WO2023178917A1 - 一种地表旋转电磁场产生装置 - Google Patents

一种地表旋转电磁场产生装置 Download PDF

Info

Publication number
WO2023178917A1
WO2023178917A1 PCT/CN2022/114172 CN2022114172W WO2023178917A1 WO 2023178917 A1 WO2023178917 A1 WO 2023178917A1 CN 2022114172 W CN2022114172 W CN 2022114172W WO 2023178917 A1 WO2023178917 A1 WO 2023178917A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal transmitter
electrode
signal
electromagnetic field
metal electrodes
Prior art date
Application number
PCT/CN2022/114172
Other languages
English (en)
French (fr)
Inventor
张一鸣
王路
苏瑞
王旭红
高俊侠
Original Assignee
北京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210297624.9A external-priority patent/CN114755727B/zh
Priority claimed from CN202220647411.XU external-priority patent/CN218630214U/zh
Priority claimed from CN202220656568.9U external-priority patent/CN218350517U/zh
Priority claimed from CN202210297666.2A external-priority patent/CN115079275B/zh
Application filed by 北京工业大学 filed Critical 北京工业大学
Publication of WO2023178917A1 publication Critical patent/WO2023178917A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices

Definitions

  • the invention relates to a rotating electromagnetic field generating device and belongs to the technical field of geophysical exploration.
  • Electromagnetic detection technology in geophysical exploration technology is one of the important means to achieve the above exploration tasks.
  • electromagnetic detection technologies mainly include: induced polarization method, spectrum induced electromagnetic method, magnetotelluric method, controlled source audio audio electromagnetic method, wide-field electromagnetic method and transient electromagnetic method, etc. These methods are mainly through observation and research of artificial or The natural alternating electromagnetic field is distributed in space or changes in time to achieve certain exploration purposes.
  • the natural electromagnetic method cannot be changed.
  • the electromagnetic field established by artificial sources has a single direction.
  • the data error in the near zone and transition zone of detection is large and cannot be used.
  • remote area detection due to the single direction and limited intensity of the electromagnetic field, the detection accuracy and drilling success rate are limited.
  • the present invention proposes a surface rotating electromagnetic field generating device, which has the characteristics of adjustable electromagnetic field intensity, omnidirectional survey, and high positioning accuracy.
  • the transmitting electrodes can be arranged in a circular manner, but considering that the transmitter has a large transmitting power, the area around it must be maximized.
  • the electromagnetic interference will also increase, which is not conducive to subsequent data analysis. For this reason, a circular staggered polar arrangement and adjacent arrangement are used to Reduce the impact of electromagnetic interference.
  • the transmitter emits a strong primary electromagnetic field to the land or ocean through the transmitting electrode. If there are mineral resources underground, it will stimulate the generation of a secondary electromagnetic field.
  • the receiving coil collects the electromagnetic field in the survey area in real time.
  • the signal considering the characteristics of the secondary electromagnetic field attenuating in different directions and at different times, carries information about underground resources (such as magnetic permeability, dielectric), and because the transmitting electrode connected to the signal transmitter carries azimuth information, it can be adjusted by
  • the transmission power of several signal transmitters changes the intensity and shape of the electromagnetic field formed in a certain direction. Then the collected data is subjected to geophysical inversion calculations to determine the properties of the suspicious material and its location.
  • a surface rotating electromagnetic field generating device which is characterized in that it includes four parts: a metal electrode, a signal transmitter, a surface conductive medium and a wire.
  • M metal electrodes, L signal transmitters, a surface conductive medium and a plurality of wires form a rotating assembly.
  • the electrodes and signal transmitters are arranged in a circular staggered polar distribution pattern or a circular adjacent distribution pattern, and all M electrodes are buried in the surface conductive medium.
  • the signal generator emits the same frequency according to a specific phase sequence control scheme.
  • the circular distribution method of metal electrodes and signal transmitters is: M metal electrodes need to be evenly distributed in counterclockwise or clockwise order on the circumference with the midpoint of the detection area as the center and R as the radius (R>0 ).
