WO2023179587A1 - 用于多传输接收点trp的码本反馈、确定方法及装置 - Google Patents

用于多传输接收点trp的码本反馈、确定方法及装置 Download PDF

Info

Publication number
WO2023179587A1
WO2023179587A1 PCT/CN2023/082696 CN2023082696W WO2023179587A1 WO 2023179587 A1 WO2023179587 A1 WO 2023179587A1 CN 2023082696 W CN2023082696 W CN 2023082696W WO 2023179587 A1 WO2023179587 A1 WO 2023179587A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
trps
weighting coefficient
codebook
coefficient
Prior art date
Application number
PCT/CN2023/082696
Other languages
English (en)
French (fr)
Inventor
马大为
Original Assignee
北京紫光展锐通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京紫光展锐通信技术有限公司 filed Critical 北京紫光展锐通信技术有限公司
Publication of WO2023179587A1 publication Critical patent/WO2023179587A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality

Definitions

  • the present application relates to the field of communication technology, and in particular to a codebook feedback, determination method and device for multiple TRPs.
  • the New Radio (NR) system introduces the Coherent Joint Transmission (CJT) mechanism.
  • CJT Coherent Joint Transmission
  • network-side devices can perform coherent joint transmissions with terminals through multiple Transmitter Receiver Points (TRPs).
  • TRPs Transmitter Receiver Points
  • TRPs Transmitter Receiver Points
  • codebook feedback scheme that supports multiple TRPs for coherent joint transmission.
  • the technical problem solved by this application is to provide a codebook feedback, determination method and device for multi-transmission receiving point TRP, which can enable network side equipment to determine available codebooks that support multiple TRPs for coherent joint transmission.
  • embodiments of the present application provide a codebook feedback method for multiple TRPs.
  • the method is applied to a terminal and includes: obtaining a reference signal to be measured, and the reference signal to be measured is used for Measure the channel status of multiple TRPs; measure the reference signal to be measured, and determine the codebook feedback parameters based on the measurement results.
  • the codebook feedback parameters include: a first parameter and a second parameter, the first parameter is used to indicate at least two airspace beam groups, the at least two airspace beam groups respectively correspond to at least two TRPs, and the The second parameter is used to indicate the weighting coefficient matrix corresponding to the at least two spatial beam groups, where the at least two TRPs are at least two TRPs among the plurality of TRPs; and the codebook feedback parameter is sent.
  • the codebook feedback parameters further include: a third parameter, the third parameter is used to indicate at least one frequency domain beam group, and the at least one frequency domain beam group corresponds to the at least two TRPs.
  • the first parameter includes: index information and beam vector rotation factor of each spatial beam group.
  • the method further includes: sending a resource index of the reference signal to be measured corresponding to at least one airspace beam group; wherein the at least one airspace beam group is at least a part of the at least two airspace beam groups.
  • the second parameter includes: the position, amplitude and phase of the non-zero coefficients in the weighting coefficient matrix corresponding to each spatial beam group.
  • the second parameter includes: a position parameter, the position parameter is used to indicate the position of a non-zero coefficient in the weighting coefficient matrix corresponding to the at least two spatial domain beam groups; multiple weighting coefficient matrices corresponding to multiple The index of the reference coefficient, the index of each reference coefficient is used to indicate the position of the reference coefficient in the weighted coefficient matrix to which it belongs, wherein each reference coefficient is the coefficient with the largest amplitude in the weighted coefficient matrix to which it belongs; the multiple Multiple sets of first differential parameters corresponding to a weighting coefficient matrix, each set of first differential parameters is used to indicate the differential amplitude and differential phase of other non-zero coefficients in the corresponding weighting coefficient matrix except the reference coefficient relative to the reference coefficient.
  • the index of the strongest coefficient is used to indicate the position of the strongest coefficient among the plurality of reference coefficients, wherein the strongest coefficient is the reference with the largest amplitude among the plurality of reference coefficients Coefficients; multiple second differential parameters corresponding to the multiple weighted coefficient matrices, each second differential parameter is used to indicate the differential amplitude and differential phase of the reference coefficient in the corresponding weighted coefficient matrix relative to the strongest coefficient.
  • sending the feedback parameters includes: sequentially mapping the codebook feedback parameters to the feedback channel and sending them in the order of group one, group two, and group three; wherein group one includes: the first parameter, the latest parameter, and the feedback channel.
  • the second group includes: the index of the reference coefficient corresponding to at least one weighted coefficient matrix, the first difference parameter and the second difference parameter of the at least one weighted coefficient matrix;
  • the third group includes: dividing among multiple weighted coefficient matrices Indexes of reference coefficients corresponding to weighting coefficient matrices other than the at least one weighting coefficient matrix, first difference parameters and second difference parameters of the other weighting coefficient matrices; or, group one includes: the first parameter, the The index of the strongest coefficient and the index of the reference coefficient corresponding to the multiple weighting coefficient matrices;
  • the second group includes: the first difference parameter and the second difference parameter corresponding to at least one weighting coefficient matrix;
  • the third group includes: the multiple weighting coefficients First difference parameters and second
  • the number of the reference signals to be measured is multiple, the reference signals to be measured correspond to the TRP one-to-one, and each reference signal to be measured is sent by its corresponding TRP.
  • embodiments of the present application also provide a device for codebook feedback for multiple TRPs.
  • the device includes: an acquisition module for acquiring a reference signal to be measured.
  • the reference signal to be measured is used to measure multiple TRPs.
  • Channel status is measured;
  • a parameter generation module is used to measure the reference signal to be measured, and determine codebook feedback parameters according to the measurement results.
  • the codebook feedback parameters include: a first parameter and a second parameter, and the third parameter One parameter is used to indicate at least two airspace beam groups, the at least two airspace beam groups respectively correspond to at least two TRPs, and the second parameter is used to indicate the weighting coefficient matrix corresponding to the at least two airspace beam groups, where , the at least two TRPs are at least two TRPs among the plurality of TRPs; a sending module, configured to send the codebook feedback parameters.
  • the codebook feedback parameters further include: a third parameter, the third parameter is used to indicate at least one frequency domain beam group, and the at least one frequency domain beam group corresponds to the at least two TRPs.
  • the first parameter includes: index information of each airspace beam group and beam Vector rotation factor.
  • the device further includes: a resource index sending module, configured to send the resource index of the reference signal to be measured corresponding to at least one airspace beam group; wherein the at least one airspace beam group is the at least two airspace beams. at least part of the group.
  • a resource index sending module configured to send the resource index of the reference signal to be measured corresponding to at least one airspace beam group; wherein the at least one airspace beam group is the at least two airspace beams. at least part of the group.
  • the second parameter includes: the position, amplitude and phase of the non-zero coefficients in the weighting coefficient matrix corresponding to each spatial beam group.
  • the second parameter includes: a position parameter, the position parameter is used to indicate the position of a non-zero coefficient in the weighting coefficient matrix corresponding to the at least two spatial domain beam groups; multiple weighting coefficient matrices corresponding to multiple The index of the reference coefficient, the index of each reference coefficient is used to indicate the position of the reference coefficient in the weighted coefficient matrix to which it belongs, wherein each reference coefficient is the coefficient with the largest amplitude in the weighted coefficient matrix to which it belongs; the multiple Multiple sets of first differential parameters corresponding to a weighting coefficient matrix, each set of first differential parameters is used to indicate the differential amplitude and differential phase of other non-zero coefficients in the corresponding weighting coefficient matrix except the reference coefficient relative to the reference coefficient.
  • the index of the strongest coefficient is used to indicate the position of the strongest coefficient among the plurality of reference coefficients, wherein the strongest coefficient is the reference with the largest amplitude among the plurality of reference coefficients Coefficients; multiple second differential parameters corresponding to the multiple weighted coefficient matrices, each second differential parameter is used to indicate the differential amplitude and differential phase of the reference coefficient in the corresponding weighted coefficient matrix relative to the strongest coefficient.
  • the sending module includes: a sequential sending sub-module, configured to sequentially map the codebook feedback parameters to the feedback channel and send them in the order of group one, group two, and group three; wherein group one includes: the third group.
  • group one includes: the third group.
  • the second group includes: the index of the reference coefficient of at least one weighted coefficient matrix, the first difference parameter and the second difference parameter of the at least one weighted coefficient matrix
  • the third group includes: a plurality of Indexes of reference coefficients of weighting coefficient matrices other than the at least one weighting coefficient matrix in the weighting coefficient matrix, first difference parameters and second difference parameters of the other weighting coefficient matrices; or, group one includes: the first difference parameter One parameter, the index of the strongest coefficient and the index of the plurality of reference coefficients
  • the second group includes: a first difference parameter and a second difference parameter of at least one weighted coefficient matrix Number
  • Group three includes: first difference parameters and second difference parameters of weighting coefficient
  • the number of the reference signals to be measured is multiple, the reference signals to be measured correspond to the TRP one-to-one, and each reference signal to be measured is sent by its corresponding TRP.
  • embodiments of the present application also provide a codebook determination method for multi-transmission reception point TRP.
  • the method is applied to network side equipment and includes: receiving codebook feedback parameters, the The codebook feedback parameters include: a first parameter and a second parameter.
  • the first parameter is used to indicate at least two airspace beam groups.
  • the at least two airspace beam groups correspond to at least two TRPs respectively.
  • the second parameter is used Instructing the weighting coefficient matrix corresponding to the at least two spatial beam groups to determine the feedback codebook of the at least two TRPs based on the codebook feedback parameter; wherein the codebook feedback parameter is based on the multiple TRPs It is determined by the measurement results of the channel status that the at least two TRPs are at least two TRPs among the plurality of TRPs.
  • the method before receiving the codebook feedback parameters, further includes: sending a reference signal to be measured and indicating codebook feedback; wherein the reference signal to be measured is used to perform channel status of the multiple TRPs. Measurement.
  • the number of the reference signals to be measured is multiple, the reference signals to be measured correspond to the TRP one-to-one, and each reference signal to be measured is sent by its corresponding TRP.
  • the codebook feedback parameters further include: a third parameter, the third parameter is used to indicate at least one frequency domain beam group, and the at least one frequency domain beam group corresponds to the at least two TRPs.
  • the first parameter includes: index information and beam vector rotation factor of each spatial beam group.
  • the method further includes: receiving a resource index of the reference signal to be measured corresponding to at least one airspace beam group; wherein the at least one airspace beam group is the at least one airspace beam group. At least part of two airspace beam groups.
  • the second parameter includes: the position, amplitude and phase of the non-zero coefficients in the weighting coefficient matrix corresponding to each spatial beam group.
  • the second parameter includes: a position parameter, the position parameter is used to indicate the position of a non-zero coefficient in the weighting coefficient matrix corresponding to the at least two spatial domain beam groups; multiple weighting coefficient matrices corresponding to multiple The index of the reference coefficient, the index of each reference coefficient is used to indicate the position of the reference coefficient in the weighted coefficient matrix to which it belongs, wherein each reference coefficient is the coefficient with the largest amplitude in the weighted coefficient matrix to which it belongs; the multiple Multiple sets of first differential parameters corresponding to a weighting coefficient matrix, each set of first differential parameters is used to indicate the differential amplitude and differential phase of other non-zero coefficients in the corresponding weighting coefficient matrix except the reference coefficient relative to the reference coefficient.
  • the index of the strongest coefficient is used to indicate the position of the strongest coefficient among the plurality of reference coefficients, wherein the strongest coefficient is the reference with the largest amplitude among the plurality of reference coefficients Coefficients; multiple second differential parameters corresponding to the multiple weighted coefficient matrices, each second differential parameter is used to indicate the differential amplitude and differential phase of the reference coefficient in the corresponding weighted coefficient matrix relative to the strongest coefficient.
  • the feedback parameters are sequentially mapped to the feedback channel and sent in the order of group one, group two, and group three; wherein group one includes: the first parameter and the index of the strongest coefficient;
  • group one includes: the first parameter and the index of the strongest coefficient;
  • the second group includes: the index of the reference coefficient corresponding to at least one weighting coefficient matrix, the first difference parameter and the second difference parameter of at least one weighting coefficient matrix;
  • the third group includes: a plurality of weighting coefficient matrices other than the at least one weighting coefficient matrix.
  • the embodiment of the present application also provides a method for multi-transmission reception point TRP Codebook determination device, the device includes: a receiving module, configured to receive codebook feedback parameters, the codebook feedback parameters include: a first parameter and a second parameter, the first parameter is used to indicate at least two spatial domain beams group, the at least two airspace beam groups respectively correspond to at least two TRPs, the second parameter is used to indicate the weighting coefficient matrix corresponding to the at least two airspace beam groups; the determination module is used to feedback according to the codebook The parameters determine the feedback codebooks of the at least two TRPs; wherein the codebook feedback parameters are determined based on the measurement results of the channel states of the multiple TRPs, and the at least two TRPs are among the multiple TRPs. of at least two TRPs.
