WO2023178481A1 - 形变测量方法、装置、电子设备及存储介质 - Google Patents

形变测量方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2023178481A1
WO2023178481A1 PCT/CN2022/082049 CN2022082049W WO2023178481A1 WO 2023178481 A1 WO2023178481 A1 WO 2023178481A1 CN 2022082049 W CN2022082049 W CN 2022082049W WO 2023178481 A1 WO2023178481 A1 WO 2023178481A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring points
monitoring
image
points
camera
Prior art date
Application number
PCT/CN2022/082049
Other languages
English (en)
French (fr)
Inventor
尹义贺
于起峰
刘肖琳
张跃强
胡彪
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2022/082049 priority Critical patent/WO2023178481A1/zh
Publication of WO2023178481A1 publication Critical patent/WO2023178481A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge

Definitions

  • This application relates to the field of image processing technology, and specifically to a deformation measurement method, device, electronic equipment and storage medium.
  • Embodiments of the present application provide a deformation measurement method, device, electronic equipment and storage medium, which can be applied to all monitoring scenarios, save costs, improve the efficiency of deformation measurement, and enhance the simplicity of the measurement system.
  • embodiments of the present application provide a deformation measurement method, which method is applied to a deformation measurement device.
  • the deformation measurement device is provided with a camera array and a mobile platform.
  • the method includes:
  • the first camera in the camera array photographs the monitoring point in the first area to be measured to obtain the first image; and through the first camera in the camera array
  • the second camera takes pictures of the monitoring points in the second area to be measured to obtain a second image, where the monitoring points in the first area to be measured and the monitoring points in the second area to be measured are set in the first monitoring area.
  • the shooting directions of the first camera and the second camera are opposite;
  • the monitoring points in the first area to be measured are photographed by the first camera to obtain a third image; and the monitoring points in the second area to be measured are photographed by the second camera.
  • J 1 first monitoring points are determined; and according to the second image and the fourth image, J 2 second monitoring points are determined, wherein the J 1 first monitoring points are the Monitoring points included in both the first image and the third image, and the J 2 second monitoring points are monitoring points included in both the second image and the fourth image;
  • the horizontal displacement and vertical settlement of each of J 1 first monitoring points are obtained, as well as J 2 second monitoring points The horizontal displacement and vertical settlement of each second monitoring point.
  • inventions of the present application provide a deformation measurement device.
  • the deformation measurement device is provided with a camera array and a mobile platform.
  • the device includes: an acquisition unit and a processing unit;
  • An acquisition unit configured to, when the mobile platform travels to the first monitoring position of the area to be measured, photograph the monitoring point in the first area to be measured through the first camera in the camera array to obtain the first image; and
  • the second camera in the camera array captures the monitoring points in the second area to be measured to obtain a second image, where the monitoring points in the first area to be measured and the monitoring points in the second area to be measured are Set on both sides of the first monitoring position, the shooting directions of the first camera and the second camera are opposite;
  • the monitoring points in the first area to be measured are photographed by the first camera to obtain a third image; and the monitoring points in the second area to be measured are photographed by the second camera.
  • a processing unit configured to determine J 1 first monitoring points based on the first image and the second image; and determine J 2 second monitoring points based on the second image and the fourth image, wherein, J 1 first monitoring point is a monitoring point included in both the first image and the second image, J 2 second monitoring points are monitoring points included in both the second image and the fourth image;
  • the horizontal displacement and vertical settlement of each of J 1 first monitoring points are obtained, as well as J 2 second monitoring points The horizontal displacement and vertical settlement of each second monitoring point.
  • embodiments of the present application provide an electronic device, including: a processor, the processor is connected to a memory, the memory is used to store a computer program, and the processor is used to execute the computer program stored in the memory, so that the electronic device executes the following steps: One way approach.
  • embodiments of the present application provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program causes the computer to execute the method of the first aspect.
  • inventions of the present application provide a computer program product.
  • the computer program product includes a non-transitory computer-readable storage medium storing the computer program, and the computer is operable to cause the computer to execute the method of the first aspect.
  • the first camera in the camera array takes pictures of the monitoring point in the first area to be measured, Obtain the first image; and the second camera in the camera array photographs the monitoring point in the second area to be measured to obtain the second image; then when the mobile platform travels to the second monitoring position of the area to be measured, The first camera captures the monitoring points in the first area to be measured to obtain a third image; and the second camera captures the monitoring points in the second area to be measured to obtain a fourth image; and then based on the first image and In the second image, J 1 first monitoring points are determined; and according to the second image and the fourth image, J 2 second monitoring points are determined; finally, according to the first image, the second image, the third image and the fourth image image to obtain the horizontal displacement and vertical settlement of each of the J1 first monitoring points, and the horizontal displacement and vertical settlement of each of the J2 second monitoring points.
  • this method of measurement based on camera kinetic networking integrates the camera into the mobile platform, does not require manual intervention during the measurement process, and realizes automatic measurement, saving a lot of manpower and material resources, improving the efficiency of measurement, and enhancing Improves the simplicity and flexibility of the measurement system.
  • Figure 1A is a schematic diagram of a deformation measurement system provided by an embodiment of the present application.
  • Figure 1B is a schematic diagram of another deformation measurement system provided by an embodiment of the present application.
  • Figure 2 is a schematic flow chart of a deformation measurement method provided by an embodiment of the present application.
  • Figure 3 is a method provided by an embodiment of the present application to obtain the horizontal displacement and vertical displacement of each of J 1 first monitoring points based on the first image, the second image, the third image and the fourth image. Settlement, as well as the flow diagram of the horizontal displacement and vertical settlement method for each of the J 2 second monitoring points;
  • Figure 4 is a schematic diagram of the basic principles of camera imaging measurement provided by the embodiment of the present application.
  • Figure 5 is a schematic flow chart of another deformation measurement method provided by an embodiment of the present application.
  • Figure 6 is a functional unit block diagram of a deformation measurement device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • an embodiment means that a particular feature, result or characteristic described in connection with the embodiment may be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • FIG. 1A is a schematic diagram of a deformation measurement system provided by an embodiment of the present application.
  • the deformation measurement system includes a deformation measurement device 10, wherein the deformation measurement device 10 is provided with a mobile platform 20, the mobile platform 20 is provided with a camera array 30, and the camera array 30 is provided with at least two cameras with opposite shooting directions, and Each camera in the camera array 30 is fixedly connected to each other, and the model and focal length of each camera are not limited in this application.
  • the mobile platform 20 when the mobile platform 20 travels to the first monitoring position, the mobile platform 20 will send a control signal to the camera array 30. After receiving the control signal, the camera array 30 will control the first camera and the third camera. The two cameras photograph the monitoring point; then the deformation measurement device 10 will calculate the vertical settlement and horizontal displacement of the monitoring point based on the images captured by the first camera and the second camera.
  • the first camera in the camera array integrated on the mobile platform in the first area to be measured is The monitoring points are photographed to obtain the first image; and the monitoring points in the second area to be measured are photographed by the second camera in the camera array to obtain the second image, wherein the monitoring points in the first area to be measured are The monitoring points in the point and the second area to be measured are arranged on both sides of the first monitoring position, and the shooting directions of the first camera and the second camera are opposite; it should be noted that in the embodiment of the present application, when the deformation measurement device 10 When the mobile platform travels to the first monitoring position of the area to be measured, the first camera and the second camera in the camera array simultaneously photograph the monitoring points in the area to be measured. That is to say, when the first camera photographs the first monitoring point to be measured, At the same time as the monitoring points in the area, the second camera also takes pictures of the monitoring points in the second area to be measured.
  • the first camera photographs the monitoring points in the first area to be measured to obtain a third image
  • the second camera captures the The monitoring point in the second area to be measured is photographed to obtain a fourth image.
  • J 1 first monitoring points are determined based on the first image and the second image; and J 2 second monitoring points are determined based on the second image and the fourth image; among which, J 1 first monitoring points are The monitoring points are included in both the first image and the third image, and the J 2 second monitoring points are monitoring points included in both the second image and the fourth image.
  • the deformation measurement device 10 obtains the horizontal displacement and vertical settlement of each of J 1 first monitoring points based on the first image, the second image, the third image and the fourth image, and J The horizontal displacement and vertical settlement of each of the two second monitoring points.
  • FIG. 1B is a schematic diagram of another deformation measurement system provided by an embodiment of the present application.
  • the deformation measurement system includes a deformation measurement device 10 and a cloud processing terminal 40.
  • the deformation measurement device 10 is provided with a mobile platform 20.
  • the mobile platform 20 is provided with a camera array 30, and at least two camera arrays 30 are provided in the camera array 30. Cameras with opposite directions, and each camera in the camera array 30 is fixedly connected to each other, and the model and focal length of each camera are not limited in this application.
  • the method for the deformation measurement system shown in Figure 1B to obtain the first image, the second image, the third image and the fourth image is the same as the method for the deformation measurement system shown in Figure 1A to obtain the first image, the second image, the third image and the fourth image.
  • the method for the third image and the fourth image is the same and will not be described again.
  • the difference between the deformation measurement system shown in Figure 1B and the deformation measurement system shown in Figure 1A is that after obtaining the first image, the second image, the third image and the fourth image, Figure 1B is the deformation measurement device 10
  • the first image, the second image, the third image and the fourth image are sent to the cloud processing terminal 40, and then the cloud processing terminal 40 calculates the vertical axis of the monitoring point based on the first image, the second image, the third image and the fourth image. lateral settlement and horizontal displacement.
  • the deformation measurement system shown in Figure 1A or Figure 1B can be applied to deformation monitoring of large engineering structures such as roads, railways, bridges, tunnels, etc., such as setting up multiple monitoring positions in tunnels.
  • the deformation measurement system calculates the vertical settlement and horizontal displacement of each monitoring point, and then the vertical settlement and horizontal displacement of the monitoring point can be compared with the third If it is greater than the first threshold, an early warning can be sent to the monitoring center; optionally, after calculating the vertical settlement and horizontal displacement of each monitoring point, the vertical settlement and horizontal displacement of each monitoring point can be calculated.
  • the ratio of the settlement amount to the time interval between two adjacent patrols is taken as the settlement deformation rate of each monitoring point
  • the ratio of the horizontal displacement of each monitoring point to the time interval between two adjacent patrols is taken as the ratio of the horizontal displacement of each monitoring point to the time interval between two adjacent patrols.
  • the first camera in the camera array takes pictures of the monitoring point in the first area to be measured, Obtain the first image; and the second camera in the camera array photographs the monitoring point in the second area to be measured to obtain the second image; then when the mobile platform travels to the second monitoring position of the area to be measured, The first camera captures the monitoring points in the first area to be measured to obtain a third image; and the second camera captures the monitoring points in the second area to be measured to obtain a fourth image; and then based on the first image and In the second image, J 1 first monitoring points are determined; and according to the second image and the fourth image, J 2 second monitoring points are determined; finally, according to the first image, the second image, the third image and the fourth image image to obtain the horizontal displacement and vertical settlement of each of J 1 first monitoring points, and the horizontal displacement and vertical settlement of each of J 2 second monitoring points.
  • this method based on camera kinetic network measurement integrates the camera into the mobile platform, does not require manual intervention during the measurement process, and realizes automatic measurement, saving a lot of manpower and material resources, and improving the efficiency of measurement. Enhanced simplicity and flexibility of measurement systems.
  • FIG 2 is a schematic flow chart of a deformation measurement method provided by an embodiment of the present application. This method is applied to the above-described deformation measurement device 10, and the deformation measurement device 10 is provided with a camera array and a mobile platform. The method includes but is not limited to steps 201-204:
  • the monitoring points in the first area to be measured and the monitoring points in the second area to be measured are respectively arranged on both sides of the first monitoring position, and the shooting directions of the first camera and the second camera are opposite.
  • the mobile platform can be a mobile monitoring vehicle, a mobile monitoring ship, a mobile aircraft, etc., and a positioning device, such as a mileage encoder, a GPS positioning system, etc., can be installed on the mobile platform.
  • a positioning device such as a mileage encoder, a GPS positioning system, etc.
  • posture measurement devices such as inertial navigation systems, gyroscopes, etc., which are not limited in this application.
  • a camera array refers to a plurality of cameras fixedly connected to each other, but the shooting directions of each camera can be different, and the models and focal lengths of each camera can also be different, which are not limited in this application.
  • the camera array includes at least two cameras, and at least one camera has a shooting direction opposite to that of the other cameras.
  • the camera array includes a first camera and a second camera, and the shooting directions of the first camera and the second camera are opposite.
  • the first camera is a rear-view camera and the second camera is a front-view camera.
  • the so-called rear-view camera refers to A camera whose shooting direction is opposite to the moving direction of the mobile platform.
  • the so-called front-view camera refers to a camera whose shooting direction is the same as the moving direction of the mobile platform.
  • the above-mentioned rear-view camera and front-view camera take pictures of the signs at the monitoring points during the movement of the mobile platform, that is, the rear-view camera takes pictures of the signs at the monitoring points in the first area to be measured, and the front-view camera takes pictures of the second to-be-measured areas. Marks at the monitoring points in the area; at the same time, the deformation measurement device 10 synchronously records the position of the mobile platform during this shooting, that is, the first monitoring position.
  • the method of recording the location of the mobile platform may be manual marking, recording mileage encoder readings, or using a GPS positioning system, etc., which are not limited here.
  • the signs at the monitoring points for example, the natural features of the monitoring points can be used, or artificial cooperation signs can be set at the monitoring points, and there is no limit to this.
  • the first monitoring position in step 201 that is, during the first patrol process of the deformation measurement device 10 from the starting point to the end point, the first camera in the camera array photographs the monitoring point in the first area to be measured.
  • the position of the second camera when photographing the monitoring point in the second area to be measured correspondingly, the second monitoring position, that is, the deformation measurement device 10 during the second patrol from the starting point to the end point, the third point in the camera array
  • One camera captures the position of the monitoring point in the first area to be measured and the second camera captures the position of the monitoring point in the second area to be measured.
  • the positions of the first camera photographing the monitoring points in the first area to be measured and the second camera photographing the monitoring points in the second area to be measured are different from those in the second patrol process.
  • the positions of the first camera photographing the monitoring points in the first area to be measured and the second camera photographing the monitoring points in the second area to be measured may be different. Therefore, in the embodiment of the present application, the first monitoring position and The second monitoring position may be different, so that the deformation measuring device itself generates a six-degree-of-freedom motion.
  • the above-mentioned monitoring points in the first area to be measured and the monitoring points in the second area to be measured are set in the area to be measured in accordance with the preset measurement specification requirements.
  • the monitoring points in the first area to be measured can be and the monitoring points in the second area to be measured are all set as settlement measurement points and/or horizontal displacement measurement points, that is, the set settlement measurement points and horizontal displacement measurement points can be the same point, or they can be different points, except
  • this application does not limit the location and shape of the monitoring points.
  • the monitoring points obtained at this time are the deformation amounts that occurred during this patrol compared with the baseline patrol; if multiple patrols are carried out, the multiple patrols are two adjacent patrols, such as the The first patrol and the second patrol, where the time interval between two adjacent patrols is not limited in this application, then the vertical settlement and horizontal displacement of the monitoring point obtained at this time are the values of the second patrol and the second patrol. The amount of deformation occurred compared to one patrol.
  • J 1 first monitoring points are monitoring points included in both the first image and the third image, that is, the first image contains J 1 first monitoring points, and the third image also contains J 1 first monitoring points.
  • J 2 second monitoring points are monitoring points included in both the second image and the fourth image, that is, the second image contains J 2 second monitoring points, and the fourth image also contains J 2 second monitoring points.
  • the number of monitoring points captured by the cameras in the camera array during the first patrol will be different from the number of monitoring points captured by the second patrol.
  • the number of monitoring points captured by the cameras in the camera array during each patrol is different. For example, at the first monitoring position in the first patrol, the first camera takes a picture of the monitoring point in the first area to be measured to obtain the first image, and then the first image can be determined from the first image. The number of monitoring points photographed in the first patrol; at the second monitoring position in the second patrol, the first camera again photographs the monitoring points in the first area to be measured to obtain a third image, and then from the third image The number of monitoring points photographed in the second patrol is determined in the image.
  • the number of monitoring points captured in the first patrol can also be understood as: at this time, the number of monitoring points in the first image is greater than J 1 , and the number of monitoring points in the third image is equal to J 1. Therefore, at this time It is necessary to determine the monitoring points included in both the first image and the third image, that is, J 1 first monitoring points. At the same time, it should be clear that if the monitoring points do not suffer the above-mentioned damage, loss, etc. during the inspection process, the monitoring points in the first image and the third image are the same, and the number is J 1 .
  • the second camera takes pictures of the monitoring points in the second area to be measured, and J is determined.
  • the principle of two second monitoring points is the same as that of the first camera taking pictures of the monitoring points in the first area to be measured, and J is determined.
  • the principle of the first monitoring point is similar and will not be described again here.
  • each of the J 1 first monitoring points and J 2 second monitoring points is the same
  • J 1 first monitoring points can be obtained based on the first image, the second image, the third image and the fourth image.
  • the horizontal displacement and vertical settlement of each first monitoring point in the points, and the horizontal displacement and vertical settlement of each second monitoring point in J 2 second monitoring points As shown in Figure 3, Figure 3 provides a method to obtain the horizontal displacement and vertical displacement of each of J 1 first monitoring points based on the first image, the second image, the third image and the fourth image.
  • J 1 first pixel coordinates are in one-to-one correspondence with J 1 first monitoring points
  • J 1 second pixel coordinates are in one-to-one correspondence with J 1 first monitoring points.
  • the first image and the third image can be preprocessed, such as denoising and grayscale processing, and then the pixel coordinates are acquired based on the preprocessed images.
  • the first pixel coordinates and second pixel coordinates of J 1 first monitoring points are obtained here, with the purpose of determining the positions of J 1 first monitoring points in the first image and the third image, here Image sub-pixel positioning technology can be used to determine the positions of J 1 first monitoring points in the first image and the third image, where the image sub-pixel positioning technology can include adaptive template correlation filtering method, adaptive threshold gravity center method, gray Degree graph fitting method, etc., this application does not limit this.
  • the first vertical change amount is the vertical change amount of any of the above-mentioned first monitoring points in the image, that is, the vertical change amount of the first monitoring point in the third image compared with the first image
