WO2023178769A1 - 一种基于红外热成像的吸氧健康管理系统 - Google Patents

一种基于红外热成像的吸氧健康管理系统 Download PDF

Info

Publication number
WO2023178769A1
WO2023178769A1 PCT/CN2022/087276 CN2022087276W WO2023178769A1 WO 2023178769 A1 WO2023178769 A1 WO 2023178769A1 CN 2022087276 W CN2022087276 W CN 2022087276W WO 2023178769 A1 WO2023178769 A1 WO 2023178769A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermal imaging
cabinet
oxygen inhalation
infrared thermal
block
Prior art date
Application number
PCT/CN2022/087276
Other languages
English (en)
French (fr)
Inventor
高青
柳耀健
Original Assignee
安康泰(烟台)生命科学研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安康泰(烟台)生命科学研究院有限公司 filed Critical 安康泰(烟台)生命科学研究院有限公司
Publication of WO2023178769A1 publication Critical patent/WO2023178769A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G10/00Treatment rooms or enclosures for medical purposes
    • A61G10/02Treatment rooms or enclosures for medical purposes with artificial climate; with means to maintain a desired pressure, e.g. for germ-free rooms
    • A61G10/023Rooms for the treatment of patients at over- or under-pressure or at a variable pressure
    • A61G10/026Rooms for the treatment of patients at over- or under-pressure or at a variable pressure for hyperbaric oxygen therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • B01D46/12Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces in multiple arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20736Forced ventilation of a gaseous coolant within cabinets for removing heat from server blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention relates to the technical field of oxygen chambers, specifically an oxygen inhalation health management system based on infrared thermal imaging.
  • Hyperbaric oxygen therapy technology has a long history of application and is a treatment method that inhales high-concentration oxygen under high pressure. Hyperbaric oxygen therapy has been used as a primary or adjunctive method in the treatment of many diseases due to its mechanical effects and a series of biochemical reactions beneficial to infection, ischemia, and wound healing. .
  • the purpose of the present invention is to provide an oxygen inhalation health management system based on infrared thermal imaging, which solves the problem of being unable to analyze and provide feedback on the physical signs of the oxygen inhalation process, and also solves the problem of insufficient heat dissipation and inconvenient maintenance of the internal servers of the management system. .
  • an oxygen health management system based on infrared thermal imaging, including an infrared thermal imaging terminal, a data processing server, and a hyperbaric oxygen chamber control system.
  • the infrared thermal imaging terminal and data processing Server connection the data processing server is connected to the hyperbaric oxygen chamber control system, the infrared thermal imaging terminal uses an uncooled focal plane infrared detector, the frame pixel is 384*288 or 640*480, the working band is 8-14 microns, the temperature
  • the resolution NETD is less than or equal to 0.1 degrees Celsius and adopts automatic focusing; each oxygen inhalation position is equipped with an infrared thermal imaging terminal to collect thermal imaging data of the human face and save an image frame every 1 second. The collected images pass through the internal circuit board After processing, it is sent to the data processing server through the USB port;
  • the data processing server stores the received infrared image data, including time, oxygen chamber and aircraft position information in the database of the server; uses machine learning and deep learning methods to analyze the image, and uses Canny edge detection combined with support
  • the vector machine's dynamic threshold method divides the area where the face is located, and further divides the key positions of the forehead, eyes, and cheeks according to the position of the face; based on the gray value of each pixel in the image, the face area is calculated Temperature changes, record the temperature change curve; use deep learning methods to analyze the thermal imaging images of the entire face, and based on the neural network trained using normal and abnormal face thermal imaging sample sets, the collected Classify facial thermal images to complete health assessment and TCM constitution identification; conduct big data analysis on the changes in infrared thermal imaging images during oxygen inhalation, and use deep learning algorithms based on neural networks to establish the relationship between image changes and oxygen inhalation data The association provides a reference treatment plan for the individual's oxygen inhalation process;
  • the hyperbaric oxygen chamber control system controls the pressurization valve, pressure reducing valve, and oxygen exhaust valve according to the control algorithm; displays status information related to the user's oxygen inhalation process on the screen of the industrial control machine, and provides audible alarms and digital automatic controls for abnormal data.
  • the color-changing warning function facilitates real-time inspection by administrators; the information management interface manages the personal situation of each oxygen inhalation user through the graphical interface of the host computer, grasps the physical condition of each oxygen inhalation user, and tracks the corresponding historical records of oxygen inhalation users. and changes in physical signs.
  • the data processing server includes a cabinet, a support block, a side plate, a dust filter, a fixed rod, a first spring, a connecting sleeve, a connecting groove, a connecting block, a connecting rod, a chute, a pulling block, a stopper, and an installation.
  • plate, filter screen, fan, movable rod, second spring, limit block, movable rod, bump, and groove The cabinet is fixedly connected with a support block, and the cabinet is hinged with a side plate.
  • the side plate A dustproof net is provided on the side panel.
  • a fixed rod is fixedly connected to the inside of the side plate.
  • a first spring is provided on the outside of the fixed rod.
  • a connecting sleeve is slidably connected to the outer side of the fixed rod.
  • the connecting sleeve is connected to the side panel.
  • the board is slidingly connected, the connecting sleeve is fixedly connected with a connecting block, the connecting block is slidingly connected with the side panel, the connecting block is fixedly connected with a connecting rod, and the connecting rod is slidingly connected with the side panel and the cabinet respectively, so
  • the connecting block is fixedly connected with a pulling block, and the pulling block is in contact with the side panel and the cabinet respectively.
  • the inside of the cabinet is fixedly connected with a stopper, the block is in contact with the side panel, and the cabinet is slidably connected with a mounting block.