  • the circular staggered pole distribution method is: the positive electrode of the first signal transmitter is connected to the first metal electrode, and the negative electrode of the first signal transmitter is connected to the first metal electrode.
  • the metal electrodes (2) are connected, and the positive electrode of the i+1th signal transmitter is connected to the metal electrodes are connected, the negative electrode of the i+1th signal transmitter is connected to the i+1th metal electrode, the positive electrode of the i+2th signal transmitter is connected to the i+2th metal electrode, and the i+2th The negative pole of the signal transmitter is connected to the connected to metal electrodes,
  • the phase sequence control scheme of the signal transmitter is: after arranging L signal transmitters, a sine wave of the same frequency is emitted, where the phase emitted by the i-th signal transmitter is
  • the invention is a surface rotating electromagnetic field generating device that can determine the specific location of suspicious substances, effectively reducing the difficulty of determining the location of suspicious substances. It adopts two specific electrode distribution arrangements to improve the efficiency of rotating electromagnetic field survey, in which circular interleaving is used.
  • the antipolar arrangement can reduce the impact of electromagnetic interference.
  • the circular adjacent arrangement is used to improve survey efficiency and at the same time, by adjusting the emission
  • the voltage on the electrode can adjust the electromagnetic field focus position and electromagnetic field intensity to improve the identification accuracy of suspicious substances.
  • FIG. 1 Schematic diagram of circular staggered opposite pole distribution metal electrodes
  • Metal electrode 2-1, first metal electrode, 2-2, second metal electrode, 2-3, third metal electrode, 2-4, fourth metal electrode, 2-5, fifth metal Electrode, 2-6, sixth metal electrode, 2-7, seventh metal electrode, 2-8, eighth metal electrode, 2-9, ninth metal electrode, 2-10, tenth metal electrode, 2-11 , Eleventh metal electrode, 2-12, Twelfth metal electrode, 3.
  • Surface conductive medium 5. Wire.
  • a surface rotating electromagnetic field generating device includes four parts: metal electrodes, signal transmitters, surface conductive media and wires.
  • the metal electrodes and signal transmitters The generators are arranged according to two specific distribution methods, and all M electrodes are buried in the surface conductive medium.
  • the signal generator emits sine waves or square waves of the same frequency according to a specific phase sequence control scheme.
  • the metal electrodes selected in this embodiment are an alloy material. There are six metal electrodes, three signal transmitters, the surface conductive medium is land, and the radius R is set to 2 meters for explanation, but it does not limit the invention.
  • the metal electrodes can be selected from other types of metals. The number of metal electrodes and signal transmitters can be adjusted according to actual needs. The radius R can be adjusted according to the actual survey area.
  • the surface conductive medium can be ocean or earth.
  • the rotating electromagnetic field generating device generally includes three parts: circular staggered pole distribution emission, position limiting, and phase sequence control scheme. First, determine the size of the survey area to be 2 meters, and then use the signal transmitter as a unit to connect two wires from the positive and negative electrodes, and weld a metal electrode to the other end of each wire.
  • Figure 1 illustrates the implementation of the circular staggered polar distribution emission scheme.
  • the circular staggered pole distribution scheme is: the six metal electrodes used need to be evenly distributed in counterclockwise or clockwise order on a circle with the center point of the detection area as the center and a radius of 2 meters.
  • the first The positive electrode of the signal generator 3-1 is connected to the first metal electrode 2-1
  • the negative electrode of the first signal generator 3-1 is connected to the fourth metal electrode 2-4
  • the positive electrode of the second signal generator 3-2 is connected to the fourth metal electrode 2-4.
  • the five metal electrodes 2-5 are connected
  • the negative electrode of the second signal generator 3-2 is connected to the second metal electrode 2-2
  • the positive electrode of the third signal generator 3-3 is connected to the third metal electrode 2-3
  • the third The negative electrode of the signal generator 3-3 is connected to the sixth metal electrode 2-6.
