WO2023179466A1 - 像素结构、图像传感器芯片、摄像头模组及电子设备 - Google Patents

像素结构、图像传感器芯片、摄像头模组及电子设备 Download PDF

Info

Publication number
WO2023179466A1
WO2023179466A1 PCT/CN2023/082081 CN2023082081W WO2023179466A1 WO 2023179466 A1 WO2023179466 A1 WO 2023179466A1 CN 2023082081 W CN2023082081 W CN 2023082081W WO 2023179466 A1 WO2023179466 A1 WO 2023179466A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
transmitting area
optical
optical unit
pixel structure
Prior art date
Application number
PCT/CN2023/082081
Other languages
English (en)
French (fr)
Inventor
潘望军
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023179466A1 publication Critical patent/WO2023179466A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • This application relates to the technical field of electronic equipment, specifically to a pixel structure, image sensor chip, camera module and electronic equipment.
  • electronic equipment includes a camera module.
  • the camera module is provided with an image sensor chip, and the image sensor chip is provided with a pixel structure.
  • the incident light will eventually illuminate the pixel structure, which can convert the incident light into an electrical signal and transmit it to the image sensor chip.
  • the pixel structure includes a microlens structure, a filter and a photodiode, and the microlens structure, the filter and the photodiode are stacked.
  • the incident light can pass through the microlens structure, then pass through the filter, and finally shine on the photodiode, which can convert the optical signal into an electrical signal.
  • the optical filter when incident light passes through the optical filter, the optical filter absorbs part of the incident light, affecting the conversion efficiency of the photodiode.
  • Embodiments of the present application provide a pixel structure, image sensor chip, camera module and electronic equipment to solve the problem in related technologies that when incident light passes through a filter, the filter will absorb part of the incident light and affect the photodiode. the problem of conversion efficiency.
  • embodiments of the present application provide a pixel structure, which includes: a light splitter and a photodiode;
  • the photodiode includes a light-receiving surface, the light-receiving surface includes a plurality of light-receiving areas, and the light splitting member faces the light-receiving surface;
  • the light splitter includes a stacked first optical layer and a second optical layer, the first optical layer includes a first light-transmitting area and a second light-transmitting area, the second optical layer includes a third light-transmitting area and The fourth light-transmitting zone;
  • the first light-transmitting area and the second light-transmitting area have different transmittances
  • the third light-transmitting area and the fourth light-transmitting area have different transmittances.
  • the projections of the first light-transmitting area and the third light-transmitting area do not overlap; the incident light passes through the beam splitter to form light beams of different wavelength bands, and the light beams of different wavelength bands are respectively transmitted to the corresponding light-receiving areas. take over.
  • inventions of the present application provide an image sensor chip.
  • the image sensor chip includes a plurality of pixel structures described in the first aspect, and the plurality of pixel structures are closely arranged.
  • embodiments of the present application provide a camera module, including the image sensor described in the second aspect.
  • embodiments of the present application provide an electronic device, including a housing and the camera module described in the third aspect, with part of the structure of the camera module embedded in the housing.
  • the single-layer structure is composed of at least two optical units spliced into two layers. Any two optical units in the at least two optical units have different refractive indexes, and the optical units It is a light-transmitting structure. Therefore, after the incident light is irradiated on the beam splitter, the incident light will pass through the beam splitter, and the incident light will be divided into three or four different wavebands of light beams. Since the light splitter faces the light-receiving surface, the light-receiving surface includes four light-receiving areas.
  • the light splitter can divide the incident light into three or four different light beams of different wavelength bands, so that the light beams of different wavelength bands are respectively illuminated in the light-receiving areas corresponding to the light beams, thereby avoiding irradiation in the light-receiving area.
  • the light beam in the area is filtered out by the filter, causing the energy of the incident light to be lost, thereby increasing the energy of the incident light received by the light-receiving area.
  • the conversion efficiency of the photodiode is higher.
  • Figure 1 shows a schematic diagram of a pixel structure provided by an embodiment of the present application
  • Figure 2 shows a schematic diagram of a spectroscopic component provided by an embodiment of the present application
  • Figure 3 shows a schematic diagram of a pixel structure provided by an embodiment of the present application
  • Figure 4 shows a schematic diagram of a first optical unit provided by an embodiment of the present application
  • Figure 5 shows a schematic diagram of a first optical layer provided by an embodiment of the present application
  • FIG. 6 shows a schematic diagram of a pixel structure in the related art.
  • FIG. 1 a schematic diagram of a pixel structure provided by an embodiment of the present application is shown;
  • FIG. 2 a schematic diagram of a spectroscopic component provided by an embodiment of the present application is shown;
  • Figure 3 a schematic diagram of an implementation of the present application is shown A schematic diagram of a pixel structure provided by the example; referring to Figure 4, a schematic diagram of a pixel structure provided by an embodiment of the present application is shown.
  • 5 is a schematic diagram of an optical unit provided by an embodiment of the present application.
  • FIG. 5 a schematic diagram of a single-layer structure provided by an embodiment of the present application is shown.
  • the pixel structure includes: a light splitter 10 and a photodiode 20 .
  • the photodiode 20 includes a light-receiving surface, and the light-receiving surface includes a plurality of light-receiving areas 21.
  • the light-splitting member 10 faces the light-receiving surface, and the light-splitting member 10 includes a stacked first optical layer 11 and a second optical layer 12.
  • the first optical layer 11 includes a first
  • the second optical layer 12 includes a third light-transmitting area and a fourth light-transmitting area.
  • the first light-transmitting area and the second light-transmitting area have different transmittances
  • the third light-transmitting area and the fourth light-transmitting area have different transmittances
  • the first light-transmitting area There is no overlap with the projection of the third light-transmitting area; the incident light passes through the beam splitter to form light beams of different wavelength bands, and the light beams of different wavelength bands are received by the corresponding light-receiving areas 21 respectively.
  • the light splitting element 10 since the light splitting element 10 includes a first optical layer 11 and a second optical layer 12 arranged in a stack, the first optical layer 11 includes a first light-transmitting area and a second light-transmitting area, and the second optical layer 12 Including the third light-transmitting area and the fourth light-transmitting area.
  • the first light-transmitting area and the second light-transmitting area have different transmittances
  • the third light-transmitting area and the fourth light-transmitting area have different transmittances
  • the first light-transmitting area There is no overlap with the projection of the third light-transmitting area.
  • the incident light after the incident light is irradiated on the beam splitter 10, the incident light will pass through the beam splitter 10, and the incident light will be divided into multiple beams of different wavelength bands. Since the light splitter 10 faces the light-receiving surface, and the light-receiving surface includes a plurality of light-receiving areas 21, after the incident light is divided into multiple light beams of different wavelength bands, the light beams of different wavelength bands will respectively illuminate the light-receiving areas 21 corresponding to the light beams.
  • the beam splitter 10 can divide the incident light into a plurality of beams of different wavelength bands, so that the beams of different wavelength bands are respectively illuminated in the light-receiving area 21 corresponding to the light beam, so as to avoid irradiation in the light-receiving area 21 corresponding to the light beam.
