、図1に示すように、熱供給設備20の循環回路21の内部を循環する熱媒体には配管抵抗が作用するため、ポンプ22からの距離が遠くなるに従って熱媒体の圧力は低下していく。したがって、循環回路21の配管径が一定でも、ポンプ22からの距離が近い空調給湯設備30ほど熱媒体の流量が増加しやすく、またポンプ22からの距離が遠い空調給湯設備30ほど熱源媒体の流量が低下しやすい。各空調給湯設備30のヒートポンプ能力は熱媒体の流量によって変化し、熱媒体の流量が多いと能力も増加し、流量が少ないと能力も低下する。したがって、各空調給湯設備30は、その設置位置によってヒートポンプ能力が異なってしまう。 In the above-mentioned air conditioning hot water supply system 3, as shown in FIG. 1, piping resistance acts on the heat medium circulating inside the circulation circuit 21 of the heat supply equipment 20, so the heat decreases as the distance from the pump 22 increases. The pressure of the medium decreases. Therefore, even if the pipe diameter of the circulation circuit 21 is constant, the closer the distance from the pump 22 is to the air conditioning hot water supply equipment 30, the more likely the flow rate of the heat medium will increase, and the farther the distance from the pump 22 is to the air conditioning hot water supply equipment 30, the more the flow rate of the heat source medium will increase. tends to decrease. The heat pump capacity of each air conditioning hot water supply equipment 30 changes depending on the flow rate of the heat medium; when the flow rate of the heat medium is high, the capacity increases, and when the flow rate is low, the capacity decreases. Therefore, each air conditioning hot water supply equipment 30 has a different heat pump capacity depending on its installation position.
 これに対して、上述した実施の形態1の空調給湯システム3は、図2に示すように、循環回路21と接続された枝管路50に、枝管路50の内部を流通する熱媒体の圧力を所定の圧力に調整する圧力調整機構51を備えている。この構成によれば、各空調給湯設備30の圧力調整機構51の前後の熱媒体の差圧を略一定に調整できるので、ポンプ22から空調給湯設備30までの距離によらず、つまり、集合住宅の住戸5の位置によらず、空調給湯設備30に流入する熱媒体の流量が略一定となり、空調給湯設備30のヒートポンプ能力を略一定にすることができる。 On the other hand, in the air conditioning hot water supply system 3 of the first embodiment described above, as shown in FIG. A pressure adjustment mechanism 51 is provided to adjust the pressure to a predetermined pressure. According to this configuration, the differential pressure of the heat medium before and after the pressure adjustment mechanism 51 of each air conditioning hot water supply equipment 30 can be adjusted to a substantially constant value, so regardless of the distance from the pump 22 to the air conditioning water heating equipment 30, Regardless of the position of the dwelling unit 5, the flow rate of the heat medium flowing into the air conditioning hot water supply equipment 30 is substantially constant, and the heat pump capacity of the air conditioning hot water supply equipment 30 can be made substantially constant.
 このように、上述した実施の形態1の空調給湯システム3によれば、熱を供給する熱供給設備20と、熱供給設備20から熱を受ける複数の空調給湯設備30と、を備え、熱供給設備20は、熱媒体(第1の熱媒体)を循環させる循環回路21(第1の循環回路)を備え、空調給湯設備30は、熱媒体(第2の熱媒体)を循環させる循環回路40(第2の循環回路)と、循環回路21と接続された枝管路50と、枝管路50から循環回路40に熱を移動させるヒートポンプ60と、枝管路50に設けられ、枝管路50の内部を流通する熱媒体の圧力を、所定の圧力に調整する圧力調整機構51と、を備える。この構成によれば、空調給湯設備30の設置位置によらずヒートポンプ能力を略一定にできる。 As described above, the air conditioning hot water supply system 3 of the first embodiment described above includes the heat supply equipment 20 that supplies heat, and the plurality of air conditioning hot water supply equipment 30 that receives heat from the heat supply equipment 20, and The equipment 20 includes a circulation circuit 21 (first circulation circuit) that circulates a heat medium (first heat medium), and the air conditioning hot water supply equipment 30 includes a circulation circuit 40 that circulates a heat medium (second heat medium). (second circulation circuit), a branch pipe 50 connected to the circulation circuit 21, a heat pump 60 that transfers heat from the branch pipe 50 to the circulation circuit 40, and a heat pump 60 provided in the branch pipe 50 and connected to the branch pipe A pressure adjustment mechanism 51 is provided to adjust the pressure of the heat medium flowing inside the heating medium 50 to a predetermined pressure. According to this configuration, the heat pump capacity can be made substantially constant regardless of the installation position of the air conditioning hot water supply equipment 30.
 また、実施の形態1によれば、空調給湯設備30は、枝管路50における圧力調整機構51の下流側に設けられ、枝管路50の内部を流通する熱媒体の流量を調整する流量調整機構52と、流量調整機構52を制御する制御装置32と、を備える。制御装置32は、温度センサ53の測定温度に基づいて、枝管路50の目標開度を変更する。流量調整機構52は、開閉弁の開度が目標開度になるように電動機を駆動させる。この動作により、制御装置32は流量調整機構52の開閉弁の開度を制御できる。この構成によれば、流量調整機構52の上流側で、圧力調整機構51が差圧を調整しているので、流量調整機構52が枝管路50の開度を変更したとき、ポンプ22から空調給湯設備30の距離によらず、つまり、集合住宅の住戸5の位置によらず、枝管路50の開度と熱媒体の流量の関係が安定し、同じ開度であれば、同じ流量となる。したがって、空調給湯設備30のヒートポンプ能力が略一定となる。 Further, according to the first embodiment, the air conditioning hot water supply equipment 30 is provided downstream of the pressure adjustment mechanism 51 in the branch pipe 50, and is a flow rate adjuster that adjusts the flow rate of the heat medium flowing inside the branch pipe 50. The control device 32 includes a mechanism 52 and a control device 32 that controls the flow rate adjustment mechanism 52. The control device 32 changes the target opening degree of the branch pipe 50 based on the temperature measured by the temperature sensor 53. The flow rate adjustment mechanism 52 drives the electric motor so that the opening degree of the on-off valve becomes the target opening degree. Through this operation, the control device 32 can control the opening degree of the on-off valve of the flow rate adjustment mechanism 52. According to this configuration, since the pressure adjustment mechanism 51 adjusts the differential pressure on the upstream side of the flow rate adjustment mechanism 52, when the flow rate adjustment mechanism 52 changes the opening degree of the branch pipe 50, the air conditioning Regardless of the distance of the hot water supply equipment 30, that is, regardless of the position of the housing unit 5 of the apartment complex, the relationship between the opening degree of the branch pipe 50 and the flow rate of the heat medium is stable, and if the opening degree is the same, the flow rate will be the same. Become. Therefore, the heat pump capacity of the air conditioning hot water supply equipment 30 remains approximately constant.
