WO2023178611A1 - 基于相位-频率混合控制的微波功率分配网络及方法 - Google Patents

基于相位-频率混合控制的微波功率分配网络及方法 Download PDF

Info

Publication number
WO2023178611A1
WO2023178611A1 PCT/CN2022/082808 CN2022082808W WO2023178611A1 WO 2023178611 A1 WO2023178611 A1 WO 2023178611A1 CN 2022082808 W CN2022082808 W CN 2022082808W WO 2023178611 A1 WO2023178611 A1 WO 2023178611A1
Authority
WO
WIPO (PCT)
Prior art keywords
microwave
frequency
phase
output
input
Prior art date
Application number
PCT/CN2022/082808
Other languages
English (en)
French (fr)
Inventor
查皓
施嘉儒
刘佛诚
高强
陈怀璧
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to PCT/CN2022/082808 priority Critical patent/WO2023178611A1/zh
Publication of WO2023178611A1 publication Critical patent/WO2023178611A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/19Conjugate devices, i.e. devices having at least one port decoupled from one other port of the junction type
    • H01P5/20Magic-T junctions

Definitions

  • This application relates to the field of microwave transmission technology, and in particular to a microwave power distribution network, method, electronic device and storage medium based on phase-frequency hybrid control.
  • High-power microwave systems have been widely used in technologies such as radar communications and particle accelerators.
  • particle accelerators can not only be used as tools for humans to further explore microscopic fields, such as large colliders, free electron lasers and synchrotron radiation light sources, etc., promoting the exploration of the scientific frontier into the unknown; they are also used in radiotherapy, CT imaging technology, industrial irradiation It shines in other fields and has made great contributions to people's health, improvement of living standards, and the development of the national economy.
  • Radiotherapy requires the use of multiple angles and multiple radiation fields to ensure that the dose distribution conforms to the target area.
  • radiotherapy equipment is basically implemented through a mechanical movement accelerator system. Take the currently more advanced helical tomographic radiotherapy system (TOMO therapy) as an example. It uses a method similar to CT scanning to perform radiotherapy.
  • the linear accelerator is installed on a ring frame. During the treatment process, the treatment bed can be centered on the patient. Circular motion enables multi-angle illumination.
  • This application provides a microwave power distribution network, method, electronic equipment and storage medium based on phase-frequency hybrid control to solve the problem of mechanical rotation of a single head containing an accelerating tube used in traditional radiotherapy and industrial CT.
  • Angle field radiotherapy and imaging methods are slow and time-consuming.
  • the first embodiment of the present application provides a microwave power distribution network based on phase-frequency hybrid control, including: a microwave synthesis and distribution subnetwork based on phase control, including 2 N input ports and 2 N intermediate output ports, so The microwave synthesis and distribution sub-network is used to determine in the 2 N intermediate output ports according to the phases of the 2 N input signals when the phases of the 2 N input signals satisfy a preset amplitude-phase relationship.
  • the first target port, and 2 N microwave input signals are synthesized and distributed and output from the first target port, where N is a positive integer greater than or equal to 1; 2 N single-input multiple-output microwaves based on frequency control Distribution subnetwork, each frequency-controlled single-input multiple-output microwave distribution subnetwork includes an intermediate input port and a plurality of microwave output ports, and the 2 N intermediate input ports are respectively connected to the 2 N intermediate output ports,
  • the frequency control-based single-input multiple-output microwave distribution subnetwork is used to select a second target port to output a microwave signal among the plurality of microwave output ports according to the frequency of the microwave signal output by the first target port.
  • the preset phase amplitude-phase relationship includes that the 2 N input signals have the same amplitude and the phase difference is ⁇ 90°.
  • the microwave synthesis and distribution subnetwork based on phase control is composed of at least one 3dB coupler or magic T microwave device.
  • the frequency of the 2 N microwave input signals is the same and equal to the frequency of the microwave signal output by the first target port.
  • each microwave output port of the frequency control-based single-input multiple-output microwave distribution subnetwork is allowed to pass in a different microwave frequency range, and the microwave frequencies of all microwave output ports are The range includes the 2 N frequencies of the microwave input signal.
  • the second aspect embodiment of the present application provides a microwave power allocation method based on phase-frequency hybrid control, including the following steps: according to the position of the second target port and the microwave power level of the target load connected to the second target port. Determine the amplitude and frequency of the 2 N microwave input signals, and adjust the phases of the 2 N microwave input signals according to the preset amplitude-phase relationship; convert the adjusted 2 N microwave input signals Input 2 N input ports of the microwave synthesis and distribution subnetwork based on phase control, and after using the microwave synthesis and distribution subnetwork based on phase control to perform synthesis and distribution, the microwave signal is output through the first target port; The microwave signal output from the first target port is input to the frequency-controlled single-input multiple-output microwave distribution subnetwork, and the microwave signal is output through the second target port.
  • the preset phase amplitude-phase relationship includes that the 2 N input signals have the same amplitude and the phase difference is ⁇ 90°.
  • a third embodiment of the present application provides an electronic device, including: a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor executes the program to execute Microwave power allocation method based on phase-frequency hybrid control as described in the above embodiment.
  • the fourth embodiment of the present application provides a computer-readable storage medium on which a computer program is stored, and the program is executed by a processor to perform the microwave power allocation method based on phase-frequency hybrid control as described in the above embodiment. .
  • the embodiment of the present application mainly consists of a first-level microwave synthesis and distribution network based on phase control and a second-level microwave distribution network based on frequency control.
  • the network is a passive device and does not require additional signals to change its state or mechanical structure.
  • High-power microwaves whose phase and frequency generated by the power source meet a certain relationship are distributed to the corresponding output ports after entering the microwave distribution network. This saves frequency band resources and greatly reduces the frequency band requirements of the power source.
  • it makes device design and The control is simpler, and it greatly reduces the requirements for power source performance and the probability of failure of the entire system due to ignition of a single power source, improving system reliability and reducing the cost of the entire system.
  • the microwave power distribution network based on phase-frequency hybrid control can be applied to the static multi-angle irradiation field rapid switching irradiation system, thereby meeting the needs of rapid switching of multi-angle irradiation fields for technologies such as FLASH radiotherapy and static CT.
  • Figure 1 is an example diagram of a microwave power distribution network based on phase-frequency hybrid control according to an embodiment of the present application
  • FIG. 2 is a functional schematic diagram of a 3dB coupler (3dB hybrid) provided according to an embodiment of the present application;
  • Figure 3 is a schematic diagram illustrating the principle of implementing a 4-4 stage microwave synthesis and distribution network based on phase control through the series and parallel connection of 3dB couplers according to an embodiment of the present application;