  • the device further includes a signal sending module, configured to send a reference signal to be measured and instruct codebook feedback before receiving the codebook feedback parameters; wherein the reference signal to be measured is used to measure the plurality of TRP channel status is measured.
  • a signal sending module configured to send a reference signal to be measured and instruct codebook feedback before receiving the codebook feedback parameters; wherein the reference signal to be measured is used to measure the plurality of TRP channel status is measured.
  • the number of the reference signals to be measured is multiple, the reference signals to be measured correspond to the TRP one-to-one, and each reference signal to be measured is sent by its corresponding TRP.
  • the codebook feedback parameters further include: a third parameter, the third parameter is used to indicate at least one frequency domain beam group, and the at least one frequency domain beam group corresponds to the at least two TRPs.
  • the first parameter includes: index information and beam vector rotation factor of each spatial beam group.
  • the device further includes: a resource index receiving module, configured to receive the resource index of the reference signal to be measured corresponding to at least one airspace beam group; wherein the at least one airspace beam group is the at least two airspace beams. at least part of the group.
  • a resource index receiving module configured to receive the resource index of the reference signal to be measured corresponding to at least one airspace beam group; wherein the at least one airspace beam group is the at least two airspace beams. at least part of the group.
  • the second parameter includes: the position, amplitude and phase of the non-zero coefficients in the weighting coefficient matrix corresponding to each spatial beam group.
  • the second parameters include: position parameters, the position parameters are used to indicate the positions of non-zero coefficients in multiple weighting coefficient matrices corresponding to the at least two spatial domain beam groups; corresponding to the multiple weighting coefficient matrices Index of multiple reference coefficients, one for each reference coefficient The index is used to indicate the position of the reference coefficient in the weighting coefficient matrix to which it belongs, where each reference coefficient is the coefficient with the largest amplitude in the weighting coefficient matrix to which it belongs; multiple groups of first values corresponding to the multiple weighting coefficient matrices Differential parameters, each group of first differential parameters is used to indicate the differential amplitude and differential phase of other non-zero coefficients in the corresponding weighted coefficient matrix relative to the reference coefficient except the reference coefficient; the index of the strongest coefficient, the strongest coefficient The index of the strong coefficient is used to indicate the position of the strongest coefficient among the multiple reference coefficients, where the strongest coefficient is the reference coefficient with the largest amplitude among the multiple reference coefficients; the multiple weighted coefficient matrices correspond to A plurality
  • the feedback parameters are sequentially mapped to the feedback channel and sent in the order of group one, group two, and group three; wherein group one includes: the first parameter and the index of the strongest coefficient;
  • group one includes: the first parameter and the index of the strongest coefficient;
  • the second group includes: the index of the reference coefficient corresponding to at least one weighting coefficient matrix, the first difference parameter and the second difference parameter of the at least one weighting coefficient matrix;
  • the third group includes: the at least one weighted coefficient among multiple weighting coefficient matrices.
  • the index is the index of the reference coefficient corresponding to the multiple weighting coefficient matrices;
  • the second group includes: the first difference parameter and the second difference parameter corresponding to at least one weighting coefficient matrix;
  • the third group includes: the division among the multiple weighting coefficient matrices The first difference parameter and the second difference parameter corresponding to other weighting coefficient matrices other than the at least one weighting coefficient matrix.
  • embodiments of the present application further provide a computer-readable storage medium on which a computer program is stored.
  • the computer program is run by a processor, the above-mentioned steps of the codebook feedback method for multiple TRPs or the above-mentioned The steps of the codebook determination method for multiple TRPs are performed.
  • the embodiment of the present application also provides another codebook feedback device for multiple TRPs, including a memory and a processor.
  • the memory stores a computer program that can run on the processor.
  • the processing The above-mentioned functions are executed when the computer program is executed by the computer. Steps of the codebook feedback method for multiple TRPs.
  • the embodiment of the present application also provides another codebook determination device for multiple TRPs, including a memory and a processor.
  • the memory stores a computer program that can run on the processor.
  • the processing The above-mentioned steps of the codebook determination method for multiple TRPs are performed when the computer program is run by the computer program.
  • inventions of the present application further provide a computer program product.
  • the computer program product includes a computer program. When the computer program is run on a computer, it causes the computer to execute the steps of the above method.
  • embodiments of the present application further provide a communication system, including a terminal and a network side device for performing the above method.
  • embodiments of the present application also provide a chip, a computer program is stored on the chip, and when the computer program is executed by the chip, the steps of the above method are implemented.
  • the channel status of multiple TRPs is measured to obtain the measurement results, and the codebook feedback parameters can be determined based on the measurement results.
  • the codebook feedback parameter may include a first parameter and a second parameter.
  • the first parameter is used to indicate at least two airspace beam groups.
  • the at least two airspace beam groups correspond to at least two TRPs respectively.
  • the second parameter is used to indicate at least two airspace beam groups.
  • the weighting coefficient matrix corresponding to the spatial beam group Therefore, the spatial beam group and the corresponding weighting coefficient matrix of at least two TRPs can be determined according to the codebook feedback parameters.
  • the terminal can be implemented to feed back available codebooks that support multiple TRPs for coherent joint transmission to the network side device.
  • Figure 1 is a schematic flow chart of a codebook feedback method for multiple TRPs in an embodiment of the present application
  • Figure 2 is a schematic structural diagram of a codebook feedback device for multiple TRPs in an embodiment of the present application
  • Figure 3 is a schematic structural diagram of a codebook determination device for multiple TRPs in an embodiment of the present application
  • Figure 4 is a schematic structural diagram of another codebook feedback device for multiple TRPs in an embodiment of the present application.
  • the solutions of the embodiments of this application can be applied to 5G (Generation) communication systems, 4G, 3G communication systems, and various new communication systems in the future, such as 6G, 7G, etc.
  • the network elements involved in this application include network-side equipment and terminals. Network side equipment and terminals can communicate uplink and downlink.
  • the network-side device in the embodiment of the present application may be a device deployed in a wireless access network to provide wireless communication functions.
  • base station also called base station equipment
  • the base station can be, for example, a base transceiver station (BTS) or a base station controller (BSC) in the 2G network, a NodeB (NodeB) or a radio network controller (radio network) in the 3G network.
  • BTS base transceiver station
  • BSC base station controller
  • NodeB NodeB
  • radio network controller radio network controller
  • RNC radio access controller
  • eNB evolved NodeB
  • AP access point
  • WLAN wireless local area networks
  • gNB next generation base station Node B
  • NR New Radio, NR
  • the terminal in the embodiment of this application may refer to various forms of user equipment (UE for short), access terminal, user unit, user station, mobile station, mobile station (MS for short), remote station, remote station, etc.
  • Terminal mobile device, user terminal, terminal equipment, wireless communication device, user agent or user device.
  • the terminal can also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop, WLL) station, Personal Digital Assistant (PDA), handheld devices with wireless communication capabilities, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminals in future 5G networks Or terminals in the public land mobile communication network (Public Land Mobile Network, PLMN for short) that will evolve in the future, etc., the embodiments of the present application are not limited to this.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the technical solution of this application is also applicable to different network architectures, including but not limited to relay network architecture, dual-link architecture, and Vehicle-to-Everything (vehicle to any object communication) architecture.
  • the transmitting antennas of multiple TRPs have coherent characteristics, and use coherent precoding to send downlink data to the terminal.
  • the Type II port selection codebook was defined in the 3rd Generation Partnership Project (3GPP) Rel-16 phase, but the existing Type II port selection codebook only supports terminals and a single TRP. Data transmission scenario. In the scenario of coherent joint transmission of multiple TRPs, the existing Type II port selection codebook needs to be enhanced. The enhanced codebook needs to be able to indicate the air domain beam and frequency domain selected for multiple TRPs participating in coherent joint transmission. beam. Regarding the enhanced codebook, there is no solution yet for how the terminal provides feedback to the network-side device.
  • 3GPP 3rd Generation Partnership Project
  • embodiments of the present application provide a codebook feedback method for multiple TRPs.
  • the channel status of multiple TRPs is measured to obtain the measurement results, and based on The measurement results can determine the codebook feedback parameters.
  • the codebook feedback parameter may include a first parameter and a second parameter.
  • the first parameter is used to indicate at least two airspace beam groups.
  • the at least two airspace beam groups correspond to at least two TRPs respectively.
  • the second parameter is used to indicate at least two airspace beam groups.
  • the weighting coefficient matrix corresponding to the spatial beam group Therefore, the spatial beam group and the corresponding weighting coefficient matrix of at least two TRPs can be determined according to the codebook feedback parameters.
  • the codebook feedback parameters are determined simultaneously based on the measurement results of channel states of multiple TRPs, the at least two TRPs can be used for coherent joint transmission. Therefore, through the solutions provided by the embodiments of this application, it is possible to achieve The terminal feeds back to the network side device the available codebooks that support multiple TRPs for coherent joint transmission.
  • Figure 1 is a schematic flowchart of a codebook feedback and determination method for multiple TRPs in an embodiment of the present application.
  • the actions performed by the terminal can be performed by a chip with a feedback parameter generation function in the terminal, or by a baseband chip in the terminal.
  • the actions performed by the network side device can be performed by a chip with a codebook calculation function in the network side device. Execution can also be performed by the baseband chip in the network side device.
  • the method shown in Figure 1 may include the following steps:
  • the network side device configures a reference signal resource to be measured, and the reference signal to be measured is used to measure the channel status of multiple TRPs.
  • S in each step number in this application represents a step.
  • S102 The network side device sends the reference signal to be measured.
  • the terminal acquires (for example, receives) the reference signal to be measured.
  • the network side device may also instruct the terminal to perform codebook feedback for coherent joint transmission.
  • the terminal measures the reference signal to be measured, and determines codebook feedback parameters according to the measurement results.
  • the codebook feedback parameters include: a first parameter and a second parameter, and the first parameter is used to indicate at least two Airspace beam group, the at least two airspace beam groups respectively correspond to at least two TRPs, and the second parameter is used to indicate the weighting coefficient matrix corresponding to the at least two airspace beam groups;
  • S104 The terminal sends the codebook feedback parameters.
  • the network side device receives the codebook feedback parameters.
  • the network side device determines the feedback codebooks of the at least two TRPs according to the codebook feedback parameters.
  • the network side device may configure channel state information reference signal (Channel State Information-Reference Signal, CSI-RS for short) resources for channel measurement.
  • CSI-RS Channel State Information-Reference Signal
  • the network side device may include multiple TRPs, the multiple TRPs may be recorded as multiple candidate TRPs, and the multiple candidate TRPs may be set in different geographical locations.
  • the plurality of candidate TRPs may be configured by a network side device.
  • the network side device may send reference signals to be measured (ie, CSI-RS) to the terminal through multiple candidate TRPs to measure the channel status between each candidate TRP and the terminal.
  • CSI-RS reference signals to be measured
  • the reference signal to be measured may correspond to the candidate TRP one-to-one, and each reference signal to be measured may be transmitted to the terminal through the corresponding candidate TRP.
  • the network side device may send multiple reference signals to be measured to the terminal and instruct the terminal to perform codebook feedback for coherent joint transmission. More specifically, each reference signal to be measured may be transmitted to the terminal through its corresponding candidate TRP.
  • the terminal may measure each received reference signal to be measured.
  • the channel state between the terminal and each candidate TRP can be estimated, thereby obtaining multiple channel matrices. Therefore, the channel matrix and the candidate TRP may also have a one-to-one correspondence, and each channel matrix is used to indicate the channel status between its corresponding candidate TRP and the terminal.
  • available codebooks may be calculated based on multiple channel matrices, where the available codebooks refer to codebooks that support coherent joint transmission. Specifically, the available codebook in this embodiment is calculated based on the channel matrices of multiple candidate TRPs at the same time, so multiple TRPs can be supported for coherent joint transmission.
  • the terminal can first determine multiple TRPs participating in coherent joint transmission from the multiple candidate TRPs, recorded as transmission TRPs, and then calculate the feedback codebook based on the channel matrices corresponding to the multiple transmission TRPs.
  • the transmitting TRP is a TRP participating in coherent joint transmission.
  • the terminal can first determine the received power of the reference signal to be measured sent by each candidate TRP, and can assign the received power of the reference signal to be measured to the candidate TRP that is greater than the preset power threshold.