 また、実施の形態1によれば、流量調整機構52によって、ヒートポンプ60の一次側の熱交換器65に流入する熱媒体の温度が高いほど枝管路50の内部を流通する熱媒体の流量が減少し、ヒートポンプ60の一次側の熱交換器65に流入する熱媒体の温度が低いほど枝管路50の内部を流通する熱媒体の流量が増加する。これにより、一次側の熱交換器65に流入する熱媒体の温度が高いほど熱媒体の流量が減少するのでヒートポンプ能力過多を抑制できる。また、この構成によれば、一次側の熱交換器65に流入する熱媒体の温度が低いほど熱媒体の流量が増加するのでヒートポンプ能力不足を抑制できる。 Further, according to the first embodiment, the flow rate adjustment mechanism 52 causes the flow rate of the heat medium flowing through the branch pipe 50 to increase as the temperature of the heat medium flowing into the heat exchanger 65 on the primary side of the heat pump 60 increases. As the temperature of the heat medium flowing into the heat exchanger 65 on the primary side of the heat pump 60 decreases, the flow rate of the heat medium flowing through the branch pipe 50 increases. Thereby, the flow rate of the heat medium decreases as the temperature of the heat medium flowing into the primary heat exchanger 65 increases, so that excessive heat pump capacity can be suppressed. Moreover, according to this configuration, the flow rate of the heat medium increases as the temperature of the heat medium flowing into the primary side heat exchanger 65 decreases, so that insufficient heat pump capacity can be suppressed.
 具体的に、実施の形態1によれば、空調給湯設備30は、枝管路50に設けられ、ヒートポンプ60の一次側の熱交換器65に流入する熱媒体の温度を測定する温度センサ53を備え、制御装置32は、温度センサ53の測定温度に基づいて、流量調整機構52を制御する。つまり、制御装置32は、温度センサ53の測定温度に基づいて、枝管路50の目標開度を変更する。流量調整機構52は、開閉弁の開度が目標開度になるように電動機を駆動させる。この動作により、制御装置32は流量調整機構52の開閉弁の開度を制御できる。この構成によれば、ヒートポンプ60に供給される熱媒体の熱量を調整して、出湯温度の制御の幅を広げることができる。 Specifically, according to the first embodiment, the air conditioning hot water supply equipment 30 includes a temperature sensor 53 that is provided in the branch pipe line 50 and measures the temperature of the heat medium flowing into the heat exchanger 65 on the primary side of the heat pump 60. In addition, the control device 32 controls the flow rate adjustment mechanism 52 based on the temperature measured by the temperature sensor 53. That is, the control device 32 changes the target opening degree of the branch pipe 50 based on the temperature measured by the temperature sensor 53. The flow rate adjustment mechanism 52 drives the electric motor so that the opening degree of the on-off valve becomes the target opening degree. Through this operation, the control device 32 can control the opening degree of the on-off valve of the flow rate adjustment mechanism 52. According to this configuration, the amount of heat of the heat medium supplied to the heat pump 60 can be adjusted to widen the range of control over the outlet temperature.
 図5は、実施の形態1における枝管路50の内部を流通する熱媒体の流量と、ヒートポンプ60の一次側の熱交換器65に流入する熱媒体の温度との関係を示すグラフである。なお、図5に示すグラフは、ヒートポンプ60の一次側の熱交換器65に流入する熱媒体の温度が20℃で、その熱媒体の流量が10L/minのときを例示している。
 図5に示すように、枝管路50の内部を流通する熱媒体の温度が上昇すると、ヒートポンプ60の一次側の熱交換器65に流入する熱媒体の流量が減少する。また、枝管路50の内部を流通する熱媒体の温度が低下すると、ヒートポンプ60の一次側の熱交換器65に流入する熱媒体の流量が増加する。また、熱媒体の温度が20℃で変化しない場合に、圧縮機62の回数数が上限回転数に達したとき、すなわち、圧縮機62の回転数が増加しなくなったときに、ヒートポンプ60の一次側の熱交換器65に流入する熱媒体の流量が増加する。また、熱媒体の温度が20℃で変化しない場合に、圧縮機62の回数数が下限回転数に達したとき、すなわち、圧縮機の回転数が減少しなくなったときに、ヒートポンプ60の一次側の熱交換器65に流入する熱媒体の流量が減少する。
FIG. 5 is a graph showing the relationship between the flow rate of the heat medium flowing inside the branch pipe line 50 and the temperature of the heat medium flowing into the heat exchanger 65 on the primary side of the heat pump 60 in the first embodiment. Note that the graph shown in FIG. 5 exemplifies a case where the temperature of the heat medium flowing into the heat exchanger 65 on the primary side of the heat pump 60 is 20° C., and the flow rate of the heat medium is 10 L/min.