  • the limit part is as follows: after the six metal electrodes are arranged in a staggered pole distribution pattern, they are all buried 1 meter above the ground.
  • the phase sequence control part is: after arranging three signal transmitters, the sine wave of the same frequency is transmitted. Among them, the phase transmitted by the first signal transmitter 3-1 is 0rad, and the phase transmitted by the second signal transmitter 3-2 for The phase transmitted by the third signal transmitter 3-3 is
  • the metal electrodes selected in this embodiment are an alloy material. There are twelve metal electrodes, six signal transmitters, the surface conductive medium is land, and the radius R is set to 2 meters for explanation, but this does not limit the invention. , the metal electrodes used can be selected from other types of metals, the number of metal electrodes and signal transmitters can be adjusted according to actual needs, the radius R can be adjusted according to the actual survey area, and the surface conductive medium can be ocean or earth.
  • the rotating electromagnetic field generating device generally includes three parts: a circular adjacent distribution mode, a position limiter, and a phase sequence control scheme. First, determine the size of the survey area to be 2 meters, and then use the signal transmitter as a unit to connect two wires from the positive and negative electrodes, and weld a metal electrode to the other end of each wire.
  • Figure 4 illustrates the circular adjacent distributed emission scheme implemented.
  • the circular adjacent distribution scheme is as follows: the twelve metal electrodes used must be evenly distributed in counterclockwise or clockwise order on a circle with the center point of the detection area as the center and a radius of 2 meters.
  • the first metal electrode 2-1 connected to the positive electrode of the first signal transmitter 3-1 is placed under the water surface or underground at any point on a circle with a radius of 2 meters, marked as 1; 1 is At the starting point, rotate 30° clockwise and place the second metal electrode 2-2 connected to the negative electrode of the first signal transmitter 3-1, marked 2; rotate it 30° clockwise and place the second signal transmitter 3- 2.
  • the sixth metal electrode 2-6 connected to the negative electrode is marked as 6; rotate 30° clockwise and place the seventh metal electrode 2-7 connected to the positive electrode of the fourth signal transmitter 3-4, marked as 7; Then rotate 30° clockwise and place the eighth metal electrode 2-8 connected to the negative electrode of the fourth signal transmitter 3-4, marked 8; rotate it another 30° clockwise and place the positive electrode of the fifth signal transmitter 3-5.
  • the ninth metal electrode 2-9 connected to the negative electrode of the fifth signal transmitter 3-5 is marked as 9; then rotate 30° clockwise and place the tenth metal electrode 2-10 connected to the negative electrode of the fifth signal transmitter 3-5, marked as 10; and then Rotate 30° clockwise and place the eleventh metal electrode 2-11 connected to the positive electrode of the sixth signal transmitter 3-6, marked as Then rotate 30° clockwise and place the twelfth metal electrode 2-12 connected to the negative electrode of the sixth signal transmitter 3-6, marked as
  • the limiting part is: after the twelve metal electrodes are arranged in an adjacent distribution pattern, they are all buried 1 meter above the ground.
  • the phase sequence control part is: after arranging 6 signal transmitters, a sine wave of the same frequency is transmitted, among which the first signal transmitter, the second signal transmitter, the third signal transmitter, the fourth signal transmitter, The initial phases of the fifth signal transmitter and the sixth signal transmitter are set to 0°, 60°, 120°, 180°, 240°, and 300° in sequence.
  • the transmission parameters of all signal transmitters are first set, and the area is surveyed as a whole and the data is recorded. Through the survey, it is possible to know in which sector the suspicious material is located. However, It is impossible to locate the exact location. Therefore, select a signal transmitter, adjust the transmission parameters of the selected signal transmitter, survey the area again, and record the data. After this survey, a new sector can be obtained. Through comparative analysis, the overlapping portion of the two sectors is obtained. This overlapping portion is the specific location of the suspicious substance.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种地表旋转电磁场产生装置,包括金属电极(2)、信号发射器(3)、地表导电介质(4)和导线(5)。旋转电磁场产生装置按照两种特定的方式排布:圆形交错对极排布和圆形相邻排布,导线(5)和金属电极(2)焊接连接,金属电极(2)埋入地表导电介质(4)中且均匀分布在探测区域边缘上,每根导线(5)连通相应的信号发射器(3),发射同一频率下不同相序的正弦波或方波,以产生磁场强度形状可调的旋转电磁场。