  • the preset power threshold can be stipulated in the protocol and preset by the network side device or terminal, Or, it is determined through negotiation between the terminal and the network side equipment, and is not limited by this application.
  • multiple candidate TRPs are configured by network side equipment, and the terminal can determine whether the candidate TRP participates in coherent joint transmission based on the received power of the reference signal to be measured sent by each candidate TRP. That is, the terminal Whether the candidate TRP is a transmission TRP can be determined based on the received power of the reference signal to be measured sent by each candidate TRP.
  • the available codebook may be determined based on the channel matrices corresponding to the multiple first transmission TRPs.
  • the second transmission TRP may be selected from other candidate TRPs in the plurality of candidate TRPs except the first transmission TRP.
  • the second transmission TRP may be the TRP with the largest received power of the reference signal to be measured sent among the other candidate TRPs.
  • the available codebook may be determined according to the channel matrix corresponding to the first transmission TRP and the second transmission TRP.
  • TRPs that are not suitable for participating in coherent joint transmission can be eliminated on the premise of realizing coherent joint transmission of multiple TRPs, which is beneficial to saving signaling overhead in subsequent codebook feedback.
  • the available codebook may be determined according to the channel matrices of at least two TRPs among the plurality of TRPs.
  • the at least two TRPs may be the plurality of transmission TRPs, and the plurality of transmission TRPs may only include a first transmission TRP, or may include a first transmission TRP and a second transmission TRP.
  • the beam matrix, W freq,S is the frequency domain beam matrix, W H freq,S is the conjugate transpose matrix of W freq,S , and W' S is the linear weighting coefficient matrix.
  • the dimension of W 1,S can be N TX ⁇ (m ⁇ L), where m is the number of transmission TRPs, L is the number of airspace beam vectors corresponding to each transmission TRP, and each airspace beam vector is represented by represents a spatial beam selected by the terminal, and N TX is the length of each spatial beam vector.
  • the spatial beam matrix may include: for each transmission TRP selection L selected spatial beams.
  • the L airspace beams selected for each transmission TRP can be recorded as one airspace beam group
  • the airspace beam matrix W 1,S can include m airspace beam groups.
  • each spatial beam group contains two spatial beams in polarization directions, where the number of spatial beams in each polarization direction may be L/2.
  • the airspace beam group corresponds to the transmission TRP one-to-one.
  • W freq,S may be N ⁇ K, where K is the number of frequency domain beam vectors, each frequency domain beam vector is used to represent a frequency domain beam selected by the terminal, and N is each frequency domain beam.
  • the length of the vector, K frequency domain beams can be recorded as a frequency domain beam group.
  • W' S may include multiple weighting coefficient matrices.
  • the linear weighting coefficient matrix W' S may be obtained by concatenating multiple weighting coefficient matrices.
  • the dimension of the linear weighting coefficient matrix W' S can be (m ⁇ L) ⁇ K, where the dimension of each weighting coefficient matrix can be L ⁇ K.
  • the weighting coefficient matrix corresponds to the spatial beam group in a one-to-one correspondence. Each coefficient in the coefficient matrix corresponds to a spatial domain beam vector in the spatial domain beam group corresponding to the weighted coefficient matrix and a frequency domain beam vector in the frequency domain beam group.
  • N TX , L, N and K are all preconfigured parameters, in which the value of L can be 1 or a positive integer greater than 1.
  • the terminal may determine corresponding parameter information (that is, codebook feedback parameters) of the spatial domain beam matrix, the frequency domain beam matrix, and the linear weighting coefficient matrix in the available codebook.
  • parameter information that is, codebook feedback parameters
  • the codebook feedback parameters may include a first parameter.
  • the first parameter may be parameter information corresponding to the spatial beam matrix.
  • the first parameter may be used to indicate at least two spatial beam groups.
  • the at least two spatial beam groups are respectively Corresponds to at least two TRPs.
  • the first parameter may be used to indicate the airspace beam group selected by the terminal for each transmission TRP.
  • the number of airspace beams included in the multiple airspace beam groups may be the same, and the number of airspace beams may be preconfigured. That is, the number of airspace beams is the above-mentioned L.
  • the first parameter may include airspace parameters of multiple airspace beam groups, where the airspace parameters of each airspace beam group include: index information of the airspace beam group and Beam rotation factor. Specifically, if the number of airspace beams in the airspace beam group is one, the index of the airspace beam can be used as the index information of the airspace beam group; if the number of airspace beams in the airspace beam group is multiple, then the multiple airspace beams can be used. The combinatorial coefficient of the index structure of each spatial beam is used as the index information of the spatial beam group.
  • the airspace beam group and the transmission TRP may have a one-to-one correspondence. Since the TRP and the reference signal to be measured are in a one-to-one correspondence, the airspace beam group and the reference signal to be measured are also in a one-to-one correspondence.
  • the network side device can determine the index of each airspace beam in the airspace beam group according to the index information of each airspace beam group. Further, according to the index of each airspace beam in each airspace beam group and the beam vector rotation factor of the airspace beam group, each selected airspace beam can be finally determined, that is, the airspace beam matrix can be determined.
  • the codebook feedback parameters may also include: a third parameter.
  • the third parameter may be parameter information corresponding to the frequency domain beam matrix.
  • the third parameter may be used to indicate at least one frequency domain beam group.
  • the at least one frequency domain beam A group corresponds to the at least two TRPs.
  • the third parameter may include index information of the frequency domain beam group.
  • multiple transmission TRPs and frequency domain beam groups may have a many-to-one correspondence. In other words, multiple transmission TRPs may correspond to the same frequency domain beam group, and the number of frequency domain beams in the frequency domain beam group may be a predetermined number. The number of configured, that is, frequency domain beams is the K mentioned above.
  • the third parameter may be fed back only when the network side device indicates that the frequency domain beam matrix needs to be fed back.
  • the network side device or protocol can predefine the first frequency domain beam (that is, the frequency domain beam with the smallest index) as the selected frequency domain beam. If the network side device indicates that no frequency feedback is required when configuring the reference signal to be measured, domain beam matrix, the network side equipment and terminal select the first frequency domain beam (that is, the frequency domain beam with the smallest index) by default. Adopting such a solution is beneficial to reducing codebook feedback overhead.
  • the selected frequency domain beam group may be determined according to the third parameter. If the network side device does not receive the third parameter, the predefined frequency domain beam, that is, the first frequency domain beam, may be selected.
  • the codebook feedback parameters may also include second parameters, and the second parameters may be parameter information corresponding to the linear weighting coefficient matrix.
  • the second parameter may be used to indicate parameter information of the weighting coefficient matrix corresponding to the at least two spatial domain beam groups. More specifically, the second parameter may be used to indicate the position, amplitude and phase of the non-zero coefficients in the weighting coefficient matrix corresponding to each spatial beam group.
  • the second parameter may be obtained by differential calculation according to the weighting coefficient matrices of multiple transmission TRPs.
  • the second parameter may include the position of the non-zero coefficient in the weighting coefficient matrix corresponding to each airspace beam group, amplitude and phase. Therefore, the second parameter can indicate the weighting coefficient matrix corresponding to each spatial domain beam group.
  • the second parameter may include: a position parameter, an index of a plurality of reference coefficients, an index of the strongest coefficient, a plurality of sets of first differential parameters and a plurality of second differential parameters.
  • the position parameter may be used to indicate the positions of all non-zero coefficients in the multiple weighting coefficient matrices. More specifically, the position parameter may include multiple bitmaps, the bitmaps having a one-to-one correspondence with the weighting coefficient matrix, and each bitmap may be used to indicate the position of each non-zero coefficient in the corresponding weighting coefficient matrix in the weighting coefficient matrix. .
  • each reference coefficient can be the coefficient with the largest amplitude in the weighting coefficient matrix to which the reference coefficient belongs.
  • the index of the reference coefficient can be used to indicate the weighting of the reference coefficient to which it belongs. position in the coefficient matrix.
  • the strongest coefficient may refer to the reference coefficient with the largest amplitude among multiple reference coefficients.
  • the strongest coefficient may be the coefficient with the largest amplitude in the linear weighted coefficient matrix.
  • the index of the strongest coefficient can be used to indicate the position of the strongest coefficient among multiple reference coefficients. Therefore, the network side device can determine the position of the strongest coefficient in the linear weighted coefficient matrix based on the reference coefficient index and the strongest coefficient index.
  • the amplitude and phase of the strongest coefficient may be predefined. In this case, there is no need to feed back the amplitude and phase of the strongest coefficient in the second parameter, which is conducive to further reduction of Signaling overhead.
  • the second differential parameter and the reference coefficient have a one-to-one correspondence, and each second differential parameter can be used to indicate the differential amplitude and differential phase of the corresponding reference coefficient relative to the strongest coefficient.
  • the differential amplitude of the reference coefficient relative to the strongest coefficient refers to the difference between the amplitude of the reference coefficient and the amplitude of the strongest coefficient
  • the differential phase of the reference coefficient relative to the strongest coefficient refers to the phase of the reference coefficient relative to the strongest coefficient. the phase difference. Therefore, the network side device can determine the amplitude and phase of each reference coefficient based on the second differential parameter and the amplitude and phase of the strongest coefficient.
  • the first differential parameters may correspond to the weighting coefficient matrix one-to-one, and each set of first differential parameters may be used to indicate the relative values of other non-zero coefficients other than the reference coefficient in the corresponding weighting coefficient matrix relative to the reference coefficient in the weighting coefficient matrix.
  • Differential amplitude and differential phase of the coefficients refers to the difference in amplitude of other non-zero coefficients relative to the amplitude of the reference coefficient.
  • the differential phase of other non-zero coefficients relative to the reference coefficient refers to the difference in amplitude of other non-zero coefficients relative to the reference coefficient.
  • the difference in phase of the reference coefficients Therefore, the network side device can determine the amplitude and phase of the non-zero coefficients in each weighting coefficient matrix based on the amplitude and phase of the reference coefficient of each weighting coefficient matrix and the corresponding set of first differential parameters.
  • the network side device can determine the position, amplitude, and phase of all non-zero coefficients in the linear weighting coefficient matrix through the above-mentioned second parameter, thereby obtaining the linear weighting coefficient matrix.
  • the second parameter may also be obtained by differential calculation according to the polarization direction.
  • the second parameter obtained by differential calculation according to the polarization direction will be recorded as the second polarization parameter below.
  • the linear weighting matrix can be split into a first polarization weighting coefficient matrix and a second polarization weighting coefficient matrix according to the polarization direction.
  • the second polarization parameter may be determined according to the first polarization weighting coefficient matrix and the second polarization weighting coefficient matrix respectively.
  • the second polarization parameter may include: a first sub-parameter, which may be used to indicate the position of the non-zero coefficient in each polarization weighted coefficient matrix; a second sub-parameter, which may be used to indicate Indicates the position, amplitude and phase of the largest coefficient in each polarization weighting coefficient matrix; the third sub-parameter can be used to indicate the relative position, amplitude and phase of other non-zero coefficients in each polarization weighting coefficient matrix except the largest coefficient. Describe the differential amplitude and differential phase of the coefficient with the largest amplitude.
  • the above-mentioned scheme of differencing the linear weighting coefficient matrix according to the TRP to obtain the second parameter can more directly characterize the linear weighting coefficient matrix.
  • the coefficient information associated with each TRP is helpful to simplify the subsequent steps of the network side equipment to determine the codebook corresponding to each transmission TRP, and also facilitates the subsequent mapping of the codebook feedback parameters to the feedback channel, but the feedback channel is not enough to carry all When feeding back parameters, the codebook feedback parameters related to the transmission TRP whose channel status is relatively poor are discarded.
  • the terminal may map the codebook feedback parameters to the feedback channel to send the codebook feedback parameters to the base station.
  • the feedback channel may be a channel capable of data transmission between the terminal and the base station.
  • the feedback channel is not limited to the channel between multiple candidate TRPs and the terminal.
  • the feedback channel may be a Physical Uplink Shared Channel (PUSCH) channel.
  • PUSCH Physical Uplink Shared Channel
  • the codebook feedback parameters are grouped according to priority.
  • the priorities of codebook feedback parameters in the same group may be the same, and the priorities of codebook feedback parameters in different groups may be different.
  • the codebook feedback parameters may be mapped to the feedback channel in order from high to low priority.
  • all codebook feedback parameters can be divided into group one, group two and group three, and the codebook feedback parameters can be mapped to the feedback channel in sequence in the order of group one, group two and group three. That is, when mapping the feedback parameters to the feedback channel, the codebook feedback parameters in group one are mapped first, then the codebook feedback parameters in group two are mapped, and finally the codebook feedback parameters in group three are mapped.
  • the priority of the codebook feedback parameters in group 1 is higher than the priority of the codebook feedback parameters in group 2