  • the vertical change amount can be characterized by the vertical change amount of the first pixel coordinate (x 1 , y 1 ) and the second pixel coordinate (x 2 , y 2 ) of the first monitoring point in the image coordinate system, That is, the vertical change amount is (y 1 - y 2 );
  • the first horizontal change amount is the horizontal change amount of any of the above-mentioned first monitoring points in the image, that is, compared with the third image and the first image, the first horizontal change amount is The horizontal change amount that occurs at the monitoring point.
  • the horizontal change amount can be characterized by the horizontal change amount of the first pixel coordinate and the second pixel coordinate of the first monitoring point in the image coordinate system, that is, the horizontal change amount is (x 1 -x 2 ).
  • J 2 third pixel coordinates are in one-to-one correspondence with J 2 second monitoring points
  • J 2 fourth pixel coordinates are in one-to-one correspondence with J 2 second monitoring points.
  • the third image and the fourth image can be preprocessed, such as denoising and grayscale processing, and then the pixel coordinates are obtained based on the preprocessed images.
  • the third pixel coordinates and the fourth pixel coordinates of J 2 second monitoring points are obtained here for the purpose of determining the positions of J 2 second monitoring points in the second image and the fourth image.
  • Image sub-pixel positioning technology can be used to determine the positions of the J 2 second monitoring points in the second image and the fourth image, which is not limited in this application.
  • the second vertical change amount is the vertical change amount of any second monitoring point in the image, that is, the vertical change amount of any second monitoring point compared with the fourth image and the second image.
  • the second horizontal change amount is the horizontal change amount of any second monitoring point in the image, that is, the horizontal change amount of any second monitoring point compared with the fourth image and the second image. It should be noted that this The method of obtaining the vertical change amount and the horizontal change amount of the second monitoring point is similar to the above-mentioned method of obtaining the vertical change amount and the horizontal change amount of the first monitoring point, and will not be described again.
  • the J 2 second object plane resolutions, J 1 first distances, J 2 second distances and the six-degree-of-freedom motion of the measuring device corresponding to the point are determined to determine each of the J 1 first monitoring points.
  • the first included angle is the angle between the optical axis of the first camera and the horizontal plane
  • the second included angle is the angle between the optical axis of the second camera and the horizontal plane
  • J 1 first distances are the first distance between the first camera and J 1 respectively.
  • the distance between each of the J first monitoring points, and the J 2 second distances are the distances between the second camera and each of the J 2 second monitoring points. It should be noted that J 1 first distance and J 2 second distance are obtained through pre-calibration.
  • J 1 first object plane resolution is the magnification factor of the third image to J 1 first monitoring point
  • J 2 second object plane resolution is the fourth image to J 2 second monitoring points The magnification of the point.
  • Figure 4 provides a schematic diagram of the basic principles of camera photogrammetry. It is assumed that the shooting field of view is W ⁇ H, the resolution of the first camera is M ⁇ N, and the photosensitive image size is dx* dy, the focal length is f, and the object distance is D. According to the similar relationship shown in Figure 4, formula (1) can be obtained:
  • R x and R y both represent the first object plane resolution, that is, R x represents the object plane resolution of the third image for J 1 first monitoring point in the horizontal direction, and R y represents the third image.
  • the object plane resolution of J 1 first monitoring point in the vertical direction that is to say, the first object plane resolution includes the object plane resolution in the vertical direction and the object plane resolution in the horizontal direction. Therefore, when measuring the vertical settlement of J 1 first monitoring points below, the first object plane resolution is the object plane resolution in the vertical direction, that is, R y ; for J 1 first monitoring points When measuring the horizontal displacement of a point, the first object plane resolution is the object plane resolution in the horizontal direction.
  • the calculation method of the resolution of the second object plane is similar to the method of calculating the resolution of the first object plane, and will not be described again here.
  • the value of the object surface resolution here can be based on the calibration obtained during the first patrol, that is, the initial patrol, or it can be based on any patrol.
  • the calibration result shall prevail, or the average value of the object surface resolution values calibrated during different patrols shall prevail. There is no limit here.
  • step 305 specifically includes steps S1-S4:
  • any first monitoring point is the m-th first monitoring point among J 1 first monitoring points, then the first set of equations can be obtained through formula (4):
  • m is an integer greater than or equal to 1 and less than or equal to J 1 , is the first vertical change amount of the m-th first monitoring point among J 1 first monitoring points, is the first horizontal change amount of the m-th first monitoring point, is the first object plane resolution of the m-th first monitoring point, ⁇ B is the first included angle, is the first distance, is the vertical settlement of the m-th first monitoring point, is the horizontal displacement of the m-th first monitoring point, and is the amount of motion with six degrees of freedom, where, is the settlement amount of the deformation measuring device 10, is the rolling change amount of the deformation measuring device 10, is the longitudinal displacement of the deformation measuring device 10 along the traveling direction, is the horizontal displacement of the deformation measuring device 10, is the pitch angle change amount of the deformation measuring device 10, is the yaw change amount of the deformation measuring device 10 .
  • n is an integer greater than or equal to 1 and less than or equal to J 2 , is the second vertical change amount of the n-th second monitoring point among J 2 second monitoring points, is the second level change amount of the n-th second monitoring point among J 2 second monitoring points, is the second object plane resolution of the n-th second monitoring point, ⁇ F is the second included angle, is the second distance, is the vertical settlement of the n-th second monitoring point, is the horizontal displacement of the n-th second monitoring point, and the six-degree-of-freedom motion includes and is the amount of motion with six degrees of freedom, where, is the settlement amount of the deformation measuring device 10, is the rolling change amount of the deformation measuring device 10, is the longitudinal displacement of the deformation measuring device 10 along the traveling direction, is the horizontal displacement of the deformation measuring device 10, is the pitch angle change amount of the deformation measuring device 10, is the yaw change amount of the deformation measuring device 10 .
  • the first sub-equation in each of the J 1 first equation groups for example, the first sub-equation group in the m-th first equation group is: and J
  • the first sub-equation in the second system of equations for example, the first sub-equation in the n-th second system of equations is: Combine to obtain the first objective equation set; for example, the first objective equation set can be obtained through formula (6):
  • the second sub-equation in each of the J 1 first systems of equations be, for example, the second sub-equation in the m-th first system of equations is:
  • the second sub-equation in each second system of equations in the J 2 second system of equations, for example, the second sub-equation in the n-th second system of equations is: Combine to obtain the second objective equation set; for example, the first objective equation set can be obtained through formula (7):
  • both the first and second objective equations obtained need to satisfy two basic constraints and one optimization constraint.
  • the two basic constraints include fixed constraints and constraints with the same name.
  • Fixed constraints refer to the camera array being fixed.
  • all cameras included in the camera array in the deformation measurement device 10 have the same six-degree-of-freedom motion at the same monitoring position.
  • the first camera and the second camera in the deformation measurement device 10 have the same motion at the second monitoring position.
  • the same second monitoring point is photographed by a second camera at a first monitoring position and photographed by a second camera at another first monitoring position.
  • the position is captured by the first camera, then the vertical settlement of the same second monitoring point captured by the first camera and the second camera is the same, and the horizontal displacement is also the same; if you want to satisfy the above constraints of the same name, optionally, you can Assume that during a patrol, that is, during the process of the mobile platform from the starting point to the end point, all monitoring points in the area to be measured will no longer deform after being photographed by the cameras in the camera array. This application does not limit this.
  • Example sexually the J 2 second monitoring points will no longer deform after being photographed by the second camera, so that the vertical settlement of the J 2 second monitoring points captured by the first camera is the same as the J captured by the second camera.
  • the vertical settlement amounts of the two second monitoring points are the same.
  • the optimization constraint means that when the mobile platform is driving, the cameras in the camera array continuously shoot synchronously.
  • the first camera and the second camera continuously shoot synchronously and the same first monitoring point or second monitoring point may be imaged multiple times. , and are measured multiple times to obtain the vertical settlement and horizontal displacement of the same first monitoring point or second monitoring point, which can then be adjusted and optimized.
  • the deformation measurement can be achieved through one patrol, or through multiple patrols; among them, during each patrol, that is During the patrol process from the starting point to the end point, there can be multiple monitoring positions; therefore, if the deformation measurement is achieved through one patrol, the images taken at each monitoring position in the patrol can be combined with the benchmark patrol Compare the images at the corresponding monitoring positions to obtain the vertical settlement and horizontal displacement of the monitoring point; if the deformation measurement is achieved through multiple patrols, such as the first patrol and the second patrol, you can Compare the images taken at each monitoring position in the second patrol with the images taken at each corresponding monitoring position in the first patrol to obtain the vertical settlement and horizontal displacement of the monitoring point.
  • deformation measurement is achieved through multiple patrols as an example. That is, during the first patrol, the first camera captures the first image and the first image at the first monitoring position. Two images; during the second patrol, the second camera shoots the third image and the fourth image at the second monitoring position; then the first image and the third image are compared to obtain J 1 first monitoring The vertical settlement and horizontal displacement of the points; compare the second image and the fourth image to obtain the vertical settlement and horizontal displacement of J 2 second monitoring points.
  • this application will take multiple first monitoring locations as an example to explain whether there are solutions to multiple first target equation sets and second target equation sets corresponding to multiple first monitoring locations:
  • the number of first monitoring locations is a
  • the total number of signs is E
  • the total number of monitoring points is E
  • the total number of signs photographed at the first monitoring position a is G 1 , G 2 , G 3 ...G a
  • the number of independent equations that can be formulated is: (G 1 +G 2 +G 3 +...G a )*2
  • the number of unknown parameters in the equation system is: 2*E+6*a, which includes the vertical settlement of E signs, the horizontal displacement of E signs and the 6a deformation measurement devices.
  • each of the unknown parameters solved above are relative changes. If you need to obtain the absolute vertical settlement and absolute horizontal displacement of all monitoring points, or the vertical settlement and horizontal displacement relative to the reference point, Then it is necessary to set up any 3 reference points or 3 monitoring points with known vertical settlement and horizontal displacement on the entire monitoring link from the starting point to the end point. At this time, the camera in the camera array captures any one of the reference points or For any monitoring point where the vertical settlement and horizontal displacement are known, two independent equations will be generated. That is to say, taking the above assumption as an example, the total number of monitoring points is E, then the E monitoring points need to include 3 reference points or 3 monitoring points with known vertical settlement and horizontal displacement.
  • the specific locations of the three reference points or three monitoring points with known vertical settlement and horizontal displacement do not need to be limited.
  • there is only one monitoring position that is, the first monitoring position, and the two sides of the first monitoring position are respectively set to be in the first area to be measured.
  • Monitoring points and monitoring points in the second area to be measured If during the second patrol, neither the monitoring points in the first area to be measured nor the monitoring points in the second area to be measured are damaged or lost as mentioned above.
  • the monitoring points in the first area to be measured are all J 1 first monitoring points, and the monitoring points in the second area to be measured are all J 2 Two monitoring points, then the total number of monitoring points is (J 1 +J 2 ), that is to say, these (J 1 +J 2 ) monitoring points need to include 3 reference points or 3 vertical settlements and horizontal displacements Monitoring points with known quantities.
  • any one or more of the above six degrees of freedom motion quantities can no longer be used as unknown parameters, but as known parameters, thus making the first objective equation set and the second objective equation set The number of unknown parameters in is reduced.
  • the rolling change amount among the six free motion amounts of the deformation measuring device 10 will no longer be regarded as an unknown parameter and can be understood as the roll change amount
  • the influence is negligible, that is, at this time, only five degrees of freedom motions among the six degrees of freedom of motion of the deformation measurement device 10 are unknown parameters, thereby reducing the number of unknown parameters in the first and second objective equations; or , if a positioning device is installed on the mobile platform, then one of the six free motion quantities of the deformation measuring device 10 can be obtained through this positioning device, that is, at this time These three quantities will no longer be regarded as unknown parameters, but as known parameters.
  • the amount of freedom of motion as a known parameter among the six degrees of freedom of motion is not limited here, or it is not limited to whether the mobile platform is equipped with a positioning device and a posture measurement device at the same time, or only a positioning device, or only a positioning device.
  • a position and attitude measuring device, etc. is installed; at the same time, it should be clear that here, in addition to a positioning device, a position and attitude measuring device, etc. installed on the mobile platform, the corresponding degree of freedom motion in the six degrees of freedom motion changes from unknown parameters to known parameters. , and other methods can be used to change the corresponding motion amount of the six degrees of freedom from unknown parameters to known parameters, and this application will not list them one by one.
  • Figure 5 is a schematic flow chart of another deformation measurement method provided by an embodiment of the present application.
  • the method includes but is not limited to steps 501-504:
  • the number of J 1 first monitoring points is an even number, and the J 1 first monitoring points are composed of J 1 /2 third monitoring points and J 1 /2 fourth monitoring points.
  • the J 1 first monitoring points when the number of J 1 first monitoring points is an even number, and the J 1 first monitoring points are composed of J 1 /2 third monitoring points and J 1 /2 third monitoring points, It consists of four monitoring points, that is, the J 1 first monitoring points include J 1 /2 settlement measurement points and J 2 /2 horizontal displacement measurement points, that is, the J 1 /2 third monitoring points are all horizontal settlement points. , J 1 /2 of the fourth monitoring points are all settlement measurement points, that is to say, the settlement measurement point and the horizontal displacement measurement point are not at the same point.
  • the number of J 2 second monitoring points is an even number, and the J 2 second monitoring points are composed of J 2 /2 fifth monitoring points and J 2 /2 sixth monitoring points.
  • the J 2 second monitoring points when the number of J 2 second monitoring points is an even number, and the J 2 second monitoring points are composed of J 2 /2 fifth monitoring points and J 2 /2
  • the composition of the sixth monitoring point that is, the J 2 second monitoring points include J 2 /2 settlement measurement points and J 2 /2 horizontal displacement measurement points, that is, the J 2 /2 fifth monitoring points are all horizontal settlement point, J 2 /2 sixth monitoring points are all settlement measurement points, that is to say, the settlement measurement point and the horizontal displacement measurement point are not at the same point.
  • step 503 includes but is not limited to steps A1-A4:
  • A1 Obtain J 1 /2 fifth pixel coordinates of J 1 /2 third monitoring points in the first image and J 1 /2 sixth pixel coordinates in the third image.
  • J 1 /2 fifth pixel coordinates are in one-to-one correspondence with J 1 /2 third monitoring points
  • J 1 /2 sixth pixel coordinates are in one-to-one correspondence with J 1 /2 third monitoring points.
  • the first image and the third image can be preprocessed, such as denoising and grayscale processing, and then the pixel coordinates are obtained based on the preprocessed images.
  • the fifth pixel coordinates and sixth pixel coordinates of J 1 /2 third monitoring points are obtained here for the purpose of determining the coordinates of J 1 /2 third monitoring points in the first image and the third image.
  • Position where image sub-pixel positioning technology can be used to determine the positions of the J 1 /2 third monitoring points in the first image and the third image.
  • A2 Obtain J 2 /2 seventh pixel coordinates of J 2 /2 fifth monitoring points in the second image and J 2 /2 eighth pixel coordinates in the fourth image.
  • J 2 /2 seventh pixel coordinates are in one-to-one correspondence with J 2 /2 fifth monitoring points
  • J 2 /2 eighth pixel coordinates are in one-to-one correspondence with J 2 /2 fifth monitoring points.
  • A3 For any third monitoring point among J 1 /2 third monitoring points and any fifth monitoring point among J 2 /2 fifth monitoring points, according to the fifth monitoring point corresponding to any third monitoring point According to the pixel coordinates and sixth pixel coordinates, the third horizontal change amount of any third monitoring point is obtained. According to the seventh pixel coordinate and eighth pixel coordinate corresponding to any fifth monitoring point, the third horizontal change amount of any fifth monitoring point is obtained. Four levels of change.
  • the third horizontal change amount is the horizontal change amount of any third monitoring point in the image, that is, the horizontal change amount of any third monitoring point in the third image compared with the first image; fourth The horizontal change amount is the horizontal change amount of any corresponding fifth monitoring point in the image, that is, the horizontal change amount of any corresponding fifth monitoring point in the third image compared with the first image.
  • it is calculated The method of obtaining the horizontal change amount of the third monitoring point and the horizontal change amount of the fifth monitoring point is similar to the above-mentioned method of obtaining the horizontal change amount of the first monitoring point, and will not be described again.
  • A4 According to the J 1 /2 third horizontal changes corresponding to the J 1 /2 third monitoring points, the J 2 /2 fourth horizontal changes corresponding to the J 2 /2 fifth monitoring points, and the camera array
  • the fourth object surface resolution, J 1 /2 third distances, J 2 /2 fourth distances and the three-degree-of-freedom motion amount of the deformation measuring device 10 are determined to determine each of the J 1 /2 third monitoring points.
  • J 1 /2 third distances are the distances between the first camera and each of the J 1 /2 third monitoring points
  • J 2 /2 fourth distances are the distances between the second camera and J 1 /2 third monitoring points.
  • the J 1 /2 third object plane resolution is the magnification of the third image pair J 1 /2 third monitoring points
  • the J 2 /2 fourth object plane resolution is the fourth image pair J 2 /2 magnification of the fifth monitoring point.
  • step A4 includes but is not limited to steps B1-B4:
  • any third monitoring point is the Q-th third monitoring point among J 1 /2 third monitoring points, then the first equation can be obtained through formula (8):
  • Q is an integer greater than or equal to 1 and less than or equal to J 1 /2
  • Q is the third level change amount of the Q third monitoring point among the J 1 /2 third monitoring points
  • ⁇ B is the first included angle
  • T is an integer greater than or equal to 1 and less than or equal to J 2 /2
  • ⁇ F is the second included angle
  • each of the J 1 /2 first equations for example, the Q-th first equation is: and each second equation in J 2 /2 second equations.
  • the T second equation is: Combine to obtain the third objective equation set; for example, the third objective equation set can be obtained through formula (10):
  • the first and second equations obtained also need to satisfy the above two basic constraint and an optimization constraint, where it should be noted that the fixed constraint here means that all cameras included in the camera array in the deformation measurement device 10 have the same three-degree-of-freedom motion at the same monitoring position, except for the fixed constraint Other constraints will not be described here.
  • the third target equation set it can be known that every time any first monitoring point or second monitoring point is photographed and imaged, an independent equation can be listed.
  • it is based on one of the monitoring positions in a patrol, that is, the first monitoring position, and J 1 /2 third monitoring points are set on the left side of the first monitoring position, and J 2 /2 are set on the right side.
  • Two fifth monitoring points are taken as an example for illustration.
  • this application will take multiple first monitoring positions as an example to explain whether there are solutions to multiple third target equations corresponding to multiple first monitoring positions:
  • the number of first monitoring positions is a 1
  • the total number of markers is E 1
  • the total number of monitoring points is E 1
  • the total number of signs photographed at the first monitoring position a 1 is G 11 , G 21 , G 31 ...G a1
  • the number of independent equations that can be formulated is: (G 11 +G 21 +G 31 +...G a1 )
  • the number of unknown parameters in the equation system is: E 1 +3*a 1 , which includes the horizontal displacement of E 1 mark and the three-degree-of-freedom motion of 3a 1 deformation measurement device.
  • each of the unknown parameters solved above are relative changes. If you need to obtain the absolute horizontal displacement of all monitoring points, or the horizontal displacement relative to the reference point, you need to calculate the entire monitoring chain from the starting point to the end point. Set up any 3 reference points or 3 monitoring points with known horizontal displacement on the road. At this time, when the camera in the camera array captures any reference point or any monitoring point with known horizontal displacement, it will also generate 1 independent equation.
  • any one or more of the above five degrees of freedom motion quantities can no longer be used as unknown parameters, but as known parameters, thereby reducing the number of unknown parameters in the third objective equation set.