  • Figure 4 is a schematic diagram of a SIMO microwave distribution network based on frequency control provided according to an embodiment of the present application
  • Figure 5 is a schematic diagram of a multi-angle irradiation field irradiation system based on phase-frequency hybrid control provided according to an embodiment of the present application;
  • Figure 6 is a flow chart of a microwave power allocation method based on phase-frequency hybrid control according to an embodiment of the present application
  • FIG. 7 is a schematic structural diagram of an electronic device provided by an embodiment of the application.
  • this application provides a microwave power distribution network based on phase-frequency hybrid control.
  • the embodiment of this application mainly consists of a first-level microwave synthesis and distribution network based on phase control and a second-level microwave power distribution network based on phase control. Composition of microwave distribution network based on frequency control.
  • the network is a passive device and does not require additional signals to change its state or mechanical structure.
  • High-power microwaves whose phase and frequency generated by the power source meet a certain relationship enter the microwave distribution network and are allocated to the corresponding output ports, thereby saving frequency band resources and greatly reducing the frequency band requirements of the power source; at the same time, it makes device design and control It is simpler, and greatly reduces the requirements for power source performance and the probability of failure of the entire system due to ignition of a single power source, improves system reliability, and reduces the cost of the entire system.
  • Figure 1 is a schematic structural diagram of a microwave power distribution network based on phase-frequency hybrid control according to an embodiment of the present application.
  • the microwave power distribution network 10 based on phase-frequency hybrid control includes: a microwave synthesis and distribution subnetwork 100 based on phase control and 2 N single-input multiple-output microwave distribution subnetworks 200 based on frequency control.
  • the microwave synthesis and distribution sub-network 100 based on phase control includes 2 N input ports and 2 N intermediate output ports.
  • the microwave synthesis and distribution sub-network is used to satisfy the preset amplitude- In the phase relationship, the first target port is determined among the 2 N intermediate output ports according to the phases of the 2 N input signals, and the 2 N microwave input signals are synthesized and distributed and output from the first target port, where N is A positive integer greater than or equal to 1; 2 N frequency-controlled single-input multiple-output microwave distribution subnetworks.
  • Each frequency-controlled single-input multiple-output microwave distribution subnetwork includes an intermediate input port and multiple microwave output ports, 2 N intermediate input ports are respectively connected to 2 N intermediate output ports.
  • the single-input multiple-output microwave distribution subnetwork based on frequency control is used to select the second microwave output port among multiple microwave output ports according to the frequency of the microwave signal output by the first target port.
  • the target port outputs microwave signals.
  • a microwave signal has basic characteristics such as amplitude, phase, and frequency. Amplitude is related to power level and can be adjusted according to usage requirements. Power sources such as klystrons are amplifier devices, and the phase and frequency of the output microwave can be quickly adjusted by controlling the phase and frequency of the input signal.
  • high-power microwaves whose phase and frequency satisfy a certain relationship generated by the power source enter the above-mentioned microwave distribution network based on phase-frequency hybrid control and are distributed to the corresponding output ports.
  • the specific microwave power allocation process is introduced in detail below.
  • the microwave synthesis and distribution subnetwork 100 based on phase control can be implemented by a microwave device such as a 3dB coupler or a four-branch waveguide joint (magic T).
  • the microwave synthesis and distribution subnetwork 100 based on phase control may include at least one 3dB coupler.
  • the input end of the 3dB coupler is the input port of the phase control-based microwave synthesis and distribution subnetwork, and the output end is the intermediate output of the phase control-based microwave synthesis and distribution subnetwork. port; the default phase amplitude-phase relationship includes 2 N input signals with the same amplitude and a phase difference of ⁇ 90°.
  • the 3dB coupler is the simplest microwave synthesis and distribution network based on phase control. It has 4 ports, including 2 input ports and 2 output ports. Its function is equivalent to the amplitude of the input microwave. Quadrature adders.
  • the embodiment of the present application implements a microwave synthesis and distribution network based on phase control through the series and parallel connection of 3dB couplers.
  • a microwave synthesis and distribution network based on phase control can be realized with 2 N -2 N (i.e. 2 N input ports and output ports).
  • 2 N -2 N i.e. 2 N input ports and output ports.
  • Figure 3 it describes the basic principle of realizing a 4-4-level microwave synthesis and distribution network based on phase control through the series and parallel connection of 3dB couplers. This level 4-4 network is only used as an example.
  • Other microwave devices that can be described by the same scattering matrix under a certain reference plane and phase-based microwave synthesis and distribution devices are included here.
  • the above 2 N input ports have the same input amplitude A and the same frequency fi , and are equal to the frequency of the microwave signal output by the first target port. But the phase Different microwaves. If the phase difference meets certain requirements, power synthesis can be performed in the microwave synthesis and distribution subnetwork based on phase control. The frequency f i remains unchanged and can be distributed to different outputs of the microwave synthesis and distribution subnetwork based on phase control through phase control. port.
  • the above microwave synthesis and distribution subnetwork based on phase control is 2 N -2 N , that is, 2 N input ports and 2 N output ports.
  • Each output port of the microwave synthesis and distribution subnetwork based on phase control is connected to 2 N based on Input ports of frequency-controlled single-input multiple-output microwave distribution subnetworks.
  • Each microwave output port of each frequency-controlled single-input multiple-output microwave distribution subnetwork allows different microwave frequency ranges to pass through. Microwaves of different frequencies Input signals correspond to different output ports.
  • the single-input multiple-output microwave distribution subnetwork is a SIMO microwave distribution network based on frequency control.
  • the SIMO microwave distribution network based on frequency control includes an input port and any number of output ports. Each output port corresponds to a passband of the resonant frequency f i . When the frequency of the input microwave is in the passband of any output port, the microwave is output from that output port, as shown in Figure 4.
  • the input ports of the frequency-controlled single-input multiple-output microwave distribution subnetwork are The output port of the phase-controlled microwave synthesis and distribution sub-network of the previous stage is connected, and the output port of the frequency-controlled single-input multiple-output microwave distribution sub-network is connected to the subsequent load.
  • the number of output ports Mi of each frequency-controlled single-input multiple-output microwave distribution subnetwork can be different from each other.
  • the above-mentioned microwave power distribution network based on phase-frequency hybrid control composed of two sub-networks has 2 N input ports and 2 N * M output ports.
  • the input microwave frequency f i is distributed to the corresponding output port of the subnetwork.
  • the entire process is shown in Figure 1. Therefore, by controlling the phase and frequency of 2 N power sources, the output port corresponding to the microwave can be quickly switched.
  • the amplitude A corresponds to the microwave power level and can be adjusted according to the load device.