  • Part of the light beam on the area 21 is filtered out by the filter 200, causing the energy of the incident light to be lost, thereby increasing the energy of the incident light received by the light-receiving area 21, making the conversion efficiency of the photodiode 20 higher.
  • the multiple light-receiving areas 21 may include a red light area, a blue light area and two green light areas.
  • the plurality of light receiving areas 21 may also include red light areas, blue light areas, and green light areas.
  • the colors of light beams in different wavelength bands are different.
  • the light with a wavelength band of 400 nanometers to 500 nanometers is blue light
  • the light with a wavelength band of 500 nanometers to 600 nanometers is green light.
  • Light between 600 nanometers and 700 nanometers is red light.
  • the photodiode 20 is used to convert optical signals into electrical signals. That is, the light irradiated on the light-receiving surface of the photodiode 20 , that is, the optical signal, can be converted into electrical signals by the photodiode 20 .
  • the incident light is irradiated on the spectroscopic component 10, and the spectroscopic component 10 can divide the incident light into three or four different wavebands of light beams, so that the different wavebands of the light beams are respectively irradiated on the The light receiving area 21 corresponding to the light beam.
  • the projections of the second light-transmitting area and the fourth light-transmitting area do not overlap.
  • the projections of the second light-transmitting area and the fourth light-transmitting area may also overlap, which is not limited in the embodiments of the present application.
  • the pixel structure includes a microlens structure 100, a filter 200 and a photodiode 20.
  • the photodiode 20 includes a light-receiving surface, and the light-receiving surface includes four light-receiving areas 21.
  • the microlens structure 100 , the optical filter 200 and the photodiode 20 are stacked, and one optical filter 200 corresponds to one light-receiving area 21 . After the incident light irradiates the microlens structure 100, the incident light passes through the microlens structure 100, and then passes through the filter 200.
  • the filter 200 filters out stray light in the incident light, so that after passing through the filter 200
  • the color of the light beam is the same as the color of the light receiving area 21 corresponding to the filter 200 .
  • the four light-receiving areas 21 are respectively a red light area, a blue light area and two green light areas.
  • the red light area corresponds to the red light filter 200
  • the blue light area corresponds to the blue light filter 200
  • the green light area corresponds to the green light filter.
  • the incident light shines on the filter 200.
  • the red light filter 200 can filter out the stray light in the incident light and only allow the red light to pass through the red light.
  • the filter 200 illuminates the red light area
  • the green light filter 200 can filter out stray light in the incident light, and only allows green light to pass through the green light filter 200 and illuminate the green light area
  • the blue light filter 200 It can filter out the stray light in the incident light and only allow the blue light to shine in the blue light area.
  • the stray light filtered by the filter 200 of each color also includes light of other colors.
  • the stray light also includes green light and blue light. , which is equivalent to the red light filter 200 absorbing blue light and green light, so that less blue light and green light are irradiated in the blue light region and green light region, resulting in a large loss of energy in the incident light. That is to say, in the related art, the total energy of the light beams irradiated on the four light-receiving areas 21 is less than the total energy of the incident light. The energy is absorbed by the filter 200.
  • the incident light when the incident light passes through the light splitter 10, the incident light is divided into beams of multiple wavelength bands, and the beams of different wavelength bands are irradiated on the light-receiving areas 21 of different colors, thus equivalent
  • the divided light beams of different wavelength bands are irradiated on different light-receiving areas 21 . Therefore, the total energy of the light beams irradiated on the four light-receiving areas 21 is close to the total energy of the incident light, or equal to the total energy of the incident light. That is, the energy loss of the incident light is less or no loss, so that the energy of the light beam irradiating each light-receiving area 21 is enhanced.
  • the spectroscopic element 10 can be formed by photolithography. That is, by photolithography, a first optical layer 11 is first etched on the substrate.
  • the substrate can be a light-transmitting material, and then the first optical layer 11 is etched on the substrate. The etching position is filled with another light-transmitting material to form a complete optical layer, and then the second optical layer 12 is formed in the same manner, and multiple first optical layers 11 and multiple second optical layers 12 can be formed. Afterwards, a plurality of first optical layers 11 and a plurality of second optical layers 12 are stacked to form the spectroscopic element 10 .
  • the spectroscopic element 10 can also be formed by a nanoimprint process, or the spectroscopic element 10 can be formed by three-dimensional printing, which is not limited in the embodiments of the present application.
  • the beam splitter 10 when the incident light is visible light, the beam splitter 10 passes the incident light and divides the incident light into three beams of different wavelength bands; when the incident light includes visible light and invisible light, the beam splitter 10 The component 10 passes the incident light and divides the incident light into beams of four different wavelength bands.
  • visible light refers to white light
  • invisible light includes infrared light, ultraviolet light, etc.
  • the wavelength range of visible light is 380 nanometers to 750 nanometers
  • the wavelength of invisible light is greater than 750 nanometers.
  • the visible light when the incident light is visible light, after the visible light passes through the beam splitter 10, the visible light can be divided into red light, green light, and blue light.
  • the incident light includes visible light and invisible light, for example, the incident light includes white light and infrared light.
  • the white light is divided into red light, green light and blue light, and the wavelength band of the infrared light is different. Affected, that is, when the incident light includes white light and infrared light, at this time, the light after passing through the beam splitter 10 includes red light, blue light, green light and infrared light.
  • the incident light is white light.
  • the white light passes through the beam splitter 10, the white light is divided into red light, blue light and green light.
  • the red light is illuminated in the red light area
  • the green light is illuminated in the green light area
  • the blue light is illuminated in the red light area.
  • the red light area, the blue light area and the green light area are all light-receiving areas 21 .
  • the incident light can be divided into three or four wavelength bands of light beams based on the stacked first optical layer 11 and the second optical layer 12 of the beam splitter 10.
  • An optical layer 11 includes a first light-transmitting area and a second light-transmitting area
  • the second optical layer 12 includes a third light-transmitting area and a fourth light-transmitting area, so that when the incident light passes through the beam splitter 10, the incident light passes through it in sequence.
  • the transmittances of the third light-transmitting area and the fourth light-transmitting area Differently, the projections of the first light-transmitting area and the third light-transmitting area do not overlap, so the incident light undergoes different refraction, so that after the incident light passes through the beam splitter 10, the incident light can be divided into three or four wavelength bands. .
  • the first light-transmitting area and the second light-transmitting area can be arranged in a preset manner, and of course, can also be arranged according to actual needs.
  • the first optical layer includes a first light-transmitting area and a second light-transmitting area, where the filled squares represent the first light-transmitting area and the empty squares represent the second light-transmitting area.
  • the first light-transmitting area may include a plurality of first optical units
  • the second light-transmitting area may include a plurality of second optical units
  • the first optical unit and the second optical unit have the same shape
