WO2023177232A1 - Anti b7-h3 monoclonal antibody and use thereof - Google Patents

Anti b7-h3 monoclonal antibody and use thereof Download PDF

Info

Publication number
WO2023177232A1
WO2023177232A1 PCT/KR2023/003515 KR2023003515W WO2023177232A1 WO 2023177232 A1 WO2023177232 A1 WO 2023177232A1 KR 2023003515 W KR2023003515 W KR 2023003515W WO 2023177232 A1 WO2023177232 A1 WO 2023177232A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
antibody
cells
npb40
cell
Prior art date
Application number
PCT/KR2023/003515
Other languages
French (fr)
Korean (ko)
Inventor
류춘제
서효선
한산하
최문주
최홍서
이현민
Original Assignee
세종대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230034221A external-priority patent/KR20230136875A/en
Application filed by 세종대학교산학협력단 filed Critical 세종대학교산학협력단
Publication of WO2023177232A1 publication Critical patent/WO2023177232A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer

Definitions

  • the present invention relates to a monoclonal antibody that specifically binds to human B7-H3, and specifically, to a monoclonal antibody that recognizes B7-H3 expressed on the surface of various cancer cells, including human pluripotent stem cells and liver cancer, and to the monoclonal antibody that specifically binds to human B7-H3. It relates to a hybridoma producing a clonal antibody, a diagnostic kit containing the monoclonal antibody, and a composition for anticancer treatment containing the monoclonal antibody.
  • Human pluripotent stem cells are cells that have the ability to proliferate indefinitely and differentiate into all cells that make up the body.
  • the first human pluripotent stem cells human embryonic stem cells (hESC) were established from human frozen embryos by Dr. James Thomson's team in the United States in 1998, and by gene introduction in 2007 by Dr. Shinya Yamanaka's team in Japan.
  • Human Induced Pluripotent Stem Cell hiPSC
  • human embryonic stem cells were created through egg nuclear transfer by Dr. Shoukhrat Mitalipov's team at the University of Oregon, and currently, three types of hPSC exist.
  • pluripotent stem cells can be separated, and pluripotent stem cells before implantation are called naive pluripotent, and those after implantation are called primed pluripotent. Pure state and quasi-state pluripotent stem cells have many differences in cell shape, growth rate, differentiation ability, degree of methylation, germline transmission ability, etc.
  • the quasi-state grows in a largely flat state and has a slow growth rate, while the pure state It grows in a small dome shape, grows well even when separated into single cells with trypsin, has a fast growth rate, is not yet concentrated in the developmental stage, is expected to have the ability to differentiate into more cells, has a lower degree of methylation, and has germline transmission. It is known as an early pluripotent stem cell with superior capabilities, and can be induced from quasi-human pluripotent stem cells to pure human pluripotent stem cells under various culture conditions.
  • Oncofetal antigens are important target molecules currently used in the diagnosis or treatment of cancer, such as CA-125, CEA, AFP, cancer /testes antigen, POA, etc.
  • Cripto-1, Glypican-3, 5T4, and M2A are known as oncofetal antigens, and antibodies targeting these are being developed as antibodies for cancer treatment.
  • oncofetal antigens was not easy due to ethical issues regarding human embryos, and as human embryonic stem cells were established and cultured in 1998, oncofetal antigens on the surface of human embryonic stem cells such as 5T4, Cripto, and EpCAM were discovered, and these The molecules are being applied as target molecules for antibodies for cancer treatment.
  • hPSC human embryonic stem cells
  • hiPSC human induced pluripotent stem cells
  • B7-H3 (CD276, PD-L3) is an immune checkpoint member of the B7 and CD28 families and consists of two identical pairs of human immunoglobulin variable domains and immunoglobulin constant domains.
  • B7-H3 was identified by a database search of cDNA libraries of human dendritic cells. Although B7-H3 is known to be a T cell immunostimulatory molecule, accumulating evidence shows that B7-H3 also has an immunosuppressive function, reducing the cytotoxic activity of interferons and natural killers released from T cells.
  • B7-H3 The transcript of B7-H3 is co-expressed in most normal tissues and solid tumors, but the protein is highly expressed only in tumors such as lung, liver, leukemia, colon, rectum, stomach, breast, kidney, stomach, glioma, ovary, and pancreas. do. B7-H3 expression is also found in tumor-related vasculature and stroma. Overexpression of B7-H3 is closely correlated with advanced tumors and shorter overall survival in many cancers, including breast, ovarian, lung, liver, and gastric cancer.
  • the survival rate is significantly reduced when B7-H3 is overexpressed in liver cancer, breast cancer, ovarian cancer, lung cancer, and stomach cancer. Even though it is not expressed in the early stage of cancer, it is overexpressed in the late stage of cancer, making it a target for late-stage cancer treatment. It has high value, and has recently been suggested as a cancer stem cell marker for squamous cell carcinoma and pancreatic cancer stem cell. Additionally, many studies suggest that beyond its role in immune evasion, B7-H3 promotes tumorigenesis through mediation of anti-apoptosis, pro-proliferation, angiogenesis, and tumor microenvironment.
  • B7-H3 is considered an attractive target for immunotherapy therapy in various carcinomas.
  • antibody-based treatments and CAR-T cell therapies targeting B7-H3 are being developed for many advanced cancers, including TNBC, ovarian cancer, pancreatic cancer, NSCLC, glioblastoma, and melanoma.
  • TNBC TNBC
  • ovarian cancer pancreatic cancer
  • NSCLC NSCLC
  • glioblastoma melanoma
  • melanoma melanoma.
  • the receptor or ligand for B7-H3 has not yet been identified, it is still difficult to draw a clear mechanistic picture of cancer progression caused by B7-H3 in the cancer immune evasion mechanism.
  • NPB40 an antibody that simultaneously binds to pure human pluripotent stem cells and quasi-human pluripotent stem cells from a group of monoclonal antibodies prepared by injecting pure human pluripotent stem cells into mice.
  • the NPB40 antigen was rarely expressed in normal cells, such as peripheral blood monocytes or hepatocytes, but was highly expressed in liver cancer cells, embryonic cancer, pancreatic cancer, colon cancer, osteosarcoma, melanoma, lung cancer, and neuroblastoma cells.
  • NPB40 antigen revealed that it was B7-H3, and it was assumed that the NPB40 antibody that recognizes B7-H3 could be developed as a cancer treatment antibody as a new antibody that recognizes the oncofetal epitope co-expressed in human pluripotent stem cells and cancer cells.
  • injection of NPB40 showed an effective anticancer effect in a liver cancer mouse model transplanted with human liver cancer cells. Therefore, this invention was completed by confirming that NPB40 is an antibody that can be developed as an antibody for treating cancer, including liver cancer.
  • the purpose of the present invention is to provide a monoclonal antibody that recognizes the B7-H3 protein expressed on the surface of human pure pluripotent stem cells, human quasi-pluripotent stem cells, and cancer cells.
  • the purpose of the present invention is to provide a pharmaceutical composition for preventing or treating cancer, a composition for diagnosing cancer, and a method for providing information for diagnosing cancer using the function of the monoclonal antibody.
  • the purpose of the present invention is to provide a hybridoma that produces the monoclonal antibody.
  • a heavy chain comprising heavy chain complementary determine region 1 (HCDR1) containing SEQ ID NO: 1, HCDR2 containing SEQ ID NO: 2, and HCDR3 containing SEQ ID NO: 3; And an antibody comprising a light chain comprising light chain complementary determine region 1 (LCDR1) comprising SEQ ID NO: 4, LCDR2 comprising SEQ ID NO: 5, and LCDR3 comprising SEQ ID NO: 6.
  • the antibody according to 1 above comprising a heavy chain containing SEQ ID NO: 7 and a light chain containing SEQ ID NO: 8.
  • the antibody is an antibody that binds to B7-H3 on the surface of human naive pluripotent stem cells, human prime pluripotent stem cells, and human cancer cells.
  • a pharmaceutical composition for preventing or treating cancer containing the antibody of any one of 1 to 3 above.
  • composition for preventing or treating cancer according to item 4 above further comprising an anti-cancer substance conjugated to the antibody.
  • composition for preventing or treating cancer according to item 4 above further comprising at least one from the group consisting of NK-cell (natural killer cell), macrophage, and neutrophil.
  • a composition for diagnosing cancer containing the antibody of any one of items 1 to 3 above.
  • composition for diagnosing cancer according to item 11 above wherein the cancer is a cancer derived from cancer cells expressing B7-H3 protein on the cell membrane.
  • a method of providing information for cancer diagnosis comprising the step of treating a separated sample with the composition of 11 above and detecting a protein to which the antibody is bound.
  • cancer is selected from the group consisting of liver cancer, pancreatic cancer, osteosarcoma, skin cancer, lung cancer, neuroblastoma, uterine cancer, prostate cancer, and colon cancer.
  • the monoclonal antibody of the present invention can recognize B7-H3 protein expressed on the surface of human pure pluripotent stem cells, human quasi-pluripotent stem cells, and cancer cells. It can be preferably used in pharmaceutical compositions for preventing or treating cancer, compositions for diagnosing cancer, etc.
  • FIG 1A shows that H9 cells, which are human pluripotent stem cells (hPSC), were cultured in primed human pluripotent stem cell (primed H9) medium and medium induced by pure human pluripotent stem cells (naive H9). In the pure human pluripotent stem cell medium, small cells appear. The dome-shaped shape of pure H9 cells can be seen.
  • Figures 1B and 1C show semi-human pluripotent stem cell markers SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, CD24, and CD90 and pure human pluripotent stem cell markers CD7, This picture shows the expression of CD77 and CD130.
  • Figure 2 is a diagram showing the analysis of the expression of 31 naive hPSC-related genes in naive hPSC and primed hPSC using RNA-seq method, showing that the expression of 15 naive hPSC-related genes increased in naive hPSC.
  • Figure 3 shows that through FACS analysis, the monoclonal antibody NPB40 of the present invention binds to primed human pluripotent stem cells (primed H9) and pure human pluripotent stem cells (naive H9), but does not bind to human embryonic carcinoma cells 2102EP and NT-2. It shows that it does not bind to mouse embryonic fibroblasts (MEF) and human peripheral blood mononuclear cells (PBMC). At this time, the solid line is the monoclonal antibody NPB40, and the red background is negative control data containing only the secondary antibody.
  • primed human pluripotent stem cells primed human pluripotent stem cells
  • naive H9 pure human pluripotent stem cells
  • PBMC peripheral blood mononuclear cells
  • Figure 4A is a diagram showing the extent to which the monoclonal antibody NPB40 of the present invention binds to various cell lines or primary cells through flow cytometry analysis.
  • the solid line is the monoclonal antibody and the red background is 2. This is negative control data containing only primary antibodies.
  • the monoclonal antibody NPB40 binds weakly to normal human hepatocytes, but binds strongly to four types of human liver cancer cells, Huh7, HepG2, SNU-387, and SNU-449.
  • NPB40 was used in three types of human pancreatic cancer cells, BxPC-3, PANC-1, and SNU-213, two types of human colon cancer cells, Colo-205 and HCT-116, and two types of human osteosarcoma cells, U2-OS and Saos-2. It shows that it binds well to many cancer cells, including human skin cancer cells A375, human lung cancer cells A549, and human neuroblastoma SH-SY5Y.
  • Figure 4B shows the cell surface of 2102Ep human embryonic cancer cells, Huh7, and SNU-449 human liver cancer cells stained with monoclonal antibody NPB40 through cell immunochemical staining, showing that monoclonal antibody NPB40 recognizes cell surface proteins of cancer cells. .
  • Figure 5A shows that proteins immunoprecipitated using the monoclonal antibody NPB40 from the eluate of NT2/D1 human embryonic cancer stem cells whose cell surface was labeled with biotin were separated through 10% SDS-PAGE and analyzed by Nitrogen by Western blotting. After transferring to a cellulose membrane, the sample was analyzed with streptavidin-HRP (SA-HRP). The same experiment was performed without adding antibodies, which was used as a negative control (No Ab). Arrows indicate proteins immunoprecipitated by NPB40.
  • Figure 5B shows immunoprecipitation performed in the same manner as Figure 5A, separated through 10% SDS-PAGE, and then the polyacrylamide gel was stained with PageBlue.
  • Figure 5C shows the results of LC-MS/MS analysis of the protein recovered after immunoprecipitation with the monoclonal antibody NPB40 in Figure 5B.
  • the amino acid sequence of the NPB40 antigen is identical to the amino acid sequence of the B7-H3 protein, and the matching portion is This picture is marked in red.
  • Figure 6A shows the monoclonal antibody NPB40 and the known rabbit anti-B7-H3 polyclonal in the cell lysate after biotin-labeling the surface of NT2/D1 human embryonic cancer cells to confirm that the antigen recognized by the monoclonal antibody NPB40 is B7-H3.
  • This picture shows the protein immunoprecipitated with antibody ( ⁇ -B7-H3) detected through Western blotting and streptavidin-HRP (SA-HRP) reaction.
  • Figure 6B shows the protein immunoprecipitated from the cell lysate of NT2/D1 human embryonic cancer cells with the monoclonal antibody NPB40 and a known rabbit anti-B7-H3 polyclonal antibody, and the cell lysate (whole lysate) was analyzed by Western blotting. It was detected by reacting with anti-B7-H3 polyclonal antibody.
  • Figures 6C and 6D show that to reconfirm that the antigen of the monoclonal antibody NPB40 is B7-H3, cell lysates of human embryonic kidney cells HEK293T overexpressing B7-H3 were tested with known mouse anti-His monoclonal antibodies and rabbit anti-B7- After immunoprecipitation with H3 polyclonal antibody and monoclonal antibody NPB40, it was detected by Western blotting and reaction with mouse anti-His monoclonal antibody or rabbit anti-B7-H3 polyclonal antibody.
  • Figure 7A shows a B7-H3 knockdown experiment performed on liver cancer cell lines Huh7, HepG2, SNU387, and SNU449, which were recovered after transfection of negative control siRNA (siCon) or siRNA against B7-H3 (siB7-H3) into liver cancer cells.
  • Western blotting was performed to analyze the expression of B7-H3 protein in one cell lysate, using GAPDH protein expression as a control.
  • Figures 7B and 7C show that liver cancer cells recovered after performing B7-H3 knockdown as in Figure 7A were analyzed through flow cytometry analysis, and the known rabbit anti-B7-H3 polyclonal antibody ( ⁇ -B7-H3) was used. It shows the degree of bonding.
  • FIG. 7B The solid and dotted lines in Figure 7B are monoclonal antibodies, the red background is negative control data containing only secondary antibodies, and Figure 7C is a graph statistically showing the average fluorescence intensity by repeating the experiment in Figure 7B three or more times.
  • Figures 7D and 7E are diagrams showing the degree of binding of the monoclonal antibody NPB40 of the present invention by analyzing liver cancer cells recovered after B7-H3 knockdown as shown in Figure 7A through flow cytometry analysis.
  • the solid and dotted lines in Figure 7D are monoclonal antibodies, the red background is negative control data containing only secondary antibodies, and Figure 7E is a graph statistically showing the average fluorescence intensity by repeating the experiment in Figure 7D three or more times.
  • *** indicates p value ⁇ 0.005.
  • Figure 8A shows hepatoma cells treated with negative control siRNA (siCon) or siRNA against B7-H3 (siB7-H3) recovered after performing B7-H3 knockdown as in Figure 7A, in 6-well cells coated with gelatin. This is a picture showing the degree of adhesion analyzed by reacting to a culture plate. This is a picture of attached liver cancer cells stained with crystal violet.
  • Figure 8B shows the same experiment as Figure 8A in Huh7 liver cancer cell line, cells were eluted with 0.1% SDS, absorbance was measured three times repeatedly at OD 570 nm , and statistical processing was performed.
  • Figure 8C is a diagram showing the same experiment as Figure 8A in HepG2 liver cancer cell line, cells were eluted with 0.1% SDS, absorbance was measured three times at OD 570nm , and statistical processing was performed.
  • Figures 8D and 8E show flow cytometry in liver cancer cells Huh7 in which B7-H3 knockdown was performed by treating negative control siRNA (siCon) or siRNA against B7-H3 (siB7-H3), as in Figure 8A.
  • Figure 8E is a picture analyzing the expression of the cell adhesion proteins E-Cadherin, Integrin- ⁇ 2, and integrin- ⁇ V.
  • Figure 8E is a statistical result of the experiment in Figure 8D repeated three times.
  • Figures 8F and 8G show HepG2 liver cancer cells subjected to B7-H3 knockdown by treating negative control siRNA (siCon) or siRNA against B7-H3 (siB7-H3), as shown in Figure 8A, through flow cytometry.
  • Figure 8G is a picture analyzing the expression of the cell adhesion proteins E-Cadherin, Integrin- ⁇ 2, and integrin- ⁇ V.
  • Figure 8G is a statistical result of the experiment in Figure 8F repeated three times.
  • *** represents p value ⁇ 0.005, ** represents p value ⁇ 0.01, and * represents p value ⁇ 0.05.
  • Figure 9A shows single cells of liver cancer cells Huh7 cells in which B7-H3 knockdown was performed by treating negative control siRNA (siCon) or siRNA against B7-H3 (siB7-H3), as shown in Figure 8A, in a 6-well cell.
  • siCon negative control siRNA
  • siB7-H3 siRNA against B7-H3
  • FIG 8A This is a photograph of colonies formed by inoculating a plate and culturing for two weeks stained with a crystal violet solution.
  • the graph is a graph that statistically compares colony forming ability by repeating the same experiment three times and analyzing the number of colonies.
  • Figure 9B shows single cells of HepG2 cells in which B7-H3 knockdown was performed by treating negative control siRNA (siCon) or siRNA against B7-H3 (siB7-H3), as shown in Figure 8A, in a 6-well cell.
  • siCon negative control siRNA
  • siB7-H3 siB7-H3
  • This is a photograph of colonies formed by inoculating a plate and culturing for 2 weeks stained with a crystal violet solution.
  • the graph is a graph that statistically compares the colony forming ability by repeating the same experiment three times and analyzing the number of colonies.
  • *** indicates p value ⁇ 0.005.
  • Figures 10A and 10B show the results of analysis of HepG2 cells separated into B7-H3-high and B7-H3-low using biotinylated NPB40 antibody using PE-conjugated SA and FACSCalibur.
  • Figure 10B shows the results of the same experiment three times. This is a graph that was statistically compared repeatedly.
  • Figures 10C and 10D are photographs of colonies formed by culturing HepG2 cells isolated using the NPB40 antibody in Figure 10A in a 6-well plate for 2 weeks, stained with crystal violet solution, and Figure 10D shows colony forming ability by analyzing the number of colonies. This is a statistically compared graph.
  • *** represents p value ⁇ 0.005, and ** represents p value ⁇ 0.01.
  • Figures 11A and 11B analyze the internalization of monoclonal antibody NPB40 into human embryonic cancer cells NT2/D1, liver cancer cells Huh7, HepG2, and SNU449, and human pancreatic cancer cells BxPC-3, PANC-1, and SNU-213 through flow cytometry. It was done.
  • the solid line is the monoclonal antibody NPB40 reacted at 4°C
  • the dotted line is the monoclonal antibody NPB40 reacted at 37°C after reaction at 4°C
  • the red background includes only the secondary antibody.
  • Figure 11B is a diagram comparing the degree of attachment of NPB40 on the cell surface of each cancer cell by repeating the same experiment in Figure 11A three times and statistically processing the relative average fluorescence intensity. ** indicates p value ⁇ 0.01, *** indicates p value ⁇ 0.005.
  • Figures 12A and 12B are illustrations showing DNA amplified from DNA fragments corresponding to the variable regions of the monoclonal antibody NPB40 heavy chain and light chain genes, respectively, through polymerase chain reaction.
  • Figures 12C and 12D show the monoclonal antibody NPB40 heavy chain and light chain gene variable regions cloned into the pBluescript-KS(+) vector, respectively.
  • the heavy chain DNA was cloned into EcoRI and SalI, respectively
  • Figure 12D the light chain DNA was cloned into HindIII and SalI. The heavy chain and light chain gene variable regions cloned into the pBluescript-KS(+) vector were confirmed.
  • Figure 13 is a diagram showing the base sequence and amino acid sequence of the variable region of the monoclonal antibody NPB40 heavy chain gene, with the CDR (Complementarity Determining Region) that binds to the antigen indicated in bold.
  • Figure 14 is a diagram showing the base sequence and amino acid sequence of the variable region of the monoclonal antibody NPB40 light chain gene, with the CDR (Complementarity Determining Region) that binds to the antigen indicated in bold.
  • Figure 15 shows an agarose gel electrophoresis photograph of the gene fusion process to produce the NPB40 antibody into a chimeric antibody containing human IgG1.
  • Figure 15A is a diagram showing the fusion of the heavy chain signal peptide and the NPB40 heavy chain variable region by recombinant PCR, and
  • Figure 15B shows the cloning process by cutting with EcoRI and ApaI into the pdCMV-dhfr vector containing the human IgG1 constant region.
  • Figure 15C is a diagram showing the fusion of the light chain signal peptide and the NPB40 light chain variable region by recombinant PCR
  • Figure 15D shows the cloning process by cutting with HindIII and BsiWI into the pdCMV-dhfr vector containing the human kappa constant region.
  • Figure 16 shows the amino acid sequence (blue) and constant region (red) of the heavy chain variable region of the mouse-human chimeric NPB40 antibody (Chi-NPB40) containing the signal sequence, the signal peptide sequence (black), the antigen and The residue positions of the binding CDR amino acids are underlined.
  • Figure 17 shows the amino acid sequence (blue) and constant region (red) of the light chain variable region of the mouse-human chimeric NPB40 antibody (Chi-NPB40) containing the signal sequence, the signal peptide sequence (black), the antigen and The residue positions of the binding CDR amino acids are underlined.
  • Figure 18A shows the results of SDS-PAGE and Coomassie blue staining for the mouse-derived NPB40 antibody and chimeric antibody of the present invention.
  • Figure 18B shows the results of Western blotting on the above antibody, and the secondary antibody used was one that binds to the IgG gamma and kappa chains of human antibodies.
  • Figure 19 is a diagram analyzing the internalization of Chi-NPB40 antibody into human liver cancer cells Huh7 and SNU-449 through flow cytometry.
  • the red background represents the chimeric antibody Chi-NPB40 reacted at 4°C
  • the white background represents the chimeric antibody Chi-NPB40 reacted at 37°C after the reaction at 4°C
  • the gray background represents only the secondary antibody.
  • Figures 20A and 20B measure the cell survival rate of Huh7 cells treated with NPB40 or Chi-NPB40.
  • Huh7 cells were treated with 0 nM to 100 nM NPB40 or Chi-NPB40 and treated with 12.7 nM ⁇ -HFc-CL-DMDM for 48 hours. After that, it was analyzed.
  • Figure 20A is a photo of cells and Figure 20B shows cell viability measured using CCK-8. The scale bar is 100 ⁇ m.
  • Figures 20C and 20D measure the cell survival rate of Huh7 cells treated with NPB40 or Chi-NPB40.
  • Huh7 cells were treated with 0 nM to 100 nM NPB40 or Chi-NPB40 and treated with 12.7 nM ⁇ -HFc-CL-MMAF for 48 hours. After that, it was analyzed.
  • Figure 20C is a photo of cells and Figure 20D shows cell viability measured using CCK-8. The scale bar is 100 ⁇ m.
  • * represents p value ⁇ 0.05, ** represents p value ⁇ 0.01, and *** represents p value ⁇ 0.005.
  • Figures 21A and 21B measure the cell survival rate of HepG2 cells treated with NPB40 or Chi-NPB40. HepG2 cells were treated with 0 nM to 250 nM NPB40 or Chi-NPB40 and treated with 12.7 nM ⁇ -HFc-CL-DMDM for 48 hours. After that, it was analyzed.
  • Figure 21A is a photo of cells and Figure 21B shows cell viability measured using CCK-8. The scale bar is 100 ⁇ m.
  • Figures 21C and 21D measure the cell survival rate of HepG2 cells treated with NPB40 or Chi-NPB40.
  • HepG2 cells were treated with 0 nM to 250 nM NPB40 or Chi-NPB40 and treated with 12.7 nM ⁇ -HFc-CL-MMAF for 48 hours. After that, it was analyzed.
  • Figure 21C is a photo of cells and Figure 21D shows cell viability measured using CCK-8. The scale bar is 100 ⁇ m.
  • * represents p value ⁇ 0.05, ** represents p value ⁇ 0.01, and *** represents p value ⁇ 0.005.
  • Figures 22A and 22B measure the cell viability of SNU-449 cells treated with NPB40 or Chi-NPB40.
  • SNU-449 cells were treated with 0 nM to 250 nM NPB40 or Chi-NPB40 and treated with 12.7 nM ⁇ -HFc-CL-MMAF. It was analyzed after processing for 48 hours.
  • Figure 22A is a photo of cells and Figure 22B shows cell viability measured using CCK-8. The scale bar is 100 ⁇ m.
  • * indicates p value ⁇ 0.05
  • *** indicates p value ⁇ 0.005
  • FIG 23 confirms the ADCC function of Chi-NPB40.
  • Huh7 cells which are liver cancer cells, were treated with a human IgG isotype antibody corresponding to Chi-NPB40 at a concentration of 0.01 ⁇ g/ml to 100 ⁇ g/ml, then ADCC core kit (Promega). The ADCC response occurring in the included Jurkat effector cells was measured by observing luminescence.
  • * indicates p value ⁇ 0.05, and *** indicates p value ⁇ 0.005.
  • Figure 24A shows cancer growth observed in nude mice xenografted with Huh7 cells, a liver cancer cell, by administering mouse IgG isotype antibodies and NPB40, respectively. Each antibody was administered intravenously once every two days at a dose of 10 mg/kg. Statistical processing was performed using three cancer xenograft models in each of the experimental and control groups. In Figure 24A, * indicates p value ⁇ 0.05 and *** indicates p value ⁇ 0.005.
  • Figure 24B compares the sizes of cancer masses obtained from mice sacrificed 20 days after the start of drug administration, which is the final time point in Figure 24A.
  • the present invention relates to a heavy chain comprising a heavy chain complementary determine region 1 (HCDR1) comprising SEQ ID NO: 1, a HCDR2 comprising SEQ ID NO: 2, and a heavy chain comprising HCDR3 comprising SEQ ID NO: 3; and light chain complementary determine region 1 (LCDR1) comprising SEQ ID NO: 4, LCDR2 comprising SEQ ID NO: 5, and LCDR3 comprising SEQ ID NO: 6. .
  • HCDR1 heavy chain complementary determine region 1
  • HCDR2 comprising SEQ ID NO: 2
  • HCDR3 comprising SEQ ID NO: 3
  • LCDR1 light chain complementary determine region 1
  • LCDR2 comprising SEQ ID NO: 5
  • LCDR3 comprising SEQ ID NO: 6.
  • the monoclonal antibody of the present invention can bind to the B7-H3 protein of pure human pluripotent stem cells, quasi-human pluripotent stem cells, and cancer cells.
  • the na ⁇ ve human pluripotent stem cell refers to a human pluripotent stem cell before implantation, and is said to have pluripotency in a naive or ground state.
  • Human pluripotent stem cells after implantation refer to primed human pluripotent stem cells that have pluripotency in a quasi-primed state.
  • pure human pluripotent stem cells are distinguished from semi-pluripotent stem cells that grow in a colony-like form in that individual cells grow separately in a small dome shape.
  • pure human pluripotent stem cells are further divided, they can be divided into stem cells in the ground state, and stem cells with pure pluripotency in the intermediate, formative, or naive-like states.
  • the cancer cells correspond to the cancer cells of the present invention without limitation as long as they express B7-H3 on the cell surface.
  • the heavy and light chain sequences of the antibody of the present invention are not limited as long as it has the HCDR sequences of SEQ ID NOs: 1 to 3 and the LCDR sequences of SEQ ID NOs: 4 to 6.
  • it may have a heavy chain sequence including SEQ ID NO: 7 and a light chain sequence including SEQ ID NO: 8, but is not limited thereto.
  • SEQ ID NO: 7 refers to the heavy chain variable region sequence shown in FIG. 16 and SEQ ID NO: 8 refers to the light chain variable region sequence shown in FIG. 17.
  • SEQ ID Nos: 1 to 8 are as shown in Table 1.
  • an antibody may specifically refer to a monoclonal antibody
  • a monoclonal antibody refers to a protein molecule that is directed to a single antigenic site (single epitope) and binds specifically to it.
  • the monoclonal antibody of the present invention binds specifically to B7-H3, a cell surface molecule of pure human pluripotent stem cells, quasi-human pluripotent stem cells, and cancer cells, and thus, pure human pluripotent stem cells, quasi-human pluripotent stem cells. It is a protein molecule that recognizes cell surface molecules of cells and cancer cells.
  • the main region of an antibody that recognizes a specific epitope of an antigen and forms an antigen-antibody complex is the variable region of the heavy and light chains, especially the complementarity determining region (CDR).
  • CDR complementarity determining region
  • the present invention includes the variable region of the above-mentioned monoclonal antibody of the present invention, especially its chimeric antibody, humanized antibody, etc. including the CDR.
  • variable regions of the monoclonal antibodies of the present invention are also included in the scope of the present invention.
  • the invention also includes functional fragments of the antibody molecule as well as intact forms having two full-length light chains and two full-length heavy chains, as long as they have the binding properties described above.
  • Functional fragments of antibody molecules refer to fragments that possess at least an antigen-binding function and include Fab, F(ab'), F(ab')2, and Fv.
  • the present invention relates to a pharmaceutical composition for preventing or treating cancer containing the above antibody.
  • the composition can be used for prevention or treatment regardless of whether the cancer is caused by cancer cells expressing B7-H3 on the cell surface.
  • cancer cells expressing B7-H3 on the cell surface For example, liver cancer, pancreatic cancer, osteosarcoma, skin cancer, lung cancer, human embryonic cancer, neuroblastoma, uterine cancer, prostate cancer, colon cancer, stomach cancer, biliary tract cancer, kidney cancer, bladder cancer, ovarian cancer, brain tumor, etc.
  • the composition of the present invention when the composition of the present invention is treated with the human embryonic cancer cell NT2/D1, liver cancer cell lines Huh7, HepG2, and SNU449 cell lines, and pancreatic cancer cell lines BxPC-3, PANC-1, and SNU-213 cell lines, anticancer activity occurs. It was confirmed that it was effective. However, it is not limited to this.
  • ADCC antibody-dependent cellular cytotoxicity
  • F c ⁇ R F c gamma receptor
  • F c ⁇ R F c gamma receptor
  • NK cells natural killer cells
  • the pharmaceutical composition of the present invention can specifically bind to cancer cells expressing B7-H3, and when treated by including an antibody prepared in the form of IgG1 in the composition, B7 bound to the antibody by the ADCC mechanism -It may be effective in preventing and treating cancer by killing H3-positive cancer cells.
  • ICI therapy immune checkpoint inhibitor therapy
  • Cancer cells suppress immune function or avoid the cancer cell removal mechanism by immune cells through mechanisms such as T cell immunotolerance or immune-editing.
  • ICI expresses proteins on the cell surface that interfere with the destruction of cancer cells and activates inhibitory immune checkpoints to avoid attacks by immune cells.
  • ICI therapy is a treatment method based on the principle that antibodies that bind to proteins that activate these inhibitory immune checkpoints inhibit the function of those proteins, thereby activating the cancer cell death mechanism by immune cells.
  • the pharmaceutical composition of the present invention can specifically bind to B7-H3, which performs the function of an inhibitory immune checkpoint, and therefore, when treated with IgG4 containing the CDR of the antibody, the antibody NK cell, It can also induce cancer cell death by phagocytes and neutrophils.
  • the pharmaceutical composition for preventing or treating cancer containing the antibody may be a conjugation of an antibody and an anti-cancer substance, and the conjugation may be achieved by a linker sequence or a secondary antibody that binds to the antibody. It may be possible.
  • the secondary antibody refers to an antibody that specifically binds to the amino acid sequence of another antibody (primary antibody) that binds to an antigen, and differs from the primary antibody that binds directly to the target antigen in the object to which it binds. It corresponds to a term with .
  • the linker sequence is used to connect an anticancer substance and an antibody.
  • the linker sequence is attached to the Fc sequence of the antibody, and the linker sequence and the anticancer substance are connected to form an antibody-linker-anticancer substance (antibody-linker-anticancer substance). It can be manufactured and used in the form of a linker-drug.
  • the linker or the secondary antibody are all used to bind the antibody of the present invention to an anti-cancer substance, and if it is used to conjugate an antibody and a drug, the linker or the secondary antibody can be used by those skilled in the art regardless of the secondary antibody sequence or linker sequence. It can be used depending on the method.
  • ⁇ -HFc-CL-DMDM AH-102DD, Moradec, USA
  • ⁇ -HFc-CL-MMAF (AH-102AF, Moradec) antibody was used.
  • the anticancer substance may be used without limitation as long as it is an anticancer substance known in the art, for example, erlotinib (TARCEVA(TM), Genentech/OSI Pharm.), bortezomib (VELCADE(TM), Millenium Pharm.
  • erlotinib TARCEVA(TM), Genentech/OSI Pharm.
  • bortezomib VELCADE(TM)
  • Millenium Pharm for example, erlotinib (TARCEVA(TM), Genentech/OSI Pharm.), bortezomib (VELCADE(TM), Millenium Pharm.
  • dynemycin A dynemycin including; bisphosphonates such as clodronate; esperamicin; and the neocarzinostatin chromophore and the related chromoprotein enedine antibiotic chromophore), aclasinomycin, actinomycin, anthramycin, azaserine, and bleo Mycin, cactinomycin, carabicin, carminomycin, carzinophylline, Chlomomycinis, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, ADRIAMYCIN (TM) Doxorubicin (including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin, and deoxydoxorubicin), epirubicin, esorubicin
  • the prevention or treatment of cancer may be induced by an antibody-drug conjugate (hereinafter referred to as ADC) mechanism of action.
  • ADC is a method of injecting a drug by conjugating it to an antibody, and delivers the drug into the cell by inducing internalization of the antibody in cells expressing an antigen that specifically binds to the antibody, thereby delivering the drug in a cell-specific manner. It corresponds to the principle treatment method.
  • chi-NPB40 a mouse-human chimeric antibody of the present invention, is conjugated with the previously mentioned ⁇ -HFc-CL-DMDM (AH-102DD, Moradec, USA) and auristatin.
  • the pharmaceutical composition of the present invention is formulated into a unit dosage form suitable for administration into the patient's body, preferably a preparation useful for the administration of protein drugs, according to a method commonly used in the pharmaceutical field, and is formulated as a preparation commonly used in the art.
  • Methods of administration include intravenous, intramuscular, intraarterial, intramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, intragastric, topical, sublingual, intravaginal, or rectal routes. It may be administered via parenteral administration routes, but is not limited to these.
  • Dosage forms suitable for this purpose include various preparations for oral administration such as tablets, pills, dragees, powders, capsules, syrups, solutions, gels, suspensions, emulsions, microemulsions, and injections such as ampoules for injection.
  • Preparations for parenteral administration such as injections and sprays such as hypospray, are preferred.
  • preparations for injection or infusion they may take the form of a suspension, solution, or emulsion, and may contain formulation agents such as suspending agents, preservatives, stabilizers, and/or dispersants.
  • the antibody molecules may be formulated in a dried form that can be reconstituted in an appropriate sterile liquid prior to use.
  • the antibody can be administered to mammals, including humans, at an amount of 0.01 to 50 mg/kg of body weight per day, preferably 0.1 to 20 mg/kg of body weight, once or divided into several times.
  • the actual dosage of the active ingredient must be determined in light of various related factors such as the disease to be prevented or treated, the severity of the disease, the route of administration, the patient's weight, age and gender, drug combination, reaction sensitivity, and resistance/response to treatment. It should be understood that the above dosages are to be determined and therefore do not limit the scope of the present invention in any way.
  • the present invention relates to hybridomas producing the above antibodies.
  • hybridoma refers to hybridoma cells or hybridoma cell lines, which are cells created by artificially fusing two different types of cells, using polyethylene glycol (PEG) to cause cell fusion. It refers to a cell or cell line in which two or more homogeneous cells or heterogeneous cells are fused using a substance or a certain type of virus, and the different functions of each cell are integrated into one cell.
  • the present invention provides a hybridoma producing the monoclonal antibody NPB40. Specifically, the hybridoma of the present invention is obtained by injecting 2 Lymphocytes were isolated and prepared by fusing them with myeloma cancer cells. Hybridomas that secrete monoclonal antibodies can be cultured in large quantities in vitro or in vivo.