Description

一种地表旋转电磁场产生装置 技术领域
本发明涉及一种旋转电磁场产生装置,属于地球物理勘探技术领域。
背景技术
随着社会经济的不断发展,人类对资源与能源的需求也在不断增加。我国的在采资源正在枯竭,供需矛盾不断加大,对外依存度也较高。因此,为了保证国民经济的健康发展,需要对浅部矿产资源的分布进行更加精细的探测,同时加大深部矿、隐伏矿的探测与开发。地球物理勘探技术中的电磁探测技术,是实现上述勘探任务的重要手段之一。
目前,电磁探测技术主要包括:激发极化法、频谱激电法、大地电磁法、可控源音频大地电磁法、广域电磁法和瞬变电磁法等,这些方法主要通过观测和研究人工或天然的交变电磁场随空间分布规律或随时间的变化规律,以达到某些勘查目的。
上述电磁方法中,天然的电磁法无法改变,人工源建立的电磁场方向单一,在探测的近区和过渡区数据误差大,无法使用。而在远区的探测中,由于电磁场方向单一、强度有限,使得探测的准确性与打钻的成功率受到限制。
发明内容
针对国内外现有地表勘探装置的弊端,本发明提出了一种地表旋转电磁场产生装置,具有电磁场强度可调、全方位勘测、定位精度高的特点。在实际勘测时,为提升勘测效率,就必须使得在有限的电极数量下,所能勘测的面积最大化,为此发射电极可采用圆形排列,但又考虑到发射机发射功率大,其周围存在比较大的电磁干扰,随着发射机数量的增加,电磁干扰也会随之增大,不利于后续的数据分析,为此采用圆形交错对极排布以及相邻排布的方式,来降低电磁干扰的影响。
勘测时,发射机通过发射电极,向陆地或者海洋发射较强的一次电磁场,如果地底下存有矿产资源时,就会激发产生二次电磁场,接收线圈在发射期间,实时采集勘测区域内的电磁场信号,考虑到二次电磁场不同方向、不同时间衰减的特性,搭载着地下资源的信息(如磁导率、电介质),并且由于信号发射器连接的发射电极,搭载着方位信息,可以通过调节其中几个信号发射器的发射功率, 改变在某个方位上形成的电磁场强度和形状,之后将采集到的数据进行地球物理反演计算,就能判定出可疑物质的属性及其所在的方位。
具体技术方案如下:
一种地表旋转电磁场产生装置,其特征在于:包括金属电极、信号发射器、地表导电介质和导线四个部分,M根金属电极、L个信号发射器、地表导电介质和多根导线组建成旋转电磁场产生装置(其中:M=4n+2,n、L均为正整数,且L≥3,n≥1),一个信号发射器配置两根金属电极,数量关系上应满足M=2L,金属电极和信号发射器按照圆形交错对极分布方式或圆形相邻分布方式进行排列,并将M根电极全部埋入地表导电介质中,信号发生器按照特定的相序控制方案,发射同一频率的正弦波或方波,地表导电介质为陆地或者海洋,在对某一个区域勘测时,如果要定位可疑物质方位时,可进行如下操作,首先设定L个信号发射器的发射参数,进行整体的勘测并记录数据,此次勘测可以获知可疑物质处在哪个扇区里,但不能精确定位在哪个位置,为此之后从中选取k个信号发射器,调节选中的k个信号发射器的发射参数,再次对该区域勘测,并记录数据,此次勘测可以获得一个新的扇区,通过对比分析这两个扇区重合的部分,这个部分就是可疑物质具体所在的位置,其中k=1、…、L-1。
金属电极和信号发射器的圆形分布方式为:M根金属电极需按逆时针或者顺时针的顺序,依次均匀的分布在以探测区域中点为圆心,R为半径的圆周上(R>0)。其中圆形交错对极分布方式为:第1个信号发射器的正极与第1个金属电极相连,第1个信号发射器的负极与第
Figure PCTCN2022114172-appb-000001
个金属电极(2)相连,第i+1个信号发射器的正极与第
Figure PCTCN2022114172-appb-000002
个金属电极相连,第i+1个信号发射器的负极与第i+1个金属电极相连,第i+2个信号发射器的正极与第i+2个金属电极相连,第i+2个信号发射器的负极与第
Figure PCTCN2022114172-appb-000003