  • the embodiment of the present application mainly consists of a first-level microwave synthesis and distribution sub-network based on phase control and a second-level single-input multiple-output microwave distribution sub-network based on frequency control, a total of two levels.
  • the network is a passive device and does not require additional signals to change its state or mechanical structure.
  • the embodiments of the present application are based on the microwave power distribution network based on phase-frequency hybrid control, and are further combined with a static multi-angle irradiation field rapid switching irradiation system composed of an accelerating tube array.
  • the irradiation system includes 2 N power sources, the microwave power distribution system mentioned in the embodiment of this application, and an array containing 2 N *M accelerating tubes connected to the system output port, as shown in Figure 5.
  • phase-frequency hybrid control By performing phase-frequency hybrid control on the power source, microwave power can be transmitted to accelerators at different angles to achieve irradiation of the irradiation field at that angle.
  • the control of phase and frequency is electrical control and does not involve mechanical movement, so the speed of the entire switching process is greatly improved.
  • this application implements
  • the number of input ports of the microwave synthesis and distribution network based on phase control used in the example is reduced by M times, making the device design simpler; at the same time, the number of input ports in the embodiment of the present application is reduced by M times, and the number of required power sources is reduced by M times. It is also reduced by M times, so the control is simpler, and it greatly reduces the probability of failure of the entire system due to ignition of a single power source, improves system reliability, and reduces the cost of the entire system.
  • the number of ports of the microwave synthesis and distribution network based on phase control used in the embodiment of the present application is reduced by 2 N times.
  • the device design is simpler; a single SIMO microwave distribution network based on frequency control requires that the frequency passbands of each output port do not cross each other.
  • one of the frequency control-based SIMO microwave distribution networks in the second stage It is still required that the frequency passbands of each output port do not cross each other, but since each SIMO microwave distribution network based on frequency control corresponds to a different first target port, the frequency passbands of each other can overlap, saving frequency band resources.
  • the frequency band requirement of the power source is reduced by 2 N times; in the embodiment of this application, a power synthesis function is introduced in the first stage.
  • a power synthesis function is introduced in the first stage.
  • the number of power sources is increased by 2 N times, for a single power
  • the maximum power requirement of the source output is reduced by 2 N times, which reduces the requirements for the power source performance.
  • FIG. 6 is a flow chart of a microwave power allocation method based on phase-frequency hybrid control provided by an embodiment of the present application.
  • the microwave power allocation method based on phase-frequency hybrid control includes the following steps:
  • step S101 determine the amplitude and frequency of 2 N microwave input signals according to the microwave power level of the target load connected to the second target port at the second target port position, and adjust 2 N according to the preset amplitude-phase relationship. phase of a microwave input signal.
  • each microwave output port of the single-input multiple-output microwave distribution subnetwork based on frequency control corresponds to a passband of resonant frequency f i .
  • the microwave is output from the output port, so based on the position of the second target port, the position of the first target port can be confirmed.
  • step S102 the adjusted 2 N microwave input signals are input to the 2 N input ports of the phase control-based microwave synthesis and distribution sub-network, and after synthesis and distribution using the phase control-based microwave synthesis and distribution sub-network, The microwave signal is output through the first target port.
  • step S103 the microwave signal output from the first target port is input to the frequency-controlled single-input multiple-output microwave distribution subnetwork, and the microwave signal is output through the second target port.
  • the preset phase amplitude-phase relationship includes 2 N input signals with the same amplitude and a phase difference of ⁇ 90°.
  • microwave power distribution network embodiment based on phase-frequency hybrid control is also applicable to the microwave power distribution method based on phase-frequency hybrid control in this embodiment, and will not be described again here.
  • the embodiment of this application mainly consists of a first-level microwave synthesis and distribution network based on phase control and a second-level microwave distribution network based on frequency control.
  • the network is a passive device and does not require additional signals to change its state or mechanical structure.
  • High-power microwaves whose phase and frequency generated by the power source meet a certain relationship are distributed to the corresponding output ports after entering the microwave distribution network. This saves frequency band resources and greatly reduces the frequency band requirements of the power source.
  • it makes device design and The control is simpler, and it greatly reduces the requirements for power source performance and the probability of failure of the entire system due to ignition of a single power source, improving system reliability and reducing the cost of the entire system.
  • FIG. 7 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device may include:
  • the processor 702 executes the program, it implements the microwave power allocation method based on phase-frequency hybrid control provided in the above embodiment.
  • electronic equipment also includes:
  • Communication interface 703 is used for communication between the memory 701 and the processor 702.
  • Memory 701 is used to store computer programs that can run on the processor 702.
  • the memory 701 may include high-speed RAM memory, and may also include non-volatile memory (non-volatile memory), such as at least one disk memory.
  • the bus can be an Industry Standard Architecture (ISA) bus, a Peripheral Component (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc.
  • ISA Industry Standard Architecture
  • PCI Peripheral Component
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used in Figure 7, but it does not mean that there is only one bus or one type of bus.
  • the memory 701, the processor 702 and the communication interface 703 are integrated on one chip, the memory 701, the processor 702 and the communication interface 703 can communicate with each other through the internal interface.
  • the processor 702 may be a central processing unit (Central Processing Unit, CPU for short), or an Application Specific Integrated Circuit (ASIC for short), or one or more processors configured to implement the embodiments of the present application. integrated circuit.
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • This embodiment also provides a computer-readable storage medium on which a computer program is stored, which is characterized in that when the program is executed by a processor, the above microwave power distribution method based on phase-frequency hybrid control is implemented.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features. In the description of this application, “N” means at least two, such as two, three, etc., unless otherwise clearly and specifically limited.
  • N steps or methods may be implemented using software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if it is implemented in hardware, as in another embodiment, it can be implemented by any one of the following technologies known in the art or their combination: discrete logic gate circuits with logic functions for implementing data signals; Logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
  • the program can be stored in a computer-readable storage medium.
  • the program can be stored in a computer-readable storage medium.

