WO2023179175A1 - Procédé automatique d'extinction d'incendie pour ensemble générateur d'éolienne - Google Patents

Procédé automatique d'extinction d'incendie pour ensemble générateur d'éolienne Download PDF

Info

Publication number
WO2023179175A1
WO2023179175A1 PCT/CN2023/070368 CN2023070368W WO2023179175A1 WO 2023179175 A1 WO2023179175 A1 WO 2023179175A1 CN 2023070368 W CN2023070368 W CN 2023070368W WO 2023179175 A1 WO2023179175 A1 WO 2023179175A1
Authority
WO
WIPO (PCT)
Prior art keywords
fire extinguishing
temperature
signal
real
fire
Prior art date
Application number
PCT/CN2023/070368
Other languages
English (en)
Chinese (zh)
Inventor
杨旭升
冯达春
杨爱龙
赵勇
王武林
Original Assignee
华能新疆能源开发有限公司新能源东疆分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华能新疆能源开发有限公司新能源东疆分公司 filed Critical 华能新疆能源开发有限公司新能源东疆分公司
Publication of WO2023179175A1 publication Critical patent/WO2023179175A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/16Fire prevention, containment or extinguishing specially adapted for particular objects or places in electrical installations, e.g. cableways
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C37/00Control of fire-fighting equipment
    • A62C37/36Control of fire-fighting equipment an actuating signal being generated by a sensor separate from an outlet device
    • A62C37/38Control of fire-fighting equipment an actuating signal being generated by a sensor separate from an outlet device by both sensor and actuator, e.g. valve, being in the danger zone
    • A62C37/40Control of fire-fighting equipment an actuating signal being generated by a sensor separate from an outlet device by both sensor and actuator, e.g. valve, being in the danger zone with electric connection between sensor and actuator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to the technical field of unit fire extinguishing, and in particular to an automatic fire extinguishing method for wind turbine units.
  • the main equipment of the 3MW wind turbine is at the top of the tower, 90m above the ground.
  • the existing firefighting ladder truck cannot reach the ignition point, making it difficult to put out the fire.
  • most wind farms are located on the edge, making it impossible for personnel to perform timely rescue operations.
  • the probability of fire in the unit increases year by year.
  • a single wind turbine unit is equipped with two hand-held fire extinguishers. The value of a single wind turbine unit is high. Once a fire occurs, it will cause huge property losses and loss of power generation.
  • the wind turbine unit As power generation equipment that operates in the wild for a long time, it faces adverse conditions such as lightning strikes, high and low temperatures on the outside, and internal risks such as aging of electromechanical components and performance degradation, all of which can lead to fires.
  • the current automatic fan fire extinguishing device adopts the method of installing a set of linkage equipment inside the cabin and adopts a single control module.
  • Most of the filling materials in the fire extinguishing equipment are ultra-fine dry powder. When extinguishing the fire, it can isolate oxygen and chemical reactions through physical coverage. Interrupt the combustion reaction chain and achieve instant fire extinguishing effect.
  • dry powder fire extinguishers have a greater impact on expensive precision instruments such as inverter control boards in electrical cabinets. If dry powder fire extinguishing agents are not cleaned up in time after extinguishing the fire, residual dry powder may occur. Secondary fire or explosion phenomenon, thus causing unnecessary losses to the unit.
  • the purpose of the present invention is to propose an automatic fire extinguishing method for wind turbines in order to solve the shortcomings existing in the prior art.
  • An automatic fire extinguishing method for wind turbines the steps are as follows:
  • the temperature signals at other ends are compared to obtain a fire extinguishing implementation signal and act on the equipment end.
  • the process of collecting real-time temperature signals of the front-end monitoring area of the dry powder fire extinguishing device includes the following steps:
  • the real-time detected temperature callback information based on the callback is stored to obtain a real-time temperature signal.
  • the steps of reading the local database and obtaining the preset fire extinguishing temperature numerical information in the local database include:
  • Integrate temperature processing systems such as sensors with terminal equipment
  • the specific steps of comparing the temperature signals of other ends based on the determination signal to obtain the fire extinguishing implementation signal and acting on the equipment end include;
  • the fire extinguishing signal at the end of the fire extinguishing device in the engine room control cabinet at the corresponding point is sent;
  • the fire extinguishing equipment receives the fire extinguishing signal to carry out fire extinguishing work at precise locations.
  • An automatic fire extinguishing system for wind turbines including:
  • Temperature collection module collects real-time temperature signals in the front-end monitoring area of the dry powder fire extinguishing device
  • Real-time temperature numerical identification module performs data algorithm identification on the real-time temperature signal to obtain real-time temperature numerical information
  • Preset fire extinguishing temperature retrieval module reads the local database and obtains the preset fire extinguishing temperature numerical information in the local database;
  • Temperature comparison module compares the real-time temperature numerical information with the preset fire extinguishing temperature numerical information to obtain comparison result information;
  • Comparison result determination module performs signal conversion on the comparison result information to obtain a comparison signal, and determines the occurrence of fire based on the comparison signal to obtain a determination signal;
  • Fire extinguishing implementation module Based on the determination signal, the temperature signals of other terminals are compared to obtain the fire extinguishing implementation signal and act on the equipment end.
  • the temperature collection module includes:
  • Temperature detection unit used to send temperature detection signals to the mechanical temperature-sensing magnetic power generation element at the front end of the fire extinguishing device;
  • Detection temperature callback unit used for data callback of the temperature detected in real time by the temperature-sensing magnetic power generation element
  • Real-time temperature signal acquisition and storage unit used to store the real-time detected temperature callback information of the callback to obtain a real-time temperature signal.
  • the preset fire extinguishing temperature acquisition module includes:
  • Equipment connection unit used to connect temperature processing systems such as sensors and terminal equipment;
  • Value transfer unit used to access data such as multiple analog quantities, switching quantities, relay signals, etc.
  • GPRS remote center connection unit used to connect on-site data to the remote control center through the GPRS wireless module