  • the priority of the codebook feedback parameters in group 2 is higher than the priority of the codebook feedback parameters in group 3. priority.
  • the parameter groups can be discarded in order from low to high priority until the feedback channel can carry the codebook feedback parameters in the remaining parameter groups. Specifically, when a parameter group needs to be discarded, the parameter group with a lower priority is discarded first. More specifically, the codebook feedback parameters in group three are discarded first, and then the codebook feedback parameters in group two are discarded.
  • a differential parameter and a second differential parameter; the third group may include: the index of the reference coefficient corresponding to other weighted coefficient matrices other than the at least one weighted coefficient matrix in the plurality of weighted coefficient matrices, the first index corresponding to the other weighted coefficient matrix.
  • differential parameter and second differential parameter may include other parameters in the codebook feedback parameters except group one and group two.
  • the number of the at least one weighting coefficient matrix corresponding to Group 2 may be predefined, and the at least one weighting coefficient matrix corresponding to Group 2 may be a preset number of weighting coefficient matrices with the largest amplitude of the reference coefficient.
  • group one may also include: the third parameter.
  • group one may include: the first parameter, the index of the strongest coefficient, and the index of the reference coefficient corresponding to a plurality of weighted coefficient matrices; group two includes: the first parameter corresponding to at least one weighted coefficient matrix. Differential parameters and second differential parameters; Group 3 includes: first differential parameters and second differential parameters corresponding to other weighted coefficient matrices in the plurality of weighted coefficient matrices except the at least one weighted coefficient matrix.
  • codebook feedback parameters in parameter groups with higher priorities can provide relatively more important codebook information. Therefore, if the resource size of the feedback channel cannot carry all the codebook feedback parameters, the parameter group with a higher priority will be carried first. If the network side device receives incomplete codebook feedback parameters, it can still obtain partial information related to multiple TRPs.
  • Channel information for example, can be the strongest TRP among multiple transmission TRPs determined based on the index of the strongest coefficient, can be the optimal airspace beam in the airspace beam group determined based on the reference coefficient, etc., which is conducive to subsequent coherent joint transmission. Configuration and scheduling.
  • the resource index of the reference signal to be measured corresponding to at least one spatial domain beam group may also be sent.
  • the resource index of the reference signal to be measured corresponding to at least one airspace beam group may be sent before performing S104, or the resource index to be measured corresponding to the at least one airspace beam group may be sent after performing S104 and before performing S105.
  • the resource index of the measurement reference signal may also be used to simultaneously transmit the codebook feedback parameters and the resource index of the reference signal to be measured corresponding to at least one airspace beam group using different channels. This embodiment of the present application does not limit this.
  • the at least one airspace beam group is at least a part of the at least two airspace beam groups.
  • the sending order of the resource indexes of the multiple reference signals to be measured may be the same as the sending order of the airspace parameters of the multiple airspace beam groups.
  • the terminal may send the resource index of the reference signal to be measured corresponding to each airspace beam group.
  • the network side device may determine multiple transmission TRPs based on the received resource indexes of multiple reference signals to be measured. Specifically, the terminal may send multiple resource indexes transmitting parameter signals to be measured corresponding to TRPs, so that the network side device can determine the TRPs participating in coherent joint transmission. In other words, by sending multiple resource indexes that transmit the parameter signals to be measured corresponding to the TRP, the network side device can know which candidate TRP selected airspace beam groups the received airspace beam group is for.
  • the number of transmitted TRPs is equal to the number of candidate TRPs, denoted as m
  • the number of resource indexes of parameter signals to be measured that the terminal can send to the network side device can be m-1.
  • the resource index of the reference signal to be measured corresponding to the last set of airspace beam groups may not be sent to the network side device.
  • the network side device can determine the TRP corresponding to the last group of airspace beam groups based on the resource index of m-1 reference signals to be measured, where m is a positive integer and m ⁇ 2. Adopting such a solution is beneficial to reducing signaling overhead.
  • the sending order of the resource indexes of the multiple reference signals to be measured may be the same as the sending order of the airspace parameters of the multiple airspace beam groups. Since the sending order of airspace parameters of multiple airspace beam groups and the order of resource indexes of multiple reference signals to be measured are the same, the network side device can receive the order of the resource indexes of multiple reference signals to be measured and the order of the reference signals to be measured. The corresponding relationship between the reference signal and the TRP is determined to determine the corresponding relationship between each set of received airspace parameters and the TRP.
  • the network side device After the network side device receives the resource index of the reference signal to be measured sent by the terminal, it can determine multiple transmission TRPs based on the received resource index, and can also determine the corresponding airspace parameters of the multiple airspace beam groups in the first parameter. TRP.
  • the network side device can determine the feedback codebooks of at least two TRPs based on the codebook feedback parameters. That is, the network side device can determine based on the codebook feedback parameters when the at least two TRPs perform coherent joint transmission. Available codebooks, wherein the at least two TRPs are the multiple transmission TRPs mentioned above.
  • the network side device can restore the above-mentioned spatial beam matrix, frequency domain beam matrix and linear weighting coefficient matrix based on the codebook feedback parameters.
  • the multiplication of these three matrices is the multi-TRP coherent joint transmission scenario. available codebooks.
  • the network side device can split the feedback codebook applicable to each TRP (that is, the transmission TRP) participating in the coherent joint transmission based on the above available codebook as a whole.
  • the feedback codebook applicable to each transmission TRP may be a sub-codebook of the entire available codebook.
  • the network side device can determine the available codebooks when multiple TRPs perform coherent joint transmission based on the codebook feedback parameters.
  • Figure 2 is a schematic structural diagram of a codebook feedback device for TRP in an embodiment of the present application.
  • the device shown in Figure 2 may include:
  • the acquisition module 21 is used to acquire a reference signal to be measured, which is used to measure the channel status of multiple TRPs;
  • Parameter generation module 22 used to measure the reference signal to be measured, and determine codebook feedback parameters according to the measurement results.
  • the codebook feedback parameters include: a first parameter and a second parameter.
  • the first parameter is used to Indicate at least two airspace beam groups, the at least two airspace beam groups respectively correspond to at least two TRPs, and the second parameter is used to indicate the weighting coefficient matrix corresponding to the at least two airspace beam groups;
  • the sending module 23 is used to send the codebook feedback parameters.
  • the above codebook feedback device for multiple TRPs may correspond to a chip with a feedback parameter generation function in the terminal, or a chip with a data processing function, such as a system-on-a-chip (System-On-a-Chip). , SOC), baseband chip, etc.; or correspond to a chip module including a chip with a feedback parameter generation function in the terminal; or correspond to a chip module having a chip with a data processing function, or correspond to the terminal.
  • a chip with a feedback parameter generation function such as a system-on-a-chip (System-On-a-Chip). , SOC), baseband chip, etc.
  • Figure 3 is a codebook determination device for multiple TRPs in an embodiment of the present application.
  • the determination device shown in Figure 3 may include:
  • the receiving module 31 is configured to receive the codebook feedback parameters including: a first parameter and a second parameter.
  • the first parameter is used to indicate at least two airspace beam groups, and the at least two airspace beam groups respectively correspond to at least two airspace beam groups.
  • TRP the second parameter is used to indicate the weighting coefficient matrix corresponding to the at least two airspace beam groups;
  • Determining module 32 configured to determine the feedback codebooks of the at least two TRPs according to the codebook feedback parameters
  • the codebook feedback parameters are determined based on measurement results of channel states of the multiple TRPs.
  • the above codebook determination device for multiple TRPs may correspond to a chip with a codebook calculation function in the network side device, or a chip with a data processing function, such as a SOC, a baseband chip, etc.; or a chip with a data processing function, such as a SOC, a baseband chip, etc.; or
  • the network side device includes a chip module with a codebook calculation function chip; or corresponds to a chip module with a data processing function chip, or corresponds to the network side device.
  • each module/unit included in each device and product described in the above embodiments may be a software module/unit or a hardware module/unit, or it may be partly a software module/unit and partly is a hardware module/unit.
  • each module/unit included therein can be implemented in the form of hardware such as circuits, or at least some of the modules/units can be implemented in the form of a software program.
  • the software program Running on the processor integrated inside the chip, the remaining (if any) modules/units can be implemented using circuits and other hardware methods; for various devices and products applied to or integrated into the chip module, each module/unit included in it can They are all implemented in the form of hardware such as circuits.
  • Different modules/units can be located in the same component of the chip module (such as chips, circuit modules, etc.) or in different components. Alternatively, at least some modules/units can be implemented in the form of software programs.
  • the software program runs on the processor integrated inside the chip module, and the remaining (if any) modules/units can be implemented using circuits and other hardware methods; for each device or product that is applied to or integrated into the terminal, each module it contains /Units can all be implemented in the form of hardware such as circuits, and different modules/units can be located in the same component (for example, chip, circuit module, etc.) or in different components within the terminal, or at least some of the modules/units can be implemented in the form of software programs.
  • the software program runs on the processor integrated inside the terminal, and the remaining (if any) modules/units can be implemented using circuits and other hardware methods.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium is a non-volatile storage medium or a non-transitory storage medium, and a computer program is stored thereon.
  • the computer program is processed by a processor. During runtime, the steps of the method provided by the embodiment shown in Figure 1 are executed.
  • the computer-readable storage medium may include a non-volatile Computer-readable storage media such as (non-volatile) memory or non-transitory (non-transitory) memory.
  • a non-volatile Computer-readable storage media such as (non-volatile) memory or non-transitory (non-transitory) memory.
  • the embodiment of the present application also provides another codebook feedback device for multiple TRPs, including a memory 41 and a processor 42.
  • the processor 41 and the memory 42 are coupled.
  • the memory 41 can be located within the device or within the device. outside the device.
  • the memory 41 and the processor 42 may be connected via a communication bus.
  • the memory 41 stores a computer program that can be run on the processor 42.
  • the codebook feedback device for multiple TRPs may be the above terminal.
  • the embodiment of the present application also provides another codebook determination device for multiple TRPs, including a memory and a processor.
  • the processor is coupled to the memory.
  • the memory may be located within the device or outside the device.
  • the memory and processor can be connected via a communication bus.
  • the memory stores a computer program executable on the processor.
  • the processor in the other codebook determination device for multiple TRPs executes the above implementation when running the computer program.
  • the codebook determination device for multiple TRPs may be the above network side equipment (for example, it may be a base station).
  • the processor may be a central processing unit (CPU for short), and the processor may also be other general-purpose processors or digital signal processors (DSP for short) , application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the memory or storage medium in the embodiments of the present application may be a volatile memory.
  • memory or non-volatile memory or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM for short), programmable ROM (PROM for short), erasable programmable read-only memory (erasable PROM for short) , electrically erasable programmable read-only memory (electrically EPROM, referred to as EEPROM) or flash memory.
  • Volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static RAM
  • DRAM dynamic random access memory
  • DRAM synchronous Dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM Synchronously connect dynamic random access memory
  • DDR RAM direct memory bus random access memory
  • DR RAM direct rambus RAM
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware, or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions or computer programs. When the computer instructions or computer programs are loaded or executed on the computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission by wired or wireless means to another website site, computer, server or data center.
  • the disclosed methods, devices and systems can be implemented in other ways.
  • the device embodiments described above are only illustrative; for example, the division of the units is only a logical function. Division, there may be other division methods in actual implementation; for example, multiple units or components may be combined or integrated into another system, or some features may be ignored or not implemented.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in various embodiments of the present application may be integrated into one processing unit, each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of hardware plus software functional units.
  • Multiple appearing in the embodiments of this application refers to two or more than two.
  • the first, second, etc. descriptions appearing in the embodiments of the present application are only for illustration and to distinguish the description objects, and there is no order. They do not represent special limitations on the number of devices in the embodiments of the present application, and cannot constitute a limitation of the present application. Any limitations of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请提供了一种用于多TRP的码本反馈、确定方法及装置,该方法包括:获取待测量参考信号,对待测量参考信号进行测量,根据测量结果确定并发送码本反馈参数。其中,待测量参考信号用于对多个TRP的信道状态进行测量,码本反馈参数包括:第一参数和第二参数,第一参数用于指示至少两个空域波束组,至少两个空域波束组分别对应至少两个TRP,第二参数用于指示至少两个空域波束组对应的加权系数矩阵。通过本申请提供的方案,可以使网络侧设备确定支持多个TRP进行相干联合传输的可用码本。