  • the way in which the corresponding motion amount of the five degrees of freedom of the deformation measuring device 10 changes from an unknown parameter to a known parameter is the same as the way that the corresponding amount of motion of the six degrees of freedom of the above-mentioned deformation measuring device 10 changes from an unknown parameter to a known parameter. The method is similar and will not be described again here.
  • step 504 includes but is not limited to steps C1-C4:
  • C1 Obtain the J 1 /2 ninth pixel coordinates of the J 1 /2 fourth monitoring point in the first image, and the J 1 /2 tenth pixel coordinates in the third image.
  • J 1 /2 ninth pixel coordinates correspond to J 1 /2 fourth monitoring points one-to-one
  • J 1 /2 tenth pixel coordinates correspond to J 1 /2 fourth monitoring points one-to-one
  • C2 Obtain the J 2 /2 11th pixel coordinates of the J 2 /2 sixth monitoring points in the second image, and the J 1 /2 12th pixel coordinates in the fourth image.
  • J 2 /2 eleventh pixel coordinates correspond to J 2 /2 sixth monitoring points one-to-one
  • J 1 /2 twelfth pixel coordinates correspond to J 2 /2 sixth monitoring points one-to-one.
  • the third vertical change amount is the vertical change amount of any fourth monitoring point in the image, that is, the vertical change amount of any fourth monitoring point compared with the fourth image and the second image.
  • the fourth vertical change amount is the vertical change amount of any sixth monitoring point in the image, that is, the vertical change amount of any sixth monitoring point compared with the fourth image and the second image,
  • the method of obtaining the vertical change amount of the fourth monitoring point and the vertical change amount of the sixth monitoring point here is similar to the above-mentioned method of obtaining the vertical change amount of the first monitoring point, and will not be described again.
  • J 1 /2 fifth distances are the distances between the first camera and each of the J 1 /2 fourth monitoring points
  • J 2 /2 sixth distances are the distances between the second camera and J 1 /2 fourth monitoring points.
  • the J 1 /2 fifth distances and the J 2 /2 sixth distances are pre-calibrated.
  • J 1 /2 fifth object plane resolution is the magnification of the third image pair J 1 /2 fourth monitoring point
  • J 2 /2 sixth object plane resolution is the fourth image pair J 2 /2 magnification of the sixth monitoring point.
  • the value of the object surface resolution here can be based on the calibration obtained during the first patrol, that is, the initial patrol, or it can be based on any patrol.
  • the calibration result shall prevail, or the average value of the object surface resolution values calibrated during different patrols shall prevail. There is no limit here.
  • step C4 includes but is not limited to steps D1-D4:
  • D1 Based on the third vertical change, fifth object plane resolution, fifth distance and five degrees of freedom motion corresponding to any fourth monitoring point, obtain the third equation corresponding to any fourth monitoring point.
  • U is an integer greater than or equal to 1 and less than or equal to J 1 /2
  • ⁇ B is the first included angle
  • W is an integer greater than or equal to 1 and less than or equal to J 2 /2
  • ⁇ F is the second included angle
  • each of the J 1 /2 third equations is: and each fourth equation in J 2 /2 fourth equations.
  • the W fourth equation is: Combine to obtain the fourth objective equation set; for example, the fourth objective equation set can be obtained through formula (13):
  • D4 According to the fourth target equation set, obtain the vertical displacement of each fourth monitoring point among J 1 /2 fourth monitoring points and each sixth monitoring point among J 2 /2 sixth monitoring points. the vertical displacement.
  • the third and fourth equations obtained also need to satisfy the above two basic constraint and an optimization constraint, where it should be noted that the fixed constraint here means that all cameras included in the camera array in the deformation measurement device 10 have the same five-degree-of-freedom motion at the same monitoring position, except for the fixed constraint Other constraints will not be described here.
  • the fourth target equation set it can be known that every time any fourth monitoring point or sixth monitoring point is photographed and imaged, an independent equation can be listed.
  • it is based on one monitoring position in a patrol, that is, the first monitoring position, and J 1 /2 fourth monitoring points are set on the left side of the first monitoring position, and J 2 /2 are set on the right side.
  • Two sixth monitoring points are taken as an example for illustration.
  • this application will take multiple first monitoring positions as an example to explain whether there are solutions to multiple fourth target equations corresponding to multiple first monitoring positions:
  • the number of first monitoring positions is a 2
  • the total number of markers is E 2
  • the total number of monitoring points is E 2
  • the total number of signs photographed at a 2 first monitoring positions are G 12 , G 22 , G 32 ...G a2
  • the number of independent equations that can be formulated is: (G 12 +G 22 +G 32 +...G a2 )
  • the number of unknown parameters in the equation system is: E 2 +5*a 2 , which includes the horizontal displacement of E 2 markers and the five-degree-of-freedom motion of 2 deformation measuring devices 10 3a.
  • each of the unknown parameters solved above is a relative change. If you need to obtain the absolute vertical displacement of all monitoring points, or the vertical displacement relative to the reference point, you need to calculate the entire distance from the starting point to the end point. Set any 5 reference points or 5 monitoring points with known vertical displacement on the monitoring link. At this time, when the camera in the camera array captures any one of the reference points or any monitoring point with known vertical displacement, An independent equation will also be generated.
  • any one or more of the above three degrees of freedom motion quantities can no longer be used as unknown parameters, but as known parameters, thereby reducing the number of unknown parameters in the fourth objective equation set.
  • the way in which the corresponding motion amount of the three degrees of freedom of the deformation measuring device 10 changes from an unknown parameter to a known parameter is the same as the way that the corresponding amount of motion of the six degrees of freedom of the above-mentioned deformation measuring device 10 changes from an unknown parameter to a known parameter. The method is similar and will not be described again here.
  • FIG. 6 is a functional unit block diagram of a deformation measurement device provided by an embodiment of the present application.
  • the deformation measurement device 600 includes: an acquisition unit 601 and a processing unit 602;
  • the acquisition unit 601 is configured to, when the mobile platform travels to the first monitoring position of the area to be measured, photograph the monitoring point in the first area to be measured through the first camera in the camera array to obtain the first image; and the second camera in the camera array captures the monitoring points in the second area to be measured to obtain a second image, where the monitoring points in the first area to be measured and the monitoring points in the second area to be measured are The points are set on both sides of the first monitoring position, and the shooting directions of the first camera and the second camera are opposite;
  • the monitoring points in the first area to be measured are photographed by the first camera to obtain a third image; and the monitoring points in the second area to be measured are photographed by the second camera.
  • J 1 first monitoring points are determined; and according to the second image and the fourth image, J 2 second monitoring points are determined, wherein the J 1 first monitoring points are the The monitoring points included in both the first image and the third image, and the J 2 second monitoring points are the monitoring points included in both the second image and the fourth image;
  • the processing unit 602 is configured to obtain the horizontal displacement and vertical settlement of each of J 1 first monitoring points based on the first image, the second image, the third image and the fourth image, and J The horizontal displacement and vertical settlement of each of the two second monitoring points.
  • the horizontal displacement and vertical settlement of each of J 1 first monitoring points are obtained based on the first image, the second image, the third image and the fourth image.
  • the processing unit 602 is specifically used for:
  • the first vertical change amount of any first monitoring point is obtained and the first level change amount
  • the second vertical change amount of any second monitoring point is obtained and the second level change amount
  • J 2 second vertical changes corresponding to J 2 second monitoring points and J 2 second horizontal changes the first included angle and the second included angle of the camera array
  • J 2 second monitoring points corresponding to The J 2 second object surface resolutions, J 1 first distances, J 2 second distances, and the six-degree-of-freedom motion of the measuring device determine the level of each of the J 1 first monitoring points.
  • the displacement and vertical settlement, as well as the horizontal displacement and vertical settlement of each of the J 2 second monitoring points where the first angle is the angle between the optical axis of the first camera and the horizontal plane angle, the second included angle is the angle between the optical axis of the second camera and the horizontal plane, and J 1 first distances are the distances between the first camera and each of the J 1 first monitoring points. , the J 2 second distances are the distances between the second camera and each of the J 2 second monitoring points.
  • the processing unit 602 specifically uses At:
  • the first vertical change amount the first horizontal change amount, the first included angle, the first object plane resolution, the first distance and the six-degree-of-freedom motion amount corresponding to any first monitoring point, the corresponding value of any first monitoring point is obtained.
  • the result of any second monitoring point is obtained.
  • the vertical settlement amount of each of J 1 first monitoring points and the vertical settlement amount of each of J 2 second monitoring points are obtained, and according to The second objective equation set obtains the horizontal displacement of each of J 1 first monitoring points and the horizontal displacement of each of J 2 second monitoring points.
  • the horizontal displacement and vertical settlement of each of J 1 first monitoring points are obtained based on the first image, the second image, the third image and the fourth image.
  • the processing unit 602 is specifically used for:
  • J 1 first monitoring points are an even number, and J 1 first monitoring points are composed of J 1 /2 third monitoring points and J 1 /2 fourth monitoring points;
  • the number of J 2 second monitoring points is an even number, and the J 2 second monitoring points are composed of J 2 /2 fifth monitoring points and J 2 /2 sixth monitoring points;
  • the horizontal displacement of each of the J 1 /2 third monitoring points and the horizontal displacement of each of the J 2 /2 fifth monitoring points are obtained.
  • the horizontal displacement amount and J of each of the J 1 /2 third monitoring points are obtained based on the first image, the second image, the third image and the fourth image.
  • the horizontal displacement of each fifth monitoring point in 2 /2 fifth monitoring points, and the vertical settlement of each fourth monitoring point in J 1 /2 fourth monitoring points and J 2 /2 sixth monitoring points Regarding the vertical settlement of each sixth monitoring point among the monitoring points, the processing unit 602 is specifically used for:
  • any third monitoring point among J 1 /2 third monitoring points and any fifth monitoring point among J 2 /2 fifth monitoring points according to the fifth pixel coordinate corresponding to any third monitoring point and the sixth pixel coordinate to obtain the third level change amount of any third monitoring point.
  • the seventh and eighth pixel coordinates corresponding to any fifth monitoring point the fourth level of any fifth monitoring point is obtained. amount of change;
  • any fourth monitoring point among J 1 /2 fourth monitoring points and any sixth monitoring point among J 2 /2 sixth monitoring points according to the ninth pixel coordinate corresponding to any fourth monitoring point and the tenth pixel coordinate, to obtain the third vertical change amount of any fourth monitoring point, and according to the eleventh and twelfth pixel coordinates corresponding to any sixth monitoring point, to obtain the third vertical change of any sixth monitoring point
  • the fourth vertical change amount
  • the J 1 /2 third level changes corresponding to the J 1 /2 third monitoring points
  • the J 2 /2 fourth level changes corresponding to the J 2 /2 fifth monitoring points
  • the first J 2 /2 level changes of the camera array.
  • the resolution of the four object planes, J 1 /2 third distances, J 2 /2 fourth distances, and the three-degree-of-freedom motion of the measuring device determine each of the J 1 /2 third monitoring points.
  • J 1 /2 third distances is the distance between the first camera and each of the J 1 /2 third monitoring points
  • J The 2 /2 second distance is the distance between the second camera and each of the J 2 /2 fifth monitoring points
  • the sixth object plane resolution, J 1 /2 fifth distances, J 2 /2 sixth distances and the five-degree-of-freedom motion of the measuring device determine each fourth of the J 1 /2 fourth monitoring points.
  • the vertical settlement of the monitoring point and the vertical settlement of each of the J 2 /2 sixth monitoring points where the first angle is the angle between the optical axis of the first camera and the horizontal plane, The second angle is the angle between the optical axis of the second camera and the horizontal plane, and the J 1 /2 first distances are between the first camera and each of the J 1 /2 fourth monitoring points.
  • the distance of J 2 /2 second distances is the distance between the second camera and each of the J 2 /2 sixth monitoring points respectively.
  • FIG. 7 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • electronic device 700 includes a transceiver 701 , a processor 702 and a memory 703 . They are connected through bus 704.
  • the memory 703 is used to store computer programs and data, and can transmit the data stored in the memory 703 to the processor 702 .
  • the processor 702 is used to read the computer program in the memory 703 to perform the following operations:
  • the control transceiver 701 is used to, when the mobile platform travels to the first monitoring position of the area to be measured, photograph the monitoring point in the first area to be measured through the first camera in the camera array to obtain the first image; and the second camera in the camera array captures the monitoring points in the second area to be measured to obtain a second image, where the monitoring points in the first area to be measured and the monitoring points in the second area to be measured are The points are set on both sides of the first monitoring position, and the shooting directions of the first camera and the second camera are opposite;
  • the monitoring points in the first area to be measured are photographed by the first camera to obtain a third image; and the monitoring points in the second area to be measured are photographed by the second camera.
  • J 1 first monitoring points are determined; and according to the second image and the fourth image, J 2 second monitoring points are determined, wherein the J 1 first monitoring points are the The monitoring points included in both the first image and the third image, and the J 2 second monitoring points are the monitoring points included in both the second image and the fourth image;
  • the horizontal displacement and vertical settlement of each of J 1 first monitoring points are obtained, as well as J 2 second monitoring points The horizontal displacement and vertical settlement of each second monitoring point.
  • the horizontal displacement and vertical settlement of each of J 1 first monitoring points are obtained based on the first image, the second image, the third image and the fourth image.
  • the processor 702 is specifically configured to perform the following steps:
  • the first vertical change amount of any first monitoring point is obtained and the first level change amount
  • the second vertical change amount of any second monitoring point is obtained and the second level change amount
  • J 2 second vertical changes corresponding to J 2 second monitoring points and J 2 second horizontal changes the first included angle and the second included angle of the camera array
  • J 2 second monitoring points corresponding to The J 2 second object surface resolutions, J 1 first distances, J 2 second distances, and the six-degree-of-freedom motion of the measuring device determine the level of each of the J 1 first monitoring points.
  • the displacement and vertical settlement, as well as the horizontal displacement and vertical settlement of each of the J 2 second monitoring points where the first angle is the angle between the optical axis of the first camera and the horizontal plane angle, the second included angle is the angle between the optical axis of the second camera and the horizontal plane, and J 1 first distances are the distances between the first camera and each of the J 1 first monitoring points. , the J 2 second distances are the distances between the second camera and each of the J 2 second monitoring points.
  • the first vertical change amount the first horizontal change amount, the first included angle, the first object plane resolution, the first distance and the six-degree-of-freedom motion amount corresponding to any first monitoring point, the corresponding value of any first monitoring point is obtained.
  • the result of any second monitoring point is obtained.
  • the vertical settlement amount of each of J 1 first monitoring points and the vertical settlement amount of each of J 2 second monitoring points are obtained, and according to The second objective equation set obtains the horizontal displacement of each of J 1 first monitoring points and the horizontal displacement of each of J 2 second monitoring points.
  • the horizontal displacement and vertical settlement of each of J 1 first monitoring points are obtained based on the first image, the second image, the third image and the fourth image.
  • the processor 702 is specifically configured to perform the following steps:
  • J 1 first monitoring points are an even number, and J 1 first monitoring points are composed of J 1 /2 third monitoring points and J 1 /2 fourth monitoring points;
  • the number of J 2 second monitoring points is an even number, and the J 2 second monitoring points are composed of J 2 /2 fifth monitoring points and J 2 /2 sixth monitoring points;
  • the horizontal displacement of each of the J 1 /2 third monitoring points and the horizontal displacement of each of the J 2 /2 fifth monitoring points are obtained.
  • the horizontal displacement amount and J of each of the J 1 /2 third monitoring points are obtained based on the first image, the second image, the third image and the fourth image.
  • the horizontal displacement of each fifth monitoring point in 2 /2 fifth monitoring points, and the vertical settlement of each fourth monitoring point in J 1 /2 fourth monitoring points and J 2 /2 sixth monitoring points Regarding the vertical settlement of each sixth monitoring point among the monitoring points, the processor 702 is specifically configured to perform the following steps:
  • any third monitoring point among J 1 /2 third monitoring points and any fifth monitoring point among J 2 /2 fifth monitoring points according to the fifth pixel coordinate corresponding to any third monitoring point and the sixth pixel coordinate to obtain the third level change amount of any third monitoring point.
  • the seventh and eighth pixel coordinates corresponding to any fifth monitoring point the fourth level of any fifth monitoring point is obtained. amount of change;
  • any fourth monitoring point among J 1 /2 fourth monitoring points and any sixth monitoring point among J 2 /2 sixth monitoring points according to the ninth pixel coordinate corresponding to any fourth monitoring point and the tenth pixel coordinate, to obtain the third vertical change amount of any fourth monitoring point, and according to the eleventh and twelfth pixel coordinates corresponding to any sixth monitoring point, to obtain the third vertical change of any sixth monitoring point
  • the fourth vertical change amount
  • the J 1 /2 third level changes corresponding to the J 1 /2 third monitoring points
  • the J 2 /2 fourth level changes corresponding to the J 2 /2 fifth monitoring points
  • the first J 2 /2 level changes of the camera array.
  • the resolution of the four object planes, J 1 /2 third distances, J 2 /2 fourth distances, and the three-degree-of-freedom motion of the measuring device determine each of the J 1 /2 third monitoring points.
  • J 1 /2 third distances is the distance between the first camera and each of the J 1 /2 third monitoring points
  • J The 2 /2 second distance is the distance between the second camera and each of the J 2 /2 fifth monitoring points
  • the sixth object plane resolution, J 1 /2 fifth distances, J 2 /2 sixth distances and the five-degree-of-freedom motion of the measuring device determine each fourth of the J 1 /2 fourth monitoring points.
  • the vertical settlement of the monitoring point and the vertical settlement of each of the J 2 /2 sixth monitoring points where the first angle is the angle between the optical axis of the first camera and the horizontal plane, The second angle is the angle between the optical axis of the second camera and the horizontal plane, and the J 1 /2 first distances are between the first camera and each of the J 1 /2 fourth monitoring points.
  • the distance of J 2 /2 second distances is the distance between the second camera and each of the J 2 /2 sixth monitoring points respectively.
  • the above-mentioned transceiver 701 may be the acquisition unit 601 of the deformation measurement device 600 in the embodiment of FIG. 6
  • the above-mentioned processor 702 may be the processing unit 602 of the deformation measurement device 600 in the embodiment of FIG. 6 .
  • the electronic devices in this application may include smart phones (such as Android phones, iOS phones, Windows Phones, etc.), tablet computers, handheld computers, notebook computers, mobile Internet devices MID (Mobile Internet Devices, MID for short) or Wearable devices, etc.
  • smart phones such as Android phones, iOS phones, Windows Phones, etc.
  • tablet computers such as Samsung phones, iOS phones, Windows Phones, etc.
  • notebook computers mobile Internet devices MID (Mobile Internet Devices, MID for short) or Wearable devices, etc.
  • MID Mobile Internet Devices, MID for short
  • Wearable devices etc.
  • the above-mentioned electronic devices are only examples and are not exhaustive, including but not limited to the above-mentioned electronic devices. In practical applications, the above-mentioned electronic devices may also include: intelligent vehicle-mounted terminals, computer equipment, etc.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program is executed by a processor to implement part or all of any of the deformation measurement methods described in the above method embodiments. step.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product includes a non-transitory computer-readable storage medium storing a computer program.
  • the computer program is operable to cause the computer to perform any of the deformations described in the above method embodiments. Some or all steps of a measurement method.
  • the disclosed device can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or integrated into Another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical or other forms.
  • a unit described as a separate component may or may not be physically separate.
  • a component shown as a unit may or may not be a physical unit, that is, it may be located in one place, or it may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software program modules.
  • Integrated units may be stored in a computer-readable memory when implemented in the form of software program modules and sold or used as stand-alone products.
  • the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a memory, It includes several instructions to cause a computer device (which can be a personal computer, a server or a network device, etc.) to execute all or part of the steps of the methods of various embodiments of the present application.
  • the aforementioned memory includes: U disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), mobile hard disk, magnetic disk or optical disk and other media that can store program code.
  • the program can be stored in a computer-readable memory.
  • the memory can include: a flash disk. , read-only memory (English: Read-Only Memory, abbreviation: ROM), random access device (English: Random Access Memory, abbreviation: RAM), magnetic disk or optical disk, etc.