个金属电极相连,
Figure PCTCN2022114172-appb-000004
Figure PCTCN2022114172-appb-000005
圆形相邻分布方式为:第i个信号发射器的正极与第2i-1个金属电极相连,第i个信号发射器的负极与第2i个金属电极相连,i=1、…、L。
信号发射器的相序控制方案为:在排布完成L个信号发射器后,发射同一频 率的正弦波,其中,第i个信号发射器发射的相位为
Figure PCTCN2022114172-appb-000006
有益效果:
本发明一种地表旋转电磁场产生装置,能确定可疑物质所处具体方位,有效降低了确定可疑物质方位的难度;采用两种特定的电极分布排列,提升了旋转电磁场勘测效率,其中采用圆形交错对极排列可以降低电磁干扰的影响,通过调节发射电极上的电压,可以调整旋转电磁场大小和形状,判定可疑物质属性和所在方位;采用圆形相邻排列,提升勘测效率的同时,通过调节发射电极上的电压,可以调整电磁场聚焦位置和电磁场强度,提高对可疑物质的识别精度。
附图说明
图1、圆形交错对极分布发射方案;
图2、圆形交错对极分布金属电极示意图;
图3、圆形交错对极分布信号发生器简易图;
图4、圆形相邻分布发射方案;
图5、圆形相邻分布金属电极示意图;
图6、圆形相邻分布信号发生器简易图;
其中,2、金属电极,2-1、第一金属电极,2-2、第二金属电极,2-3、第三金属电极,2-4、第四金属电极,2-5、第五金属电极,2-6、第六金属电极,2-7、第七金属电极,2-8、第八金属电极,2-9、第九金属电极,2-10、第十金属电极,2-11、第十一金属电极,2-12、第十二金属电极,3、信号发生器,3-1、第一信号发射器,3-2、第二信号发射器,3-3、第三信号发射器,3-4、第四信号发射器,3-5、第五信号发射器,3-6、第六信号发射器,4、地表导电介质,5、导线。
具体实施方式
一种地表旋转电磁场产生装置,包括金属电极、信号发射器、地表导电介质和导线四个部分,M根金属电极、L个信号发射器、地表导电介质和多根导线组建成旋转电磁场产生装置(其中:M=4n+2,n、L均为正整数,且L≥3,n≥1),一个信号发射器配置两根金属电极,数量关系上应满足M=2L,金属电极和信号发射器按照两种特定分布方式进行排列,并将M根电极全部埋入地表导电介质中,信号发生器按照特定的相序控制方案,发射同一频率的正弦波或方波,地表 导电介质为陆地或者海洋,在对某一个区域勘测时,如果要定位可疑物质方位时,可进行如下操作,首先设定L个信号发射器的发射参数,进行整体的勘测并记录数据作为参考,之后从中选取k个信号发射器,调节选中的k个信号发射器的发射参数,再次对该区域勘测,最后将所得到的数据,进行地球物理反演计算,就可以判定可疑物质的具体方位,其中k=1、…、L-1。
实施例1
本实施例选用的金属电极是一种合金材质,金属电极设置为六根、信号发射器设置为三个、地表导电介质为陆地、半径R设置为2米进行说明,但不对本发明构成限制,所用的金属电极可以选择其它类型的金属,金属电极和信号发射器的数量可以根据实际需要进行调整,半径R按照实际的勘测区域进行调整,地表导电介质可以选用海洋或者大地。
具体连接方式:六根金属电极、三个信号发射器、地表导电介质和多根导线组建成旋转电磁场产生装置的整体结构。所述的旋转电磁场产生装置总体包括圆形交错对极分布发射、限位、相序控制方案三大部分。首先将确定勘测区域大小为2米,之后以信号发射器为单位,分别从正极和负极连接两根导线,每根导线的另一端分别焊接一根金属电极。附图1为实施设置的圆形交错对极分布发射方案进行说明。
圆形交错对极分布方案为:所使用的六根金属电极,需按逆时针或者顺时针的顺序,依次均匀的分布在以探测区域中点为圆心,2米为半径的圆周上,其中第一信号发生器3-1的正极与第一金属电极2-1相连,第一信号发生器3-1的负极与第四金属电极2-4相连,第二信号发生器3-2的正极与第五金属电极2-5相连,第二信号发生器3-2的负极与第二金属电极2-2相连,第三信号发生器3-3的正极与第三金属电极2-3相连,第三信号发生器3-3的负极与第六金属电极2-6相连。