As shown in FIG. 5, when the temperature of the heat medium flowing through the branch pipe line 50 increases, the flow rate of the heat medium flowing into the heat exchanger 65 on the primary side of the heat pump 60 decreases. Further, when the temperature of the heat medium flowing through the branch pipe line 50 decreases, the flow rate of the heat medium flowing into the heat exchanger 65 on the primary side of the heat pump 60 increases. Further, when the temperature of the heat medium does not change at 20° C., when the number of rotations of the compressor 62 reaches the upper limit rotation speed, that is, when the rotation speed of the compressor 62 stops increasing, the primary The flow rate of the heat medium flowing into the side heat exchanger 65 increases. Further, when the temperature of the heat medium does not change at 20° C., when the number of rotations of the compressor 62 reaches the lower limit rotation speed, that is, when the rotation speed of the compressor no longer decreases, the primary side of the heat pump 60 The flow rate of the heat medium flowing into the heat exchanger 65 decreases.
 ヒートポンプ能力は、一次側の熱交換器65に流入する熱媒体の温度が高いほど、また一次側の熱交換器65に流入する熱媒体の流量が多いほど上昇する。また、ヒートポンプ能力は、一次側の熱交換器65に流入する熱媒体の温度が低いほど、また一次側の熱交換器65に流入する熱媒体の流量が少ないほど低下する。 The heat pump capacity increases as the temperature of the heat medium flowing into the primary heat exchanger 65 increases and as the flow rate of the heat medium flowing into the primary heat exchanger 65 increases. Furthermore, the heat pump capacity decreases as the temperature of the heat medium flowing into the primary heat exchanger 65 decreases, and as the flow rate of the heat medium flowing into the primary heat exchanger 65 decreases.
 実施の形態1によれば、制御装置32は、温度センサ53の測定温度が上昇した場合、枝管路50の目標開度を減少させ、温度センサ53の測定温度が低下した場合、枝管路50の目標開度を増加させる。この構成によれば、一次側の熱交換器65に流入する熱媒体の温度が高いほど熱媒体の流量が減少するのでヒートポンプ能力過多を抑制できる。また、この構成によれば、一次側の熱交換器65に流入する熱媒体の温度が低いほど熱媒体の流量が増加するのでヒートポンプ能力不足を抑制できる。 According to the first embodiment, the control device 32 reduces the target opening degree of the branch pipe 50 when the temperature measured by the temperature sensor 53 increases, and reduces the target opening degree of the branch pipe 50 when the temperature measured by the temperature sensor 53 decreases. Increase the target opening of 50. According to this configuration, the flow rate of the heat medium decreases as the temperature of the heat medium flowing into the primary heat exchanger 65 increases, so that excessive heat pump capacity can be suppressed. Moreover, according to this configuration, the flow rate of the heat medium increases as the temperature of the heat medium flowing into the primary side heat exchanger 65 decreases, so that insufficient heat pump capacity can be suppressed.
 また、実施の形態1によれば、ヒートポンプ60は、熱媒体(第3の熱媒体)が循環する循環回路61(第3の循環回路)と、枝管路50と循環回路61との間で熱交換する熱交換器65と、循環回路61に設けられ、熱媒体を圧縮する圧縮機62と、を備え、流量調整機構52によって、圧縮機62の回転数が増加しなくなったときに熱交換器65に流入する熱媒体の流量が増加し、圧縮機62の回転数が減少しなくなったときに熱交換器65に流入する熱媒体の流量が減少する。これにより、例えば、圧縮機62の回転数を増加させ、圧縮機62の上限回転数までヒートポンプ能力を上昇させたとき、供給される熱媒体の流量がさらに増加するので、圧縮機62での能力調整よりも広い範囲までヒートポンプ能力を上昇できる。また、例えば、圧縮機62の回転数を減少させ、圧縮機62の下限回転数までヒートポンプ能力を低下させたとき、供給される熱媒体の流量がさらに低下するので、圧縮機62での能力調整よりも広い範囲までヒートポンプ能力を低下できる。 Further, according to the first embodiment, the heat pump 60 operates between the circulation circuit 61 (third circulation circuit) in which the heat medium (third heat medium) circulates, and between the branch pipe line 50 and the circulation circuit 61. It is equipped with a heat exchanger 65 that exchanges heat, and a compressor 62 that is provided in the circulation circuit 61 and compresses the heat medium. The flow rate of the heat medium flowing into the heat exchanger 65 increases, and when the rotational speed of the compressor 62 no longer decreases, the flow rate of the heat medium flowing into the heat exchanger 65 decreases. As a result, for example, when the rotation speed of the compressor 62 is increased and the heat pump capacity is increased to the upper limit rotation speed of the compressor 62, the flow rate of the supplied heat medium further increases, so that the capacity of the compressor 62 is increased. Heat pump capacity can be increased over a wider range than adjustment. Further, for example, when the rotation speed of the compressor 62 is decreased and the heat pump capacity is lowered to the lower limit rotation speed of the compressor 62, the flow rate of the supplied heat medium further decreases, so the capacity adjustment in the compressor 62 is performed. The heat pump capacity can be reduced over a wider range.
 具体的に、実施の形態1によれば、制御装置32は、圧縮機62の回転数に基づいて、流量調整機構52を制御する。つまり、制御装置32は、圧縮機62の回転数が上限の回転数に達したとき、枝管路50の目標開度を増加させ、圧縮機62の回転数が下限の回転数に達したとき、枝管路50の目標開度を減少させる。流量調整機構52は、開閉弁の開度が目標開度になるように電動機を駆動させる。この動作により、制御装置32は流量調整機構52の開閉弁の開度を制御できる。この構成によれば、ヒートポンプ60に供給される熱媒体の熱量を調整して、圧縮機62によるヒートポンプ能力の調整幅よりも広い範囲までヒートポンプ能力の調整幅を広げることができる。 Specifically, according to the first embodiment, the control device 32 controls the flow rate adjustment mechanism 52 based on the rotation speed of the compressor 62. That is, the control device 32 increases the target opening degree of the branch pipe 50 when the rotation speed of the compressor 62 reaches the upper limit rotation speed, and when the rotation speed of the compressor 62 reaches the lower limit rotation speed. , the target opening degree of the branch pipe line 50 is decreased. The flow rate adjustment mechanism 52 drives the electric motor so that the opening degree of the on-off valve becomes the target opening degree. Through this operation, the control device 32 can control the opening degree of the on-off valve of the flow rate adjustment mechanism 52. According to this configuration, the amount of heat of the heat medium supplied to the heat pump 60 can be adjusted, and the adjustment range of the heat pump capacity can be expanded to a wider range than the adjustment range of the heat pump capacity by the compressor 62.