  • the installation plate is provided with a filter screen, the installation plate is provided with a fan, the fan is in contact with the filter screen, the internal part of the installation plate is movable linked with a movable rod, and the outside of the movable rod is provided with a third Two springs, the movable rod is fixedly connected with a limit block, the limit block is movably connected with the installation plate, the limit block is fixedly connected with a movable rod, the movable rod is movably connected with the installation plate, and the limit block is movably connected with the installation plate.
  • the position block is movably connected to the cabinet, the limit block is fixedly connected with a bump, and the bump is slidingly connected to the cabinet.
  • the number of the support blocks is four, and the four support blocks are evenly distributed on the cabinet.
  • the overall structure of the cabinet can be supported.
  • one end of the first spring is fixedly connected to the connecting sleeve, and the other end of the first spring is fixedly connected to the side plate.
  • the force of the first spring can act on the connecting sleeve.
  • the connecting sleeve is provided with a connecting groove, and a fixed rod is slidably connected inside the connecting groove.
  • the connecting groove By designing the connecting groove, the connecting sleeve can slide along the connecting groove.
  • a chute is provided on the cabinet, and a connecting rod is slidably connected inside the chute.
  • the connecting rod can slide in the chute.
  • one end of the second spring is in contact with the limiting block, and the other end of the second spring is in contact with the mounting plate.
  • the force of the second spring can act on the limiting block.
  • the cabinet is provided with a groove, and the inside of the groove is slidably connected with a convex block.
  • the grooves are designed so that the bumps can slide within the grooves.
  • the cabinet is provided with a movable slot, and the interior of the movable slot is movablely connected with a limiting block.
  • the limit block can slide and rotate in the movable groove.
  • the present invention can collect information such as temperature and human body heat map that cannot be collected by ordinary video images, and perform high-level analysis and feedback of physical signs of the oxygen inhalation process.
  • the video monitoring product proposes feedback and optimization of the oxygen chamber control equipment based on changes in physical signs during the oxygen inhalation process. It can also monitor the number of people inhaling oxygen and their positions in the oxygen chamber. At the same time, because thermal imaging does not collect Information such as face images can better protect users' privacy in the warehouse.
  • the present invention can blow and dissipate heat inside the cabinet to ensure that overheating does not occur inside the data processing server.
  • the fan is easy to disassemble and repair. Through the function of the filter and the dust-proof net, it can also prevent overheating. To prevent external dust from entering, the side panel can be easily opened, and the inside of the cabinet can be easily inspected through the side of the cabinet, which improves the convenience of inspecting the data processing server.
  • Figure 1 is a schematic diagram of the system of the present invention
  • FIG 2 is a schematic diagram of the data processing server of Figure 1 of the present invention.
  • Figure 3 is an enlarged view of position A in Figure 2 of the present invention.
  • Figure 4 is an enlarged view of B in Figure 2 of the present invention.
  • An oxygen health management system based on infrared thermal imaging includes an infrared thermal imaging terminal 1, a data processing server 2, and a hyperbaric oxygen chamber control system 3.
  • the infrared thermal imaging terminal 1 is connected to the data processing server 2, and the data The processing server 2 is connected to the hyperbaric oxygen chamber control system 3.
  • the infrared thermal imaging terminal 1 uses an uncooled focal plane infrared detector, the frame pixel is 384*288 or 640*480, the working band is 8-14 microns, and the temperature resolution NETD is less than or equal to 0.1 degrees Celsius, using automatic focusing; each oxygen inhalation position is equipped with an infrared thermal imaging terminal 1, which collects thermal imaging data on the human face and saves an image frame every 1 second. The collected images are processed by the internal circuit board and then passed through USB The port is sent to data processing server 2;
  • the data processing server 2 stores the received infrared image data, including time, oxygen chamber and aircraft position information in the database of the server; it uses machine learning and deep learning methods to analyze the image, using Canny edge detection combined with support vectors
  • the machine's dynamic threshold method is used to divide the area where the face is located, and further divide the key positions of the forehead, eyes, and cheeks according to the position of the face; based on the gray value of each pixel in the image, the temperature of the face area is calculated Changes, record the temperature change curve; use the deep learning method to analyze the thermal imaging image of the entire face, and based on the neural network trained using the normal and abnormal face thermal imaging sample sets, the collected Classify facial thermal images to complete health assessment and TCM constitution identification; perform big data analysis on changes in infrared thermal imaging images during oxygen inhalation, and use deep learning algorithms based on neural networks to establish a relationship between image changes and oxygen inhalation data Association, providing a reference treatment plan for the individual's oxygen inhalation process;
  • the hyperbaric oxygen chamber control system 3 controls the pressurization valve, pressure reducing valve, and oxygen exhaust valve according to the control algorithm; displays status information related to the user's oxygen inhalation process on the screen of the industrial control machine, and provides audible alarms and automatic digital conversion for abnormal data
  • the color warning function facilitates real-time inspection by the administrator; the information management interface manages the personal situation of each oxygen inhalation user through the graphical interface of the host computer, grasps the physical condition of each oxygen inhalation user, and tracks the corresponding historical records of oxygen inhalation users and Changes in physical signs.
  • the data processing server 2 includes a cabinet 21, a support block 22, a side plate 23, a dust filter 24, a fixed rod 25, a first spring 26, a connecting sleeve 27, a connecting groove 28, a connecting Block 29, connecting rod 30, chute 31, pull block 32, stopper 33, mounting plate 34, filter 35, fan 36, movable rod 37, second spring 38, limit block 39, movable rod 40, bump 41. Groove 42.
  • the cabinet 21 is fixedly connected with support blocks 22.
  • the number of the support blocks 22 is four.
  • the four support blocks 22 are evenly distributed on the cabinet 21. By designing the support blocks 22, the overall structure of the cabinet 21 can be improved.