限位部分为:六根金属电极按交错对极分布方式布置好后,将其全部埋入距地面1米的位置。
相序控制部分为:排布完成3个信号发射器后,发射同一频率的正弦波,其中,第一信号发射器3-1发射的相位为0rad,第二信号发射器3-2发射的相位为
Figure PCTCN2022114172-appb-000007
第三信号发射器3-3发射的相位为
Figure PCTCN2022114172-appb-000008
实施例2
本实施例选用的金属电极是一种合金材质,金属电极设置为十二根、信号发射器设置为六个、地表导电介质为陆地、半径R设置为2米进行说明,但不对本发明构成限制,所用的金属电极可以选择其它类型的金属,金属电极和信号发射器的数量可以根据实际需要进行调整,半径R按照实际的勘测区域进行调整,地表导电介质可以选用海洋或者大地。
具体连接方式:十二根金属电极、六个信号发射器、地表导电介质和多根导线组建成旋转电磁场产生装置的整体结构。所述的旋转电磁场产生装置总体包括圆形相邻分布方式、限位、相序控制方案三大部分。首先将确定勘测区域大小为2米,之后以信号发射器为单位,分别从正极和负极连接两根导线,每根导线的另一端分别焊接一根金属电极。附图4为实施设置的圆形相邻分布发射方案进行说明。
圆形相邻分布方案为:所使用的十二根金属电极,需按逆时针或者顺时针的顺序,依次均匀的分布在以探测区域中点为圆心,2米为半径的圆周上。本实施例将第一信号发射器3-1正极上所连的第一金属电极2-1放置在水面下或地下以2米为半径的圆周上的任意一点上,标记为①;以①为起始点,顺时针旋转30°后放置第一信号发射器3-1负极上所连的第二金属电极2-2,标记为②;再顺时针旋转30°后放置第二信号发射器3-2正极上所连的第三金属电极2-3,标记为③;再顺时针旋转30°后放置第二信号发射器3-2负极上所连的第四金属电极2-4,标记为④;再顺时针旋转30°后放置第三信号发射器3-3正极上所连的第五金属电极2-5,标记为⑤;再顺时针旋转30°后放置第三信号发射器3-3负极上所连的第六金属电极2-6,标记为⑥;再顺时针旋转30°后放置第四信号发射器3-4正极上所连的第七金属电极2-7,标记为⑦;再顺时针旋转30°后放置第四信号发射器3-4负极上所连的第八金属电极2-8,标记为⑧;再顺时针旋转30°后放置第五信号发射器3-5正极上所连的第九金属电极2-9,标记为⑨;再顺时针旋转30°后放置第五信号发射器3-5负极上所连的第十金属电极2-10,标记为⑩;再顺时针旋转30°后放置第六信号发射器3-6正极上所连的第十一金属电极2-11,标记为
Figure PCTCN2022114172-appb-000009
再顺时针旋转30°后放置第六信号发射器3-6负极上所连的第十二金属电极2-12,标记为
Figure PCTCN2022114172-appb-000010
限位部分为:十二根金属电极按相邻分布方式布置好后,将其全部埋入距地面1米的位置。
相序控制部分为:排布完成6个信号发射器后,发射同一频率的正弦波,其中,第一信号发射器、第二信号发射器、第三信号发射器、第四信号发射器、第五信号发射器和第六信号发射器的初始相位依次设置为0°、60°、120°、180°、240°、300°。
上述实施例中,在对选择的区域进行勘测时,首先设定所有信号发射器的发射参数,对此区域进行整体的勘测并记录数据,通过勘测可以获知可疑物质处在哪个扇区里,但不能精确定位在哪个位置,为此之后从中选取1个信号发射器,调节选中的信号发射器的发射参数,再次对该区域勘测,并记录数据,经此勘测就可以获得一个新的扇区,通过对比分析得到这两个扇区重合的部分,这个重合部分就是可疑物质具体所在的位置。