Landscapes

  • Particle Accelerators (AREA)

Abstract

一种基于相位-频率混合控制的微波功率分配网络(10)、方法、电子设备及存储介质,微波功率分配网络(10)包括第一级基于相位控制的微波合成与分配子网络(100)和第二级基于频率控制的微波分配子网络(200)。微波功率分配网络(10)为无源被动器件,无需额外信号改变其状态或机械结构。功率源产生的相位和频率满足一定关系的高功率微波进入微波功率分配网络(10)后被分配至对应的输出端口,从而可以满足FLASH放疗和静态CT等技术的多角度照射野快速切换的需求。由此,解决了传统放射治疗和工业CT中使用的包含加速管的单一机头以机械旋转的方式进行多角度照射野放疗和成像方法速度慢,耗时长等问题。

Description

基于相位-频率混合控制的微波功率分配网络及方法 技术领域
本申请涉及微波传输技术领域,特别涉及一种基于相位-频率混合控制的微波功率分配网络、方法、电子设备及存储介质。
背景技术
高功率微波系统已广泛应用于雷达通讯和粒子加速器等技术。其中,粒子加速器不仅可作为人类进一步探索微观领域的工具,如大型对撞机,自由电子激光和同步辐射光源等,推动科学前沿向未知的探索;还在放射治疗,CT影像技术,工业辐照等领域发光发热,为人民的身体健康,生活水平的提升,以及国民经济的发展做出了巨大贡献。
目前,癌症已成为现代社会中威胁人们健康的主要原因之一。近几十年来,放射治疗技术逐渐成熟,现已广泛应用于癌症患者的治疗。尤其是剂量分割、精确适形等相关技术较大地降低了放疗的毒副作用,扩大了放疗适应症的范围。近年来,有研究表明,相比于常规放射治疗中实用的低剂量率(0.03Gy/s—0.1Gy/s)射线,超高剂量率(≥40Gy/s)的瞬时(<1s)照射可以较大地减少电离辐射造成的正常组织的毒性反应。该效应被称为FLASH效应,有望进一步推动放射治疗技术的发展,成为人类癌症斗争史中的重要一笔。
放射治疗需要采用多角度多照射野的方式保证剂量分布与靶区适形,目前放疗设备基本通过机械运动式加速器系统实现。以目前较为先进的螺旋断层放射治疗系统(TOMO therapy)为例,它采取类似CT扫描的方式进行放射治疗,直线加速器安装在环形机架上,在治疗过程中可以患者所在的治疗床为中心进行圆周运动,实现多角度的照射。
机械运动的速度是受限的,最高转速通常也控制在20秒每圈以上。机械运动式的放疗设备的在低剂量率、照射时间长的常规放射治疗中是可行的,但对于高剂量率、照射时间小于1秒的闪光放疗(FLASH therapy)来说是不可接受的。
与放疗相似,目前工业CT中也是采用机械移动加速器的方式。由于工业CT的扫描对象更巨大,所以耗时的缺点表现地更加明显。
为加快成像扫描速度,同时进一步提高成像质量,近年来一种多角度射线源阵列的静态CT技术被提出。相关技术未能提出有效的技术方法以满足FLASH放疗和静态CT的多角度照射野快速切换的需求,亟待解决。
发明内容
本申请提供一种基于相位-频率混合控制的微波功率分配网络、方法、电子设备及存储介质,以解决传统放射治疗和工业CT中使用的包含加速管的单一机头以机械旋转的方式进行多角度照射野放疗和成像方法速度慢,耗时长等问题。
本申请第一方面实施例提供一种基于相位-频率混合控制的微波功率分配网络,包括:基于相位控制的微波合成与分配子网络,包括2 N个输入端口和2 N个中间输出端口,所述微波合成与分配子网络用于在所述2 N个输入信号的相位满足预设幅值-相位关系时,根据所述2 N个输入信号的相位在所述2 N个中间输出端口中确定第一目标端口,并将2 N个微波输入信号进行合成与分配后从所述第一目标端口输出,其中,N为大于等于1的正整数;2 N个基于频率控制的单输入多输出微波分配子网络,每个基于频率控制的单输入多输出微波分配子网络包括一个中间输入端口和多个微波输出端口,所述2 N个中间输入端口分别与所述2 N个中间输出端口连接,所述基于频率控制的单输入多输出微波分配子网络用于根据所述第一目标端口输出的微波信号的频率在所述多个微波输出端口中选择第二目标端口输出微波信号。
可选地,在本申请的一个实施例中,所述预设相幅值-相位关系包括所述2 N个输入信号的幅值相同,且相位差为±90°。
可选地,在本申请的一个实施例中,所述基于相位控制的微波合成与分配子网络由至少一个3dB耦合器或魔T微波器件构成。
可选地,在本申请的一个实施例中,所述2 N个微波输入信号的频率相同,且等于所述第一目标端口输出的微波信号的频率。
可选地,在本申请的一个实施例中,所述基于频率控制的单输入多输出微波分配子网络的每个微波输出端口所允许通过的微波频率范围不同,且所有微波输出端口的微波频率范围包括所述2 N个微波输入信号的频率。
本申请第二方面实施例提供一种基于相位-频率混合控制的微波功率分配方法,包括以下步骤:根据所述第二目标端口位置的和所述第二目标端口连接的目标负载的微波功率水平确定所述2 N个微波输入信号的幅值和频率,并根据所述预设幅值-相位关系调整所述2 N个微波输入信号的相位;将调整后的所述2 N个微波输入信号输入所述基于相位控制的微波合成与分配子网络的2 N个输入端口,利用所述基于相位控制的微波合成与分配子网络进行合成与分配后,通过所述第一目标端口输出微波信号;将所述第一目标端口输出微波信号输入所述基于频率控制的单输入多输出微波分配子网络,通过所述第二目标端口输出微波信号。
可选地,在本申请的一个实施例中,所述预设相幅值-相位关系包括所述2 N个输入信号的幅值相同,且相位差为±90°。
本申请第三方面实施例提供一种电子设备,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序,以执行如上述实施例所述的基于相位-频率混合控制的微波功率分配方法。
本申请第四方面实施例提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行,以执行如上述实施例所述的基于相位-频率混合控制的微波功率分配方法。
由此,本申请至少具有如下有益效果:
本申请实施例主要由第一级基于相位控制的微波合成与分配网络和第二级基于频率控制的微波分配网络组成。该网络为无源被动器件,无需额外信号改变其状态或机械结构。功率源产生的相位和频率满足一定关系的高功率微波进入微波分配网络后被分配至对应的输出端口,由此,节省了频带资源,对于功率源的频带要求大大降低;同时,使得器件设计和控制更加简单,并且极大地降低了对功率源性能的要求和因单根功率源打火造成的整个系统失效的概率,提高了系统可靠性,同时缩小了整个系统的造价。此外,基于相位-频率混合控制的微波功率分配网络可应用于静态多角度照射野快速切换辐照系统,从而满足FLASH放疗和静态CT等技术的多角度照射野快速切换的需求。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本申请实施例的基于相位-频率混合控制的微波功率分配网络示例图;