  • the sizes are equal, and the transmittances of the first optical unit and the second optical unit are different.
  • a filled square among filled squares represents a first optical unit
  • an empty square among empty squares represents a second optical unit.
  • the first optical unit and the second optical unit have the same shape and the same size, at this time, the first optical unit and the second optical unit are respectively spliced to form a first light-transmitting area and a second light-transmitting area, and then a third light-transmitting area is formed.
  • one optical layer 11 is provided, splicing is facilitated, and the thickness of the formed first optical layer 11 is uniform.
  • the third light-transmitting area may include a plurality of third optical units
  • the fourth light-transmitting area may include a plurality of fourth optical units
  • the third optical unit and the fourth optical unit have the same shape, The sizes are equal, and the transmittances of the third optical unit and the fourth optical unit are different.
  • the ordering method of the optical units with different refractive index in the first light-transmitting area and the second light-transmitting area can be changed, that is, the ordering way of the first optical unit and the second optical unit can be changed, so that the light splitting element 10 Visible light can be divided into beams of three wavelength bands, and visible light and invisible light Light is divided into four wavelength bands.
  • the spectrometer 10 only divides visible light into three wavelength bands of light beams, at this time, the spectrometer 10 is equivalent to having three channels.
  • the spectrometer 10 can divide visible light and invisible light into beams of four wavelength bands, at this time, the spectrometer 10 is equivalent to having four channels.
  • the spectroscopic component 10 has four channels
  • the optical structure is applied to the image sensor chip, and then the image sensor chip is applied to the camera module, at this time, the infrared filter 200 in the camera module can be saved. That is, the infrared filter 200 is not needed in the camera module, thereby saving the cost of the camera module.
  • the camera module usually includes a housing, an infrared filter 200, and an image sensor chip.
  • the difference in refractive index of the two optical units with different refractive indexes is larger, that is, the difference in refractive index of the two optical units with different refractive indexes. Needs to be greater than or equal to the preset threshold.
  • the difference in refractive index of any two optical units with different refractive indexes is larger, that is, the difference in refractive index of any two optical units with different refractive indexes. Greater than or equal to the preset threshold.
  • the preset threshold is 2.
  • the difference between the refractive index of optical unit A and the refractive index of optical unit B is greater than or equal to 2.
  • the first optical layer 11 includes three optical units, that is, the first optical layer 11 includes optical unit A, optical unit B and optical unit C, at this time, the difference between the refractive index of optical unit A and the refractive index of optical unit B is The value is greater than or equal to 2, the difference between the refractive index of optical unit A and the refractive index of optical unit C is greater than or equal to 2, and the difference between the refractive index of optical unit B and the refractive index of optical unit C is greater than or equal to 2.
  • the first optical layer 11 may also include four or more types of optical units.
  • the difference in refractive index of any two optical units is greater than or equal to the preset threshold. That is, when the first optical layer includes at least two optical units, the difference in refractive index of any two optical units is greater than or equal to the preset threshold.
  • the second optical layer 12 may also include two or more optical units, and the difference in refractive index of any two optical units is greater than or equal to the preset threshold.
  • both the first optical unit and the second optical unit may be made of one or more of silicon dioxide, silicon nitride, titanium dioxide, or gallium nitride. That is, any optical unit The elements can be made of one or more of silicon dioxide, silicon nitride, titanium dioxide or gallium nitride.
  • the first optical unit may be made of silicon dioxide
  • the second optical unit may be made of silicon nitride.
  • the first optical layer includes three types of optical units, at this time, the first optical unit may be made of silicon dioxide, the second optical unit may be made of silicon nitride, and the last optical unit may be made of titanium dioxide.
  • both the first optical unit and the second optical unit may have a quadrangular prism structure.
  • first optical unit and the second optical unit have a quadrangular prism structure
  • splicing can be facilitated when the first optical unit and the second optical unit are spliced to form the first optical layer 11 .
  • the length range, width range, and height range of the quadrangular prism structure may be 10 nanometers to 200 nanometers, and the height direction of the quadrangular prism structure is the same as the thickness direction of the spectroscopic element 10 . That is, the length range, width range, and height range of the first optical unit and the second optical unit can all range from 10 nanometers to 200 nanometers. That is, the size range of the quadrangular prism structure in any direction ranges from 10 nanometers to 200 nanometers.
  • the length range, width range and height range of the first optical unit and the second optical unit can all be 10 nanometers to 200 nanometers, at this time, the volumes of the first optical unit and the second optical unit are smaller, so that they can be The small first optical unit and the second optical unit form the first optical layer 11, and the first optical unit and the second optical unit have different refractive indexes.
  • the second optical layer includes a third optical unit and a fourth optical unit. Both the first optical unit and the second optical unit can be a quadrangular prism structure.
  • the length range, width range and height range of the quadrilateral prism structure can all be 10 nanometers. to 200 nanometers, the height direction of the quadrangular prism structure is the same as the thickness direction of the beam splitter 10 .
  • the length range, width range and height range of the first optical unit and the second optical unit can each be 10 nanometers to 200 nanometers. Therefore, when the incident light passes through the first optical layer 11 and the second optical layer 12, the incident light can be better refracted, which is conducive to the incident light passing through the beam splitter 10, and the beam splitter 10 divides the incident light into three wavebands. Or beams in four bands.
  • the height of the first optical unit may be H2, and the range of H2 may be 10 nanometers to 200 nanometers, the length of the first optical unit can be L2, the range of L2 can be 10 nanometers to 200 nanometers, the width of the first optical unit can be D2, and the range of D2 can be 10 nanometers to 200 nanometers.
  • the height of the first optical unit or the second optical unit can be any value from 10 nanometers to 200 nanometers.
  • the height of the first optical unit can be 10 nanometers, or it can be 20 nanometers, or it can be It can be 40 nanometers, it can also be 80 nanometers, it can also be 140 nanometers, it can also be 180 nanometers, it can also be 200 nanometers.
  • the length of the first optical unit can be any value from 10 nanometers to 200 nanometers.
  • the length of the first optical unit can be 10 nanometers, it can also be 20 nanometers, it can also be 40 nanometers, it can also be 80 nanometers, it can also be It is 140 nanometers, it can also be 180 nanometers, it can also be 200 nanometers.
  • the width of the first optical unit can be any value from 10 nanometers to 200 nanometers.
  • the width of the first optical unit can be 10 nanometers, it can also be 20 nanometers, it can also be 40 nanometers, it can also be 80 nanometers, it can also be It is 140 nanometers, it can also be 180 nanometers, it can also be 200 nanometers.
  • the size of the third optical unit and the first optical unit may be the same, that is, the length, width, and height of the third optical unit are equal to the length, width, and height of the first optical unit. .
  • the thickness of the beam splitter 10 may range from 1 micron to 10 microns, and the thickness of the beam splitter 10 is the distance between the surface of the beam splitter 10 away from the photodiode and the surface facing the photodiode.
  • the thickness of the spectroscopic component ranges from 1 micron to 10 microns, at this time, the thickness of the spectroscopic component is smaller, which can make the volume of the pixel structure smaller, which is beneficial to reducing the image quality when the pixel structure is applied to the image sensor chip.