Claims (4)

  1. 一种地表旋转电磁场产生装置,其特征在于:包括M根金属电极(2)、L个信号发射器(3)、地表导电介质(4)和多根导线(5),其中:M=4n+2,n、L均为正整数,且L≥3,n≥1,一个信号发射器(3)配置两根金属电极(2),数量关系应满足M=2L,金属电极(2)和信号发射器(3)按照两种特定分布方式进行排列,并将M根电极全部埋入地表导电介质(4)中,信号发生器(3)按照特定的相序控制方案,发射同一频率的正弦波或方波;所述的特定分布方式为:圆形相邻分布方式与圆形交错对极分布方式;其中圆形相邻分布方式为:M根金属电极(2)按逆时针或者顺时针的顺序,依次均匀的分布在以探测区域中点为圆心,R为半径的圆周上,R>0,其中第i个信号发射器(3)的正极与第2i-1个金属电极(2)相连,第i个信号发射器(3)的负极与第2i个金属电极(2)相连,i=1、…、L;圆形交错对极分布方式为:M根金属电极(2)按逆时针或者顺时针的顺序,依次均匀的分布在以探测区域中点为圆心,R为半径的圆周上,R>0,其中第1个信号发射器(3)的正极与第1个金属电极(2)相连,第1个信号发射器(3)的负极与第
    Figure PCTCN2022114172-appb-100001
    个金属电极(2)相连,第i+1个信号发射器(3)的正极与第
    Figure PCTCN2022114172-appb-100002
    个金属电极(2)相连,第i+1个信号发射器(3)的负极与第i+1个金属电极(2)相连,第i+2个信号发射器(3)的正极与第i+2个金属电极(2)相连,第i+2个信号发射器(3)的负极与第
    Figure PCTCN2022114172-appb-100003
    个金属电极(2)相连,i=2j-1,j=1、…、
    Figure PCTCN2022114172-appb-100004
  2. 根据权利要求1所述的一种地表旋转电磁场产生装置,其特征在于,在对某一个区域勘测时,如果要定位可疑物质方位时,进行如下操作,首先设定L个信号发射器(3)的发射参数,进行整体的勘测并记录数据,此次勘测获知可疑物质所处的潜在扇区;之后选取k个信号发射器(3),调节选中的k个信号发射器(3)的发射参数,再次对潜在扇区进行勘测,并记录数据,此次勘测获得一个新的扇区;两个扇区重合的部分就是可疑物质具体所在的位置,其中k=1、…、L-1。
  3. 根据权利要求1所述的一种地表旋转电磁场产生装置,其特征在于,信号发射器(3)的相序控制方案为:在排布完成L个信号发射器(3)后,发射同一频率的正弦波,其中,第i个信号发射器(3),发射的相位为
    Figure PCTCN2022114172-appb-100005
    i=1、…、L。
  4. 根据权利要求1所述的一种地表旋转电磁场产生装置,其特征在于,地表导电介质(4)为陆地或者海洋。
PCT/CN2022/114172 2022-03-23 2022-08-23 一种地表旋转电磁场产生装置 WO2023178917A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202210297624.9A CN114755727B (zh) 2022-03-23 2022-03-23 一种相对极地表旋转电磁场产生装置
CN202220647411.XU CN218630214U (zh) 2022-03-23 2022-03-23 一种相对极地表旋转电磁场产生装置
CN202210297666.2 2022-03-23
CN202220656568.9 2022-03-23
CN202220647411.X 2022-03-23
CN202210297624.9 2022-03-23
CN202220656568.9U CN218350517U (zh) 2022-03-23 2022-03-23 一种相邻极地表旋转电磁场发生装置
CN202210297666.2A CN115079275B (zh) 2022-03-23 2022-03-23 一种相邻极地表旋转电磁场发生装置

Publications (1)

Publication Number Publication Date
WO2023178917A1 true WO2023178917A1 (zh) 2023-09-28

Family

ID=88099743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114172 WO2023178917A1 (zh) 2022-03-23 2022-08-23 一种地表旋转电磁场产生装置

Country Status (1)