  • Preset fire extinguishing value sending and storage unit used to send preset fire extinguishing value information to the remote database server in real time and store it in the database.
  • the fire extinguishing implementation module includes:
  • Fire location determination unit used to receive the determination signal and compare the temperature with other line ends to determine the fire occurrence range and obtain the location signal;
  • Fire extinguishing signal sending unit used to send out fire extinguishing signals at the end of the fire extinguishing device in the engine room control cabinet at the corresponding point;
  • Fire extinguishing equipment operation unit used for fire extinguishing equipment to receive fire extinguishing signals to carry out fire extinguishing work at precise locations.
  • each fire-extinguishing unit is independently set up, controlled individually, fed back independently, and is independent of each other through real-time temperature collection and comparison.
  • Fire-extinguishing equipment can be configured according to different needs to accurately extinguish fires and avoid secondary pollution of precision equipment, thus ensuring Prompt power outage and fire extinguishing work when a fire occurs, It can accurately extinguish unit equipment fires, effectively prevent the fire from expanding, prevent the fire extinguishing medium from causing incineration to other equipment when a fire occurs, and reduce losses when a unit fire occurs.
  • Figure 1 is a schematic diagram of the steps of an automatic fire extinguishing system for wind turbines proposed by the present invention.
  • an automatic fire extinguishing method for wind turbines has the following steps:
  • S1 Collect the real-time temperature signal of the front-end monitoring area of the dry powder fire extinguishing device
  • S101 Send a temperature detection signal to the mechanical temperature-sensing magnetic power generation element at the front end of the fire extinguishing device;
  • S102 Perform data callback on the temperature detected in real time by the temperature-sensing magnetic power generation element
  • S103 Store the real-time detected temperature callback information based on the callback to obtain a real-time temperature signal
  • S2 Perform data algorithm identification on the real-time temperature signal to obtain real-time temperature numerical information
  • S302 On-site access to multiple analog, switch, relay signals and other data
  • S304 Send the preset fire extinguishing value information to the remote database server in real time and store it in the database.
  • the comparison result of the two numbers is the result of the comparison of the high-order bits.
  • the comparison result of the two numbers is determined by the result of the comparison of the low bits.
  • This circuit utilizes the output of a one-bit numerical comparator as an intermediate result.
  • the principle it is based on is that if the high bits of the two digits A 1 , A 0 and B 1 , B 0 are not equal, the comparison result of the high bits is the comparison result of the two numbers, regardless of the low bits.
  • S601 Receive the determination signal and compare the temperature with other line ends to determine the fire occurrence range and obtain the position signal;
  • S603 fire extinguishing equipment receives fire extinguishing signals to carry out fire extinguishing work at precise locations;
  • An automatic fire extinguishing system for wind turbines including:
  • Temperature collection module collects real-time temperature signals in the front-end monitoring area of the dry powder fire extinguishing device
  • Real-time temperature numerical identification module performs data algorithm identification on the real-time temperature signal to obtain real-time temperature numerical information
  • Preset fire extinguishing temperature retrieval module reads the local database and obtains the preset fire extinguishing temperature numerical information in the local database;
  • Temperature comparison module compares the real-time temperature numerical information with the preset fire extinguishing temperature numerical information to obtain comparison result information;
  • the temperature sensor used in the process is a current output temperature sensor with a power supply voltage range of 3 ⁇ 30V, an output current of 223uA ⁇ 423uA, and a sensitivity of 1uA/°C.
  • the sampling resistor R When the sampling resistor R is connected in series in the circuit, the voltage across R can be used as Output voltage, the resistance value of R should be small to ensure that the voltage at both ends of the temperature sensor is not less than 3V.
  • the output current signal transmission distance of the temperature sensor is more than 1km, up to 20MQ, and there is no need to consider switch selection or CMOS multiplexing. The error caused by the additional resistance introduced by the device can be applied to the control of multi-point temperature measurement and remote temperature measurement.
  • Comparison result determination module performs signal conversion on the comparison result information to obtain a comparison signal, and determines the occurrence of fire based on the comparison signal to obtain a determination signal;
  • Fire extinguishing implementation module Based on the determination signal, the temperature signals of other terminals are compared to obtain the fire extinguishing implementation signal and act on the equipment end.
  • the temperature acquisition module includes:
  • Temperature detection unit used to send temperature detection signals to the mechanical temperature-sensing magnetic power generation element at the front end of the fire extinguishing device;
  • Detection temperature callback unit used for data callback of the temperature detected in real time by the temperature-sensing magnetic power generation element
  • Real-time temperature signal acquisition and storage unit used to store the real-time detected temperature callback information of the callback to obtain a real-time temperature signal.
  • the preset fire extinguishing temperature retrieval module includes:
  • Equipment connection unit used to connect temperature processing systems such as sensors with terminal equipment
  • numerical transfer unit used to access data such as multi-channel analog quantities, switching quantities, relay signals
  • GPRS remote center connection unit used to connect on-site data to the remote control center through the GPRS wireless module
  • Preset fire extinguishing value sending and storage unit used to send preset fire extinguishing value information to the remote database server in real time and store it in the database.
  • the fire extinguishing implementation module includes:
  • Fire location determination unit used to receive the determination signal and compare the temperature with other line ends to determine the fire occurrence range and obtain the location signal;
  • Fire extinguishing signal sending unit used to send out fire extinguishing signals at the end of the fire extinguishing device in the engine room control cabinet at the corresponding point;
  • Fire extinguishing equipment operation unit used for receiving fire extinguishing signals at the fire extinguishing equipment end to perform fire extinguishing work at precise locations;