  • the thickness of the sensor chip is
  • the spectroscopic component 10 may also have a tetragonal structure, the height of the optical layer ranges from 1 micron to 10 microns, and the length range and width of the optical layer range from 0.8 microns to 10 microns, wherein the spectroscopic component The height of 10 is the distance between the surface facing away from the photodiode 20 and the surface facing towards the photodiode 20 .
  • the height range of the spectroscopic element 10 is 1 micron to 10 microns
  • the length range and the width range are both When it is 0.8 microns to 10 microns, at this time, the volume of the beam splitter 10 is smaller, so that the volume of the pixel structure is smaller, which is beneficial to reducing the thickness of the image sensor chip when the pixel structure is applied to the image sensor chip.
  • the beam splitter 10 has a tetragonal structure
  • the height of the optical structure layer is H1
  • H1 ranges from 1 micron to 10 microns
  • the length of the optical structure layer is L1
  • the range of L1 ranges from 0.8 microns to 10 microns.
  • Micron the width of the optical structure layer is D1
  • the range of D1 is 0.8 micron to 10 micron.
  • the height of the spectroscopic component 10 can be any value from 1 micron to 10 microns.
  • the height of the spectroscopic component 10 can be 1 micron, or it can be 2 microns, or it can be 4 microns, or it can be It is 8 microns and can also be 10 microns.
  • the length of the spectroscopic component 10 can be any value from 0.8 microns to 10 microns.
  • the length of the spectroscopic component 10 can be 0.8 microns, or it can be 2 microns, or it can be 4 microns, or it can be 8 microns, or it can be 10 microns.
  • the width of the spectroscopic component 10 can be any value from 0.8 microns to 10 microns.
  • the width of the spectroscopic component 10 can be 0.8 microns, or it can be 2 microns, or it can be 4 microns, or it can be 8 microns, or it can be 10 microns.
  • the spectroscopic component 10 can also have other structures.
  • the spectroscopic component 10 can also be formed from a single-layer structure to form a trapezoidal structure, a cylindrical structure, a quadrangular prism structure, etc.
  • the specific shape of the spectroscopic component 10 The embodiments of the present application are not limited here.
  • the light splitting element 10 since the light splitting element 10 includes a first optical layer 11 and a second optical layer 12 arranged in a stack, the first optical layer 11 includes a first light-transmitting area and a second light-transmitting area, and the second optical layer 12 Including the third light-transmitting area and the fourth light-transmitting area.
  • the first light-transmitting area and the second light-transmitting area have different transmittances
  • the third light-transmitting area and the fourth light-transmitting area have different transmittances
  • the first light-transmitting area There is no overlap with the projection of the third light-transmitting area.
  • the incident light after the incident light is irradiated on the beam splitter 10, the incident light will pass through the beam splitter 10, and the incident light will be divided into multiple beams of different wavelength bands. Since the light splitter 10 faces the light-receiving surface, and the light-receiving surface includes a plurality of light-receiving areas 21, after the incident light is divided into multiple light beams of different wavelength bands, the light beams of different wavelength bands will respectively illuminate the light-receiving areas 21 corresponding to the light beams. In the embodiment of the present application, by arranging the beam splitter 10, the beam splitter 10 can divide the incident light into a plurality of beams of different wavelength bands, so that the beams of different wavelength bands are respectively irradiated with the light beams.
  • the light beam corresponding to the light receiving area 21 is thus prevented from being filtered out by the filter 200 and causing the energy of the incident light to be lost, thereby increasing the incident light energy received by the light receiving area 21, so that The conversion efficiency of photodiode 20 is higher.
  • An embodiment of the present application provides an image sensor chip.
  • the image sensor chip includes a plurality of pixel structures in any of the above embodiments, and the plurality of pixel structures are closely arranged.
  • the image sensor chip includes a setting surface, a plurality of pixel structures are closely arranged on the setting surface, and the photodiodes of each pixel structure are arranged on the setting surface.
  • the light first irradiates the light splitter of each pixel structure, and the light splitter divides the incident light into multiple types. Beams of different wavelength bands are illuminated in the light-receiving area corresponding to the light beam, thereby preventing the light beam shining on the light-receiving area from being filtered out by the filter, causing the energy of the incident light to be lost, so that the energy of the incident light is lost.
  • Increasing the incident light energy received by the light-receiving area makes the conversion efficiency of the photodiode higher, thereby improving the conversion efficiency of the image sensor chip.
  • the close arrangement of multiple pixel structures means that multiple pixel structures are arranged adjacent to each other on the installation surface of the image sensor, that is, any pixel structure is adjacent to at least one other pixel structure.
  • An embodiment of the present application provides a camera module, which includes the image sensor in the above embodiment.
  • the camera module may include a housing, a lens component, a filter, a circuit board and an image sensor.
  • the lens component and the filter are both located in the housing, and the lens component and the filter are spaced apart, and the circuit board is placed on the filter.
  • the light sheet is on one side away from the lens assembly, and the image sensor is disposed on the circuit board.
  • the image sensor is located in the housing, and the image sensor faces the optical filter. Therefore, the light can pass through the lens assembly, and then the light shines on the filter, and then the light passing through the filter will shine on the image sensor, that is, the light passing through the filter will first shine on the beam splitter, and then shine on the image sensor.
  • the photodiode converts the optical signal of light into an electrical signal.
  • the beam splitter divides the incident light into multiple beams of different wavelengths, so that the beams of different wavelengths are respectively illuminated in the light-receiving areas corresponding to the beams, thereby improving the incident light received by the light-receiving area.
  • Light energy makes the conversion efficiency of the photodiode higher, which can improve the conversion efficiency of the image sensor chip, ultimately improving the shooting effect of the camera module.
  • An embodiment of the present application provides an electronic device.
  • the electronic device includes a housing and the camera module in the above embodiment. Part of the structure of the camera module is embedded in the housing.
  • the light When shooting with an electronic device, the light will pass through the light-transmitting component in the camera module, and then the light will illuminate the filter, and then the light passing through the filter will illuminate the image sensor, that is, pass through the filter.
  • the light will first illuminate the light splitter and then the photodiode, so that the photodiode converts the optical signal of the light into an electrical signal.
  • the beam splitter can divide the incident light into multiple beams of different wavelength bands, so that the beams of different wavelength bands are respectively illuminated in the light-receiving area corresponding to the light beam, thereby increasing the incident light energy received by the light-receiving area, making the photodiode
  • the conversion efficiency is higher, which can improve the conversion efficiency of the image sensor chip, which ultimately improves the shooting effect of the camera module, thereby improving the performance of electronic equipment.
  • electronic devices include but are not limited to mobile phones, notebook computers, smart watches, etc.
  • the camera module can be a front camera of the electronic device or a rear camera of the electronic device, which is not limited in the embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本申请实施例提供了一种像素结构、图像传感器芯片、摄像头模组及电子设备。该像素结构包括:分光件和光电二极管;光电二极管包括受光面,受光面包括多个受光区域,分光件朝向受光面;分光件包括叠置的第一光学层和第二光学层,第一光学层包括第一透光区和第二透光区,第二光学层包括第三透光区和第四透光区;其中,第一透光区和第二透光区的透射率不同,第三透光区和第四透光区的透射率不同,在垂直于第一光学层的方向上,第一透光区和第三透光区的投影不重叠;入射光通过分光件形成不同波段的光束,且不同波段的光束分别被对应受光区域接收。