Description

用于多传输接收点TRP的码本反馈、确定方法及装置
本申请要求于2022年3月22日提交中国专利局、申请号为202210284532.7、发明名称为“用于多传输接收点TRP的码本反馈、确定方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种用于多TRP的码本反馈、确定方法及装置。
背景技术
目前,新无线(New Radio,简称NR)系统引入了相干联合传输(Coherent Joint Transmission,简称CJT)机制。在CJT机制下,网络侧设备可以通过多个传输接收点(Transmitter Receiver Point,简称TRP)与终端进行相干联合传输。目前尚无支持多个TRP进行相干联合传输的码本反馈方案。
发明内容
本申请解决的技术问题是提供一种用于多传输接收点TRP的码本反馈、确定方法及装置,可以使得网络侧设备确定支持多个TRP进行相干联合传输的可用码本。
第一方面,为解决上述技术问题,本申请实施例提供一种用于多TRP的码本反馈方法,所述方法应用于终端,包括:获取待测量参考信号,所述待测量参考信号用于对多个TRP的信道状态进行测量;对所述待测量参考信号进行测量,并根据测量结果确定码本反馈参 数,所述码本反馈参数包括:第一参数和第二参数,所述第一参数用于指示至少两个空域波束组,所述至少两个空域波束组分别对应至少两个TRP,所述第二参数用于指示所述至少两个空域波束组对应的加权系数矩阵,其中,所述至少两个TRP为所述多个TRP中的至少两个TRP;发送所述码本反馈参数。
可选的,所述码本反馈参数还包括:第三参数,所述第三参数用于指示至少一个频域波束组,所述至少一个频域波束组对应所述至少两个TRP。
可选的,所述第一参数包括:每个空域波束组的索引信息和波束矢量旋转因子。
可选的,所述方法还包括:发送至少一个空域波束组对应的待测量参考信号的资源索引;其中,所述至少一个空域波束组为所述至少两个空域波束组的至少一部分。
可选的,所述第二参数包括:每个空域波束组对应的加权系数矩阵中非零系数的位置、幅度和相位。
可选的,所述第二参数包括:位置参数,所述位置参数用于指示所述至少两个空域波束组对应的加权系数矩阵中非零系数的位置;多个加权系数矩阵对应的多个参考系数的索引,每个参考系数的索引用于指示该参考系数在其所属的加权系数矩阵中的位置,其中,每个参考系数为其所属的加权系数矩阵中幅度最大的系数;所述多个加权系数矩阵对应的多组第一差分参数,每组第一差分参数用于指示对应的加权系数矩阵中除所述参考系数以外的其他非零系数相对于该参考系数的差分幅度和差分相位;最强系数的索引,所述最强系数的索引用于指示最强系数在所述多个参考系数中的位置,其中,所述最强系数为所述多个参考系数中幅度最大的参考系数;所述多个加权系数矩阵对应的多个第二差分参数,每个第二差分参数用于指示对应的加权系数矩阵中所述参考系数相对于所述最强系数的差分幅度和差分相位。
可选的,发送反馈参数包括:按照组一、组二、组三的顺序将所述码本反馈参数依次映射至反馈信道并发送;其中,组一包括:所述第一参数、所述最强系数的索引;组二包括:至少一个加权系数矩阵对应的参考系数的索引、所述至少一个加权系数矩阵的第一差分参数和第二差分参数;组三包括:多个加权系数矩阵中除所述至少一个加权系数矩阵以外的其他加权系数矩阵对应的参考系数的索引、所述其他加权系数矩阵的第一差分参数和第二差分参数;或者,组一包括:所述第一参数、所述最强系数的索引和多个加权系数矩阵对应的参考系数的索引;组二包括:至少一个加权系数矩阵对应的第一差分参数和第二差分参数;组三包括:所述多个加权系数矩阵中除所述至少一个加权系数矩阵以外的其他加权系数矩阵对应的第一差分参数和第二差分参数。
可选的,所述待测量参考信号的数量为多个,所述待测量参考信号和所述TRP一一对应,每个待测量参考信号是由与其对应的TRP发送的。
第二方面,本申请实施例还提供一种用于多TRP码本反馈装置,所述装置包括:获取模块,用于获取待测量参考信号,所述待测量参考信号用于对多个TRP的信道状态进行测量;参数生成模块,用于对所述待测量参考信号进行测量,并根据测量结果确定码本反馈参数,所述码本反馈参数包括:第一参数和第二参数,所述第一参数用于指示至少两个空域波束组,所述至少两个空域波束组分别对应至少两个TRP,所述第二参数用于指示所述至少两个空域波束组对应的加权系数矩阵,其中,所述至少两个TRP为所述多个TRP中的至少两个TRP;发送模块,用于发送所述码本反馈参数。
可选的,所述码本反馈参数还包括:第三参数,所述第三参数用于指示至少一个频域波束组,所述至少一个频域波束组对应所述至少两个TRP。
可选的,所述第一参数包括:每个空域波束组的索引信息和波束 矢量旋转因子。
可选的,所述装置还包括:资源索引发送模块,用于发送至少一个空域波束组对应的待测量参考信号的资源索引;其中,所述至少一个空域波束组为所述至少两个空域波束组的至少一部分。
可选的,所述第二参数包括:每个空域波束组对应的加权系数矩阵中非零系数的位置、幅度和相位。
可选的,所述第二参数包括:位置参数,所述位置参数用于指示所述至少两个空域波束组对应的加权系数矩阵中非零系数的位置;多个加权系数矩阵对应的多个参考系数的索引,每个参考系数的索引用于指示该参考系数在其所属的加权系数矩阵中的位置,其中,每个参考系数为其所属的加权系数矩阵中幅度最大的系数;所述多个加权系数矩阵对应的多组第一差分参数,每组第一差分参数用于指示对应的加权系数矩阵中除所述参考系数以外的其他非零系数相对于该参考系数的差分幅度和差分相位;最强系数的索引,所述最强系数的索引用于指示最强系数在所述多个参考系数中的位置,其中,所述最强系数为所述多个参考系数中幅度最大的参考系数;所述多个加权系数矩阵对应的多个第二差分参数,每个第二差分参数用于指示对应的加权系数矩阵中所述参考系数相对于所述最强系数的差分幅度和差分相位。
可选的,发送模块包括:顺序发送子模块,用于按照组一、组二、组三的顺序将所述码本反馈参数依次映射至反馈信道并发送;其中,组一包括:所述第一参数、所述最强系数的索引;组二包括:至少一个加权系数矩阵的参考系数的索引、所述至少一个加权系数矩阵的第一差分参数和第二差分参数;组三包括:多个加权系数矩阵中除所述至少一个加权系数矩阵以外的其他加权系数矩阵的参考系数的索引、所述其他加权系数矩阵的第一差分参数和第二差分参数;或者,组一包括:所述第一参数、所述最强系数的索引和所述多个参考系数的索引;组二包括:至少一个加权系数矩阵的第一差分参数和第二差分参 数;组三包括:所述多个加权系数矩阵中除所述至少一个加权系数矩阵以外的其他加权系数矩阵的第一差分参数和第二差分参数。
可选的,所述待测量参考信号的数量为多个,所述待测量参考信号和所述TRP一一对应,每个待测量参考信号是由与其对应的TRP发送的。
第三方面,为解决上述技术问题,本申请实施例还提供一种用于多传输接收点TRP的码本确定方法,所述方法应用于网络侧设备,包括:接收码本反馈参数,所述码本反馈参数包括:第一参数和第二参数,所述第一参数用于指示至少两个空域波束组,所述至少两个空域波束组分别对应至少两个TRP,所述第二参数用于指示所述至少两个空域波束组对应的加权系数矩阵根据所述码本反馈参数确定所述至少两个TRP的反馈码本;其中,所述码本反馈参数是根据所述多个TRP的信道状态的测量结果确定的,所述至少两个TRP为所述多个TRP中的至少两个TRP。
可选的,接收码本反馈参数之前,所述方法还包括:发送待测量参考信号,并指示进行码本反馈;其中,所述待测量参考信号用于对所述多个TRP的信道状态进行测量。
可选的,所述待测量参考信号的数量为多个,所述待测量参考信号和所述TRP一一对应,每个待测量参考信号是由与其对应的TRP发送的。
可选的,所述码本反馈参数还包括:第三参数,所述第三参数用于指示至少一个频域波束组,所述至少一个频域波束组对应所述至少两个TRP。
可选的,所述第一参数包括:每个空域波束组的索引信息和波束矢量旋转因子。
可选的,所述方法还包括:接收至少一个空域波束组对应的待测量参考信号的资源索引;其中,所述至少一个空域波束组为所述至少 两个空域波束组的至少一部分。
可选的,所述第二参数包括:每个空域波束组对应的加权系数矩阵中非零系数的位置、幅度和相位。
可选的,所述第二参数包括:位置参数,所述位置参数用于指示所述至少两个空域波束组对应的加权系数矩阵中非零系数的位置;多个加权系数矩阵对应的多个参考系数的索引,每个参考系数的索引用于指示该参考系数在其所属的加权系数矩阵中的位置,其中,每个参考系数为其所属的加权系数矩阵中幅度最大的系数;所述多个加权系数矩阵对应的多组第一差分参数,每组第一差分参数用于指示对应的加权系数矩阵中除所述参考系数以外的其他非零系数相对于该参考系数的差分幅度和差分相位;最强系数的索引,所述最强系数的索引用于指示最强系数在所述多个参考系数中的位置,其中,所述最强系数为所述多个参考系数中幅度最大的参考系数;所述多个加权系数矩阵对应的多个第二差分参数,每个第二差分参数用于指示对应的加权系数矩阵中所述参考系数相对于所述最强系数的差分幅度和差分相位。
可选的,所述反馈参数是被按照组一、组二、组三的顺序依次映射至反馈信道并发送的;其中,组一包括:所述第一参数、所述最强系数的索引;组二包括:至少一个加权系数矩阵对应的参考系数的索引、至少一个加权系数矩阵第一差分参数和第二差分参数;组三包括:多个加权系数矩阵中除所述至少一个加权系数矩阵以外的其他加权系数矩阵对应的参考系数的索引、其他加权系数矩阵的第一差分参数和第二差分参数;或者,组一包括:所述第一参数、所述最强系数的索引和所述多个加权系数矩阵对应的参考系数的索引;组二包括:至少一个加权系数矩阵对应的第一差分参数和第二差分参数;组三包括:所述多个加权系数矩阵中除所述至少一个加权系数矩阵以外的其他加权系数矩阵对应的第一差分参数和第二差分参数。
第四方面,本申请实施例还提供一种用于多传输接收点TRP的 码本确定装置,所述装置包括:接收模块,用于接收码本反馈参数,所述码本反馈参数包括:第一参数和第二参数,所述第一参数用于指示至少两个空域波束组,所述至少两个空域波束组分别对应至少两个TRP,所述第二参数用于指示所述至少两个空域波束组对应的加权系数矩阵;确定模块,用于根据所述码本反馈参数确定所述至少两个TRP的反馈码本;其中,所述码本反馈参数是根据所述多个TRP的信道状态的测量结果确定的,所述至少两个TRP为所述多个TRP中的至少两个TRP。
可选的,所述装置还包括信号发送模块,用于接收码本反馈参数之前,发送待测量参考信号,并指示进行码本反馈;其中,所述待测量参考信号用于对所述多个TRP的信道状态进行测量。
可选的,所述待测量参考信号的数量为多个,所述待测量参考信号和所述TRP一一对应,每个待测量参考信号是由与其对应的TRP发送的。
可选的,所述码本反馈参数还包括:第三参数,所述第三参数用于指示至少一个频域波束组,所述至少一个频域波束组对应所述至少两个TRP。
可选的,所述第一参数包括:每个空域波束组的索引信息和波束矢量旋转因子。
可选的,所述装置还包括:资源索引接收模块,用于接收至少一个空域波束组对应的待测量参考信号的资源索引;其中,所述至少一个空域波束组为所述至少两个空域波束组的至少一部分。
可选的,所述第二参数包括:每个空域波束组对应的加权系数矩阵中非零系数的位置、幅度和相位。
可选的,所述第二参数包括:位置参数,所述位置参数用于指示所述至少两个空域波束组对应的多个加权系数矩阵中非零系数的位置;多个加权系数矩阵对应的多个参考系数的索引,每个参考系数的 索引用于指示该参考系数在其所属的加权系数矩阵中的位置,其中,每个参考系数为其所属的加权系数矩阵中幅度最大的系数;所述多个加权系数矩阵对应的多组第一差分参数,每组第一差分参数用于指示对应的加权系数矩阵中除所述参考系数以外的其他非零系数相对于该参考系数的差分幅度和差分相位;最强系数的索引,所述最强系数的索引用于指示最强系数在所述多个参考系数中的位置,其中,所述最强系数为所述多个参考系数中幅度最大的参考系数;所述多个加权系数矩阵对应的多个第二差分参数,每个第二差分参数用于指示对应的加权系数矩阵中所述参考系数相对于所述最强系数的差分幅度和差分相位。
可选的,所述反馈参数是被按照组一、组二、组三的顺序依次映射至反馈信道并发送的;其中,组一包括:所述第一参数、所述最强系数的索引;组二包括:至少一个加权系数矩阵对应的参考系数的索引、所述至少一个加权系数矩阵的第一差分参数和第二差分参数;组三包括:多个加权系数矩阵中除所述至少一个加权系数矩阵以外的其他加权系数矩阵对应的参考系数的索引、所述其他加权系数矩阵的第一差分参数和第二差分参数;或者,组一包括:所述第一参数、所述最强系数的索引和所述多个加权系数矩阵对应的参考系数的索引;组二包括:至少一个加权系数矩阵对应的第一差分参数和第二差分参数;组三包括:所述多个加权系数矩阵中除所述至少一个加权系数矩阵以外的其他加权系数矩阵对应的第一差分参数和第二差分参数。
第五方面,本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器运行时,上述的用于多TRP的码本反馈方法的步骤或者上述的用于多TRP的码本确定方法的步骤被执行。
第六方面,本申请实施例还提供另一种用于多TRP的码本反馈装置,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述的用 于多TRP的码本反馈方法的步骤。
第七方面,本申请实施例还提供另一种用于多TRP的码本确定装置,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述的用于多TRP的码本确定方法的步骤。
第八方面,本申请实施例还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述方法的步骤。
第九方面,本申请实施例还提供一种通信系统,包括用于执行上述方法的终端和网络侧设备。
第十方面,本申请实施例还提供一种芯片,该芯片上存储有计算机程序,在计算机程序被芯片执行时,实现上述方法的步骤。
与现有技术相比,本申请实施例的技术方案具有以下有益效果:
本申请实施例的方案中,通过对多个TRP的信道状态进行测量,以得到测量结果,并根据测量结果可以确定码本反馈参数。码本反馈参数可以包括第一参数和第二参数,由于第一参数用于指示至少两个空域波束组,至少两个空域波束组分别对应至少两个TRP,第二参数用于指示至少两个空域波束组对应的加权系数矩阵,因此,根据码本反馈参数可以确定至少两个TRP的空域波束组和对应的加权系数矩阵。更进一步的,由于码本反馈参数是同时根据多个TRP的信道状态的测量结果确定的,因此,所述至少两个TRP可以用于相干联合传输。由此,通过本申请实施例提供的方案,可以实现终端向网络侧设备反馈支持多个TRP进行相干联合传输的可用码本。
附图说明
图1是本申请实施例中一种用于多TRP的码本反馈方法的流程示意图;
图2是本申请实施例中一种用于多TRP的码本反馈装置的结构示意图;