Abstract

一种形变测量方法,包括:当移动平台行驶至第一监测位置时,通过相机阵列中的第一相机对待测区域中第一待测区域内的J1个监测点进行拍摄,得到第一图像;以及通过相机阵列中的第二相机对待测区域的J2个第二监测点进行拍摄,得到第二图像(201);当移动平台行驶至待测区域的第二监测位置时,通过第一相机对J1个第一监测点进行拍摄,得到第三图像;以及通过第二相机对J2个第二监测点进行拍摄,得到第四图像(202);根据第一图像和第三图像确定出J 1个第一监测点;根据第二图像和第四图像,确定出J 2个第二监测点(203);根据第一图像、第二图像、第三图像和第四图像,得到J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量(204)。此外还提出了一种形变测量装置、电子设备及存储介质。

Description

形变测量方法、装置、电子设备及存储介质 技术领域
本申请涉及图像处理技术领域,具体涉及一种形变测量方法、装置、电子设备及存储介质。
背景技术
目前,对于大型结构工程的形变测量,提出了利用串并联相机网络的摄像测量技术实现形变测量,一方面该方法在构造相机串联网络时均需要固定监测站,这对于大范围、长距离、多点监测的工程监测需求,例如城市道路沉降监测、铁路路基沉降监测、隧道的拱顶沉降和拱腰水平收敛变形监测等,则需要布置大量的监测设备,设备投入量较大;另一方面,现场的监测环境可能并不具备布置大量固定监测站的条件。因此,目前亟须提供一种能够适用到所有监测场景,可以节约成本,且简单、高效、自动的大型结构形变测量方法。
发明内容
本申请实施例提供了一种形变测量方法、装置、电子设备及存储介质,可以适用到所有监测场景,节约成本,提高了形变测量的效率,增强了测量系统的简易性。
第一方面,本申请实施例提供一种形变测量方法,该方法应用于形变测量装置,该形变测量装置上设置有相机阵列和移动平台,方法包括:
当移动平台行驶至待测区域的第一监测位置时,通过相机阵列中的第一相机对待测区域中第一待测区域内的监测点进行拍摄,得到第一图像;以及通过相机阵列中的第二相机对待测区域中第二待测区域内的监测点进行拍摄,得到第二图像,其中,第一待测区域内的监测点和第二待测区域内的监测点设置于第一监测位置的两侧,第一相机和第二相机的拍摄方向相反;
当移动平台行驶至待测区域的第二监测位置时,通过第一相机对第一待测区域内的监测点进行拍摄,得到第三图像;以及通过第二相机对第二待测区域内的监测点进行拍摄,得到第四图像;
根据第一图像和第二图像,确定出J 1个第一监测点;以及根据第二图像和第四图像,确定出J 2个第二监测点,其中,J 1个第一监测点为第一图像和第三图像均包含的监测点,所述J 2个第二监测点为第二图像和第四图像均包含的监测点;
根据第一图像、第二图像、第三图像和第四图像,得到J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量。
第二方面,本申请实施例提供一种形变测量装置,该形变测量装置上设置有相机阵列和移动平台,装置包括:获取单元和处理单元;
获取单元,用于当移动平台行驶至待测区域的第一监测位置时,通过相机阵列中的第一相机对待测区域中第一待测区域内的监测点进行拍摄,得到第一图像;以及通过相机阵列中的第二相机对待测区域中第二待测区域内的监测点进行拍摄,得到第二图像,其中,第一待测区域内的监测点和第二待测区域内的监测点设置于第一监测位置的两侧,第一相机和第二相机的拍摄方向相反;
当移动平台行驶至待测区域的第二监测位置时,通过第一相机对第一待测区域内的监测点进行拍摄,得到第三图像;以及通过第二相机对第二待测区域内的监测点进行拍摄,得到第四图像;
处理单元,用于根据第一图像和所述第二图像,确定出J 1个第一监测点;以及根据第二图像和所述第四图像,确定出J 2个第二监测点,其中,J 1个第一监测点为第一图像和第二图像均包含的监测点,J 2个第二监测点为第二图像和第四图像均包含的监测点;
根据第一图像、第二图像、第三图像和第四图像,得到J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量。
第三方面,本申请实施例提供一种电子设备,包括:处理器,处理器与存储器相连,存储器用于存储计算机程序,处理器用于执行存储器中存储的计算机程序,以使得电子设备执行如第一方面的方法。
第四方面,本申请实施例提供一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序使得计算机执行如第一方面的方法。
第五方面,本申请实施例提供一种计算机程序产品,计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,计算机可操作来使计算机执行如第一方面的方法。
实施本申请实施例,具有如下有益效果:
可以看出,在本申请实施例中,通过当移动平台行驶至待测区域的第一监测位置时,相机阵列中的第一相机对待测区域中第一待测区域内的监测点进行拍摄,得到第一图像;以及相机阵列中的第二相机对待测区域中第二待测区域内的监测点进行拍摄,得到第二图像;然后当移动平台行驶至待测区域的第二监测位置时,通过第一相机对第一待测区域内的监测点进行拍摄,得到第三图像;以及第二相机对第二待测区域内的监测点进行拍摄,得到第四图像;然后根据第一图像和第二图像,确定出J 1个第一监测点;以及根据第二图像和第四图像,确定出J 2个第二监测点;最后根据第一图像、第二图像、第三图像和第四图像,得到 J1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量,这种基于相机动联组网测量的方法,将相机集成到移动平台上,在测量过程中不需要人工干预,实现了自动测量,节约了大量的人力和物力,提高了测量的效率,增强了测量系统的简易性和灵活性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1A为本申请实施例提供的一种形变测量系统的示意图;
图1B为本申请实施例提供的另一种形变测量系统的示意图;
图2为本申请实施例提供的一种形变测量方法的流程示意图;
图3为本申请实施例提供的一种根据第一图像、第二图像、第三图像和第四图像,得到J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量方法的流程示意图;
图4为本申请实施例提供的一种相机摄像测量基本原理示意图;
图5为本申请实施例提供的另一种形变测量方法的流程示意图;
图6为本申请实施例提供的一种形变测量装置的功能单元组成框图;
图7为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结果或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
参阅图1A,图1A为本申请实施例提供的一种形变测量系统的示意图。形变测量系统包括形变测量装置10,其中,形变测量装置10上设置有移动平台20,移动平台20上设置有相机阵列30,且该相机阵列30中至少设置有两个拍摄方向相反的相机,且相机阵列30中的每个相机之间相互固连,且每个相机的型号和焦距本申请对此不作限定。
在本申请的实施例中,当移动平台20行驶至第一监测位置时,移动平台20 将会向相机阵列30发送控制信号,相机阵列30接收到控制信号之后,将会控制第一相机和第二相机对监测点进行拍摄;然后形变测量装置10将会根据第一相机和第二相机拍摄得到的图像,计算监测点的竖向沉降量和水平位移量。
示例性的,当形变测量装置10中的移动平台行驶至待测区域的第一监测位置时,通过集成在移动平台上的相机阵列中的第一相机对待测区域中第一待测区域内的监测点进行拍摄,得到第一图像;以及通过相机阵列中的第二相机对待测区域中第二待测区域内的监测点进行拍摄,得到第二图像,其中,第一待测区域内的监测点和第二待测区域内的监测点设置于第一监测位置的两侧,第一相机和第二相机的拍摄方向相反;应说明,在本申请的实施例中,当形变测量装置10中的移动平台行驶至待测区域的第一监测位置时,相机阵列中的第一相机和第二相机是同时拍摄待测区域内的监测点,也就是说,在第一相机拍摄第一待测区域内的监测点的同时,第二相机也拍摄第二待测区域内的监测点。
相应地,当形变测量装置10中的移动平台行驶至待测区域的第二监测位置时,第一相机对第一待测区域内的监测点进行拍摄,得到第三图像,以及第二相机对第二待测区域内的监测点进行拍摄,得到第四图像。
然后根据第一图像和第二图像,确定出J 1个第一监测点;以及根据第二图像和第四图像,确定出J 2个第二监测点;其中,J 1个第一监测点为第一图像和第三图像均包含的监测点,J 2个第二监测点为第二图像和第四图像均包含的监测点。
最后,形变测量装置10根据第一图像、第二图像、第三图像和第四图像,得到J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量。
可选的,参阅图1B,图1B为本申请实施例提供的另一种形变测量系统的示意图。该形变测量系统包括形变测量装置10和云处理端40,其中,形变测量装置10上设置有移动平台20,移动平台20上设置有相机阵列30,且该相机阵列30中至少设置有两个拍摄方向相反的相机,且相机阵列30中的每个相机之间相互固连,且每个相机的型号和焦距本申请对此不作限定。
需要说明的是,图1B所示的形变测量系统获取第一图像、第二图像、第三图像和第四图像的方法与图1A所示的形变测量系统获取第一图像、第二图像、第三图像和第四图像的方法相同,不再叙述。而图1B所示的形变测量系统与图1A所示的形变测量系统的不同之处在于,在得到第一图像、第二图像、第三图像和第四图像之后,图1B是形变测量装置10将第一图像、第二图像、第三图像和第四图像发送至云处理端40,然后云处理端40根据第一图像、第二图像、第三图像和第四图像,计算出监测点竖向沉降量和水平位移量。
进一步的,在本申请的实施例中,可以将图1A或图1B所示的形变测量系统应用于公路、铁路、桥梁、隧道等大型工程结构的形变监测,比如在隧道设置多个监测位置,且每个监测位置两侧设置有多个监测点,然后形变测量系统计算出每个监测点的竖向沉降量和水平位移量,然后可以将监测点的竖向沉降量和水平位移量与第一阈值进行比较,若大于第一阈值,则可以向监测中心进行预警提示;可选的,在计算出每个监测点的竖向沉降量和水平位移量之后,将每个监测点的竖向沉降量与相邻两次巡测的时间间隔的比值作为该每个监测 点的沉降形变速率,将每个监测点的水平位移量与相邻两次巡测的时间间隔的比值作为该每个监测点的水平形变速率,然后将每个监测点的沉降形变速率和水平形变速率与第二阈值进行比较,将沉降形变速率和/或水平形变速率大于阈值的监测点确定为异常监测点,则可以向监测中心对该异常监测点进行预警提示,进而对异常监测点进行修复;需要说明的是,在实际情况中可能涉及更多的应用场景,本申请不一一进行列举。
可以看出,在本申请实施例中,通过当移动平台行驶至待测区域的第一监测位置时,相机阵列中的第一相机对待测区域中第一待测区域内的监测点进行拍摄,得到第一图像;以及相机阵列中的第二相机对待测区域中第二待测区域内的监测点进行拍摄,得到第二图像;然后当移动平台行驶至待测区域的第二监测位置时,通过第一相机对第一待测区域内的监测点进行拍摄,得到第三图像;以及第二相机对第二待测区域内的监测点进行拍摄,得到第四图像;然后根据第一图像和第二图像,确定出J 1个第一监测点;以及根据第二图像和第四图像,确定出J 2个第二监测点;最后根据第一图像、第二图像、第三图像和第四图像,得到J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量,这种基于相机动联组网测量的方法,将相机集成到移动平台上,在测量过程中不需要人工干预,实现了自动测量,节约了大量的人力和物力,提高了测量的效率,增强了测量系统的简易性和灵活性。
参阅图2,图2为本申请实施例提供的一种形变测量方法的流程示意图。该方法应用于上述的形变测量装置10,且形变测量装置10上设置有相机阵列和移动平台。该方法包括但不限于步骤201-204:
201:当移动平台行驶至待测区域的第一监测位置时,通过相机阵列中的第一相机对待测区域中第一待测区域内的监测点进行拍摄,得到第一图像;以及通过相机阵列中的第二相机对待测区域中第二待测区域内的监测点进行拍摄,得到第二图像。
其中,第一待测区域内的监测点和第二待测区域内的监测点分别设置于第一监测位置的两侧,第一相机和第二相机的拍摄方向相反。
在本申请的实施例中,移动平台可以是移动式监测车、移动式监测船、移动式飞行器等,且移动平台上可以安装有定位装置,如里程编码器、GPS定位系统等,也可以安装有位姿测量装置,如惯导系统、陀螺仪等,本申请对此不作限定。
需要说明的是,相机阵列是指多个相机相互固连,但各个相机的拍摄方向可以不同,且各个相机的型号、焦距也可以不同,在本申请中不做限定。在本申请的实施例中,相机阵列中至少包含两个相机且至少有一个相机与其他相机拍摄方向相反。示例性的,相机阵列包括第一相机和第二相机,且第一相机和第二相机拍摄方向相反,比如第一相机为后视相机,第二相机为前视相机,所谓后视相机是指拍摄方向与移动平台行驶方向相反的相机,所谓前视相机是指拍摄方向与移动平台行驶方向相同的相机。
相应的,上述后视相机和前视相机在移动平台移动过程中拍摄监测点处的 标志,即后视相机拍摄第一待测区域内的监测点处的标志,前视相机拍摄第二待测区域内的监测点处的标志;同时,形变测量装置10同步记录此次拍摄时移动平台所处的位置,即第一监测位置。需要说明的是,记录移动平台所处位置的方式可以是通过人工标记、也可以是记录里程编码器读数、或者利用GPS定位系统等,此处不做限定。另外,对于监测点处的标志,比如可以使用监测点的自然特征,也可以在监测点处设置人工合作标志,对此不作限定。
202:当移动平台行驶至待测区域的第二监测位置时,通过第一相机对第一待测区域内的监测点进行拍摄,得到第三图像;以及通过第二相机对第二待测区域内的监测点进行拍摄,得到第四图像。
需要说明的是,步骤201中的第一监测位置,即形变测量装置10在从起点至终点的第一次巡测过程中,相机阵列中的第一相机拍摄第一待测区域内的监测点且第二相机拍摄第二待测区域内的监测点时的位置;相应的,第二监测位置,即形变测量装置10在从起点至终点的第二次巡测过程中,相机阵列中的第一相机拍摄第一待测区域内的监测点和第二相机拍摄第二待测区域内的监测点时的位置。在此,考虑到实际情况下,第一次巡测过程中第一相机拍摄第一待测区域内的监测点和第二相机拍摄第二待测区域内的监测点的位置与在第二次巡测过程中第一相机拍摄第一待测区域内的监测点和第二相机拍摄第二待测区域内的监测点的位置可能不同,因此,在本申请的实施例中第一监测位置和第二监测位置可以不同,从而使得形变测量装置自身产生六自由度运动量。
另外,上述第一待测区域内的监测点和第二待测区域内的监测点是按照预设的测量规范要求在待测区域进行设置的,比如可以将第一待测区域内的监测点和第二待测区域内的监测点均设置为沉降测量点和/或水平位移测量点,即设置的沉降测量点和水平位移测量点可以是同一点位,也可以是不同的点位,除此之外,本申请对监测点的位置和形状不做限定。
需要说明的是,在对大型工程结构进行形变测量时,可以通过一次巡测实现,也可以通过多次巡测实现;要明确的是,若是通过一次巡测实现,则此时得到的监测点的竖向沉降量和水平位移量是该次巡测与基准巡测相比所发生的形变量;若是通过多次巡测,则该多次巡测为相邻的两次巡测,比如第一次巡测和第二巡测,其中,相邻两次巡测的时间间隔本申请不做限定,则此时得到的监测点竖向沉降量和水平位移量是第二次巡测和第一次巡测相比所发生的形变量。
203:根据第一图像和第三图像,确定出J 1个第一监测点;以及根据第二图像和第四图像,确定出J 2个第二监测点。
其中,J 1个第一监测点为所述第一图像和所述第三图像均包含的监测点,即第一图像中包含了J 1个第一监测点,第三图像中也包含了J 1个第一监测点;J 2个第二监测点为第二图像和第四图像均包含的监测点,即第二图像中包含了J 2个第二监测点,第四图像中也包含了J 2个第二监测点。
需要说明的是,在实际应用中,由于巡测过程中监测点可能出现毁损、丢失等情况,进而使得在第一次巡测过程中由相机阵列中的相机拍摄到的监测点数量和第二次巡测过程中由相机阵列中的相机拍摄到的监测点的数量不相同。示例性的,在第一次巡测中的第一监测位置处,第一相机对第一待测区域内的 监测点进行拍摄,得到第一图像,然后从第一图像中可以确定出第一次巡测所拍摄监测点的数量;在第二次巡测中的第二监测位置处,第一相机再次对第一待测区域内的监测点进行拍摄,得到第三图像,然后从第三图像中确定出第二次巡测所拍摄监测点的数量,若在进行第二次巡测时,出现了监测点毁损或者丢失等情况,则使得第二次巡测拍摄到的监测点数量小于第一次巡测拍摄到的监测点的数量,也可以理解为,此时第一图像中的监测点数量大于J 1个,第三图像中的监测点数量等于J 1个,因此,此时需要确定出第一图像和第三图像中均包含的监测点,也即J 1个第一监测点。同时应明确,若巡测过程中监测点未出现上述毁损、丢失等情况,则第一图像和第三图像中的监测点相同,且数量均为J 1个。同理,第二相机对第二待测区域内的监测点进行拍摄,确定出J 2个第二监测点的原理与第一相机对第一待测区域内的监测点进行拍摄,确定出J 1个第一监测点的原理类似,此处不再赘述。
204:根据第一图像、第二图像、第三图像和第四图像,得到J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量。
在本申请的实施例中,当沉降测量点和水平位移测量点是同一个点位时,也就是说J 1个第一监测点和J 2个第二监测点中的每个监测点既是该监测点所在点位的沉降测量点,又是该监测点所在点位的水平位移测量点时,可以根据第一图像、第二图像、第三图像和第四图像,得到J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量。如图3所示,图3提供了一种根据第一图像、第二图像、第三图像和第四图像,得到J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量方法的流程示意图,该方法包括但不限于步骤301-305:
301:获取J 1个第一监测点在第一图像中的J 1个第一像素坐标,以及在第三图像中的J 1个第二像素坐标。
其中,J 1个第一像素坐标与J 1个第一监测点一一对应,J 1个第二像素坐标和J 1个第一监测点一一对应。
可选的,在获取第一像素坐标和第二像素坐标之前,可以对第一图像和第三图像进行预处理,比如去噪声、灰度化处理,然后基于预处理之后的图像获取像素坐标。需要说明的是,此处获取J 1个第一监测点的第一像素坐标和第二像素坐标,目的在于确定J 1个第一监测点在第一图像和第三图像中的位置,此处可以使用图像亚像素定位技术确定J 1个第一监测点在第一图像和第三图像中的位置,其中,图像亚像素定位技术可以包括自适应模板相关滤波法、自适应阈值重心法、灰度图拟合法等等,本申请对此不作限定。
302:针对J 1个第一监测点中的任意一个第一监测点,根据任意一个第一监测点对应的第一像素坐标和第二像素坐标,得到任意一个第一监测点的第一竖直变化量和第一水平变化量。
其中,第一竖直变化量为上述任意一个第一监测点在图像中的竖直变化量,即第三图像和第一图像相比,该第一监测点所发生的竖直变化量,且该竖直变化量可以通过该第一监测点的第一像素坐标即(x 1,y 1)和第二像素坐标即(x 2,y 2) 在图像坐标系中的竖直变化量表征,即该竖直变化量为(y 1-y 2);第一水平变化量为上述任意一个第一监测点在图像中的水平变化量,即第三图像和第一图像相比,该第一监测点所发生的水平变化量,同样的,该水平变化量可以通过该第一监测点的第一像素坐标和第二像素坐标在图像坐标系中的水平变化量表征,即该水平变化量为(x 1-x 2)。
303:获取J 2个第二监测点在第二图像中的J 2个第三像素坐标,以及在第四图像中的J 2个第四像素坐标。
其中,J 2个第三像素坐标与J 2个第二监测点一一对应,J 2个第四像素坐标和J 2个第二监测点一一对应。
可选的,在获取第三像素坐标和第四像素坐标之前,可以对第三图像和第四图像进行预处理,比如去噪声、灰度化处理,然后基于预处理之后的图像获取像素坐标。需要说明的是,此处获取J 2个第二监测点的第三像素坐标和第四像素坐标,目的在于确定J 2个第二监测点在第二图像和第四图像中的位置,此处可以使用图像亚像素定位技术确定J 2个第二监测点在第二图像和第四图像中的位置,本申请对此不作限定。
304:针对J 2个第二监测点中的任意一个第二监测点,根据任意一个第二监测点对应的第三像素坐标和第四像素坐标,得到任意一个第二监测点的第二竖直变化量和第二水平变化量。
其中,第二竖直变化量为上述任意一个第二监测点在图像中的竖直变化量,即第四图像和第二图像相比,该任意一个第二监测点所发生的竖直变化量;第二水平变化量为上述任意一个第二监测点在图像中的水平变化量,即第四图像和第二图像相比,该任意一个第二监测点发生的水平变化量,应说明,此处求得该第二监测点的竖直变化量和水平变化量的方法与上述求得第一监测点的竖直变化量和水平变化量方法类似,不再赘述。
305:根据J 1个第一监测点对应的J 1个第一竖直变化量以及J 1个第一水平变化量,以及J 2个第二监测点对应的J 2个第二竖直变化量以及J 2个第二水平变化量、相机阵列的第一夹角、第二夹角、与J 1个第一监测点对应的J 1个第一物面分辨率、与J 2个第二监测点对应的J 2个第二物面分辨率、J 1个第一距离、J 2个第二距离以及测量装置的六自由度运动量,确定J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量。
其中,第一夹角为第一相机的光轴与水平面的夹角,第二夹角为第二相机的光轴与水平面的夹角;J 1个第一距离为第一相机分别与J 1个第一监测点中的每个第一监测点之间的距离,J 2个第二距离为第二相机分别与J 2个第二监测点中的每个第二监测点之间的距离。需要说明的是,J 1个第一距离和J 2个第二距离均是通过预先标定得到。
除此之外,J 1个第一物面分辨率为第三图像对J 1个第一监测点的放大倍数,J 2个第二物面分辨率为第四图像对J 2个第二监测点的放大倍数。示例性的,如图4所示,图4提供了一种相机摄像测量基本原理示意图,假设拍摄视场大小为W×H,第一相机的分辨率为M×N,感光像尺寸为dx*dy,焦距为f,物距为D,根据图4所示的相似关系可以得到公式(1):
Figure PCTCN2022082049-appb-000001
则第一物面分辨率的可以通过公式(2)和公式(3)得到:
Figure PCTCN2022082049-appb-000002
Figure PCTCN2022082049-appb-000003
其中,R x和R y均表征第一物面分辨率,即R x表征的是第三图像对J 1个第一监测点在水平方向的物面分辨率,R y表征的是第三图像对J 1个第一监测点在竖直方向的物面分辨率,也就是说,第一物面分辨率包括竖直方向的物面分辨率和水平方向的物面分辨率。因此,在下文对J 1个第一监测点进行竖向沉降量的测量时,此时第一物面分辨率为竖直方向的物面分辨率,即R y;对J 1个第一监测点进行水平位移量的测量时,此时第一物面分辨率为水平方向的物面分辨率。