  • the monoclonal antibody produced by the hybridoma may be used without purification, but to obtain the best results, it should be purified to high purity (e.g., 95% or more) according to a method well known in the technical field to which the present invention pertains. It is desirable. These purification techniques include, for example, gel electrophoresis, dialysis, salt precipitation, chromatography, etc., for separation from the culture medium or ascites fluid. In one example of the present invention, for mass production of monoclonal antibodies, hybridoma culture medium was purified using protein G-Sepharose column chromatography. However, any method for cultivating and purifying the hybridoma can be any method known in the art, and is not limited thereto.
  • the present invention relates to a composition for diagnosing cancer containing the above antibody.
  • the antibody can specifically bind to the B7-H3 protein of cancer cells.
  • the B7-H3 protein is overexpressed in various cancer cells, so if the B7-H3 antigen is confirmed in the target cell, it can be said that there is a high probability that the cell is a cancer cell. Therefore, when a composition containing the antibody is treated with a cancer cell expressing B7-H3, the antibody binds to the B7-H3 antigen of the cancer cell to form an antigen-antibody complex, so it does not bind to the cancer cell that binds to the antibody. Can be classified into cells.
  • Cancers that can be diagnosed using the cancer diagnostic composition are preferably cancers known to overexpress B7-H3, such as liver cancer, pancreatic cancer, osteosarcoma, skin cancer, lung cancer, human embryonic cancer, neuroblastoma, uterine cancer, and prostate cancer. , colon cancer, stomach cancer, biliary tract cancer, kidney cancer, bladder cancer, ovarian cancer, brain tumor, etc. However, it is not limited to this.
  • the present invention relates to a method of providing information for cancer diagnosis, including the step of treating a separated sample with the cancer diagnosis composition and detecting a protein to which the antibody is bound. If an antigen-antibody complex in which the antibody binds to a protein is detected, it can be determined that there is a high possibility of being diagnosed with cancer.
  • the sample may be body fluid, tissue, cell, whole blood, plasma, serum, etc., preferably serum, but is not limited thereto.
  • the formation of the antigen-antibody complex can be determined by tissue immunostaining, radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA), Western blotting, immunoprecipitation assay, immunodiffusion assay, Complement fixation assay, FACS, protein chip, etc. can be used.
  • tissue immunostaining radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA), Western blotting, immunoprecipitation assay, immunodiffusion assay, Complement fixation assay, FACS, protein chip, etc.
  • RIA radioimmunoassay
  • ELISA enzyme-linked immunosorbent assay
  • Western blotting Western blotting
  • immunoprecipitation assay immunodiffusion assay
  • Complement fixation assay FACS, protein chip, etc.
  • FACS protein chip, etc.
  • Example 1 Culture of human pluripotent stem cells and establishment of pure human pluripotent stem cells
  • Human quasi-pluripotent stem cells H9 were cultured according to a previously described method according to the protocol provided by Wicell Research Institute (Korean Patent No. 2235935).
  • mouse embryonic fibroblasts (MEFs) from pregnant CF1 mice were extracted and cultured, treated with ⁇ -irradiation or mitomycin (10 ⁇ g/ml), and then used as feeder cells.
  • 20% (v/v) KOSR (knockout serum replacement), 1% (v/v) NEAA, 0.1mM ⁇ -mercaptoethanol, 100U/ml penicillin-G, 100 ⁇ g/ml streptomycin, and 8 ⁇ 12ng/ml bFGF were added.
  • nonaive human pluripotent stem cell refers to stem cells that express markers of pure human pluripotent stem cells, unlike primed hPSCs, in the ground state, or intermediate, or formative. It refers to stem cells that express markers of stem cells in the same intermediate state.
  • Quasi-human pluripotent stem cells H9 (primed hPSC) were used to induce conversion into pure human pluripotent stem cells (naive hPSC) and cultured, and the specific protocol followed a previously known method (Korean Patent No. 2235935).
  • semi-human pluripotent stem cells H9 were treated with collagenase IV (1 mg/ml) for 5 minutes, cut to an appropriate size using a yellow tip, and then transferred onto the previously laid MEF.
  • 2iL/X/F/P medium a pure hPSC cell induction medium (1 ⁇ M PD0325901, 3 ⁇ M CHIR99021, hLIF (20 ng/ml), 4 ⁇ M XAV939, 10 ⁇ M Forskolin, 2 ⁇ M Purmorphamine, 20% (v/v) KOSR , DMEM/F12, 1% (v/v) L-glutamine, 1% (v/v) NEAA, 0.1mM ⁇ -mercaptoethanol, 1x penicillin-G, streptomycin) (Zimmerlin et al., 2016, Development 143:4368 ) cells are similar to pure human pluripotent stem cells in a formal/intermediate state (Taei et al., 2020,
  • Human embryonic cancer cells NT-2 and 2102EP were cultured in DMEM medium supplemented with 10% FBS, 1% (v/v) NEAA, 100 U/ml penicillin-G, and 100 ⁇ g/ml streptomycin.
  • Human peripheral blood mononuclear cells (PBMC) were isolated using the method suggested by Ficoll-Paque Plus method (GE Healthcare, Seoul, Korea).
  • CD7, CD77, and CD130 known as background pure human pluripotent stem cell markers
  • SSEA3, SSEA4, TRA-1-60, TRA-1-81, and CD24, excluding CD90 was observed to decrease in pure human pluripotent stem cells
  • pure human pluripotent stem cell markers It was confirmed that pure human pluripotent stem cells were induced, with only the known expression of CD7 and CD77 increased in H9-2iL/X/F/P and CD130 not increased ( Figures 1B and 1C).
  • RNA from primed H9 and naive H9 cells was extracted using RNAiso PLUS (TAKARA) reagent, and the expression of 31 naive hPSC-related genes was compared through RNA-seq transcriptome analysis (3BIGS, Gyeonggi-do).
  • TAKARA RNAiso PLUS
  • 15 naive hPSC-related genes DPPA3/5, KLF2/4/5 were expressed in naive hPSC cells induced by the 2iL/X/F/P method (Zimmerlin et al., 2016, Development 143:4368).
  • pluripotent stem cells were immunized into the footpads of mice, and the specific protocol followed a previously well-described method (Korean Patent No. 2235935).
  • 2 ⁇ 10 6 quasi-human pluripotent stem cell H9 cells were injected into the right footpad of 11 6-week-old female Balb/c mice at -3, 0, 3, 6, 13, 17, 20, and 21 days, and the same Pure human pluripotent stem cell H9 cells were injected into the left sole on days 0, 3, 6, 13, 17, 20, and 21, respectively.
  • the immunized mouse was dislocated at the cervical spine and then injected from the left hind foot.
  • the popliteal lymph node was extracted with fat and muscle tissue removed, and the popliteal lymph node was ground and single-celled using a frosted slide glass with a bumpy surface.
  • 3 ml of DMEM medium for 1 minute, 17 ml for 1 minute, and 20 ml for 1 minute were sequentially added, left to stand for 5 minutes, and then centrifuged to collect the cells.
  • 2 Only hybridomas producing antibodies were selected using .
  • the Sandwich Enzyme Linked Immunosorbent Assay (ELISA) method was used to select clones expressing antibodies. Add 100 ⁇ l of hybridoma culture medium to a plate coated with 2 ⁇ g/ml of anti-mouse IgG or IgM antibody, which is a capture antibody, and react at 37°C for 1 hour, then add anti-mouse IgG-HRP or anti- It was reacted with a 1/5,000 dilution of mouse IgM-HRP (horseradish peroxidase, Sigma-Aldrich) for another hour.
  • ELISA Sandwich Enzyme Linked Immunosorbent Assay
  • Clones producing antibodies were selected first.
  • the culture medium of each clone was first selected through FACS analysis to select hybridomas that bind to pure human pluripotent stem cells.
  • 33 types of hybridomas were selected that simultaneously bind to quasi-human pluripotent stem cells and pure human pluripotent stem cells. were additionally selected and subcloned to secure stable clones.
  • the double antibody NPB40 was classified as a monoclonal antibody with IgG1 and ⁇ chains that simultaneously binds to pure and sub-human pluripotent stem cells (Figure 3), and its recognition antigen and characteristics were analyzed in this patent.
  • Flow cytometry was performed to observe the degree of binding of the monoclonal antibody NPB40 to various cells.
  • Various cancer cells were removed with 0.05% Trypsin-EDTA (Welgene, Gyeongsan, Korea), neutralized with cell culture medium containing 10% fetal bovine serum (VWR), and then passed through a 40 ⁇ m strainer (SPL, Pocheon, Korea).
  • SPL 40 ⁇ m strainer
  • Each single cell was mixed with PBA (1% bovine serum albumin, 0.02% NaN 3 in PBS ) at about 1 After washing twice with PBA, the primary antibody and the corresponding anti-mouse IgG-FITC (Invitrogen) were further reacted at 4°C for 20 minutes.
  • PBA 1% bovine serum albumin, 0.02% NaN 3 in PBS
  • PI sodium iodide-negative cells were analyzed for antibody reaction using FACSCalibur and Cell Quest software (BD sciences).
  • the monoclonal antibody NPB40 did not bind to normal human peripheral blood mononuclear cells (PBMC), but strongly bound to four types of human liver cancer cells, Huh7, HepG2, SNU-387, and SNU-449 ( Figure 4A, Table 2) Additionally, three types of human pancreatic cancer cells, BxPC-3, PANC-1, and SNU-213, two types of human colon cancer cells, Colo-205 and HCT-116, and two types of human osteosarcoma cells, U2OS and Saos2.
  • PBMC peripheral blood mononuclear cells
  • DAPI 4,6-diamidino-2-phenylindole
  • 0.1% PBST PBS containing 0.1% Triton-X-100
  • the monoclonal antibody NPB40 can be seen to bind well to the surface of 2102Ep cells, a human embryonic cancer cell line, and Huh7 and SNU-449 cells, a liver cancer cell line ( Figure 4B).
  • Biotinylation of the surface of the human embryonic cancer cell line NT2/D1 was performed by slightly modifying the protocol presented by EZ-Link Sulfo-NHS-LC-Biotin (Thermo Scientific). Human embryonic cancer cells NT2/D1 cultured on a 100 mm cell culture plate were washed twice with PBS (pH 7.4), then 5 ml of cold PBS (pH 8.0) containing 0.5 mg of biotin dissolved in them was added, and reacted at 4°C for 30 minutes. .
  • biotin-labeled cells were lysed in lysis buffer (25mM Tris-HCl, pH 7.5, 250mM NaCl, 5mM EDTA, 1% Nonidet P-40, 2 ⁇ g/ml Aprotinin, 100 ⁇ g/ml PMSF). (phenylmethylsulphonyl fluoride), 5 ⁇ g/ml Leupeptin, 1mM NaF, 1mM Na 3 VO 4 ), reacted at 4°C for 30 minutes, centrifuged at 12,000 rpm for 40 minutes to remove nuclei, and stored at -70°C before use. It was stored in .
  • lysis buffer 25mM Tris-HCl, pH 7.5, 250mM NaCl, 5mM EDTA, 1% Nonidet P-40, 2 ⁇ g/ml Aprotinin, 100 ⁇ g/ml PMSF. (phenylmethylsulphonyl fluoride), 5 ⁇ g/ml Leupeptin, 1mM NaF, 1mM
  • Protein G agarose was added to the cell lysate of about 2.0 The Protein G agarose was recovered through centrifugation, and a sample washed five times in lysis buffer was used as a negative control.
  • 4 ⁇ g of antibody was added to the cell lysate from which proteins that non-specifically bind to Protein G agarose were removed, reacted at 4°C for 12 hours, and then added to 20 ⁇ l Protein G agarose. was added and reacted at 4°C for further 4 hours.
  • the immunoprecipitated immune mixture was washed five times in lysis buffer, 5X sample buffer was added to elute the antigen bound to the antibody, and boiled at 100°C for 10 minutes.
  • the negative control protein and the eluted protein were separated through 10% SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) and then subjected to Western blotting using a nitrocellulose membrane. This membrane was blocked using 5% skim milk powder for 1 hour at room temperature. After washing three times with 0.1% TBST (Tris-Buffered Saline, 0.1% Tween), streptavidin-HRP (SA-HRP, GE healthcare) was reacted at room temperature for 1 hour.
  • TBST Tris-Buffered Saline, 0.1% Tween
  • Polyacrylamide gels containing proteins immunoprecipitated by the monoclonal antibody NPB40 were stained with PageBlue Protein Staining Solution (Thermo Scientific) according to the supplier's protocol ( Fig. 5B ).
  • the stained protein band at the 110 kDa position presumed to be the protein immunoprecipitated by the monoclonal antibody NPB40, was cut from the gel and submitted for LC-MS/MS (Liquid Chromatography with Tandem Mass Spectrometry) analysis (ProteomeTech, Seoul, Korea).
  • the UniProt database https://www.uniprot.org/ was used to identify proteins from the analyzed mass spectrum.
  • Biotin-labeled cell eluate was prepared by the method described in Example 4-1 above, and this eluate was immunoprecipitated with monoclonal antibody NPB40 and rabbit anti-B7-H3 polyclonal antibody in the same manner as described above. Afterwards, the negative control protein without antibody (No Ab) and the eluted protein were separated through 10% SDS-PAGE and transferred to a nitrocellulose membrane for Western blotting. This membrane was blocked for 1 hour at room temperature using 5% skim milk powder. After washing three times with 0.1% TBST, streptavidin-HRP (SA-HRP) was added and reacted at room temperature for 1 hour.
  • SA-HRP streptavidin-HRP
  • the B7-H3 gene expression vector pCMV3-B7H3-His (Sino Biological) was purchased and His was expressed in human embryonic kidney cells HEK293T. Tagged recombinant B7-H3 was overexpressed, and the lysate of these cells was subjected to immunoprecipitation and Western immunoprecipitation using mouse anti-His monoclonal antibody (Invitrogen) and rabbit anti-B7-H3 polyclonal antibody ( ⁇ -B7-H3). Blots were performed.
  • This membrane was blocked for 1 hour at room temperature using 5% skim milk powder.
  • a known mouse anti-His monoclonal antibody or rabbit anti-B7-H3 polyclonal antibody ( ⁇ -B7-H3) was reacted at 4°C for 12 hours.
  • anti-mouse IgG-HRP (1:10,000; Millipore) or anti-rabbit IgG-HRP (1:15,000) was further reacted at room temperature for 1 hour. After washing three times with 0.1% TBST, it was confirmed with an ECL detection kit.
  • siRNA targeting the B7-H3 gene was purchased and transfected into liver cancer cell lines Huh7, HepG2, SNU-387, and SNU-449.
  • siRNAsiCon Genolution, Seoul, Korea
  • siRNA against B7-H3 siB7-H3
  • Lipofectamine RNAiMAX Invitrogen
  • the cells were removed with 0.05% Trypsin-EDTA (Welgene, Gyeongsan, Korea) and neutralized with cell culture medium containing 10% fetal bovine serum (VWR). After lysis with cell lysis buffer, 5X sample buffer was added and boiled at 100°C for 10 minutes. The siCon protein and siB7-H3 protein were separated through 10% SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) and then subjected to Western blotting using a nitrocellulose membrane.
  • Trypsin-EDTA Welgene, Gyeongsan, Korea
  • VWR fetal bovine serum
  • B7-H3 knockdown liver cancer cells Huh7 and HepG2 bind well to the cell culture plate.
  • B7-H3 knockdown liver cancer cell lines Huh7 and HepG2 were prepared , 3.0 It was placed in a well plate and cultured for 2-3 hours in an incubator at 37°C supplied with 5% CO 2 and 95% air. After washing twice with PBS (pH 7.4), the attached cells were fixed with 2% Paraformaldehyde at room temperature for 15 minutes and stained with 0.5% crystal violet (Sigma-aldrich) dissolved in 2% ethanol for 30 minutes at room temperature.
  • B7-H3 knockdown Huh7 cells prepared through the above experiment were removed with 0.05% Trypsin-EDTA (Welgene, Gyeongsan, Korea), neutralized with cell culture medium containing 10% fetal bovine serum (VWR), and the cells were seeded at 40 ⁇ m. Single cells were prepared by passing them through a strainer (SPL, Pocheon, Korea). 1.0 _ Analysis was performed using the Image J program, and the same experiment was repeated three times to statistically indicate the colony-forming ability of the cells ( Figure 9A).
  • B7-H3 deficiency reduced the number and size of Huh7 colonies by approximately 3.6-fold.
  • B7-H3 deficiency reduced the number and size of HepG2 colonies by approximately 1.4-fold (Figure 9B).
  • human hepatocytes HepG2 were treated with the monoclonal antibody NPB40 to determine whether cells expressing B7-H3 highly (B7-H3-high) or cells expressing B7-H3 at low levels (B7-H3) were used. After separation by sorting with -H3-low), clonogenic survival assay of each cell group was performed and compared.
  • NPB40 antibody was first biotinylated using the DSB-X biotin labeling kit (Thermo Fischer Scientific) according to the manufacturer's protocol.
  • B7-H3-high The group with high B7-H3 expression (B7-H3-high), which strongly bound to biotinylated NPB40, was separated using magnetic beads and then reacted with releasing buffer at room temperature for 10 minutes to remove the cells from the beads.
  • the group with low B7-H3 expression (B7-H3-low) did not bind to the magnetic beads, so the cell group was collected and centrifuged.
  • Each cell group was analyzed with PE conjugated SA (Phycoerythrin-conjugated streptavidin) and FACSCalibur, and it was confirmed that the B7-H3high cell group isolated by NPB40 had approximately twice as high B7-H3 expression as the low group ( Figure 10A, 10B).
  • Example 7 Analysis of B7-H3 cell membrane internalization after NPB40 treatment in liver cancer and pancreatic cancer cell lines
  • RNAiso plus reagent TaKaRa, Otsu, Japan
  • the amount of RNA was quantified by measuring A 260 of the obtained total RNA. Add 1 unit of DNase° per 1 ⁇ g of total RNA and react at 37°C for 30 minutes to remove remaining DNA, then add 1 ⁇ l of 50mM EDTA and react at 85°C for 5 minutes to inactivate DNase° and denature the total RNA. I ordered it.
  • a reverse transcription polymerase chain reaction mixture was prepared using total RNA and the Prime Script RT reagent Kit (TaKaRa), and cDNA was synthesized according to the supplier's protocol.
  • TaKaRa Prime Script RT reagent Kit
  • cDNA was synthesized according to the supplier's protocol.
  • TGG TGC AGC ATC-3' (SEQ ID NO: 15) oligonucleotide and 5'MK 5'-cgg aag ctt GAY ATT GTG MTS ACM CAR WCT MCA-3' (SEQ ID NO: 16), a primer corresponding to the N terminus of the kappa chain variable region. ) and were used, respectively.
  • EcoRI and SalI restriction enzyme sites were assigned to the 5'-primer end for the heavy chain and SalI restriction enzyme sites to the 3'-primer end.
  • 5'- HindIII at the end of the primer and SalI restriction enzyme site at the end of the 3'-primer were mixed with each heavy or light chain polymerase reaction primer and 1 unit of i-pfu DNA Polymerase (iNtRON Biotechnology, Seoul, Korea), first at 95°C. It was reacted once for 5 minutes and then 30 times for 1 minute at 95°C, 1 minute at 35°C, and 1 minute at 72°C.
  • the DNA fragment corresponding to the heavy chain variable region was estimated to be about 400bp in length, and the light chain Amplified DNA was obtained at a position corresponding to approximately 390 bp, which is the estimated length of the DNA fragment corresponding to the variable region ( Figures 12A and 12B).
  • the polymerase chain reaction product was first treated with EcoRI and SalI for the heavy chain and HindIII and SalI for the light chain, and then spread on a 1.0% (w/v) agarose gel using FavorPrep. DNA corresponding to approximately 400bp and 390bp was isolated using the GEL PCR Purification Kit (Favorgen, Pingtung, Taiwan).
  • pBluescript KS+ which was used as a vector for cloning the heavy chain gene, was treated with EcoRI and SalI
  • pBluescript KS+ which was used as a cloning vector for the light chain gene, was treated with HindIII and SalI and then isolated using the FavorPrep GEL PCR Purification Kit. These two DNAs were linked with T4 DNA ligase (New England Biolab, Massachusetts, USA) and transformed into E. coli DH5 ⁇ using the CaCl 2 method.
  • the above-mentioned clones were cultured overnight in 3 ml of LB medium containing 100 ⁇ g/ml ampicillin and then cultured using the DNA-Spin plasmid mini prep kit (Intron, Korea) according to the supplier's protocol. Plasmid DNA was isolated and E. coli clones with a DNA insert of about 400 bp for the heavy chain ( Figure 12C) and E. coli clones with a DNA insert of about 390 bp for the light chain were selected ( Figure 12D). The base sequence of each DNA insert was confirmed through Nucleotide sequencing (Bionics, Seoul, Korea).
  • the antigen recognition decision sites according to the antibody structure were organized through Kabat numbering.
  • the heavy chain corresponded to subgroup II and the light chain corresponded to subgroup V.
  • the antigen binding sites, CDR1, 2, and 3, for each sequence are indicated in dark color ( Figures 13 and 14).
  • mouse-derived monoclonal antibodies When mouse-derived monoclonal antibodies are used in humans, there is a possibility of causing immune side effects. To overcome this, mouse-derived monoclonal antibodies can be produced as mouse-human chimeric antibodies with fewer immune side effects and used as therapeutic antibodies.
  • To develop a mouse-human chimeric antibody (Chi-NB40) of the mouse-derived monoclonal antibody NPB40 the NPB40 antibody gene and the constant region of the human antibody were combined, and this was cloned into an expression vector to produce the Chi-NPB40 antibody. manufactured.
  • DNA corresponding to about 400bp and 390bp of the heavy and light chain genes of NPB40 obtained from mice was isolated through PCR (polymerase chain reaction) using a Gel extraction kit (FAVORGEN, Taiwan).
  • h2B7-H.C-SLIC-5 ⁇ (5 ⁇ -GCC AGT GTG CTG GAA TTC ACT) was prepared using the pdCMV-dhfr vector (Korean Patent No. 2120223) as a template.
  • PCR was performed using primers CTA ACC-3 ⁇ , SEQ ID NO. 17) and NPB40-Chi-HC-SP-3 ⁇ (5 ⁇ -CTG CAC CTG GGA GTG GAC ACC TGT AGT TA-3 ⁇ , SEQ ID NO. 18) primer. carried out.
  • NPB40-Chi-HC-SP-5 ⁇ (5 ⁇ -GTC CAC TCC CAG GTG CAG CTG CAG-3 ⁇ , SEQ ID NO: 19) primer was used using the DNA of the heavy chain variable region as a template. PCR was performed using primers and NPB40-chi-HC-3 ⁇ (5 ⁇ -CCT TGG TGG AGG CTG AGG AGA CTG TGA G-3 ⁇ , SEQ ID NO: 20).
  • the pdCMV-dhfr vector was used as a template, h2B7-L.C-SLIC-5 ⁇ (5 ⁇ -ATA GGG AGA CCC AAG CTT CGG CAC GAG CAG A-3 ⁇ ) , SEQ ID NO: 22) primer and NPB40-Chi-LC-SP-3 ⁇ (5 ⁇ -CAT CAC AAT ATC TCC TTC AAC ACC AGA CA-3 ⁇ , SEQ ID NO: 23) primer pair PCR was performed.
  • NPB40-Chi-LC-SP-5 ⁇ (5 ⁇ -GTT GAA GGA GAT ATT GTG ATG ACA CAG TC-3 ⁇ , SEQ ID NO: 24 )
  • PCR was performed using primers Chi63-B6-LC-SLIC-3 ⁇ (5 ⁇ -TGG TGC AGC CAC CGT ACG TTT GAT TTC CA-3 ⁇ , SEQ ID NO: 25).
  • the DNA prepared by the above PCR was mixed as a template, and primers h2B7-L.C-SLIC-5 ⁇ and Chi63-B6-LC-SLIC-3 ⁇ were used as a template. Recombinant PCR was performed using . As a result of running the PCR result on a 1% agarose gel, DNA corresponding to about 430 bp, in which the light chain variable region and light chain signal peptide sequence were linked, was confirmed (Figure 15C).
  • coli clones with a light chain gene insert of about 430 bp were selected.
  • DNA sequencing of antibody genes the above-mentioned clones were cultured overnight in 5 ml of LB medium containing 50 ⁇ g/ml ampicillin, and then plasmid DNA was isolated using the DNA-spinTM Plasmid DNA purification kit (INTRON, Korea). and confirmed the base sequence of each DNA insert (Bionics, Korea). It was confirmed that the DNA base sequences of the heavy and light chain variable regions of pdCMV-dhfr-chi-NPB40 were identical to the gene sequences of the existing NPB40 variable regions, and were correctly linked to the signal peptide sequence and the human heavy and light chain constant region genes ( Figure 16, Fig. 17).
  • the chimeric antibody linked to the NPB40 mouse variable region and the human constant region was named Chi-NPB40.
  • Chi-NPB40 The chimeric antibody linked to the NPB40 mouse variable region and the human constant region was named Chi-NPB40.
  • DMEM Biowest, France
  • 50 ⁇ g of pdCMV-dhfr-Chi-NPB40 expression vector and 75 ⁇ l of Polyethyleneimine (1 mg/ml) were mixed, mixed with 500 ⁇ l of transfection optimization medium, and sprinkled on the cell culture medium of the cultured cells. After culturing for 24 hours, the cell culture medium was collected and the antibodies were purified.
  • the collected cell culture medium was placed in a column filled with Protein G agarose beads (Amicogen, Korea) to allow the antibody to bind to the Protein G agarose beads. After washing the beads with PBS (pH 8.0), the beads were washed with 0.1M glycine. Antibodies were eluted from Protein G agarose beads by adding 10ml (pH2.8) and 1M Tris-HCl (pH9.0). Afterwards, the purity of the purified Chi-NPB40 chimeric antibody was confirmed through SDS-PAGE and Coomassie blue staining (Figure 18A).
  • Flow cytometry was performed to observe cell membrane internalization of the chimeric antibody Chi-NPB40 in liver cancer cell lines Huh7 and SNU449.
  • Cells were removed with 0.05% Trypsin-EDTA (Welgene, Gyeongsan, Korea), neutralized with cell culture medium containing 10% fetal bovine serum (FBS; VWR, PA, USA), and then passed through a 40 ⁇ m strainer to form single cells. It was prepared with Each single cell, approximately 1x10 5 per ml, was mixed with PBA (1% bovine serum albumin, 0.02% NaN 3 in PBS) and then reacted with the chimeric antibody Chi-NPB40 at 4°C for 30 minutes.
  • PBA 1% bovine serum albumin, 0.02% NaN 3 in PBS
  • the cells were washed with PBA to remove antibodies that did not bind to the cells, and the cells were suspended in 100 ⁇ l of culture medium and incubated at 37°C for 30 minutes so that the bound antibodies could be internalized into the cell membrane.
  • the primary antibody and the corresponding anti-human IgG-FITC Invitrogen were further reacted at 4°C for 20 minutes.
  • PI propidium iodide-negative cells were analyzed for antibody reaction using FACSCalibur and Cell Quest software (BD sciences).
  • the fluorescence intensity of the chimeric antibody decreased in human liver cancer cells Huh7 and SNU-449 when additional reaction was performed at 37°C ( Figure 19).
  • the chimeric antibody Chi-NPB40 which binds to B7-H3 on the surface of liver cancer cells at 4°C, can induce the internalization of B7-H3 into the cell when the cell is active at 37°C, which is similar to the mouse monoclonal antibody NPB40 and It shows that it performs the same function.
  • the NPB40 antibody with a mouse IgG1 constant region and the chimeric Chi-NPB40 antibody with a human IgG1 constant region bind to the surface of liver cancer cells and are internalized by the cells at a temperature of 37°C. Based on these characteristics, it was expected that when an anticancer drug was conjugated to the Chi-NPB40 antibody, the Chi-NPB40 antibody would deliver the drug inside the cancer cells and exhibit cytotoxicity.
  • drug-conjugated human IgG Fc region-specific secondary antibodies [anti-human IgG (Fc Specific) antibody-drug conjugates (ADCs)] were used.
  • ⁇ -HFc-CL-DMDM (AH-102DD, Moradec, USA) antibody conjugated with duocamycin, a DNA alkylation agent, and ⁇ -HFc-CL-MMAF (AH-102AF, conjugated with monomethyl auristatin, a tubulin polymerization inhibitor). Moradec) antibody was used.
  • 5,000 Huh7 cells were seeded into each well of a 96 well plate (SPL, Korea) using RPMI-1640 (Biowest, France) medium containing 10% FBS and cultured for 24 hours.
  • the existing culture medium was removed, and then the cells were treated with the chimeric Chi-NPB40 antibody diluted in the culture medium at various concentrations or the control mouse-derived NPB40 antibody at concentrations of 0, 0.01, 0.1, 1, 10, and 100 nM. did.
  • the medium containing the antibody was replaced with medium in which the secondary antibody was diluted to a concentration of 12.7 nM.
  • Cell Counting Kit-8 was used to determine the survival rate of the cells; CCK-8 (K1018, APExBIO, USA) was used.
  • liver cancer cell survival rate increased to 18% at a Chi-NPB40 antibody concentration of 100 nM and 38% at a Chi-NPB40 antibody concentration of 250 nM. It was confirmed that this decreased ( Figures 22A, 22B).
  • ADCC antibody-dependent cellular cytotoxicity
  • mice administered NPB40 showed lower cancer growth compared to the control group.
  • NPB40 reduced cancer growth in vivo. This confirms that NPB40 can be used for the prevention and treatment of cancer in vivo.

Abstract

The present invention relates to: monoclonal antibody NPB40 binding specifically to B7-H3 on the surface of human naive pluripotent stem cells, human primed pluripotent stem cells, and human cancer cells; a hybridoma producing same; a pharmaceutical composition for preventing/treating cancer by using same; a composition for diagnosis of cancer by using same; and a method for providing information for cancer diagnosis. According to the present invention, a composition targeting B7-H3 and being usesable for prevention, treatment, and diagnosis of cancer can be provided.

Description

항 B7-H3 단일클론항체 및 이의 용도Anti-B7-H3 monoclonal antibody and uses thereof
본 발명은 인간 B7-H3에 특이적으로 결합하는 단일클론항체에 대한 것으로, 구체적으로는 인간 만능줄기세포와 간암을 포함하는 다양한 암세포 표면에 발현하는 B7-H3를 인식하는 단일클론항체와 상기 단일클론항체를 생산하는 하이브리도마, 상기 단일클론항체를 포함하는 진단키트 및 상기 단일클론항체를 포함하는 항암 치료용 조성물에 관한 것이다.The present invention relates to a monoclonal antibody that specifically binds to human B7-H3, and specifically, to a monoclonal antibody that recognizes B7-H3 expressed on the surface of various cancer cells, including human pluripotent stem cells and liver cancer, and to the monoclonal antibody that specifically binds to human B7-H3. It relates to a hybridoma producing a clonal antibody, a diagnostic kit containing the monoclonal antibody, and a composition for anticancer treatment containing the monoclonal antibody.
인간만능줄기세포(human pluripotent stem cells; hPSC)는 무제한 증식과 몸을 구성하는 모든 세포로 분화할 수 있는 능력을 가진 세포이다. 첫 번째 인간 만능줄기세포인 인간 배아줄기세포(human embryonic stem cell; hESC)는 1998년 미국 James Thomson 박사팀에 의해 인간 냉동 배아에서 확립되었고, 2007년에는 일본 Shinya Yamanaka 박사팀에 의해서 유전자 도입에 의해 인간 배아줄기세포와 유사한 인간 유도만능줄기세포(human Induced Pluripotent Stem Cell; hiPSC)가 확립되었다. 2013년에는 미국 오레곤 대학 Shoukhrat Mitalipov 박사팀에 의해 난자의 핵 치환을 통한 인간 복제배아줄기세포가 만들어져서 현재 3종의 hPSC가 존재한다. 한편 Cambridge 대학의 Austin Smith 교수는 포유류의 만능줄기세포를 다시 두 세 가지 다른 상태로 분류하고 수정란이 자궁에 착상하기 전과 후로 나뉘어서 착상 전(pre-implantation epiblast) 또는 착상 후 상배엽(post-implantation epiblast)에서 각각 다른 만능줄기세포를 분리할 수 있으며, 착상 전 만능줄기세포를 순수(naive) 만능성, 그리고 착상 후를 준(primed) 만능성이라고 명명하였다. 순수 상태와 준 상태 만능줄기세포는 세포모양, 성장속도, 분화능력, 메틸화 정도, 생식선 전송(germline transmission)능력 등에서 차이가 많은데, 준 상태는 크게 편편한 상태로 자라며 성장속도가 느리나, 순수 상태는 작은 돔(dome) 모양으로 자라며 트립신으로 단일세포로 떼어도 잘 자라고, 성장속도가 빠르며, 발생단계에서 아직 편중되지 않은 상태로 더 많은 세포로 분화능력이 기대되고, 메틸화 정도가 더 낮고, 생식선 전송능력이 더 탁월한 발생 초기 만능줄기세포로 알려졌으며, 준 인간만능줄기세포에서 다양한 배양 조건에 따라 순수 인간만능줄기세포로 유도할 수 있다.Human pluripotent stem cells (hPSC) are cells that have the ability to proliferate indefinitely and differentiate into all cells that make up the body. The first human pluripotent stem cells, human embryonic stem cells (hESC), were established from human frozen embryos by Dr. James Thomson's team in the United States in 1998, and by gene introduction in 2007 by Dr. Shinya Yamanaka's team in Japan. Human Induced Pluripotent Stem Cell (hiPSC), similar to human embryonic stem cells, has been established. In 2013, human embryonic stem cells were created through egg nuclear transfer by Dr. Shoukhrat Mitalipov's team at the University of Oregon, and currently, three types of hPSC exist. Meanwhile, Professor Austin Smith of the University of Cambridge classified mammalian pluripotent stem cells into two or three different states, dividing them into pre-implantation epiblast or post-implantation epiblast before and after the fertilized egg is implanted in the uterus. ), different pluripotent stem cells can be separated, and pluripotent stem cells before implantation are called naive pluripotent, and those after implantation are called primed pluripotent. Pure state and quasi-state pluripotent stem cells have many differences in cell shape, growth rate, differentiation ability, degree of methylation, germline transmission ability, etc. The quasi-state grows in a largely flat state and has a slow growth rate, while the pure state It grows in a small dome shape, grows well even when separated into single cells with trypsin, has a fast growth rate, is not yet concentrated in the developmental stage, is expected to have the ability to differentiate into more cells, has a lower degree of methylation, and has germline transmission. It is known as an early pluripotent stem cell with superior capabilities, and can be induced from quasi-human pluripotent stem cells to pure human pluripotent stem cells under various culture conditions.
암이 줄기세포에서 발생할 수 있다는 첫 번째 아이디어는 19세기 초이며 Durante와 Conheim에 의해 암의 "Embryonal Rest hypothesis"으로 공식적으로 제시되고, 배아 조직의 잔해가 성인 장기에 남아 있다가 암으로 발생한다고 제안하였다. 배아 발생 동안에 활발히 발현하다 성인 조직에는 최소로 존재하고 암 발생시 다시 발현되는 분자들을 oncofetal antigen이라고 부르며, Oncofetal antigen들은 현재 암의 진단이나 치료에 쓰이는 중요한 표적분자로, CA-125, CEA, AFP, cancer/testes antigen, POA등 실제 임상에서 진단 마커로 사용되고 있으며, 그 외에도 Cripto-1, Glypican-3, 5T4, M2A 등이 oncofetal antigen으로 알려졌으며, 이들을 표적하는 항체는 암 치료용 항체로 개발되고 있다. 그러나 인간 배아에 대한 윤리적 문제로 oncofetal antigen 연구가 쉽지 않았으며, 1998년에 이르러서 인간배아줄기세포가 확립되고 배양이 가능해지면서 5T4, Cripto, EpCAM등의 인간배아줄기세포 표면 oncofetal antigen이 발굴되고 있으며 이들 분자들은 암 치료용 항체의 표적 분자로 응용되고 있다. 실제로 최근 연구에서 인간배아줄기세포(hESC)나 인간유도만능줄기세포(hiPSC)등 hPSC를 면역주사한 생쥐에서 colon cancer, lung cancer, breast cancer, mesothelioma, melanoma에 대한 억제력을 확인하여 hPSC에 존재하는 oncofetal antigen을 인식하는 단일클론항체는 실제로 같은 항원을 발현하는 암세포 발생을 저지할 수 있다는 것이 증명되어 hPSC에 대한 oncofetal antigen 연구가 암줄기세포나 암세포 특이적인 분자를 발굴할 수 있음을 제시하고 있다.The first idea that cancer could arise from stem cells dates from the early 19th century and was formally presented by Durante and Conheim as the "Embryonal Rest hypothesis" of cancer, suggesting that remnants of embryonic tissue remain in adult organs and then develop into cancer. did. Molecules that are actively expressed during embryonic development, minimally present in adult tissues, and re-expressed during cancer development are called oncofetal antigens. Oncofetal antigens are important target molecules currently used in the diagnosis or treatment of cancer, such as CA-125, CEA, AFP, cancer /testes antigen, POA, etc. are used as diagnostic markers in actual clinical practice, and in addition, Cripto-1, Glypican-3, 5T4, and M2A are known as oncofetal antigens, and antibodies targeting these are being developed as antibodies for cancer treatment. However, research on oncofetal antigens was not easy due to ethical issues regarding human embryos, and as human embryonic stem cells were established and cultured in 1998, oncofetal antigens on the surface of human embryonic stem cells such as 5T4, Cripto, and EpCAM were discovered, and these The molecules are being applied as target molecules for antibodies for cancer treatment. In fact, a recent study confirmed the inhibitory effect on colon cancer, lung cancer, breast cancer, mesothelioma, and melanoma in mice immunized with hPSC, such as human embryonic stem cells (hESC) or human induced pluripotent stem cells (hiPSC). It has been proven that monoclonal antibodies that recognize oncofetal antigens can actually prevent the development of cancer cells expressing the same antigen, suggesting that oncofetal antigen research on hPSCs can discover cancer stem cells or cancer cell-specific molecules.