Description

像素结构、图像传感器芯片、摄像头模组及电子设备
交叉引用
本申请要求在2022年03月22日提交中国专利局、申请号为202210286358.X、名称为“像素结构、图像传感器芯片、摄像头模组及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,具体涉及一种像素结构、图像传感器芯片、摄像头模组及电子设备。
背景技术
随着科技的发展,电子设备的应用越来越广泛。通常电子设备包括摄像头模组,摄像头模组中设置有图像传感器芯片,图像传感器芯片上设置有像素结构。在通过电子设备拍照时,入射光最终会照射在像素结构上,像素结构可以将入射光转换为电信号传递至图像传感器芯片上。
相关技术中,像素结构包括微透镜结构、滤光片以及光电二极管,微透镜结构、滤光片以及光电二极管层叠设置。入射光可以穿过微透镜结构,之后经过滤光片,最终照射在光电二极管上,光电二极管便可以将光信号转换为电信号。
但在相关技术中,在入射光在穿过滤光片时,滤光片会吸收部分入射光,影响光电二极管的转换效率。
申请内容
本申请实施例提供了一种像素结构、图像传感器芯片、摄像头模组及电子设备,以解决相关技术中在入射光在穿过滤光片时,滤光片会吸收部分入射光,影响光电二极管的转换效率的问题。
为了解决上述技术问题,本申请是这样实现的:
第一方面,本申请实施例提供了一种像素结构,所述像素结构包括:分光件和光电二极管;
所述光电二极管包括受光面,所述受光面包括多个受光区域,所述分光件朝向所述受光面;
所述分光件包括叠置的第一光学层和第二光学层,所述第一光学层包括第一透光区和第二透光区,所述第二光学层包括第三透光区和第四透光区;
其中,所述第一透光区和所述第二透光区的透射率不同,所述第三透光区和所述第四透光区的透射率不同,在垂直于所述第一光学层的方向上,所述第一透光区和所述第三透光区的投影不重叠;入射光通过所述分光件形成不同波段的光束,且所述不同波段的光束分别被对应受光区域接收。
第二方面,本申请实施例提供了一种图像传感器芯片,所述图像传感器芯片包括多个上述第一方面中所述的像素结构,且多个所述像素结构紧密排布。
第三方面,本申请实施例提供了一种摄像头模组,包括上述第二方面中所述的图像传感器。
第四方面,本申请实施例提供了一种电子设备,包括壳体和上述第三方面中所述的摄像头模组,所述摄像头模组的部分结构嵌设在所述壳体内。
在本申请实施例中,由于分光件包括层叠设置的单层结构,单层结构由至少两种光学单元拼接二层,至少两种光学单元中任意两种光学单元的折射率不同,且光学单元为透光结构,因此,在入射光照射在分光件上之后,入射光会穿过分光件,且入射光会被分成三种或四种不同波段的光束。由于分光件朝向受光面,受光面包括四个受光区域,因此,在入射光被分成三种或四种不同波段的光束之后,不同波段的光束会分别照射在与光束相对应的受光区域上。本申请实施例中,通过设置分光件,分光件可以将入射光分成三种或四种不同波段的光束,从而使不同波段的光束分别照射在与光束相对应的受光区域,从而避免照射在受光区域上的光束被滤光片滤除部分光线,使得入射光的能量受到损失,从而可以提高受光区域接收到的入射光能量,使 得光电二极管的转换效率更高。
附图说明
图1表示本申请实施例提供的一种像素结构的示意图;
图2表示本申请实施例提供的一种分光件的示意图;
图3表示本申请实施例提供的一种像素结构的原理图;
图4表示本申请实施例提供的一种第一光学单元的示意图;
图5表示本申请实施例提供的一种第一光学层的示意图;
图6表示相关技术中的一种像素结构的示意图。
附图标记:
10:分光件;20:光电二极管;11:第一光学层;12:第二光学层;21:
受光区域;100:微透镜结构;200:滤光片。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。
参照图1,示出了本申请实施例提供的一种像素结构的示意图;参照图2,示出了本申请实施例提供的一种分光件的示意图;参照图3,示出了本申请实施例提供的一种像素结构的原理图;参照图4,示出了本申请实施例提 供的一种光学单元的示意图;参照图5,示出了本申请实施例提供的一种单层结构的示意图。如图1至图5所示,该像素结构包括:分光件10和光电二极管20。
光电二极管20包括受光面,受光面包括多个受光区域21,分光件10朝向受光面,分光件10包括叠置的第一光学层11和第二光学层12,第一光学层11包括第一透光区和第二透光区,第二光学层12包括第三透光区和第四透光区。其中,第一透光区和第二透光区的透射率不同,第三透光区和第四透光区的透射率不同,在垂直于第一光学层的方向上,第一透光区和第三透光区的投影不重叠;入射光通过分光件形成不同波段的光束,且不同波段的光束分别被对应受光区域21接收。
在本申请实施例中,由于分光件10包括层叠设置的第一光学层11和第二光学层12,第一光学层11包括第一透光区和第二透光区,第二光学层12包括第三透光区和第四透光区。其中,第一透光区和第二透光区的透射率不同,第三透光区和第四透光区的透射率不同,在垂直于第一光学层的方向上,第一透光区和第三透光区的投影不重叠,因此,在入射光照射在分光件10上之后,入射光会穿过分光件10,且入射光会被分成多种不同波段的光束。由于分光件10朝向受光面,受光面包括多个受光区域21,因此,在入射光被分成多种不同波段的光束之后,不同波段的光束会分别照射在与光束相对应的受光区域21上。本申请实施例中,通过设置分光件10,分光件10可以将入射光分成多种不同波段的光束,从而使不同波段的光束分别照射在与光束相对应的受光区域21,从而避免照射在受光区域21上的光束被滤光片200滤除部分光线,使得入射光的能量受到损失,从而可以提高受光区域21接收到的入射光能量,使得光电二极管20的转换效率更高。
需要说明的是,在本申请实施例中,多个受光区域21可以包括红光区域、蓝光区域和两个绿光区域。多个受光区域21还可以包括红光区域、蓝光区域和绿光区域。其中,不同波段的光束的颜色不同,例如,波段为400纳米至500纳米的光为蓝光,波段为500纳米至600纳米的光为绿光,波段 为600纳米至700纳米的光为红光。另外,在本申请实施例中,光电二极管20用于将光信号转换为电信号,即照射在光电二极管20的受光面上的光,即光信号,可以被光电二极管20转换为电信号。
需要说明的是,在本申请实施例中,入射光在照射在分光件10上,分光件10可以将入射光分成三种或四种不同波段的光束,从而使不同波段的光束分别照射在与光束相对应的受光区域21。
另外,在本申请实施例中,在垂直于第一光学层的方向上,第二透光区和第四透光区的投影不重叠,当然,第二透光区和第四透光区的投影也可以重叠,对此,本申请实施例在此不做限定。
另外,在相关技术中,如图6所示,像素结构包括微透镜结构100、滤光片200以及光电二极管20,光电二极管20包括受光面,受光面包括四个受光区域21,微透镜结构100、滤光片200以及光电二极管20层叠设置,一个滤光片200与一个受光区域21对应。在入射光照射在微透镜结构100上之后,入射光穿过微透镜结构100,之后穿过滤光片200,滤光片200滤除入射光中的杂光,使得穿过滤光片200之后的光束的颜色与该滤光片200对应的受光区域21的颜色相同。例如,四个受光区域21分别为红光区域、蓝光区域以及两个绿光区域、红光区域对应红光滤光片200、蓝光区域对应蓝光滤光片200,绿光区域对应绿光滤光片200,在入射光穿过微透镜之后,入射光照射在滤光片200上,此时,红光滤光片200可以将入射光中的杂光滤除,只允许红光穿过红光滤光片200照射在红光区域,绿光滤光片200可以将入射光中的杂光滤除,只允许绿光穿过绿光滤光片200照射在绿光区域,蓝光滤光片200可以将入射光中的杂光滤除,只允许蓝光照射在蓝光区域。
但每种颜色的滤光片200滤除的杂光中还包括其他颜色的光,例如,红光滤光片200将入射光中的杂光滤除时,杂光中也包括绿光和蓝光,相当于红光滤光片200将蓝光和绿光吸收,使得照射在蓝光区域和绿光区域中的蓝光和绿光较少,使得入射光中的能量大量损失。也即是,在相关技术中,照射在四个受光区域21上的光束的能量总和小于入射光的总能量,有一部分 能量被滤光片200吸收。
而在本申请实施例中,通过设置分光件10,入射光在穿过分光件10时,入射光被分成多种波段的光束,不同波段的光束照射在不同颜色的受光区域21上,从而相当于将入射光进行分割,分割之后的不同波段的光束照射在不同的受光区域21上。从而使得照射在四个受光区域21上的光束的总能量接近与入射光的总能量,或者等于入射光的总能量。即入射光的能量损失较少,或者没有损失,使得照射在每个受光区域21的光束的能量增强。