同理,第二物面分辨率的计算方法和第一物面分辨率的方法类似,此处不再赘述。
可选的,由于在实际情况中,此处的物面分辨率的值可以是根据第一次巡测即初始巡测过程中进行标定得到的为准,也可以是以任意一次巡测时进行标定得到的为准,也可以是以不同巡测时所标定的物面分辨率值的平均值为准,此处不做限定。
进一步地,在本申请的实施例中,步骤305具体包括步骤S1-S4:
S1:根据任意一个第一监测点对应的第一竖直变化量、第一水平变化量、第一夹角、第一物面分辨率、第一距离以及六自由度运动量,得到与任意一个第一监测点对应的第一方程组。
在本申请的实施例中,若任意一个第一监测点为J 1个第一监测点中的第m个第一监测点,则第一方程组可以通过公式(4)得到:
Figure PCTCN2022082049-appb-000004
其中,m为大于或等于1,且小于或等于J 1的整数,
Figure PCTCN2022082049-appb-000005
为J 1个第一监测点中第m个第一监测点的第一竖直变化量,
Figure PCTCN2022082049-appb-000006
为第m个第一监测点的第一水平变化量,
Figure PCTCN2022082049-appb-000007
为第m个第一监测点的第一物面分辨率,θ B为第一夹角,
Figure PCTCN2022082049-appb-000008
为第一距离,
Figure PCTCN2022082049-appb-000009
为第m个第一监测点的竖向沉降量,
Figure PCTCN2022082049-appb-000010
为第m个第一监测点的水平位移量,
Figure PCTCN2022082049-appb-000011
Figure PCTCN2022082049-appb-000012
为六自由度运动量,其中,
Figure PCTCN2022082049-appb-000013
为形变测量装置10的沉降量,
Figure PCTCN2022082049-appb-000014
为形变测量装置10的滚转变化量,
Figure PCTCN2022082049-appb-000015
为形变测量装置10沿着行驶方向的纵向位移量,
Figure PCTCN2022082049-appb-000016
为形变测量装置10的水平位移量,
Figure PCTCN2022082049-appb-000017
为形变测量装置10的俯仰角变化量,
Figure PCTCN2022082049-appb-000018
为形变测量装置10的偏航变化量。
S2:根据任意一个第二监测点对应的第二竖直变化量、第二水平变化量、 第二夹角、第二物面分辨率、第二距离以及六自由度运动量,得到与任意一个第二监测点对应的第二方程组。
在本申请的实施例中,若任意一个第二监测点为J 2个监测点中的第n个第二监测点,则第二方程组可以通过公式(5)得到:
Figure PCTCN2022082049-appb-000019
其中,n为大于或等于1,且小于或等于J 2的整数,
Figure PCTCN2022082049-appb-000020
为J 2个第二监测点中第n个第二监测点的第二竖直变化量,
Figure PCTCN2022082049-appb-000021
为J 2个第二监测点中第n个第二监测点的第二水平变化量,
Figure PCTCN2022082049-appb-000022
为第n个第二监测点的第二物面分辨率,θ F为第二夹角,
Figure PCTCN2022082049-appb-000023
为第二距离,
Figure PCTCN2022082049-appb-000024
为第n个第二监测点的竖向沉降量,
Figure PCTCN2022082049-appb-000025
为第n个第二监测点的水平位移量,六自由度运动量包括
Figure PCTCN2022082049-appb-000026
Figure PCTCN2022082049-appb-000027
为六自由度运动量,其中,
Figure PCTCN2022082049-appb-000028
为形变测量装置10的沉降量,
Figure PCTCN2022082049-appb-000029
为形变测量装置10的滚转变化量,
Figure PCTCN2022082049-appb-000030
为形变测量装置10沿着行驶方向的纵向位移量,
Figure PCTCN2022082049-appb-000031
为形变测量装置10的水平位移量,
Figure PCTCN2022082049-appb-000032
为形变测量装置10的俯仰角变化量,
Figure PCTCN2022082049-appb-000033
为形变测量装置10的偏航变化量。
S3:根据J 1个第一监测点对应的J 1个第一方程组和J 2个第二监测点对应的J 2个第二方程组,得到第一目标方程组和第二目标方程组。
在本申请的实施例中,将J 1个第一方程组中每个第一方程组中的第一子方程,比如,第m个第一方程组中的第一子方程组为:
Figure PCTCN2022082049-appb-000034
与J 2个第二方程组中的第一子方程,比如第n个第二方程组中的第一子方程为:
Figure PCTCN2022082049-appb-000035
进行组合,得到第一目标方程组;示例性的,第一目标方程组可以通过公式(6)得到:
Figure PCTCN2022082049-appb-000036
将J 1个第一方程组中的每个第一方程组中的第二子方程,比如,第m个第一方程组中的第二子方程为:
Figure PCTCN2022082049-appb-000037
与J 2个第二方程组中的每个第二方程组中的第二子方程,比如,第n个第二方程组中的第二子方程为:
Figure PCTCN2022082049-appb-000038
进行组合,得到第二目标方程组;示例性的,第一目标方程组可以通过公式(7)得到:
Figure PCTCN2022082049-appb-000039
S4:根据第一目标方程组,得到J 1个第一监测点中每个第一监测点的竖向沉降量和J 2个第二监测点中每个第二监测点的竖向沉降量,以及根据第二目标方程组,得到J 1个第一监测点中每个第一监测点的水平位移量和J 2个第二监测点中每个第二监测点的水平位移量。
在本申请的实施例中,要想根据第一目标方程组求得J 1个第一监测点中每个第一监测点的竖向沉降量和J 2个第二监测点中每个第二监测点的竖向沉降量,则需要满足第一目标方程组有解;要想根据第二目标方程组,求得J 1个第一监测点中每个第一监测点的水平位移量和J 2个第二监测点中每个第二监测点的水平位移量,则也需要满足第二目标方程组有解。
需要说明的是,第一相机拍摄第一待测区域内的待测点得到J 1个第一监测点以及第二相机拍摄第二待测区域内的待测点得到J 2个第二监测点时,得到的第一目标方程组和第二目标方程组均需要满足两种基本约束和一种优化约束,其中,两种基本约束包括固连约束和同名约束,固连约束是指相机阵列固定在移动平台上,形变测量装置10中的相机阵列包括的所有相机在同一监测位置具有相同的六自由度运动量,比如形变测量装置10中的第一相机和第二相机在第二监测位置具有相同的六自由度运动量;同名约束是指,同一个第一监测点或者同一个第二监测点被不同的相机拍摄到时,即第一监测点不止被第一相机拍摄到,第二监测点不止被第二相机拍摄到时,但同一个第一监测点的竖向沉降量是同一物理量,同一个第二监测点的竖向沉降量是同一物理量,同一个第一监测点的水平位移量是同一物理量,同一个第二监测点的水平位移量是同一物理量,比如在同一次巡测过程中,同一个第二监测点在一个第一监测位置被第二相机拍摄,在另一个第一监测位置被第一相机拍摄,那么第一相机和第二相机拍摄到的同一个第二监测点的竖向沉降量相同,水平位移量也相同;若要满足上述同名约束,可选的,则可以假设在一次巡测过程中,即移动平台从起点至终点的过程中,待测区域内的所有监测点在被相机阵列中的相机拍摄后不再发生形变,本申请对此不做限定,示例性的,J 2个第二监测点在被第二相机拍摄后将不再发生形变,以致于第一相机拍摄到的J 2个第二监测点的竖向沉降量与第二相机拍摄的J 2个第二监测点的竖向沉降量相同。优化约束是指,移动平台在行驶过程中,相机阵列中的相机连续同步拍摄,比如第一相机和第二相机连续同步拍摄,则同一个第一监测点或者第二监测点可能被多次成像,并被多次测量得到同一个第一监测点或者第二监测点的竖向沉降量和水平位移量,进而可以平差优化。
进一步地,根据第一目标方程组和第二目标方程组可知,任意一个第一监测点或者第二监测点每被拍摄成像一次,则可列出2个独立方程。在实际情况中,对大型工程结构进行形变测量时,如上文提到的可以通过一次巡测实现形变测量,也可以通过多次巡测实现形变测量;其中,在每次巡测过程中,即从起点至终点的巡测过程中,可以有多个监测位置;因此,若是通过一次巡测实现形变测量,则可以通过将该次巡测中每个监测位置处拍摄得到的图像和基准巡测中对应的监测位置处的图像进行比较,得到监测点的竖向沉降量和水平位移量;若是通过多次巡测实现形变测量,如第一次巡测和第二次巡测,则可以通过将第二次巡测中的每个监测位置处拍摄得到的图像和第一次巡测过程中对应的每个监测位置处拍摄得到的图像进行比较,得到监测点的竖向沉降量和水平位移量。在本申请的实施例中,是以通过多次巡测实现形变测量为例进行说明的,即在第一次巡测过程中,第一相机在第一监测位置处拍摄得到第一图像和第二图像;在第二次巡测过程中,第二相机在第二监测位置处拍摄得到第三图像和第四图像;然后将第一图像和第三图像进行比较,得到J 1个第一监测点的竖向沉降量和水平位移量;将第二图像和第四图像进行比较,得到J 2个第二监测点的竖向沉降量和水平位移量。
基于此,本申请将以多个第一监测位置为例,阐述多个第一监测位置对应 的多个第一目标方程组和第二目标方程组是否有解:假设第一监测位置的数量为a,总标志数量为E,即监测点的总数量为E,a个第一监测位置处所拍摄的标志数一共分别为G 1,G 2,G 3…G a,则被不止一个相机拍摄到的标志(记为,同名标志)的个数为L=G 1+G 2+G 3+…G a-E,那么可列独立方程的个数为:(G 1+G 2+G 3+…G a)*2;方程组中未知参数个数为:2*E+6*a,即包括E个标志的竖向沉降量,E个标志的水平位移量以及6a个形变测量装置的六自由度运动量。于是,为保证方程组有解,需要满足“独立方程数≥未知参数个数”,即(G 1+G 2+G 3+…G a)*2≥(2*E+6*a),整理得:L≥3a,也就是说,当满足L≥3a时,可求解出方程组中各个未知参数,即可求取出E个监测点的竖向沉降量和水平位移量,以及形变测量装置10的六自由度运动量。
需要说明的是,上述求解出的各个未知参数均为相对变化量,若需要得到所有监测点的绝对竖向沉降量和绝对水平位移量,或者相对基准点的竖向沉降量和水平位移量,则需要在从起点至终点的整个监测链路上设置任意3个基准点或者3个竖向沉降量和水平位移量已知的监测点,此时相机阵列中的相机拍摄到任意一个基准点或者任意一个竖向沉降量和水平位移量已知的监测点时,也将会生成2个独立方程。也就是说,以上述的假设为例,监测点总数为E,那么这E个监测点中需要包括3个基准点或者3个竖向沉降量和水平位移量已知的监测点,而对于这3个基准点或者3个竖向沉降量和水平位移量已知的监测点的具体位置不需要限定。又或者说,若本申请实施例提供的在第一次巡测过程中,只有1个监测位置,即第一监测位置,且在第一监测位置两侧分别设置为第一待测区域内的监测点和第二待测区域内的监测点,若在第二次巡测时,第一待测区域内的监测点和第二待测区域内的监测点均未发生上述毁损或丢失等情况,即在第一次巡测和第二次巡测中第一待测区域内的监测点均为J 1个第一监测点,以及第二待测区域内的监测点均为J 2个第二监测点,那么监测点的总数为(J 1+J 2),也就是说,这(J 1+J 2)个监测点中需要包括3个基准点或者3个竖向沉降量和水平位移量已知的监测点。
由于上述多个第一监测位置对应的多个第一目标方程组和第二目标方程组是否有解是在考虑六自由度运动量均为未知参数的前提下进行说明的,然而在本申请的实施例中,结合实际工程环境,上述六自由度运动量中的任意一个或多个自由度运动量可以不再作为未知参数,而是作为已知参数,从而使得第一目标方程组和第二目标方程组中的未知参数的个数减少。示例性的,若移动平台是有轨监测车,则形变测量装置10的六自由运动量中的滚转变化量
Figure PCTCN2022082049-appb-000040
将不再作为未知参数,可以理解为滚转变化量
Figure PCTCN2022082049-appb-000041
的影响忽略不计,也即此时形变测量装置10的六自由运动量中只有五个自由度运动量为未知参数,进而使得第一目标方程组和第二目标方程组中的未知参数数量减少;又或者,若移动平台上安装有定位装置,则形变测量装置10的六自由运动量中的
Figure PCTCN2022082049-appb-000042
可以通过该定位装置得到,即此时
Figure PCTCN2022082049-appb-000043
这三个量将不再作为未知参数,而是作为已知参数,也即此时形变测量装置10的六自由运动量中只有三个自由度运动量为未知参数,进而使得第一目标方程组和第二目标方程组中的未知参数数量减少;又或者,若移动平台上安装有位姿测量装置,则形变测量装置10的 六自由运动量中的
Figure PCTCN2022082049-appb-000044
Figure PCTCN2022082049-appb-000045
可以通过该位姿测量装置得到,即此时
Figure PCTCN2022082049-appb-000046
Figure PCTCN2022082049-appb-000047
这三个量将不再作为未知参数,而是作为已知参数,也即此时形变测量装置10的六自由度运动量中只有三个自由度运动量为未知参数,进而使得第一目标方程组和第二目标方程组中的未知参数数量减少。需要说明的是,此处不限定六自由度运动量中作为已知参数的自由度运动量,或者说不限定在移动平台是同时安装定位装置和位姿测量装置,还是只安装有定位装置,或者只安装有位姿测量装置等;同时应明确,此处除了在移动平台上安装有定位装置、位姿测量装置等以致于六自由度运动量中相应的自由度运动量由未知参数变成已知参数外,还可以通过其他方式使得六自由度运动量中相应的自由度运动量由未知参数变成已知参数,本申请将不一一进行列举。
基于此,若六自由运动量中有一个或多个自由度运动量由未知参数变成了已知参数,则此时阐述多个第一监测位置对应的多个第一目标方程组和多个第二目标方程组是否有解的原理和上述六自由度运动量均为未知参数时,阐述多个第一监测位置对应的多个第一目标方程组和多个第二目标方程组是否有解的原理类似,此处不再赘述。
参阅图5,图5为本申请实施例提供的另一种形变测量方法的流程示意图,该方法包括但不限于步骤501-504:
501:J 1个第一监测点的数量为偶数,且J 1个第一监测点由J 1/2个第三监测点和J 1/2个第四监测点构成。
需要说明的是,在本申请的实施中,当J 1个第一监测点的数量为偶数,且J 1个第一监测点由J 1/2个第三监测点和J 1/2个第四监测点构成,即J 1个第一监测点中包含了J 1/2个沉降测量点和J 2/2个水平位移测量点,即J 1/2个第三监测点均为水平沉降点,J 1/2个第四监测点均为沉降测量点,也就是说,沉降测量点和水平位移测量点不是同一点位。
502:J 2个第二监测点的数量为偶数,且J 2个第二监测点由J 2/2个第五监测点和J 2/2个第六监测点构成。
需要说明的是,在本申请的实施例中,当J 2个第二监测点的数量为偶数,且J 2个第二监测点由J 2/2个第五监测点和J 2/2个第六监测点构成,即J 2个第二监测点中包含了J 2/2个沉降测量点和J 2/2个水平位移测量点,即J 2/2个第五监测点均为水平沉降点,J 2/2个第六监测点均为沉降测量点,也就是说,沉降测量点和水平位移测量点不是同一点位。
503:根据第一图像、第二图像、第三图像和第四图像,得到J 1/2个第三监测点中每个第三监测点的水平位移量以及J 2/2个第五监测点中每个第五监测点的水平位移量。
在本申请的实施例中,步骤503包括但不限于步骤A1-A4:
A1:获取J 1/2个第三监测点在第一图像中的J 1/2个第五像素坐标以及在第三图像中的J 1/2个第六像素坐标。
其中,J 1/2个第五像素坐标与J 1/2个第三监测点一一对应,J 1/2个第六像素坐标与J 1/2个第三监测点一一对应。
可选的,在获取第五像素坐标和第六像素坐标之前,可以对第一图像和第三图像进行预处理,比如去噪声、灰度化处理,然后基于预处理之后的图像获取像素坐标。需要说明的是,此处获取J 1/2个第三监测点的第五像素坐标和第六像素坐标,目的在于确定J 1/2个第三监测点在第一图像和第三图像中的位置,此处可以使用图像亚像素定位技术确定J 1/2个第三监测点在第一图像和第三图像中的位置。
A2:获取J 2/2个第五监测点在第二图像中的J 2/2个第七像素坐标以及在第四图像中的J 2/2个第八像素坐标。
其中,J 2/2个第七像素坐标和J 2/2个第五监测点一一对应,J 2/2个第八像素坐标和J 2/2个第五监测点一一对应。
A3:针对J 1/2个第三监测点中的任意一个第三监测点以及J 2/2个第五监测点中的任意一个第五监测点,根据任意一个第三监测点对应的第五像素坐标和第六像素坐标,得到任意一个第三监测点的第三水平变化量,根据任意一个第五监测点对应的第七像素坐标和第八像素坐标,得到任意一个第五监测点的第四水平变化量。
其中,第三水平变化量为上述任意一个第三监测点在图像中的水平变化量,即第三图像和第一图像相比,该任意一个第三监测点所发生的水平变化量;第四水平变化量为对应的上述任意一个第五监测点在图像中的水平变化量,即第三图像和第一图像相比,对应的任意一个第五监测点所发生的水平变化量,此处求得该第三监测点的水平变化量以及该第五监测点的水平变化量的方法和上述求得第一监测点的水平变化量的方法类似,不再赘述。
A4:根据J 1/2个第三监测点对应的J 1/2个第三水平变化量、J 2/2个第五监测点对应的J 2/2个第四水平变化量、相机阵列的第一夹角、第二夹角、与J 1/2个第三监测点对应的J 1/2个第三物面分辨率、与J 2/2个第五监测点对应的J 2/2个第四物面分辨率、J 1/2个第三距离、J 2/2个第四距离以及形变测量装置10的三自由度运动量,确定J 1/2个第三监测点中的每个第三监测点的水平位移量和J 2/2个第五监测点中的每个第五监测点的水平位移量。
其中,J 1/2个第三距离为第一相机分别与J 1/2个第三监测点中的每个第三监测点之间的距离,J 2/2个第四距离为第二相机分别与J 2/2个第五监测点中的每个第五监测点之间的距离,需要说明的是,J 1/2个第三距离和J 2/2个第四距离均是通过预先标定得到。
除此之外,J 1/2个第三物面分辨率为第三图像对J 1/2个第三监测点的放大倍数,J 2/2个第四物面分辨率为第四图像对J 2/2个第五监测点的放大倍数。
进一步地,在本申请的实施例中,步骤A4包括但不限于步骤B1-B4:
B1:根据任意一个第三监测点对应的第三水平变化量、第三物面分辨率、第三距离、第一夹角以及三自由度运动量,得到与任意一个第三监测点对应的第一方程。
在本申请的实施例中,若任意一个第三监测点为J 1/2个第三监测点中的第Q个第三监测点,则第一方程可以通过公式(8)得到:
Figure PCTCN2022082049-appb-000048
其中,Q为大于或等于1,且小于或等于J 1/2的整数,
Figure PCTCN2022082049-appb-000049
为J 1/2个第三监测点中第Q个第三监测点的第三水平变化量,
Figure PCTCN2022082049-appb-000050
为第Q个第三监测点的第三物面分辨率,
Figure PCTCN2022082049-appb-000051
为第Q个第三监测点的第三距离,
Figure PCTCN2022082049-appb-000052
为第Q个第三监测点的水平位移量,θ B为第一夹角,
Figure PCTCN2022082049-appb-000053
为三自由度运动量。
B2:根据任意一个第五监测点对应的第四水平变化量、第四物面分辨率、第四距离、第二夹角以及三自由度运动量,得到与任意一个第五监测点对应的第二方程。
在本申请的实施例中,若任意一个第五监测点为J 2/2个第五监测点中的第T个第五监测点,则第二方程可以通过公式(9)得到:
Figure PCTCN2022082049-appb-000054
其中,T为大于或等于1,且小于或等于J 2/2的整数,
Figure PCTCN2022082049-appb-000055
为J 2/2个第五监测点中第T个第五监测点的第四水平变化量,
Figure PCTCN2022082049-appb-000056
为第T个第五监测点的第四物面分辨率,
Figure PCTCN2022082049-appb-000057
为第T个第五监测点的第四距离,
Figure PCTCN2022082049-appb-000058
为第T个第五监测点的水平位移量,θ F为第二夹角,
Figure PCTCN2022082049-appb-000059
为三自由度运动量。
B3:根据J 1/2个第三监测点对应的J 1/2个第一方程和J 2/2个第五监测点对应的J 2/2个第二方程,得到第三目标方程组。
在本申请的实施例中,J 1/2个第一方程中的每个第一方程,比如,第Q个第一方程为:
Figure PCTCN2022082049-appb-000060
和J 2/2个第二方程中的每个第二方程,比如,第T个第二方程为:
Figure PCTCN2022082049-appb-000061
进行组合,得到第三目标方程组;示例性的,第三目标方程组可以通过公式(10)得到:
Figure PCTCN2022082049-appb-000062
B4:根据第三目标方程组,得到J 1/2个第三监测点中的每个第三监测点的水平位移量和J 2/2个第五监测点中的每个第五监测点的水平位移量。
在本申请的实施例中,要想根据第三目标方程组求得J 1/2个第三监测点中的每个第三监测点的水平位移量和J 2/2个第五监测点中的每个第五监测点的水平位移量,则需要满足第三目标方程组有解。
需要说明的是,第一相机拍摄J 1/2个第三监测点以及第二相机拍摄J 2/2个 第五监测点时,得到的第一方程和第二方程也需要满足上述两种基本约束和一种优化约束,其中需要注意的是,此处的固连约束是指,形变测量装置10中的相机阵列包括的所有相机在同一监测位置具有相同的三自由度运动量,除固连约束之外的其余约束,此处不再赘述。