B7-H3 (CD276, PD-L3)은 B7 및 CD28 패밀리의 면역 체크포인트 구성원이며 인간의 면역글로불린 가변 도메인과 면역글로불린 불변 도메인의 두 개의 동일한 쌍으로 구성된다. B7-H3은 인간 수지상 세포의 cDNA 라이브러리 데이터 베이스 검색에 의해 확인되었다. B7-H3가 T 세포 면역 자극 분자로 알려져 있지만, 축적된 증거에 따르면 B7-H3도 면역 억제 기능을 가지고 있어 T 세포에서 방출되는 인터페론과 자연 살해자의 세포 독성 활성을 감소시킨다. B7-H3의 전사체는 대부분의 정상 조직 및 고형 종양에서 같이 발현되지만, 단백질은 폐, 간, 백혈병, 결장, 직장, 위, 유방, 신장, 위, 신경교종, 난소, 췌장등 종양에서만 높게 발현된다. B7-H3 발현은 또한 종양 관련 혈관계 및 기질에서도 발견된다. B7-H3의 과발현은 유방암, 난소암, 폐암, 간암 및 위암을 포함한 많은 암에서 진행성 종양과 더 짧은 전체 생존과 밀접한 상관관계가 있다. 실제로 TCGA database에서 Kaplan-Meier 생존 분석 결과 간암, 유방암, 난소암, 폐암, 위암에서 B7-H3 과발현 시 생존율이 현저히 감소하며, 암 초기에는 발현하지 않더라도 말기 암에 이르면 과발현하는 특징으로 말기 암 치료 표적으로 가치가 높으며, 최근에는 squamous cell carcinoma과 pancreatic cancer stem cell 암줄기세포 마커로 제시되어 있다. 또한 많은 연구들은 B7-H3가 면역회피 역할을 넘어 항-세포사멸, 증식 촉진, 혈관 신생 및 종양 미세 환경의 매개를 통해 종양 형성을 촉진한다고 제안한다. 따라서 B7-H3는 다양한 암종에서 면역치료 요법의 매력적인 표적으로 간주된다. 실제로, TNBC, 난소암, 췌장암, NSCLC, 교모세포종, 흑색종 등을 포함한 많은 진행성 암에서 B7-H3를 표적으로 하는 항체 기반 치료제 및 CAR-T 세포치료제가 개발되고 있다. 그러나 B7-H3에 대한 수용체나 리간드가 아직 규명되지 않았기 때문에 암 면역 회피 기전에서 B7-H3에 의한 암 진행에 대한 명확한 기전적 그림을 그리는 것은 여전히 어려운 상태이다.B7-H3 (CD276, PD-L3) is an immune checkpoint member of the B7 and CD28 families and consists of two identical pairs of human immunoglobulin variable domains and immunoglobulin constant domains. B7-H3 was identified by a database search of cDNA libraries of human dendritic cells. Although B7-H3 is known to be a T cell immunostimulatory molecule, accumulating evidence shows that B7-H3 also has an immunosuppressive function, reducing the cytotoxic activity of interferons and natural killers released from T cells. The transcript of B7-H3 is co-expressed in most normal tissues and solid tumors, but the protein is highly expressed only in tumors such as lung, liver, leukemia, colon, rectum, stomach, breast, kidney, stomach, glioma, ovary, and pancreas. do. B7-H3 expression is also found in tumor-related vasculature and stroma. Overexpression of B7-H3 is closely correlated with advanced tumors and shorter overall survival in many cancers, including breast, ovarian, lung, liver, and gastric cancer. In fact, as a result of Kaplan-Meier survival analysis in the TCGA database, the survival rate is significantly reduced when B7-H3 is overexpressed in liver cancer, breast cancer, ovarian cancer, lung cancer, and stomach cancer. Even though it is not expressed in the early stage of cancer, it is overexpressed in the late stage of cancer, making it a target for late-stage cancer treatment. It has high value, and has recently been suggested as a cancer stem cell marker for squamous cell carcinoma and pancreatic cancer stem cell. Additionally, many studies suggest that beyond its role in immune evasion, B7-H3 promotes tumorigenesis through mediation of anti-apoptosis, pro-proliferation, angiogenesis, and tumor microenvironment. Therefore, B7-H3 is considered an attractive target for immunotherapy therapy in various carcinomas. In fact, antibody-based treatments and CAR-T cell therapies targeting B7-H3 are being developed for many advanced cancers, including TNBC, ovarian cancer, pancreatic cancer, NSCLC, glioblastoma, and melanoma. However, because the receptor or ligand for B7-H3 has not yet been identified, it is still difficult to draw a clear mechanistic picture of cancer progression caused by B7-H3 in the cancer immune evasion mechanism.
우리는 순수 인간 만능줄기세포를 생쥐에 주사하여 제조한 단일클론항체군중에서 순수인간만능줄기세포와 준 인간 만능줄기세포에 동시에 결합하는 항체 NPB40를 제조하였다. NPB40항원은 정상세포인 말초혈액단핵구나 간세포에는 거의 발현하지 않지만 간암세포를 비롯하여 배아암, 췌장암, 대장암, 골육종, 흑색종, 폐암, 신경모세포종 세포에서 높게 발현하였다. NPB40항원을 분석한 결과 B7-H3였으며, B7-H3를 인식하는 NPB40항체는 인간만능줄기세포와 암세포에서 동시에 발현하는 Oncofetal epitope를 인식하는 새로운 항체로 암치료용 항체로 개발할 수 있을 것이라고 가정하였다. 실제로 인간 간암세포를 이식한 간암 생쥐모델에서 NPB40의 주사는 효과적인 항암효과를 보여 주였다. 따라서 NPB40은 간암을 포함하는 암치료용 항체로 개발될 수 있는 항체임을 확인하여 이 발명을 완성하였다.We prepared an antibody, NPB40, that simultaneously binds to pure human pluripotent stem cells and quasi-human pluripotent stem cells from a group of monoclonal antibodies prepared by injecting pure human pluripotent stem cells into mice. The NPB40 antigen was rarely expressed in normal cells, such as peripheral blood monocytes or hepatocytes, but was highly expressed in liver cancer cells, embryonic cancer, pancreatic cancer, colon cancer, osteosarcoma, melanoma, lung cancer, and neuroblastoma cells. Analysis of the NPB40 antigen revealed that it was B7-H3, and it was assumed that the NPB40 antibody that recognizes B7-H3 could be developed as a cancer treatment antibody as a new antibody that recognizes the oncofetal epitope co-expressed in human pluripotent stem cells and cancer cells. In fact, injection of NPB40 showed an effective anticancer effect in a liver cancer mouse model transplanted with human liver cancer cells. Therefore, this invention was completed by confirming that NPB40 is an antibody that can be developed as an antibody for treating cancer, including liver cancer.
본 발명은 인간 순수 만능줄기세포, 인간 준 만능줄기세포 및 암세포 표면에 발현하는 B7-H3 단백질을 인식하는 단일클론항체를 제공하는 것을 목적으로 한다.The purpose of the present invention is to provide a monoclonal antibody that recognizes the B7-H3 protein expressed on the surface of human pure pluripotent stem cells, human quasi-pluripotent stem cells, and cancer cells.
본 발명은 상기 단일클론항체의 기능을 활용한 암의 예방 또는 치료용 약학 조성물, 암 진단용 조성물 및 암 진단을 위한 정보 제공 방법을 제공하는 것을 목적으로 한다.The purpose of the present invention is to provide a pharmaceutical composition for preventing or treating cancer, a composition for diagnosing cancer, and a method for providing information for diagnosing cancer using the function of the monoclonal antibody.
본 발명은 상기 단일클론항체를 생산하는 하이브리도마를 제공하는 것을 목적으로 한다. The purpose of the present invention is to provide a hybridoma that produces the monoclonal antibody.
1. 서열번호 1을 포함하는 중쇄 상보성 결정영역 1(heavy chain complementary determine region 1;HCDR1), 서열번호 2를 포함하는 HCDR2, 및 서열번호 3을 포함하는 HCDR3를 포함하는 중쇄; 및 서열번호 4를 포함하는 경쇄 상보성 결정영역 1(light chain complementary determine region 1; LCDR1), 서열번호 5를 포함하는 LCDR2, 및 서열번호 6을 포함하는 LCDR3을 포함하는 경쇄를 포함하는 항체.1. A heavy chain comprising heavy chain complementary determine region 1 (HCDR1) containing SEQ ID NO: 1, HCDR2 containing SEQ ID NO: 2, and HCDR3 containing SEQ ID NO: 3; And an antibody comprising a light chain comprising light chain complementary determine region 1 (LCDR1) comprising SEQ ID NO: 4, LCDR2 comprising SEQ ID NO: 5, and LCDR3 comprising SEQ ID NO: 6.
2. 위 1에 있어서, 서열번호 7을 포함하는 중쇄(heavy chain) 및 서열번호 8을 포함하는 경쇄(light chain)를 포함하는 항체.2. The antibody according to 1 above, comprising a heavy chain containing SEQ ID NO: 7 and a light chain containing SEQ ID NO: 8.
3. 위 1에 있어서, 상기 항체는 순수인간만능줄기세포(human naive pluripotent stem cells), 준인간만능줄기세포(human prime pluripotent stem cells) 및 인간 암세포 표면의 B7-H3에 결합하는 항체.3. In 1 above, the antibody is an antibody that binds to B7-H3 on the surface of human naive pluripotent stem cells, human prime pluripotent stem cells, and human cancer cells.
4. 위 1 내지 3 중 어느 하나의 항체를 포함하는 암의 예방 또는 치료용 약학 조성물.4. A pharmaceutical composition for preventing or treating cancer containing the antibody of any one of 1 to 3 above.
5. 위 4에 있어서, 상기 항체에 접합된 항암 물질을 더 포함하는 암의 예방 또는 치료용 약학 조성물.5. The pharmaceutical composition for preventing or treating cancer according to item 4 above, further comprising an anti-cancer substance conjugated to the antibody.
6. 위 5에 있어서, 상기 항암 물질은 상기 항체에 결합하는 2차 항체를 거쳐 접합된 것인 암의 예방 또는 치료용 약학 조성물.6. The pharmaceutical composition for preventing or treating cancer according to item 5 above, wherein the anti-cancer substance is conjugated via a secondary antibody that binds to the antibody.
7. 위 4에 있어서, NK-cell(natural killer cell), 대식세포(macrophage), 및 호중구(neutrophill)로 이루어진 군에서 적어도 하나를 더 포함하는 암의 예방 또는 치료용 약학 조성물.7. The pharmaceutical composition for preventing or treating cancer according to item 4 above, further comprising at least one from the group consisting of NK-cell (natural killer cell), macrophage, and neutrophil.
8. 위 4에 있어서, 상기 암은 B7-H3 단백질을 세포막에 발현하는 암세포 유래 암인 암의 예방 또는 치료용 약학 조성물.8. The pharmaceutical composition for preventing or treating cancer according to item 4 above, wherein the cancer is derived from cancer cells expressing B7-H3 protein on the cell membrane.
9. 위 4에 있어서, 상기 암은 간암, 췌장암, 골육종, 피부암, 폐암, 신경모세포종, 자궁암, 전립선암 및 대장암으로 이루어진 군에서 선택되는 암의 예방 또는 치료용 약학 조성물.9. The pharmaceutical composition for preventing or treating cancer according to item 4 above, wherein the cancer is selected from the group consisting of liver cancer, pancreatic cancer, osteosarcoma, skin cancer, lung cancer, neuroblastoma, uterine cancer, prostate cancer, and colon cancer.
10. 상기 1의 항체를 생산하는 하이브리도마.10. Hybridoma producing the antibody of 1 above.
11. 위 1 내지 3 중 어느 한 항의 항체를 포함하는 암 진단용 조성물.11. A composition for diagnosing cancer containing the antibody of any one of items 1 to 3 above.
12. 위 11에 있어서, 상기 암은 B7-H3 단백질을 세포막에 발현하는 암세포 유래 암인 암 진단용 조성물.12. The composition for diagnosing cancer according to item 11 above, wherein the cancer is a cancer derived from cancer cells expressing B7-H3 protein on the cell membrane.
13. 위 11에 있어서, 상기 암은 간암, 췌장암, 골육종, 피부암, 폐암, 신경모세포종, 자궁암, 전립선암 및 대장암으로 이루어진 군에서 선택되는 암 진단용 조성물.13. The composition for diagnosing cancer according to item 11 above, wherein the cancer is selected from the group consisting of liver cancer, pancreatic cancer, osteosarcoma, skin cancer, lung cancer, neuroblastoma, uterine cancer, prostate cancer, and colon cancer.
14. 분리된 시료에 위 11의 조성물을 처리하여, 상기 항체가 결합된 단백질을 검출하는 단계를 포함하는 암 진단을 위한 정보 제공 방법.14. A method of providing information for cancer diagnosis, comprising the step of treating a separated sample with the composition of 11 above and detecting a protein to which the antibody is bound.
15. 위 14에 있어서, 상기 시료는 혈청인 암 진단을 위한 정보 제공 방법.15. The method of providing information for cancer diagnosis in item 14 above, wherein the sample is serum.
16. 위 14에 있어서, 상기 암은 B7-H3 단백질을 세포막에 발현하는 암세포 유래 암인 암 진단을 위한 정보 제공 방법.16. The method of providing information for cancer diagnosis according to item 14 above, wherein the cancer is a cancer derived from cancer cells expressing B7-H3 protein on the cell membrane.
17. 위 14에 있어서, 상기 암은 간암, 췌장암, 골육종, 피부암, 폐암, 신경모세포종, 자궁암, 전립선암 및 대장암으로 이루어진 군에서 선택되는 암 진단을 위한 정보 제공 방법.17. The method of providing information for cancer diagnosis according to 14 above, wherein the cancer is selected from the group consisting of liver cancer, pancreatic cancer, osteosarcoma, skin cancer, lung cancer, neuroblastoma, uterine cancer, prostate cancer, and colon cancer.
본 발명의 단일클론항체는 인간 순수 만능줄기세포, 인간 준 만능줄기세포 및 암세포 표면에 발현하는 B7-H3 단백질을 인식할 수 있다. 이는 바람직하게 암 암의 예방 또는 치료용 약학 조성물, 암 진단용 조성물 등에 사용할 수 있다.The monoclonal antibody of the present invention can recognize B7-H3 protein expressed on the surface of human pure pluripotent stem cells, human quasi-pluripotent stem cells, and cancer cells. It can be preferably used in pharmaceutical compositions for preventing or treating cancer, compositions for diagnosing cancer, etc.
도 1A는 인간만능줄기세포(hPSC)인 H9세포를 준 인간만능줄기세포(primed H9) 배지와 순수 인간만능줄기세포(naive H9)로 유도하는 배지에서 배양한 것으로 순수 인간만능줄기세포 배지에서는 작은 돔(dome) 모양의 순수 H9 세포의 모양을 볼 수 있다. 도 1B와 1C는 FACS 분석을 통하여 준 인간만능줄기세포 마커인 SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, CD24, 및 CD90와 순수 인간만능줄기세포 마커인 CD7, CD77, 및 CD130 발현을 나타낸 그림으로, 전환된 순수 인간만능줄기세포(H9-2iL/X/F/P) 에서는 CD90을 제외한 모든 준 만능줄기세포 마커 발현이 감소하고 순수 인간만능줄기세포 마커로 알려진 CD7과 CD77은 발현이 증가함을 보여주는 그림이다. 실선은 각 단일클론항체이고, 회색바탕은 2차 항체만 포함한 것이다.Figure 1A shows that H9 cells, which are human pluripotent stem cells (hPSC), were cultured in primed human pluripotent stem cell (primed H9) medium and medium induced by pure human pluripotent stem cells (naive H9). In the pure human pluripotent stem cell medium, small cells appear. The dome-shaped shape of pure H9 cells can be seen. Figures 1B and 1C show semi-human pluripotent stem cell markers SSEA-3, SSEA-4, TRA-1-60, TRA-1-81, CD24, and CD90 and pure human pluripotent stem cell markers CD7, This picture shows the expression of CD77 and CD130. In converted pure human pluripotent stem cells (H9-2iL/X/F/P), the expression of all quasi-pluripotent stem cell markers except CD90 is reduced, known as a pure human pluripotent stem cell marker. This picture shows that CD7 and CD77 expression increases. The solid lines represent each monoclonal antibody, and the gray background includes only secondary antibodies.
도 2는 naive hPSC와 primed hPSC에서 RNA-seq 방법으로 naive hPSC 연관 31개 유전자 발현 분석한 그림으로 naive hPSC에서 15개 naive hPSC 연관 유전자 발현이 증가한 것을 보여주는 것이다. Figure 2 is a diagram showing the analysis of the expression of 31 naive hPSC-related genes in naive hPSC and primed hPSC using RNA-seq method, showing that the expression of 15 naive hPSC-related genes increased in naive hPSC.
도 3는 FACS 분석을 통해서 본 발명의 단일클론항체 NPB40가 준 인간만능줄기세포(primed H9)과 순수 인간만능줄기세포(naive H9)에 결합하고 인간 배아암종세포인 2102EP, NT-2에는 결합하지만 생쥐 배아섬유아세포(MEF)와 인간 말초혈액 단핵구 세포(PBMC) 에는 결합하지 않음을 보여준다. 이때, 실선은 단일클론항체 NPB40이고 빨간 바탕은 2차 항체만 포함한 음성 대조군 자료이다.Figure 3 shows that through FACS analysis, the monoclonal antibody NPB40 of the present invention binds to primed human pluripotent stem cells (primed H9) and pure human pluripotent stem cells (naive H9), but does not bind to human embryonic carcinoma cells 2102EP and NT-2. It shows that it does not bind to mouse embryonic fibroblasts (MEF) and human peripheral blood mononuclear cells (PBMC). At this time, the solid line is the monoclonal antibody NPB40, and the red background is negative control data containing only the secondary antibody.
도 4A는 플로우 사이토미트리(flow cytometry) 분석을 통해서 본 발명의 단일클론항체 NPB40이 각종 세포주 또는 일차 세포(primary cell)에 결합하는 정도를 보여주는 그림으로, 실선은 단일클론항체이고 빨간색 바탕은 2차 항체만 포함한 음성 대조군 자료이다. 단일클론항체 NPB40은 정상 인간 간세포 (hepatocyte)에는 약하게 결합하지만 4종의 인간 간암세포 Huh7, HepG2, SNU-387, SNU-449에 강하게 결합하는 것을 보여준다. Figure 4A is a diagram showing the extent to which the monoclonal antibody NPB40 of the present invention binds to various cell lines or primary cells through flow cytometry analysis. The solid line is the monoclonal antibody and the red background is 2. This is negative control data containing only primary antibodies. The monoclonal antibody NPB40 binds weakly to normal human hepatocytes, but binds strongly to four types of human liver cancer cells, Huh7, HepG2, SNU-387, and SNU-449.
또한 NPB40은 3종의 인간 췌장암 세포 BxPC-3, PANC-1, SNU-213, 2종의 인간 대장암 세포 Colo-205, HCT-116, 2종의 인간 골육종 세포 U2-OS, Saos-2, 인간 피부암세포 A375, 인간 폐암세포 A549, 인간 신경모세포종 SH-SY5Y등 많은 암세포에 잘 결합하는 것을 보여준다. 도 4B는 세포면역화학염색법을 통해 단일클론항체 NPB40으로 2102Ep 인간 배아암세포, Huh7과 SNU-449 인간 간암세포의 세포 표면을 염색한 것으로, 단일클론항체 NPB40이 암세포의 세포 표면 단백질을 인식함을 보여준다. Additionally, NPB40 was used in three types of human pancreatic cancer cells, BxPC-3, PANC-1, and SNU-213, two types of human colon cancer cells, Colo-205 and HCT-116, and two types of human osteosarcoma cells, U2-OS and Saos-2. It shows that it binds well to many cancer cells, including human skin cancer cells A375, human lung cancer cells A549, and human neuroblastoma SH-SY5Y. Figure 4B shows the cell surface of 2102Ep human embryonic cancer cells, Huh7, and SNU-449 human liver cancer cells stained with monoclonal antibody NPB40 through cell immunochemical staining, showing that monoclonal antibody NPB40 recognizes cell surface proteins of cancer cells. .
도 5A는 세포 표면을 바이오틴(biotin)으로 표지 한 NT2/D1 인간 배아암줄기세포의 용출액에서 단일클론항체 NPB40을 사용하여 면역 침강시킨 단백질을 10% SDS-PAGE를 통해 분리하고 웨스턴 블라팅으로 나이트로 셀룰로오스 막으로 옮긴 후, 스트렙타비딘-HRP(SA-HRP)로 분석한 그림으로 항체를 넣지 않고 동일 실험을 진행한 것을 음성 대조군(No Ab)으로 한 것이다. 화살표는 NPB40에 의해 면역침강된 단백질을 표시한다. 도 5B는 도 5A와 동일하게 면역 침강을 수행하고 10% SDS-PAGE를 통해 분리한 후, 폴리아크릴아마이드 젤을 PageBlue로 염색한 것이다. 빨간 상자 내부의 단백질을 오려내서 LC-MS/MS를 수행하였다. 도 5C는 도 5B에서 단일클론항체 NPB40로 면역 침강한 후 회수한 단백질을 LC-MS/MS로 분석한 결과로, NPB40 항원의 아미노산 서열이 B7-H3 단백질의 아미노산 서열과 일치하며 일치하는 부분을 빨간색으로 표시한 그림이다.Figure 5A shows that proteins immunoprecipitated using the monoclonal antibody NPB40 from the eluate of NT2/D1 human embryonic cancer stem cells whose cell surface was labeled with biotin were separated through 10% SDS-PAGE and analyzed by Nitrogen by Western blotting. After transferring to a cellulose membrane, the sample was analyzed with streptavidin-HRP (SA-HRP). The same experiment was performed without adding antibodies, which was used as a negative control (No Ab). Arrows indicate proteins immunoprecipitated by NPB40. Figure 5B shows immunoprecipitation performed in the same manner as Figure 5A, separated through 10% SDS-PAGE, and then the polyacrylamide gel was stained with PageBlue. The protein inside the red box was cut out and LC-MS/MS was performed. Figure 5C shows the results of LC-MS/MS analysis of the protein recovered after immunoprecipitation with the monoclonal antibody NPB40 in Figure 5B. The amino acid sequence of the NPB40 antigen is identical to the amino acid sequence of the B7-H3 protein, and the matching portion is This picture is marked in red.
도 6A는 단일클론항체 NPB40이 인식하는 항원이 B7-H3인지 확인하기 위해 NT2/D1 인간 배아암세포 표면을 바이오틴-표지 한 후에 세포 용출액에서 단일클론항체 NPB40과 공지의 토끼 항-B7-H3 다클론항체(α-B7-H3)로 면역 침강한 단백질을 웨스턴 블랏팅 및 스트렙타비딘-HRP(SA-HRP) 반응을 통해 검출한 그림이다. 도 6B는 NT2/D1 인간 배아암세포의 세포 용출액에서 단일클론항체 NPB40과 공지의 토끼 항-B7-H3 다클론항체로 면역 침강한 단백질과 세포 용출액(whole lysate)를 웨스턴 블랏팅을 통해 분석하고 토끼 항-B7-H3 다클론항체를 반응시켜 검출한 것이다. 도 6C와 도 6D는 단일클론항체 NPB40의 항원이 B7-H3인지 재확인하기 위해 B7-H3를 과발현시킨 인간 배아 신장세포 HEK293T의 세포 용출액을 공지의 생쥐 항-His 단일클론항체, 토끼 항-B7-H3 다클론항체 및 단일클론항체 NPB40으로 면역 침강한 후, 웨스턴 블랏팅 하여 생쥐 항-His 단일클론항체 또는 토끼 항-B7-H3 다클론항체 반응을 통해 검출한 것이다.Figure 6A shows the monoclonal antibody NPB40 and the known rabbit anti-B7-H3 polyclonal in the cell lysate after biotin-labeling the surface of NT2/D1 human embryonic cancer cells to confirm that the antigen recognized by the monoclonal antibody NPB40 is B7-H3. This picture shows the protein immunoprecipitated with antibody (α-B7-H3) detected through Western blotting and streptavidin-HRP (SA-HRP) reaction. Figure 6B shows the protein immunoprecipitated from the cell lysate of NT2/D1 human embryonic cancer cells with the monoclonal antibody NPB40 and a known rabbit anti-B7-H3 polyclonal antibody, and the cell lysate (whole lysate) was analyzed by Western blotting. It was detected by reacting with anti-B7-H3 polyclonal antibody. Figures 6C and 6D show that to reconfirm that the antigen of the monoclonal antibody NPB40 is B7-H3, cell lysates of human embryonic kidney cells HEK293T overexpressing B7-H3 were tested with known mouse anti-His monoclonal antibodies and rabbit anti-B7- After immunoprecipitation with H3 polyclonal antibody and monoclonal antibody NPB40, it was detected by Western blotting and reaction with mouse anti-His monoclonal antibody or rabbit anti-B7-H3 polyclonal antibody.
도 7A는 간암세포주 Huh7, HepG2, SNU387, SNU449에서 B7-H3 Knockdown 실험을 수행한 것으로 음성 대조군 siRNA(siCon) 또는 B7-H3에 대한 siRNA(siB7-H3)를 간암세포에 트랜스펙션 한 후 회수한 세포 용출액에서 B7-H3 단백질의 발현을 분석하기 위해 웨스턴 블라팅을 수행한 것으로 GAPDH 단백질 발현을 대조군으로 사용하여 분석한 것이다. 도 7B와 7C는 도 7A처럼 B7-H3 녹다운(Knockdown)을 수행하고 회수한 간암세포를 플로우 사이토미트리 분석을 통해서 분석하여 공지의 토끼 항-B7-H3 다클론항체(α-B7-H3)가 결합하는 정도를 보여주는 것이다. 도 7B의 실선 및 점선은 단일클론항체이고 빨간색 바탕은 2차 항체만 포함한 음성 대조군 자료이며, 도 7C는 도 7B의 실험을 3회 이상 반복하여 평균 형광 세기를 통계적으로 나타낸 그래프이다. 도 7D와 7E는 도 7A처럼 B7-H3 녹다운(knockdown)을 수행하고 회수한 간암세포를 플로우 사이토미트리 분석을 통해서 분석하여 본 발명의 단일클론항체 NPB40가 결합 정도를 보여주는 그림이다. 도 7D의 실선 및 점선은 단일클론항체이고 빨간색 바탕은 2차 항체만 포함한 음성 대조군 자료이며, 도 7E는 도 7D의 실험을 3회 이상 반복하여 평균 형광 세기를 통계적으로 나타낸 그래프이다. 상기 도 7에서 ***는 p value<0.005를 나타낸다.Figure 7A shows a B7-H3 knockdown experiment performed on liver cancer cell lines Huh7, HepG2, SNU387, and SNU449, which were recovered after transfection of negative control siRNA (siCon) or siRNA against B7-H3 (siB7-H3) into liver cancer cells. Western blotting was performed to analyze the expression of B7-H3 protein in one cell lysate, using GAPDH protein expression as a control. Figures 7B and 7C show that liver cancer cells recovered after performing B7-H3 knockdown as in Figure 7A were analyzed through flow cytometry analysis, and the known rabbit anti-B7-H3 polyclonal antibody (α-B7-H3) was used. It shows the degree of bonding. The solid and dotted lines in Figure 7B are monoclonal antibodies, the red background is negative control data containing only secondary antibodies, and Figure 7C is a graph statistically showing the average fluorescence intensity by repeating the experiment in Figure 7B three or more times. Figures 7D and 7E are diagrams showing the degree of binding of the monoclonal antibody NPB40 of the present invention by analyzing liver cancer cells recovered after B7-H3 knockdown as shown in Figure 7A through flow cytometry analysis. The solid and dotted lines in Figure 7D are monoclonal antibodies, the red background is negative control data containing only secondary antibodies, and Figure 7E is a graph statistically showing the average fluorescence intensity by repeating the experiment in Figure 7D three or more times. In FIG. 7, *** indicates p value<0.005.
도 8A는 도 7A처럼 B7-H3 녹다운(Knockdown)을 수행하고 회수한 음성 대조군 siRNA(siCon) 또는 B7-H3에 대한 siRNA(siB7-H3)를 처리한 간암세포를 젤라틴이 코팅된 6-well 세포배양 플레이트에 반응시켜서 부착 정도를 분석한 그림으로 부착한 간암세포를 크리스탈 바이올릿으로 염색한 사진이다. 도 8B는 Huh7 간암세포주에서 도 8A과 동일한 실험을 수행한 후 0.1% SDS로 세포를 용출하여 OD570nm에서 흡광도를 3회 반복측정하여 통계 처리한 것이다. 도 8C는 HepG2 간암세포주에서 도 8A과 동일한 실험을 수행한 후 0.1% SDS로 세포를 용출하여 OD570nm에서 흡광도를 3회 반복 측정하여 통계 처리한 그림이다. 도 8D와 8E는 도 8A처럼 음성 대조군 siRNA(siCon) 또는 B7-H3에 대한 siRNA(siB7-H3)를 처리하여 B7-H3 녹다운(Knockdown)을 수행한 한 간암세포 Huh7에서 플로우 사이토미트리를 통해 세포부착 단백질들인 E-Cadherin, Integrin-α2, integrin-αV의 발현을 분석한 그림으로 도 8E는 도 8D실험을 3회 반복처리하여 통계 처리한 그림이다. 도 8F와 8G는 도 8A처럼 음성 대조군 siRNA(siCon) 또는 B7-H3에 대한 siRNA(siB7-H3)를 처리하여 B7-H3 녹다운(Knockdown)을 수행한 한 간암세포 HepG2를 플로우 사이토미트리를 통해 세포부착 단백질들인 E-Cadherin, Integrin-α2, integrin-αV의 발현을 분석한 그림으로 도 8G는 도8F 실험을 3회 반복 처리하여 통계 처리한 그림이다. 도 8에서 각각 ***는 p value<0.005를 나타내고, **는 p value<0.01, *는 p value <0.05를 의미한다.Figure 8A shows hepatoma cells treated with negative control siRNA (siCon) or siRNA against B7-H3 (siB7-H3) recovered after performing B7-H3 knockdown as in Figure 7A, in 6-well cells coated with gelatin. This is a picture showing the degree of adhesion analyzed by reacting to a culture plate. This is a picture of attached liver cancer cells stained with crystal violet. Figure 8B shows the same experiment as Figure 8A in Huh7 liver cancer cell line, cells were eluted with 0.1% SDS, absorbance was measured three times repeatedly at OD 570 nm , and statistical processing was performed. Figure 8C is a diagram showing the same experiment as Figure 8A in HepG2 liver cancer cell line, cells were eluted with 0.1% SDS, absorbance was measured three times at OD 570nm , and statistical processing was performed. Figures 8D and 8E show flow cytometry in liver cancer cells Huh7 in which B7-H3 knockdown was performed by treating negative control siRNA (siCon) or siRNA against B7-H3 (siB7-H3), as in Figure 8A. Figure 8E is a picture analyzing the expression of the cell adhesion proteins E-Cadherin, Integrin-α2, and integrin-αV. Figure 8E is a statistical result of the experiment in Figure 8D repeated three times. Figures 8F and 8G show HepG2 liver cancer cells subjected to B7-H3 knockdown by treating negative control siRNA (siCon) or siRNA against B7-H3 (siB7-H3), as shown in Figure 8A, through flow cytometry. Figure 8G is a picture analyzing the expression of the cell adhesion proteins E-Cadherin, Integrin-α2, and integrin-αV. Figure 8G is a statistical result of the experiment in Figure 8F repeated three times. In Figure 8, *** represents p value <0.005, ** represents p value <0.01, and * represents p value <0.05.
도 9A는 도 8A처럼 음성 대조군 siRNA(siCon) 또는 B7-H3에 대한 siRNA(siB7-H3)를 처리하여 B7-H3 녹다운(Knockdown)을 수행한 한 간암세포 Huh7 세포를 단일세포화 하여 6-well 플레이트에 접종하여 2주간 배양하여 형성된 콜로니를 크리스탈 바이올렛 용액으로 염색한 사진으로 그래프는 동일실험을 3회 반복하여 콜로니의 수를 분석하여 콜로니 형성 능력을 통계적으로 비교한 그래프이다. 도 9B는 도 8A처럼 음성 대조군 siRNA(siCon) 또는 B7-H3에 대한 siRNA(siB7-H3)를 처리하여 B7-H3 녹다운(Knockdown)을 수행한 한 간암세포 HepG2 세포를 단일세포화 하여 6-well 플레이트에 접종하여 2주간 배양하여 형성된 콜로니를 크리스탈 바이올렛 용액으로 염색한 사진으로 그래프는 동일 실험을 3회 반복하여 콜로니의 수를 분석하여 콜로니 형성 능력을 통계적으로 비교한 그래프이다. 도 9에서 ***는 p value<0.005를 나타낸다.Figure 9A shows single cells of liver cancer cells Huh7 cells in which B7-H3 knockdown was performed by treating negative control siRNA (siCon) or siRNA against B7-H3 (siB7-H3), as shown in Figure 8A, in a 6-well cell. This is a photograph of colonies formed by inoculating a plate and culturing for two weeks stained with a crystal violet solution. The graph is a graph that statistically compares colony forming ability by repeating the same experiment three times and analyzing the number of colonies. Figure 9B shows single cells of HepG2 cells in which B7-H3 knockdown was performed by treating negative control siRNA (siCon) or siRNA against B7-H3 (siB7-H3), as shown in Figure 8A, in a 6-well cell. This is a photograph of colonies formed by inoculating a plate and culturing for 2 weeks stained with a crystal violet solution. The graph is a graph that statistically compares the colony forming ability by repeating the same experiment three times and analyzing the number of colonies. In Figure 9, *** indicates p value<0.005.
도 10A와 10B는 바이오틴화 된 NPB40 항체를 이용하여 분리한 B7-H3-high와 B7-H3-low로 분리한 HepG2 세포를 PE 접합 SA와 FACSCalibur로 분석한 결과로 도 10B는 동일 실험을 3회 반복하여 통계적으로 비교한 그래프이다. 도 10C와 10D는 도 10A에서 NPB40 항체를 이용하여 분리한 HepG2 세포를 2주간 6웰 프레이트에서 배양하여 형성된 콜로니를 크리스탈 바이올렛 용액으로 염색한 사진이고 도 10D는 콜로니의 수를 분석하여 콜로니 형성 능력을 통계적으로 비교한 그래프이다. 도 10에서 각각 ***는 p value<0.005를 나타내고, **는 p value<0.01를 나타낸다.Figures 10A and 10B show the results of analysis of HepG2 cells separated into B7-H3-high and B7-H3-low using biotinylated NPB40 antibody using PE-conjugated SA and FACSCalibur. Figure 10B shows the results of the same experiment three times. This is a graph that was statistically compared repeatedly. Figures 10C and 10D are photographs of colonies formed by culturing HepG2 cells isolated using the NPB40 antibody in Figure 10A in a 6-well plate for 2 weeks, stained with crystal violet solution, and Figure 10D shows colony forming ability by analyzing the number of colonies. This is a statistically compared graph. In Figure 10, *** represents p value<0.005, and ** represents p value<0.01.