另外,在本申请实施例中,可以通过光刻法形成分光件10,即通过光刻法,先在基板上刻蚀一个第一光学层11,基板可以为一种透光的材质,之后在刻蚀位置填充另一种透光的材质,形成一个完整的光学层,之后采用同样的方式形成第二光学层12,且可以形成多个第一光学层11以及多个第二光学层12,之后将多个第一光学层11以及多个第二光学层12层叠设置,形成分光件10。当然,还可以纳米压印工艺,形成分光件10,还可以通过三维打印的方式形成分光件10,对此,本申请实施例在此不作限定。
另外,在本申请实施例中,在入射光为可见光的情况下,分光件10通过入射光,并将入射光分成三种不同波段的光束;在入射光包括可见光和不可见光的情况下,分光件10通过入射光,并将入射光分成四种不同波段的光束。
其中,可见光指的是白光,不可见光包括红外光、紫外光等。其中,可见光的波长范围为380纳米至750纳米,不可见光的波长大于750纳米。
另外,当入射光为可见光时,此时,可见光通过分光件10之后,可见光可以被分成红光、绿光、蓝光。当入射光包括可见光与不可见光时,例如,入射光包括白光和红外光,此时,白光和红外光穿过分光件10之后,白光被分成红光、绿光和蓝光,红外光的波段不受影响,即入射光包括白光和红外光时,此时,穿过分光件10之后的光包括红光、蓝光、绿光和红外光。
例如,如图3所示,入射光为白光,白光穿过分光件10之后,白光被分成红光、蓝光和绿光、红光照射在红光区域,绿光照射在绿光区域,蓝光 照射在蓝光区域。其中,红光区域、蓝光区域以及绿光区域均为受光区域21。
需要说明的是,在本申请实施例中,入射光能够被分成三种波段或者四种波段的光束,正是基于分光件10的层叠设置的第一光学层11和第二光学层12,第一光学层11包括第一透光区和第二透光区,第二光学层12包括第三透光区和第四透光区,从而入射光在穿过分光件10时,入射光依次穿过不同的透光区,入射光在穿过不同的透光区时,由于第一透光区和第二透光区的透射率不同,第三透光区和第四透光区的透射率不同,第一透光区和第三透光区的投影不重叠,从而入射光进行不同的折射,使得入射光穿过分光件10之后,入射光可以被分成三种波段或者四种波段的光束。
另外,第一透光区和第二透光区可以按照预设方式进行排列,当然,也可以按照实际需要进行排列。例如,如图5所示,第一光学层包括第一透光区和第二透光区,其中填充的方格表示第一透光区,空白的方格表示第二透光区。
另外,在本申请实施例中,第一透光区可以包括多个第一光学单元,第二透光区可以包括多个第二光学单元,第一光学单元与第二光学单元的形状相同,大小相等,且第一光学单元与第二光学单元的透射率不同。例如,如图5所示,填充的方格中一个填充的方格表示一个第一光学单元,空白的方格中一个空白的方格表示一个第二光学单元。
当第一光学单元与第二光学单元形状相同,且大小相等时,此时,在将第一光学单元与第二光学单元分别拼接形成第一透光区和第二透光区,之后形成第一光学层11时,便于进行拼接,且形成的第一光学层11的厚度均匀。
另外,在本申请实施例中,第三透光区可以包括多个第三光学单元,第四透光区可以包括多个第四光学单元,第三光学单元与第四光学单元的形状相同,大小相等,且第三光学单元与第四光学的透射率不同。
在本申请实施例中,可以改变第一透光区以及第二透光区中不同折射率的光学单元的排序方式,即改变第一光学单元以及第二光学单元的排序方式,使得分光件10可以将可见光分成三种波段的光束,将可见光与不可见 光,分成四种波段的光束。其中,当分光件10只将可见光分成三种波段的光束时,此时,分光件10相当于具有三个通道。当分光件10可以将可见光以及不可见光分成四种波段的光束时,此时,分光件10相当于具有四个通道。当分光件10具有四个通道时,在将光学结构应用在图像传感器芯片上,之后将图像传感器芯片应用在摄像头模组中时,此时,可以节约摄像头模组中的红外滤光片200,即摄像头模组中不需要红外滤光片200,从而可以节约摄像头模组的成本。其中,摄像头模组通常包括壳体、红外滤光片200、图像传感器芯片。
另外,当第一光学层包括两种不同折射率的光学单元时,两种不同折射率的光学单元的折射率的差值较大,即两种不同折射率的光学单元的折射率的差值需要大于或等于预设阈值。当第一光学层包括三种不同折射率的光学单元时,任意两种不同折射率的光学单元的折射率的差值较大,即任意两种不同折射率的光学单元的折射率的差值大于或等于预设阈值。
例如,预设阈值为2,当第一光学层包括光学单元A以及光学单元B时,光学单元A的折射率与光学单元B的折射率的差值大于或等于2。当第一光学层11包括三种光学单元,即第一光学层11包括光学单元A、光学单元B以及光学单元C时,此时,光学单元A的折射率与光学单元B的折射率的差值大于或等于2,光学单元A的折射率与光学单元C的折射率的差值大于或等于2,光学单元B的折射率与光学单元C的折射率的差值大于或等于2。
当然,第一光学层11还可以包括四种甚至更多种光学单元,此时,任意两种光学单元的折射率的差值大于或等于预设阈值。即当第一光学层包括至少两种光学单元时,任意两种光学单元的折射率的差值大于或等于预设阈值。
需要说明的是,第二光学层12中也可以包括两种以上的光学单元,任意两种光学单元的折射率的差值大于或等于预设阈值。
另外,在本申请实施中,第一光学单元以及第二光学单元均可以由二氧化硅、氮化硅、二氧化钛或氮化镓中的一种或者多种制成。即任一种光学单 元均可以由二氧化硅、氮化硅、二氧化钛或氮化镓中的一种或者多种制成。此时,当第一光学单元可以由二氧化硅制成,第二光学单元可以由氮化硅制成。当第一光学层包括三种光学单元时,此时,第一光学单元可以由二氧化硅制成、第二光学单元可以由氮化硅制成,最后一种光学单元可以有二氧化钛制成。
另外,在本申请实施例中,第一光学单元以及第二光学单元均可以为四棱柱结构。
当第一光学单元以及第二光学单元为四棱柱结构时,此时,在将第一光学单元以及第二光学单元进行拼接形成第一光学层11时,可以便于进行拼接。
另外,在一些实施例中,四棱柱结构的长度范围、宽度范围以及高度范围均可以为10纳米至200纳米,四棱柱结构的高度方向与分光件10的厚度方向相同。即第一光学单元以及第二光学单元的长度范围、宽度范围以及高度范围均可以为10纳米至200纳米,也即是,四棱柱结构在任意方向的尺寸范围为10纳米至200纳米。
当第一光学单元以及第二光学单元的长度范围、宽度范围以及高度范围均可以为10纳米至200纳米时,此时,第一光学单元以及第二光学单元的体积较小,从而可以通过较小的第一光学单元以及第二光学单元形成第一光学层11,且第一光学单元与第二光学单元的折射率不同。另外,第二光学层包括第三光学单元以及第四光学单元,第一光学单元以及第二光学单元均可以为四棱柱结构,四棱柱结构的长度范围、宽度范围以及高度范围均可以为10纳米至200纳米,四棱柱结构的高度方向与分光件10的厚度方向相同。即第一光学单元以及第二光学单元的长度范围、宽度范围以及高度范围均可以为10纳米至200纳米。从而在入射光穿过第一光学层11以及第二光学层12时,可以对入射光进行更好的折射,有利于入射光穿过分光件10时,分光件10将入射光分成三种波段或者四种波段的光束。
例如,如图4所示,第一光学单元的高度可以为H2,H2的范围可以为 10纳米至200纳米,第一光学单元的长度可以为L2,L2的范围可以为10纳米至200纳米,第一光学单元的宽度可以为D2,D2的范围可以为10纳米至200纳米。
另外,在实际应用中,第一光学单元或第二光学单元的高度可以为10纳米至200纳米中任一数值,例如,第一光学单元的高度为10纳米,还可以为20纳米,还可以为40纳米,还可以为80纳米,还可以为140纳米,还可以为180纳米,还可以为200纳米。第一光学单元的长度可以为10纳米至200纳米中任一数值,例如,第一光学单元的长度为10纳米,还可以为20纳米,还可以为40纳米,还可以为80纳米,还可以为140纳米,还可以为180纳米,还可以为200纳米。第一光学单元的宽度可以为10纳米至200纳米中任一数值,例如,第一光学单元的宽度为10纳米,还可以为20纳米,还可以为40纳米,还可以为80纳米,还可以为140纳米,还可以为180纳米,还可以为200纳米。
需要说明的是,在本申请实施例中,第三光学单元与第一光学单元的尺寸可以相同,即第三光学单元的长度、宽度以及高度均与第一光学单元的长度、宽度以及高低相等。
另外,在一些实施例中,分光件10的厚度范围可以为1微米至10微米,分光件10的厚度为分光件10背离光电二极管的表面与朝向光电二极管的表面之间的距离。
当分光件的厚度范围为1微米至10微米时,此时,分光件的厚度较小,可以使得像素结构的体积较小,从而在将像素结构应用于图像传感器芯片上时,有利于降低图像传感器芯片的厚度。
另外,在一些实施例中,分光件10也可以为四方体结构,光学层的高度范围为1微米至10微米,光学层的长度范围以及宽度范围均为0.8微米至10微米,其中,分光件10的高度为背离光电二极管20的表面与朝向光电二极管20的表面之间的距离。