 実施の形態1によれば、制御装置32は、圧縮機62の回転数が上限の回転数に達したとき、枝管路50の目標開度を増加させ、圧縮機62の回転数が下限の回転数に達したとき、枝管路50の目標開度を減少させる。例えば、圧縮機62の回転数を増加させ、圧縮機62の上限回転数までヒートポンプ能力を上昇させたとき、供給される熱媒体の流量がさらに増加するので、圧縮機62での能力調整よりも広い範囲までヒートポンプ能力を上昇できる。また、例えば、圧縮機62の回転数を減少させ、圧縮機62の下限回転数までヒートポンプ能力を低下させたとき、供給される熱媒体の流量がさらに低下するので、圧縮機62での能力調整よりも広い範囲までヒートポンプ能力を低下できる。 According to Embodiment 1, when the rotation speed of the compressor 62 reaches the upper limit rotation speed, the control device 32 increases the target opening degree of the branch pipe 50 so that the rotation speed of the compressor 62 reaches the lower limit rotation speed. When the rotational speed is reached, the target opening degree of the branch pipe 50 is decreased. For example, when the rotation speed of the compressor 62 is increased and the heat pump capacity is increased to the upper limit rotation speed of the compressor 62, the flow rate of the supplied heat medium further increases, so that the capacity adjustment in the compressor 62 is Heat pump capacity can be increased over a wide range. Further, for example, when the rotation speed of the compressor 62 is decreased and the heat pump capacity is lowered to the lower limit rotation speed of the compressor 62, the flow rate of the supplied heat medium further decreases, so the capacity adjustment in the compressor 62 is performed. The heat pump capacity can be reduced over a wider range.
 目標温度は通常、住戸5の住人が自ら好む温度を設定するため、各住戸5で要求されるヒートポンプ能力が異なる。つまり、空調給湯設備30は、各住戸の目標温度の設定値に応じて、各住戸5で個別にヒートポンプ能力を調整できる。 Since the target temperature is usually set to a temperature that the residents of the dwelling unit 5 prefer, the heat pump capacity required for each dwelling unit 5 is different. In other words, the air conditioning and hot water supply equipment 30 can individually adjust the heat pump capacity in each dwelling unit 5 according to the set value of the target temperature of each dwelling unit.
 また、実施の形態1によれば、空調給湯設備30は、電源と接続され、流量調整機構52に電力を供給する変圧器31を備える。この構成によれば、電源の電圧を流量調整機構52の電動機に必要な電圧に変更できる。このため、住戸5では、電源と異なる電圧の電気配線を行う必要がなく、省工事となる。 Furthermore, according to the first embodiment, the air conditioning and hot water supply equipment 30 includes a transformer 31 that is connected to a power source and supplies power to the flow rate adjustment mechanism 52. According to this configuration, the voltage of the power supply can be changed to the voltage necessary for the electric motor of the flow rate adjustment mechanism 52. Therefore, in the dwelling unit 5, there is no need to perform electrical wiring with a voltage different from that of the power supply, which saves construction work.
 また、実施の形態1の集合空調給湯システム1によれば、熱を供給するセントラル熱供給設備2(第2の熱供給設備)と、セントラル熱供給設備2から熱を受ける複数の空調給湯システム3と、を備え、複数の空調給湯システム3の少なくとも一つ(実施の形態1では全て)が、上記の圧力調整機構51を含む空調給湯設備30を備える。この構成によれば、大規模な集合住宅にシステムを導入した場合であっても、空調給湯設備30の設置位置によらずヒートポンプ能力を略一定にできる。 Moreover, according to the collective air conditioning hot water supply system 1 of the first embodiment, the central heat supply equipment 2 (second heat supply equipment) that supplies heat, and the plurality of air conditioning hot water supply systems 3 that receive heat from the central heat supply equipment 2 At least one (all in the first embodiment) of the plurality of air conditioning and hot water supply systems 3 includes an air conditioning and hot water supply equipment 30 including the pressure adjustment mechanism 51 described above. According to this configuration, even when the system is introduced into a large-scale housing complex, the heat pump capacity can be kept substantially constant regardless of the installation position of the air conditioning hot water supply equipment 30.
 また、実施の形態1によれば、複数の空調給湯システム3は、鉛直方向に並んで設置されている。この構成によれば、高層の集合住宅にシステムを導入した場合であっても、空調給湯設備30の設置位置によらずヒートポンプ能力を略一定にできる。 Furthermore, according to the first embodiment, the plurality of air conditioning and hot water supply systems 3 are installed side by side in the vertical direction. According to this configuration, even when the system is introduced into a high-rise apartment complex, the heat pump capacity can be kept substantially constant regardless of the installation position of the air conditioning hot water supply equipment 30.
 実施の形態2.
 図6は、実施の形態2における空調給湯設備30の構成を示す模式図である。なお、以下の説明において、上述した実施の形態と同様の構成については、適宜同一の符号を付すなどにより、説明を省略する場合がある。
Embodiment 2.
FIG. 6 is a schematic diagram showing the configuration of the air conditioning hot water supply equipment 30 in the second embodiment. Note that, in the following description, the same components as those in the embodiment described above may be given the same reference numerals as appropriate, and the description thereof may be omitted.