图3是本申请实施例中一种用于多TRP的码本确定装置的结构示意图;
图4是本申请实施例中另一种用于多TRP的码本反馈装置的结构示意图。
具体实施方式
本申请实施例的方案可以适用于5G(Generation)通信系统,还可适用于4G、3G通信系统,还可适用于未来新的各种通信系统,例如,6G、7G等。本申请涉及的网元包括网络侧设备和终端。网络侧设备和终端可以进行上下行通信。
本申请实施例中的网络侧设备可以为一种部署在无线接入网中用以提供无线通信功能的装置。比如基站(base station,简称BS)(也可称为基站设备)。基站例如可以为2G网络中的基地无线收发站(base transceiver station,简称BTS)、基站控制器(base station controller,简称BSC),3G网络中的节点B(NodeB)、无线网络控制器(radio network controller,简称RNC),4G网络中的演进的节点B(evolved NodeB,简称eNB),无线局域网络(wireless local area networks,简称WLAN)中的接入点(access point,简称AP),5G新无线(New Radio,NR)中的下一代基站节点B(gNB),以及未来新的通信系统中提供基站功能的设备等。
本申请实施例中的终端可以指各种形式的用户设备(user equipment,简称UE)、接入终端、用户单元、用户站、移动站、移动台(mobile station,简称MS)、远方站、远程终端、移动设备、用户终端、终端设备(terminal equipment)、无线通信设备、用户代理或用户装置。终端还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称SIP)电话、无线本地环路(Wireless Local Loop, 简称WLL)站、个人数字处理(Personal Digital Assistant,简称PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,简称PLMN)中的终端等,本申请实施例对此并不限定。
本申请技术方案也适用于不同的网络架构,包括但不限于中继网络架构、双链接架构,Vehicle-to-Everything(车辆到任何物体的通信)架构。
如背景技术所述,目前尚无支持多个TRP进行相干联合传输的码本反馈方案。在相干联合传输方式下,多个TRP的发送天线之间具有相干特性,并采用相干预编码向终端发送下行数据。
具体而言,在第三代合作伙伴计划(3rd Generation Partnership Project,简称3GPP)Rel-16阶段定义了类型II端口选择码本,但现有的类型II端口选择码本仅支持终端与单个TRP进行数据传输的场景。在多个TRP的相干联合传输的场景中,需要对现有的类型II端口选择码本进行增强,增强后的码本需要能够指示针对参与相干联合传输的多个TRP选择的空域波束和频域波束。针对增强后的码本,终端如何向网络侧设备反馈,尚未存在解决方案。
为了解决上述技术问题,本申请实施例提供一种用于多TRP的码本反馈方法,在本申请实施例的方案中,通过对多个TRP的信道状态进行测量,以得到测量结果,并根据测量结果可以确定码本反馈参数。码本反馈参数可以包括第一参数和第二参数,由于第一参数用于指示至少两个空域波束组,至少两个空域波束组分别对应至少两个TRP,第二参数用于指示至少两个空域波束组对应的加权系数矩阵,因此,根据码本反馈参数可以确定至少两个TRP的空域波束组和对应的加权系数矩阵。更进一步的,由于码本反馈参数是同时根据多个TRP的信道状态的测量结果确定的,因此,所述至少两个TRP可以用于相干联合传输。由此,通过本申请实施例提供的方案,可以实现 终端向网络侧设备反馈支持多个TRP进行相干联合传输的可用码本。
为使本申请的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本申请的具体实施例做详细的说明。
参照图1,图1是本申请实施例中一种用于多TRP的码本反馈和确定方法的流程示意图。其中,终端执行的动作可以由终端中的具有反馈参数生成功能的芯片执行,也可以由终端中的基带芯片执行,网络侧设备执行的动作可以由网络侧设备中的具有码本计算功能的芯片执行,也可以由网络侧设备中的基带芯片执行。图1示出的方法可以包括以下步骤:
S101:网络侧设备配置待测量参考信号资源,所述待测量参考信号用于对多个TRP的信道状态进行测量。其中,本申请中各个步骤编号中的S表示步骤(step)。
S102:网络侧设备发送待测量参考信号。相应的,终端获取(例如,接收)待测量参考信号。S101在具体实现时,网络侧设备还可以指示终端进行用于相干联合传输的码本反馈。
S103:终端对所述待测量参考信号进行测量,并根据测量结果确定码本反馈参数,所述码本反馈参数包括:第一参数和第二参数,所述第一参数用于指示至少两个空域波束组,所述至少两个空域波束组分别对应至少两个TRP,所述第二参数用于指示所述至少两个空域波束组对应的加权系数矩阵;
S104:终端发送所述码本反馈参数。相应的,网络侧设备接收码本反馈参数。
S105:网络侧设备根据所述码本反馈参数确定所述至少两个TRP的反馈码本。
在S101的具体实施中,网络侧设备(例如,可以是基站)可以配置信道状态信息参考信号(Channel State Information-Reference Signal,简称CSI-RS)资源用于信道测量。
具体而言,网络侧设备可以包括多个TRP,所述多个TRP可以记为多个候选TRP,所述多个候选TRP可以设置于不同的地理位置。其中,所述多个候选TRP可以是由网络侧设备配置的。网络侧设备可以通过多个候选TRP向终端发送待测量参考信号(即CSI-RS),以测量各个候选TRP和终端之间的信道状态。
在一个具体实施例中,待测量参考信号可以与候选TRP一一对应,每个待测量参考信号可以通过对应的候选TRP传输至终端。
在S102的具体实施中,网络侧设备可以向终端发送多个待测量参考信号并指示终端进行用于相干联合传输的码本反馈。更具体地,每个待测量参考信号可以通过与其对应的候选TRP传输至终端。
在S103的具体实施中,终端可以对接收到的每个待测量参考信号进行测量。通过测量每个候选TRP发送的待测量参考信号,可以对终端和每个候选TRP之间的信道状态进行信道估计,从而得到多个信道矩阵。由此,信道矩阵与候选TRP也可以是一一对应的,每个信道矩阵用于指示与其对应的候选TRP和终端之间的信道状态。
进一步地,可以根据多个信道矩阵,计算得到可用码本,其中,所述可用码本是指支持相干联合传输的码本。具体而言,本实施例中的可用码本是同时根据多个候选TRP的信道矩阵计算得到的,因此可以支持多个TRP进行相干联合传输。
在一个非限制的例子中,终端可以先从所述多个候选TRP中确定多个参与相干联合传输的TRP,记为传输TRP,然后根据多个传输TRP对应的信道矩阵,计算得到反馈码本。换言之,传输TRP为参与相干联合传输的TRP。
具体而言,在计算待反馈的码本之前,终端可以先确定每个候选TRP发送的待测量参考信号的接收功率,可以将发送的待测量参考信号的接收功率大于预设功率阈值的候选TRP作为第一传输TRP。其中,预设功率阈值可以是协议规定的,网络侧设备或终端预先设置的, 或者,终端和网络侧设备协商确定的,本申请不作限制。换言之,本申请实施例的方案中,多个候选TRP由网络侧设备配置,终端可以根据每个候选TRP发送的待测量参考信号的接收功率判断该候选TRP是否参与相干联合传输,也即,终端可以根据每个候选TRP发送的待测量参考信号的接收功率判断该候选TRP是否为传输TRP。
如果第一传输TRP的数量为多个,则可以根据多个第一传输TRP对应的信道矩阵确定可用码本。
如果第一传输TRP的数量为1个,则可以从所述多个候选TRP中除第一传输TRP以外的其他候选TRP中选择第二传输TRP。其中,第二传输TRP可以是所述其他候选TRP中发送的待测量参考信号的接收功率最大的TRP。更进一步地,可以根据第一传输TRP和第二传输TRP对应的信道矩阵确定可用码本。
采用上述的方案,可以在实现多个TRP相干联合传输的前提下排除不适合参与相干联合传输的TRP,有利于节省后续码本反馈时的信令开销。
进一步地,可以根据所述多个TRP中至少两个TRP的信道矩阵确定可用码本。具体而言,所述至少两个TRP可以为所述多个传输TRP,所述多个传输TRP可以仅包括第一传输TRP,也可以包括第一传输TRP和第二传输TRP。
在具体实施中,计算得到的可用码本的结构可以为WS=W1,S×W'S×WH freq,S,其中,WS为所述可用码本,W1,S为空域波束矩阵,Wfreq,S为频域波束矩阵,WH freq,S是Wfreq,S的共轭转置矩阵,W'S为线性加权系数矩阵。
更具体地,W1,S的维度可以是NTX×(m×L),其中,m为传输TRP的数量,L为每个传输TRP对应的空域波束矢量的数量,每个空域波束矢量用于表示终端选择的一个空域波束,NTX为每个空域波束矢量的长度。换言之,空域波束矩阵可以包括:针对每个传输TRP选 择的L个空域波束。其中,针对每个传输TRP选择的L个空域波束可以记为一个空域波束组,空域波束矩阵W1,S可以包含m个空域波束组。需要说明的是,每个空域波束组中包含两个极化方向上的空域波束,其中,每个极化方向上的空域波束的数量可以是L/2个。其中,空域波束组与传输TRP一一对应。
进一步地,Wfreq,S的维度可以是N×K,其中,K为频域波束矢量的数量,每个频域波束矢量用于表示终端选择的一个频域波束,N为每个频域波束矢量的长度,K个频域波束可以记为一个频域波束组。
进一步地,W'S可以包括多个加权系数矩阵,换言之,线性加权系数矩阵W'S可以是由多个加权系数矩阵拼接得到。具体而言,线性加权系数矩阵W'S的维度可以是(m×L)×K,其中,每个加权系数矩阵的维度可以是L×K,加权系数矩阵和空域波束组一一对应,加权系数矩阵中每个系数对应该加权系数矩阵对应的空域波束组中的一个空域波束矢量和频域波束组中的一个频域波束矢量。
需要说明的是,NTX、L、N和K均为预配置参数,其中,L的取值可以为1,也可以为大于1的正整数。
进一步地,终端可以确定可用码本中空域波束矩阵、频域波束矩阵和线性加权系数矩阵各自对应的参数信息(也即,码本反馈参数)。
具体而言,码本反馈参数可以包括第一参数,第一参数可以是空域波束矩阵对应的参数信息,第一参数可以用于指示至少两个空域波束组,所述至少两个空域波束组分别对应至少两个TRP。
更具体地,第一参数可以用于指示终端针对每个传输TRP选择的空域波束组。其中,多个空域波束组包含的空域波束的数量可以是相同的,空域波束的数量可以是预配置的,也即,空域波束的数量即为上述的L。
在具体实施中,第一参数可以包括多个空域波束组的空域参数,其中,每个空域波束组的空域参数包括:该空域波束组的索引信息和 波束矢量旋转因子(Beam rotation factor)。具体而言,如果空域波束组中空域波束的数量为1个,则可以将该空域波束的索引作为空域波束组的索引信息;如果空域波束组中空域波束的数量为多个,则可以将多个空域波束的索引构造的组合系数(combinatorial coefficient)作为空域波束组的索引信息。需要说明的是,空域波束组与传输TRP可以是一一对应的,由于TRP和待测量参考信号是一一对应的,因此,空域波束组和待测量参考信号也是一一对应的。
相应地,在S105中,网络侧设备接收到第一参数后,可以根据每个空域波束组的索引信息,确定该空域波束组中各个空域波束的索引。进一步地,根据每个空域波束组中各个空域波束的索引和该空域波束组的波束矢量旋转因子,可以最终确定选择的各个空域波束,也即,可以确定空域波束矩阵。
进一步地,码本反馈参数还可以包括:第三参数,第三参数可以是频域波束矩阵对应的参数信息,第三参数可以用于指示至少一个频域波束组,所述至少一个频域波束组对应所述至少两个TRP。具体而言,第三参数可以包括频域波束组的索引信息。更具体地,多个传输TRP与频域波束组可以是多对一的对应关系,换言之,多个传输TRP可以对应同一组频域波束组,该频域波束组中频域波束的数量可以是预配置的,也即,频域波束的数量即为上述的K。
在具体实施中,可以在网络侧设备指示需要反馈频域波束矩阵时才反馈第三参数。例如,网络侧设备或协议可以预定义第一个频域波束(也即,索引最小的频域波束)为选择的频域波束,若网络侧设备在配置待测量参考信号时指示不需要反馈频域波束矩阵,则网络侧设备和终端默认选择第一个频域波束(也即,索引最小的频域波束)。采用这样的方案,有利于降低码本反馈开销。
如果网络侧设备接收到第三参数,则可以根据第三参数确定选择的频域波束组。如果网络侧设备未接收到第三参数,则可以选择预定义的频域波束,也即,第一个频域波束。
进一步地,码本反馈参数还可以包括第二参数,第二参数可以是线性加权系数矩阵对应的参数信息。具体而言,第二参数可以用于指示所述至少两个空域波束组对应加权系数矩阵的参数信息。更具体地,第二参数可以用于指示每个空域波束组对应的加权系数矩阵中非零系数的位置、幅度和相位。
在一个具体的实施例中,第二参数可以是按照多个传输TRP的加权系数矩阵进行差分计算得到的,第二参数可以包括每个空域波束组对应的加权系数矩阵中非零系数的位置、幅度和相位。由此第二参数可以指示各个空域波束组对应的加权系数矩阵。
在一个非限制性的例子中,第二参数可以包括:位置参数、多个参考系数的索引、最强系数的索引、多组第一差分参数和多个第二差分参数。
具体而言,所述位置参数可以用于指示多个加权系数矩阵中所有非零系数的位置。更具体地,位置参数可以包括多个比特图,所述比特图与加权系数矩阵一一对应,每个比特图可以用于指示对应的加权系数矩阵中各个非零系数在加权系数矩阵中的位置。
进一步地,参考系数和加权系数矩阵也是一一对应的,每个参考系数可以是该参考系数所属的加权系数矩阵中幅度最大的系数,参考系数的索引可以用于指示参考系数在其所属的加权系数矩阵中的位置。
进一步地,最强系数可以是指多个参考系数中幅度最大的参考系数,换言之,最强系数可以是线性加权系数矩阵中幅度最大的系数。最强系数的索引可以用于指示最强系数在多个参考系数中的位置。由此,网络侧设备可以根据参考系数索引和最强系数索引,可以确定最强系数在线性加权系数矩阵中的位置。
在具体实施中,最强系数的幅度和相位可以是预定义的,此时,第二参数中可以无需反馈最强系数的幅度和相位,有利于进一步减少 信令开销。
进一步地,第二差分参数和参考系数一一对应,每个第二差分参数可以用于指示对应的参考系数相对于最强系数的差分幅度和差分相位。其中,参考系数相对于最强系数的差分幅度是指参考系数的幅度相对于最强系数的幅度的差值,参考系数相对于最强系数的差分相位是指参考系数的相位相对于最强系数的相位的差值。由此,网络侧设备可以根据第二差分参数和最强系数的幅度、相位确定各个参考系数的幅度和相位。