当分光件10的高度范围为1微米至10微米,长度范围以及宽度范围均 为0.8微米至10微米时,此时,分光件10的体积较小,从而使得像素结构的体积较小,从而在将像素结构应用于图像传感器芯片上时,有利于降低图像传感器芯片的厚度。
例如,如图2所示,分光件10为四方体结构,光学结构层的高度为H1,H1的范围为1微米至10微米,光学结构层的长度为L1,L1的范围为0.8微米至10微米,光学结构层的宽度为D1,D1的范围为0.8微米至10微米。
另外,在实际应用中,分光件10的高度可以为1微米至10微米中任一数值,例如,分光件10的高度可以为1微米,还可以为2微米,还可以为4微米,还可以为8微米,还可以为10微米。分光件10的长度可以为0.8微米至10微米中任一数值,例如,分光件10的长度可以为0.8微米,还可以为2微米,还可以为4微米,还可以为8微米,还可以为10微米。分光件10的宽度可以为0.8微米至10微米中任一数值,例如,分光件10的宽度可以为0.8微米,还可以为2微米,还可以为4微米,还可以为8微米,还可以为10微米。
另外,在本申请实施例中,分光件10还可以为其他结构,比如,分光件10还可以由单层结构形成梯形结构,圆柱状结构,四棱柱结构等,对于分光件10的具体形状,本申请实施例在此不做限定。
在本申请实施例中,由于分光件10包括层叠设置的第一光学层11和第二光学层12,第一光学层11包括第一透光区和第二透光区,第二光学层12包括第三透光区和第四透光区。其中,第一透光区和第二透光区的透射率不同,第三透光区和第四透光区的透射率不同,在垂直于第一光学层的方向上,第一透光区和第三透光区的投影不重叠,因此,在入射光照射在分光件10上之后,入射光会穿过分光件10,且入射光会被分成多种不同波段的光束。由于分光件10朝向受光面,受光面包括多个受光区域21,因此,在入射光被分成多种不同波段的光束之后,不同波段的光束会分别照射在与光束相对应的受光区域21上。本申请实施例中,通过设置分光件10,分光件10可以将入射光分成多种不同波段的光束,从而使不同波段的光束分别照射在与光 束相对应的受光区域21,从而避免照射在受光区域21上的光束被滤光片200滤除部分光线,使得入射光的能量受到损失,从而可以提高受光区域21接收到的入射光能量,使得光电二极管20的转换效率更高。
本申请实施例提供了一种图像传感器芯片,该图像传感器芯片包括多个上述实施例中任一实施例中的像素结构,且多个像素结构紧密排布。
其中,图像传感器芯片包括设置面,多个像素结构在设置面上紧密排布,且每个像素结构的光电二极管均设置在设置面上。另外,当图像传感器芯片的设置面上紧密排布有多个像素结构时,在光线照射在图像传感器之后,光线首先照射在每个像素结构的分光件上,分光件将入射的光线分成多种不同波段的光束,从而使不同波段的光束分别照射在与光束相对应的受光区域,从而避免照射在受光区域上的光束被滤光片滤除部分光线,使得入射光的能量受到损失,从而可以提高受光区域接收到的入射光能量,使得光电二极管的转换效率更高,从而可以提高图像传感器芯片的转换效率提高。
需要说明的是,多个像素结构紧密排布指的是多个像素结构以相互邻接的方式在图像传感器的设置面上进行排布,即任一个像素结构均至少邻接一个另外的像素结构。
本申请实施例提供了一种摄像头模组,该摄像头模组包括上述实施例中的图像传感器。
其中,摄像头模组可以包括壳体、透镜组件、滤光片、电路板以及图像传感器,透镜组件以及滤光片均位于壳体中,且透镜组件与滤光片间隔设置,电路板设置在滤光片背离透镜组件的一侧,且图像传感器设置在电路板上,图像传感器位于壳体中,且图像传感器朝向滤光片。从而光线可以穿过透镜组件,之后光线照射在滤光片,之后穿过滤光片的光线会照射在图像传感器上,即穿过滤光片的光线会首先照射在分光件上,之后照射在光电二极管上,从而光电二极管将光线的光信号转换为电信号。
另外,在光线照射在分光件上,分光件将入射的光线分成多种不同波段的光束,从而使不同波段的光束分别照射在与光束相对应的受光区域,从而可以提高受光区域接收到的入射光能量,使得光电二极管的转换效率更高,从而可以提高图像传感器芯片的转换效率提高,最终使得摄像头模组的拍摄效果提高。
本申请实施例提供了一种电子设备,该电子设备包括壳体和上述实施例中的摄像头模组,摄像头模组的部分结构嵌设在壳体内。
在通过电子设备拍摄时,光线会穿过摄像头模组中的透光组件,之后光线照射在滤光片,之后穿过滤光片的光线便会照射在图像传感器上,即穿过滤光片的光线会首先照射在分光件上,之后照射在光电二极管上,从而光电二极管将光线的光信号转换为电信号。而分光件可以分光件将入射的光线分成多种不同波段的光束,从而使不同波段的光束分别照射在与光束相对应的受光区域,从而可以提高受光区域接收到的入射光能量,使得光电二极管的转换效率更高,从而可以提高图像传感器芯片的转换效率提高,最终使得摄像头模组的拍摄效果提高,从而可以提高电子设备的性能。
需要说明的是,本申请实施例中,电子设备包括但不限于手机、笔记本电脑、智能手表等。另外,摄像头模组可以为电子设备的前置摄像头,还可以为电子设备的后置摄像头,对此,本申请实施例在此不作限定。
需要说明的是,本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
尽管已描述了本申请实施例的可选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括可选实施例以及落入本申请实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体与另一个实体区分开来,而不一定要求或者暗示这些实体之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的物品或者终端设备中还存在另外的相同要素。
以上对本申请所提供的技术方案进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,同时,对于本领域的一般技术人员,依据本申请的原理及实现方式,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种像素结构,其中,所述像素结构包括:分光件和光电二极管;
    所述光电二极管包括受光面,所述受光面包括多个受光区域,所述分光件朝向所述受光面;
    所述分光件包括叠置的第一光学层和第二光学层,所述第一光学层包括第一透光区和第二透光区,所述第二光学层包括第三透光区和第四透光区;
    其中,所述第一透光区和所述第二透光区的透射率不同,所述第三透光区和所述第四透光区的透射率不同,在垂直于所述第一光学层的方向上,所述第一透光区和所述第三透光区的投影不重叠;入射光通过所述分光件形成不同波段的光束,且所述不同波段的光束分别被对应受光区域接收。
  2. 根据权利要求1所述的像素结构,其中,所述第一透光区包括多个第一光学单元,所述第二透光区包括多个第二光学单元,所述第一光学单元与所述第二光学单元的形状相同,大小相等,且所述第一光学单元与所述第二光学单元的透射率不同。
  3. 根据权利要求2所述的像素结构,其中,所述第一光学单元以及所述第二光学单元均为四棱柱结构。
  4. 根据权利要求3所述的像素结构,其中,所述四棱柱结构在任意方向的尺寸范围为10纳米~200纳米。
  5. 根据权利要求1所述的像素结构,其中,在所述入射光为可见光的情况下,所述入射光通过所述分光件形成三种不同波段的光束;
    在所述入射光包括可见光和不可见光的情况下,所述入射光通过所述分光件形成四种不同波段的光束。
  6. 根据权利要求1任一项所述的像素结构,其中,所述分光件的厚度范围为1微米至10微米,所述分光件的厚度为所述分光件背离所述光电二极管的表面与朝向所述光电二极管的表面之间的距离。
  7. 根据权利要求2所述的像素结构,其中,所述第一光学单元以及所述第二光学单元均由二氧化硅、氮化硅、二氧化钛或氮化镓中的一种或者多种制成。
  8. 一种图像传感器芯片,其中,所述图像传感器芯片包括多个权利要求1-7中任一项所述的像素结构,且多个所述像素结构紧密排布。
  9. 一种摄像头模组,其中,包括权利要求8所述的图像传感器芯片。
  10. 一种电子设备,其中,包括壳体和权利要求9所述的摄像头模组,所述摄像头模组的部分结构嵌设在所述壳体内。
PCT/CN2023/082081 2022-03-22 2023-03-17 像素结构、图像传感器芯片、摄像头模组及电子设备 WO2023179466A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210286358.X 2022-03-22
CN202210286358.XA CN114784029A (zh) 2022-03-22 2022-03-22 像素结构、图像传感器芯片、摄像头模组及电子设备