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Wind Motors (AREA)
  • Fire Alarms (AREA)

Abstract

Procédé automatique d'extinction d'incendie pour ensemble générateur d'éolienne. Le procédé comprend les étapes consistant : à collecter un signal de température en temps réel d'une zone de surveillance au niveau d'une extrémité avant d'un dispositif extincteur d'incendie à poudre sèche ; à réaliser une reconnaissance par algorithme de données sur le signal de température en temps réel, de façon à obtenir des informations de valeur de température en temps réel ; à lire une base de données locale pour acquérir des informations de valeur de température d'extinction d'incendie prédéfinies ; à comparer les informations de valeur de température d'extinction d'incendie prédéfinies avec les informations de valeur de température en temps réel, de façon à obtenir des informations d'un résultat de comparaison ; à effectuer une conversion de signal sur les informations du résultat de comparaison, de façon à obtenir un signal de comparaison et à déterminer une condition de génération d'incendie sur la base du signal de comparaison, de façon à obtenir un signal de détermination ; et à comparer le signal de détermination avec un signal de température à une autre extrémité, de façon à obtenir un signal de mise en œuvre d'extinction d'incendie, et à l'appliquer à une extrémité du dispositif. L'invention concerne en outre un système automatique d'extinction d'incendie pour un ensemble générateur d'éolienne. Un procédé de collecte et de comparaison de température en temps réel est effectué et chaque unité d'extinction d'incendie est agencée indépendamment et commandée séparément et effectue un retour d'informations séparé, de telle sorte qu'un dispositif extincteur d'incendie peut être configuré selon différentes exigences, ce qui permet de réaliser une extinction d'incendie précise, d'empêcher efficacement un incendie de se propager et d'éliminer l'impact de l'incinération d'une substance d'extinction d'incendie sur d'autres dispositifs lorsqu'un incendie se produit.
PCT/CN2023/070368 2022-03-25 2023-01-04 Procédé automatique d'extinction d'incendie pour ensemble générateur d'éolienne WO2023179175A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210310090.9A CN114652981A (zh) 2022-03-25 2022-03-25 一种风电机组自动灭火方法
CN202210310090.9 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023179175A1 true WO2023179175A1 (fr) 2023-09-28

Family

ID=82032894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/070368 WO2023179175A1 (fr) 2022-03-25 2023-01-04 Procédé automatique d'extinction d'incendie pour ensemble générateur d'éolienne

Country Status (2)

Country Link