 図6に示す空調給湯設備30は、圧力調整機構51および流量調整機構52を備える圧力開度調整ユニット34と、ヒートポンプ60および循環回路40を備える空調給湯ユニット35と、を備えている。なお、空調給湯ユニット35には、さらに、変圧器31、制御装置32、タンク33等が含まれている。 The air conditioning hot water supply equipment 30 shown in FIG. 6 includes a pressure opening adjustment unit 34 that includes a pressure adjustment mechanism 51 and a flow rate adjustment mechanism 52, and an air conditioning hot water supply unit 35 that includes a heat pump 60 and a circulation circuit 40. Note that the air conditioning and hot water supply unit 35 further includes a transformer 31, a control device 32, a tank 33, and the like.
 枝管路50は、圧力開度調整ユニット34と、空調給湯ユニット35とを接続している。圧力開度調整ユニット34と空調給湯ユニット35との間を接続する枝管路50の長さを調整することで、住戸5ごとに圧力開度調整ユニット34と空調給湯ユニット35の配置を任意の位置に調整できる。このように、実施の形態2によれば、空調給湯設備30の設置自由度が向上する。 The branch pipe 50 connects the pressure opening degree adjustment unit 34 and the air conditioning hot water supply unit 35. By adjusting the length of the branch pipe 50 that connects the pressure opening adjustment unit 34 and the air conditioning hot water supply unit 35, the arrangement of the pressure opening adjustment unit 34 and the air conditioning hot water supply unit 35 can be arranged arbitrarily for each dwelling unit 5. Can be adjusted to position. In this way, according to the second embodiment, the degree of freedom in installing the air conditioning hot water supply equipment 30 is improved.
 実施の形態3.
 図7は、実施の形態3における集合空調給湯システム1の構成を示す模式図である。なお、以下の説明において、上述した実施の形態と同様の構成については、適宜同一の符号を付すなどにより、説明を省略する場合がある。
Embodiment 3.
FIG. 7 is a schematic diagram showing the configuration of the collective air conditioning and hot water supply system 1 in the third embodiment. Note that, in the following description, the same components as those in the embodiment described above may be given the same reference numerals as appropriate, and the description thereof may be omitted.
 図7に示す集合空調給湯システム1は、セントラル熱供給設備2の循環回路12と、各階層の熱交換器15と、を接続する複数の枝管路24のそれぞれに、圧力調整機構25が設けられている。枝管路24は、接続点24bを介して循環回路12の往路側と接続され、接続点24aを介して循環回路12の復路側と接続されている。 In the collective air conditioning hot water supply system 1 shown in FIG. 7, a pressure adjustment mechanism 25 is provided in each of a plurality of branch pipes 24 that connect the circulation circuit 12 of the central heat supply equipment 2 and the heat exchangers 15 on each floor. It is being The branch pipe line 24 is connected to the outbound side of the circulation circuit 12 via the connection point 24b, and connected to the return side of the circulation circuit 12 via the connection point 24a.
 圧力調整機構25は、枝管路24の内部を流通する熱媒体の圧力を、所定の圧力に調整する。圧力調整機構25は、例えば、バネを備えた差圧調整弁であり、流入する熱媒体の圧力をバネで減圧して、圧力調整機構51の前後の熱媒体の差圧を略一定に調整する。所定の圧力とは、圧力調整機構51の前後の熱媒体の差圧が略一定となる圧力である。なお、圧力調整機構25は、枝管路24の内部を流通する熱媒体の圧力を減圧できれば、バネに限らずゴムなどの弾性部材で減圧してもよいし、油圧または空圧を利用して減圧してもよい。 The pressure adjustment mechanism 25 adjusts the pressure of the heat medium flowing inside the branch pipe 24 to a predetermined pressure. The pressure adjustment mechanism 25 is, for example, a differential pressure adjustment valve equipped with a spring, and uses the spring to reduce the pressure of the heat medium flowing in, thereby adjusting the pressure difference between the heat medium before and after the pressure adjustment mechanism 51 to be approximately constant. . The predetermined pressure is a pressure at which the differential pressure between the heat medium before and after the pressure adjustment mechanism 51 is approximately constant. Note that the pressure adjustment mechanism 25 is not limited to a spring, but may be reduced by an elastic member such as rubber, as long as the pressure of the heat medium flowing inside the branch pipe 24 can be reduced, or it may be reduced by using hydraulic pressure or pneumatic pressure. The pressure may be reduced.
 循環回路12の熱媒体には、高低差によって静水頭がかかるため、高階層ほど熱媒体の圧力は低く、低階層ほど熱媒体の圧力は高くなる。上述した実施の形態3によれば、各階層の熱交換器15に接続される枝管路24に圧力調整機構25を備えているため、高低差によらず、各階層の空調給湯システム3に流入する熱媒体の流量を略一定にすることができる。したがって、各階層の空調給湯システム3の能力を略一定にすることができる。 Since a hydrostatic head is applied to the heat medium in the circulation circuit 12 due to the difference in height, the pressure of the heat medium is lower in higher floors, and higher in lower floors. According to the third embodiment described above, since the pressure adjustment mechanism 25 is provided in the branch pipe line 24 connected to the heat exchanger 15 of each floor, the air conditioning and hot water supply system 3 of each floor can be adjusted regardless of the height difference. The flow rate of the inflowing heat medium can be made substantially constant. Therefore, the capacity of the air conditioning hot water supply system 3 of each floor can be made substantially constant.
 以上に本開示における実施の形態について説明したが、本開示は上述した各実施の形態の構成のみに限定されず、以下の構成および方法を採用することもできる。 Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the configurations of each embodiment described above, and the following configurations and methods can also be adopted.
 空調給湯システム3の各空調給湯設備30(各住戸5)は、同一フロアに設置される必要はなく、数フロアにまたがって設置されていてもよい。 Each air conditioning hot water supply equipment 30 (each residential unit 5) of the air conditioning hot water supply system 3 does not need to be installed on the same floor, and may be installed across several floors.