图2为根据本申请一个实施例提供的3dB耦合器(3dB hybrid)功能示意图;
图3为根据本申请一个实施例提供的通过3dB耦合器的串并联实现4-4级基于相位控制的微波合成与分配网络的原理示意图;
图4为根据本申请一个实施例提供的基于频率控制的SIMO微波分配网络示意图;
图5为根据本申请一个实施例提供的基于相位-频率混合控制的多角度照射野辐照系统示意图;
图6为根据本申请实施例提供的一种基于相位-频率混合控制的微波功率分配方法的流程图;
图7为申请实施例提供的电子设备的结构示意图。
附图标记说明:基于相位控制的微波合成与分配子网络-100、2 N个基于频率控制的单输入多输出微波分配子网络-200;存储器-701、处理器-702、通信接口-703。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述本申请实施例的基于相位-频率混合控制的微波功率分配网络、方法、电子设备及存储介质。针对上述背景技术中提到的问题,本申请提供了一种基于相位-频率混合控制的微波功率分配网络,本申请实施例主要由第一级基于相位控制的微波合成与分配网络和第二级基于频率控制的微波分配网络组成。该网络为无源被动器件,无需额外信号改变其状态或机械结构。功率源产生的相位和频率满足一定关系的高功率微波进入微波分配网络后被分配至对应的输出端口,从而节省了频带资源,对于功率源的频带要求也大大降低;同时,使得器件设计和控制更加简单,并且极大地降低了对功率源性能的要求和因单根功率源打火造成的整个系统失效的概率,提高了系统可靠性,缩小了整个系统的造价。由此,解决了传统放射治疗和工业CT中使用的包含加速管的单一机头以机械旋转的方式进行多角度照射野放疗和成像方法速度慢,耗时长等问题。
图1为根据本申请实施例提供的一种基于相位-频率混合控制的微波功率分配网络结构示意图。
如图1所示,该基于相位-频率混合控制的微波功率分配网络10包括:基于相位控制的微波合成与分配子网络100和2 N个基于频率控制的单输入多输出微波分配子网络200。
其中,基于相位控制的微波合成与分配子网络100,包括2 N个输入端口和2 N个中间输出端口,微波合成与分配子网络用于在2 N个输入信号的相位满足预设幅值-相位关系时,根据2 N个输入信号的相位在2 N个中间输出端口中确定第一目标端口,并将2 N个微波输入信号进行合成与分配后从第一目标端口输出,其中,N为大于等于1的正整数;2 N个基于频率控制的单输入多输出微波分配子网络,每个基于频率控制的单输入多输出微波分配子网络包括一个中间输入端口和多个微波输出端口,2 N个中间输入端口分别与2 N个中间输出端口连接,基于频率控制的单输入多输出微波分配子网络用于根据第一目标端口输出的微波信号的频率在多个微波输出端口中选择第二目标端口输出微波信号。
本领域技术人员应该理解到的是,对于一个微波信号,具有幅值、相位、频率等基本特征。幅值与功率水平相关,可根据使用需求进行调节。速调管等功率源为放大器件,输出微波的相位和频率可通过控制输入信号的相位和频率进行快速调节。在实际执行过程中, 功率源产生的相位和频率满足一定关系的高功率微波进入上述基于相位-频率混合控制的微波分配网络后被分配至对应的输出端口。具体的微波功率分配过程下述进行详细介绍。
可选地,在本申请的实施例中,基于相位控制的微波合成与分配子网络100可以由3dB耦合器或四分支波导接头(魔T)等微波器件实现,具体地,基于相位控制的微波合成与分配子网络可以包括至少一个3dB耦合器,3dB耦合器的输入端为基于相位控制的微波合成与分配子网络的输入端口,输出端为基于相位控制的微波合成与分配子网络的中间输出端口;预设相幅值-相位关系包括2 N个输入信号的幅值相同,且相位差为±90°。
需要说明的是,3dB耦合器是一种最简单的基于相位控制的微波合成与分配网络,它具有4个端口,包含2个输入端口和2个输出端口,其功能相当于输入微波的幅值正交加法器。本申请的实施例通过3dB耦合器的串并联实现基于相位控制的微波合成与分配网络。
如图2所示。当两个输入端口输入幅值相同(均为A),
Figure PCTCN2022082808-appb-000001
Figure PCTCN2022082808-appb-000002
相位差为±90°的微波时,微波进行合成且全从一个输出端口输出。基于此功能,可控制两个输入微波的相位差,选择合成后功率的输出端口。基于上述原理,可实现2 N-2 N(即2 N个输入端口和输出端口)的基于相位控制的微波合成与分配网络。如图3所示,其描述了通过3dB耦合器的串并联实现4-4级基于相位控制的微波合成与分配网络的基本原理。此4-4级网络仅作为一种举例,其他可在某参考面下用相同散射矩阵描述的微波器件以及基于相位的微波合成与分配器件皆包含于此。
需要注意的是,上述2 N个输入端口输入幅值A相同,频率f i相同,且等于第一目标端口输出的微波信号的频率。但相位
Figure PCTCN2022082808-appb-000003
不同的微波。若相位差满足一定要求,可在基于相位控制的微波合成与分配子网络中进行功率合成,频率f i不变,通过相位控制可被分配至基于相位控制的微波合成与分配子网络的不同输出端口。
上述基于相位控制的微波合成与分配子网络为2 N-2 N,即2 N个输入端口和2 N输出端口,基于相位控制的微波合成与分配子网络的每个输出端口连接2 N个基于频率控制的单输入多输出微波分配子网络的输入端口,其中,每个基于频率控制的单输入多输出微波分配子网络的每个微波输出端口所允许通过的微波频率范围不同,不同频率的微波输入信号对应不同的输出端口。
单输入多输出微波分配子网络为基于频率控制的SIMO微波分配网络,基于频率控制的SIMO微波分配网络包含一个输入端口和任意个输出端口,每个输出端口对应一个谐振频率f i的通带,当输入微波的频率在任一输出端口的通带中,则微波从该输出端口输出,如图4所示。
每个基于频率控制的单输入多输出微波分配子网络包含一个输入端口以及M i(i=1,2…2 N)个输出端口,基于频率控制的单输入多输出微波分配子网络的输入端口连接上一级基于相位控制的微波合成与分配子网络的输出端口,基于频率控制的单输入多输出微波分配子网络的输出端口连接后续的负载。每个基于频率控制的单输入多输出微波分配子网络的输出端口数量M i可互不相同,一种特殊情况是基于频率控制的单输入多输出微波分配子网络采用相同的设计,此时M i=M(i=1,2…2 N)。
上述由两个子网络构成的基于相位-频率混合控制的微波功率分配网络具有2 N个输入端口和2 N*M个输出端口。在基于频率控制的单输入多输出微波分配子网络中根据输入微波频率f i被分配至该子网络的对应输出端口,整个过程如图1所示。因此,通过控制2 N个功率源的相位和频率,可以快速切换微波对应的输出端口,幅值A对应微波功率水平,可根据负载器件进行调节。