  • the cabinet 21 is hinged with a side plate 23, and a dust-proof net 24 is provided on the side plate 23.
  • a fixing rod 25 is fixedly connected to the inside of the side plate 23, and a first spring 26 is provided on the outside of the fixing rod 25.
  • the fixing rod 25 The outer sliding sleeve is connected with a connecting sleeve 27.
  • the connecting sleeve 27 is provided with a connecting groove 28.
  • the inner part of the connecting groove 28 is slidingly connected with a fixed rod 25.
  • the connecting sleeve 27 can slide along the connecting groove 28.
  • One end of the first spring 26 is fixedly connected to the connecting sleeve 27 , and the other end of the first spring 26 is fixedly connected to the side plate 23 .
  • the force of the first spring 26 can act on the connecting sleeve 27 .
  • the connecting sleeve 27 is slidingly connected to the side plate 23.
  • the connecting sleeve 27 is fixedly connected to a connecting block 29.
  • the connecting block 29 is slidingly connected to the side plate 23.
  • the connecting block 29 is fixedly connected to a connecting block 29.
  • the rod 30 and the connecting rod 30 are slidingly connected to the side plate 23 and the cabinet 21 respectively.
  • the cabinet 21 is provided with a chute 31, and the connecting rod 30 is slidably connected inside the chute 31.
  • the connecting rod 30 can be The chute 31 slides inside, and the connecting block 29 is fixedly connected with a pulling block 32 which is in contact with the side plate 23 and the cabinet 21 respectively.
  • the cabinet 21 is fixedly connected with a stopper 33 inside which is in contact with the side plate 23 .
  • the cabinet 21 is slidably connected to an installation plate 34.
  • a filter 35 is provided on the installation plate 34.
  • a fan 36 is provided on the installation plate 34.
  • the fan 36 is in contact with the filter 35.
  • the installation plate 34 has an internal movable link with a movable rod 37.
  • a second spring 38 is provided on the outside of the movable rod 37.
  • the movable rod 37 is fixedly connected with a limiting block 39.
  • One end of the second spring 38 is in contact with the limiting block 39.
  • the second spring 38 The other end is in contact with the mounting plate 34 , and the second spring 38 is designed so that the force of the second spring 38 can act on the limiting block 39 .
  • the limit block 39 is movably connected to the installation plate 34.
  • the limit block 39 is fixedly connected with a movable rod 40.
  • the movable rod 40 is movably connected to the installation plate 34.
  • the limit block 39 is connected to the cabinet. 21 are movable connected, the cabinet 21 is provided with a movable slot 43, and the internal movable slot 43 is movable connected to the limit block 39.
  • the limit block 39 can slide and rotate in the movable slot 43, and the limit block 39
  • the bump 41 is slidingly connected to the cabinet 21.
  • a groove 42 is provided on the cabinet 21.
  • the bump 41 is slidably connected inside the groove 42. By designing the groove 42, the bump 41 can be placed on the cabinet 21. Slide in the groove 42.
  • the specific implementation process of the present invention is as follows: when in use, the infrared thermal imaging terminal 1 uses an uncooled focal plane infrared detector, the frame pixels are 384*288 or 640*480, the working band is 8-14 microns, and the temperature resolution NETD is less than or equal to 0.1 degrees Celsius.
  • each oxygen inhalation position is equipped with an infrared thermal imaging terminal 1, which collects thermal imaging data of the human face and saves an image frame every 1 second.
  • the collected images are processed by the internal circuit board and then sent through the USB port. to the data processing server 2.
  • the data processing server 2 stores the received infrared image data, including time, oxygen chamber and aircraft position information in the database of the server.
  • Canny edge detection combined with the dynamic threshold method of support vector machine divides the area where the face is located, and further divides the key positions of the forehead, eyes, and cheeks according to the position of the face. Based on the gray value of each pixel in the image, calculate Detect the temperature changes in the face area, record the temperature change curve, and use deep learning methods to analyze the thermal imaging images of the entire face.
  • the hyperbaric oxygen chamber control system 3 controls the pressurization valve, pressure reducing valve, and oxygen exhaust valve according to the control algorithm, which is displayed on the screen of the industrial control machine. Status information related to the user's oxygen inhalation process. It provides audible alarms and digital automatic color change warning functions for abnormal data, which facilitates real-time inspection by administrators.
  • the information management interface manages the personal situation of each oxygen inhalation user through the graphical interface of the host computer. , grasp the physical condition of each oxygen inhaler user, and track the corresponding historical records and changes in physical signs of oxygen inhaler users.
  • the fan 36 works at the same time. The fan 36 sucks in the outside air, and the air will be discharged into the cabinet 21 to achieve the purpose of blowing and dissipating heat inside the cabinet 21 to ensure that the data processing server 2 will not be overheated.
  • the filter 35 and the dust-proof net 24 can also prevent external dust from entering the cabinet 21.
  • the limiting block 39 drives the movable rod 37 to move downward, and the limiting block 39 will squeeze the second spring 38.
  • the limiting block 39 will drive the convex block 41 to move downward, so that the convex block 41 and the groove 42 Separate, and then rotate the movable lever 40, the movable lever 40 drives the limit block 39 to rotate, the limit block 39 drives the movable lever 37 to rotate, so that the limit block 39 drives the convex block 41 to rotate, so that the limit block 39 is completely separated from the cabinet 21.
  • the mounting plate 34 can be removed to facilitate the inspection and maintenance of the fan 36, and at the same time, the filter screen 35 can also be cleaned.
  • the connecting block 29 drives the connecting sleeve 27 to move downward.
  • the connecting sleeve 27 slides along the fixed rod 25 and squeezes. Press the first spring 26, and at the same time, the connecting block 29 will drive the connecting rod 30 to move, so that the connecting rod 30 slides and separates from the cabinet 21, and then the side plate 23 can be rotated open, and the inside of the cabinet 21 can be easily inspected through the side of the cabinet 21. Maintenance improves the convenience of maintenance of the data processing server 2.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Emergency Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pulmonology (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Radiation Pyrometers (AREA)