도 11A와 11B는 플로우 사이토미트리를 통해 단일클론항체 NPB40이 인간배아암세포 NT2/D1, 간암세포 Huh7, HepG2, SNU449와 인간 췌장암세포 BxPC-3, PANC-1, SNU-213에 내부화되는 것을 분석한 것이다. 도 11A에서 실선은 4℃에서 반응한 단일클론항체 NPB40, 점선은 4℃에서의 반응 후 37℃에서 반응한 단일클론항체 NPB40이며 빨간색 바탕은 2차 항체만 포함한 것이다. 도 11B는 도 11A 동일한 실험을 3회 반복하여 각 암세포의 세포표면에서 NPB40의 부착 정도를 상대적인 평균 형광세기로 통계적으로 처리하여 비교한 그림이다. **는 p value <0.01, ***는 p value <0.005를 나타낸다.Figures 11A and 11B analyze the internalization of monoclonal antibody NPB40 into human embryonic cancer cells NT2/D1, liver cancer cells Huh7, HepG2, and SNU449, and human pancreatic cancer cells BxPC-3, PANC-1, and SNU-213 through flow cytometry. It was done. In Figure 11A, the solid line is the monoclonal antibody NPB40 reacted at 4°C, the dotted line is the monoclonal antibody NPB40 reacted at 37°C after reaction at 4°C, and the red background includes only the secondary antibody. Figure 11B is a diagram comparing the degree of attachment of NPB40 on the cell surface of each cancer cell by repeating the same experiment in Figure 11A three times and statistically processing the relative average fluorescence intensity. ** indicates p value <0.01, *** indicates p value <0.005.
도 12A와 12B는 각각 단일클론항체 NPB40 중쇄와 경쇄 유전자 가변영역에 해당하는 DNA 절편을 중합효소연쇄반응을 통해 증폭한 DNA를 보여주는 그림이다. 도 12C와 12D는 각각 단일클론항체 NPB40 중쇄와 경쇄 유전자 가변영역을 pBluescript-KS(+) 벡터에 클로닝한 것이며, 도 12C에서는 중쇄 DNA를 각각 EcoRI과 SalI, 도 12D에서는 경쇄 DNA를 HindIII와 SalI을 처리해 pBluescript-KS(+) 벡터에 클로닝된 중쇄와 경쇄 유전자 가변영역을 확인한 것이다. Figures 12A and 12B are illustrations showing DNA amplified from DNA fragments corresponding to the variable regions of the monoclonal antibody NPB40 heavy chain and light chain genes, respectively, through polymerase chain reaction. Figures 12C and 12D show the monoclonal antibody NPB40 heavy chain and light chain gene variable regions cloned into the pBluescript-KS(+) vector, respectively. In Figure 12C, the heavy chain DNA was cloned into EcoRI and SalI, respectively, and in Figure 12D, the light chain DNA was cloned into HindIII and SalI. The heavy chain and light chain gene variable regions cloned into the pBluescript-KS(+) vector were confirmed.
도 13은 단일클론항체 NPB40 중쇄 유전자 가변영역의 염기서열과 아미노산 서열을 표시한 것으로 항원과 결합하는 CDR(Complementarity Determining Region)를 진한 글씨로 표시한 그림이다. Figure 13 is a diagram showing the base sequence and amino acid sequence of the variable region of the monoclonal antibody NPB40 heavy chain gene, with the CDR (Complementarity Determining Region) that binds to the antigen indicated in bold.
도 14는 단일클론항체 NPB40 경쇄 유전자 가변영역의 염기서열과 아미노산 서열을 표시한 것으로 항원과 결합하는 CDR(Complementarity Determining Region)를 진한 글씨로 표시한 그림이다.Figure 14 is a diagram showing the base sequence and amino acid sequence of the variable region of the monoclonal antibody NPB40 light chain gene, with the CDR (Complementarity Determining Region) that binds to the antigen indicated in bold.
도 15는 NPB40항체를 인간 IgG1을 포함하는 키메라 항체로 제조하기 위해 유전자를 융합하는 과정으로 아가로오스 젤 전기영동 사진을 보여준다. 도 15A는 중쇄 신호펩타이드와 NPB40 중쇄 가변영역을 재조합PCR로 융합하는 그림이고 도 15B는 인간 IgG1 불변영역을 포함하고 있는 pdCMV-dhfr벡터에 EcoRI과 ApaI으로 절단하여 클로닝하는 과정을 보여주는 것이다. 도 15C는 경쇄 신호펩타이드와 NPB40 경쇄 가변영역을 재조합 PCR로 융합하는 그림이고 도 15D는 인간 카파 불변영역을 포함하고 있는 pdCMV-dhfr벡터에 HindIII와 BsiWI으로 절단하여 클로닝하는 과정을 보여주는 것이다. Figure 15 shows an agarose gel electrophoresis photograph of the gene fusion process to produce the NPB40 antibody into a chimeric antibody containing human IgG1. Figure 15A is a diagram showing the fusion of the heavy chain signal peptide and the NPB40 heavy chain variable region by recombinant PCR, and Figure 15B shows the cloning process by cutting with EcoRI and ApaI into the pdCMV-dhfr vector containing the human IgG1 constant region. Figure 15C is a diagram showing the fusion of the light chain signal peptide and the NPB40 light chain variable region by recombinant PCR, and Figure 15D shows the cloning process by cutting with HindIII and BsiWI into the pdCMV-dhfr vector containing the human kappa constant region.
도 16는 신호서열을 포함하는 생쥐-인간 키메라 NPB40 항체(Chi-NPB40)의 중쇄 가변영역의 아미노산 서열(파란색)과 불변영역(빨간색)을 표시한 것으로, 신호펩타이드 서열(검은색), 항원과 결합하는 CDR 아미노산의 잔기 위치는 밑줄로 표시한 것이다.Figure 16 shows the amino acid sequence (blue) and constant region (red) of the heavy chain variable region of the mouse-human chimeric NPB40 antibody (Chi-NPB40) containing the signal sequence, the signal peptide sequence (black), the antigen and The residue positions of the binding CDR amino acids are underlined.
도 17은 신호서열을 포함하는 생쥐-인간 키메라 NPB40 항체(Chi-NPB40)의 경쇄 가변영역의 아미노산 서열(파란색)과 불변영역(빨간색)을 표시한 것으로, 신호펩타이드 서열(검은색), 항원과 결합하는 CDR 아미노산의 잔기 위치는 밑줄로 표시한 것이다.Figure 17 shows the amino acid sequence (blue) and constant region (red) of the light chain variable region of the mouse-human chimeric NPB40 antibody (Chi-NPB40) containing the signal sequence, the signal peptide sequence (black), the antigen and The residue positions of the binding CDR amino acids are underlined.
도 18A는 본 발명의 생쥐 유래 NPB40 항체, 키메라 항체를 대상으로 SDS-PAGE 및 코마시 블루 염색을 수행한 결과를 나타낸 것이다. 도 18B는 상기 항체를 대상으로 웨스턴 블랏팅을 수행한 결과를 나타낸 것으로, 2차 항체는 인간 항체의 IgG 감마 사슬과 카파 사슬에 결합하는 것을 이용하였다.Figure 18A shows the results of SDS-PAGE and Coomassie blue staining for the mouse-derived NPB40 antibody and chimeric antibody of the present invention. Figure 18B shows the results of Western blotting on the above antibody, and the secondary antibody used was one that binds to the IgG gamma and kappa chains of human antibodies.
도 19는 플로우 사이토미트리를 통해 Chi-NPB40 항체가 인간 간암세포인 Huh7과 SNU-449에 내부화되는 것을 분석한 그림이다. 빨간색 바탕은 4℃에서 반응한 키메라 항체 Chi-NPB40을, 흰색 바탕은 4℃에서의 반응 후 37℃에서 반응한 키메라 항체 Chi-NPB40를 나타내며 회색 바탕은 2차 항체만 포함한 것을 나타낸다.Figure 19 is a diagram analyzing the internalization of Chi-NPB40 antibody into human liver cancer cells Huh7 and SNU-449 through flow cytometry. The red background represents the chimeric antibody Chi-NPB40 reacted at 4°C, the white background represents the chimeric antibody Chi-NPB40 reacted at 37°C after the reaction at 4°C, and the gray background represents only the secondary antibody.
도 20A와 20B는 NPB40 또는 Chi-NPB40 처리된 Huh7 세포의 세포 생존율을 측정한 것으로 Huh7 세포를 0nM 내지 100nM NPB40 또는 Chi-NPB40를 처리하고 12.7nM의 α-HFc-CL-DMDM로 48시간 동안 처리한 후 분석한 것이다. 도 20A는 세포 사진이고 도 20B는 세포 생존율은 CCK-8을 이용하여 측정한 것이다. 눈금 막대는 100μm이다. 도 20C와 20D는 NPB40 또는 Chi-NPB40 처리된 Huh7 세포의 세포 생존율을 측정한 것으로 Huh7 세포를 0nM 내지 100nM NPB40 또는 Chi-NPB40를 처리하고 12.7nM의 α-HFc-CL-MMAF로 48시간 동안 처리한 후 분석한 것이다. 도 20C는 세포 사진이고 도 20D는 세포 생존율은 CCK-8을 이용하여 측정한 것이다. 눈금 막대는 100μm이다. 도 20에서 *는 p value <0.05, **는 p value <0.01, ***는 p value <0.005를 나타낸다Figures 20A and 20B measure the cell survival rate of Huh7 cells treated with NPB40 or Chi-NPB40. Huh7 cells were treated with 0 nM to 100 nM NPB40 or Chi-NPB40 and treated with 12.7 nM α-HFc-CL-DMDM for 48 hours. After that, it was analyzed. Figure 20A is a photo of cells and Figure 20B shows cell viability measured using CCK-8. The scale bar is 100 μm. Figures 20C and 20D measure the cell survival rate of Huh7 cells treated with NPB40 or Chi-NPB40. Huh7 cells were treated with 0 nM to 100 nM NPB40 or Chi-NPB40 and treated with 12.7 nM α-HFc-CL-MMAF for 48 hours. After that, it was analyzed. Figure 20C is a photo of cells and Figure 20D shows cell viability measured using CCK-8. The scale bar is 100 μm. In Figure 20, * represents p value <0.05, ** represents p value <0.01, and *** represents p value <0.005.
도 21A와 21B는 NPB40 또는 Chi-NPB40 처리된 HepG2 세포의 세포 생존율을 측정한 것으로 HepG2 세포를 0nM 내지 250nM NPB40 또는 Chi-NPB40를 처리하고 12.7nM의 α-HFc-CL-DMDM로 48시간 동안 처리한 후 분석한 것이다. 도 21A는 세포 사진이고 도 21B는 세포 생존율은 CCK-8을 이용하여 측정한 것이다. 눈금 막대는 100μm이다. 도 21C와 21D는 NPB40 또는 Chi-NPB40 처리된 HepG2 세포의 세포 생존율을 측정한 것으로 HepG2 세포를 0nM 내지 250nM NPB40 또는 Chi-NPB40를 처리하고 12.7nM의 α-HFc-CL-MMAF로 48시간 동안 처리한 후 분석한 것이다. 도 21C는 세포 사진이고 도 21D는 세포 생존율은 CCK-8을 이용하여 측정한 것이다. 눈금 막대는 100μm이다. 도 21에서 *는 p value <0.05, **는 p value <0.01, ***는 p value <0.005를 나타낸다.Figures 21A and 21B measure the cell survival rate of HepG2 cells treated with NPB40 or Chi-NPB40. HepG2 cells were treated with 0 nM to 250 nM NPB40 or Chi-NPB40 and treated with 12.7 nM α-HFc-CL-DMDM for 48 hours. After that, it was analyzed. Figure 21A is a photo of cells and Figure 21B shows cell viability measured using CCK-8. The scale bar is 100 μm. Figures 21C and 21D measure the cell survival rate of HepG2 cells treated with NPB40 or Chi-NPB40. HepG2 cells were treated with 0 nM to 250 nM NPB40 or Chi-NPB40 and treated with 12.7 nM α-HFc-CL-MMAF for 48 hours. After that, it was analyzed. Figure 21C is a photo of cells and Figure 21D shows cell viability measured using CCK-8. The scale bar is 100 μm. In Figure 21, * represents p value <0.05, ** represents p value <0.01, and *** represents p value <0.005.
도 22A와 22B는 NPB40 또는 Chi-NPB40 처리된 SNU-449 세포의 세포 생존율을 측정한 것으로 SNU-449 세포를 0nM 내지 250nM NPB40 또는 Chi-NPB40를 처리하고 12.7nM의 α-HFc-CL-MMAF로 48시간 동안 처리한 후 분석한 것이다. 도 22A는 세포 사진이고 도 22B는 세포 생존율은 CCK-8을 이용하여 측정한 것이다. 눈금 막대는 100μm이다. 도 22에서 *는 p value <0.05, ***는 p value <0.005를 나타낸다Figures 22A and 22B measure the cell viability of SNU-449 cells treated with NPB40 or Chi-NPB40. SNU-449 cells were treated with 0 nM to 250 nM NPB40 or Chi-NPB40 and treated with 12.7 nM α-HFc-CL-MMAF. It was analyzed after processing for 48 hours. Figure 22A is a photo of cells and Figure 22B shows cell viability measured using CCK-8. The scale bar is 100 μm. In Figure 22, * indicates p value <0.05, *** indicates p value <0.005
도 23는 Chi-NPB40의 ADCC 기능을 확인한 것으로, 간암 세포인 Huh7 세포에서 Chi-NPB40과 대응하는 인간 IgG isotype 항체를 0.01㎍/ml에서 100㎍/ml농도까지 처리한 후 ADCC core kit(Promega)을 이용해 포함된 Jurkat effector세포에서 나타나는 ADCC반응을 luminescence를 관찰하는 것으로 측정한 것이다. 도 23에서 *는 p value <0.05, ***는 p value <0.005를 나타낸다.Figure 23 confirms the ADCC function of Chi-NPB40. Huh7 cells, which are liver cancer cells, were treated with a human IgG isotype antibody corresponding to Chi-NPB40 at a concentration of 0.01 ㎍/ml to 100 ㎍/ml, then ADCC core kit (Promega). The ADCC response occurring in the included Jurkat effector cells was measured by observing luminescence. In Figure 23, * indicates p value <0.05, and *** indicates p value <0.005.
도 24A는 간암 세포인 Huh7 세포를 이종 이식한 누드마우스에서 각각 생쥐 IgG isotype 항체와 NPB40을 투여하며 암의 성장을 관찰한 것으로, 각 항체는 2일에 한번 정맥을 통해 10mg/kg 용량으로 투여했으며 실험군 및 대조군 각각 3마리의 암 이종 이식 모델을 이용해 통계 처리했다. 도 24A에서 *는 p value <0.05를 나타내고 ***는 p value <0.005를 나타낸다. 도 24B는 도 24A의 최종 시점인 약물 투여 시작 20일 후 희생시킨 쥐에서 얻은 암 덩어리의 크기를 비교한 것이다.Figure 24A shows cancer growth observed in nude mice xenografted with Huh7 cells, a liver cancer cell, by administering mouse IgG isotype antibodies and NPB40, respectively. Each antibody was administered intravenously once every two days at a dose of 10 mg/kg. Statistical processing was performed using three cancer xenograft models in each of the experimental and control groups. In Figure 24A, * indicates p value <0.05 and *** indicates p value <0.005. Figure 24B compares the sizes of cancer masses obtained from mice sacrificed 20 days after the start of drug administration, which is the final time point in Figure 24A.
이하 본 발명을 상세히 설명한다. 특별한 정의가 없는 한 본 명세서의 모든 용어는 본 발명이 속하는 기술분야의 통상의 지식을 가진 기술자가 이해하는 당해 용어의 일반적인 의미와 동일하고 만약 본 명세서에 사용된 용어의 의미와 충돌하는 경우에는 본 명세서에 사용된 의미를 따른다.Hereinafter, the present invention will be described in detail. Unless otherwise specified, all terms in this specification have the same general meaning as understood by a person skilled in the art to which the present invention pertains, and if there is a conflict with the meaning of the terms used in this specification, this specification Follow the meaning used in the specification.
본 발명은 서열번호 1을 포함하는 중쇄 상보성 결정영역 1(heavy chain complementary determine region 1;HCDR1), 서열번호 2를 포함하는 HCDR2, 및 서열번호 3을 포함하는 HCDR3를 포함하는 중쇄; 및 서열번호 4를 포함하는 경쇄 상보성 결정영역 1(light chain complementary determine region 1; LCDR1), 서열번호 5를 포함하는 LCDR2, 및 서열번호 6을 포함하는 LCDR3을 포함하는 경쇄를 포함하는 항체에 관한 것이다.The present invention relates to a heavy chain comprising a heavy chain complementary determine region 1 (HCDR1) comprising SEQ ID NO: 1, a HCDR2 comprising SEQ ID NO: 2, and a heavy chain comprising HCDR3 comprising SEQ ID NO: 3; and light chain complementary determine region 1 (LCDR1) comprising SEQ ID NO: 4, LCDR2 comprising SEQ ID NO: 5, and LCDR3 comprising SEQ ID NO: 6. .
본 발명의 단일클론항체는 순수인간만능줄기세포, 준인간만능줄기세포 및 암세포의 B7-H3 단백질에 결합할 수 있다.The monoclonal antibody of the present invention can bind to the B7-H3 protein of pure human pluripotent stem cells, quasi-human pluripotent stem cells, and cancer cells.
본 발명에서 상기 순수 인간만능줄기세포(naive human pluripotent stem cell)는 착상 전의 인간만능줄기세포를 의미하는 것으로, naive 또는 ground 상태의 만능성을 가진다고 말한다. 착상 후의 인간만능줄기세포는 준(primed) 상태의 만능성을 가지는 준 인간만능줄기세포(primed human pluripotent stem cell)를 의미한다. 상기 순수 인간만능줄기세포는 도 1A에서 보듯, 작은 돔 모양으로 개별 세포들이 분리되어 성장한다는 측면에서 콜로니와 유사한 형태로 성장하는 준만능줄기세포와 구별된다. 순수 인간만능줄기세포를 좀 더 세분할 경우 상기 ground 상태의 줄기세포, 그리고 중간 단계인 intermediate, formative 또는 naive-like 상태의 순수 만능성을 가지는 줄기세포로 나눠질 수 있다.In the present invention, the naïve human pluripotent stem cell refers to a human pluripotent stem cell before implantation, and is said to have pluripotency in a naive or ground state. Human pluripotent stem cells after implantation refer to primed human pluripotent stem cells that have pluripotency in a quasi-primed state. As shown in FIG. 1A, pure human pluripotent stem cells are distinguished from semi-pluripotent stem cells that grow in a colony-like form in that individual cells grow separately in a small dome shape. When pure human pluripotent stem cells are further divided, they can be divided into stem cells in the ground state, and stem cells with pure pluripotency in the intermediate, formative, or naive-like states.
상기 암세포는 B7-H3를 세포 표면에 발현하는 암세포라면 제한 없이 본 발명의 암세포에 해당한다. 예를 들면, 간암, 췌장암, 골육종, 피부암, 폐암, 인간배아암, 신경모세포종, 자궁암, 신장암, 전립선암, 유방암, 대장암, 위암, 담도암, 신장암, 방광암, 난소암, 뇌종양 등이 있다. 본 발명의 일 실시예에서는 인간 간암세포인 Huh7, HepG2, SNU-387, SNU-449, 인간 췌장암세포인 BxPC-3, PANC-1, SNU-213, 인간 대장암세포인 Colo-205, HCT-116, 인간 골육종 세포인 U2OS, Saos2, 인간 피부암세포인 A375, 인간 폐암세포인 A549 및 인간 신경모세포종인 SH-SY5Y에 본 발명의 항체를 처리하고 플로우 사이토미트리(flow cytometry) 분석을 수행하였을 때, 본 발명의 항체가 상기 세포주에 강하게 결합하는 것을 확인하였다. 다만, 이에 제한되지 않는다.The cancer cells correspond to the cancer cells of the present invention without limitation as long as they express B7-H3 on the cell surface. For example, liver cancer, pancreatic cancer, osteosarcoma, skin cancer, lung cancer, human embryonic cancer, neuroblastoma, uterine cancer, kidney cancer, prostate cancer, breast cancer, colon cancer, stomach cancer, biliary tract cancer, kidney cancer, bladder cancer, ovarian cancer, brain tumor, etc. there is. In one embodiment of the present invention, human liver cancer cells Huh7, HepG2, SNU-387, and SNU-449, human pancreatic cancer cells BxPC-3, PANC-1, and SNU-213, and human colon cancer cells Colo-205 and HCT-116. , when human osteosarcoma cells U2OS and Saos2, human skin cancer cells A375, human lung cancer cells A549, and human neuroblastoma SH-SY5Y were treated with the antibody of the present invention and flow cytometry analysis was performed, It was confirmed that the antibody of the present invention binds strongly to the cell line. However, it is not limited to this.
본 발명의 항체는 상기 서열번호 1 내지3의 HCDR 및 서열번호 4 내지 6의 LCDR 서열을 갖는 것이라면 그 중쇄 및 경쇄서열은 한정되지 않는다. 예를 들면 서열번호 7을 포함하는 중쇄 및 서열번호 8을 포함하는 경쇄 서열을 가질 수 있으나, 이에 제한되지 않는다.The heavy and light chain sequences of the antibody of the present invention are not limited as long as it has the HCDR sequences of SEQ ID NOs: 1 to 3 and the LCDR sequences of SEQ ID NOs: 4 to 6. For example, it may have a heavy chain sequence including SEQ ID NO: 7 and a light chain sequence including SEQ ID NO: 8, but is not limited thereto.
상기 서열번호 7은 도 16에 나타낸 중쇄 가변부 서열을 의미하는 것이고, 상기 서열번호 8은 도 17에 나타낸 경쇄 가변부 서열을 나타낸다.SEQ ID NO: 7 refers to the heavy chain variable region sequence shown in FIG. 16, and SEQ ID NO: 8 refers to the light chain variable region sequence shown in FIG. 17.
서열번호 1 내지 8은 표 1에 나타낸 것과 같다.SEQ ID NOs: 1 to 8 are as shown in Table 1.
Figure PCTKR2023003515-appb-img-000001
Figure PCTKR2023003515-appb-img-000001
본 발명에서 항체는 구체적으로 단일클론항체를 의미하는 것일 수 있고, 본 발명에서 단일클론항체란 단일한 항원성 부위(단일 에피토프)에 대해서 지시되어 이와 특이적인 결합을 하는 단백질 분자를 의미한다. 본 발명의 목적상 본 발명의 단일클론항체는 순수 인간만능줄기세포, 준인간만능줄기세포 및 암세포의 세포 표면 분자인 B7-H3에 특이적으로 결합하므로, 순수인간만능줄기세포, 준인간만능줄기세포 및 암세포의 세포 표면 분자를 인식하는 단백질 분자이다.항원의 특정 에피토프를 인식하여 항원-항체 복합체를 형성하는 항체의 주요 부위는 중쇄 및 경쇄의 가변 영역, 특히 상보성 결정 영역(complementarity determining region; CDR)이 이러한 복합체 형성에 기여하므로, 본 발명은 상기한 본 발명의 단일클론항체의 가변 영역, 특히 CDR을 포함하는 이의 키메릭 항체, 인간화 항체 등을 본 발명의 범위에 포함한다. 예를 들면, 본 발명의 일 실시예에서 서열번호 9의 중쇄 서열, 서열번호 10의 경쇄 서열을 가지는 마우스-인간 키메라 항체(Chi-NPB40)을 들 수 있다. 또한, 본 발명의 단일클론항체의 가변 영역, 특히 CDR이 동일한 이상, IgG1 내지 IgG4의 IgG 서브클래스(subclass) 등도 본 발명의 범위에 포함된다. 또한, 본 발명은 상기한 바와 같은 결합 특성을 갖는 한, 2개의 전체 길이의 경쇄 및 2개의 전체 길이의 중쇄를 가지는 완전한 형태뿐만 아니라 항체 분자의 기능적인 단편들을 포함한다. 항체 분자의 기능적인 단편이란 적어도 항원 결합 기능을 보유하고 있는 단편을 뜻하며 Fab, F(ab'), F(ab')2 및 Fv 등이 있다.In the present invention, an antibody may specifically refer to a monoclonal antibody, and in the present invention, a monoclonal antibody refers to a protein molecule that is directed to a single antigenic site (single epitope) and binds specifically to it. For the purpose of the present invention, the monoclonal antibody of the present invention binds specifically to B7-H3, a cell surface molecule of pure human pluripotent stem cells, quasi-human pluripotent stem cells, and cancer cells, and thus, pure human pluripotent stem cells, quasi-human pluripotent stem cells. It is a protein molecule that recognizes cell surface molecules of cells and cancer cells. The main region of an antibody that recognizes a specific epitope of an antigen and forms an antigen-antibody complex is the variable region of the heavy and light chains, especially the complementarity determining region (CDR). ) contributes to the formation of this complex, the present invention includes the variable region of the above-mentioned monoclonal antibody of the present invention, especially its chimeric antibody, humanized antibody, etc. including the CDR. For example, in one embodiment of the present invention, there is a mouse-human chimeric antibody (Chi-NPB40) having the heavy chain sequence of SEQ ID NO: 9 and the light chain sequence of SEQ ID NO: 10. In addition, the variable regions of the monoclonal antibodies of the present invention, especially CDRs, and IgG subclasses of IgG 1 to IgG 4 are also included in the scope of the present invention. The invention also includes functional fragments of the antibody molecule as well as intact forms having two full-length light chains and two full-length heavy chains, as long as they have the binding properties described above. Functional fragments of antibody molecules refer to fragments that possess at least an antigen-binding function and include Fab, F(ab'), F(ab')2, and Fv.
본 발명은 상기 항체를 포함하는 암의 예방 또는 치료용 약학 조성물에 관한 것이다. The present invention relates to a pharmaceutical composition for preventing or treating cancer containing the above antibody.
상기 암은 B7-H3를 세포 표면에 발현하는 암세포에 의하여 발생하는 암이라면 관계없이 상기 조성물을 예방 또는 치료 용도로서 사용할 수 있다. 예를 들면, 간암, 췌장암, 골육종, 피부암, 폐암, 인간배아암, 신경모세포종, 자궁암, 전립선암, 대장암, 위암, 담도암, 신장암, 방광암, 난소암, 뇌종양 등이 있다. 본 발명의 일 실시예에서는 인간배아암세포 NT2/D1, 간암 세포인 Huh7, HepG2, SNU449 세포주 및 췌장암 세포인 BxPC-3, PANC-1, SNU-213 세포주에 대해서 본 발명의 조성물을 처리하였을 때 항암 효과가 있는 것을 확인하였다. 다만, 이에 제한되지 않는다.The composition can be used for prevention or treatment regardless of whether the cancer is caused by cancer cells expressing B7-H3 on the cell surface. For example, liver cancer, pancreatic cancer, osteosarcoma, skin cancer, lung cancer, human embryonic cancer, neuroblastoma, uterine cancer, prostate cancer, colon cancer, stomach cancer, biliary tract cancer, kidney cancer, bladder cancer, ovarian cancer, brain tumor, etc. In one embodiment of the present invention, when the composition of the present invention is treated with the human embryonic cancer cell NT2/D1, liver cancer cell lines Huh7, HepG2, and SNU449 cell lines, and pancreatic cancer cell lines BxPC-3, PANC-1, and SNU-213 cell lines, anticancer activity occurs. It was confirmed that it was effective. However, it is not limited to this.
상기 암의 예방 및 치료 용도는 항체 의존적 세포 매개 세포 독성(antibody-dependent cellular cytotoxicity; 이하 ADCC) 기전에 의하는 것일 수도 있다. ADCC는 종양이나 바이러스 항원에 항체가 부착되면 Fc 감마 수용체(Fc gamma receptor; FcγR)을 발현하는 면역세포들에 의하여 매개되는 것으로, 항체가 부착된 세포를 인식하여 면역반응을 일으켜 항원을 제거한다. 예를 들면, 대식세포(macrophage)와 호중구(neutrophil)의 경우, Fc 영역을 인식하여 식세포작용(phagocytosis)을 통해 항원을 발현하는 세포를 제거하고, NK cell(natural killer cell)은 Fc 영역을 인식하여 그랜자임(granzyme)을 분비하여 항원을 발현하는 세포를 제거한다. 본 발명의 상기 약학 조성물은 앞서 언급한대로, B7-H3을 발현하는 암세포와 특이적으로 결합할 수 있어, IgG1의 형태로 제조한 항체를 조성물에 포함하여 처리 시 상기 ADCC 기전에 의하여 항체와 결합한 B7-H3 양성 암세포를 사멸시켜 암의 예방 및 치료 효과를 보일 수도 있다.The use for the prevention and treatment of cancer may be based on an antibody-dependent cellular cytotoxicity (ADCC) mechanism. ADCC is mediated by immune cells that express F c gamma receptor (F c γR) when an antibody attaches to a tumor or viral antigen. It recognizes the cell to which the antibody is attached, triggers an immune response, and kills the antigen. Remove. For example, macrophages and neutrophils recognize the Fc region and remove cells expressing antigens through phagocytosis, and NK cells (natural killer cells) recognize the Fc region. This secretes granzyme to remove cells expressing antigen. As mentioned above, the pharmaceutical composition of the present invention can specifically bind to cancer cells expressing B7-H3, and when treated by including an antibody prepared in the form of IgG1 in the composition, B7 bound to the antibody by the ADCC mechanism -It may be effective in preventing and treating cancer by killing H3-positive cancer cells.
상기 암의 예방 및 치료 용도는 면역 체크포인트 억제제 치료(immune checkpoint inhibitor therapy; 이하 ICI therapy) 기전에 의하는 것일 수도 있다. 암세포는 면역기능을 억제하거나 T 세포 면역관용(immunotolerance) 또는 면역편집(immune-editing) 등의 기전을 통해 면역세포에 의한 암세포 제거 기전을 회피한다. ICI는 회피기전 중 하나로서, 암세포 파괴를 방해하는 단백질을 세포 표면에 발현하여, 억제 면역체크포인트를 활성화시켜 면역세포의 공격을 회피한다. ICI therapy는 이러한 억제 면역체크포인트를 활성화시키는 단백질과 결합하는 항체가 해당 단백질의 기능을 억제함으로써, 면역세포에 의한 암세포 사멸 기전을 활성화하는 원리의 치료방법에 해당한다. 본 발명의 상기 약학 조성물은 앞서 언급한대로, 억제 면역체크포인트의 기능을 수행하는 B7-H3에 대해 특이적으로 결합할 수 있으므로, 상기 항체의 CDR을 포함하는 IgG4를 처리시, 항체 NK cell, 대식세포 및 호중구에 의한 암세포 사멸을 유도할 수도 있다.The use for the prevention and treatment of cancer may be based on an immune checkpoint inhibitor therapy (ICI therapy) mechanism. Cancer cells suppress immune function or avoid the cancer cell removal mechanism by immune cells through mechanisms such as T cell immunotolerance or immune-editing. As one of the evasion mechanisms, ICI expresses proteins on the cell surface that interfere with the destruction of cancer cells and activates inhibitory immune checkpoints to avoid attacks by immune cells. ICI therapy is a treatment method based on the principle that antibodies that bind to proteins that activate these inhibitory immune checkpoints inhibit the function of those proteins, thereby activating the cancer cell death mechanism by immune cells. As mentioned above, the pharmaceutical composition of the present invention can specifically bind to B7-H3, which performs the function of an inhibitory immune checkpoint, and therefore, when treated with IgG4 containing the CDR of the antibody, the antibody NK cell, It can also induce cancer cell death by phagocytes and neutrophils.
본 발명에서 상기 항체를 포함하는 암의 예방 또는 치료용 약학 조성물은 항체와 항암 물질을 접합한 것일 수 있고, 접합은 링커(linker) 서열 또는 항체에 결합하는 2차 항체(secondary antibody)에 의하여 이루어질 수도 있다. In the present invention, the pharmaceutical composition for preventing or treating cancer containing the antibody may be a conjugation of an antibody and an anti-cancer substance, and the conjugation may be achieved by a linker sequence or a secondary antibody that binds to the antibody. It may be possible.
본 발명에서 상기 2차 항체는 항원에 결합하는 다른 항체(1차 항체)의 아미노산 서열에 특이적으로 결합하는 항체를 의미하는 것으로, 표적 항원에 직접 결합하는 1차 항체와는 결합하는 대상에 차이가 있는 용어에 해당한다. 본 발명에서 링커 서열은 항암물질과 항체를 연결하기 위하여 사용되는 것으로, 예를 들면 링커 서열을 상기 항체의 Fc 서열에 부착하고, 링커 서열과 항암물질을 연결하여 항체-링커-항암물질(antibody-linker-drug) 형태로 제조하여 사용할 수 있다. 상기 링커 또는 상기 2차 항체는 모두 본 발명의 상기 항체와 항암 물질을 결합시키기 위한 용도로 사용하는 것으로, 항체와 약물을 접합시키기 위한 용도라면 2차 항체 서열 또는 링커 서열과 무관하게 당업자가 사용하는 방식에 의하여 사용이 가능하다. 본 발명의 일 실시예에서는 인간 IgG Fc 부위에 특이적으로 결합하는 항체에 듀오카마이신(duocamycin)이 접합된 α-HFc-CL-DMDM(AH-102DD, Moradec, 미국)과, auristatin이 접합된 α-HFc-CL-MMAF(AH-102AF, Moradec) 항체를 이용하였다.In the present invention, the secondary antibody refers to an antibody that specifically binds to the amino acid sequence of another antibody (primary antibody) that binds to an antigen, and differs from the primary antibody that binds directly to the target antigen in the object to which it binds. It corresponds to a term with . In the present invention, the linker sequence is used to connect an anticancer substance and an antibody. For example, the linker sequence is attached to the Fc sequence of the antibody, and the linker sequence and the anticancer substance are connected to form an antibody-linker-anticancer substance (antibody-linker-anticancer substance). It can be manufactured and used in the form of a linker-drug. The linker or the secondary antibody are all used to bind the antibody of the present invention to an anti-cancer substance, and if it is used to conjugate an antibody and a drug, the linker or the secondary antibody can be used by those skilled in the art regardless of the secondary antibody sequence or linker sequence. It can be used depending on the method. In one embodiment of the present invention, α-HFc-CL-DMDM (AH-102DD, Moradec, USA) conjugated with duocamycin to an antibody that specifically binds to the human IgG Fc region, and auristatin conjugated. α-HFc-CL-MMAF (AH-102AF, Moradec) antibody was used.