进一步地,根据第三目标方程组可知,任意一个第一监测点或者第二监测点每被拍摄成像一次,则可列出1个独立方程。在本申请的实施例中,是根据一次巡测中其中一个监测位置,即第一监测位置,并且在第一监测位置左侧设置J 1/2个第三监测点,右侧设置J 2/2个第五监测点为例进行说明的。
接下来,本申请将以多个第一监测位置为例,阐述多个第一监测位置对应的多个第三目标方程组是否有解:假设第一监测位置的数量为a 1,总标志数量为E 1,即监测点的总数量为E 1,a 1个第一监测位置处所拍摄的标志数一共分别为G 11,G 21,G 31…G a1,则被不止一个相机拍摄到的标志(记为,同名标志)的个数为L 1=G 11+G 21+G 31+…G a1-E 1,那么可列独立方程的个数为:(G 11+G 21+G 31+…G a1);方程组中未知参数个数为:E 1+3*a 1,即包括E 1个标志的水平位移量以及3a 1个形变测量装置的三自由度运动量。于是,为保证方程组有解,需要满足“独立方程数≥未知参数个数”,即(G 11+G 21+G 31+…G a1)≥(E 1+3*a 1),整理得:L 1≥3a 1,也就是说,当满足L 1≥3a 1时,即可求出E 1个监测点的水平位移量以及形变测量装置10的三自由度运动量。
需要说明的是,上述求解出的各个未知参数均为相对变化量,若需要得到所有监测点的绝对水平位移量,或者相对基准点的水平位移量,则需要在从起点至终点的整个监测链路上设置任意3个基准点或者3个水平位移量已知的监测点,此时相机阵列中的相机拍摄到任意一个基准点或者任意一个水平位移量已知的监测点时,也将会生成1个独立方程。
由于上述多个第一监测位置对应的多个第三目标方程组是否有解是在考虑五自由度运动量均为未知参数的前提下进行说明的,然而在本申请的实施例中,结合实际工程环境,上述五自由度运动量中的任意一个或多个自由度运动量可以不再作为未知参数,而是作为已知参数,从而使得第三目标方程组中的未知参数的个数减少。其中,形变测量装置10的五自由度运动量中相应自由度运动量由未知参数变成已知参数的方式与上述形变测量装置10的六自由度运动量中相应自由度运动量由未知参数变成已知参数的方式类似,此处不再赘述。
基于此,若五自由运动量中有一个或多个自由度运动量由未知参数变成了已知参数,则此时阐述多个第一监测位置对应的多个第三目标方程组是否有解的原理和上述六自由度运动量均为未知参数时,阐述多个第一监测位置对应的多个第一目标方程组和多个第二目标方程组是否有解的原理类似,此处不再赘述。
504:根据第一图像、第二图像、第三图像和第四图像,得到J 1/2个第四监测点中每个第四监测点的竖向沉降量和J 2/2个第六监测点中每个第六监测点的竖向沉降量。
在本申请的实施例中,步骤504包括但不限于步骤C1-C4:
C1:获取J 1/2个第四监测点在第一图像中的J 1/2个第九像素坐标,以及在第三图像中的J 1/2个第十像素坐标。
其中,J 1/2个第九像素坐标与J 1/2个第四监测点一一对应,J 1/2个第十像素坐标与J 1/2个第四监测点一一对应。
C2:获取J 2/2个第六监测点在第二图像中的J 2/2个第十一像素坐标,以及在第四图像中的J 1/2个第十二像素坐标。
其中,J 2/2个第十一像素坐标与J 2/2个第六监测点一一对应,J 1/2个第十二像素坐标与J 2/2个第六监测点一一对应。
C3:针对J 1/2个第四监测点中的任意一个第四监测点以及J 2/2个第六监测点中的任意一个第六监测点,根据任意一个第四监测点对应的第九像素坐标和第十像素坐标,得到任意一个第四监测点的第三竖直变化量,根据任意一个第六监测点对应的第十一像素坐标和第十二像素坐标,得到任意一个第六监测点的第四竖直变化量。
其中,第三竖直变化量为上述任意一个第四监测点在图像中的竖直变化量,即第四图像和第二图像相比,该任意一个第四监测点所发生的竖直变化量;第四竖直变化量为上述任意一个第六监测点在图像中的竖直变化量,即第四图像和第二图像相比,该任意一个第六监测点所发生的竖直变化量,此处求得第四监测点的竖直变化量以及第六监测点的竖直变化量的方法和上述求得第一监测点的竖直变化量的方法类似,不再赘述。
C4:根据J 1/2个第四监测点对应的J 1/2个第三竖直变化量、J 2/2个第六监测点对应的J 2/2个第四竖直变化量、相机阵列的第一夹角、第二夹角、与J 1/2个第四监测点对应的J 1/2个第五物面分辨率、与J 2/2个第六监测点对应的J 2/2个第六物面分辨率、J 1/2个第五距离、J 2/2个第六距离以及形变测量装置10的五自由度运动量,确定J 1/2个第四监测点中的每个第四监测点的竖向沉降量和J 2/2个第六监测点中的每个第六监测点的竖向沉降量。
其中,J 1/2个第五距离为第一相机分别与J 1/2个第四监测点中的每个第四监测点之间的距离,J 2/2个第六距离为第二相机分别与J 2/2个第六监测点中的每个第六监测点之间的距离,应说明,J 1/2个第五距离和J 2/2个第六距离均为预先标定得到。
除此之外,J 1/2个第五物面分辨率为第三图像对J 1/2个第四监测点的放大倍数,J 2/2个第六物面分辨率为第四图像对J 2/2个第六监测点的放大倍数。
可选的,由于在实际情况中,此处的物面分辨率的值可以是根据第一次巡测即初始巡测过程中进行标定得到的为准,也可以是以任意一次巡测时进行标定得到的为准,也可以是以不同巡测时所标定的物面分辨率值的平均值为准,此处不做限定。
在本申请的实施例中,步骤C4包括但不限于步骤D1-D4:
D1:根据任意一个第四监测点对应的第三竖直变化量、第五物面分辨率、第五距离以及五自由度运动量,得到与任意一个第四监测点对应的第三方程。
在本申请的实施例中,若任意一个第四监测点为J 1/2个第四监测点中第U个第四监测点,则第三方程可以通过公式(11)得到:
Figure PCTCN2022082049-appb-000063
其中,U为大于或等于1,且小于或等于J 1/2的整数,
Figure PCTCN2022082049-appb-000064
为J 1/2个第四监测点中第U个第四监测点的第三竖直变化量,
Figure PCTCN2022082049-appb-000065
为第U个第四监测点的第五物面分辨率,
Figure PCTCN2022082049-appb-000066
为第U个第四监测点的第五距离,
Figure PCTCN2022082049-appb-000067
为第U个第四监测点的竖向沉降量,θ B为第一夹角,
Figure PCTCN2022082049-appb-000068
Figure PCTCN2022082049-appb-000069
为五自由度运动量。
D2:根据任意一个第六监测点对应的第四竖直变化量、第六物面分辨率、第六距离以及五自由度运动量,得到与任意一个第六监测点对应的第四方程。
在本申请的实施例中,若任意一个第六监测点为J 2/2个第六监测点第W个第六监测点,则第四方程可以通过公式(12)得到:
Figure PCTCN2022082049-appb-000070
其中,W为大于或等于1,且小于或等于J 2/2的整数,
Figure PCTCN2022082049-appb-000071
为为J 2/2个第六监测点中第W个第六监测点的第四竖直变化量,
Figure PCTCN2022082049-appb-000072
为第W个第六监测点的第六物面分辨率,
Figure PCTCN2022082049-appb-000073
为第W个第六监测点的第六距离,
Figure PCTCN2022082049-appb-000074
为第W个第六监测点的竖向沉降量,θ F为第二夹角,
Figure PCTCN2022082049-appb-000075
Figure PCTCN2022082049-appb-000076
为五自由度运动量。
D3:根据J 1/2个第四监测点对应的J 1/2个第三方程和J 2/2个第六监测点对应的J 2/2个第四方程,得到第四目标方程组。
在本申请的实施例中,将J 1/2个第三方程中的每个第三方程,比如第U个第三方程为:
Figure PCTCN2022082049-appb-000077
和J 2/2个第四方程中的每个第四方程,比如,第W个第四方程为:
Figure PCTCN2022082049-appb-000078
进行组合,得到第四目标方程组;示例性的,第四目标方程组可以通过公式(13)得到:
Figure PCTCN2022082049-appb-000079
D4:根据第四目标方程组,得到J 1/2个第四监测点中的每个第四监测点的竖直位移量和J 2/2个第六监测点中的每个第六监测点的竖直位移量。
在本申请的实施例中,要想根据第四目标方程组求得J 1/2个第四监测点中的每个第四监测点的竖直位移量和J 2/2个第六监测点中的每个第六监测点的竖直位移量,则需要满足第四目标方程组有解。
需要说明的是,第一相机拍摄J 1/2个第四监测点以及第二相机拍摄J 2/2个第六监测点时,得到的第三方程和第四方程也需要满足上述两种基本约束和一种优化约束,其中需要注意的是,此处的固连约束是指,形变测量装置10中的相机阵列包括的所有相机在同一监测位置具有相同的五自由度运动量,除固连约束之外的其余约束,此处不再赘述。
进一步地,根据第四目标方程组可知,任意一个第四监测点或者第六监测点每被拍摄成像一次,则可列出1个独立方程。在本申请的实施例中,是根据一次巡测中的一个监测位置,即第一监测位置,并且在第一监测位置左侧设置J 1/2个第四监测点,右侧设置J 2/2个第六监测点为例进行说明的。
接下来,本申请将以多个第一监测位置为例,阐述多个第一监测位置对应的多个第四目标方程组是否有解:假设第一监测位置的数量为a 2,总标志数量为E 2,即监测点的总数量为E 2,a 2个第一监测位置处所拍摄的标志数一共分别为G 12,G 22,G 32…G a2,则被不止一个相机拍摄到的标志(记为,同名标志)的个数为L 2=G 12+G 22+G 32+…G a2-E 2,那么可列独立方程的个数为:(G 12+G 22+G 32+…G a2);方程组中未知参数个数为:E 2+5*a 2,即包括E 2个标志的水平位移量以及3a 2个形变测量装置10的五自由度运动量。于是,为保证方程组有解,需要满足“独立方程数≥未知参数个数”,即(G 12+G 22+G 32+…G a2)≥(E 2+5*a 2),整理得:L 2≥5a 2,也就是说,当满足L 2≥5a 2时,即可求出E 2个监测点的竖直位移量以及形变测量装置10的五自由度运动量。
需要说明的是,上述求解出的各个未知参数均为相对变化量,若需要得到所有监测点的绝对竖直位移量,或者相对基准点的竖直位移量,则需要在从起点至终点的整个监测链路上设置任意5个基准点或者5个竖直位移量已知的监测点,此时相机阵列中的相机拍摄到任意一个基准点或者任意一个竖直位移量已知的监测点时,也将会生成1个独立方程。
由于上述多个第一监测位置对应的多个第四目标方程组是否有解是在考虑三自由度运动量均为未知参数的前提下进行说明的,然而在本申请的实施例中,结合实际工程环境,上述三自由度运动量中的任意一个或多个自由度运动量可以不再作为未知参数,而是作为已知参数,从而使得第四目标方程组中的未知参数的个数减少。其中,形变测量装置10的三自由度运动量中相应自由度运动量由未知参数变成已知参数的方式与上述形变测量装置10的六自由度运动量中相应自由度运动量由未知参数变成已知参数的方式类似,此处不再赘述。
基于此,若三自由运动量中有一个或多个自由度运动量由未知参数变成了已知参数,则此时阐述多个第一监测位置对应的多个第四目标方程组是否有解的原理和上述六自由度运动量均为未知参数时,阐述多个第一监测位置对应的多个第一目标方程组和多个第二目标方程组是否有解的原理类似,此处不再赘述。
参阅图6,图6为本申请实施例提供的一种形变测量装置的功能单元组成框图。形变测量装置600包括:获取单元601和处理单元602;
获取单元601,用于当移动平台行驶至待测区域的第一监测位置时,通过相机阵列中的第一相机对待测区域中第一待测区域内的监测点进行拍摄,得到第一图像;以及通过相机阵列中的第二相机对待测区域中第二待测区域内的监测点进行拍摄,得到第二图像,其中,第一待测区域内的监测点和第二待测区域内的监测点设置于第一监测位置的两侧,第一相机和第二相机的拍摄方向相反;
当移动平台行驶至待测区域的第二监测位置时,通过第一相机对第一待测区域内的监测点进行拍摄,得到第三图像;以及通过第二相机对第二待测区域内的监测点进行拍摄,得到第四图像;
根据第一图像和第三图像,确定出J 1个第一监测点;以及根据第二图像和第四图像,确定出J 2个第二监测点,其中,J 1个第一监测点为第一图像和第三图像均包含的监测点,J 2个第二监测点为第二图像和第四图像均包含的监测点;
处理单元602,用于根据第一图像、第二图像、第三图像和第四图像,得到J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量。
在本申请的一个实施方式中,在根据第一图像、第二图像、第三图像和第四图像,得到J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量方面,处理单元602,具体用于:
获取J 1个第一监测点在第一图像中的J 1个第一像素坐标;
获取J 1个第一监测点在第三图像中的J 1个第二像素坐标;
针对J 1个第一监测点中的任意一个第一监测点,根据任意一个第一监测点 对应的第一像素坐标和第二像素坐标,得到任意一个第一监测点的第一竖直变化量和第一水平变化量;
获取J 2个第二监测点在第二图像中的J 2个第三像素坐标;
获取J 2个第二监测点在第四图像中的J 2个第四像素坐标;
针对J 2个第二监测点中的任意一个第二监测点,根据任意一个第二监测点对应的第三像素坐标和第四像素坐标,得到任意一个第二监测点的第二竖直变化量和第二水平变化量;
根据J 1个第一监测点对应的J 1个第一竖直变化量以及J 1个第一水平变化量,以及J 2个第二监测点对应的J 2个第二竖直变化量以及J 2个第二水平变化量、相机阵列的第一夹角、第二夹角、与J 1个第一监测点对应的J 1个第一物面分辨率、与J 2个第二监测点对应的J 2个第二物面分辨率、J 1个第一距离、J 2个第二距离以及测量装置的六自由度运动量,确定J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量,其中,第一夹角为第一相机的光轴与水平面的夹角,第二夹角为第二相机的光轴与水平面的夹角,J 1个第一距离为第一相机分别与J 1个第一监测点中的每个第一监测点之间的距离,J 2个第二距离为第二相机分别与J 2个第二监测点中的每个第二监测点之间的距离。
在本申请的一个实施方式中,在根据J 1个第一监测点对应的J 1个第一竖直变化量以及J 1个第一水平变化量,以及J 2个第二监测点对应的J 2个第二竖直变化量以及J 2个第二水平变化量、相机阵列的第一夹角、第二夹角、与J 1个第一监测点对应的J 1个第一物面分辨率、与J 2个第二监测点对应的J 2个第二物面分辨率、J 1个第一距离、J 2个第二距离以及测量装置的六自由度运动量,确定J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量方面,处理单元602,具体用于:
根据任意一个第一监测点对应的第一竖直变化量、第一水平变化量、第一夹角、第一物面分辨率、第一距离以及六自由度运动量,得到与任意一个第一监测点对应的第一方程组;
根据任意一个第二监测点对应的第二竖直变化量、第二水平变化量、第二夹角、第二物面分辨率、第二距离以及六自由度运动量,得到与任意一个第二监测点对应的第二方程组;
根据J 1个第一监测点对应的J 1个第一方程组和J 2个第二监测点对应的J 2个第二方程组,得到第一目标方程组和第二目标方程组;
根据第一目标方程组,得到J 1个第一监测点中每个第一监测点的竖向沉降量和J 2个第二监测点中每个第二监测点的竖向沉降量,以及根据第二目标方程组,得到J 1个第一监测点中每个第一监测点的水平位移量和J 2个第二监测点中每个第二监测点的水平位移量。
在本申请的一个实施方式中,在根据第一图像、第二图像、第三图像和第四图像,得到J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量方面,处理单元602,具体用于:
J 1个第一监测点的数量为偶数,且J 1个第一监测点由J 1/2个第三监测点和J 1/2个第四监测点构成;
J 2个第二监测点的数量为偶数,且J 2个第二监测点由J 2/2个第五监测点和J 2/2个第六监测点构成;
根据第一图像、第二图像、第三图像和第四图像,得到J 1/2个第三监测点中每个第三监测点的水平位移量和J 2/2个第五监测点中每个第五监测点的水平位移量,以及J 1/2个第四监测点中每个第四监测点的竖向沉降量和J 2/2个第六监测点中每个第六监测点的竖向沉降量。
在本申请的一个实施方式中,在根据第一图像、第二图像、第三图像和第四图像,得到J 1/2个第三监测点中每个第三监测点的水平位移量和J 2/2个第五监测点中每个第五监测点的水平位移量,以及J 1/2个第四监测点中每个第四监测点的竖向沉降量和J 2/2个第六监测点中每个第六监测点的竖向沉降量方面,处理单元602,具体用于:
获取J 1/2个第三监测点在第一图像中的J 1/2个第五像素坐标以及在第三图像中的J 1/2个第六像素坐标;
获取J 2/2个第五监测点在第二图像中的J 2/2个第七像素坐标以及在第四图像中的J 2/2个第八像素坐标;
针对J 1/2个第三监测点中的任意一个第三监测点以及J 2/2个第五监测点中的任意一个第五监测点,根据任意一个第三监测点对应的第五像素坐标和第六像素坐标,得到任意一个第三监测点的第三水平变化量,根据任意一个第五监测点对应的第七像素坐标和第八像素坐标,得到任意一个第五监测点的第四水平变化量;
获取J 1/2个第四监测点在第一图像中的J 1/2个第九像素坐标以及在第三图像中的J 1/2个第十像素坐标;
获取J 2/2个第六监测点在第二图像中的J 2/2个第十一像素坐标以及在第四图像中的J 2/2个第十二像素坐标;
针对J 1/2个第四监测点中的任意一个第四监测点以及J 2/2个第六监测点中的任意一个第六监测点,根据任意一个第四监测点对应的第九像素坐标和第十像素坐标,得到任意一个第四监测点的第三竖直变化量,根据任意一个第六监测点对应的第十一像素坐标和第十二像素坐标,得到任意一个第六监测点的第四竖直变化量;
根据J 1/2个第三监测点对应的J 1/2个第三水平变化量、J 2/2个第五监测点对应的J 2/2个第四水平变化量、相机阵列的第一夹角、第二夹角、与J 1/2个第三监测点对应的J 1/2个第三物面分辨率、与J 2/2个第五监测点对应的J 2/2个第四物面分辨率、J 1/2个第三距离、J 2/2个第四距离以及测量装置的三自由度运动量,确定J 1/2个第三监测点中的每个第三监测点的水平位移量和J 2/2个第五监测点中的每个第五监测点的水平位移量,其中,第一夹角为第一相机的光轴与水平面的夹角,第二夹角为第二相机的光轴与水平面的夹角,J 1/2个第三距离为第一相机分别与J 1/2个第三监测点中的每个第三监测点之间的距离,J 2/2个第二距离为第二相机分别与J 2/2个第五监测点中的每个第五监测点之间的距离;
根据J 1/2个第四监测点对应的J 1/2个第三竖直变化量、J 2/2个第六监测点对应的J 2/2个第四竖直变化量、相机阵列的第一夹角、第二夹角、与J 1/2个第四监测点对应的J 1/2个第五物面分辨率、与J 2/2个第六监测点对应的J 2/2个第六物面分辨率、J 1/2个第五距离、J 2/2个第六距离以及测量装置的五自由度运动量,确定J 1/2个第四监测点中的每个第四监测点的竖向沉降量和J 2/2个第六监测点中的每个第六监测点的竖向沉降量,其中,第一夹角为第一相机的光轴与水平面的夹角,第二夹角为第二相机的光轴与水平面的夹角,J 1/2个第一距离为第一相机分别与J 1/2个第四监测点中的每个第四监测点之间的距离,J 2/2个第二距离为第二相机分别与J 2/2个第六监测点中的每个第六监测点之间的距离。
参阅图7,图7为本申请实施例提供的一种电子设备的结构示意图。如图7所示,电子设备700包括收发器701、处理器702和存储器703。它们之间通过总线704连接。存储器703用于存储计算机程序和数据,并可以将存储器703存储的数据传输给处理器702。
处理器702用于读取存储器703中的计算机程序执行以下操作:
控制收发器701用于当移动平台行驶至待测区域的第一监测位置时,通过相机阵列中的第一相机对待测区域中第一待测区域内的监测点进行拍摄,得到第一图像;以及通过相机阵列中的第二相机对待测区域中第二待测区域内的监测点进行拍摄,得到第二图像,其中,第一待测区域内的监测点和第二待测区域内的监测点设置于第一监测位置的两侧,第一相机和第二相机的拍摄方向相反;
当移动平台行驶至待测区域的第二监测位置时,通过第一相机对第一待测区域内的监测点进行拍摄,得到第三图像;以及通过第二相机对第二待测区域内的监测点进行拍摄,得到第四图像;
根据第一图像和第三图像,确定出J 1个第一监测点;以及根据第二图像和第四图像,确定出J 2个第二监测点,其中,J 1个第一监测点为第一图像和第三图像均包含的监测点,J 2个第二监测点为第二图像和第四图像均包含的监测点;
根据第一图像、第二图像、第三图像和第四图像,得到J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量。
在本申请的一个实施方式中,在根据第一图像、第二图像、第三图像和第四图像,得到J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量方面,处理器702,具体用于执行以下步骤:
获取J 1个第一监测点在第一图像中的J 1个第一像素坐标;
获取J 1个第一监测点在第三图像中的J 1个第二像素坐标;
针对J 1个第一监测点中的任意一个第一监测点,根据任意一个第一监测点对应的第一像素坐标和第二像素坐标,得到任意一个第一监测点的第一竖直变化量和第一水平变化量;
获取J 2个第二监测点在第二图像中的J 2个第三像素坐标;
获取J 2个第二监测点在第四图像中的J 2个第四像素坐标;
针对J 2个第二监测点中的任意一个第二监测点,根据任意一个第二监测点对应的第三像素坐标和第四像素坐标,得到任意一个第二监测点的第二竖直变化量和第二水平变化量;
根据J 1个第一监测点对应的J 1个第一竖直变化量以及J 1个第一水平变化量,以及J 2个第二监测点对应的J 2个第二竖直变化量以及J 2个第二水平变化量、相机阵列的第一夹角、第二夹角、与J 1个第一监测点对应的J 1个第一物面分辨率、与J 2个第二监测点对应的J 2个第二物面分辨率、J 1个第一距离、J 2个第二距离以及测量装置的六自由度运动量,确定J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量,其中,第一夹角为第一相机的光轴与水平面的夹角,第二夹角为第二相机的光轴与水平面的夹角,J 1个第一距离为第一相机分别与J 1个第一监测点中的每个第一监测点之间的距离,J 2个第二距离为第二相机分别与J 2个第二监测点中的每个第二监测点之间的距离。