Abstract

一种基于红外热成像的吸氧健康管理系统,包括红外热成像终端(1)、数据处理服务器(2)、高压氧舱控制系统(3),红外热成像终端(1)与数据处理服务器(2)连接,数据处理服务器(2)与高压氧舱控制系统(3)连接。该吸氧健康管理系统通过采用红外热成像监控的方式,能够采集到普通视频图像无法采集到的温度和人体热图等信息,进行高阶的吸氧过程体征分析和反馈,相对于原有采用普通视频监控的产品,提出了根据吸氧过程体征变化的情况,对氧舱控制设备进行反馈和优化,同时能够起到对氧舱内吸氧人数和人员位置情况的监测,同时由于热成像不采集人脸图像等信息,能够更好的保护用户在仓内的隐私。

Description

一种基于红外热成像的吸氧健康管理系统 技术领域
本发明涉及氧舱技术领域,具体为一种基于红外热成像的吸氧健康管理系统。
背景技术
高压氧治疗技术有悠久的应用历史,是在高压下吸入高浓度氧的治疗方法。由于高压氧的机械效应和一系列对感染、缺血和伤口愈合有益的生物化学反应,高压氧治疗已被用作治疗许多疾病的主要方法或辅助方法。。
技术问题
目前氧舱内普遍采用视频监控的方法进行对氧舱内情况进行查看,无法对吸氧过程体征分析和反馈,并且管理系统内部服务器散热效果不足且不方便进行检修。
技术解决方案
本发明的目的在于提供一种基于红外热成像的吸氧健康管理系统,解决了无法对吸氧过程体征分析和反馈的问题,还解决了管理系统内部服务器散热效果不足且不方便进行检修的问题。
为实现上述目的,本发明提供如下技术方案:一种基于红外热成像的吸氧健康管理系统,包括红外热成像终端、数据处理服务器、高压氧舱控制系统,所述红外热成像终端与数据处理服务器连接,所述数据处理服务器与高压氧舱控制系统连接,所述红外热成像终端采用非制冷焦平面红外探测器,帧像素为384*288或者640*480,工作波段8-14微米,温度分辨率NETD小于等于0.1摄氏度,采用自动调焦;每个吸氧位置配套一个红外热成像终端,采集人体脸部热成像数据,每间隔1秒保存一张图像帧,采集的图像经过内部电路板处理后通过USB端口发送至数据处理服务器;
所述数据处理服务器对接收到的红外图像数据进行存储,包含时间、氧舱和机位信息存于服务器的数据库中;采用机器学习及深度学习的方法对图像进行分析,采用Canny边缘检测结合支持向量机的动态阈值的方法划分出人脸所在的区域,并根据人脸的位置进一步划分出额头、眼睛、脸颊关键位置;根据图像中每个像素点的灰度值,计算出人脸区域的温度变化,记录下温度变化的曲线;采用深度学习的方法对整个人脸的热成像图像进行分析,在利用正常和非正常人脸热成像样本集训练出的神经网络的基础上,对采集到的人脸热图像进行分类,完成健康评估和中医体质辨识;对吸氧过程中红外热成像图像的变化进行大数据分析,采用基于神经网络的深度学习算法建立起图像变化和吸氧数据之间的关联,为个人的吸氧过程提供参考的治疗方案;
所述高压氧舱控制系统根据控制算法控制加压阀、减压阀、排氧阀;在工控一体机的屏幕上展示用户吸氧过程相关的状态信息,对异常的数据提供声音报警以及数字自动变换颜色示警功能,方便管理员实时检查;信息管理界面通过上位机的图形界面对每个吸氧用户的个人情况进行管理,把握每个吸氧用户的身体状况,跟踪吸氧用户相应的历史记录以及身体体征变化。
优选的,所述数据处理服务器包括机柜、支撑块、侧板、防尘网、固定杆、第一弹簧、连接套、连接槽、连接块、连杆、滑槽、拉块、挡块、安装板、滤网、风机、活动杆、第二弹簧、限位块、活动杆、凸块、凹槽,所述机柜上固定连接有支撑块,所述机柜上铰接有侧板,所述侧板上设置有防尘网,所述侧板的内部固定连接有固定杆,所述固定杆的外侧设置有第一弹簧,所述固定杆的外侧滑动套接有连接套,所述连接套与侧板滑动连接,所述连接套上固定连接有连接块,所述连接块与侧板滑动连接,所述连接块上固定连接有连杆,所述连杆分别与侧板和机柜滑动连接,所述连接块上固定连接有拉块,所述拉块分别与侧板和机柜接触,所述机柜的内部固定连接有挡块,所述挡块与侧板接触,所述机柜上滑动连接有安装板,所述安装板上设置有滤网,所述安装板上设置有风机,所述风机与滤网接触,所述安装板的内部活动链接有活动杆,所述活动杆的外侧设置有第二弹簧,所述活动杆上固定连接有限位块,所述限位块与安装板活动连接,所述限位块上固定连接有活动杆,所述活动杆与安装板活动连接,所述限位块与机柜活动连接,所述限位块上固定连接有凸块,所述凸块与机柜滑动连接。
优选的,所述支撑块的数量为四个,四个所述支撑块在机柜上均匀分布。通过设计支撑块,可对机柜的整体结构进行支撑。
优选的,所述第一弹簧的一端与连接套固定连接,所述第一弹簧的另一端与侧板固定连接。通过设计第一弹簧,使得第一弹簧的作用力可作用于连接套。