进一步地,第一差分参数可以和加权系数矩阵一一对应的,每组第一差分参数可以用于指示对应的加权系数矩阵中除参考系数以外的其他非零系数相对于该加权系数矩阵中参考系数的差分幅度和差分相位。其他非零系数相对于参考系数的差分幅度是指其他非零系数的幅度相对于参考系数的幅度的差值,其他非零系数相对于参考系数的差分相位是指其他非零系数的幅度相对于参考系数的相位的差值。由此,网络侧设备可以根据每个加权系数矩阵的参考系数的幅度、相位和对应的一组第一差分参数,确定该加权系数矩阵中非零系数的幅度和相位。
在S105中,网络侧设备可以通过上述的第二参数确定线性加权系数矩阵中所有非零系数的位置、幅度和相位,由此可以得到线性加权系数矩阵。
在其他实施例中,第二参数也可以是按照极化方向进行差分计算得到的。为与上述按照TRP进行差分计算得到的第二参数相区分,下文将按照极化方向进行差分计算得到第二参数记为第二极化参数。具体而言,可以按照极化方向将线性加权矩阵拆分为第一极化加权系数矩阵和第二极化加权系数矩阵。进一步地,可以分别根据第一极化加权系数矩阵和第二极化加权系数矩阵,确定第二极化参数。
具体而言,第二极化参数可以包括:第一子参数,可以用于指示每个极化加权系数矩阵中非零系数的位置;第二子参数,可以用于指 示每个极化加权系数矩阵中幅度最大的系数的位置、幅度和相位;第三子参数,可以用于指示每个极化加权系数矩阵中除幅度最大的系数以外其他非零系数相对于所述幅度最大的系数的差分幅度和差分相位。
需要说明的是,与按照极化方向进行差分得到的第二极化参数的方案相比,上述按照TRP对线性加权系数矩阵进行差分得到第二参数的方案能够更加直接地表征线性加权系数矩阵中与各个TRP相关联的系数信息,有利于简化后续网络侧设备确定每个传输TRP对应的码本的步骤,还方便后续在将码本反馈参数映射至反馈信道时,但反馈信道不足以承载全部反馈参数时将信道状态相对较差的传输TRP相关的码本反馈参数进行丢弃。
在S104的具体实施中,终端可以将码本反馈参数映射至反馈信道,以将码本反馈参数发送至基站。其中,反馈信道可以是终端和基站之间能够进行数据传输的信道。换言之,本实施例中并不限制反馈信道为多个候选TRP和终端之间的信道,例如,所述反馈信道可以是物理上行共享信道(Physical Uplink Shared Channel,简称PUSCH)信道。
在一个具体的实施例中,考虑到反馈信道的资源有限性,可能出现无法承载全部的码本反馈参数的情况,为此,本实施例的方案中对码本反馈参数按照优先级进行分组,同一组的码本反馈参数的优先级可以是相同的,不同组的码本反馈参数的优先级是不同的,可以按照优先级从高到低的顺序将码本反馈参数映射至反馈信道。
具体而言,可以将所有的码本反馈参数划分为组一、组二和组三,可以按照组一、组二、组三的顺序将码本反馈参数依次映射至反馈信道。也即,在将反馈参数映射至反馈信道时,先映射组一中的码本反馈参数,再映射组二中的码本反馈参数,最后映射组三中的码本反馈参数。换言之,组一中码本反馈参数的优先级高于组二中码本反馈参数的优先级,组二中码本反馈参数的优先级高于组三中码本反馈参数 的优先级。
当反馈信道无法承载所有的码本反馈参数时,可以按照优先级从低到高的顺序依次丢弃参数组,直至反馈信道能够承载剩余参数组中的码本反馈参数。具体而言,在需要丢弃参数组时,先丢弃优先级较低的参数组。更具体地,先丢弃组三中的码本反馈参数,再丢弃组二中的码本反馈参数。
在一个具体的例子中,组一可以包括:第一参数、所述最强系数的索引;组二可以包括:至少一个加权系数矩阵对应的参考系数的索引、该至少一个加权系数矩阵对应的第一差分参数和第二差分参数;组三可以包括:多个加权系数矩阵中除所述至少一个加权系数矩阵以外的其他加权系数矩阵对应的参考系数的索引、所述其他加权矩阵对应的第一差分参数和第二差分参数。换言之,组三可以包括码本反馈参数中除组一和组二以外的其他参数。
其中,组二对应的所述至少一个加权系数矩阵的数量可以是预定义的,组二对应的至少一个加权系数矩阵可以是参考系数的幅度最大的预设数量个加权系数矩阵。
需要说明的是,本实施例的方案中,如果终端需要反馈第三参数,则组一还可以包括:第三参数。
在另一个具体的例子中,组一可以包括:第一参数、所述最强系数的索引和多个加权系数矩阵对应的参考系数的索引;组二包括:至少一个加权系数矩阵对应的第一差分参数和第二差分参数;组三包括:多个加权系数矩阵中除所述至少一个加权系数矩阵以外的其他加权系数矩阵对应的第一差分参数和第二差分参数。
采用上述的方案,优先级越高的参数组中的码本反馈参数能够提供相对更重要的码本信息。因此,若反馈信道的资源大小无法承载全部的码本反馈参数时,优先承载优先级更高的参数组。若网络侧设备接收到不完整的码本反馈参数,仍可以获得多个TRP相关的部分信 道信息,例如,可以是根据最强系数的索引确定的多个传输TRP中的最强TRP、可以是根据参考系数确定空域波束组中的最优空域波束等,有利于后续进行相干联合传输的配置和调度。
进一步地,本实施例的方案中,还可以发送至少一个空域波束组对应的待测量参考信号的资源索引。需要说明的是,可以是在执行S104之前发送至少一个空域波束组对应的待测量参考信号的资源索引,也可以是在执行S104之后且在执行S105之前发送所述至少一个空域波束组对应的待测量参考信号的资源索引,还可以是采用不同的信道同时发送码本反馈参数和至少一个空域波束组对应的待测量参考信号的资源索引,本申请实施例对此并不进行限制。
具体而言,所述至少一个空域波束组为所述至少两个空域波束组的至少一部分。当终端发送的待测量参考信号的资源索引的数量为多个时,多个待测量参考信号的资源索引的发送顺序可以是和多个空域波束组的空域参数的发送顺序是相同的。
更具体地,如果传输TRP的数量小于候选TRP的数量,终端可以发送每个空域波束组对应的待测量参考信号的资源索引。网络侧设备可以根据接收到的多个待测量参考信号的资源索引,确定多个传输TRP。具体而言,终端可以发送多个传输TRP对应的待测量参数信号的资源索引,以使得网络侧设备可以确定参与相干联合传输的TRP。换言之,通过发送多个传输TRP对应的待测量参数信号的资源索引,可以使网络侧设备知晓接收到的空域波束组是针对哪几个候选TRP选择的空域波束组。
如果传输TRP的数量等于候选TRP的数量,记为m,则终端可以向网络侧设备发送的待测量参数信号的资源索引的数量可以为m-1。具体而言,可以不向网络侧设备发送最后一组空域波束组对应的待测量参考信号的资源索引。网络侧设备可以基于m-1个待测量参考信号的资源索引确定最后一组空域波束组对应的TRP,其中,m为正整数且m≥2。采用这样的方案,有利于减少信令开销。
当终端发送的待测量参考信号的资源索引的数量为多个时,多个待测量参考信号的资源索引的发送顺序可以是和多个空域波束组的空域参数的发送顺序是相同的。由于多个空域波束组的空域参数的发送顺序和多个待测量参考信号的资源索引的顺序是相同的,网络侧设备可以根据接收到的多个待测量参考信号的资源索引的顺序以及待测量参考信号与TRP的对应关系,确定接收到的各组空域参数与TRP的对应关系。
由此,网络侧设备接收到终端发送的待测量参考信号的资源索引后,可以根据接收到的资源索引确定多个传输TRP,还可以确定第一参数中多个空域波束组的空域参数各自对应的TRP。
在S105的具体实施中,网络侧设备可以根据码本反馈参数确定至少两个TRP的反馈码本,也即,网络侧设备可以根据码本反馈参数确定所述至少两个TRP进行相干联合传输时的可用码本,其中,所述至少两个TRP为上文中的多个传输TRP。
具体而言,网络侧设备可以基于码本反馈参数还原得到上文所述的空域波束矩阵、频域波束矩阵和线性加权系数矩阵,这三个矩阵相乘即为多个TRP相干联合传输场景下的可用码本。
进一步地,网络侧设备可以基于上述可用码本这一整体,拆分出每个参与相干联合传输的TRP(也即,传输TRP)适用的反馈码本。其中,每个传输TRP适用的反馈码本可以是整个可用码本的子码本。
由上,终端向网络侧设备发送上述的码本反馈参数后,可以使网络侧设备根据码本反馈参数确定多个TRP进行相干联合传输时的可用码本。
参照图2,图2是本申请实施例中的一种用于TRP的码本反馈装置的结构示意图,图2示出的装置可以包括:
获取模块21,用于获取待测量参考信号,所述待测量参考信号用于对多个TRP的信道状态进行测量;
参数生成模块22,用于对所述待测量参考信号进行测量,并根据测量结果确定码本反馈参数,所述码本反馈参数包括:第一参数和第二参数,所述第一参数用于指示至少两个空域波束组,所述至少两个空域波束组分别对应至少两个TRP,所述第二参数用于指示所述至少两个空域波束组对应的加权系数矩阵;
发送模块23,用于发送所述码本反馈参数。
关于本申请实施例中的用于多TRP的码本反馈装置的工作原理、工作方法和有益效果等更多内容,可以参照上文关于用于TRP的码本反馈方法的相关描述,在此不再赘述。
在具体实施中,上述的用于多TRP的码本反馈装置可以对应于终端中具有反馈参数生成功能的芯片,或者对应于具有数据处理功能的芯片,例如片上系统(System-On-a-Chip,SOC)、基带芯片等;或者对应于终端中包括具有反馈参数生成功能芯片的芯片模组;或者对应于具有数据处理功能芯片的芯片模组,或者对应于终端。
参照图3,图3是本申请实施例中一种用于多TRP的码本确定装置,图3示出的确定装置可以包括:
接收模块31,用于接收所述码本反馈参数包括:第一参数和第二参数,所述第一参数用于指示至少两个空域波束组,所述至少两个空域波束组分别对应至少两个TRP,所述第二参数用于指示所述至少两个空域波束组对应的加权系数矩阵;
确定模块32,用于根据所述码本反馈参数确定所述至少两个TRP的反馈码本;
其中,所述码本反馈参数是根据所述多个TRP的信道状态的测量结果确定的。
关于图3示出的用于多TRP的码本确定装置的工作原理、工作方式的更多内容,可以参照上述图1中的相关描述,这里不再赘述。
在具体实施中,上述的用于多TRP的码本确定装置可以对应于网络侧设备中具有码本计算功能的芯片,或者对应于具有数据处理功能的芯片,例如SOC、基带芯片等;或者对应于网络侧设备中包括具有码本计算功能芯片的芯片模组;或者对应于具有数据处理功能芯片的芯片模组,或者对应于网络侧设备。
在具体实施中,关于上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。
例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机程序,所述计算机程序被处理器运行时执行上述图1所示实施例提供的方法的步骤。
优选地,所述计算机可读存储介质可以包括诸如非挥发性 (non-volatile)存储器或者非瞬态(non-transitory)存储器等计算机可读存储介质。
参照图4,本申请实施例还提供另一种用于多TRP的码本反馈装置,包括存储器41和处理器42,处理器41和存储器42耦合,存储器41可以位于该装置内,也可以位于该装置外。存储器41和处理器42可以通过通信总线连接。所述存储器41上存储有可在所述处理器42上运行的计算机程序,所述处理器42运行所述计算机程序时执行上述实施例所提供的多TRP的码本反馈方法中的步骤,该用于多TRP的码本反馈装置可以为上文中的终端。
本申请实施例还提供另一种用于多TRP的码本确定装置,包括存储器和处理器,处理器和存储器耦合,存储器可以位于该装置内,也可以位于该装置外。存储器和处理器可以通过通信总线连接。所述存储器上存储有可在所述处理器上运行的计算机程序。与图4示出的另一种用于多TRP的码本反馈装置的不同的是,所述另一种用于多TRP的码本确定装置中的处理器运行所述计算机程序时执行上述实施例所提供的用于多TRP的码本确定方法中的步骤,该用于多TRP的码本确定装置可以为上文中的网络侧设备(例如,可以是基站)。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指示相关的硬件来完成,该程序可以存储于一计算机可读存储介质中
应理解,本申请实施例中,所述处理器可以为中央处理单元(central processing unit,简称CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,简称DSP)、专用集成电路(application specific integrated circuit,简称ASIC)、现成可编程门阵列(field programmable gate array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器或存储介质可以是易失性存 储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,简称ROM)、可编程只读存储器(programmable ROM,简称PROM)、可擦除可编程只读存储器(erasable PROM,简称EPROM)、电可擦除可编程只读存储器(electrically EPROM,简称EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,简称RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,简称RAM)可用,例如静态随机存取存储器(static RAM,简称SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,简称SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,简称DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,简称ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,简称SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,简称DR RAM)
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。
在本申请所提供的几个实施例中,应该理解到,所揭露的方法、装置和系统,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的;例如,所述单元的划分,仅仅为一种逻辑功能 划分,实际实现时可以有另外的划分方式;例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,表示前后关联对象是一种“或”的关系。
本申请实施例中出现的“多个”是指两个或两个以上。本申请实施例中出现的第一、第二等描述,仅作示意与区分描述对象之用,没有次序之分,也不表示本申请实施例中对设备个数的特别限定,不能构成对本申请实施例的任何限制。
虽然本申请披露如上,但本申请并非限定于此。任何本领域技术人员,在不脱离本申请的精神和范围内,均可作各种更动与修改,因此本申请的保护范围应当以权利要求所限定的范围为准。