본 발명에서 상기 항암 물질은 당 분야에 공지된 항암 물질이면 제한 없이 사용될 수 있으며, 예를 들면, 엘로티닙(TARCEVA(TM), Genentech/OSI Pharm.), 보르테조밉(VELCADE(TM), Millenium Pharm.), 풀베스트란트(FASLODEX(TM), Astrazeneca), 수텐트(SUl 1248, Pfizer), 레트로졸(FEMARA(TM), Novartis), 이마티닙 메실레이트(GLEEVEC(TM), Novartis), PTK787/ZK 222584(Novartis), 옥살리플라틴(Eloxatin(TM), Sanofi), 5-FU(5-플루오로우라실), 류코보린, 라파마이신(Sirolimus, RAPAMUNE(TM), Wyeth), 라파티닙(GSK572016, GlaxoSmithKline), 로나파르닙(SCH 66336), 소라페닙(BAY43-9006, Bayer Labs.), 및 게피티닙(IRESSA(TM), Astrazeneca), AG 1478, AG 1571(SU 5271; Sugen), 티오테파 및 CYTOXAN(TM) 시클로스포스파미드와 같은 알킬화제; 부술판, 임프로술판 및 피포술판과 같은 알킬 술포네이트; 벤조도파, 카르보쿠온, 메투레도파, 및 우레도파; 알트레타민, 트리에틸렌멜라민, 트리에틸렌포스포르아미드, 트리에틸렌티오포스포르아미드 및 트리메틸로멜라민을 포함하는 에틸렌이민 및 메틸아멜라민; 아세토게닌(특히 불라타신 및 불라타시논); 캄토테신(합성 유기체 토포테칸을 포함); 브리오스타틴; 칼리스타틴; CC-1065(그것의 아도젤레신, 카르젤레신 및 비젤레신 합성 유기체를 포함); 크립토피신(특히 크립토피신 1 및 크립토피신 8); 돌라스타틴; 듀오카르마이신(합성 유사체, KW-2189 및 CB1-TM1을 포함); 엘레우테로빈; 판크라티스타틴; 사르코딕티인; 스포기스타틴; 질소머스타드, 예컨대 클로람부실, 클로르나파진, 클로로포스파미드, 에스트라무스틴, 이포스파미드, 메클로르에타민, 메클로르에타민 옥시드 히드로클로라이드, 멜팔란, 노벰비신, 펜에스테린, 프레드니무스틴, 트로포스파미드, 우라실 머스타드; 니트로소우레아, 예컨대 카르무스틴, 클로로조토신, 포테무스틴, 로무스틴, 니무스틴, 및 라니무스틴; 에네딘 항생제와 같은 항생제(예를 들어, 칼리키아미신, 특히 칼리키아미신 감마1I 및 칼리키아미신 오메가1I(Angew Chem Intl. Ed. Engl.(1994) 33:183-186); 다이네미신 A를 포함하는 다이네미신; 클로드로네이트와 같은 비스포스포네이트; 에스페라미신; 및 네오카르지노스타틴 발색단 및 관련된 색소단백질 에네딘 항생제 발색단), 아클라시노마이신, 악티노마이신, 안트라마이신, 아자세린, 블레오마이신, 칵티노마이신, 카라비신, 카르미노마이신, 카르지노필린, 클로모마이시니스, 닥티노마이신, 다우노루비신, 데토루비신, 6-디아조-5-옥소-L-노르류신, ADRIAMYCIN(TM) 독소루비신(모르폴리노-독소루비신, 시아노모르폴리노-독소루비신, 2-피롤리노-독소루비신 및 데옥시독소루비신을 포함), 에피루비신, 에소루비신, 이다루비신, 마르셀로마이신, 미토마이신 C와 같은 미토마이신, 마이코페놀산, 노갈라마이신, 올리보마이신, 페플로마이신, 포트피로마이신, 퓨로마이신, 쿠엘라마이신, 로도루비신, 스트렙토니그린, 스트렙토조신, 투베르시딘, 우베니멕스, 지노스타틴, 조루비신; 항대사물질, 예컨대 메토트렉세이트 및 5-플루오로우라실(5-FU); 폴산 유사체, 예컨대 데노프테린, 메토트렉세이트, 프테로프테린, 트리메트렉세이트; 퓨린 유사체, 예컨대 플루다라빈, 6-머캅토퓨린, 티아미프린, 티오구아닌; 피리미딘 유사체, 예컨대 안시타빈, 아자시티딘, 6-아자우리딘, 카르모푸르, 시타라빈, 디데옥시우리딘, 독시플루리딘, 에노시타빈, 플록스우리딘; 안드로겐, 예컨대, 칼우스테론, 드로모스타놀론 프로피오네이트, 에피티오스타놀, 메피티오스탄, 테스톨락톤; 아미노글루테티미드, 미토탄, 트릴로스탄과 같은 항-아드레날; 프롤린산과 같은 폴산 보충제; 아세글라톤; 알도포스파미드 글리코시드; 아미노에불린산; 에닐우라실; 암사크린; 베스트라부실; 비산트렌; 에다트락세이트; 데포파민; 데메콜신; 디아지쿠온; 엘포르미틴; 엘립티니움 아세테이트; 에포틸론; 에토글루시드; 갈륨 나이트레이트; 히드록시우레아; 렌티난; 로니다이닌; 메이탄시노이드, 예컨대 메이탄신 및 안사미토신; 미토구아존; 미톡산트론; 모피단몰; 니트라에린; 펜토스타틴; 페나메트; 피라루비신; 로속산트론; 포도피필린산; 2-에틸히드라지드; 프로카르바진; PSK(TM) 폴리사카라이드 복합체(JHS Natural Products, Eugene, Oreg.); 라족산; 리족신; 시조푸란; 스피로게르마늄; 테누아조산; 트리아지쿠온; 2,2',2"-트리클로로트리에틸아민; 트리코테센(특히 T-2 톡신, 베라쿠린 A, 로리딘 A 및 안구이딘); 우레탄; 빈데신; 다카르바진; 만노무스틴; 미토브로니톨; 미토락톨; 피포브로만; 가사이토신; 아라비노사이드("Ara-C"); 시클로포스파미드; 티오테파; 탁소이드, 예를 들어, TAXOL(TM) 파클리탁셀(Bristol-Myers Squibb Oncology, Princeton, N. J.), ABRAXANETM 무-크레모포르, 파클리탁셀의 알부민-유전자 조작된 나노입자 조제물(American Pharmaceutical Partners, Schaumberg, 111.), 및 TAXOTERE(TM) 도세탁셀(Rhone-Poulenc Rorer, Antony, France); 클로르안부실; GEMZAR(TM) 겜시타빈; 6-티오구아닌; 머캅토퓨린; 메토트렉세이트; 시스플라틴 및 카르보플라틴과 같은 백금 유사체; 빈블라스틴; 백금; 에토포시드(VP-16); 이포스파미드; 미톡산트론; 빈크리스틴; NAVELBINE(TM) 비노렐빈; 노반트론; 테니포시드; 에다트렉세이트; 다우노마이신; 아미노프테린; 젤로다; 이반드로네이트; CPT-11; 토포이소머라아제 억제제 RFS 2000; 디플루오로메틸오르니틴(DMFO); 레니노산과 같은 레티노이드; 카페시타빈; 및 어떤 상기의 약제학적으로 허용 가능한 염, 산 또는 유도체를 포함할 수 있다.In the present invention, the anticancer substance may be used without limitation as long as it is an anticancer substance known in the art, for example, erlotinib (TARCEVA(TM), Genentech/OSI Pharm.), bortezomib (VELCADE(TM), Millenium Pharm. .), fulvestrant (FASLODEX(TM), Astrazeneca), sutent (SUl 1248, Pfizer), letrozole (FEMARA(TM), Novartis), imatinib mesylate (GLEEVEC(TM), Novartis), PTK787/ ZK 222584 (Novartis), oxaliplatin (Eloxatin(TM), Sanofi), 5-FU (5-fluorouracil), leucovorin, rapamycin (Sirolimus, RAPAMUNE(TM), Wyeth), lapatinib (GSK572016, GlaxoSmithKline), lonafarnib (SCH 66336), sorafenib (BAY43-9006, Bayer Labs.), and gefitinib (IRESSA(TM), Astrazeneca), AG 1478, AG 1571 (SU 5271; Sugen), thiotepa, and CYTOXAN ( TM) alkylating agents such as cyclosphosphamide; alkyl sulfonates such as busulfan, improsulfan, and fiposulfan; benzodopa, carboquone, meturedopa, and uredopa; ethyleneimines and methylamelamines, including altretamine, triethylenemelamine, triethylenephosphoramide, triethylenethiophosphoramide, and trimethylomelamine; Acetogenins (especially bullatacin and bullatacinone); camptothecin (including the synthetic organism topotecan); bryostatin; kallistatin; CC-1065 (including its adozelesin, carzelesin and bizelesin synthetic organisms); Cryptophysins (especially cryptophysin 1 and cryptophycin 8); dolastatin; Duocarmycin (including synthetic analogs, KW-2189 and CB1-TM1); eleutherobin; Pancratistatin; sarcodictine; sfogistatin; Nitrogen mustards, such as chlorambucil, chlornaphazine, chlorophosphamide, estramustine, ifosfamide, mechlorethamine, mechlorethamine oxide hydrochloride, melphalan, novembicin, phenesterine, pred. Nimustine, troposphamide, uracil mustard; Nitrosoureas such as carmustine, chlorozotocin, fotemustine, lomustine, nimustine, and ranimustine; Antibiotics such as enedine antibiotics (e.g., calicheamicins, especially calicheamicin gamma1I and calicheamicin omega1I (Angew Chem Intl. Ed. Engl. (1994) 33:183-186); dynemycin A dynemycin, including; bisphosphonates such as clodronate; esperamicin; and the neocarzinostatin chromophore and the related chromoprotein enedine antibiotic chromophore), aclasinomycin, actinomycin, anthramycin, azaserine, and bleo Mycin, cactinomycin, carabicin, carminomycin, carzinophylline, Chlomomycinis, dactinomycin, daunorubicin, detorubicin, 6-diazo-5-oxo-L-norleucine, ADRIAMYCIN (TM) Doxorubicin (including morpholino-doxorubicin, cyanomorpholino-doxorubicin, 2-pyrrolino-doxorubicin, and deoxydoxorubicin), epirubicin, esorubicin, idarubicin, marcelomycin, mito Mitomycin such as mycin C, mycophenolic acid, nogalamycin, olivomycin, pephlomycin, portpyromycin, puromycin, quelamycin, rhodorubicin, streptonigreen, streptozocin, tubersidin, and Benimex, Genostatin, Zorubicin; antimetabolites such as methotrexate and 5-fluorouracil (5-FU); Folic acid analogs such as denopterin, methotrexate, pteropterin, trimetrexate; Purine analogs such as fludarabine, 6-mercaptopurine, thiamiprine, thioguanine; Pyrimidine analogs such as ancitabine, azacitidine, 6-azauridine, carmofur, cytarabine, dideoxyuridine, doxyfluridine, enocitabine, floxuridine; Androgens such as caluresterone, drmostanolone propionate, epithiostanol, mephithiostane, testolactone; Anti-adrenergics such as aminoglutethimide, mitotane, trilostane; Folic acid supplements such as prolinic acid; Aceglaton; aldophosphamide glycoside; aminoebulic acid; enyluracil; Amsacrine; Bestra Busil; bisantrene; edatroxate; Depopamine; demecolcine; diaziquon; lformitine; elliptinium acetate; epothilone; etoglucide; gallium nitrate; hydroxyurea; lentinan; ronidanin; Maytansinoids such as maytansine and ansamitocin; mitoguazone; mitoxantrone; Furdanmol; nitraerin; pentostatin; penamet; pyrarubicin; rosoxantrone; Podopiphyllic acid; 2-ethylhydrazide; procarbazine; PSK(TM) polysaccharide complex (JHS Natural Products, Eugene, Oreg.); Razoxan; Rizoxin; Sizofuran; Spirogermanium; Tenuazosan; triaziquon; 2,2',2"-trichlorotriethylamine; trichothecenes (especially T-2 toxin, veracurin A, loridine A and anguidine); urethane; vindesine; dacarbazine; mannomustine; mitobronitol; Mitolactol; pipobroman; gascytosine; arabinoside ("Ara-C"); cyclophosphamide; thiotepa; taxoids, such as TAXOL(TM) paclitaxel (Bristol-Myers Squibb Oncology, Princeton) , N.J.), ABRAXANET™ cremophor-free, albumin-engineered nanoparticle formulation of paclitaxel (American Pharmaceutical Partners, Schaumberg, 111.), and TAXOTERE(TM) docetaxel (Rhone-Poulenc Rorer, Antony, France); Chloranbucil; GEMZAR(TM) gemcitabine; 6-thioguanine; mercaptopurine; methotrexate; platinum analogues such as cisplatin and carboplatin; vinblastine; platinum; etoposide (VP-16); ifosfamide ; mitoxantrone; vincristine; NAVELBINE(TM) vinorelbine; novantrone; teniposide; edatrexate; daunomycin; aminopterin; Xeloda; ibandronate; CPT-11; topoisomerase inhibitor RFS 2000; difluoromethylornithine (DMFO); retinoids such as reninoic acid; capecitabine; and pharmaceutically acceptable salts, acids or derivatives of any of the foregoing.
항암 물질을 접합하여 약학 조성물을 사용하는 경우, 항체-약물 콘쥬게이트(antibody-drug conjugate; 이하 ADC) 방식의 작용기전에 의하여 암의 예방 또는 치료를 유도할 수도 있다. 상기 ADC는 항체에 약물을 접합시켜서 주입하는 방법으로서 항체에 특이적으로 결합하는 항원을 발현하는 세포에서 항체의 내부화(internalization)를 유도함으로써 세포 내부로 약물을 전달하여 세포 특이적으로 약물을 전달하는 원리의 치료방법에 해당한다. 본 발명의 일 실시예에서, 본 발명의 생쥐-인간 키메라 항체인 chi-NPB40 에 앞서 언급한 α-HFc-CL-DMDM(AH-102DD, Moradec, 미국)과, auristatin이 접합된 α-HFc-CL-MMAF(AH-102AF, Moradec) 항체를 접합시켜 세포주에 처리하였을 때, B7-H3를 발현하는 세포주 내부로 약물이 효과적으로 전달됨으로써, 세포 독성을 나타내는 것을 확인하였다. 다만 이에 제한되지 않고, 앞서 언급한 ADCC 및 ICI 방식에 의하여도 암세포의 사멸이 유도될 수도 있다.When using a pharmaceutical composition by conjugating an anti-cancer substance, the prevention or treatment of cancer may be induced by an antibody-drug conjugate (hereinafter referred to as ADC) mechanism of action. The ADC is a method of injecting a drug by conjugating it to an antibody, and delivers the drug into the cell by inducing internalization of the antibody in cells expressing an antigen that specifically binds to the antibody, thereby delivering the drug in a cell-specific manner. It corresponds to the principle treatment method. In one embodiment of the present invention, chi-NPB40, a mouse-human chimeric antibody of the present invention, is conjugated with the previously mentioned α-HFc-CL-DMDM (AH-102DD, Moradec, USA) and auristatin. When the CL-MMAF (AH-102AF, Moradec) antibody was conjugated and treated with the cell line, it was confirmed that the drug was effectively delivered into the cell line expressing B7-H3, showing cytotoxicity. However, the method is not limited to this, and death of cancer cells may also be induced by the ADCC and ICI methods mentioned above.
본 발명의 의약 조성물은 약학적 분야에서 통상의 방법에 따라 환자의 신체 내 투여에 적합한 단위투여형의 제제, 바람직하게는 단백질 의약품의 투여에 유용한 제제 형태로 제형화시켜 당 업계에서 통상적으로 사용하는 투여방법을 이용하여 정맥 내, 근육 내, 동맥 내, 골수 내, 수막강 내, 심실 내, 폐, 경피, 피하, 복강 내, 비강 내, 소화관내, 국소, 설 하, 질 내 또는 직장 경로를 포함하는 비경구투여 경로에 의하여 투여될 수 있으나, 이들에 한정되는 것은 아니다.The pharmaceutical composition of the present invention is formulated into a unit dosage form suitable for administration into the patient's body, preferably a preparation useful for the administration of protein drugs, according to a method commonly used in the pharmaceutical field, and is formulated as a preparation commonly used in the art. Methods of administration include intravenous, intramuscular, intraarterial, intramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, intragastric, topical, sublingual, intravaginal, or rectal routes. It may be administered via parenteral administration routes, but is not limited to these.
이러한 목적에 적합한 제형으로는 정제, 환제, 당제(dragee), 산제, 캡슐제, 시럽제, 용액제, 겔제, 현탁제, 에멀젼, 마이크로에멀젼 등의 다양한 경구투여용 제제 및 주사용 앰플과 같은 주사제, 주입제, 및 하이포스프레이(hypospray)와 같은 분무제 등과 같은 비경구투여용 제제가 바람직하다. 주사 또는 주입용 제제의 경우에는, 현탁액, 용액 또는 에멀션 등의 형태를 취할 수 있고, 현탁화제, 보존제, 안정화제 및/또는 분산제와 같은 제제화제를 포함할 수 있다. 또한, 상기 항체 분자는 사용 전에 적절한 무균 액체로 재조정하여 사용할 수 있는 건조된 형태로 제제화 될 수도 있다.Dosage forms suitable for this purpose include various preparations for oral administration such as tablets, pills, dragees, powders, capsules, syrups, solutions, gels, suspensions, emulsions, microemulsions, and injections such as ampoules for injection. Preparations for parenteral administration, such as injections and sprays such as hypospray, are preferred. In the case of preparations for injection or infusion, they may take the form of a suspension, solution, or emulsion, and may contain formulation agents such as suspending agents, preservatives, stabilizers, and/or dispersants. Additionally, the antibody molecules may be formulated in a dried form that can be reconstituted in an appropriate sterile liquid prior to use.
본 발명의 의약 조성물의 유효성분으로서 상기 항체는 사람을 포함하는 포유동물에 대해 하루에 0.01 내지 50 ㎎/kg 체중, 바람직하게는 0.1 내지 20㎎/kg 체중을 1회 또는 수회로 나누어 투여할 수 있다. 그러나, 유효성분의 실제 투여량은 예방 또는 치료하고자 하는 질환, 질환의 중증도, 투여경로, 환자의 체중, 연령 및 성별, 약제 조합, 반응 민감성 및 치료에 대한 내성/반응 등의 여러 관련 인자에 비추어 결정되어야 하는 것으로 이해해야 하며, 따라서, 상기 투여량은 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다.As an active ingredient of the pharmaceutical composition of the present invention, the antibody can be administered to mammals, including humans, at an amount of 0.01 to 50 mg/kg of body weight per day, preferably 0.1 to 20 mg/kg of body weight, once or divided into several times. there is. However, the actual dosage of the active ingredient must be determined in light of various related factors such as the disease to be prevented or treated, the severity of the disease, the route of administration, the patient's weight, age and gender, drug combination, reaction sensitivity, and resistance/response to treatment. It should be understood that the above dosages are to be determined and therefore do not limit the scope of the present invention in any way.
또한, 본 발명은 상기 항체를 생산하는 하이브리도마에 관한 것이다. Additionally, the present invention relates to hybridomas producing the above antibodies.
본 발명에서 하이브리도마는 하이브리도마 세포 또는 하이브리도마 세포주를 포함하는 의미로, 2개의 다른 종류의 세포를 인공적으로 융합시켜 만든 세포로, 폴리에틸렌글리콜(Polyethylene glycol, PEG) 등 세포융합을 일으키게 하는 물질이나 어떤 종의 바이러스를 사용하여 둘 이상의 동종 세포나 이종세포가 융합되어, 각기 다른 세포가 갖는 다른 기능을 하나의 세포 속에 통합시킨 세포 또는 세포주를 의미한다. 본 발명의 일 실시예에서 본 발명은 단일클론항체 NPB40을 생산하는 하이브리도마를 제공한다. 구체적으로, 본 발명의 하이브리도마는 2 ×106 개의 H9 준 인간만능줄기세포와 동 수의 H9 순수인간만능줄기세포를 마우스의 왼쪽과 오른쪽 발바닥에 각각 주입한 후, 상기 마우스의 왼쪽 오금에서 림파구를 분리하여 골수종 암세포와 융합하여 제조하였다. 단일클론항체를 분비하는 하이브리도마는 이를 시험관 내에서 또는 생체 내에서 대량으로 배양할 수 있다. In the present invention, hybridoma refers to hybridoma cells or hybridoma cell lines, which are cells created by artificially fusing two different types of cells, using polyethylene glycol (PEG) to cause cell fusion. It refers to a cell or cell line in which two or more homogeneous cells or heterogeneous cells are fused using a substance or a certain type of virus, and the different functions of each cell are integrated into one cell. In one embodiment of the present invention, the present invention provides a hybridoma producing the monoclonal antibody NPB40. Specifically, the hybridoma of the present invention is obtained by injecting 2 Lymphocytes were isolated and prepared by fusing them with myeloma cancer cells. Hybridomas that secrete monoclonal antibodies can be cultured in large quantities in vitro or in vivo.
상기 하이브리도마가 생산하는 단일클론항체는 정제하지 않고 사용할 수도 있으나, 최선의 결과를 얻기 위해서는 본 발명이 속하는 기술 분야에 잘 알려져 있는 방법에 따라 고순도(예컨대, 95% 이상)로 정제하여 사용하는 것이 바람직하다. 이러한 정제 기술로는, 예를 들어 겔 전기영동, 투석, 염 침전, 크로마토그래피 등의 정제 방법을 이용하여 배양 배지 또는 복수액(ascites fluid)으로부터 분리될 수 있다. 본 발명의 일 실시예에서는 단일클론항체의 대량 생산을 위해 하이브리도마의 배양 배지를 단백질 G-세파로오스 컬럼 크로마토그래피를 이용하여 정제하였다. 다만 상기 하이브리도마의 배양 및 정제 방법은 당 분야에 공지된 방법이라면 모두 가능한 것이고, 이에 제한되지 않는다.The monoclonal antibody produced by the hybridoma may be used without purification, but to obtain the best results, it should be purified to high purity (e.g., 95% or more) according to a method well known in the technical field to which the present invention pertains. It is desirable. These purification techniques include, for example, gel electrophoresis, dialysis, salt precipitation, chromatography, etc., for separation from the culture medium or ascites fluid. In one example of the present invention, for mass production of monoclonal antibodies, hybridoma culture medium was purified using protein G-Sepharose column chromatography. However, any method for cultivating and purifying the hybridoma can be any method known in the art, and is not limited thereto.
또한, 본 발명은 상기 항체를 포함하는 암 진단용 조성물에 관한 것이다. 전술한 바와 같이, 상기 항체는 암 세포의 B7-H3 단백질에 특이적으로 결합할 수 있다. 일반적으로, B7-H3 단백질은 다양한 암 세포에서 과발현되는 양상을 보이는 것이므로, 대상 세포에서 B7-H3 항원이 확인되면 해당 세포는 암 세포일 확률이 높다고 할 수 있다. 따라서, 상기 항체를 포함하는 조성물을 B7-H3를 발현하는 암세포에 처리하면 상기 항체는 암세포의 B7-H3 항원과 결합하여 항원-항체 복합체를 형성하게 되므로, 항체에 결합하는 암세포와 결합하지 않는 정상 세포로 분류할 수 있다.Additionally, the present invention relates to a composition for diagnosing cancer containing the above antibody. As described above, the antibody can specifically bind to the B7-H3 protein of cancer cells. In general, the B7-H3 protein is overexpressed in various cancer cells, so if the B7-H3 antigen is confirmed in the target cell, it can be said that there is a high probability that the cell is a cancer cell. Therefore, when a composition containing the antibody is treated with a cancer cell expressing B7-H3, the antibody binds to the B7-H3 antigen of the cancer cell to form an antigen-antibody complex, so it does not bind to the cancer cell that binds to the antibody. Can be classified into cells.
상기 암 진단용 조성물에 의하여 진단할 수 있는 암은 바람직하게는 B7-H3가 과발현하는 것으로 알려진 암, 예를 들면, 간암, 췌장암, 골육종, 피부암, 폐암, 인간배아암, 신경모세포종, 자궁암, 전립선암, 대장암, 위암, 담도암, 신장암, 방광암, 난소암, 뇌종양 등을 들 수 있다. 다만, 이에 제한되지 않는다.Cancers that can be diagnosed using the cancer diagnostic composition are preferably cancers known to overexpress B7-H3, such as liver cancer, pancreatic cancer, osteosarcoma, skin cancer, lung cancer, human embryonic cancer, neuroblastoma, uterine cancer, and prostate cancer. , colon cancer, stomach cancer, biliary tract cancer, kidney cancer, bladder cancer, ovarian cancer, brain tumor, etc. However, it is not limited to this.
또한, 본 발명은 분리된 시료에 상기 암 진단용 조성물을 처리하여, 상기 항체가 결합된 단백질을 검출하는 단계를 포함하는 암 진단을 위한 정보 제공 방법에 관한 것이다. 상기 항체가 단백질에 결합한 항원-항체 복합체가 검출되면, 암으로 진단받을 가능성이 높다고 판단할 수 있다. 예를 들어, 상기 시료는 체액, 조직, 세포, 전혈, 혈장, 혈청 등일 수 있고, 바람직하게는 혈청일 수 있으나, 이에 제한되는 것은 아니다.Additionally, the present invention relates to a method of providing information for cancer diagnosis, including the step of treating a separated sample with the cancer diagnosis composition and detecting a protein to which the antibody is bound. If an antigen-antibody complex in which the antibody binds to a protein is detected, it can be determined that there is a high possibility of being diagnosed with cancer. For example, the sample may be body fluid, tissue, cell, whole blood, plasma, serum, etc., preferably serum, but is not limited thereto.
상기 항원-항체 복합체 형성여부는 조직면역 염색, 방사능면역분석법(RIA), 효소면역분석법(ELISA), 웨스턴 블랏팅(Western Blotting), 면역침전 분석법(Immunoprecipitation Assay), 면역확산 분석법(Immunodiffusion assay), 보체 고정 분석법(Complement Fixation Assay), FACS, 단백질 칩(protein chip) 등이 사용 가능하다. 다만, 당 분야에 공지된 항원-항체 복합체 형성 여부를 판단할 수 있는 방법이라면 모두 사용 가능한 것이고, 이에 제한되지 않는다.The formation of the antigen-antibody complex can be determined by tissue immunostaining, radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA), Western blotting, immunoprecipitation assay, immunodiffusion assay, Complement fixation assay, FACS, protein chip, etc. can be used. However, any method known in the art that can determine whether an antigen-antibody complex is formed can be used, and is not limited thereto.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to examples.
실시예 1. 인간 만능줄기세포의 배양 및 순수 인간 만능줄기세포의 확립Example 1. Culture of human pluripotent stem cells and establishment of pure human pluripotent stem cells
1-1. 인간 준 만능줄기세포의 배양 1-1. Culture of human quasi-pluripotent stem cells
인간 준 만능줄기세포 H9은 Wicell Research Institute에서 제공한 프로토콜에 따라 기존에 기술된 방법에 따라 배양하였다(한국등록특허 제 2235935호). 먼저 임신한 CF1 생쥐의 배아 섬유아세포(mouse embryonic fibroblasts, MEFs)를 적출 및 배양하여 γ선 조사(γ-irradiation) 또는 mitomycin(10μg/ml) 처리한 후에 지지 세포(feeder cell)로 사용하였다. 20%(v/v) KOSR(knockout serum replacement), 1%(v/v) NEAA, 0.1mM β-mercaptoethanol, 100U/㎖ penicillin-G, 100μg/ml streptomycin, 8~12ng/ml bFGF를 첨가한 DMEM/F12(Invitrogen) 배지에서 배양하였고, 5~6일마다 계대 배양시에는 콜라게나아제 IV(1mg/ml)로 5분 간 처리 후에 황색 팁으로 적절한 크기로 자른 후 새로운 지지 세포 위에서 배양하였다. 그 결과 크고 편평하게 자라는 배양된 준 인간만능줄기세포 모양을 볼 수 있다(도 1A).Human quasi-pluripotent stem cells H9 were cultured according to a previously described method according to the protocol provided by Wicell Research Institute (Korean Patent No. 2235935). First, mouse embryonic fibroblasts (MEFs) from pregnant CF1 mice were extracted and cultured, treated with γ-irradiation or mitomycin (10 μg/ml), and then used as feeder cells. 20% (v/v) KOSR (knockout serum replacement), 1% (v/v) NEAA, 0.1mM β-mercaptoethanol, 100U/ml penicillin-G, 100μg/ml streptomycin, and 8~12ng/ml bFGF were added. They were cultured in DMEM/F12 (Invitrogen) medium, and when subcultured every 5 to 6 days, they were treated with collagenase IV (1 mg/ml) for 5 minutes, cut to an appropriate size with a yellow tip, and then cultured on new support cells. As a result, the shape of cultured quasi-human pluripotent stem cells can be seen growing large and flat (Figure 1A).
1-2. 순수 인간만능줄기세포의 확립1-2. Establishment of pure human pluripotent stem cells
이하 "순수 인간만능줄기세포(naive hPSC)"라는 용어는 준 인간만능줄기세포(primed hPSC) 와는 다르게 순수 인간만능줄기세포의 마커들을 발현하는 줄기세포를 의미하는 것으로서, ground 상태, 또는 intermediate, formative 같은 중간 상태의 줄기세포의 마커들을 발현하는 줄기세포를 의미한다. 준 인간만능줄기세포 H9(primed hPSC)를 이용하여 순수 인간만능줄기세포(naive hPSC)로 전환을 유도하여 배양하였으며 구체적인 프로토콜은 기존에 공지된 방법에 따랐다(한국등록특허 제 2235935호). 먼저 준 인간만능줄기세포 H9을 콜라게나아제 IV(1mg/ml)로 5분 간 처리하고, 황색 팁을 이용하여 적절한 크기로 자른 후에 미리 깔아둔 MEF 위에 옮겼다. 다음날 순수 hPSC 세포 유도 배지인 2iL/X/F/P 배지(1μM PD0325901, 3 μM CHIR99021, hLIF(20ng/ml), 4 μM XAV939, 10 μM Forskolin, 2 μM Purmorphamine, 20%(v/v) KOSR, DMEM/F12, 1%(v/v) L-glutamine, 1%(v/v) NEAA, 0.1mM β-mercaptoethanol, 1x penicillin-G, streptomycin)(Zimmerlin et al., 2016, Development 143:4368)에서 유도한 세포는 형성/중간 상태(formative/intermediate) 순수 인간만능줄기세포와 유사하며(Taei et al., 2020, Exp Cell Res. 389, 111924), 5%(v/v) 산소 배양기에서 계대 배양하며 준비하였다. 배양 후 3~5일이내에 돔 모양의 세포로 변하였고, 3~4일 간격으로 0.05%(v/v) 트립신-EDTA 또는 accutase(StemPro)를 이용하여 계대 배양하였다. 세포 생존을 높이기 위해 최초 계대 배양할 때만 10 μM Y-27632(Tocris)을 처리하였다. 그 결과 편평하게 자라는 배양된 준 인간만능줄기세포 모양과 비교하여 작은 돔 모양으로 자라는 순수 인간 만능줄기세포들을 볼 수 있다(도 1A). 최소 4~5회 계대 배양한 순수 인간만능줄기세포를 면역 실험에 이용하였다.Hereinafter, the term "naive human pluripotent stem cell (naive hPSC)" refers to stem cells that express markers of pure human pluripotent stem cells, unlike primed hPSCs, in the ground state, or intermediate, or formative. It refers to stem cells that express markers of stem cells in the same intermediate state. Quasi-human pluripotent stem cells (H9) (primed hPSC) were used to induce conversion into pure human pluripotent stem cells (naive hPSC) and cultured, and the specific protocol followed a previously known method (Korean Patent No. 2235935). First, semi-human pluripotent stem cells H9 were treated with collagenase IV (1 mg/ml) for 5 minutes, cut to an appropriate size using a yellow tip, and then transferred onto the previously laid MEF. The next day, 2iL/X/F/P medium, a pure hPSC cell induction medium (1 μM PD0325901, 3 μM CHIR99021, hLIF (20 ng/ml), 4 μM XAV939, 10 μM Forskolin, 2 μM Purmorphamine, 20% (v/v) KOSR , DMEM/F12, 1% (v/v) L-glutamine, 1% (v/v) NEAA, 0.1mM β-mercaptoethanol, 1x penicillin-G, streptomycin) (Zimmerlin et al., 2016, Development 143:4368 ) cells are similar to pure human pluripotent stem cells in a formal/intermediate state (Taei et al., 2020, Exp Cell Res. 389, 111924), and are grown in a 5% (v/v) oxygen incubator. It was prepared by subculturing. Within 3 to 5 days after culture, they turned into dome-shaped cells, and were subcultured using 0.05% (v/v) trypsin-EDTA or accutase (StemPro) at intervals of 3 to 4 days. To increase cell survival, 10 μM Y-27632 (Tocris) was treated only during the first subculture. As a result, pure human pluripotent stem cells can be seen growing in a small dome shape compared to the shape of cultured quasi-human pluripotent stem cells growing flat (Figure 1A). Pure human pluripotent stem cells subcultured at least 4 to 5 times were used for immune experiments.
1-3. 다양한 암세포의 배양 및 혈액세포의 분리1-3. Culture of various cancer cells and separation of blood cells
인간 배아암세포 NT-2와 2102EP를 10% FBS, 1%(v/v) NEAA, 100U/ml penicillin-G, 100㎍/㎖ streptomycin을 첨가한 DMEM 배지에서 배양하였다. 인간 말초혈액 단핵구 세포(human peripheral blood mononuclear cell, PBMC)는 Ficoll-Paque Plus method(GE Healthcare, Seoul, Korea)에서 제시한 방법을 이용하여 분리하였다.Human embryonic cancer cells NT-2 and 2102EP were cultured in DMEM medium supplemented with 10% FBS, 1% (v/v) NEAA, 100 U/ml penicillin-G, and 100 μg/ml streptomycin. Human peripheral blood mononuclear cells (PBMC) were isolated using the method suggested by Ficoll-Paque Plus method (GE Healthcare, Seoul, Korea).
1-4. FACS분석에 의한 세포표면 항원염색1-4. Cell surface antigen staining by FACS analysis
배양한 준(primed H9) 및 순수(naive H9) 인간만능줄기세포를 비교하기 위해 먼저 인간 준 만능줄기세포 마커로 알려진 SSEA3, SSEA4, TRA-1-60, TRA-1-81, CD24, CD90의 발현 여부를 FACS로 먼저 분석하였다. FACS 분석을 위해서 콜라게나아제 IV로 분리한 세포를 TrypLE(Invitrogen)을 이용하여 단일 세포로 떼어낸 후 40μm 여과기(strainer)를 통과시킨 후 한 시료 당 약 2~3 x 105세포를 사용하였다. SSEA3, SSEA4, TRA-1-60, TRA-1-81, CD24-PE, CD90-PE 항체를 4℃에서 30분간 반응시킨 후 PBA(1%(w/v) bovine serum albumin, 0.02%(w/v) NaN3 in PBS)로 2번 세척한 후, 1차 항체와 상응하는 항-래트 IgM-FITC, 항-마우스 IgM-FITC 또는 항-마우스 IgG-FITC(BD Biosciences)를 4℃에서 30분 간 더 반응시켰다. PBA로 2번 세척한 후, FACSCalibur와 Cell Quest software(BD sciences)를 이용하여 PI(propidium iodide)-음성 세포에 대해서 항체 결합 여부를 분석하였다. 또한 같은 방법으로 바탕 상태 순수 인간만능줄기세포 마커로 알려진 CD7, CD77, CD130 발현도 관찰하였다. 그 결과 준 인간만능줄기세포 마커들 중 CD90을 제외한 SSEA3, SSEA4, TRA-1-60, TRA-1-81, 및 CD24 발현이 순수 인간만능줄기세포에서는 감소함을 관찰하였고 순수 인간만능줄기세포 마커로 알려진 CD7과 CD77발현만 H9-2iL/X/F/P에서 증가하고 CD130은 증가하지 않은 순수 인간만능줄기세포가 유도되었음을 확인하였다(도 1B 및 1C). To compare cultured primed H9 and naive H9 human pluripotent stem cells, SSEA3, SSEA4, TRA-1-60, TRA-1-81, CD24, and CD90, known as human pluripotent stem cell markers, were first compared. Expression was first analyzed by FACS. For FACS analysis, cells separated with collagenase IV were separated into single cells using TrypLE (Invitrogen), passed through a 40μm strainer, and approximately 2-3 x 10 5 cells were used per sample. After reacting SSEA3, SSEA4, TRA-1-60, TRA-1-81, CD24-PE, and CD90-PE antibodies at 4°C for 30 minutes, PBA (1% (w/v) bovine serum albumin, 0.02% (w) /v) NaN 3 in PBS), then incubated with the primary antibody and the corresponding anti-rat IgM-FITC, anti-mouse IgM-FITC or anti-mouse IgG-FITC (BD Biosciences) at 4°C for 30 min. It was allowed to react for a further minute. After washing twice with PBA, antibody binding to PI (propidium iodide)-negative cells was analyzed using FACSCalibur and Cell Quest software (BD sciences). In addition, the expression of CD7, CD77, and CD130, known as background pure human pluripotent stem cell markers, was also observed using the same method. As a result, among the quasi-human pluripotent stem cell markers, the expression of SSEA3, SSEA4, TRA-1-60, TRA-1-81, and CD24, excluding CD90, was observed to decrease in pure human pluripotent stem cells, and pure human pluripotent stem cell markers It was confirmed that pure human pluripotent stem cells were induced, with only the known expression of CD7 and CD77 increased in H9-2iL/X/F/P and CD130 not increased (Figures 1B and 1C).