优选的,所述连接套上开设有连接槽,所述连接槽的内部滑动连接有固定杆。通过设计连接槽,使得连接套可沿着连接槽滑动。
优选的,所述机柜上开设有滑槽,所述滑槽的内部滑动连接有连杆。通过设计滑槽,使得连杆可在滑槽内滑动。
优选的,所述第二弹簧的一端与限位块接触,所述第二弹簧的另一端与安装板接触。通过设计第二弹簧,使得第二弹簧的作用力可作用于限位块。
优选的,所述机柜上开设有凹槽,所述凹槽的内部滑动连接有凸块。通过设计凹槽,使得凸块可在凹槽内滑动。
优选的,所述机柜上开设有活动槽,所述活动槽的内部活动连接有限位块。通过设计活动槽,使得限位块可在活动槽内滑动和转动。
有益效果
与现有技术相比,本发明的有益效果如下:
1、本发明通过采用采用红外热成像监控的方式,能够采集到普通视频图像无法采集到的温度和人体热图等信息,进行高阶的吸氧过程体征分析和反馈,相对于原有采用普通视频监控的产品,提出了根据吸氧过程体征变化的情况,对氧舱控制设备进行反馈和优化,同时能够起到对氧舱内吸氧人数和人员位置情况的监测,同时由于热成像不采集人脸图像等信息,能够更好的保护用户在仓内的隐私。
2、本发明通过设计风机的作用,可对机柜内部进行吹风散热,以保障数据处理服务器内部不会出现过热的情况,且风机便于拆卸检修,通过滤网与防尘网的作用,也能够防止外部灰尘的进入,通过方便打开的侧板,可便捷的通过机柜侧边对机柜内部进行检修,提高了数据处理服务器检修的便捷性。
附图说明
图1为本发明的系统原理图;
图2为本发明图1的数据处理服务器示意图;
图3为本发明图2的A处放大图;
图4为本发明图2的B处放大图。
图中:1、红外热成像终端;2、数据处理服务器;3、高压氧舱控制系统;21、机柜;22、支撑块;23、侧板;24、防尘网;25、固定杆;26、第一弹簧;27、连接套;28、连接槽;29、连接块;30、连杆;31、滑槽;32、拉块;33、挡块;34、安装板;35、滤网;36、风机;37、活动杆;38、第二弹簧;39、限位块;40、活动杆;41、凸块;42、凹槽;43、活动槽。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,一种基于红外热成像的吸氧健康管理系统,包括红外热成像终端1、数据处理服务器2、高压氧舱控制系统3,红外热成像终端1与数据处理服务器2连接,数据处理服务器2与高压氧舱控制系统3连接,红外热成像终端1采用非制冷焦平面红外探测器,帧像素为384*288或者640*480,工作波段8-14微米,温度分辨率NETD小于等于0.1摄氏度,采用自动调焦;每个吸氧位置配套一个红外热成像终端1,采集人体脸部热成像数据,每间隔1秒保存一张图像帧,采集的图像经过内部电路板处理后通过USB端口发送至数据处理服务器2;
数据处理服务器2对接收到的红外图像数据进行存储,包含时间、氧舱和机位信息存于服务器的数据库中;采用机器学习及深度学习的方法对图像进行分析,采用Canny边缘检测结合支持向量机的动态阈值的方法划分出人脸所在的区域,并根据人脸的位置进一步划分出额头、眼睛、脸颊关键位置;根据图像中每个像素点的灰度值,计算出人脸区域的温度变化,记录下温度变化的曲线;采用深度学习的方法对整个人脸的热成像图像进行分析,在利用正常和非正常人脸热成像样本集训练出的神经网络的基础上,对采集到的人脸热图像进行分类,完成健康评估和中医体质辨识;对吸氧过程中红外热成像图像的变化进行大数据分析,采用基于神经网络的深度学习算法建立起图像变化和吸氧数据之间的关联,为个人的吸氧过程提供参考的治疗方案;
高压氧舱控制系统3根据控制算法控制加压阀、减压阀、排氧阀;在工控一体机的屏幕上展示用户吸氧过程相关的状态信息,对异常的数据提供声音报警以及数字自动变换颜色示警功能,方便管理员实时检查;信息管理界面通过上位机的图形界面对每个吸氧用户的个人情况进行管理,把握每个吸氧用户的身体状况,跟踪吸氧用户相应的历史记录以及身体体征变化。
请参阅图1、图2、图3,数据处理服务器2包括机柜21、支撑块22、侧板23、防尘网24、固定杆25、第一弹簧26、连接套27、连接槽28、连接块29、连杆30、滑槽31、拉块32、挡块33、安装板34、滤网35、风机36、活动杆37、第二弹簧38、限位块39、活动杆40、凸块41、凹槽42,机柜21上固定连接有支撑块22,支撑块22的数量为四个,四个支撑块22在机柜21上均匀分布,通过设计支撑块22,可对机柜21的整体结构进行支撑,机柜21上铰接有侧板23,侧板23上设置有防尘网24,侧板23的内部固定连接有固定杆25,固定杆25的外侧设置有第一弹簧26,固定杆25的外侧滑动套接有连接套27,连接套27上开设有连接槽28,连接槽28的内部滑动连接有固定杆25,通过设计连接槽28,使得连接套27可沿着连接槽28滑动,第一弹簧26的一端与连接套27固定连接,第一弹簧26的另一端与侧板23固定连接,通过设计第一弹簧26,使得第一弹簧26的作用力可作用于连接套27。