可以理解的是,本申请实施例主要由第一级基于相位控制的微波合成与分配子网络和第二级基于频率控制的单输入多输出微波分配子网络,共两级组成。该网络为无源被动器件,无需额外信号改变其状态或机械结构。
需要说明的是,本申请的实施例在基于相位-频率混合控制的微波功率分配网络的基础上,进一步地结合加速管阵列构成的静态多角度照射野快速切换辐照系统。辐照系统包含2 N个功率源,本申请的实施例中提及的微波功率分配系统,以及与系统输出端口连接的包含2 N*M个加速管的阵列,如图5所示。通过对功率源进行相位-频率混合控制,可以将微波功率传输至不同角度的加速器中,实现该角度的照射野照射。相位和频率的控制属于电控制,过程中不涉及机械运动,因此整个切换过程的速度得到大大提升。
根据本申请实施例提出的一种基于相位-频率混合控制的微波功率分配网络,相比于单一的基于相位控制的微波合成与分配网络而言,对于同样的总输出端口数量需求,本申请实施例中使用的基于相位控制的微波合成与分配网络的输入端口数缩小了M倍,使得器件设计更加简单;同时,本申请实施例中的输入端口数缩小了M倍,所需的功率源数量同样缩小了M倍,因此控制更加简单,并且极大地降低了因单根功率源打火造成的整个系统失效的概率,提高了系统可靠性,同时缩小了整个系统的造价。相比于单一的基于频率控制的SIMO微波分配网络而言,对于同样的总输出端口数量需求,本申请实施例中使用的基于相位控制的微波合成与分配网络的端口数缩小了2 N倍,器件设计更加简单;单一的基于频率控制的SIMO微波分配网络要求每个输出端口的频率通带互不交叉,而本申请实施例中第二级中的某一个基于频率控制的SIMO微波分配网络中依然要求要求每个输出端口的频率通带互不交叉,但是由于每个基于频率控制的SIMO微波分配网络对应不同的第一目 标端口,故互相之间的频率通带可以重叠,节省了频带资源,对于功率源的频带要求降低了2 N倍;本申请实施例中在第一级中引入了功率合成功能,为达到同样的输出功率,虽然功率源数量增加了2 N倍,但是对于单个功率源输出的最大功率要求降低了2 N倍,即降低了对功率源性能的要求。
具体而言,图6为本申请实施例所提供的一种基于相位-频率混合控制的微波功率分配方法的流程图。
如图6所示,该基于相位-频率混合控制的微波功率分配方法包括以下步骤:
在步骤S101中,根据第二目标端口位置的和第二目标端口连接的目标负载的微波功率水平确定2 N个微波输入信号的幅值和频率,并根据预设幅值-相位关系调整2 N个微波输入信号的相位。
需要说明的是,在本申请的实施例中,基于频率控制的单输入多输出微波分配子网络的每个微波输出端口对应一个谐振频率f i的通带,当输入微波的频率在任一输出口的通带中,则微波从该输出口输出,因此基于第二目标端口位置,可确认第一目标端口的位置。
在步骤S102中,将调整后的2 N个微波输入信号输入基于相位控制的微波合成与分配子网络的2 N个输入端口,利用基于相位控制的微波合成与分配子网络进行合成与分配后,通过第一目标端口输出微波信号。
在步骤S103中,将第一目标端口输出微波信号输入基于频率控制的单输入多输出微波分配子网络,通过第二目标端口输出微波信号。
可选地,在本申请的一个实施例中,预设相幅值-相位关系包括2 N个输入信号的幅值相同,且相位差为±90°
需要说明的是,前述对基于相位-频率混合控制的微波功率分配网络实施例的解释说明也适用于该实施例的基于相位-频率混合控制的微波功率分配方法,此处不再赘述。
根据本申请实施例提出的基于相位-频率混合控制的微波功率分配方法,本申请实施例主要由第一级基于相位控制的微波合成与分配网络和第二级基于频率控制的微波分配网络组成。该网络为无源被动器件,无需额外信号改变其状态或机械结构。功率源产生的相位和频率满足一定关系的高功率微波进入微波分配网络后被分配至对应的输出端口,由此,节省了频带资源,对于功率源的频带要求大大降低;同时,使得器件设计和控制更加简单,并且极大地降低了对功率源性能的要求和因单根功率源打火造成的整个系统失效的概率,提高了系统可靠性,同时缩小了整个系统的造价。
图7为本申请实施例提供的电子设备的结构示意图。该电子设备可以包括:
存储器701、处理器702及存储在存储器701上并可在处理器702上运行的计算机程序。
处理器702执行程序时实现上述实施例中提供的基于相位-频率混合控制的微波功率分配方法。
进一步地,电子设备还包括:
通信接口703,用于存储器701和处理器702之间的通信。
存储器701,用于存放可在处理器702上运行的计算机程序。
存储器701可能包含高速RAM存储器,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。
如果存储器701、处理器702和通信接口703独立实现,则通信接口703、存储器701和处理器702可以通过总线相互连接并完成相互间的通信。总线可以是工业标准体系结构(Industry Standard Architecture,简称为ISA)总线、外部设备互连(Peripheral Component,简称为PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,简称为EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
可选的,在具体实现上,如果存储器701、处理器702及通信接口703,集成在一块芯片上实现,则存储器701、处理器702及通信接口703可以通过内部接口完成相互间的通信。
处理器702可能是一个中央处理器(Central Processing Unit,简称为CPU),或者是特定集成电路(Application Specific Integrated Circuit,简称为ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路。
本实施例还提供一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如上的基于相位-频率混合控制的微波功率分配方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。
在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或N个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“N个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更N个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,N个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。