Claims (22)

  1. 一种用于多传输接收点TRP的码本反馈方法,其特征在于,所述方法应用于终端,包括:
    获取待测量参考信号,所述待测量参考信号用于对多个TRP的信道状态进行测量;
    对所述待测量参考信号进行测量,并根据测量结果确定码本反馈参数,所述码本反馈参数包括:第一参数和第二参数,所述第一参数用于指示至少两个空域波束组,所述至少两个空域波束组分别对应至少两个TRP,所述第二参数用于指示所述至少两个空域波束组对应的加权系数矩阵,其中,所述至少两个TRP为所述多个TRP中的至少两个TRP;
    发送所述码本反馈参数。
  2. 根据权利要求1所述的用于多TRP的码本反馈方法,其特征在于,所述码本反馈参数还包括:第三参数,所述第三参数用于指示至少一个频域波束组,所述至少一个频域波束组对应所述至少两个TRP。
  3. 根据权利要求1或2所述的用于多TRP的码本反馈方法,其特征在于,所述第一参数包括:每个空域波束组的索引信息和波束矢量旋转因子。
  4. 根据权利要求1-3任一项所述的用于多TRP的码本反馈方法,其特征在于,所述方法还包括:
    发送至少一个空域波束组对应的待测量参考信号的资源索引;其中,所述至少一个空域波束组为所述至少两个空域波束组的至少一部分。
  5. 根据权利要求1-4任一项所述的用于多TRP的码本反馈方法,其特征在于,所述第二参数包括:
    每个空域波束组对应的加权系数矩阵中非零系数的位置、幅度和相位。
  6. 根据权利要求1-5任一项所述的用于多TRP的码本反馈方法,其特征在于,所述第二参数包括:
    位置参数,所述位置参数用于指示所述至少两个空域波束组对应的加权系数矩阵中非零系数的位置;
    多个加权系数矩阵对应的多个参考系数的索引,每个参考系数的索引用于指示该参考系数在其所属的加权系数矩阵中的位置,其中,每个参考系数为其所属的加权系数矩阵中幅度最大的系数;
    所述多个加权系数矩阵对应的多组第一差分参数,每组第一差分参数用于指示对应的加权系数矩阵中除所述参考系数以外的其他非零系数相对于该参考系数的差分幅度和差分相位;
    最强系数的索引,所述最强系数的索引用于指示最强系数在所述多个参考系数中的位置,其中,所述最强系数为所述多个参考系数中幅度最大的参考系数;
    所述多个加权系数矩阵对应的多个第二差分参数,每个第二差分参数用于指示对应的加权系数矩阵中所述参考系数相对于所述最强系数的差分幅度和差分相位。
  7. 根据权利要求6所述的用于多TRP的码本反馈方法,其特征在于,发送反馈参数包括:
    按照组一、组二、组三的顺序将所述码本反馈参数依次映射至反馈信道并发送;
    其中,组一包括:所述第一参数、所述最强系数的索引;
    组二包括:至少一个加权系数矩阵的参考系数的索引、所述至少一个加权系数矩阵的第一差分参数和第二差分参数;
    组三包括:多个加权系数矩阵中除所述至少一个加权系数矩阵以 外的其他加权系数矩阵的参考系数的索引、所述其他加权系数矩阵的第一差分参数和第二差分参数;
    或者,组一包括:所述第一参数、所述最强系数的索引和所述多个参考系数的索引;
    组二包括:至少一个加权系数矩阵的第一差分参数和第二差分参数;
    组三包括:所述多个加权系数矩阵中除所述至少一个加权系数矩阵以外的其他加权系数矩阵的第一差分参数和第二差分参数。
  8. 根据权利要求1所述的用于多TRP的码本反馈方法,其特征在于,所述待测量参考信号的数量为多个,所述待测量参考信号和所述TRP一一对应,每个待测量参考信号是由与其对应的TRP发送的。
  9. 一种用于多TRP的码本反馈装置,其特征在于,所述装置包括:
    获取模块,用于获取待测量参考信号,所述待测量参考信号用于对多个TRP的信道状态进行测量;
    参数生成模块,用于对所述待测量参考信号进行测量,并根据测量结果确定码本反馈参数,所述码本反馈参数包括:第一参数和第二参数,所述第一参数用于指示至少两个空域波束组,所述至少两个空域波束组分别对应至少两个TRP,所述第二参数用于指示所述至少两个空域波束组对应的加权系数矩阵,其中,所述至少两个TRP为所述多个TRP中的至少两个TRP;
    发送模块,用于发送所述码本反馈参数。
  10. 一种用于多传输接收点TRP的码本确定方法,其特征在于,所述方法应用于网络侧设备,包括:
    接收码本反馈参数,所述码本反馈参数包括:第一参数和第二参数,所述第一参数用于指示至少两个空域波束组,所述至少两个空域 波束组分别对应至少两个TRP,所述第二参数用于指示所述至少两个空域波束组对应的加权系数矩阵;
    根据所述码本反馈参数确定所述至少两个TRP的反馈码本;
    其中,所述码本反馈参数是根据多个TRP的信道状态的测量结果确定的,所述至少两个TRP为所述多个TRP中的至少两个TRP。
  11. 根据权利要求10所述的用于多TRP的码本确定方法,其特征在于,接收码本反馈参数之前,所述方法还包括:
    发送待测量参考信号,并指示进行码本反馈;
    其中,所述待测量参考信号用于对所述多个TRP的信道状态进行测量。
  12. 根据权利要求11所述的用于多TRP的码本确定方法,其特征在于,所述待测量参考信号的数量为多个,所述待测量参考信号和所述TRP一一对应,每个待测量参考信号是由与其对应的TRP发送的。
  13. 根据权利要求10-12任一项所述的用于多TRP的码本确定方法,其特征在于,所述码本反馈参数还包括:第三参数,所述第三参数用于指示至少一个频域波束组,所述至少一个频域波束组对应所述至少两个TRP。
  14. 根据权利要求10-13任一项所述的用于多TRP的码本确定方法,其特征在于,所述第一参数包括:每个空域波束组的索引信息和波束矢量旋转因子。
  15. 根据权利要求10-14任一项所述的用于多TRP的码本确定方法,其特征在于,所述方法还包括:
    接收至少一个空域波束组对应的待测量参考信号的资源索引;其中,所述至少一个空域波束组为所述至少两个空域波束组的至少一部分。
  16. 根据权利要求10-15任一项所述的用于多TRP的码本确定方法,其特征在于,所述第二参数包括:
    每个空域波束组对应的加权系数矩阵中非零系数的位置、幅度和相位。
  17. 根据权利要求10-16任一项所述的用于多TRP的码本确定方法,其特征在于,所述第二参数包括:
    位置参数,所述位置参数用于指示所述至少两个空域波束组对应的多个加权系数矩阵中非零系数的位置;
    多个加权系数矩阵对应的多个参考系数的索引,每个参考系数的索引用于指示该参考系数在其所属的加权系数矩阵中的位置,其中,每个参考系数为其所属的加权系数矩阵中幅度最大的系数;
    所述多个加权系数矩阵对应的多组第一差分参数,每组第一差分参数用于指示对应的加权系数矩阵中除所述参考系数以外的其他非零系数相对于该参考系数的差分幅度和差分相位;
    最强系数的索引,所述最强系数的索引用于指示最强系数在所述多个参考系数中的位置,其中,所述最强系数为所述多个参考系数中幅度最大的参考系数;
    所述多个加权系数矩阵对应的多个第二差分参数,每个第二差分参数用于指示对应的加权系数矩阵中所述参考系数相对于所述最强系数的差分幅度和差分相位。
  18. 根据权利要求17所述的用于多TRP的码本确定方法,其特征在于,所述反馈参数是被按照组一、组二、组三的顺序依次映射至反馈信道并发送的;
    其中,组一包括:所述第一参数、所述最强系数的索引;
    组二包括:至少一个加权系数矩阵对应的参考系数的索引、所述至少一个加权系数矩阵的第一差分参数和第二差分参数;
    组三包括:多个加权系数矩阵中除所述至少一个加权系数矩阵以外的其他加权系数矩阵对应的参考系数的索引、所述其他加权系数矩阵的第一差分参数和第二差分参数;
    或者,组一包括:所述第一参数、所述最强系数的索引和所述多个加权系数矩阵对应的参考系数的索引;
    组二包括:至少一个加权系数矩阵对应的第一差分参数和第二差分参数;
    组三包括:所述多个加权系数矩阵中除所述至少一个加权系数矩阵以外的其他加权系数矩阵对应的第一差分参数和第二差分参数。
  19. 一种用于多传输接收点TRP的码本确定装置,其特征在于,所述装置包括:
    接收模块,用于接收所述码本反馈参数包括:第一参数和第二参数,所述第一参数用于指示至少两个空域波束组,所述至少两个空域波束组分别对应至少两个TRP,所述第二参数用于指示所述至少两个空域波束组对应的加权系数矩阵;
    确定模块,用于根据所述码本反馈参数确定所述至少两个TRP的反馈码本;
    其中,所述反馈码本是根据多个TRP的信道状态的测量结果确定的,所述至少两个TRP为所述多个TRP中的至少两个TRP。
  20. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器运行时,使得权利要求1至8中任一项所述的用于多TRP的码本反馈方法的步骤或者权利要求10至18任一项所述的用于多TRP的码本确定方法的步骤被执行。
  21. 一种用于多传输接收点TRP的码本反馈装置,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,其特征在于,所述处理器运行所述计算机程序时执行权利要求1 至8中任一项所述的用于多TRP的码本反馈方法的步骤。
  22. 一种用于多传输接收点TRP的码本确定装置,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,其特征在于,所述处理器运行所述计算机程序时执行权利要求10至18中任一项所述的用于多TRP的码本确定方法的步骤。
PCT/CN2023/082696 2022-03-22 2023-03-21 用于多传输接收点trp的码本反馈、确定方法及装置 WO2023179587A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210284532.7A CN116846431A (zh) 2022-03-22 2022-03-22 用于多传输接收点trp的码本反馈、确定方法及装置
CN202210284532.7 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023179587A1 true WO2023179587A1 (zh) 2023-09-28

Family

ID=88099961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082696 WO2023179587A1 (zh) 2022-03-22 2023-03-21 用于多传输接收点trp的码本反馈、确定方法及装置

Country Status (2)

Country Link
CN (1) CN116846431A (zh)
WO (1) WO2023179587A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112368948A (zh) * 2018-07-06 2021-02-12 日本电气株式会社 多trp码本
CN113131978A (zh) * 2019-12-30 2021-07-16 大唐移动通信设备有限公司 一种基于信道互易性的预编码矩阵配置方法及装置
WO2021159462A1 (en) * 2020-02-14 2021-08-19 Qualcomm Incorporated Methods and apparatus to facilitate csi feedback in multi-trp communication
CN113810090A (zh) * 2020-06-16 2021-12-17 华为技术有限公司 通信方法和通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112368948A (zh) * 2018-07-06 2021-02-12 日本电气株式会社 多trp码本
CN113131978A (zh) * 2019-12-30 2021-07-16 大唐移动通信设备有限公司 一种基于信道互易性的预编码矩阵配置方法及装置
WO2021159462A1 (en) * 2020-02-14 2021-08-19 Qualcomm Incorporated Methods and apparatus to facilitate csi feedback in multi-trp communication
CN113810090A (zh) * 2020-06-16 2021-12-17 华为技术有限公司 通信方法和通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "WID proposal for Rel-18 Advanced MIMO for NR", 3GPP DRAFT; RP-213015, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20211206 - 20211217, 29 November 2021 (2021-11-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052097123 *

Also Published As

Publication number Publication date
CN116846431A (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
US11064492B2 (en) Resource configuration method and apparatus
CN110476364A (zh) 一种信号传输方法和装置
US11452054B2 (en) Method for signal transmission, network device and terminal device
WO2021052473A1 (zh) 通信方法和通信装置
WO2022001241A1 (zh) 一种波束管理方法及装置
US20220167181A1 (en) Reference signal transmission method and device
WO2021081770A1 (zh) 一种测量方法及装置
WO2021204113A1 (zh) 通信方法及装置
CN107615821B (zh) 一种数据传输方法、设备和系统
US20230354252A1 (en) Positioning information transmission method and apparatus
US20230318677A1 (en) Channel information feedback method and communication apparatus
US20230239017A1 (en) Communication method and apparatus, and readable storage medium
WO2023179587A1 (zh) 用于多传输接收点trp的码本反馈、确定方法及装置
WO2021063175A1 (zh) 一种波束切换的方法、装置及通信设备
WO2023207818A1 (zh) 用于多传输接收点trp的码本反馈、确定方法及装置
US11956039B2 (en) Method and network device for beam vector selection
US20220103269A1 (en) Methods and Devices for Inter-Cell Interference Estimation
CN115333587B (zh) 类型ⅱ端口选择码本的反馈、接收方法及装置
US20230254860A1 (en) Communication method and apparatus
US20220337306A1 (en) Method for beam selection, terminal device, and network device
WO2023024958A1 (zh) 一种csi报告获取方法及通信装置
WO2024031472A1 (zh) 一种无线通信方法及装置、设备、存储介质
WO2021134444A1 (zh) 一种波束训练方法及装置
WO2019109484A1 (zh) 一种通信的方法及装置
WO2018082476A1 (zh) 接入网络的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773834

Country of ref document: EP

Kind code of ref document: A1