在本申请的一个实施方式中,在根据J 1个第一监测点对应的J 1个第一竖直变化量以及J 1个第一水平变化量,以及J 2个第二监测点对应的J 2个第二竖直变化量以及J 2个第二水平变化量、相机阵列的第一夹角、第二夹角、与J 1个第一监测点对应的J 1个第一物面分辨率、与J 2个第二监测点对应的J 2个第二物面分辨率、J 1个第一距离、J 2个第二距离以及测量装置的六自由度运动量,确定J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量方面,处理器702,具体用于执行以下步骤:
根据任意一个第一监测点对应的第一竖直变化量、第一水平变化量、第一夹角、第一物面分辨率、第一距离以及六自由度运动量,得到与任意一个第一监测点对应的第一方程组;
根据任意一个第二监测点对应的第二竖直变化量、第二水平变化量、第二夹角、第二物面分辨率、第二距离以及六自由度运动量,得到与任意一个第二监测点对应的第二方程组;
根据J 1个第一监测点对应的J 1个第一方程组和J 2个第二监测点对应的J 2个第二方程组,得到第一目标方程组和第二目标方程组;
根据第一目标方程组,得到J 1个第一监测点中每个第一监测点的竖向沉降量和J 2个第二监测点中每个第二监测点的竖向沉降量,以及根据第二目标方程组,得到J 1个第一监测点中每个第一监测点的水平位移量和J 2个第二监测点中每个第二监测点的水平位移量。
在本申请的一个实施方式中,在根据第一图像、第二图像、第三图像和第四图像,得到J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量方面,处理器702,具体用于执行以下步骤:
J 1个第一监测点的数量为偶数,且J 1个第一监测点由J 1/2个第三监测点和J 1/2个第四监测点构成;
J 2个第二监测点的数量为偶数,且J 2个第二监测点由J 2/2个第五监测点和J 2/2个第六监测点构成;
根据第一图像、第二图像、第三图像和第四图像,得到J 1/2个第三监测点中每个第三监测点的水平位移量和J 2/2个第五监测点中每个第五监测点的水平位移量,以及J 1/2个第四监测点中每个第四监测点的竖向沉降量和J 2/2个第六监测点中每个第六监测点的竖向沉降量。
在本申请的一个实施方式中,在根据第一图像、第二图像、第三图像和第四图像,得到J 1/2个第三监测点中每个第三监测点的水平位移量和J 2/2个第五监测点中每个第五监测点的水平位移量,以及J 1/2个第四监测点中每个第四监测点的竖向沉降量和J 2/2个第六监测点中每个第六监测点的竖向沉降量方面,处理器702,具体用于执行以下步骤:
获取J 1/2个第三监测点在第一图像中的J 1/2个第五像素坐标以及在第三图像中的J 1/2个第六像素坐标;
获取J 2/2个第五监测点在第二图像中的J 2/2个第七像素坐标以及在第四图像中的J 2/2个第八像素坐标;
针对J 1/2个第三监测点中的任意一个第三监测点以及J 2/2个第五监测点中的任意一个第五监测点,根据任意一个第三监测点对应的第五像素坐标和第六像素坐标,得到任意一个第三监测点的第三水平变化量,根据任意一个第五监测点对应的第七像素坐标和第八像素坐标,得到任意一个第五监测点的第四水平变化量;
获取J 1/2个第四监测点在第一图像中的J 1/2个第九像素坐标以及在第三图像中的J 1/2个第十像素坐标;
获取J 2/2个第六监测点在第二图像中的J 2/2个第十一像素坐标以及在第四图像中的J 2/2个第十二像素坐标;
针对J 1/2个第四监测点中的任意一个第四监测点以及J 2/2个第六监测点中的任意一个第六监测点,根据任意一个第四监测点对应的第九像素坐标和第十像素坐标,得到任意一个第四监测点的第三竖直变化量,根据任意一个第六监测点对应的第十一像素坐标和第十二像素坐标,得到任意一个第六监测点的第四竖直变化量;
根据J 1/2个第三监测点对应的J 1/2个第三水平变化量、J 2/2个第五监测点对应的J 2/2个第四水平变化量、相机阵列的第一夹角、第二夹角、与J 1/2个第三监测点对应的J 1/2个第三物面分辨率、与J 2/2个第五监测点对应的J 2/2个第四物面分辨率、J 1/2个第三距离、J 2/2个第四距离以及测量装置的三自由度运动量,确定J 1/2个第三监测点中的每个第三监测点的水平位移量和J 2/2个第五监测点中的每个第五监测点的水平位移量,其中,第一夹角为第一相机的光轴与水平面的夹角,第二夹角为第二相机的光轴与水平面的夹角,J 1/2个第三距离为第一相机分别与J 1/2个第三监测点中的每个第三监测点之间的距离,J 2/2个第二距离为第二相机分别与J 2/2个第五监测点中的每个第五监测点之间的距离;
根据J 1/2个第四监测点对应的J 1/2个第三竖直变化量、J 2/2个第六监测点对应的J 2/2个第四竖直变化量、相机阵列的第一夹角、第二夹角、与J 1/2个第 四监测点对应的J 1/2个第五物面分辨率、与J 2/2个第六监测点对应的J 2/2个第六物面分辨率、J 1/2个第五距离、J 2/2个第六距离以及测量装置的五自由度运动量,确定J 1/2个第四监测点中的每个第四监测点的竖向沉降量和J 2/2个第六监测点中的每个第六监测点的竖向沉降量,其中,第一夹角为第一相机的光轴与水平面的夹角,第二夹角为第二相机的光轴与水平面的夹角,J 1/2个第一距离为第一相机分别与J 1/2个第四监测点中的每个第四监测点之间的距离,J 2/2个第二距离为第二相机分别与J 2/2个第六监测点中的每个第六监测点之间的距离。
具体地,上述收发器701可为图6的实施例的形变测量装置600的获取单元601,上述处理器702可以为图6的实施例的形变测量装置600的处理单元602。
应理解,本申请中的电子设备可以包括智能手机(如Android手机、iOS手机、Windows Phone手机等)、平板电脑、掌上电脑、笔记本电脑、移动互联网设备MID(Mobile Internet Devices,简称:MID)或穿戴式设备等。上述电子设备仅是举例,而非穷举,包含但不限于上述电子设备。在实际应用中,上述电子设备还可以包括:智能车载终端、计算机设备等等。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器执行以实现如上述方法实施例中记载的任何一种形变测量方法的部分或全部步骤。
本申请实施例还提供一种计算机程序产品,计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,计算机程序可操作来使计算机执行如上述方法实施例中记载的任何一种形变测量方法的部分或全部步骤。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于可选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。
集成的单元如果以软件程序模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储器包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储器中,存储器可以包括:闪存盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取器(英文:Random Access Memory,简称:RAM)、磁盘或光盘等。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种形变测量方法,其特征在于,应用于形变测量装置,所述形变测量装置上设置有相机阵列和移动平台,所述方法包括:
    当所述移动平台行驶至待测区域的第一监测位置时,通过所述相机阵列中的第一相机对所述待测区域中第一待测区域内的监测点进行拍摄,得到第一图像;以及通过所述相机阵列中的第二相机对所述待测区域中第二待测区域内的监测点进行拍摄,得到第二图像,其中,所述第一待测区域内的监测点和所述第二待测区域内的监测点设置于所述第一监测位置的两侧,所述第一相机和所述第二相机的拍摄方向相反;
    当所述移动平台行驶至所述待测区域的第二监测位置时,通过所述第一相机对所述第一待测区域内的监测点进行拍摄,得到第三图像;以及通过所述第二相机对所述第二待测区域内的监测点进行拍摄,得到第四图像;
    根据所述第一图像和所述第三图像,确定出J 1个第一监测点;以及根据所述第二图像和所述第四图像,确定出J 2个第二监测点,其中,所述J 1个第一监测点为所述第一图像和所述第三图像均包含的监测点,所述J 2个第二监测点为所述第二图像和所述第四图像均包含的监测点;
    根据所述第一图像、所述第二图像、所述第三图像和所述第四图像,得到所述J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及所述J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一图像、所述第二图像、所述第三图像和所述第四图像,得到所述J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及所述J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量,包括:
    获取所述J 1个第一监测点在所述第一图像中的J 1个第一像素坐标;
    获取所述J 1个第一监测点在所述第三图像中的J 1个第二像素坐标;
    针对所述J 1个第一监测点中的任意一个第一监测点,根据所述任意一个第一监测点对应的第一像素坐标和第二像素坐标,得到所述任意一个第一监测点的第一竖直变化量和第一水平变化量;
    获取所述J 2个第二监测点在所述第二图像中的J 2个第三像素坐标;
    获取所述J 2个第二监测点在所述第四图像中的J 2个第四像素坐标;
    针对所述J 2个第二监测点中的任意一个第二监测点,根据所述任意一个第二监测点对应的第三像素坐标和第四像素坐标,得到所述任意一个第二监测点的第二竖直变化量和第二水平变化量;
    根据所述J 1个第一监测点对应的J 1个第一竖直变化量以及J 1个第一水平变化量,以及所述J 2个第二监测点对应的J 2个第二竖直变化量以及J 2个第二水平变化量、所述相机阵列的第一夹角、第二夹角、与所述J 1个第一监测点对应的J 1个第一物面分辨率、与所述J 2个第二监测点对应的J 2个第二物面分辨率、J 1个第一距离、J 2个第二距离以及所述测量装置的六自由度运动量,确定所述J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及所述J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量,其中,所述第一夹角为所述第一相机的光轴与水平面的夹角,所述第二夹角为所述第二相机的光轴 与水平面的夹角,所述J 1个第一距离为所述第一相机分别与所述J 1个第一监测点中的每个第一监测点之间的距离,所述J 2个第二距离为所述第二相机分别与所述J 2个第二监测点中的每个第二监测点之间的距离。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述J 1个第一监测点对应的J 1个第一竖直变化量以及J 1个第一水平变化量,以及所述J 2个第二监测点对应的J 2个第二竖直变化量以及J 2个第二水平变化量、所述相机阵列的第一夹角、第二夹角、与所述J 1个第一监测点对应的J 1个第一物面分辨率、与所述J 2个第二监测点对应的J 2个第二物面分辨率、J 1个第一距离、J 2个第二距离以及所述测量装置的六自由度运动量,确定所述J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及所述J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量,包括:
    根据所述任意一个第一监测点对应的第一竖直变化量、第一水平变化量、第一夹角、第一物面分辨率、第一距离以及所述六自由度运动量,得到与所述任意一个第一监测点对应的第一方程组;
    根据所述任意一个第二监测点对应的第二竖直变化量、第二水平变化量、第二夹角、第二物面分辨率、第二距离以及所述六自由度运动量,得到与所述任意一个第二监测点对应的第二方程组;
    根据所述J 1个第一监测点对应的J 1个第一方程组和所述J 2个第二监测点对应的J 2个第二方程组,得到第一目标方程组和第二目标方程组;
    根据所述第一目标方程组,得到所述J 1个第一监测点中每个第一监测点的竖向沉降量和所述J 2个第二监测点中每个第二监测点的竖向沉降量,以及根据所述第二目标方程组,得到所述J 1个第一监测点中每个第一监测点的水平位移量和所述J 2个第二监测点中每个第二监测点的水平位移量。
  4. 根据权利要求1所述的方法,其特征在于,
    所述J 1个第一监测点的数量为偶数,且所述J 1个第一监测点由J 1/2个第三监测点和J 1/2个第四监测点构成;
    所述J 2个第二监测点的数量为偶数,且所述J 2个第二监测点由J 2/2个第五监测点和J 2/2个第六监测点构成;
    所述根据所述第一图像、所述第二图像、所述第三图像和所述第四图像,得到所述J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及所述J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量,包括:
    根据所述第一图像、所述第二图像、所述第三图像和所述第四图像,得到所述J 1/2个第三监测点中每个第三监测点的水平位移量和所述J 2/2个第五监测点中每个第五监测点的水平位移量,以及所述J 1/2个第四监测点中每个第四监测点的竖向沉降量和所述J 2/2个第六监测点中每个第六监测点的竖向沉降量。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述第一图像、所述第二图像、所述第三图像和所述第四图像,得到所述J 1/2个第三监测点中每个第三监测点的水平位移量和所述J 2/2个第五监测点中每个第五监测点的水平位移量,以及所述J 1/2个第四监测点中每个第四监测点的竖向沉降量和所述J 2/2个第六监测点中每个第六监测点的竖向沉降量,包括:
    获取所述J 1/2个第三监测点在所述第一图像中的J 1/2个第五像素坐标以及 在所述第三图像中的J 1/2个第六像素坐标;
    获取所述J 2/2个第五监测点在所述第二图像中的J 2/2个第七像素坐标以及在所述第四图像中的J 2/2个第八像素坐标;
    针对所述J 1/2个第三监测点中的任意一个第三监测点以及所述J 2/2个第五监测点中的任意一个第五监测点,根据所述任意一个第三监测点对应的第五像素坐标和第六像素坐标,得到所述任意一个第三监测点的第三水平变化量,根据所述任意一个第五监测点对应的第七像素坐标和第八像素坐标,得到所述任意一个第五监测点的第四水平变化量;
    获取所述J 1/2个第四监测点在所述第一图像中的J 1/2个第九像素坐标以及在所述第三图像中的J 1/2个第十像素坐标;
    获取所述J 2/2个第六监测点在所述第二图像中的J 2/2个第十一像素坐标以及在所述第四图像中的J 2/2个第十二像素坐标;
    针对所述J 1/2个第四监测点中的任意一个第四监测点以及所述J 2/2个第六监测点中的任意一个第六监测点,根据所述任意一个第四监测点对应的第九像素坐标和第十像素坐标,得到所述任意一个第四监测点的第三竖直变化量,根据所述任意一个第六监测点对应的第十一像素坐标和第十二像素坐标,得到所述任意一个第六监测点的第四竖直变化量;
    根据所述J 1/2个第三监测点对应的J 1/2个第三水平变化量、所述J 2/2个第五监测点对应的J 2/2个第四水平变化量、所述相机阵列的第一夹角、第二夹角、与所述J 1/2个第三监测点对应的J 1/2个第三物面分辨率、与所述J 2/2个第五监测点对应的J 2/2个第四物面分辨率、J 1/2个第三距离、J 2/2个第四距离以及所述测量装置的三自由度运动量,确定所述J 1/2个第三监测点中的每个第三监测点的水平位移量和所述J 2/2个第五监测点中的每个第五监测点的水平位移量,其中,所述第一夹角为所述第一相机的光轴与水平面的夹角,所述第二夹角为所述第二相机的光轴与水平面的夹角,所述J 1/2个第三距离为所述第一相机分别与所述J 1/2个第三监测点中的每个第三监测点之间的距离,所述J 2/2个第二距离为所述第二相机分别与所述J 2/2个第五监测点中的每个第五监测点之间的距离;
    根据所述J 1/2个第四监测点对应的J 1/2个第三竖直变化量、所述J 2/2个第六监测点对应的J 2/2个第四竖直变化量、所述相机阵列的第一夹角、第二夹角、与所述J 1/2个第四监测点对应的J 1/2个第五物面分辨率、与所述J 2/2个第六监测点对应的J 2/2个第六物面分辨率、J 1/2个第五距离、J 2/2个第六距离以及所述测量装置的五自由度运动量,确定所述J 1/2个第四监测点中的每个第四监测点的竖向沉降量和所述J 2/2个第六监测点中的每个第六监测点的竖向沉降量,其中,所述第一夹角为所述第一相机的光轴与水平面的夹角,所述第二夹角为所述第二相机的光轴与水平面的夹角,所述J 1/2个第一距离为所述第一相机分别与所述J 1/2个第四监测点中的每个第四监测点之间的距离,所述J 2/2个第二距离为所述第二相机分别与所述J 2/2个第六监测点中的每个第六监测点之间的距离。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述J 1/2个第三监测点对应的J 1/2个第三水平变化量、所述J 2/2个第五监测点对应的J 2/2个第四 水平变化量、所述相机阵列的第一夹角、第二夹角、与所述J 1/2个第三监测点对应的J 1/2个第三物面分辨率、与所述J 2/2个第五监测点对应的J 2/2个第四物面分辨率、J 1/2个第三距离、J 2/2个第四距离以及所述测量装置的三自由度运动量,确定所述J 1/2个第三监测点中的每个第三监测点的水平位移量和所述J 2/2个第五监测点中的每个第五监测点的水平位移量,包括:
    根据所述任意一个第三监测点对应的第三水平变化量、第三物面分辨率、第三距离、所述第一夹角以及所述三自由度运动量,得到与所述任意一个第三监测点对应的第一方程;
    根据所述任意一个第五监测点对应的第四水平变化量、第四物面分辨率、第四距离、所述第二夹角以及所述三自由度运动量,得到与所述任意一个第五监测点对应的第二方程;
    根据所述J 1/2个第三监测点对应的J 1/2个第一方程和所述J 2/2个第五监测点对应的J 2/2个第二方程,得到第三目标方程组;
    根据所述第三目标方程组,得到所述J 1/2个第三监测点中的每个第三监测点的水平位移量和所述J 2/2个第五监测点中的每个第五监测点的水平位移量。
  7. 根据权利要求5或6所述方法,其特征在于,所述根据所述J 1/2个第四监测点对应的J 1/2个第三竖直变化量、所述J 2/2个第六监测点对应的J 2/2个第四竖直变化量、所述相机阵列的第一夹角、第二夹角、与所述J 1/2个第四监测点对应的J 1/2个第五物面分辨率、与所述J 2/2个第六监测点对应的J 2/2个第六物面分辨率、J 1/2个第五距离、J 2/2个第六距离以及所述测量装置的五自由度运动量,确定所述J 1/2个第四监测点中的每个第四监测点的竖向沉降量和所述J 2/2个第六监测点中的每个第六监测点的竖向沉降量,包括:
    根据所述任意一个第四监测点对应的第三竖直变化量、第五物面分辨率、第五距离、所述第一夹角以及所述五自由度运动量,得到与所述任意一个第四监测点对应的第三方程;
    根据所述任意一个第六监测点对应的第四竖直变化量、第六物面分辨率、第六距离、所述第二夹角以及所述五自由度运动量,得到与所述任意一个第六监测点对应的第四方程;
    根据所述J 1/2个第四监测点对应的J 1/2个第三方程和所述J 2/2个第六监测点对应的J 2/2个第四方程,得到第四目标方程组;
    根据所述第四目标方程组,得到所述J 1/2个第四监测点中的每个第四监测点的竖向沉降量和所述J 2/2个第六监测点中的每个第六监测点的竖向沉降量。
  8. 一种形变测量装置,其特征在于,所述形变测量装置上设置有相机阵列和移动平台,所述装置包括:获取单元和处理单元;
    所述获取单元,用于当所述移动平台行驶至待测区域的第一监测位置时,通过所述相机阵列中的第一相机对所述待测区域中第一待测区域内的监测点进行拍摄,得到第一图像;以及通过所述相机阵列中的第二相机对所述待测区域中第二待测区域内的监测点进行拍摄,得到第二图像,其中,所述第一待测区域内的监测点和所述第二待测区域内的监测点设置于所述第一监测位置的两侧,所述第一相机和所述第二相机的拍摄方向相反;
    当所述移动平台行驶至所述待测区域的第二监测位置时,通过所述第一相机对所述第一待测区域内的监测点进行拍摄,得到第三图像;以及通过所述第二相机对所述第二待测区域内的监测点进行拍摄,得到第四图像;
    所述处理单元,用于根据所述第一图像和所述第三图像,确定出J 1个第一监测点;以及根据所述第二图像和所述第四图像,确定出J 2个第二监测点,其中,所述J 1个第一监测点为所述第一图像和所述第三图像均包含的监测点,所述J 2个第二监测点为所述第二图像和所述第四图像均包含的监测点;
    根据所述第一图像、所述第二图像、所述第三图像和所述第四图像,得到所述J 1个第一监测点中每个第一监测点的水平位移量和竖向沉降量,以及所述J 2个第二监测点中每个第二监测点的水平位移量和竖向沉降量。
  9. 一种电子设备,其特征在于,包括:处理器和存储器,所述处理器与所述存储器相连,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述电子设备执行如权利要求1-7中任一项所述的方法。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行以实现如权利要求1-7中任一项所述的方法。
PCT/CN2022/082049 2022-03-21 2022-03-21 形变测量方法、装置、电子设备及存储介质 WO2023178481A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/082049 WO2023178481A1 (zh) 2022-03-21 2022-03-21 形变测量方法、装置、电子设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/082049 WO2023178481A1 (zh) 2022-03-21 2022-03-21 形变测量方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023178481A1 true WO2023178481A1 (zh) 2023-09-28