 1棟の集合住宅は、複数の集合空調給湯システム1を備えていてもよい。 One apartment building may be equipped with a plurality of collective air conditioning and hot water supply systems 1.
 セントラル熱供給設備2は、大気から集熱するヒートポンプ11を備えるが、熱媒体を加熱する熱源としては、ガスまたは灯油ボイラであってもよい。また、ごみ焼却施設、発電所、データセンター等で発生する熱で熱媒体を加熱できるように、ヒートポンプ11を熱交換器に変更してもよい。 The central heat supply equipment 2 includes a heat pump 11 that collects heat from the atmosphere, but the heat source for heating the heat medium may be a gas or kerosene boiler. Furthermore, the heat pump 11 may be replaced by a heat exchanger so that the heat medium can be heated with heat generated in a waste incineration facility, power plant, data center, or the like.
 住戸5は、集合空調給湯システム1で熱を利用する熱利用空間の一例であり、住宅に限らず商用店舗またはオフィス空間であってもよい。 The residential unit 5 is an example of a heat utilization space in which heat is utilized by the collective air conditioning and hot water supply system 1, and is not limited to a residence, but may be a commercial store or an office space.
 圧力調整機構51、流量調整機構52、空調給湯設備30は、個々の住戸5に設置されていればよく、個々の住戸5の居住スペース内(いわゆる玄関の中)であってもよいし、パイプシャフトまたはメーターボックスなどの居住スペース外であってもよい。 The pressure adjustment mechanism 51, the flow rate adjustment mechanism 52, and the air conditioning hot water supply equipment 30 may be installed in each dwelling unit 5, and may be installed in the living space of each dwelling unit 5 (inside the so-called entrance), or may be installed in a pipe. It may also be outside the living space, such as in a shaft or meter box.
 圧力調整機構51と流量調整機構52は、枝管路50において、ヒートポンプ60の一次側の熱交換器65の下流側に設置されていてもよい。流量調整機構52は、圧力調整機構51の下流側に設置されていればよい。 The pressure adjustment mechanism 51 and the flow rate adjustment mechanism 52 may be installed downstream of the heat exchanger 65 on the primary side of the heat pump 60 in the branch pipe line 50. The flow rate adjustment mechanism 52 only needs to be installed downstream of the pressure adjustment mechanism 51.
 空調給湯ユニット35は、さらに、給湯回路ユニットと空調回路ユニットの2つのユニットで構成してもよい。 The air conditioning hot water supply unit 35 may further include two units: a hot water supply circuit unit and an air conditioning circuit unit.
 タンク熱交換器43aは、タンク33の外部に設置してもよい。その場合、タンク33とタンク熱交換器43aとの間にタンク循環ポンプを設置すれば、タンク水をタンク熱交換器43aに導くことができる。 The tank heat exchanger 43a may be installed outside the tank 33. In that case, if a tank circulation pump is installed between the tank 33 and the tank heat exchanger 43a, tank water can be guided to the tank heat exchanger 43a.
 制御装置32は、温度センサ53の測定温度に基づいて流量調整機構52を制御する第1の制御装置と、圧縮機62の回転数に基づいて流量調整機構52を制御する第2の制御装置の2つの制御装置に分けて構成してもよい。 The control device 32 includes a first control device that controls the flow rate adjustment mechanism 52 based on the temperature measured by the temperature sensor 53 and a second control device that controls the flow rate adjustment mechanism 52 based on the rotation speed of the compressor 62. The control device may be divided into two control devices.
 以上、本明細書において説明した各構成および各方法は、相互に矛盾しない範囲内において、適宜組み合わせることができる。 As described above, each structure and each method described in this specification can be combined as appropriate within a mutually consistent range.
 1…集合空調給湯システム、2…セントラル熱供給設備(第2の熱供給設備)、3…空調給湯システム、5…住戸、6…空調端末、7…給湯端末、11…ヒートポンプ、12…循環回路、13…ポンプ、14…膨張タンク、15…熱交換器、20…熱供給設備、21…循環回路(第1の循環回路)、22…ポンプ、23…膨張タンク、24…枝管路、24a…接続点、24b…接続点、25…圧力調整機構、30…空調給湯設備、31…変圧器、32…制御装置、33…タンク、34…圧力開度調整ユニット、35…空調給湯ユニット、40…循環回路(第2の循環回路)、41…ポンプ、42…空調回路、43…給湯回路、43a…タンク熱交換器、44…流路切替機構、45…温度センサ、50…枝管路、50a…接続点、50b…接続点、50c…接続点、50d…接続点、51…圧力調整機構、52…流量調整機構、53…温度センサ、60…ヒートポンプ、61…循環回路(第3の循環回路)、62…圧縮機、63…膨張機構、64…熱交換器、65…熱交換器、66…流路切替機構 1...Collective air conditioning hot water supply system, 2...Central heat supply equipment (second heat supply equipment), 3...Air conditioning hot water supply system, 5...Dwelling unit, 6...Air conditioning terminal, 7...Water supply terminal, 11...Heat pump, 12...Circulation circuit , 13... Pump, 14... Expansion tank, 15... Heat exchanger, 20... Heat supply equipment, 21... Circulation circuit (first circulation circuit), 22... Pump, 23... Expansion tank, 24... Branch pipe line, 24a ... connection point, 24b ... connection point, 25 ... pressure adjustment mechanism, 30 ... air conditioning hot water supply equipment, 31 ... transformer, 32 ... control device, 33 ... tank, 34 ... pressure opening adjustment unit, 35 ... air conditioning hot water supply unit, 40 ... circulation circuit (second circulation circuit), 41 ... pump, 42 ... air conditioning circuit, 43 ... hot water supply circuit, 43a ... tank heat exchanger, 44 ... flow path switching mechanism, 45 ... temperature sensor, 50 ... branch pipe, 50a... Connection point, 50b... Connection point, 50c... Connection point, 50d... Connection point, 51... Pressure adjustment mechanism, 52... Flow rate adjustment mechanism, 53... Temperature sensor, 60... Heat pump, 61... Circulation circuit (third circulation circuit), 62...Compressor, 63...Expansion mechanism, 64...Heat exchanger, 65...Heat exchanger, 66...Flow path switching mechanism

Claims (12)

  1.  熱を供給する熱供給設備と、
     前記熱供給設備から熱を受ける複数の空調給湯設備と、を備え、
     前記熱供給設備は、
     第1の熱媒体を循環させる第1の循環回路を備え、
     前記空調給湯設備は、
     第2の熱媒体を循環させる第2の循環回路と、
     前記第1の循環回路と接続された枝管路と、
     前記枝管路から前記第2の循環回路に熱を移動させるヒートポンプと、
     前記枝管路に設けられ、前記枝管路の内部を流通する前記第1の熱媒体の圧力を、所定の圧力に調整する圧力調整機構と、を備える、空調給湯システム。
    Heat supply equipment that supplies heat;
    a plurality of air conditioning hot water supply equipment that receives heat from the heat supply equipment;
    The heat supply equipment includes:
    comprising a first circulation circuit that circulates the first heat medium;
    The air conditioning and hot water supply equipment is
    a second circulation circuit that circulates a second heat medium;
    a branch pipe connected to the first circulation circuit;
    a heat pump that transfers heat from the branch pipe to the second circulation circuit;
    An air conditioning hot water supply system, comprising: a pressure adjustment mechanism that is provided in the branch pipe and adjusts the pressure of the first heat medium flowing through the branch pipe to a predetermined pressure.