1-5. RNA-Seq분석을 통한 순수 인간만능줄기세포 확인1-5. Confirmation of pure human pluripotent stem cells through RNA-Seq analysis
Primed H9와 naive H9 세포의 총 RNA를 RNAiso PLUS(TAKARA) 시약을 이용해서 추출한 후, RNA-seq 전사체 분석(3BIGS, 경기도)을 통한 naive hPSC 연관된 유전자 31개의 발현을 비교하였다. 그 결과 primed hPSC에 비해 2iL/X/F/P 방법(Zimmerlin et al., 2016, Development 143:4368)으로 유도한 naive hPSC 세포에서 15개의 naive hPSC 연관 유전자(DPPA3/5, KLF2/4/5/17, TBX3, DNMT3L, NANOG, STAT3, GDF3, PRDM14, ESSRRB, GBX2, TFCP2L1, ZFP42/57)가 더 많이 증가하는 것을 관찰하여 순수 인간만능줄기세포(naive hPSC)가 잘 유도되었음을 확인하였다(도 2). Total RNA from primed H9 and naive H9 cells was extracted using RNAiso PLUS (TAKARA) reagent, and the expression of 31 naive hPSC-related genes was compared through RNA-seq transcriptome analysis (3BIGS, Gyeonggi-do). As a result, compared to primed hPSCs, 15 naive hPSC-related genes (DPPA3/5, KLF2/4/5) were expressed in naive hPSC cells induced by the 2iL/X/F/P method (Zimmerlin et al., 2016, Development 143:4368). /17, TBX3, DNMT3L, NANOG, STAT3, GDF3, PRDM14, ESSRRB, GBX2, TFCP2L1, ZFP42/57) was observed to increase more, confirming that pure human pluripotent stem cells (naive hPSC) were well induced (Figure 2).
실시예 2. NPB40 하이브리도마 제조Example 2. Preparation of NPB40 hybridoma
2-1. 순수 인간만능줄기세포에 특이적 항체 제조를 위한 면역주사2-1. Immune injection for producing specific antibodies to pure human pluripotent stem cells
순수 인간만능줄기세포에 대한 단일클론항체를 제조하기 위해 생쥐 발바닥에 만능줄기세포들을 면역주사하였으며 구체적인 프로토콜은 기존에 잘 기술된 방법에 따랐다(한국등록특허 제 2235935호). 먼저 6주 된 11 마리의 암컷 Balb/c 생쥐 오른쪽 발바닥에 2 × 106 개의 준 인간만능줄기세포 H9 세포를 -3, 0, 3, 6, 13, 17, 20, 21일에 주사하였고, 같은 수의 순수 인간만능줄기세포 H9 세포를 0, 3, 6, 13, 17, 20, 21일에 왼쪽 발바닥에 각각 주사하고 22일 되는 날 면역주사(immunization)된 마우스를 경추 탈골한 후 왼쪽 뒷발로부터 지방과 근육조직을 제거한 오금 림프절(popliteal lymph node)을 적출하여 표면이 울퉁불퉁한 비광택 슬라이드 글라스(frosted slide glass)를 이용하여 오금 림프절을 갈아서 단일세포화해서 준비하였다. 왼쪽 림프절 세포와 FO 미엘로마 세포를 1:5의 비율로 섞은 후, 혈청 없는 배지인 DMEM(Invitrogen)로 2번 세척한 후 1ml 50%(w/v) PEG1500(polyethylene glycol, BMS, seoul, Korea)를 1분당 25 방울이 섞이도록 넣어주었다. 1분 후 DMEM 배지를 1분간 3ml, 1분간 17ml, 1분간 20ml를 연속적으로 넣고, 5분 간 정치한 후 원심분리를 하여 세포를 모았다. 96웰 플레이트에 2 x 105 세포/웰을 20%(v/v) FBS, 1xHAT(Sigma-Aldrich), HCS(hybridoma cloning supplement)가 포함된 DMEM 배지에서 약 2주 간 배양하였고, 샌드위치 ELISA 방법을 이용하여 항체를 생산하는 하이브리도마 만을 선별하였다.To prepare a monoclonal antibody against pure human pluripotent stem cells, pluripotent stem cells were immunized into the footpads of mice, and the specific protocol followed a previously well-described method (Korean Patent No. 2235935). First, 2 × 10 6 quasi-human pluripotent stem cell H9 cells were injected into the right footpad of 11 6-week-old female Balb/c mice at -3, 0, 3, 6, 13, 17, 20, and 21 days, and the same Pure human pluripotent stem cell H9 cells were injected into the left sole on days 0, 3, 6, 13, 17, 20, and 21, respectively. On day 22, the immunized mouse was dislocated at the cervical spine and then injected from the left hind foot. The popliteal lymph node was extracted with fat and muscle tissue removed, and the popliteal lymph node was ground and single-celled using a frosted slide glass with a bumpy surface. After mixing left lymph node cells and FO myeloma cells at a ratio of 1:5, washing twice with DMEM (Invitrogen), a serum-free medium, and adding 1ml 50% (w/v) PEG1500 (polyethylene glycol, BMS, Seoul, Korea) ) was added at a rate of 25 drops per minute. After 1 minute, 3 ml of DMEM medium for 1 minute, 17 ml for 1 minute, and 20 ml for 1 minute were sequentially added, left to stand for 5 minutes, and then centrifuged to collect the cells. In a 96 -well plate, 2 Only hybridomas producing antibodies were selected using .
2-2. NPB40 하이브리도마의 클로닝2-2. Cloning of NPB40 hybridoma
항체가 발현되는 클론을 선발하기 위하여 샌드위치 ELISA(Sandwich Enzyme Linked Immunosorbent Assay) 방법을 사용하였다. 포획 항체(Capture antibody)인 항-마우스 IgG 또는 IgM 항체를 2 μg/ml로 코팅한 플레이트에 하이브리도마 배양액 100μl을 첨가해 37℃에서 1 시간 반응시키고, 다시 항-마우스 IgG-HRP 또는 항-마우스 IgM-HRP(horseradish peroxidase, Sigma-Aldrich)의 1/5,000 희석액과 1시간 더 반응시켰다. PBST(0.05%(v/v) Tween-20 in PBS)로 3회 세척하고, OPD(o-phenylenediamine, Sigma사)와 H2O2가 포함된 기질 용액을 첨가한 후 492nm에서 흡광도를 측정하여 항체를 생산하는 클론을 먼저 선발하였다. 다음으로 각 클론의 배양액을 상기 FACS 분석을 통해 먼저 순수 인간만능줄기세포에 결합하는 하이브리도마를 선발하였고 이들 중에서 준 인간만능줄기세포와 순수 인간만능줄기세포에 동시에 결합하는 하이브리도마를 33종을 추가로 선발하고 서브클로닝하여 안정적인 클론을 확보하였다. 이중 항체 NPB40은 순수와 준 인간만능줄기세포에 동시에 결합하는 IgG1과 κ사슬을 가진 단일클론항체로 분류하였으며(도 3), 이 특허에서 인식 항원과 특성을 분석하였다.The Sandwich Enzyme Linked Immunosorbent Assay (ELISA) method was used to select clones expressing antibodies. Add 100 μl of hybridoma culture medium to a plate coated with 2 μg/ml of anti-mouse IgG or IgM antibody, which is a capture antibody, and react at 37°C for 1 hour, then add anti-mouse IgG-HRP or anti- It was reacted with a 1/5,000 dilution of mouse IgM-HRP (horseradish peroxidase, Sigma-Aldrich) for another hour. Washed three times with PBST (0.05% (v/v) Tween-20 in PBS), added a substrate solution containing OPD (o-phenylenediamine, Sigma) and H 2 O 2 , and measured absorbance at 492 nm. Clones producing antibodies were selected first. Next, the culture medium of each clone was first selected through FACS analysis to select hybridomas that bind to pure human pluripotent stem cells. Among these, 33 types of hybridomas were selected that simultaneously bind to quasi-human pluripotent stem cells and pure human pluripotent stem cells. were additionally selected and subcloned to secure stable clones. The double antibody NPB40 was classified as a monoclonal antibody with IgG1 and κ chains that simultaneously binds to pure and sub-human pluripotent stem cells (Figure 3), and its recognition antigen and characteristics were analyzed in this patent.
실시예 3. NPB40의 각종 암세포와 정상세포에 대한 결합 특이성 분석Example 3. Analysis of binding specificity of NPB40 to various cancer cells and normal cells
단일클론 항체 NPB40의 각종 세포에 대한 결합 정도를 관찰하기 위해 플로우 사이토미트리(Flow Cytometry)를 수행하였다. 다양한 암세포를 0.05% Trypsin-EDTA(Welgene, Gyeongsan, Korea)로 떼어내고 10% fetal bovine serum(VWR)을 포함한 세포 배양 배지로 중화한 후, 세포를 40μm 스트레이너(SPL, Pocheon, Korea)에 통과시켜 단일세포로 준비하였다. 각 단일세포를 ml당 약 1 x 106개씩 PBA(1% bovine serum albumin, 0.02% NaN3 in PBS)에 섞은 후, 항체 NPB40을 4℃에서 30분간 반응시켰다. PBA로 2번 세척한 후, 1차 항체와 상응하는 항-마우스 IgG-FITC(Invitrogen)를 4℃에서 20분간 더 반응시켰다. PBA로 2번 세척한 후, FACSCalibur와 Cell Quest 소프트웨어(BD sciences)를 이용하여 PI(propidium iodide)-음성 세포에 대해서 항체 반응 여부를 분석하였다. 단일클론항체 NPB40은 단일클론항체 NPB40은 정상 인간 말초혈액단핵구(PBMC)에는 결합하지 않지만 4종의 인간 간암세포 4종의 인간 간암세포 Huh7, HepG2, SNU-387, SNU-449에 강하게 결합하였다(도 4A, 표 2) 또한 3종의 인간 췌장암세포인 BxPC-3, PANC-1, SNU-213, 2종의 인간 대장암세포인 Colo-205, HCT-116, 2종의 인간 골육종세포 U2OS, Saos2, 인간 피부암세포 A375, 인간 폐암세포인 A549, 인간 신경모세포종인 SH-SY5Y에도 모두 잘 결합하였다(도 4A, 표 2). 이런 결과는 NPB40 항체가 인식하는 항원이 인간 정상세포인 PBMC, hepatocyte 에는 미약하게 발현하지만 인간만능줄기세포, 배아암세포 그리고 간암을 포함하는 다양한 암세포에서 강하게 표면에서 발현하는 것을 의미한다. Flow cytometry was performed to observe the degree of binding of the monoclonal antibody NPB40 to various cells. Various cancer cells were removed with 0.05% Trypsin-EDTA (Welgene, Gyeongsan, Korea), neutralized with cell culture medium containing 10% fetal bovine serum (VWR), and then passed through a 40μm strainer (SPL, Pocheon, Korea). Prepared as single cells. Each single cell was mixed with PBA (1% bovine serum albumin, 0.02% NaN 3 in PBS ) at about 1 After washing twice with PBA, the primary antibody and the corresponding anti-mouse IgG-FITC (Invitrogen) were further reacted at 4°C for 20 minutes. After washing twice with PBA, PI (propidium iodide)-negative cells were analyzed for antibody reaction using FACSCalibur and Cell Quest software (BD sciences). The monoclonal antibody NPB40 did not bind to normal human peripheral blood mononuclear cells (PBMC), but strongly bound to four types of human liver cancer cells, Huh7, HepG2, SNU-387, and SNU-449 ( Figure 4A, Table 2) Additionally, three types of human pancreatic cancer cells, BxPC-3, PANC-1, and SNU-213, two types of human colon cancer cells, Colo-205 and HCT-116, and two types of human osteosarcoma cells, U2OS and Saos2. , human skin cancer cells A375, human lung cancer cells A549, and human neuroblastoma SH-SY5Y all bound well (Figure 4A, Table 2). These results mean that the antigen recognized by the NPB40 antibody is expressed weakly on human normal cells such as PBMC and hepatocyte, but is strongly expressed on the surface of various cancer cells, including human pluripotent stem cells, embryonic cancer cells, and liver cancer.
추가로 세포면역화학염색법(Immunocytochemistry)을 통해서도 일부 암세포에 대한 단일클론항체 NPB40의 표면 결합 여부를 확인하였다. 0.1% 젤라틴(Sigma, MA, U.S.A)로 37℃에서 30분간 코팅한 커버슬립(coverslip)에 세포를 깔고 5% CO2, 95% air가 공급되는 37℃ 배양기에서 배양하였다. 48-72시간 배양 후 세포를 phosphate buffered saline(PBS, pH 7.4)로 세척하고 2% paraformaldehyde(PFA; Sigma-Aldrich) 용액으로 상온에서 15분간 세포를 고정하였다. 1mM CaCl2, 0.5mM MgCl2을 포함한 PBS로 세포를 2회 세척 후 5% normal horse serum(Sigma-Aldrich)과 0.1% BSA(Bovine serum albumin, MP Biomedicals)를 포함한 용액으로 상온에서 1시간 블로킹 하였다. 그리고 NPB40의 항원을 염색하기 위해 5μg의 NPB40 항체를 넣고 4℃에서 빛을 차단한 채 12시간 동안 반응시켰다. PBS로 세척한 후, Dylight 488-conjugated anti-mouse IgG(Invitrogen)으로 실온에서 빛을 차단한 채 1시간 동안 반응시켰다. PBS로 세척한 후, DAPI(4,6-diamidino- 2-phenylindole)를 0.1% PBST(0.1%의 Triton-X-100을 포함하는 PBS)에 1:10,000 비율로 희석한 용액을 넣고 10분간 상온에서 반응시켜 세포핵을 염색했다. 단일클론항체 NPB40은 인간 배아암 세포주인 2102Ep 세포와 간암 암세포주인 Huh7, SNU-449 세포의 표면에 잘 결합하는 것을 볼 수 있다(도 4B).In addition, surface binding of the monoclonal antibody NPB40 to some cancer cells was confirmed through immunocytochemistry. Cells were spread on a coverslip coated with 0.1% gelatin (Sigma, MA, USA) at 37°C for 30 minutes and cultured in an incubator at 37°C supplied with 5% CO 2 and 95% air. After culturing for 48-72 hours, the cells were washed with phosphate buffered saline (PBS, pH 7.4) and fixed with 2% paraformaldehyde (PFA; Sigma-Aldrich) solution for 15 minutes at room temperature. Cells were washed twice with PBS containing 1mM CaCl2 and 0.5mM MgCl2, and then blocked for 1 hour at room temperature with a solution containing 5% normal horse serum (Sigma-Aldrich) and 0.1% BSA (Bovine serum albumin, MP Biomedicals). And to stain the NPB40 antigen, 5 μg of NPB40 antibody was added and reacted at 4°C for 12 hours while blocking light. After washing with PBS, the reaction was performed with Dylight 488-conjugated anti-mouse IgG (Invitrogen) for 1 hour at room temperature while blocking light. After washing with PBS, a solution of DAPI (4,6-diamidino-2-phenylindole) diluted at a ratio of 1:10,000 in 0.1% PBST (PBS containing 0.1% Triton-X-100) was added and incubated at room temperature for 10 minutes. The reaction was carried out and the cell nuclei were stained. The monoclonal antibody NPB40 can be seen to bind well to the surface of 2102Ep cells, a human embryonic cancer cell line, and Huh7 and SNU-449 cells, a liver cancer cell line (Figure 4B).
Figure PCTKR2023003515-appb-img-000002
Figure PCTKR2023003515-appb-img-000002
실시예 4. 단일클론항체 NPB40이 인식하는 항원 동정Example 4. Identification of antigen recognized by monoclonal antibody NPB40
4-1. 단일클론항체 NPB40이 인식하는 세포 표면 단백질 분자의 확인4-1. Identification of cell surface protein molecules recognized by monoclonal antibody NPB40
인간 배아 암세포주 NT2/D1 표면의 바이오틴표지(biotinylation)는 EZ-Link Sulfo-NHS-LC-Biotin(Thermo Scientific)에서 제시한 프로토콜을 약간 수정하여 수행하였다. 100 밀리미터 세포배양 플레이트에 배양한 인간 배아 암세포 NT2/D1을 PBS(pH 7.4)로 2회 세척한 후 0.5mg의 바이오틴이 녹아있는 찬 PBS(pH 8.0) 5ml를 넣고, 4℃에서 30분간 반응시켰다. 찬 PBS(pH 8.0)로 3회 세척 한 후 바이오틴 표지된 세포는 용해 완충액(25mM Tris-HCl, pH 7.5, 250mM NaCl, 5mM EDTA, 1% Nonidet P-40, 2μg/ml Aprotinin, 100μg/ml PMSF(phenylmethylsulphonyl fluoride), 5μg/ml Leupeptin, 1mM NaF, 1mM Na3VO4)를 이용하여 4℃에서 30분간 반응시킨 후, 12,000 rpm 속도로 40분간 원심 분리해서 핵을 제거한 후 사용하기 전까지 -70℃에서 보관하였다. Protein G 아가로스(Amicogen, Jinju, Korea)에 비특이적으로 결합하는 단백질을 제거하기 위해서, 약 2.0X107개 세포의 세포 용해물에 20μl Protein G 아가로스를 넣고 4℃에서 2시간 동안 반응시킨 후, 원심분리를 통해 그 Protein G 아가로스를 회수하여 용해 완충액에 5회 세척한 샘플을 음성 대조군으로 사용하였다. 단일클론항체 NPB40에 의해 인식되는 항원을 면역침강 하기 위해서 Protein G 아가로스에 비특이적으로 결합하는 단백질을 제거한 세포 용해물에 항체 4 μg을 넣고 4℃에서 12시간 동안 반응시킨 후 20 μl Protein G 아가로스를 넣고 4℃에서 4시간 동안 더 반응시켰다. 면역 침강된 면역 혼합체를 용해 완충액에 5회 세척하고, 항체에 결합된 항원을 용출하기 위해 5X 샘플 완충액를 넣고, 100℃에서 10분간 끓였다. 음성 대조군 단백질과 용출된 단백질을 10% SDS-PAGE(sodium dodecyl sulfate polyacrylamide gel electrophoresis)를 통해 분리한 후 나이트로 셀룰로오스 막으로 웨스턴 블랏팅 하였다. 이 막을 5% 탈지분유를 이용하여 실온에서 1시간 동안 블로킹하였다. 0.1% TBST(Tris-Buffered Saline, 0.1% Tween) 로 3번 세척한 후, 스트렙타비딘(streptavidin)-HRP(SA-HRP, GE healthcare) 를 실온에서 1시간 반응시켰다. 0.1% TBST로 3번 세척하고, 바이오틴이 표지된 단백질을 ECL 검출 키트(Advansta)로 확인하였다. 그 결과, 단일클론 항체 NPB40은 인간 배아암세포 NT2/D1의 세포 용해물에서 약 120kDa 약한 단백질과 약 110 kDa 강한 단백질이 면역 침강되어 염색되는 것을 확인하였다(도 5A). Biotinylation of the surface of the human embryonic cancer cell line NT2/D1 was performed by slightly modifying the protocol presented by EZ-Link Sulfo-NHS-LC-Biotin (Thermo Scientific). Human embryonic cancer cells NT2/D1 cultured on a 100 mm cell culture plate were washed twice with PBS (pH 7.4), then 5 ml of cold PBS (pH 8.0) containing 0.5 mg of biotin dissolved in them was added, and reacted at 4°C for 30 minutes. . After washing three times with cold PBS (pH 8.0), biotin-labeled cells were lysed in lysis buffer (25mM Tris-HCl, pH 7.5, 250mM NaCl, 5mM EDTA, 1% Nonidet P-40, 2μg/ml Aprotinin, 100μg/ml PMSF). (phenylmethylsulphonyl fluoride), 5μg/ml Leupeptin, 1mM NaF, 1mM Na 3 VO 4 ), reacted at 4°C for 30 minutes, centrifuged at 12,000 rpm for 40 minutes to remove nuclei, and stored at -70°C before use. It was stored in . To remove proteins that non-specifically bind to Protein G agarose (Amicogen, Jinju, Korea), 20 μl Protein G agarose was added to the cell lysate of about 2.0 The Protein G agarose was recovered through centrifugation, and a sample washed five times in lysis buffer was used as a negative control. To immunoprecipitate the antigen recognized by the monoclonal antibody NPB40, 4 μg of antibody was added to the cell lysate from which proteins that non-specifically bind to Protein G agarose were removed, reacted at 4°C for 12 hours, and then added to 20 μl Protein G agarose. was added and reacted at 4°C for further 4 hours. The immunoprecipitated immune mixture was washed five times in lysis buffer, 5X sample buffer was added to elute the antigen bound to the antibody, and boiled at 100°C for 10 minutes. The negative control protein and the eluted protein were separated through 10% SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) and then subjected to Western blotting using a nitrocellulose membrane. This membrane was blocked using 5% skim milk powder for 1 hour at room temperature. After washing three times with 0.1% TBST (Tris-Buffered Saline, 0.1% Tween), streptavidin-HRP (SA-HRP, GE healthcare) was reacted at room temperature for 1 hour. After washing three times with 0.1% TBST, the biotin-labeled protein was confirmed using an ECL detection kit (Advansta). As a result, it was confirmed that the monoclonal antibody NPB40 immunoprecipitated and stained a weak protein of approximately 120 kDa and a strong protein of approximately 110 kDa in cell lysates of human embryonic cancer cells NT2/D1 (Figure 5A).
4-2. 단일클론항체 NPB40에 의해 면역 침강된 항원의 동정4-2. Identification of immunoprecipitated antigens by monoclonal antibody NPB40
단일클론항체 NPB40에 의해 면역침강된 단백질을 포함하는 폴리아크릴아마이드 젤을 PageBlue Protein Staining Solution(Thermo Scientific)으로 공급자의 프로토콜에 따라 염색하였다(도 5B). 젤에서 단일클론항체 NPB40에 의해 면역침강된 단백질로 추정되는 110kDa 위치에 염색된 단백질 밴드를 잘라 LC-MS/MS(Liquid Chromatography with Tandem Mass Spectrometry) 분석을 의뢰하였다(ProteomeTech, Seoul, Korea). 분석이 완료된 매스 스펙트럼으로부터 단백질 동정을 위하여 UniProt 데이터베이스를(https://www.uniprot.org/) 이용하였다. 그 결과, 단백질의 아미노산 서열이 B7-H3(CD276, PD-L3)와 일부 일치하는 것을 확인하였다(도 5C; 서열번호 11). 밑줄 친 아미노산은 실제로 질량분석기를 통해 확인한 아미노산 서열을 표시한 것으로 B7-H3와 26개의 아미노산이 일치하는 것을 알 수 있다.Polyacrylamide gels containing proteins immunoprecipitated by the monoclonal antibody NPB40 were stained with PageBlue Protein Staining Solution (Thermo Scientific) according to the supplier's protocol ( Fig. 5B ). The stained protein band at the 110 kDa position, presumed to be the protein immunoprecipitated by the monoclonal antibody NPB40, was cut from the gel and submitted for LC-MS/MS (Liquid Chromatography with Tandem Mass Spectrometry) analysis (ProteomeTech, Seoul, Korea). The UniProt database (https://www.uniprot.org/) was used to identify proteins from the analyzed mass spectrum. As a result, it was confirmed that the amino acid sequence of the protein partially matches that of B7-H3 (CD276, PD-L3) (Figure 5C; SEQ ID NO. 11). The underlined amino acids actually represent the amino acid sequence confirmed through mass spectrometry, and it can be seen that 26 amino acids match B7-H3.
4-3. 동정된 NPB40 항원의 검증4-3. Validation of identified NPB40 antigen
단일클론항체 NPB40의 항원 단백질이 B7-H3인지 확인하기 위해 상업적으로 판매되고 있는 B7-H3에 대한 항체, 유전자 발현 벡터, siRNA를 이용하여 면역침강법, 웨스턴 블라팅법, RNA 간섭작용에 의한 유전자 녹다운법, 플로우 사이토미트리 분석을 수행하였다. 단일클론항체 NPB40이 면역침강 시킨 단백질이 B7-H3인지 확인하기 위해 토끼 항-B7-H3 다클론항체(Sino Biological)를 구입하여 면역침강법과 웨스턴 블랏팅을 수행하는 데 사용하였다. 상기 실시예 4-1에서 서술한 방법으로 바이오틴-표지된 세포 용출액을 준비하고, 이 용출액을 상기 서술한 바와 동일하게 단일클론항체 NPB40과 토끼 항-B7-H3 다클론항체로 면역침강 하였다. 이후, 항체를 넣지 않은 음성 대조군 단백질(No Ab)과 용출된 단백질을 10% SDS-PAGE를 통해 분리하고 나이트로 셀룰로오스 막으로 옮겨 웨스턴 블랏팅을 수행하였다. 이 막을 5% 탈지분유를 이용하여 실온에서 1시간 동안 블로킹하였다. 0.1% TBST로 3번 세척 한 후, 스트렙타비딘-HRP(SA-HRP) 를 넣고 실온에서 1시간 반응시켰다. 0.1% TBST로 3번 세척하고, 바이오틴이 표지된 단백질을 ECL 검출 키트로 확인하였다. 그 결과, 단일클론항체 NPB40의 면역침강체(immunoprecipitant)가 공지의 토끼 항-B7-H3 다클론항체에 의해 면역 침강된 세포표면 B7-H3와 동일하게 110kDa에서 검출되었다(도 6A). To confirm that the antigen protein of the monoclonal antibody NPB40 is B7-H3, gene knockdown by immunoprecipitation, Western blotting, and RNA interference was performed using commercially available antibodies against B7-H3, gene expression vectors, and siRNA. Methods, flow cytometry analysis was performed. To confirm that the protein immunoprecipitated by monoclonal antibody NPB40 was B7-H3, a rabbit anti-B7-H3 polyclonal antibody (Sino Biological) was purchased and used to perform immunoprecipitation and Western blotting. Biotin-labeled cell eluate was prepared by the method described in Example 4-1 above, and this eluate was immunoprecipitated with monoclonal antibody NPB40 and rabbit anti-B7-H3 polyclonal antibody in the same manner as described above. Afterwards, the negative control protein without antibody (No Ab) and the eluted protein were separated through 10% SDS-PAGE and transferred to a nitrocellulose membrane for Western blotting. This membrane was blocked for 1 hour at room temperature using 5% skim milk powder. After washing three times with 0.1% TBST, streptavidin-HRP (SA-HRP) was added and reacted at room temperature for 1 hour. Washed three times with 0.1% TBST, and biotin-labeled proteins were confirmed using an ECL detection kit. As a result, the immunoprecipitant of the monoclonal antibody NPB40 was detected at 110 kDa, identical to the cell surface B7-H3 immunoprecipitated by the known rabbit anti-B7-H3 polyclonal antibody (Figure 6A).
또한, 단일클론항체 NPB40이 면역 침강시킨 110kDa의 세포 표면 단백질이 B7-H3인지 확인하기 위해 상기 서술한 바와 동일하게 세포 용출액을 단일클론항체 NPB40과 토끼 항-B7-H3 다클론항체(α-B7-H3)로 면역 침강하였다. 항체를 넣지 않은 음성 대조군 단백질(No Ab)과 용출된 단백질, 세포의 용출액(whole lysate)을 10% SDS-PAGE를 통해 분리하고 나이트로 셀룰로오스 막으로 옮겨 웨스턴 블랏팅을 수행하였다. 이 막을 5% 탈지분유를 이용하여 실온에서 1시간 동안 블로킹하였다. 0.1% TBST로 3번 세척 한 후, 공지의 토끼 항-B7-H3 다클론항체(α-B7-H3) 를 넣고 4℃에서 12시간 동안 반응시켰다. 0.1% TBST로 3번 세척 한 후 항-토끼 IgG-HRP(1:15,000; Bethyl Laboratories)를 실온에서 1시간 동안 더 반응시켰다. 0.1% TBST로 3번 세척한 후, ECL 검출키트(GE healthcare)로 확인하였다. 그 결과, 단일클론항체 NPB40과 토끼 항-B7-H3 다클론항체(α-B7-H3) 에 의해 면역 침강된 110kDa의 단백질이 토끼 항-B7-H3 다클론항체에 의해 인식됨을 확인할 수 있어 두 항체가 B7-H3에 결합하여 면역침강시킨다는 것을 확인하였다(도 6B). In addition, to confirm that the 110 kDa cell surface protein immunoprecipitated by monoclonal antibody NPB40 was B7-H3, the cell lysate was stained with monoclonal antibody NPB40 and rabbit anti-B7-H3 polyclonal antibody (α-B7) in the same manner as described above. -H3) was immunoprecipitated. Negative control protein without antibody (No Ab), eluted protein, and cell lysate (whole lysate) were separated through 10% SDS-PAGE and transferred to a nitrocellulose membrane for Western blotting. This membrane was blocked for 1 hour at room temperature using 5% skim milk powder. After washing three times with 0.1% TBST, a known rabbit anti-B7-H3 polyclonal antibody (α-B7-H3) was added and reacted at 4°C for 12 hours. After washing three times with 0.1% TBST, anti-rabbit IgG-HRP (1:15,000; Bethyl Laboratories) was added for another hour at room temperature. After washing three times with 0.1% TBST, it was confirmed with an ECL detection kit (GE healthcare). As a result, it was confirmed that the 110 kDa protein immunoprecipitated by the monoclonal antibody NPB40 and the rabbit anti-B7-H3 polyclonal antibody (α-B7-H3) was recognized by the rabbit anti-B7-H3 polyclonal antibody. It was confirmed that the antibody bound to B7-H3 and immunoprecipitated it (Figure 6B).
단일클론항체 NPB40가 B7-H3를 직접 인식하여 면역침강시키는 것인지 간접 인식하여 침강시키는 것인지 구별하기 위해 B7-H3 유전자 발현 벡터 pCMV3-B7H3-His(Sino Biological)를 구입하여 인간 배아 신장 세포 HEK293T에서 His tag이 달린 재조합 B7-H3를 과발현시키고, 이 세포의 용해물을 마우스 항-His 단일클론항체(Invitrogen)와 토끼 항-B7-H3 다클론항체(α-B7-H3)를 사용해 면역 침강과 웨스턴 블랏을 수행하였다. 인간 배아 신장 세포 HEK293T에서 B7-H3를 과발현하기 위해 6-웰의 세포배양용 플레이트에 웰당 3.5X105개 HEK293T 세포를 24시간 배양하고, 공지의 pCMV3-B7-H3-His 벡터 DNA 1μg을 PEI(Polyetherimide) 3μg과 섞어 상온에서 20분간 반응한 혼합물을 세포 배양 배지에 첨가해 트랜스펙션 했다. 이후 48시간 추가 배양한 세포로부터 상기 실시예 4-1에서 서술한 용해 방법으로 세포 용해물을 준비하였다. 이 세포 용해물을 상기 서술한 바와 동일하게 단일클론항체 NPB40과 항-His 항체, 항-B7-H3 항체(α-B7-H3)로 면역 침강 후 항체를 넣지 않은 음성 대조군 단백질(No Ab)과 용출된 단백질을 10% SDS-PAGE를 이용하여 분리한 후 나이트로 셀룰로오스 막으로 옮겼다. 이 막은 5% 탈지분유를 이용하여 실온에서 1시간 동안 블로킹을 하였다. 0.1% TBST로 3번 세척한 후, 공지의 마우스 항-His 단일클론항체 또는 토끼 항-B7-H3 다클론 항체(α-B7-H3) 를 4℃에서 12시간 반응시켰다. 0.1% TBST로 3번 세척 한 후, 항-마우스 IgG-HRP(1:10,000; Millipore) 또는 항-토끼 IgG-HRP(1:15,000)를 실온에서 1시간 동안 더 반응시켰다. 0.1% TBST로 3번 세척한 후, ECL 검출 키트로 확인하였다. 그 결과 단일클론항체 NPB40과, 마우스 항-His 단일클론항체, 토끼 항-B7-H3 항체(α-B7-H3)에 의해 면역 침강된 각각의 단백질 모두 공지의 항-His 항체(도 6C)와 항-B7-H3 항체(α-B7-H3, 도 6D)에 의해 인식됨을 관찰할 수 있었다. 이 결과는 본 발명의 단일클론항체 NPB40이 인간 배아암세포주 NT2/D1의 표면에 존재하는 B7-H3 단백질을 인식하는 항체임을 검증하는 것이다.To distinguish whether the monoclonal antibody NPB40 directly recognizes and immunoprecipitates B7-H3 or indirectly recognizes and precipitates it, the B7-H3 gene expression vector pCMV3-B7H3-His (Sino Biological) was purchased and His was expressed in human embryonic kidney cells HEK293T. Tagged recombinant B7-H3 was overexpressed, and the lysate of these cells was subjected to immunoprecipitation and Western immunoprecipitation using mouse anti-His monoclonal antibody (Invitrogen) and rabbit anti-B7-H3 polyclonal antibody (α-B7-H3). Blots were performed. To overexpress B7-H3 in human embryonic kidney cells HEK293T, 3.5 Polyetherimide) and reacted for 20 minutes at room temperature. The mixture was added to the cell culture medium and transfected. Afterwards, cell lysates were prepared from cells cultured for an additional 48 hours using the lysis method described in Example 4-1. This cell lysate was immunoprecipitated with monoclonal antibody NPB40, anti-His antibody, and anti-B7-H3 antibody (α-B7-H3) in the same manner as described above, and then subjected to negative control protein (No Ab) containing no antibody. The eluted proteins were separated using 10% SDS-PAGE and then transferred to a nitrocellulose membrane. This membrane was blocked for 1 hour at room temperature using 5% skim milk powder. After washing three times with 0.1% TBST, a known mouse anti-His monoclonal antibody or rabbit anti-B7-H3 polyclonal antibody (α-B7-H3) was reacted at 4°C for 12 hours. After washing three times with 0.1% TBST, anti-mouse IgG-HRP (1:10,000; Millipore) or anti-rabbit IgG-HRP (1:15,000) was further reacted at room temperature for 1 hour. After washing three times with 0.1% TBST, it was confirmed with an ECL detection kit. As a result, each protein immunoprecipitated by the monoclonal antibody NPB40, mouse anti-His monoclonal antibody, and rabbit anti-B7-H3 antibody (α-B7-H3) was all immunoprecipitated with a known anti-His antibody (Figure 6C). It was observed that it was recognized by anti-B7-H3 antibody (α-B7-H3, Figure 6D). This result verifies that the monoclonal antibody NPB40 of the present invention recognizes the B7-H3 protein present on the surface of the human embryonic cancer cell line NT2/D1.
실시예 5. 단일클론항체 NPB40의 기능 분석Example 5. Functional analysis of monoclonal antibody NPB40
5-1. 간암세포주에서 B7-H3 녹다운(Knockdown) 및 세포 부착능 측정5-1. Measurement of B7-H3 knockdown and cell adhesion ability in liver cancer cell lines
단일클론항체 NPB40의 항원인 B7-H3가 간암세포의 부착, 생존 및 성장에 어떻게 영향을 미치는지 분석하기 위해서 B7-H3 유전자를 표적하는 siRNA를 이용하여 간암세포주에서 유전자 녹다운을 진행하였다. B7-H3에 대한 siRNA(Bioneer, Daejeon, Korea)를 구매하여 간암세포주 Huh7, HepG2, SNU-387, SNU-449에 트랜스펙션 했다. 50nM의 음성 대조군(negative control) siRNA(siCon; Genolution, Seoul, Korea)와 B7-H3에 대한 siRNA(siB7-H3), Lipofectamine RNAiMAX(Invitrogen)를 각각 TOM(Welgene, Gyeongsan, Korea)에 희석하고 5분간 상온에 두었다. 이후, 각각의 siRNA 희석액과 RNAiMAX 희석액을 섞어 20분간 상온에서 반응시켰다. 6웰 플레이트에 웰당 1.5X105 - 3.0X105 개의 간암세포주를 깔고 siRNA-RNAiMAX 희석액을 넣어 24시간 동안 배양했다. 24시간 후, 동일한 방법으로 두 번째 트랜스펙션을 반복하고 48시간을 추가적으로 배양했다. 첫 번째 트랜스펙션으로부터 72시간 후, 0.05% Trypsin-EDTA(Welgene, Gyeongsan, Korea)로 떼어내고 10% fetal bovine serum(VWR)을 포함한 세포 배양 배지로 중화한 후, 상기 실시예 4-1의 세포 용해 완충액으로 용해한 다음 5X 샘플 완충액를 넣고, 100℃에서 10분간 끓였다. siCon 단백질과 siB7-H3 단백질을 10% SDS-PAGE(sodium dodecyl sulfate polyacrylamide gel electrophoresis)를 통해 분리한 후 나이트로 셀룰로오스 막으로 웨스턴 블랏팅하였다. 그 결과 siRNA로 녹다운한 간암세포 Huh7, HepG2, SNU387, SNU449에서 음성대조군으로 사용하는 GAPDH에 비해 B7-H3 단백질이 각각 77%, 100%, 98%, 93% 감소하는 것을 볼 수 있고 이것은 녹다운이 효과적으로 진행되었음을 말해준다(도 7A). To analyze how B7-H3, an antigen of the monoclonal antibody NPB40, affects the adhesion, survival, and growth of liver cancer cells, gene knockdown was performed in liver cancer cell lines using siRNA targeting the B7-H3 gene. siRNA for B7-H3 (Bioneer, Daejeon, Korea) was purchased and transfected into liver cancer cell lines Huh7, HepG2, SNU-387, and SNU-449. 50 nM negative control siRNA (siCon; Genolution, Seoul, Korea), siRNA against B7-H3 (siB7-H3), and Lipofectamine RNAiMAX (Invitrogen) were each diluted in TOM (Welgene, Gyeongsan, Korea) and 5 It was left at room temperature for a minute. Afterwards, each siRNA dilution and RNAiMAX dilution were mixed and reacted at room temperature for 20 minutes. 5 - 3.0 24 hours later, the second transfection was repeated using the same method and cultured for an additional 48 hours. 72 hours after the first transfection, the cells were removed with 0.05% Trypsin-EDTA (Welgene, Gyeongsan, Korea) and neutralized with cell culture medium containing 10% fetal bovine serum (VWR). After lysis with cell lysis buffer, 5X sample buffer was added and boiled at 100°C for 10 minutes. The siCon protein and siB7-H3 protein were separated through 10% SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) and then subjected to Western blotting using a nitrocellulose membrane. As a result, it can be seen that B7-H3 protein is reduced by 77%, 100%, 98%, and 93%, respectively, in liver cancer cells Huh7, HepG2, SNU387, and SNU449 knocked down with siRNA compared to GAPDH used as a negative control. This shows that it was carried out effectively (Figure 7A).