Family

ID=88099573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082049 WO2023178481A1 (zh) 2022-03-21 2022-03-21 形变测量方法、装置、电子设备及存储介质

Country Status (1)

Country Link
WO (1) WO2023178481A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309491A (ja) * 2003-02-21 2004-11-04 Fast:Kk 建築および土木構造物計測・解析システム
CN204007533U (zh) * 2014-06-19 2014-12-10 樊晓东 隧道缺陷的全方位检测设备
CN104316024A (zh) * 2014-10-09 2015-01-28 中国人民解放军国防科学技术大学 一种监测多点沉降的极简串联像机链测量方法与系统
CN107085853A (zh) * 2017-05-04 2017-08-22 中国矿业大学 导轨单目立体视觉矿区井架变形监测方法
CN108487216A (zh) * 2018-03-01 2018-09-04 中国人民解放军国防科技大学 用于监测地基沉降的闭环像机串联网络
JP2018207194A (ja) * 2017-05-31 2018-12-27 株式会社大林組 切羽監視システム
CN109373921A (zh) * 2018-10-26 2019-02-22 南京航空航天大学 一种隧道监测方法及装置
CN111189403A (zh) * 2020-01-09 2020-05-22 深圳大学 一种隧道变形的监测方法、装置及计算机可读存储介质
CN112629431A (zh) * 2020-12-14 2021-04-09 深圳大学 土木结构变形监测方法及相关设备

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309491A (ja) * 2003-02-21 2004-11-04 Fast:Kk 建築および土木構造物計測・解析システム
CN204007533U (zh) * 2014-06-19 2014-12-10 樊晓东 隧道缺陷的全方位检测设备
CN104316024A (zh) * 2014-10-09 2015-01-28 中国人民解放军国防科学技术大学 一种监测多点沉降的极简串联像机链测量方法与系统
CN107085853A (zh) * 2017-05-04 2017-08-22 中国矿业大学 导轨单目立体视觉矿区井架变形监测方法
JP2018207194A (ja) * 2017-05-31 2018-12-27 株式会社大林組 切羽監視システム
CN108487216A (zh) * 2018-03-01 2018-09-04 中国人民解放军国防科技大学 用于监测地基沉降的闭环像机串联网络
CN109373921A (zh) * 2018-10-26 2019-02-22 南京航空航天大学 一种隧道监测方法及装置
CN111189403A (zh) * 2020-01-09 2020-05-22 深圳大学 一种隧道变形的监测方法、装置及计算机可读存储介质
CN112629431A (zh) * 2020-12-14 2021-04-09 深圳大学 土木结构变形监测方法及相关设备

Similar Documents

Publication Publication Date Title
JP5992184B2 (ja) 画像データ処理装置、画像データ処理方法および画像データ処理用のプログラム
CN110567469B (zh) 视觉定位方法、装置、电子设备及系统
CN111750853B (zh) 一种地图建立方法、装置及存储介质
CN102798350B (zh) 一种臂架挠度的测量方法、装置及系统
CN111179339A (zh) 基于三角测量的坐标定位方法、装置、设备及存储介质
CN110969663A (zh) 一种相机外部参数的静态标定方法
CN110189400B (zh) 一种三维重建方法、三维重建系统、移动终端及存储装置
CN112529966B (zh) 一种车载环视系统的在线标定方法及其车载环视系统
CN108663043B (zh) 基于单个相机辅助的分布式pos主子节点相对位姿测量方法
CN111553956A (zh) 拍摄装置的标定方法、装置、电子设备和存储介质
JP5228614B2 (ja) パラメータ計算装置、パラメータ計算システムおよびプログラム
CN114998447A (zh) 多目视觉标定方法及系统
CN111105467A (zh) 一种图像标定方法、装置及电子设备
CN113296133A (zh) 一种基于双目视觉测量与高精度定位融合技术实现位置标定的装置及方法
WO2023178481A1 (zh) 形变测量方法、装置、电子设备及存储介质
CN117190875A (zh) 一种基于计算机智能视觉的桥塔位移测量装置及方法
CN109883400B (zh) 基于yolo-sitcol的固定站自动目标检测与空间定位方法
CN114782548B (zh) 基于全局图像的雷视数据标定方法、装置、设备及介质
CN110672024A (zh) 一种利用视频中物体投影测量物体间距的方法
CN114739306B (zh) 形变测量方法、装置、电子设备及存储介质
KR102036324B1 (ko) 듀얼 카메라를 이용하여 카메라의 3차원 위치 오차 보정이 가능한 영상 변위 계측 방법
KR20140024745A (ko) 구조물의 변위 측정을 위한 오브젝트의 캘리브레이션 방법 및 시스템
CN106382891A (zh) 一种基于球面全景相机的物体高度测量方法
CN101819038A (zh) 基于标线参数的交通事故现场二维测量及俯视校正方法
CN110634136B (zh) 一种管道壁破损检测方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932550

Country of ref document: EP

Kind code of ref document: A1