  2.  前記空調給湯設備は、
     前記枝管路における前記圧力調整機構の下流側に設けられ、前記枝管路の内部を流通する前記第1の熱媒体の流量を調整する流量調整機構と、
     前記流量調整機構を制御する制御装置と、を備える、請求項1に記載の空調給湯システム。
    The air conditioning and hot water supply equipment is
    a flow rate adjustment mechanism that is provided on the downstream side of the pressure adjustment mechanism in the branch line and adjusts the flow rate of the first heat medium flowing inside the branch line;
    The air conditioning hot water supply system according to claim 1, comprising a control device that controls the flow rate adjustment mechanism.
  3.  前記ヒートポンプの熱交換器に流入する前記第1の熱媒体の温度が高いほど前記枝管路の内部を流通する前記第1の熱媒体の流量が減少し、前記ヒートポンプの熱交換器に流入する前記第1の熱媒体の温度が低いほど前記枝管路の内部を流通する前記第1の熱媒体の流量が増加する、請求項2に記載の空調給湯システム。 The higher the temperature of the first heat medium flowing into the heat exchanger of the heat pump, the lower the flow rate of the first heat medium flowing through the branch pipe, and the more the first heat medium flows into the heat exchanger of the heat pump. The air conditioning hot water supply system according to claim 2, wherein the lower the temperature of the first heat medium, the greater the flow rate of the first heat medium flowing through the branch pipe.
  4.  前記空調給湯設備は、
     前記枝管路に設けられ、前記ヒートポンプの熱交換器に流入する前記第1の熱媒体の温度を測定する温度センサを備え、
     前記制御装置は、前記温度センサの測定温度に基づいて、前記流量調整機構を制御する、請求項2または3に記載の空調給湯システム。
    The air conditioning and hot water supply equipment is
    A temperature sensor is provided in the branch pipe line and measures the temperature of the first heat medium flowing into the heat exchanger of the heat pump,
    The air conditioning hot water supply system according to claim 2 or 3, wherein the control device controls the flow rate adjustment mechanism based on the temperature measured by the temperature sensor.
  5.  前記制御装置は、
     前記温度センサの測定温度が上昇した場合、前記枝管路の目標開度を減少させ、
     前記温度センサの測定温度が低下した場合、前記枝管路の目標開度を増加させる、請求項4に記載の空調給湯システム。
    The control device includes:
    When the temperature measured by the temperature sensor increases, reducing the target opening degree of the branch pipe,
    The air conditioning hot water supply system according to claim 4, wherein when the temperature measured by the temperature sensor decreases, the target opening degree of the branch pipe is increased.
  6.  前記ヒートポンプは、
     第3の熱媒体が循環する第3の循環回路と、
     前記枝管路と前記第3の循環回路との間で熱交換する熱交換器と、
     前記第3の循環回路に設けられ、前記第3の熱媒体を圧縮する圧縮機と、を備え、
     前記圧縮機の回転数が増加しなくなったときに前記熱交換器に流入する前記第1の熱媒体の流量が増加し、前記圧縮機の回転数が減少しなくなったときに前記熱交換器に流入する前記第1の熱媒体の流量が減少する、請求項2から5のいずれか一項に記載の空調給湯システム。
    The heat pump is
    a third circulation circuit in which a third heat medium circulates;
    a heat exchanger that exchanges heat between the branch pipe line and the third circulation circuit;
    a compressor provided in the third circulation circuit and compressing the third heat medium,
    When the rotation speed of the compressor no longer increases, the flow rate of the first heat medium flowing into the heat exchanger increases, and when the rotation speed of the compressor no longer decreases, the flow rate of the first heat medium flows into the heat exchanger. The air conditioning hot water supply system according to any one of claims 2 to 5, wherein the flow rate of the first heat medium flowing in is reduced.
  7.  前記制御装置は、前記圧縮機の回転数に基づいて、前記流量調整機構を制御する、請求項6に記載の空調給湯システム。 The air conditioning hot water supply system according to claim 6, wherein the control device controls the flow rate adjustment mechanism based on the rotation speed of the compressor.
  8.  前記制御装置は、
     前記圧縮機の回転数が上限の回転数に達したとき、前記枝管路の目標開度を増加させ、
     前記圧縮機の回転数が下限の回転数に達したとき、前記枝管路の目標開度を減少させる、請求項7に記載の空調給湯システム。
    The control device includes:
    When the rotation speed of the compressor reaches an upper limit rotation speed, increasing the target opening degree of the branch pipe,
    The air conditioning hot water supply system according to claim 7, wherein the target opening degree of the branch pipe is reduced when the rotation speed of the compressor reaches a lower limit rotation speed.