Claims (9)

  1. 一种基于相位-频率混合控制的微波功率分配网络,其特征在于,包括:
    基于相位控制的微波合成与分配子网络,包括2 N个输入端口和2 N个中间输出端口,所述微波合成与分配子网络用于在所述2 N个输入信号的相位满足预设幅值-相位关系时,根据所述2 N个输入信号的相位在所述2 N个中间输出端口中确定第一目标端口,并将2 N个微波输入信号进行合成与分配后从所述第一目标端口输出,其中,N为大于等于1的正整数;
    2 N个基于频率控制的单输入多输出微波分配子网络,每个基于频率控制的单输入多输出微波分配子网络包括一个中间输入端口和多个微波输出端口,所述2 N个中间输入端口分别与所述2 N个中间输出端口连接,所述基于频率控制的单输入多输出微波分配子网络用于根据所述第一目标端口输出的微波信号的频率在所述多个微波输出端口中选择第二目标端口输出微波信号。
  2. 根据权利要求1所述的网络,其特征在于,所述预设相幅值-相位关系包括所述2 N个输入信号的幅值相同,且相位差为±90°。
  3. 根据权利要求1所述的网络,其特征在于,所述基于相位控制的微波合成与分配子网络由至少一个3dB耦合器或魔T微波器件构成。
  4. 根据权利要求1所述的网络,其特征在于,所述2 N个微波输入信号的频率相同,且等于所述第一目标端口输出的微波信号的频率。
  5. 根据权利要求1所述的网络,其特征在于,所述基于频率控制的单输入多输出微波分配子网络的每个微波输出端口所允许通过的微波频率范围不同,且所有微波输出端口的微波频率范围包括所述2 N个微波输入信号的频率。
  6. 一种基于相位-频率混合控制的微波功率分配方法,用于权利要求1-5所述的基于相位-频率混合控制的微波功率分配网络,其特征在于,包括以下步骤:
    根据所述第二目标端口位置的和所述第二目标端口连接的目标负载的微波功率水平确定所述2 N个微波输入信号的幅值和频率,并根据所述预设幅值-相位关系调整所述2 N个微波输入信号的相位;
    将调整后的所述2 N个微波输入信号输入所述基于相位控制的微波合成与分配子网络的2 N个输入端口,利用所述基于相位控制的微波合成与分配子网络进行合成与分配后,通过所述第一目标端口输出微波信号;
    将所述第一目标端口输出微波信号输入所述基于频率控制的单输入多输出微波分配子网络,通过所述第二目标端口输出微波信号。
  7. 根据权利要求6所述的方法,其特征在于,所述预设相幅值-相位关系包括所述2 N个输入信号的幅值相同,且相位差为±90°。
  8. 一种电子设备,其特征在于,包括:存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述程序,以实现如权利要求6-7任一项所述的基于相位-频率混合控制的微波功率分配方法。
  9. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行,以用于实现如权利要求6-7任一项所述的基于相位-频率混合控制的微波功率分配方法。
PCT/CN2022/082808 2022-03-24 2022-03-24 基于相位-频率混合控制的微波功率分配网络及方法 WO2023178611A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/082808 WO2023178611A1 (zh) 2022-03-24 2022-03-24 基于相位-频率混合控制的微波功率分配网络及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/082808 WO2023178611A1 (zh) 2022-03-24 2022-03-24 基于相位-频率混合控制的微波功率分配网络及方法