请参阅图1、图2、图3,连接套27与侧板23滑动连接,连接套27上固定连接有连接块29,连接块29与侧板23滑动连接,连接块29上固定连接有连杆30,连杆30分别与侧板23和机柜21滑动连接,机柜21上开设有滑槽31,滑槽31的内部滑动连接有连杆30,通过设计滑槽31,使得连杆30可在滑槽31内滑动,连接块29上固定连接有拉块32,拉块32分别与侧板23和机柜21接触,机柜21的内部固定连接有挡块33,挡块33与侧板23接触。
请参阅图1、图2、图4,机柜21上滑动连接有安装板34,安装板34上设置有滤网35,安装板34上设置有风机36,风机36与滤网35接触,安装板34的内部活动链接有活动杆37,活动杆37的外侧设置有第二弹簧38,活动杆37上固定连接有限位块39,第二弹簧38的一端与限位块39接触,第二弹簧38的另一端与安装板34接触,通过设计第二弹簧38,使得第二弹簧38的作用力可作用于限位块39。
请参阅图1、图2、图4,限位块39与安装板34活动连接,限位块39上固定连接有活动杆40,活动杆40与安装板34活动连接,限位块39与机柜21活动连接,机柜21上开设有活动槽43,活动槽43的内部活动连接有限位块39,通过设计活动槽43,使得限位块39可在活动槽43内滑动和转动,限位块39上固定连接有凸块41,凸块41与机柜21滑动连接,机柜21上开设有凹槽42,凹槽42的内部滑动连接有凸块41,通过设计凹槽42,使得凸块41可在凹槽42内滑动。
本发明具体实施过程如下:使用时,红外热成像终端1采用非制冷焦平面红外探测器,帧像素为384*288或者640*480,工作波段8-14微米,温度分辨率NETD小于等于0.1摄氏度,采用自动调焦,每个吸氧位置配套一个红外热成像终端1,采集人体脸部热成像数据,每间隔1秒保存一张图像帧,采集的图像经过内部电路板处理后通过USB端口发送至数据处理服务器2,数据处理服务器2对接收到的红外图像数据进行存储,包含时间、氧舱和机位信息存于服务器的数据库中,采用机器学习及深度学习的方法对图像进行分析,采用Canny边缘检测结合支持向量机的动态阈值的方法划分出人脸所在的区域,并根据人脸的位置进一步划分出额头、眼睛、脸颊关键位置,根据图像中每个像素点的灰度值,计算出人脸区域的温度变化,记录下温度变化的曲线,采用深度学习的方法对整个人脸的热成像图像进行分析,在利用正常和非正常人脸热成像样本集训练出的神经网络的基础上,对采集到的人脸热图像进行分类,完成健康评估和中医体质辨识,对吸氧过程中红外热成像图像的变化进行大数据分析,采用基于神经网络的深度学习算法建立起图像变化和吸氧数据之间的关联,为个人的吸氧过程提供参考的治疗方案,高压氧舱控制系统3根据控制算法控制加压阀、减压阀、排氧阀,在工控一体机的屏幕上展示用户吸氧过程相关的状态信息,对异常的数据提供声音报警以及数字自动变换颜色示警功能,方便管理员实时检查,信息管理界面通过上位机的图形界面对每个吸氧用户的个人情况进行管理,把握每个吸氧用户的身体状况,跟踪吸氧用户相应的历史记录以及身体体征变化。当数据处理服务器2在工作时,风机36同时工作,风机36将外部空气吸入,空气会排入机柜21内,达到对机柜21内部吹风散热的目的,以保障数据处理服务器2内部不会出现过热的情况,通过滤网35与防尘网24的作用,也能够防止外部灰尘进入机柜21内,当需要对风机36进行检修时,先向下按压活动杆40,活动杆40带动限位块39向下移动,限位块39带动活动杆37向下移动,限位块39会挤压第二弹簧38,同时限位块39会带动凸块41向下移动,使得凸块41与凹槽42分离,然后转动活动杆40,活动杆40带动限位块39转动,限位块39带动活动杆37转动,使得限位块39带动凸块41转动,使得限位块39与机柜21完全分离,即可将安装板34取下,方便进行风机36的检修,同时还可对滤网35进行清理。当需要对机柜21内部进行检修时,先向下拉动拉块32,拉块32带动连接块29向下移动,连接块29带动连接套27向下移动连接套27沿着固定杆25滑动会挤压第一弹簧26,同时连接块29会带动连杆30移动,使得连杆30滑动与机柜21分离,然后即可将侧板23转动打开,可便捷的通过机柜21侧边对机柜21内部进行检修,提高了数据处理服务器2检修的便捷性。
工业实用性
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (9)