Publications (1)

Publication Number Publication Date
WO2023179466A1 true WO2023179466A1 (zh) 2023-09-28

Family

ID=82425122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082081 WO2023179466A1 (zh) 2022-03-22 2023-03-17 像素结构、图像传感器芯片、摄像头模组及电子设备

Country Status (2)

Country Link
CN (1) CN114784029A (zh)
WO (1) WO2023179466A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114784029A (zh) * 2022-03-22 2022-07-22 维沃移动通信有限公司 像素结构、图像传感器芯片、摄像头模组及电子设备
CN117395524A (zh) * 2023-12-11 2024-01-12 荣耀终端有限公司 一种图像传感器、摄像头模组、电子设备及显示装置
CN117471658A (zh) * 2023-12-27 2024-01-30 荣耀终端有限公司 光学镜头、摄像模组及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090316274A1 (en) * 2008-06-24 2009-12-24 Industrial Technology Research Institute Composite optical dividing device
US20160064448A1 (en) * 2014-08-28 2016-03-03 Samsung Electronics Co., Ltd. Image sensor having improved light utilization efficiency
CN107037519A (zh) * 2015-09-30 2017-08-11 三星电子株式会社 分色器结构及其制造方法、图像传感器及光学设备
US20210014394A1 (en) * 2019-07-09 2021-01-14 Samsung Electronics Co., Ltd. Meta-optical device and optical apparatus including the same
CN112701133A (zh) * 2019-10-23 2021-04-23 三星电子株式会社 图像传感器和包括图像传感器的电子设备
WO2021136469A1 (zh) * 2019-12-31 2021-07-08 华为技术有限公司 一种图像传感器、分光滤色器件及图像传感器的制备方法
CN114784029A (zh) * 2022-03-22 2022-07-22 维沃移动通信有限公司 像素结构、图像传感器芯片、摄像头模组及电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090316274A1 (en) * 2008-06-24 2009-12-24 Industrial Technology Research Institute Composite optical dividing device
US20160064448A1 (en) * 2014-08-28 2016-03-03 Samsung Electronics Co., Ltd. Image sensor having improved light utilization efficiency
CN107037519A (zh) * 2015-09-30 2017-08-11 三星电子株式会社 分色器结构及其制造方法、图像传感器及光学设备
US20210014394A1 (en) * 2019-07-09 2021-01-14 Samsung Electronics Co., Ltd. Meta-optical device and optical apparatus including the same
CN112701133A (zh) * 2019-10-23 2021-04-23 三星电子株式会社 图像传感器和包括图像传感器的电子设备
WO2021136469A1 (zh) * 2019-12-31 2021-07-08 华为技术有限公司 一种图像传感器、分光滤色器件及图像传感器的制备方法
CN114784029A (zh) * 2022-03-22 2022-07-22 维沃移动通信有限公司 像素结构、图像传感器芯片、摄像头模组及电子设备

Also Published As

Publication number Publication date
CN114784029A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
WO2023179466A1 (zh) 像素结构、图像传感器芯片、摄像头模组及电子设备
CN102714738B (zh) 固体摄像元件和摄像装置
US8593538B2 (en) Solid state imaging device
CN108074942B (zh) 光学感测器
EP2432019B1 (en) Imaging device and imaging apparatus
TW475334B (en) High light-sensing efficiency image sensor apparatus and method of making the same
KR100889976B1 (ko) 광 모듈과 이를 이용한 광 센서 및 그 제조방법
US20200363323A1 (en) Spectrometer
WO2022143535A1 (zh) 指纹模组及电子设备
WO2017118030A1 (zh) 光学指纹传感器模组
CN114518661A (zh) 一种显示面板及其制作方法、显示装置
CN101424761B (zh) 红外截止滤光片及使用该红外截止滤光片的镜头模组
TWI588980B (zh) 影像感測器以及影像擷取裝置
KR20220061175A (ko) 분광소자 어레이, 촬상소자 및 촬상장치
CN112558195A (zh) 光学片、摄像组件和电子设备
TW202119094A (zh) 攝像元件及攝像裝置
CN216356952U (zh) 成像模组及电子设备
JP7364066B2 (ja) 撮像素子及び撮像装置
WO2022079766A1 (ja) 撮像素子及び撮像装置
CN113596308A (zh) 图像传感器以及优化成像效果的方法
KR20220000365U (ko) 지문 감지 기능을 가지는 디스플레이 장치
CN116699748B (zh) 超表面分光模组、图像传感器、镜头模组及电子设备
CN216144976U (zh) 光谱滤波片结构和光学传感装置
CN217386086U (zh) 感光组件、成像系统及光学电子设备
WO2019063241A1 (en) IMAGE SENSOR COMPRISING PIXELS FOR PREVENTING OR REDUCING CROPBED EFFECT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773714

Country of ref document: EP

Kind code of ref document: A1