이렇게 B7-H3를 녹다운한 간암세포에서 실시예 3에서 기술한 것처럼 플로우 사이토미트리를 수행하여 NPB40 및 토끼 항-B7-H3 다클론항체(α-B7-H3) 의 결합 정도를 확인하였다(도 7B). 도 7B 및 7C에서 보이는 것처럼 siB7-H3를 트랜스펙션 한 세포에서 상업적인 토끼 항-B7-H3 다클론항체(α-B7-H3) 의 결합이 현저히 감소하는 것을 확인하였다. 이는 B7-H3 녹다운으로 세포표면 B7-H3 발현이 특이적으로 감소하였음을 보여주는 것이다. 또한 같은 세포에서 단일클론항체 NPB40로 수행한 플로우 사이토미트리에서도 NPB40의 표면 결합이 현저히 감소한 것을 확인하였다(도 7D-7E). 이는 siB7-H3에 의해 세포의 B7-H3 유전자가 녹다운 되어 B7-H3 표면 발현이 감소하여 NPB40 항체의 결합 정도가 감소한 것이며, NPB40이 B7-H3를 인식하는 항체임을 다시 확인해준다. Flow cytometry was performed on the liver cancer cells in which B7-H3 was knocked down as described in Example 3 to confirm the degree of binding of NPB40 and rabbit anti-B7-H3 polyclonal antibody (α-B7-H3) (Figure 7B). As shown in Figures 7B and 7C, it was confirmed that the binding of the commercial rabbit anti-B7-H3 polyclonal antibody (α-B7-H3) was significantly reduced in cells transfected with siB7-H3. This shows that cell surface B7-H3 expression was specifically reduced by B7-H3 knockdown. In addition, flow cytometry performed with the monoclonal antibody NPB40 in the same cells confirmed that the surface binding of NPB40 was significantly reduced (Figures 7D-7E). This means that the B7-H3 gene in the cell is knocked down by siB7-H3, resulting in a decrease in B7-H3 surface expression, which reduces the binding degree of the NPB40 antibody, confirming again that NPB40 is an antibody that recognizes B7-H3.
5-2. B7-H3 녹다운(Knockdown) 간암 세포주에서 암세포 세포 부착능 측정5-2. Measurement of cancer cell adhesion ability in B7-H3 knockdown liver cancer cell line
다음으로 B7-H3 녹다운된 간암세포 Huh7과 HepG2가 세포배양 플레이트에 잘 결합하는지 분석하기 위해서 세포부착(Cell adhesion) 실험을 수행하였다. 세포 부착 실험을 위해서는 B7-H3 녹다운 간암세포주 Huh7과 HepG2를 준비하여 3.0X105 - 1.2X106 개의 세포를 부유한 후 곧바로 세포 현탁액을 0.1%의 젤라틴 용액으로 37℃에서 30분 동안 코팅한 12-웰 플레이트에 넣고 5% CO2, 95% air가 공급되는 37℃ 배양기에서 2-3시간 동안 배양하였다. PBS(pH 7.4)로 2회 세척 후 부착한 세포를 2% Paraformaldehyde로 상온에서 15분간 고정하고, 2% 에탄올에서 녹인 0.5% crystal violet(Sigma-aldrich)로 상온에서 30분간 염색하였다. 염색된 세포의 흡광도를 ELISA 판독기를 이용하여 부착된 세포를 0.1% SDS로 녹여낸 후 OD 570nm에서 측정하였다. B7-H3 녹다운 간암세포주에서 세포배양 플레이트에 대한 결합이 뚜렷하게 감소하고(도 8A), 같은 실험을 3회 반복한 결과를 통계적으로 분석하면 Huh7에서는 세포부착능이 약 33% 감소하고 HepG2세포에서는 약 25%(도 8B, 8C) 감소하는 것을 관찰하였다. 이 결과는 B7-H3가 간암세포의 세포부착능 유지에 중요함을 말해준다. B7-H3가 세포-세포외기질(ECM, extracellular matrix) 부착을 조절하는 방법을 분석하기 위해 B7-H3 녹아운 Huh7 세포에서 플로우 사이토미트리 분석에 의해 cadherin 및 integrin 분자의 세포 표면 발현을 조사했다. E-카드헤린, 인테그린-α3 및 인테그린-αV의 세포 표면 발현은 B7-H3 녹다운 Huh7 세포에서 각각 약 68%, 25% 및 17% 감소했다(도 8D, 8E). HepG2 세포에서도 유사한 결과가 얻어졌으며(도 8F, 8G), 이는 B7-H3가 E-카드헤린, 인테그린-α3 및 인테그린-αV의 발현 조절을 통해 세포-세포 부착 및 세포-ECM 접착을 촉진하는 분자임을 말해준다.Next, a cell adhesion experiment was performed to analyze whether B7-H3 knockdown liver cancer cells Huh7 and HepG2 bind well to the cell culture plate. For the cell adhesion experiment , B7-H3 knockdown liver cancer cell lines Huh7 and HepG2 were prepared , 3.0 It was placed in a well plate and cultured for 2-3 hours in an incubator at 37°C supplied with 5% CO 2 and 95% air. After washing twice with PBS (pH 7.4), the attached cells were fixed with 2% Paraformaldehyde at room temperature for 15 minutes and stained with 0.5% crystal violet (Sigma-aldrich) dissolved in 2% ethanol for 30 minutes at room temperature. The absorbance of the stained cells was measured at OD 570 nm after dissolving the attached cells in 0.1% SDS using an ELISA reader. In the B7-H3 knockdown hepatoma cell line, binding to the cell culture plate was clearly reduced (Figure 8A), and when the same experiment was repeated three times, statistical analysis showed that the cell adhesion ability decreased by about 33% in Huh7 and by about 25% in HepG2 cells. A decrease in % (Figures 8B, 8C) was observed. These results indicate that B7-H3 is important for maintaining the cell adhesion ability of liver cancer cells. To analyze how B7-H3 regulates cell-extracellular matrix (ECM) adhesion, we examined cell surface expression of cadherin and integrin molecules in B7-H3 knockdown Huh7 cells by flow cytometry analysis. . Cell surface expression of E-cadherin, integrin-α3, and integrin-αV was reduced by approximately 68%, 25%, and 17%, respectively, in B7-H3 knockdown Huh7 cells (Figures 8D, 8E). Similar results were obtained in HepG2 cells (Figures 8F, 8G), suggesting that B7-H3 is a molecule that promotes cell-cell adhesion and cell-ECM adhesion through regulating the expression of E-cadherin, integrin-α3, and integrin-αV. It tells you that
5-3. B7-H3 녹다운(Knockdown) 간암 세포주에서 암세포 생존 및 성장 분석5-3. Cancer cell survival and growth analysis in B7-H3 knockdown liver cancer cell line
다음으로 간암세포의 생존 및 증식에서 B7-H3의 역할을 조사하기 위해, 상기의 B7-H3 녹다운 Huh7 세포를 사용하여 클론원성 생존 분석(clonogenic survival assay)을 수행하였다. 상기의 실험을 통해 제조한 B7-H3 녹다운 Huh7 세포를 0.05% Trypsin-EDTA(Welgene, Gyeongsan, Korea)로 떼어내고 10% fetal bovine serum(VWR)을 포함한 세포 배양 배지로 중화한 후, 세포를 40μm 스트레이너(SPL, Pocheon, Korea)에 통과시켜 단일세포로 준비하였다. 6웰 플레이트에 웰당 1.0X104개씩 깔아서 세포들이 흩어져서 단일세포로 부착하도록 하고 7일 동안 37℃, 5% CO2 조건에서 배양 후 형성된 콜로니(colony)를 크리스탈 바이올렛 용액으로 염색하고 전체 콜로니의 수를 Image J 프로그램으로 분석하고 같은 실험을 3회 반복하여 세포의 콜로니 형성 능력을 통계적으로 나타냈다(도 9A). B7-H3 결핍은 Huh7 콜로니의 수와 크기를 약 3.6배 감소시켰다. 또 다른 간암세포주인 HepG2를 사용한 같은 실험에서도 B7-H3 결핍은 HepG2 콜로니의 수와 크기를 약 1.4배 감소시켰다(도 9B). 이런 결과는 B7-H3 가 저밀도 파종 스트레스 하에서 간암세포 생존을 향상시키고 증식을 촉진하는 중요한 세포 표면 분자라는 것을 증명한다. Next, to investigate the role of B7-H3 in the survival and proliferation of liver cancer cells, a clonogenic survival assay was performed using the B7-H3 knockdown Huh7 cells. The B7-H3 knockdown Huh7 cells prepared through the above experiment were removed with 0.05% Trypsin-EDTA (Welgene, Gyeongsan, Korea), neutralized with cell culture medium containing 10% fetal bovine serum (VWR), and the cells were seeded at 40 μm. Single cells were prepared by passing them through a strainer (SPL, Pocheon, Korea). 1.0 _ Analysis was performed using the Image J program, and the same experiment was repeated three times to statistically indicate the colony-forming ability of the cells (Figure 9A). B7-H3 deficiency reduced the number and size of Huh7 colonies by approximately 3.6-fold. In the same experiment using HepG2, another liver cancer cell line, B7-H3 deficiency reduced the number and size of HepG2 colonies by approximately 1.4-fold (Figure 9B). These results demonstrate that B7-H3 is an important cell surface molecule that improves liver cancer cell survival and promotes proliferation under low-density seeding stress.
실시예 6. 단일클론항체 NPB40을 이용한 B7-H3의 세포 성장 촉진 기능 확인Example 6. Confirmation of cell growth promotion function of B7-H3 using monoclonal antibody NPB40
B7-H3의 발현이 세포 성장에 미치는 영향을 알아보기 위해 인간 간세포인 HepG2를 단일클론항체 NPB40로 B7-H3 높게 발현하는 세포(B7-H3-high)와 낮게 B7-H3를 발현하는 세포(B7-H3-low)로 sorting 하여 분리한 후 각각의 세포군의 클론원성 생존 분석(clonogenic survival assay)을 수행하여 비교하였다. 간암세포 sorting을 위해서는 먼저 DSB-X 바이오틴 라벨링 키트(Thermo Fischer Scientific)를 사용하여 제조사의 프로토콜에 따라 NPB40 항체를 바이오틴화 시켰다. HepG2 세포를 B7-H3 발현이 높은 군(B7-H3 high)과 B7-H3 발현이 낮은 군(B7-H3 low)으로 분리하기 위해 1.0X107개의 세포를 실온에서 30분 동안 100μg의 바이오틴화된 NPB40 항체와 반응시켰다. 효율적인 세포 분리를 위해 세포를 PBS(pH 7.4)로 희석하고 1,500 rpm에서 3분간 원심분리하는 세척 과정을 2회 반복하여 세포에 결합하지 않은 항체를 제거하였다. 이후, Dynabeads FlowComp Flexi 키트(Thermo Fischer Scientific)를 사용하여 제조사의 프로토콜에 따라 세포 분류를 수행하였다. 바이오틴화 된 NPB40에 강하게 결합한 B7-H3 발현이 높은 군(B7-H3-high)은 마그네틱 비드를 사용해 분리 후, releasing buffer와 함께 상온에서 10분간 반응시켜 비드에서 세포를 떨어트렸다. B7-H3 발현이 낮은 군(B7-H3-low)은 마그네틱 비드에 결합하지 않아 세포군을 모아서 원심 분리하여 수집하였다. 각각의 세포군을 PE 접합된 SA(Phycoerythrin-conjugated streptavidin) 및 FACSCalibur로 분석하여 NPB40에 의해 분리된 B7-H3high 세포군은 low군에 비해 약 2배 정도 B7-H3 발현이 높은 것을 확인하였다(도 10A, 10B). 상기의 실험을 통해 분리한 세포를 6웰 플레이트에 웰당 1.0X104개씩 깔고 2주 동안 37℃, 5% CO2 조건에서 배양 후 형성된 콜로니(colony)를 크리스탈 바이올렛 용액으로 염색하였다(도 10C). 전체 콜로니의 수를 Image J 프로그램으로 분석하고 같은 실험을 3회 반복하여 세포의 콜로니 형성 능력을 통계적으로 나타냈다(도 10D). 도 10D에서 보이는 것처럼 B7-H3-low군에서 B7-H3-high 군에 비해 클론원성 생존능력이 34%로 약 3배 감소하는 것을 확인하였다. 이런 결과는 NBP40에 의해 인식되는 B7-H3발현이 간암세포의 암 줄기세포성(cancer stemness)을 촉진하는 분자임을 말해준다.To determine the effect of B7-H3 expression on cell growth, human hepatocytes, HepG2, were treated with the monoclonal antibody NPB40 to determine whether cells expressing B7-H3 highly (B7-H3-high) or cells expressing B7-H3 at low levels (B7-H3) were used. After separation by sorting with -H3-low), clonogenic survival assay of each cell group was performed and compared. To sort liver cancer cells, NPB40 antibody was first biotinylated using the DSB-X biotin labeling kit (Thermo Fischer Scientific) according to the manufacturer's protocol. To separate HepG2 cells into a group with high B7-H3 expression (B7-H3 high) and a group with low B7-H3 expression (B7-H3 low), 1.0 It was reacted with NPB40 antibody. For efficient cell separation, the cells were diluted with PBS (pH 7.4) and the washing process of centrifugation at 1,500 rpm for 3 minutes was repeated twice to remove antibodies that did not bind to the cells. Then, cell sorting was performed using the Dynabeads FlowComp Flexi kit (Thermo Fischer Scientific) according to the manufacturer's protocol. The group with high B7-H3 expression (B7-H3-high), which strongly bound to biotinylated NPB40, was separated using magnetic beads and then reacted with releasing buffer at room temperature for 10 minutes to remove the cells from the beads. The group with low B7-H3 expression (B7-H3-low) did not bind to the magnetic beads, so the cell group was collected and centrifuged. Each cell group was analyzed with PE conjugated SA (Phycoerythrin-conjugated streptavidin) and FACSCalibur, and it was confirmed that the B7-H3high cell group isolated by NPB40 had approximately twice as high B7-H3 expression as the low group (Figure 10A, 10B). The cells isolated through the above experiment were spread in a 6-well plate at 1.0×10 4 cells per well, and the colonies formed after culturing at 37°C and 5% CO 2 for 2 weeks were stained with crystal violet solution (FIG. 10C). The total number of colonies was analyzed using the Image J program, and the same experiment was repeated three times to statistically represent the colony forming ability of the cells (Figure 10D). As shown in Figure 10D, it was confirmed that the clonogenic viability in the B7-H3-low group was reduced by about 3 times to 34% compared to the B7-H3-high group. These results show that B7-H3 expression recognized by NBP40 is a molecule that promotes cancer stemness of liver cancer cells.
실시예 7. 간암 및 췌장암 세포주에서 NPB40처리 후 B7-H3 세포막 내부화 분석 Example 7. Analysis of B7-H3 cell membrane internalization after NPB40 treatment in liver cancer and pancreatic cancer cell lines
항체를 처리했을 때 암세포 내부로 항체의 내부화(internalization)를 유도할 수 있다면 antibody-drug conjugate를 이용하여 암세포 사멸을 유도할 수 있는 좋은 도구가 된다. 단일클론항체 NPB40의 각종 세포에 대한 세포막 내부화(internalization)를 관찰하기 위해 플로우 사이토미트리(Flow Cytometry)를 수행하였다. 세포를 0.05% Trypsin-EDTA(Welgene, Gyeongsan, Korea)로 떼어내고 10% fetal bovine serum(FBS; VWR, PA, U.S.A)을 포함한 세포 배양 배지로 중화한 후, 세포를 40μm 스트레이너에 통과시켜 단일세포로 준비하였다. 각 단일세포를 ml당 약 1 x 105개씩 PBA(1% bovine serum albumin, 0.02% NaN3 in PBS)에 섞은 후, 항체 NPB40을 4℃에서 30분간 반응시켰다. 내부화 여부를 관찰하기 위해서는 PBA로 세포를 2번 세척한 후, 세포막 내부화가 일어날 수 있도록 세포를 100 μl의 배양 배지에 현탁하여 30분간 37℃에서 반응시켰다. PBA로 1번 세척한 후, 1차 항체와 상응하는 항-마우스 IgG-Alexa flour 488(Invitrogen)를 4℃에서 20분간 더 반응시켰다. PBA로 2번 세척한 후, FACSCalibur와 Cell Quest 소프트웨어(BD sciences)를 이용하여 PI(propidium iodide)-음성 세포에 대해서 항체 반응 여부를 분석하였다. 4℃에서 세포 표면에 결합한 단일클론항체 NPB40와 37℃에서 반응했을 때 NPB40의 결합 정도를 플로우 사이토미트리로 비교했을 때, 인간배아암세포 NT2/D1, 인간 간암 세포 Huh7, HepG2, SNU449와 인간 췌장암 세포인 BxPC-3, PANC-1, SNU-213에서 단일클론항체 NPB40의 뚜렷이 감소한 것을 볼 수 있다(도 11). 이는 4℃에서 각종 암세포 표면에 결합한 단일클론항체 NPB40이 37℃에서 세포 활성에 의해 세포 내부화되어 표면에서의 결합이 감소하는 것을 의미한다.If internalization of the antibody can be induced inside cancer cells when treated with an antibody, it can be a good tool to induce cancer cell death using an antibody-drug conjugate. Flow cytometry was performed to observe the cell membrane internalization of the monoclonal antibody NPB40 in various cells. Cells were removed with 0.05% Trypsin-EDTA (Welgene, Gyeongsan, Korea), neutralized with cell culture medium containing 10% fetal bovine serum (FBS; VWR, PA, USA), and then passed through a 40μm strainer to form single cells. It was prepared with Each single cell was mixed with PBA (1% bovine serum albumin , 0.02% NaN 3 in PBS) at a rate of approximately 1 To observe internalization, cells were washed twice with PBA, and then cells were suspended in 100 μl of culture medium and incubated at 37°C for 30 minutes to allow cell membrane internalization. After washing once with PBA, the primary antibody and the corresponding anti-mouse IgG-Alexa flour 488 (Invitrogen) were further reacted at 4°C for 20 minutes. After washing twice with PBA, PI (propidium iodide)-negative cells were analyzed for antibody reaction using FACSCalibur and Cell Quest software (BD sciences). When comparing the degree of binding of NPB40 to the monoclonal antibody NPB40 bound to the cell surface at 4°C and NPB40 when reacted at 37°C using flow cytometry, human embryonic cancer cells NT2/D1, human liver cancer cells Huh7, HepG2, and SNU449 and human pancreatic cancer A clear decrease in monoclonal antibody NPB40 can be seen in cells BxPC-3, PANC-1, and SNU-213 (Figure 11). This means that the monoclonal antibody NPB40, which binds to the surface of various cancer cells at 4°C, is internalized by cell activity at 37°C, reducing binding on the surface.
실시예 8. 단일클론항체 NPB40 항체 유전자 및 아미노산 분석 Example 8. Monoclonal antibody NPB40 antibody gene and amino acid analysis
8-1. 단일클론항체 NPB40 유전자 클로닝8-1. Monoclonal antibody NPB40 gene cloning
왕성하게 자라는 하이브리도마 NPB40 세포 5X106개를 원심 분리하여 수확한 후 찬 PBS로 세척하고 RNAiso plus reagent(TaKaRa, Otsu, Japan)으로 공급자의 프로토콜에 따라 전체 RNA을 추출하였다. 얻어진 전체 RNA의 A260을 측정하여 RNA 양을 정량하였다. 전체 RNA 1 μg 당 1 unit의 DNase°을 넣고 37℃에서 30분 동안 반응해 잔여의 DNA를 제거한 후 50mM EDTA 1 μl를 넣고 85℃에서 5분 동안 반응해 DNase°를 불활성화 하고 전체 RNA를 변성시켰다. 전체 RNA와 Prime Script RT reagent Kit(TaKaRa)를 사용해 역전사중합효소 연쇄반응혼합액을 만들고 공급자의 프로토콜에 따라 cDNA을 합성하였다. (합성된 cDNA로 중쇄 클로닝을 위해서는 IgG1 불변영역에 해당하는 중합효소연쇄반응 프라이머인 5'-gga gtc gac ATA GAC AGA TGG GGG TGT CGT TTT GGC-3'(서열번호 12)인 올리고뉴클레오타이드 25 pmole과 중쇄항체 가변영역 N말단에 해당하는 프라이머인 염기서열 5'MH1 5'-ctt ccg gaa ttc SAR GTN MAG CTG SAG SAG TC-3'(서열번호 13) 25pmole과 5'MH2 5'-ctt ccg gaa ttc SAR GTN MAG CTG SAG SAG TCW GG-3'(서열번호 14) 올리고뉴클레오타이드 25pmole을 넣어 연쇄 중합반응혼합액을 만들었다. 경쇄 클로닝을 위해서는 카파사슬 불변영역에 해당하는 프라이머인 5'-ggt gtc gac GGA TAC AGT TGG TGC AGC ATC-3'(서열번호 15) 올리고뉴클레오타이드와 카파사슬 가변영역 N 말단에 해당하는 프라이머인 5'MK 5'-cgg aag ctt GAY ATT GTG MTS ACM CAR WCT MCA-3'(서열번호 16)과 각각을 사용하였다. 중합효소연쇄반응 생산물의 효율적인 클로닝을 위하여 중쇄의 경우는 5'-프라이머 말단에 EcoRI, 3'-프라이머 말단에 SalI 제한효소 자리를 부여하였다. 경쇄의 경우는 5'-프라이머 말단에 HindIII, 3'-프라이머 말단에 SalI 제한효소 자리를 부여하였다. 중쇄 또는 경쇄의 중합효소반응 프라이머와 1unit의 i-pfu DNA Polymerase(iNtRON Biotechnology, Seoul, Korea)를 각각 섞은 후 먼저 95℃에서 5분동안 1회 반응하고 95℃에서 1분, 35℃에서 1분, 72℃에서 1분으로 30회 반응시켰다. 그 결과 중쇄 가변영역에 해당하는 DNA절편으로 추정되는 길이인 약 400bp, 경쇄 가변영역 해당되는 DNA절편으로 추정되는 길이인 약 390bp에 해당되는 위치에서 증폭된 DNA를 얻을 수 있었다(도 12A, 12B). 5X106 vigorously growing hybridoma NPB40 cells were harvested by centrifugation, washed with cold PBS, and total RNA was extracted using RNAiso plus reagent (TaKaRa, Otsu, Japan) according to the supplier's protocol. The amount of RNA was quantified by measuring A 260 of the obtained total RNA. Add 1 unit of DNase° per 1 μg of total RNA and react at 37°C for 30 minutes to remove remaining DNA, then add 1 μl of 50mM EDTA and react at 85°C for 5 minutes to inactivate DNase° and denature the total RNA. I ordered it. A reverse transcription polymerase chain reaction mixture was prepared using total RNA and the Prime Script RT reagent Kit (TaKaRa), and cDNA was synthesized according to the supplier's protocol. (For heavy chain cloning with synthesized cDNA, 25 pmole of oligonucleotide 5'-gga gtc gac ATA GAC AGA TGG GGG TGT CGT TTT GGC-3' (SEQ ID NO. 12), a polymerase chain reaction primer corresponding to the IgG1 constant region, and Base sequence 5'MH1 5'-ctt ccg gaa ttc SAR GTN MAG CTG SAG SAG TC-3' (SEQ ID NO: 13), a primer corresponding to the N terminus of the heavy chain antibody variable region, 25pmole and 5'MH2 5'-ctt ccg gaa ttc A chain polymerization reaction mixture was prepared by adding 25 pmole of SAR GTN MAG CTG SAG SAG TCW GG-3' (SEQ ID NO: 14) oligonucleotide. For light chain cloning, 5'-ggt gtc gac GGA TAC AGT, a primer corresponding to the kappa chain constant region, was used. TGG TGC AGC ATC-3' (SEQ ID NO: 15) oligonucleotide and 5'MK 5'-cgg aag ctt GAY ATT GTG MTS ACM CAR WCT MCA-3' (SEQ ID NO: 16), a primer corresponding to the N terminus of the kappa chain variable region. ) and were used, respectively. For efficient cloning of the polymerase chain reaction product, EcoRI and SalI restriction enzyme sites were assigned to the 5'-primer end for the heavy chain and SalI restriction enzyme sites to the 3'-primer end. For the light chain, 5'- HindIII at the end of the primer and SalI restriction enzyme site at the end of the 3'-primer were mixed with each heavy or light chain polymerase reaction primer and 1 unit of i-pfu DNA Polymerase (iNtRON Biotechnology, Seoul, Korea), first at 95°C. It was reacted once for 5 minutes and then 30 times for 1 minute at 95°C, 1 minute at 35°C, and 1 minute at 72°C. As a result, the DNA fragment corresponding to the heavy chain variable region was estimated to be about 400bp in length, and the light chain Amplified DNA was obtained at a position corresponding to approximately 390 bp, which is the estimated length of the DNA fragment corresponding to the variable region (Figures 12A and 12B).
8-2. NPB40 단일클론항체 유전자의 클로닝 및 염기서열 분석8-2. Cloning and sequence analysis of the NPB40 monoclonal antibody gene
상기 실시 예에서 증폭해낸 NPB40 유전자를 클로닝하기 위하여 먼저 중합효소연쇄반응 산물을 중쇄는 EcoRI과 SalI으로 처리하고 경쇄는 HindIII와 SalI으로 처리한 후 1.0 %(w/v) 아가로스 젤에 전개시켜 FavorPrep GEL PCR Purification Kit(Favorgen, Pingtung, Taiwan)로 약 400bp와 390bp에 해당하는 DNA를 분리하였다. 중쇄유전자를 클로닝할 벡터로 사용할 pBluescript KS+를 EcoRI과 SalI으로 처리하고 경쇄유전자 클로닝 벡터로는 pBluescript KS+를 HindIII와 SalI으로 처리한 다음 FavorPrep GEL PCR Purification Kit로 분리하였다. 이 두 DNA를 T4 DNA 연결효소(New England Biolab, Massachusetts, U.S.A)로 연결하고 대장균 DH5α에 CaCl2 방법으로 형질 전환하였다. In order to clone the NPB40 gene amplified in the above example, the polymerase chain reaction product was first treated with EcoRI and SalI for the heavy chain and HindIII and SalI for the light chain, and then spread on a 1.0% (w/v) agarose gel using FavorPrep. DNA corresponding to approximately 400bp and 390bp was isolated using the GEL PCR Purification Kit (Favorgen, Pingtung, Taiwan). pBluescript KS+, which was used as a vector for cloning the heavy chain gene, was treated with EcoRI and SalI, and pBluescript KS+, which was used as a cloning vector for the light chain gene, was treated with HindIII and SalI and then isolated using the FavorPrep GEL PCR Purification Kit. These two DNAs were linked with T4 DNA ligase (New England Biolab, Massachusetts, USA) and transformed into E. coli DH5α using the CaCl 2 method.
항체 유전자들의 DNA 염기서열분석을 위하여 상기의 여러 클론들을 100㎍/㎖의 암피실린이 함유된 3ml의 LB 배지에서 밤새 배양한 후 DNA-Spin plasmid mini prep kit(Intron, 한국)를 사용하여 공급자의 프로토콜에 따라 플라스미드 DNA를 분리하고 중쇄의 경우 약 400bp 크기의 DNA 삽입물을 가진 대장균 클론(도 12C), 경쇄의 경우 약 390bp 크기의 DNA 삽입물을 가진 대장균 클론들을 선발하였다(도 12D). 각각의 DNA 삽입물의 염기서열을 Nucleotide sequencing(Bionics, Seoul, Korea)을 통해 확인하였다. 중쇄 및 경쇄 DNA의 염기서열을 아미노산으로 번역 후 항체 구조에 따른 항원인식결정 부위를 Kabat numbering을 통해 정리한 결과 중쇄는 subgroup Ⅱ에 해당하고 경쇄는 subgroup V에 해당하였다. 각 서열에 항원 결합 부위인 CDR1, 2, 3를 진한 색으로 표시하였다(도 13, 도 14).For DNA sequencing of antibody genes, the above-mentioned clones were cultured overnight in 3 ml of LB medium containing 100 ㎍/㎖ ampicillin and then cultured using the DNA-Spin plasmid mini prep kit (Intron, Korea) according to the supplier's protocol. Plasmid DNA was isolated and E. coli clones with a DNA insert of about 400 bp for the heavy chain (Figure 12C) and E. coli clones with a DNA insert of about 390 bp for the light chain were selected (Figure 12D). The base sequence of each DNA insert was confirmed through Nucleotide sequencing (Bionics, Seoul, Korea). After translating the base sequences of the heavy and light chain DNA into amino acids, the antigen recognition decision sites according to the antibody structure were organized through Kabat numbering. As a result, the heavy chain corresponded to subgroup II and the light chain corresponded to subgroup V. The antigen binding sites, CDR1, 2, and 3, for each sequence are indicated in dark color (Figures 13 and 14).
실시예 9. 생쥐-인간 키메라 Chi-NPB40 항체의 발현 벡터 제조 Example 9. Preparation of expression vector for mouse-human chimeric Chi-NPB40 antibody
생쥐 유래의 단일클론항체를 인간에 사용할 경우 면역 부작용을 일으킬 가능성이 있다. 이를 극복하기 위해 생쥐 유래의 단일클론항체를 면역부작용이 적은 생쥐-인간 키메라 항체(Chimeric antibody)로 제작하여 치료용 항체로써 사용할 수 있다. 생쥐 유래 단일클론항체 NPB40의 생쥐-인간 키메라 항체(Chi-NB40)를 개발하기 위해 NPB40 항체 유전자와 인간 항체의 불변부를 결합하였고, 이를 발현 벡터에 클로닝 하여 항체 생산을 위한 Chi-NPB40 항체의 발현 벡터를 제조했다. 먼저 생쥐에서 얻은 NPB40의 중쇄와 경쇄의 유전자를 PCR(polymerase chain reaction)을 통해 약 400bp와 390bp에 해당하는 DNA를 Gel extraction kit(FAVORGEN, 대만)을 이용하여 DNA를 분리하였다. 중쇄 유전자 앞에 붙일 신호 펩타이드 서열(signal peptide)을 합성하기 위하여 pdCMV-dhfr 벡터(한국 등록특허 제 2120223호)를 주형으로 하여 h2B7-H.C-SLIC-5`(5`-GCC AGT GTG CTG GAA TTC ACT CTA ACC-3`, 서열번호 17) 프라이머와 NPB40-Chi-HC-SP-3`(5`-CTG CAC CTG GGA GTG GAC ACC TGT AGT TA-3`, 서열번호 18) 프라이머를 이용하여 PCR을 수행하였다. 그리고 NPB40의 중쇄 가변영역을 증폭하기 위해 중쇄 가변영역의 DNA를 주형으로 하여 NPB40-Chi-HC-SP-5`(5`-GTC CAC TCC CAG GTG CAG CTG CAG-3`, 서열번호 19) 프라이머와 NPB40-chi-HC-3`(5`-CCT TGG TGG AGG CTG AGG AGA CTG TGA G-3`, 서열번호 20) 프라이머를 이용하여 PCR을 수행하였다. 다시, 중쇄 신호 펩타이드 서열과 NPB40 항체의 중쇄 가변 영역을 연결하기 위해, 상기 PCR로 제조한 DNA를 섞어 주형으로 하고 h2B7-H.C-SLIC-5` 프라이머와 H2B7-HC-SLIC-3`(AAG ACC GAT GGG CCC TTG GTG GAG-3`, 서열번호 21) 프라이머를 이용하여 recombinant PCR을 수행하였다. PCR 결과물을 1% 아가로스 젤에 전개시킨 결과 중쇄 가변영역과 중쇄 신호펩타이드 서열이 연결된 약 450bp에 해당하는 DNA를 확인할 수 있었다(도 15A). 이를 FavorPrep GEL쪠 PCR Purification Kit(Farvorgen, 대만)를 이용하여 분리하고 EcoRI 과 ApaI으로 처리한 후 다시 한 번 FavorPrep GEL쪠 PCR Purification Kit을 이용하여 분리하였다(도 15B). 이를 인간의 중쇄 불변영역(IgG1) 유전자를 포함하고 있는 pdCMV-dhfr 벡터의 EcoRI과 ApaI 자리에 T4 DNA 연결효소(NEB, 미국)을 사용하여 삽입하였다. When mouse-derived monoclonal antibodies are used in humans, there is a possibility of causing immune side effects. To overcome this, mouse-derived monoclonal antibodies can be produced as mouse-human chimeric antibodies with fewer immune side effects and used as therapeutic antibodies. To develop a mouse-human chimeric antibody (Chi-NB40) of the mouse-derived monoclonal antibody NPB40, the NPB40 antibody gene and the constant region of the human antibody were combined, and this was cloned into an expression vector to produce the Chi-NPB40 antibody. manufactured. First, DNA corresponding to about 400bp and 390bp of the heavy and light chain genes of NPB40 obtained from mice was isolated through PCR (polymerase chain reaction) using a Gel extraction kit (FAVORGEN, Taiwan). To synthesize a signal peptide sequence to be attached to the front of the heavy chain gene, h2B7-H.C-SLIC-5`(5`-GCC AGT GTG CTG GAA TTC ACT) was prepared using the pdCMV-dhfr vector (Korean Patent No. 2120223) as a template. PCR was performed using primers CTA ACC-3`, SEQ ID NO. 17) and NPB40-Chi-HC-SP-3` (5`-CTG CAC CTG GGA GTG GAC ACC TGT AGT TA-3`, SEQ ID NO. 18) primer. carried out. And to amplify the heavy chain variable region of NPB40, NPB40-Chi-HC-SP-5` (5`-GTC CAC TCC CAG GTG CAG CTG CAG-3`, SEQ ID NO: 19) primer was used using the DNA of the heavy chain variable region as a template. PCR was performed using primers and NPB40-chi-HC-3` (5`-CCT TGG TGG AGG CTG AGG AGA CTG TGA G-3`, SEQ ID NO: 20). Again, in order to link the heavy chain signal peptide sequence and the heavy chain variable region of the NPB40 antibody, the DNA prepared by the above PCR was mixed as a template, and the h2B7-H.C-SLIC-5` primer and H2B7-HC-SLIC-3` (AAG ACC Recombinant PCR was performed using primers GAT GGG CCC TTG GTG GAG-3`, SEQ ID NO: 21). As a result of running the PCR result on a 1% agarose gel, DNA corresponding to about 450 bp in which the heavy chain variable region and the heavy chain signal peptide sequence were linked was confirmed (Figure 15A). This was isolated using the FavorPrep GELjet PCR Purification Kit (Farvorgen, Taiwan), treated with EcoRI and ApaI, and then isolated again using the FavorPrep GELjet PCR Purification Kit (FIG. 15B). This was inserted into the EcoRI and ApaI sites of the pdCMV-dhfr vector containing the human heavy chain constant region (IgG1) gene using T4 DNA ligase (NEB, USA).