  1. 一种基于红外热成像的吸氧健康管理系统,包括红外热成像终端(1)、数据处理服务器(2)、高压氧舱控制系统(3),其特征在于:所述红外热成像终端(1)与数据处理服务器(2)连接,所述数据处理服务器(2)与高压氧舱控制系统(3)连接;
    所述红外热成像终端(1)采用非制冷焦平面红外探测器,帧像素为384*288或者640*480,工作波段8-14微米,温度分辨率NETD小于等于0.1摄氏度,采用自动调焦;每个吸氧位置配套一个红外热成像终端(1),采集人体脸部热成像数据,每间隔1秒保存一张图像帧,采集的图像经过内部电路板处理后通过USB端口发送至数据处理服务器(2);
    所述数据处理服务器(2)对接收到的红外图像数据进行存储,包含时间、氧舱和机位信息存于服务器的数据库中;采用机器学习及深度学习的方法对图像进行分析,采用Canny边缘检测结合支持向量机的动态阈值的方法划分出人脸所在的区域,并根据人脸的位置进一步划分出额头、眼睛、脸颊关键位置;根据图像中每个像素点的灰度值,计算出人脸区域的温度变化,记录下温度变化的曲线;采用深度学习的方法对整个人脸的热成像图像进行分析,在利用正常和非正常人脸热成像样本集训练出的神经网络的基础上,对采集到的人脸热图像进行分类,完成健康评估和中医体质辨识;对吸氧过程中红外热成像图像的变化进行大数据分析,采用基于神经网络的深度学习算法建立起图像变化和吸氧数据之间的关联,为个人的吸氧过程提供参考的治疗方案;
    所述高压氧舱控制系统(3)根据控制算法控制加压阀、减压阀、排氧阀;在工控一体机的屏幕上展示用户吸氧过程相关的状态信息,对异常的数据提供声音报警以及数字自动变换颜色示警功能,方便管理员实时检查;信息管理界面通过上位机的图形界面对每个吸氧用户的个人情况进行管理,把握每个吸氧用户的身体状况,跟踪吸氧用户相应的历史记录以及身体体征变化。
  2. 根据权利要求1所述的一种基于红外热成像的吸氧健康管理系统,其特征在于:所述数据处理服务器(2)包括机柜(21)、支撑块(22)、侧板(23)、防尘网(24)、固定杆(25)、第一弹簧(26)、连接套(27)、连接槽(28)、连接块(29)、连杆(30)、滑槽(31)、拉块(32)、挡块(33)、安装板(34)、滤网(35)、风机(36)、活动杆(37)、第二弹簧(38)、限位块(39)、活动杆(40)、凸块(41)、凹槽(42),所述机柜(21)上固定连接有支撑块(22),所述机柜(21)上铰接有侧板(23),所述侧板(23)上设置有防尘网(24),所述侧板(23)的内部固定连接有固定杆(25),所述固定杆(25)的外侧设置有第一弹簧(26),所述固定杆(25)的外侧滑动套接有连接套(27),所述连接套(27)与侧板(23)滑动连接,所述连接套(27)上固定连接有连接块(29),所述连接块(29)与侧板(23)滑动连接,所述连接块(29)上固定连接有连杆(30),所述连杆(30)分别与侧板(23)和机柜(21)滑动连接,所述连接块(29)上固定连接有拉块(32),所述拉块(32)分别与侧板(23)和机柜(21)接触,所述机柜(21)的内部固定连接有挡块(33),所述挡块(33)与侧板(23)接触,所述机柜(21)上滑动连接有安装板(34),所述安装板(34)上设置有滤网(35),所述安装板(34)上设置有风机(36),所述风机(36)与滤网(35)接触,所述安装板(34)的内部活动链接有活动杆(37),所述活动杆(37)的外侧设置有第二弹簧(38),所述活动杆(37)上固定连接有限位块(39),所述限位块(39)与安装板(34)活动连接,所述限位块(39)上固定连接有活动杆(40),所述活动杆(40)与安装板(34)活动连接,所述限位块(39)与机柜(21)活动连接,所述限位块(39)上固定连接有凸块(41),所述凸块(41)与机柜(21)滑动连接。
  3. 根据权利要求2所述的一种基于红外热成像的吸氧健康管理系统,其特征在于:所述支撑块(22)的数量为四个,四个所述支撑块(22)在机柜(21)上均匀分布。
  4. 根据权利要求2所述的一种基于红外热成像的吸氧健康管理系统,其特征在于:所述第一弹簧(26)的一端与连接套(27)固定连接,所述第一弹簧(26)的另一端与侧板(23)固定连接。
  5. 根据权利要求2所述的一种基于红外热成像的吸氧健康管理系统,其特征在于:所述连接套(27)上开设有连接槽(28),所述连接槽(28)的内部滑动连接有固定杆(25)。
  6. 根据权利要求2所述的一种基于红外热成像的吸氧健康管理系统,其特征在于:所述机柜(21)上开设有滑槽(31),所述滑槽(31)的内部滑动连接有连杆(30)。
  7. 根据权利要求2所述的一种基于红外热成像的吸氧健康管理系统,其特征在于:所述第二弹簧(38)的一端与限位块(39)接触,所述第二弹簧(38)的另一端与安装板(34)接触。
  8. 根据权利要求2所述的一种基于红外热成像的吸氧健康管理系统,其特征在于:所述机柜(21)上开设有凹槽(42),所述凹槽(42)的内部滑动连接有凸块(41)。
  9. 根据权利要求2所述的一种基于红外热成像的吸氧健康管理系统,其特征在于:所述机柜(21)上开设有活动槽(43),所述活动槽(43)的内部活动连接有限位块(39)。
PCT/CN2022/087276 2022-03-24 2022-04-18 一种基于红外热成像的吸氧健康管理系统 WO2023178769A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210297333.XA CN114587850A (zh) 2022-03-24 2022-03-24 一种基于红外热成像的吸氧健康管理系统
CN202210297333.X 2022-03-24