Country Link
WO (1) WO2023178917A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2116658C1 (ru) * 1995-07-19 1998-07-27 Борис Петрович Балашов Способ прямого поиска локальных объектов на шельфе мирового океана и устройство для его осуществления в открытом море
CN101166999A (zh) * 2005-03-24 2008-04-23 电法勘探有限公司俄罗斯联邦 一种使用空间微分法将瞬变场分成若干区段的电法勘探方法
CN109901226A (zh) * 2019-04-15 2019-06-18 国科(重庆)仪器有限公司 一种可控源张量大地电磁系统及其控制计算方法
US20200003927A1 (en) * 2018-07-02 2020-01-02 Institute Of Geology And Geophysics, Chinese Academy Of Sciences Device and method for ground source transient electromagnetic near-field detection and related device
CN111983696A (zh) * 2020-07-02 2020-11-24 中国科学院地质与地球物理研究所 一种多场源电阻率层析成像测量系统和方法
CN113391357A (zh) * 2021-05-31 2021-09-14 西安交通大学 一种水下多物理场复合探测系统及探测阵列优化方法
CN114755727A (zh) * 2022-03-23 2022-07-15 北京工业大学 一种相对极地表旋转电磁场产生装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2116658C1 (ru) * 1995-07-19 1998-07-27 Борис Петрович Балашов Способ прямого поиска локальных объектов на шельфе мирового океана и устройство для его осуществления в открытом море
CN101166999A (zh) * 2005-03-24 2008-04-23 电法勘探有限公司俄罗斯联邦 一种使用空间微分法将瞬变场分成若干区段的电法勘探方法
US20200003927A1 (en) * 2018-07-02 2020-01-02 Institute Of Geology And Geophysics, Chinese Academy Of Sciences Device and method for ground source transient electromagnetic near-field detection and related device
CN109901226A (zh) * 2019-04-15 2019-06-18 国科(重庆)仪器有限公司 一种可控源张量大地电磁系统及其控制计算方法
CN111983696A (zh) * 2020-07-02 2020-11-24 中国科学院地质与地球物理研究所 一种多场源电阻率层析成像测量系统和方法
CN113391357A (zh) * 2021-05-31 2021-09-14 西安交通大学 一种水下多物理场复合探测系统及探测阵列优化方法
CN114755727A (zh) * 2022-03-23 2022-07-15 北京工业大学 一种相对极地表旋转电磁场产生装置

Similar Documents

Publication Publication Date Title
RU2454524C2 (ru) Установка и способ для электроимпульсного бурения и каротажа и устройство для электроимпульсного бурения (варианты)
CN108873083B (zh) 一种人工场源频率域电磁视电阻率测量方法
CN105891890A (zh) 一种盾构搭载的非接触式频域电法实时超前探测系统与方法
CN107272074A (zh) 一种实现矿井瞬变电磁聚焦探测的装置和方法
CN1035361A (zh) 用相位相干电磁装置探测长形垂直或水平电导体的方法
CN103336297B (zh) 微破裂向量扫描方法
CN107040936A (zh) 公路隧道甚低频透地通讯—定位一体化系统
CN109343132A (zh) 煤矿井下大回线三分量孔中瞬变电磁探测方法与装置
CN105301663A (zh) 时频电磁勘探数据空中采集装置及系统
CN115097531B (zh) 全区观测交替覆盖积分差分混合激励全信息电磁勘探方法
CN107642114A (zh) 桩基浇注前桩底隐患探查方法及其探查装置
CN103809204A (zh) 一种野外音频大地电磁的数据采集方法
CN108957560A (zh) 一种适用于城镇地下空间探测的电法勘探方法
CN107191181A (zh) 一种基于电磁散射的井周界面探测方法
CN114755727B (zh) 一种相对极地表旋转电磁场产生装置
CN218350517U (zh) 一种相邻极地表旋转电磁场发生装置
WO2023178917A1 (zh) 一种地表旋转电磁场产生装置
CN218630214U (zh) 一种相对极地表旋转电磁场产生装置
CN109375272A (zh) 一种新的在低阻厚覆盖区进行三维激电的工作方法和技术
CN113107506A (zh) 一种超前探测方法
CN103486909A (zh) 低频电磁感应二次场虚分量地雷探测装置及探测方法
CN108761540A (zh) 一种频率域天然电场三维勘探方法
CN115079275B (zh) 一种相邻极地表旋转电磁场发生装置
CN111929741A (zh) 5g+cmft—r时域电磁场勘探系统与方法
CN207829030U (zh) 桩基浇注前桩底隐患探查装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932969

Country of ref document: EP

Kind code of ref document: A1