Publications (1)

Publication Number Publication Date
WO2023178611A1 true WO2023178611A1 (zh) 2023-09-28

Family

ID=88099499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082808 WO2023178611A1 (zh) 2022-03-24 2022-03-24 基于相位-频率混合控制的微波功率分配网络及方法

Country Status (1)

Country Link
WO (1) WO2023178611A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063365A (en) * 1988-08-25 1991-11-05 Merrimac Industries, Inc. Microwave stripline circuitry
US20100039051A1 (en) * 2008-08-13 2010-02-18 Varian Medical Systems Technologies, Inc. Power Variator
CN203482482U (zh) * 2013-09-22 2014-03-12 同方威视技术股份有限公司 电子直线加速器系统
CN103825076A (zh) * 2014-01-14 2014-05-28 深圳顺络电子股份有限公司 片式LTCC微型3dB定向耦合器
CN104852112A (zh) * 2015-03-26 2015-08-19 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种频率和相位可重构的混合耦合器及其设计方法
CN107069172A (zh) * 2017-06-07 2017-08-18 孙超 一种超宽带新型平面魔t
CN112259943A (zh) * 2020-09-14 2021-01-22 清华大学 基于频率控制的微波传输方法及单入多出的微波系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063365A (en) * 1988-08-25 1991-11-05 Merrimac Industries, Inc. Microwave stripline circuitry
US20100039051A1 (en) * 2008-08-13 2010-02-18 Varian Medical Systems Technologies, Inc. Power Variator
CN203482482U (zh) * 2013-09-22 2014-03-12 同方威视技术股份有限公司 电子直线加速器系统
CN103825076A (zh) * 2014-01-14 2014-05-28 深圳顺络电子股份有限公司 片式LTCC微型3dB定向耦合器
CN104852112A (zh) * 2015-03-26 2015-08-19 广东顺德中山大学卡内基梅隆大学国际联合研究院 一种频率和相位可重构的混合耦合器及其设计方法
CN107069172A (zh) * 2017-06-07 2017-08-18 孙超 一种超宽带新型平面魔t
CN112259943A (zh) * 2020-09-14 2021-01-22 清华大学 基于频率控制的微波传输方法及单入多出的微波系统

Similar Documents

Publication Publication Date Title
RU2583041C2 (ru) Линейное устройство (варианты) и способ ускорения электронов на стоячей волне
US9276303B2 (en) Multi-channel mode converter and rotary joint operating with a series of TE or TM mode electromagnetic wave
RU2767304C1 (ru) Системы и способы для настраиваемых линейных ускорителей
CN114614229B (zh) 基于相位-频率混合控制的微波功率分配网络及方法
EP2063958A1 (en) Method and apparatus for stabilizing an energy source in a radiation delivery device
WO2023178611A1 (zh) 基于相位-频率混合控制的微波功率分配网络及方法
CN114143952B (zh) 盘片式3dB混流器及电子直线加速器
CN104701117B (zh) 杂散能量回收注入锁频磁控管微波发射系统
CN104188679B (zh) 一种同源双束医用加速器
CN104167585B (zh) 微波功率分配器、合成器以及分配合成器
US20200113038A1 (en) Multiple head linear accelerator system
WO2022052200A1 (zh) 基于频率控制的微波传输方法及单入多出的微波系统
CN108392741B (zh) 微波功率控制装置及放射治疗设备
BR112016003045B1 (pt) Antena de duplexação completa e terminal móvel
CN105611712A (zh) 加速管及其控制方法、加速管控制器和放射治疗系统
CN212967976U (zh) 基于频率控制的单入多出的微波系统
CN105636330A (zh) 加速管及其控制方法、加速管控制器和放射治疗系统
CN112165377A (zh) 适用于宽带信号的时间调制单元及时间调制相控阵
GB2354876A (en) Linear accelerator with variable final beam energy
CN208599002U (zh) 微波功率控制装置及放射治疗设备
CN112888141B (zh) 一种高梯度返波型行波加速器及其快速能量调节方法
JPS621303A (ja) 空中線放射素子の特性測定装置
CN209608915U (zh) 分布式x射线光源发射控制装置
RU2776781C1 (ru) Система и способ для настраиваемых линейных ускорителей
RU2785815C1 (ru) Система и способ для настраиваемых линейных ускорителей

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932676

Country of ref document: EP

Kind code of ref document: A1