Publications (1)

Publication Number Publication Date
WO2023178769A1 true WO2023178769A1 (zh) 2023-09-28

Family

ID=81810793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/087276 WO2023178769A1 (zh) 2022-03-24 2022-04-18 一种基于红外热成像的吸氧健康管理系统

Country Status (2)

Country Link
CN (1) CN114587850A (zh)
WO (1) WO2023178769A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118322508A (zh) * 2024-06-12 2024-07-12 恩格尔注塑机械(常州)有限公司 一种注塑机智能温度检测装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6283123B1 (en) * 1994-12-01 2001-09-04 Keith W. Van Meter Hyperbaric resuscitation system and method
JP2012095773A (ja) * 2010-10-29 2012-05-24 Ameli:Kk 酸素濃度制御システム
CN103315724A (zh) * 2013-06-21 2013-09-25 中山大学孙逸仙纪念医院 高压氧舱治疗监控系统
CN109223391A (zh) * 2018-10-04 2019-01-18 同惠生物科技(东莞)有限公司 信息化动物氧舱及其信息管理方法
CN208822749U (zh) * 2017-10-09 2019-05-07 杭州远舟医疗科技有限公司 一种基于红外热成像的智能健康检测系统
CN110795981A (zh) * 2019-07-01 2020-02-14 烟台宏远氧业股份有限公司 一种高压氧舱人脸识别交互方法及系统
WO2021184856A1 (zh) * 2020-03-16 2021-09-23 太仓岭川实业有限公司 一种车载服务器散热装置
CN214632763U (zh) * 2021-01-29 2021-11-09 中国人民解放军联勤保障部队第九二〇医院 一种高压氧舱治疗用监护数据采集发射装置
CN215819189U (zh) * 2021-07-14 2022-02-11 漳州市中茂环境工程有限公司 一种便于维护的机旁控制箱

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6283123B1 (en) * 1994-12-01 2001-09-04 Keith W. Van Meter Hyperbaric resuscitation system and method
JP2012095773A (ja) * 2010-10-29 2012-05-24 Ameli:Kk 酸素濃度制御システム
CN103315724A (zh) * 2013-06-21 2013-09-25 中山大学孙逸仙纪念医院 高压氧舱治疗监控系统
CN208822749U (zh) * 2017-10-09 2019-05-07 杭州远舟医疗科技有限公司 一种基于红外热成像的智能健康检测系统
CN109223391A (zh) * 2018-10-04 2019-01-18 同惠生物科技(东莞)有限公司 信息化动物氧舱及其信息管理方法
CN110795981A (zh) * 2019-07-01 2020-02-14 烟台宏远氧业股份有限公司 一种高压氧舱人脸识别交互方法及系统
WO2021184856A1 (zh) * 2020-03-16 2021-09-23 太仓岭川实业有限公司 一种车载服务器散热装置
CN214632763U (zh) * 2021-01-29 2021-11-09 中国人民解放军联勤保障部队第九二〇医院 一种高压氧舱治疗用监护数据采集发射装置
CN215819189U (zh) * 2021-07-14 2022-02-11 漳州市中茂环境工程有限公司 一种便于维护的机旁控制箱

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118322508A (zh) * 2024-06-12 2024-07-12 恩格尔注塑机械(常州)有限公司 一种注塑机智能温度检测装置

Also Published As

Publication number Publication date
CN114587850A (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2023178769A1 (zh) 一种基于红外热成像的吸氧健康管理系统
US11864860B2 (en) Biometric imaging and biotelemetry system
US20170249432A1 (en) Operating room black-box device, system, method and computer readable medium
CN111898580B (zh) 针对戴口罩人群的体温和呼吸数据采集系统、方法及设备
Gupta et al. Covid-19: Employee fever detection with thermal camera integrated with attendance management system
WO2021246700A1 (ko) 사용자 상태를 예측하기 위한 방법 및 그 장치
Luximon et al. Time dependent infrared thermographic evaluation of facemasks
CN106101119A (zh) 基于医疗系统数据共享系统的急诊预检分级系统
Ulleri et al. Development of contactless employee management system with mask detection and body temperature measurement using TensorFlow
CN105573230B (zh) 一种it监控系统
CN112129350A (zh) 一种基于“ar+安防”的化工企业实景监控系统
Pappakrishnan et al. Role of Artificial Intelligence of Things (AIoT) in Covid-19 Pandemic: A Brief Survey.
Nerella et al. AI-enhanced intensive care unit: revolutionizing patient care with pervasive sensing
CN116509342A (zh) 一种生命舱的体征监测管理系统
Pirzada et al. Remote photoplethysmography for heart rate and blood oxygenation measurement: a Review
Mushahar et al. Human body temperature detection based on thermal imaging and screening using YOLO Person Detection
WO2022224524A1 (ja) 患者モニタリングシステム
Sakkalis et al. Towards an unobtrusive baby monitoring system for real-time detection of possibly hazardous situations
TWI491250B (zh) 修改數位視像訊號以遮蓋生物資訊
Aldred et al. Application of thermography to estimate respiratory rate in the emergency room: The journal Temperature toolbox
CN206283606U (zh) 一种数字化高清远程审讯系统
WO2024111846A1 (ko) 시공간 특징 퓨전 모델을 통해 수술 중 출혈을 검출하는 방법 및 장치
Kumar et al. An Automated Face Mask Detection Using Ensemble Learning Approach
JP3248378U (ja) 顔面麻痺度精密評価装置
Iyengar et al. Automated detection of rest disruptions in critically ill patients

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932828

Country of ref document: EP

Kind code of ref document: A1