  9.  前記空調給湯設備は、電源と接続され、前記流量調整機構に電力を供給する変圧器を備える、請求項2から8のいずれか一項に記載の空調給湯システム。 The air conditioning and hot water supply system according to any one of claims 2 to 8, wherein the air conditioning and hot water supply equipment includes a transformer that is connected to a power source and supplies power to the flow rate adjustment mechanism.
  10.  前記空調給湯設備は、
     前記圧力調整機構および前記流量調整機構を備える圧力開度調整ユニットと、
     前記ヒートポンプおよび前記第2の循環回路を備える空調給湯ユニットと、を備える、請求項2から9のいずれか一項に記載の空調給湯システム。
    The air conditioning and hot water supply equipment is
    a pressure opening adjustment unit including the pressure adjustment mechanism and the flow rate adjustment mechanism;
    The air conditioning hot water supply system according to any one of claims 2 to 9, comprising: an air conditioning hot water supply unit including the heat pump and the second circulation circuit.
  11.  熱を供給する第2の熱供給設備と、
     前記第2の熱供給設備から熱を受ける複数の空調給湯システムと、を備え、
     前記複数の空調給湯システムの少なくとも一つが、請求項1から10のいずれか一項に記載の空調給湯システムを備える、集合空調給湯システム。
    a second heat supply facility that supplies heat;
    a plurality of air conditioning hot water supply systems that receive heat from the second heat supply equipment;
    A collective air-conditioning and hot-water supply system, wherein at least one of the plurality of air-conditioning and hot-water supply systems includes the air-conditioning and hot-water supply system according to any one of claims 1 to 10.
  12.  前記複数の空調給湯システムは、鉛直方向に並んで設置されている、請求項11に記載の集合空調給湯システム。 The collective air-conditioning and hot-water supply system according to claim 11, wherein the plurality of air-conditioning and hot-water supply systems are installed side by side in the vertical direction.
PCT/JP2022/012942 2022-03-22 2022-03-22 Air-conditioning/hot-water-supply system, and collective air-conditioning/hot-water-supply system WO2023181091A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/012942 WO2023181091A1 (en) 2022-03-22 2022-03-22 Air-conditioning/hot-water-supply system, and collective air-conditioning/hot-water-supply system
JP2024508826A JPWO2023181091A1 (en) 2022-03-22 2022-03-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/012942 WO2023181091A1 (en) 2022-03-22 2022-03-22 Air-conditioning/hot-water-supply system, and collective air-conditioning/hot-water-supply system

Publications (1)

Publication Number Publication Date
WO2023181091A1 true WO2023181091A1 (en) 2023-09-28

Family

ID=88100181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012942 WO2023181091A1 (en) 2022-03-22 2022-03-22 Air-conditioning/hot-water-supply system, and collective air-conditioning/hot-water-supply system

Country Status (2)

Country Link
JP (1) JPWO2023181091A1 (en)
WO (1) WO2023181091A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094840A (en) * 2009-10-28 2011-05-12 Corona Corp Heat pump device
JP2012530237A (en) * 2009-06-16 2012-11-29 ディーイーシー デザイン メカニカル コンサルタンツ リミテッド Community energy sharing system
JP2019194510A (en) * 2018-05-02 2019-11-07 株式会社コロナ Heat pump heat source machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012530237A (en) * 2009-06-16 2012-11-29 ディーイーシー デザイン メカニカル コンサルタンツ リミテッド Community energy sharing system
JP2011094840A (en) * 2009-10-28 2011-05-12 Corona Corp Heat pump device
JP2019194510A (en) * 2018-05-02 2019-11-07 株式会社コロナ Heat pump heat source machine

Also Published As

Publication number Publication date
JPWO2023181091A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
JP2022137259A (en) Method for improving work efficiency of cooling system by remodeling building by main control device
EP2103884B1 (en) Room heating and method for controlling the room heating
US10066857B2 (en) Controller for controlling an air conditioning system and radiant heating apparatus in a building
EP2041496B1 (en) An arrangement and a method for changing the temperature of a first and a second fluid located in two separate receptacles
WO2023181091A1 (en) Air-conditioning/hot-water-supply system, and collective air-conditioning/hot-water-supply system
KR20030084686A (en) Heat pump type warm water heating apparatus
WO2018007235A1 (en) Heating system
TW201804115A (en) Method for improving operational efficiency of a cooling system through retrofitting a building with a master controller
JP2000111105A (en) Air-conditioning system for office building
KR100692269B1 (en) Water source cooling and heating system using serial connection method
EP1033539B1 (en) Modular collector provided with a system of thermoregulation for heating plants with radiating panels or the like
NL2006250C2 (en) HEATING / COOLING AND HOT WATER PREPARATION FOR A BUILDING.
KR102580588B1 (en) Heat source system
JP7213061B2 (en) Temperature controller
JP5014922B2 (en) Heat medium circulation facility and heat medium circulation method
EP2141423B1 (en) Sequence control
JP2002039550A (en) Heating apparatus and its adjusting method
JP2023049068A (en) hybrid air conditioning system
FI114566B (en) A method for heating and cooling a room with liquid circulation and the apparatus used in the method
JP2023153554A (en) Heat source control system for air conditioning and heat source control method for air conditioning
WO2018063103A1 (en) A water-cooled split air conditioner capable of making hot water
JPH10281532A (en) Air conditioner
WO2023057409A1 (en) Fluid transportation network and method
WO1997017575A1 (en) Liquid-circulation heating system and pump
CN110945291A (en) Energy distribution system, distributor of such a system and method for laying such a system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933241

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024508826

Country of ref document: JP