CN (1) CN114652981A (fr)
WO (1) WO2023179175A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114652981A (zh) * 2022-03-25 2022-06-24 华能新疆能源开发有限公司新能源东疆分公司 一种风电机组自动灭火方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103830866A (zh) * 2013-09-10 2014-06-04 烟台启能电子科技有限公司 一种电控柜火情检测预防控制系统及其控制方法
CN104978821A (zh) * 2015-07-30 2015-10-14 国网山东省电力公司经济技术研究院 一种智能无线机柜火灾监控系统
JP2016077333A (ja) * 2014-10-10 2016-05-16 日本ドライケミカル株式会社 風力発電装置の消火システム
CN109035664A (zh) * 2018-08-08 2018-12-18 湖北河海科技发展有限公司 基于葵花气象卫星的森林火灾监测方法及平台
CN109087474A (zh) * 2018-09-28 2018-12-25 广州市盟果科技有限公司 一种基于大数据的轨道交通安全维护方法
CN109683060A (zh) * 2019-01-14 2019-04-26 国网江西省电力有限公司南昌供电分公司 一种配电网线路状态监测方法及系统
CN109859444A (zh) * 2017-12-31 2019-06-07 湖南汇博电子科技股份有限公司 应急设备控制方法、装置、可读存储介质及控制终端
CN209848181U (zh) * 2019-01-22 2019-12-27 深圳市源烯科技有限公司 一种风力发电机组全自动灭火系统
CN110812761A (zh) * 2019-11-27 2020-02-21 长沙紫宸科技开发有限公司 一种利用火灾报警网络预定位机器人快速响应的灭火系统
CN210813612U (zh) * 2019-07-05 2020-06-23 深圳市源烯科技有限公司 一种电气柜自动灭火系统
CN212491236U (zh) * 2020-08-21 2021-02-09 山东国泰科技有限公司 一种基于风电机舱无源超细干粉自动灭火系统
CN113593172A (zh) * 2021-07-27 2021-11-02 中船重工远舟(北京)科技有限公司 一种船舶火灾监控方法、装置及介质
CN113744108A (zh) * 2021-11-04 2021-12-03 聊城中赛电子科技有限公司 基于大数据的智慧消防控制方法和系统
CN114093112A (zh) * 2022-01-18 2022-02-25 南京光蓝物联网科技有限公司 基于分布式光纤传感技术的森林火灾多防线实时监测系统
CN114652981A (zh) * 2022-03-25 2022-06-24 华能新疆能源开发有限公司新能源东疆分公司 一种风电机组自动灭火方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102526913A (zh) * 2011-12-12 2012-07-04 上海东锐风电技术有限公司 风电机舱消防系统
CN104183077A (zh) * 2014-07-29 2014-12-03 新疆金风科技股份有限公司 风力发电机组的消防控制系统和消防控制方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103830866A (zh) * 2013-09-10 2014-06-04 烟台启能电子科技有限公司 一种电控柜火情检测预防控制系统及其控制方法
JP2016077333A (ja) * 2014-10-10 2016-05-16 日本ドライケミカル株式会社 風力発電装置の消火システム
CN104978821A (zh) * 2015-07-30 2015-10-14 国网山东省电力公司经济技术研究院 一种智能无线机柜火灾监控系统
CN109859444A (zh) * 2017-12-31 2019-06-07 湖南汇博电子科技股份有限公司 应急设备控制方法、装置、可读存储介质及控制终端
CN109035664A (zh) * 2018-08-08 2018-12-18 湖北河海科技发展有限公司 基于葵花气象卫星的森林火灾监测方法及平台
CN109087474A (zh) * 2018-09-28 2018-12-25 广州市盟果科技有限公司 一种基于大数据的轨道交通安全维护方法
CN109683060A (zh) * 2019-01-14 2019-04-26 国网江西省电力有限公司南昌供电分公司 一种配电网线路状态监测方法及系统
CN209848181U (zh) * 2019-01-22 2019-12-27 深圳市源烯科技有限公司 一种风力发电机组全自动灭火系统
CN210813612U (zh) * 2019-07-05 2020-06-23 深圳市源烯科技有限公司 一种电气柜自动灭火系统
CN110812761A (zh) * 2019-11-27 2020-02-21 长沙紫宸科技开发有限公司 一种利用火灾报警网络预定位机器人快速响应的灭火系统
CN212491236U (zh) * 2020-08-21 2021-02-09 山东国泰科技有限公司 一种基于风电机舱无源超细干粉自动灭火系统
CN113593172A (zh) * 2021-07-27 2021-11-02 中船重工远舟(北京)科技有限公司 一种船舶火灾监控方法、装置及介质
CN113744108A (zh) * 2021-11-04 2021-12-03 聊城中赛电子科技有限公司 基于大数据的智慧消防控制方法和系统
CN114093112A (zh) * 2022-01-18 2022-02-25 南京光蓝物联网科技有限公司 基于分布式光纤传感技术的森林火灾多防线实时监测系统
CN114652981A (zh) * 2022-03-25 2022-06-24 华能新疆能源开发有限公司新能源东疆分公司 一种风电机组自动灭火方法

Also Published As

Publication number Publication date
CN114652981A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
CN101102041B (zh) 具有自行监控功能的电涌保护器
CN104124757B (zh) 高海拔光伏电站电网故障模拟检测设备后台操作监控系统
CN103066703B (zh) 一种基于物联网的智能spd设备
WO2023179175A1 (fr) Procédé automatique d'extinction d'incendie pour ensemble générateur d'éolienne
CN110061473B (zh) 一种基于压力单量信息的变压器数字式保护装置及方法
CN201749908U (zh) 蓄电池远程维护系统
CN201075716Y (zh) 在线蓄电池组管理装置
CN204479670U (zh) 一种电气设备故障检测系统
CN204089348U (zh) 一种配电室远程在线智能安全运维系统
CN113654587A (zh) 一种风电场环境数据监测装置
CN110057489B (zh) 一种基于瞬态油压特征的电力变压器在线监测装置及方法
CN206402266U (zh) 基于物联网的高低压开关柜监控系统
CN201765669U (zh) 总线式工业可燃气体报警器
CN101359839A (zh) 在线蓄电池组管理装置及管理方法
CN215868090U (zh) 一种基于物联网的电气火灾监测系统
CN202814563U (zh) 输电线路温度实时监测与预警终端
CN202677655U (zh) 一种用于机舱火警监测与消防联动控制的模拟试验装置
CN115394029A (zh) 一种森林火灾预警系统及方法
CN210572215U (zh) 一种换流站六氟化硫气体密度在线监测管理系统
CN110112706B (zh) 一种基于压力全量信息的变压器数字式保护装置及方法
CN208722035U (zh) 一种变电站在线智能监测系统
CN206433026U (zh) 基于嵌入式Web服务器变电站远程测温智能预警系统
Liu Application research of computer monitoring system based on ubiquitous power Internet of things in substation
CN207198256U (zh) 一种低压漏电保护器远程不停电自动测试系统
CN201637787U (zh) 浪涌保护器的在线检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773427

Country of ref document: EP

Kind code of ref document: A1