경쇄 유전자 앞에 붙일 신호 펩타이드 서열(signal peptide)을 합성하기 위하여 pdCMV-dhfr 벡터를 주형으로 하여, h2B7-L.C-SLIC-5`(5`-ATA GGG AGA CCC AAG CTT CGG CAC GAG CAG A-3`, 서열번호 22) 프라이머와 NPB40-Chi-LC-SP-3`(5`-CAT CAC AAT ATC TCC TTC AAC ACC AGA CA-3`, 서열번호 23) 프라이머를 쌍으로 PCR을 수행하였다. 그리고 NPB40 항체의 경쇄 가변영역을 증폭하기 위해 경쇄 가변 영역의 DNA를 주형으로 NPB40-Chi-LC-SP-5`(5`-GTT GAA GGA GAT ATT GTG ATG ACA CAG TC-3`, 서열번호 24) 프라이머와 Chi63-B6-LC-SLIC-3`(5`-TGG TGC AGC CAC CGT ACG TTT GAT TTC CA-3`, 서열번호 25) 프라이머를 이용하여 PCR을 수행하였다. 다시, 경쇄 신호 펩타이드 서열과 NPB40 항체의 경쇄 가변 영역을 연결하기 위해, 상기 PCR로 제조한 DNA를 섞어 주형으로 하고 h2B7-L.C-SLIC-5` 프라이머와 Chi63-B6-LC-SLIC-3` 프라이머를 이용하여 recombinant PCR을 수행하였다. PCR 결과물을 1% 아가로스 젤에 전개시킨 결과 경쇄 가변영역과 경쇄 신호펩타이드 서열이 연결된 약 430bp에 해당하는 DNA를 확인할 수 있었다(도 15C). 이를 FavorPrep GEL쪠 PCR Purification Kit를 이용하여 분리하고 HindIII와 BsiwI으로 처리한 후 다시 한 번 FavorPrep GEL쪠 PCR Purification Kit을 이용하여 분리하였다(도 15D). 이를 중쇄의 유전자가 삽입된 pdCMV-dhfr-chi-NPB40-HC 벡터의 HindIII와 BisWI 자리에 클로닝하여 인간 경쇄 불변영역(Ck) 유전자와 연결되도록 하고 `pdCMV-dhfr-chi-NPB40`이라 명명하였다. 최종 벡터 DNA는 대장균 DH5α에 RbCl2 방법으로 형질 전환한 다음 약 450bp 크기의 중쇄 유전자 삽입물을 가진 클론 및 약 430bp 크기의 경쇄 유전자 삽입물 가진 대장균 클론들을 선발하였다. 항체 유전자들의 DNA 염기서열분석을 위하여 상기의 여러 클론들을 50μg/ml의 암피실린이 함유된 5ml의 LB배지에서 밤새 배양한 후 DNA-spinTM Plasmid DNA purification kit(INTRON, 한국)을 이용하여 플라스미드 DNA를 분리하고 각각의 DNA 삽입물의 염기서열을 확인하였다(Bionics, 한국). pdCMV-dhfr-chi-NPB40의 중쇄 및 경쇄 가변영역의 DNA 염기서열이 기존 NPB40 가변영역의 유전자 서열과 동일하였고, 신호펩타이드 서열 및 인간 중쇄와 경쇄 불변영역 유전자에 바르게 연결되어 있음을 확인하였다(도 16, 도 17).In order to synthesize a signal peptide sequence to be attached in front of the light chain gene, the pdCMV-dhfr vector was used as a template, h2B7-L.C-SLIC-5`(5`-ATA GGG AGA CCC AAG CTT CGG CAC GAG CAG A-3`) , SEQ ID NO: 22) primer and NPB40-Chi-LC-SP-3` (5`-CAT CAC AAT ATC TCC TTC AAC ACC AGA CA-3`, SEQ ID NO: 23) primer pair PCR was performed. And to amplify the light chain variable region of the NPB40 antibody, the DNA of the light chain variable region was used as a template, NPB40-Chi-LC-SP-5`(5`-GTT GAA GGA GAT ATT GTG ATG ACA CAG TC-3`, SEQ ID NO: 24 ) PCR was performed using primers Chi63-B6-LC-SLIC-3` (5`-TGG TGC AGC CAC CGT ACG TTT GAT TTC CA-3`, SEQ ID NO: 25). Again, in order to link the light chain signal peptide sequence and the light chain variable region of the NPB40 antibody, the DNA prepared by the above PCR was mixed as a template, and primers h2B7-L.C-SLIC-5` and Chi63-B6-LC-SLIC-3` were used as a template. Recombinant PCR was performed using . As a result of running the PCR result on a 1% agarose gel, DNA corresponding to about 430 bp, in which the light chain variable region and light chain signal peptide sequence were linked, was confirmed (Figure 15C). This was isolated using the FavorPrep GELjet PCR Purification Kit, treated with HindIII and BsiwI, and then isolated again using the FavorPrep GELjet PCR Purification Kit (FIG. 15D). This was cloned into the HindIII and BisWI sites of the pdCMV-dhfr-chi-NPB40-HC vector into which the heavy chain gene was inserted, linked to the human light chain constant region (Ck) gene, and named `pdCMV-dhfr-chi-NPB40`. The final vector DNA was transformed into E. coli DH5α using the RbCl2 method, and then clones with a heavy chain gene insert of about 450 bp and E. coli clones with a light chain gene insert of about 430 bp were selected. For DNA sequencing of antibody genes, the above-mentioned clones were cultured overnight in 5 ml of LB medium containing 50 μg/ml ampicillin, and then plasmid DNA was isolated using the DNA-spinTM Plasmid DNA purification kit (INTRON, Korea). and confirmed the base sequence of each DNA insert (Bionics, Korea). It was confirmed that the DNA base sequences of the heavy and light chain variable regions of pdCMV-dhfr-chi-NPB40 were identical to the gene sequences of the existing NPB40 variable regions, and were correctly linked to the signal peptide sequence and the human heavy and light chain constant region genes (Figure 16, Fig. 17).
실시예 10. 생쥐-인간 키메라 항체 Chi-NPB40의 발현과 정제Example 10. Expression and purification of mouse-human chimeric antibody Chi-NPB40
NPB40 생쥐 가변영역과 인간 불변영역으로 연결된 키메라 항체를 Chi-NPB40라고 명명하고 이 키메라 항체를 생산하고 정제하기 위하여, 먼저 인간 배아신장세포인 HEK293T 세포주를 150mm 배양 접시에 1x107 세포를 20ml의 DMEM(Biowest, 프랑스) 배지에 배양했다. 50 μg의 pdCMV-dhfr-Chi-NPB40 발현 벡터와 75μl의 Polyethyleneimine(1mg/ml)를 섞어준 뒤, 트랜스펙션 최적화 배지 500μl 와 섞어 배양한 세포의 세포 배양 배지 위에 뿌려주었다. 24시간 동안 배양한 후, 세포 배양 배지를 수집하여 항체를 정제했다. 수집한 세포 배양 배지를 Protein G agarose beads(Amicogen, 한국)로 채워진 column에 넣어주어 항체가 Protein G agarose beads와 결합 할 수 있게 한 뒤, PBS(pH8.0)으로 비드를 세척 후, 0.1M glycine(pH2.8) 10ml과 1M Tris-HCl(pH9.0)을 넣어 Protein G agarose beads에서 항체를 용출하였다. 이후 SDS-PAGE와 코마시 블루(Coomassie blue) 염색법을 통해 정제한 Chi-NPB40 키메라 항체의 순도를 확인하였다(도 18A). 또한, 염소의 항-인간 중쇄 항체(goat-α-hIgG-gamma chain-HRP, Invitrogen, 미국)와 염소의 항-인간 경쇄 항체(goat-α-hIgG-kappa chain-HRP, Bethyl, 미국)를 2차 항체로 이용하여 웨스턴 블랏팅을 통해 검출한 결과, 상기 키메라 항체는 인간 항체의 불변영역을 포함하는 항체인 것을 확인할 수 있었다(도 18B). The chimeric antibody linked to the NPB40 mouse variable region and the human constant region was named Chi-NPB40. To produce and purify this chimeric antibody, first, 1x10 7 cells of the human embryonic kidney cell HEK293T cell line were placed in a 150 mm culture dish in 20 ml of DMEM ( Biowest, France) medium was cultured. 50 μg of pdCMV-dhfr-Chi-NPB40 expression vector and 75 μl of Polyethyleneimine (1 mg/ml) were mixed, mixed with 500 μl of transfection optimization medium, and sprinkled on the cell culture medium of the cultured cells. After culturing for 24 hours, the cell culture medium was collected and the antibodies were purified. The collected cell culture medium was placed in a column filled with Protein G agarose beads (Amicogen, Korea) to allow the antibody to bind to the Protein G agarose beads. After washing the beads with PBS (pH 8.0), the beads were washed with 0.1M glycine. Antibodies were eluted from Protein G agarose beads by adding 10ml (pH2.8) and 1M Tris-HCl (pH9.0). Afterwards, the purity of the purified Chi-NPB40 chimeric antibody was confirmed through SDS-PAGE and Coomassie blue staining (Figure 18A). In addition, a goat anti-human heavy chain antibody (goat-α-hIgG-gamma chain-HRP, Invitrogen, USA) and a goat anti-human light chain antibody (goat-α-hIgG-kappa chain-HRP, Bethyl, USA) were used. As a result of detection through Western blotting using a secondary antibody, it was confirmed that the chimeric antibody was an antibody containing the constant region of a human antibody (Figure 18B).
실시예 11. 생쥐-인간 키메라 항체 Chi-NPB40의 기능 분석Example 11. Functional analysis of mouse-human chimeric antibody Chi-NPB40
11-1. Flow cytometry를 이용한 간암세포주에 대한 세포막 내부화 측정11-1. Measurement of cell membrane internalization in liver cancer cell lines using flow cytometry
키메라 항체 Chi-NPB40의 간암세포주 Huh7, SNU449에 대한 세포막 내부화(internalization)를 관찰하기 위해 플로우 사이토미트리(Flow Cytometry)를 수행하였다. 세포를 0.05% Trypsin-EDTA(Welgene, Gyeongsan, Korea)로 떼어내고 10% fetal bovine serum(FBS; VWR, PA, U.S.A)을 포함한 세포 배양 배지로 중화한 후, 세포를 40μm 스트레이너에 통과시켜 단일세포로 준비하였다. 각각의 단일세포를 ml당 약 1x105개씩 PBA(1% bovine serum albumin, 0.02% NaN3 in PBS)에 섞은 후, 키메라 항체 Chi-NPB40와 4℃에서 30분간 반응시켰다. 내부화 여부를 관찰하기 위해서는 PBA로 세포를 세척하여 세포에 결합하지 않은 항체를 제거하고, 결합한 항체가 세포막 내부화 될 수 있도록 세포를 100μl의 배양 배지에 현탁하여 30분간 37℃에서 반응시켰다. 그리고 PBA로 세척한 후, 1차 항체와 상응하는 항-인간 IgG-FITC(Invitrogen)를 4℃에서 20분간 더 반응시켰다. PBA로 2번 세척한 후, FACSCalibur와 Cell Quest 소프트웨어(BD sciences)를 이용하여 PI(propidium iodide)-음성 세포에 대해서 항체 반응 여부를 분석하였다. 4℃에서 반응했을 때와 비교할 때 37℃에서 추가반응 했을 때, 인간 간암 세포인 Huh7과 SNU-449에서 키메라 항체의 형광 세기가 감소한 것을 볼 수 있다(도 19). 이는 4℃에서 간암세포 표면의 B7-H3에 결합한 키메라항체 Chi-NPB40은 37℃에서 세포 활성이 활발할 경우 세포 내부로 B7-H3의 내부화를 유도할 수 있다는 것을 의미하며 이는 생쥐 단일클론항체 NPB40와 동일한 기능을 한다는 것을 보여준다. Flow cytometry was performed to observe cell membrane internalization of the chimeric antibody Chi-NPB40 in liver cancer cell lines Huh7 and SNU449. Cells were removed with 0.05% Trypsin-EDTA (Welgene, Gyeongsan, Korea), neutralized with cell culture medium containing 10% fetal bovine serum (FBS; VWR, PA, USA), and then passed through a 40μm strainer to form single cells. It was prepared with Each single cell, approximately 1x10 5 per ml, was mixed with PBA (1% bovine serum albumin, 0.02% NaN 3 in PBS) and then reacted with the chimeric antibody Chi-NPB40 at 4°C for 30 minutes. To observe internalization, the cells were washed with PBA to remove antibodies that did not bind to the cells, and the cells were suspended in 100 μl of culture medium and incubated at 37°C for 30 minutes so that the bound antibodies could be internalized into the cell membrane. After washing with PBA, the primary antibody and the corresponding anti-human IgG-FITC (Invitrogen) were further reacted at 4°C for 20 minutes. After washing twice with PBA, PI (propidium iodide)-negative cells were analyzed for antibody reaction using FACSCalibur and Cell Quest software (BD sciences). Compared to the reaction at 4°C, the fluorescence intensity of the chimeric antibody decreased in human liver cancer cells Huh7 and SNU-449 when additional reaction was performed at 37°C (Figure 19). This means that the chimeric antibody Chi-NPB40, which binds to B7-H3 on the surface of liver cancer cells at 4℃, can induce the internalization of B7-H3 into the cell when the cell is active at 37℃, which is similar to the mouse monoclonal antibody NPB40 and It shows that it performs the same function.
11-2. 약물 접합 키메라 Chi-NPB40 항체의 간암세포에서 세포 독성11-2. Cytotoxicity of drug-conjugated chimeric Chi-NPB40 antibody in hepatoma cells.
앞선 연구 결과를 통해 생쥐 IgG1 불변영역을 가진 NPB40 항체 및 인간 IgG1 불변영역을 가진 키메라 Chi-NPB40 항체가 간암 세포 표면에 결합하면서 37℃ 온도 조건에서 세포에 내부화 되는 것을 확인하였다. 이러한 특성을 바탕으로 Chi-NPB40 항체에 항암 약물이 접합되어 있을 때, Chi-NPB40 항체가 암세포 내부에 약물을 전달하여 세포 독성을 나타낼 것으로 예상하였다. 이를 확인하기 위해 약물이 접합된 인간 IgG Fc 영역 특이적인 2차 항체[anti-human IgG(Fc Specific) antibody-drug conjugates(ADCs)]를 사용하였다. 구체적으로는 DNA Alkylation agent인 duocamycin이 접합된 α-HFc-CL-DMDM(AH-102DD, Moradec, 미국) 항체와 tubulin polymerization inhibitor인 monomethyl auristatin이 접합된 α-HFc-CL-MMAF(AH-102AF, Moradec) 항체를 이용하였다. 먼저 96 well plate(SPL, 한국)의 각 웰에 5,000개의 Huh7 세포를 10% FBS가 포함된 RPMI-1640(Biowest, 프랑스) 배지를 이용하여 분주 후 24시간 동안 배양하였다. 다음 날 기존의 배양 배지를 제거한 다음, 여러 농도로 배양 배지에 희석된 키메라 Chi-NPB40 항체 또는 이에 대한 대조군인 생쥐 유래 NPB40 항체를 0, 0.01, 0.1, 1, 10, 100nM 농도까지 각각 세포에 처리하였다. 37℃에서 10분간 항체가 세포 표면에 결합하게 한 후, 항체가 포함된 배지를 상기의 2차 항체가 12.7nM의 농도로 희석된 배지로 대체하였다. 세포를 48시간 동안 37℃ 5% CO2 조건에서 배양한 후, 세포의 생존율을 알아보기 위해 Cell Counting Kit-8; CCK-8(K1018, APExBIO, 미국)을 사용하였다. 각 웰당 10μl의 CCK-8을 더해 3시간 동안 반응시키고 plate reader를 이용하여 OD450nm에서의 흡광도를 측정하였다. 그 결과 α-HFc-CL-DMDM ADC와 함께 Chi-NPB40 항체를 처리한 경우 세포 생존율이 10 nM Chi-NPB40 항체 농도에서는 16%, 100nM농도에서는 39%까지 감소한 것을 확인하였다(도 20A, 20B). α-HFc-CL-MMAF를 사용하여 동일한 실험을 진행한 경우에서는 0.01 nM Chi-NPB40 항체 농도에서 10%, 1 nM Chi-NPB40 항체 농도에서 12%, 10nM농도에서는 46%, 100nM농도에서는 최대 60%까지 간암 세포의 생존율이 감소하였다(도 20C, 20D). 그러나 생쥐 유래 항체인 NPB40을 처리한 세포의 생존율은 큰 변화를 보이지 않았다. 이는 실험에서 사용한 약물이 접합된 2차 항체가 생쥐 항체가 아닌 인간 항체의 Fc 영역에 특이적으로 결합하며, 생쥐-인간 키메라 항체인 Chi-NPB40와 함께 세포 내부로 들어가 세포 독성을 유발하는 것을 증명한 것이다. 따라서 Chi-NPB40 항체가 간암세포에 내부화 되며, 이러한 특성을 바탕으로 B7-H3를 발현하는 간암세포 내부로 약물을 효과적으로 전달함으로써 항암 효과를 나타낸 것이다. 다른 간암 세포인 HepG2를 사용한 동일한 실험에서는 α-HFc-CL-DMDM을 사용할 경우, 100 nM의 Chi-NPB40 항체 농도에서 24%, 250nM 농도에서는 32%까지 간암세포 생존율이 감소하고(도 21A, 21B), α-HFc-CL-MMAF를 사용한 동일한 실험에서는 10 nM의 Chi-NPB40 항체 농도에서 12%, 100nM의 Chi-NPB40 항체 농도에서 23%, 250nM농도에서는 29%까지 간암세포 생존율이 감소하는 것을 확인하였다(도 21C, 21D). 또다른 간암 세포인 SNU-449를 사용한 동일한 실험에서는 α-HFc-CL-MMAF를 사용할 경우, 100nM의 Chi-NPB40 항체 농도에서 18%, 250 nM의 Chi-NPB40 항체 농도에서 38%까지 간암세포 생존율이 감소하는 것을 확인하였다(도 22A, 22B). 이런 결과는 Chi-NPB40 항체를 사용한 ADC 전략을 이용하여 다양한 간암세포들의 세포사멸을 유도할 수 있다는 것을 말해준다.Through previous research results, it was confirmed that the NPB40 antibody with a mouse IgG1 constant region and the chimeric Chi-NPB40 antibody with a human IgG1 constant region bind to the surface of liver cancer cells and are internalized by the cells at a temperature of 37°C. Based on these characteristics, it was expected that when an anticancer drug was conjugated to the Chi-NPB40 antibody, the Chi-NPB40 antibody would deliver the drug inside the cancer cells and exhibit cytotoxicity. To confirm this, drug-conjugated human IgG Fc region-specific secondary antibodies [anti-human IgG (Fc Specific) antibody-drug conjugates (ADCs)] were used. Specifically, α-HFc-CL-DMDM (AH-102DD, Moradec, USA) antibody conjugated with duocamycin, a DNA alkylation agent, and α-HFc-CL-MMAF (AH-102AF, conjugated with monomethyl auristatin, a tubulin polymerization inhibitor). Moradec) antibody was used. First, 5,000 Huh7 cells were seeded into each well of a 96 well plate (SPL, Korea) using RPMI-1640 (Biowest, France) medium containing 10% FBS and cultured for 24 hours. The next day, the existing culture medium was removed, and then the cells were treated with the chimeric Chi-NPB40 antibody diluted in the culture medium at various concentrations or the control mouse-derived NPB40 antibody at concentrations of 0, 0.01, 0.1, 1, 10, and 100 nM. did. After allowing the antibody to bind to the cell surface for 10 minutes at 37°C, the medium containing the antibody was replaced with medium in which the secondary antibody was diluted to a concentration of 12.7 nM. After culturing the cells at 37°C and 5% CO 2 conditions for 48 hours, Cell Counting Kit-8 was used to determine the survival rate of the cells; CCK-8 (K1018, APExBIO, USA) was used. 10 μl of CCK-8 was added to each well, reacted for 3 hours, and absorbance was measured at OD 450 nm using a plate reader. As a result, it was confirmed that when Chi-NPB40 antibody was treated with α-HFc-CL-DMDM ADC, cell viability decreased by 16% at 10 nM Chi-NPB40 antibody concentration and 39% at 100 nM concentration (Figures 20A, 20B). . When the same experiment was performed using α-HFc-CL-MMAF, 10% at 0.01 nM Chi-NPB40 antibody concentration, 12% at 1 nM Chi-NPB40 antibody concentration, 46% at 10 nM concentration, and up to 60% at 100 nM concentration. The survival rate of liver cancer cells decreased by % (Figures 20C, 20D). However, the survival rate of cells treated with NPB40, a mouse-derived antibody, did not show any significant change. This proves that the secondary antibody conjugated with the drug used in the experiment specifically binds to the Fc region of a human antibody, not a mouse antibody, and enters the cell together with Chi-NPB40, a mouse-human chimeric antibody, causing cytotoxicity. It was done. Therefore, the Chi-NPB40 antibody is internalized in liver cancer cells, and based on this characteristic, it shows an anticancer effect by effectively delivering the drug into liver cancer cells expressing B7-H3. In the same experiment using HepG2, another liver cancer cell, when α-HFc-CL-DMDM was used, the liver cancer cell survival rate decreased by 24% at a Chi-NPB40 antibody concentration of 100 nM and by 32% at a concentration of 250 nM (Figures 21A, 21B ), in the same experiment using α-HFc-CL-MMAF, the liver cancer cell survival rate decreased by 12% at a Chi-NPB40 antibody concentration of 10 nM, 23% at a Chi-NPB40 antibody concentration of 100 nM, and 29% at a concentration of 250 nM. Confirmed (Figures 21C, 21D). In the same experiment using SNU-449, another liver cancer cell, when α-HFc-CL-MMAF was used, the liver cancer cell survival rate increased to 18% at a Chi-NPB40 antibody concentration of 100 nM and 38% at a Chi-NPB40 antibody concentration of 250 nM. It was confirmed that this decreased (Figures 22A, 22B). These results indicate that apoptosis of various liver cancer cells can be induced using the ADC strategy using Chi-NPB40 antibody.
실시예 12. 단일클론항체 NPB40의 in vivo 기능 분석Example 12. In vivo functional analysis of monoclonal antibody NPB40
12-1. 항체 NPB40의 in vitro ADCC 기능 분석 12-1. In vitro ADCC functional analysis of antibody NPB40
항체가 생체내에서 항암효과를 보이는 대표적인 방법은 암세포에 결합한 항체를 인식한 숙주의 면역세포들이 효과적으로 암세포를 살상하는 것이다. 이와 같은 항체 의존적 세포 매개 세포독성(antibody-dependent cellular cytotoxicity; 이하 ADCC)을 생쥐에서 생체 실험 전에 in vitro에서 먼저 확인하였다. 상업적으로 구입한 ADCC core kit(Promega, G7010)를 이용할 경우 키메라 항체를 사용하여 in vitro ADCC를 측정할 수 있음으로 NPB40의 키메라 항체 Chi-NPB40을 사용하여 간암세포주에 결합한후 ADCC 기능을 유도할 수 있는지 측정했다. ADCC를 측정하기 위해 실험 하루 전 먼저 96 well white plate(SPL)의 외곽의 36웰을 제외한 안쪽 60 웰에 37,500개의 Huh7 세포를 10%FBS가 포함된 RPMI-1640 (Biowest, 프랑스) 배지 100㎕를 이용하여 분주 후 24시간동안 배양했다. 다음날 아침 배양배지 95㎕를 제거하고 ADCC core kit(Promega, G7010)에 포함된 ADCC assay buffer(1.4㎖ low IgG serum+33.6㎖ RPMI) 25㎕를 안쪽 60웰에, 바깥쪽 36웰에는 75㎕를 처리한 후, hIgG isotype control 및 Chi-NPB40 각각 100, 30, 10, 3, 1, 0.3, 0.1 0.03, 0.01, 0 ㎍/㎖ 농도로 ADCC assay buffer에 희석한 희석액을 25㎕씩 각 웰 에 처리한 후 3.6㎖ ADCC assay buffer에 해동한 630㎕ ADCC bioassay effector cell(Jurkat cell)을 현탁하여 만든 세포 현탁액을 25㎕씩 처리하여 E:T ratio 12:1에서 37℃ 5% CO2 조건에서 6시간 배양했다. 6시간 후 plate를 상온에서 15분간 두어 온도를 낮추고 미리 준비한 Bio-Glo luciferase assay reagent를 안쪽 60웰에 각 75㎕씩, 바깥쪽 3웰에 75㎕씩(blank control) 처리한 후 5분간 반응 후 luminescence를 측정했다(도 23). 그 결과, 농도 10, 30 및 100㎍/㎖에서 Chi-NPB40의 ADCC를 관찰할 수 있었다(도 23). 따라서 이런 결과는 생쥐-인간 키메라 항체인 Chi-NPB40은 간암세포인 Huh-7 세포에 대해 ADCC를 통한 세포 독성을 유발하여 항암효과를 보일 수 있다는 것을 확인해주는 것이다. 또한 이런 결과는 NPB40을 생쥐에 주사하여 항암 효과를 관찰할 때 NPB40이 숙주의 면역세포를 이용하여 항암효과를 보일 것이라는 것을 제시해주는 것이다.A representative way for antibodies to exhibit anti-cancer effects in vivo is for the host's immune cells to recognize antibodies bound to cancer cells and effectively kill the cancer cells. This antibody-dependent cellular cytotoxicity (ADCC) was first confirmed in vitro before in vivo experiments in mice. When using a commercially purchased ADCC core kit (Promega, G7010), in vitro ADCC can be measured using a chimeric antibody. Therefore, the chimeric antibody Chi-NPB40 of NPB40 can be used to induce ADCC function after binding to a liver cancer cell line. It was measured to see if it was there. To measure ADCC, one day before the experiment, 37,500 Huh7 cells were placed in 100 ㎕ of RPMI-1640 (Biowest, France) medium containing 10% FBS in the inner 60 wells of a 96 well white plate (SPL) (excluding the outer 36 wells). After dispensing, it was cultured for 24 hours. The next morning, remove 95㎕ of the culture medium and add 25㎕ of ADCC assay buffer (1.4㎖ low IgG serum + 33.6㎖ RPMI) included in the ADCC core kit (Promega, G7010) to the inner 60 wells and 75㎕ to the outer 36 wells. After treatment, 25 ㎕ of hIgG isotype control and Chi-NPB40 diluted in ADCC assay buffer at concentrations of 100, 30, 10, 3, 1, 0.3, 0.1, 0.03, 0.01, and 0 ㎍/㎖, respectively, was treated in each well. After that, 25 ㎕ of cell suspension prepared by suspending 630 ㎕ ADCC bioassay effector cells (Jurkat cells) thawed in 3.6 ㎖ ADCC assay buffer was treated at an E:T ratio of 12:1 for 6 hours at 37°C and 5% CO 2 conditions. cultured. After 6 hours, leave the plate at room temperature for 15 minutes to lower the temperature, add 75㎕ of pre-prepared Bio-Glo luciferase assay reagent to the inner 60 wells and 75㎕ to the outer 3 wells (blank control), and react for 5 minutes. Luminescence was measured (Figure 23). As a result, ADCC of Chi-NPB40 could be observed at concentrations of 10, 30, and 100 μg/ml (FIG. 23). Therefore, these results confirm that Chi-NPB40, a mouse-human chimeric antibody, can exhibit anticancer effects by inducing cytotoxicity through ADCC against Huh-7 cells, which are liver cancer cells. Additionally, these results suggest that when NPB40 is injected into mice and its anticancer effect is observed, NPB40 will show an anticancer effect by using the host's immune cells.
12-2. 간암세포주 이종이식 동물모델에서 NPB40의 항암 효과 확인 12-2. Confirmation of anticancer effect of NPB40 in liver cancer cell line xenograft animal model
상기에서 확인한 NPB40 항체의 기능에 기반하여 NPB40 항체가 B7-H3를 발현하는 암세포에 대하여 예방 또는 치료 용도로서 사용할 수 있음을 in vivo에서 확인하기 위해 간암세포주 이종이식 누드마우스 모델을 이용하여 암세포 성장을 확인했다. 간암세포인 Huh7 세포를 0.05% Trypsin-EDTA(Welgene, Gyeongsan, Korea)로 떼어내고 10% fetal bovine serum(VWR)을 포함한 세포 배양 배지로 중화한 후 원심분리한 후 cell counting을 진행했다. 마리 당 7.5X106 개의 세포를 PBS(pH7.4) 대 Matrigel(Corning)을 1:1로 섞어 만든 200㎕에 현탁시킨 다음 세포 현탁액을 1주일간 사육실에서 안정화시킨 5주령 암컷 Balb/C-nu 누드마우스(나라 바이오)의 dorsal flank에 피하주사로 이식했다. 50㎣ 이상의 암이 관찰된 생쥐에 각 NPB40 및 대응되는 mIgG1 isotype control항체를 10 ㎎/㎏의 용량으로 꼬리 정맥 주사를 통해 주 3회(2일 간격으로) 투여했다. 각 날짜 별 암의 부피는 1/2*장축*단축2으로 계산하여 측정하고 통계 처리를 진행하였다(도 24A). 암의 크기는 최종 시점인 약물 투여 시작 20일 후 희생시킨 쥐에서 얻은 암 덩어리의 크기를 비교한 것이다(도 24B). 그 결과 NPB40을 투여한 생쥐는 대조군에 비해 낮은 암 성장을 보였다. 20일차에 희생시킨 생쥐에서 수확한 암 덩어리의 크기를 비교했을 때 NPB40을 투여한 생쥐에서 얻은 암은 대조군에 비해 크기가 줄어드는 것을 확인했으며, 이 결과로 NPB40이 in vivo에서 암의 성장을 감소시키며 이에 따라 NPB40을 in vivo에서 암의 예방 및 치료 용도로 사용될 수 있음을 확인해 준다.Based on the function of the NPB40 antibody confirmed above, in order to confirm in vivo that the NPB40 antibody can be used for prevention or treatment of cancer cells expressing B7-H3, cancer cell growth was performed using a liver cancer cell line xenograft nude mouse model. Confirmed. Huh7 cells, which are liver cancer cells, were removed with 0.05% Trypsin-EDTA (Welgene, Gyeongsan, Korea), neutralized with cell culture medium containing 10% fetal bovine serum (VWR), centrifuged, and cell counting was performed. 7.5 It was implanted into the dorsal flank of a mouse (Nara Bio) by subcutaneous injection. Each NPB40 and the corresponding mIgG1 isotype control antibody was administered at a dose of 10 mg/kg via tail vein injection three times a week (at 2-day intervals) to mice in which tumors of 50 mm3 or more were observed. The volume of cancer for each day was calculated and measured as 1/2*long axis*short axis 2 and statistical processing was performed (Figure 24A). The size of the cancer was compared with the size of the cancer mass obtained from mice sacrificed 20 days after the start of drug administration, which was the final time point (Figure 24B). As a result, mice administered NPB40 showed lower cancer growth compared to the control group. When comparing the sizes of cancer masses harvested from mice sacrificed on day 20, it was confirmed that the cancers obtained from mice administered NPB40 were reduced in size compared to the control group. As a result, NPB40 reduced cancer growth in vivo. This confirms that NPB40 can be used for the prevention and treatment of cancer in vivo.

Claims (17)

  1. 서열번호 1을 포함하는 중쇄 상보성 결정영역 1(heavy chain complementary determine region 1;HCDR1), 서열번호 2를 포함하는 HCDR2, 및 서열번호 3을 포함하는 HCDR3를 포함하는 중쇄; 및 서열번호 4를 포함하는 경쇄 상보성 결정영역 1(light chain complementary determine region 1; LCDR1), 서열번호 5를 포함하는 LCDR2, 및 서열번호 6을 포함하는 LCDR3을 포함하는 경쇄를 포함하는 항체.A heavy chain comprising heavy chain complementary determine region 1 (HCDR1) comprising SEQ ID NO: 1, HCDR2 comprising SEQ ID NO: 2, and HCDR3 comprising SEQ ID NO: 3; And an antibody comprising a light chain comprising light chain complementary determine region 1 (LCDR1) comprising SEQ ID NO: 4, LCDR2 comprising SEQ ID NO: 5, and LCDR3 comprising SEQ ID NO: 6.
  2. 청구항 1에 있어서, 서열번호 7을 포함하는 중쇄(heavy chain) 및 서열번호 8을 포함하는 경쇄(light chain)를 포함하는 항체.The antibody of claim 1, comprising a heavy chain comprising SEQ ID NO: 7 and a light chain comprising SEQ ID NO: 8.
  3. 청구항 1에 있어서, 상기 항체는 순수인간만능줄기세포(human naive pluripotent stem cells), 준인간만능줄기세포(human prime pluripotent stem cells) 및 인간 암세포 표면의 B7-H3에 결합하는 항체.The method according to claim 1, wherein the antibody binds to B7-H3 on the surface of human naive pluripotent stem cells, human prime pluripotent stem cells, and human cancer cells.
  4. 청구항 1 내지 3 중 어느 한 항의 항체를 포함하는 암의 예방 또는 치료용 약학 조성물.A pharmaceutical composition for preventing or treating cancer comprising the antibody of any one of claims 1 to 3.
  5. 청구항 4에 있어서, 상기 항체에 접합된 항암 물질을 더 포함하는 암의 예방 또는 치료용 약학 조성물.The pharmaceutical composition for preventing or treating cancer according to claim 4, further comprising an anti-cancer substance conjugated to the antibody.
  6. 청구항 5에 있어서, 상기 항암 물질은 상기 항체에 결합하는 2차 항체를 거쳐 접합된 것인 암의 예방 또는 치료용 약학 조성물.The pharmaceutical composition for preventing or treating cancer according to claim 5, wherein the anti-cancer substance is conjugated via a secondary antibody that binds to the antibody.
  7. 청구항 4에 있어서, NK-cell(natural killer cell), 대식세포(macrophage), 및 호중구(neutrophill)로 이루어진 군에서 적어도 하나를 더 포함하는 암의 예방 또는 치료용 약학 조성물.The pharmaceutical composition for preventing or treating cancer according to claim 4, further comprising at least one from the group consisting of NK-cell (natural killer cell), macrophage, and neutrophil.
  8. 청구항 4에 있어서, 상기 암은 B7-H3 단백질을 세포막에 발현하는 암세포 유래 암인 암의 예방 또는 치료용 약학 조성물.The pharmaceutical composition for preventing or treating cancer according to claim 4, wherein the cancer is derived from cancer cells expressing B7-H3 protein on the cell membrane.
  9. 청구항 4에 있어서, 상기 암은 간암, 췌장암, 골육종, 피부암, 폐암, 신경모세포종, 자궁암, 전립선암 및 대장암으로 이루어진 군에서 선택되는 암의 예방 또는 치료용 약학 조성물.The pharmaceutical composition for preventing or treating cancer according to claim 4, wherein the cancer is selected from the group consisting of liver cancer, pancreatic cancer, osteosarcoma, skin cancer, lung cancer, neuroblastoma, uterine cancer, prostate cancer, and colon cancer.
  10. 청구항 1의 항체를 생산하는 하이브리도마.A hybridoma producing the antibody of claim 1.
  11. 청구항 1 내지 3 중 어느 한 항의 항체를 포함하는 암 진단용 조성물.A composition for diagnosing cancer comprising the antibody of any one of claims 1 to 3.
  12. 청구항 11에 있어서, 상기 암은 B7-H3 단백질을 세포막에 발현하는 암세포 유래 암인 암 진단용 조성물.The composition for diagnosing cancer according to claim 11, wherein the cancer is a cancer derived from cancer cells expressing B7-H3 protein on the cell membrane.
  13. 청구항 11에 있어서, 상기 암은 간암, 췌장암, 골육종, 피부암, 폐암, 신경모세포종, 자궁암, 전립선암 및 대장암으로 이루어진 군에서 선택되는 암 진단용 조성물.The composition for diagnosing cancer according to claim 11, wherein the cancer is selected from the group consisting of liver cancer, pancreatic cancer, osteosarcoma, skin cancer, lung cancer, neuroblastoma, uterine cancer, prostate cancer, and colon cancer.
  14. 분리된 시료에 청구항 11의 조성물을 처리하여, 상기 항체가 결합된 단백질을 검출하는 단계를 포함하는 암 진단을 위한 정보 제공 방법.A method of providing information for cancer diagnosis, comprising treating a separated sample with the composition of claim 11 and detecting a protein to which the antibody is bound.
  15. 청구항 14에 있어서, 상기 시료는 혈청인 암 진단을 위한 정보 제공 방법.The method of claim 14, wherein the sample is serum.
  16. 청구항 14에 있어서, 상기 암은 B7-H3 단백질을 세포막에 발현하는 암세포 유래 암인 암 진단을 위한 정보 제공 방법.The method of claim 14, wherein the cancer is a cancer derived from cancer cells expressing B7-H3 protein on the cell membrane.
  17. 청구항 14에 있어서, 상기 암은 간암, 췌장암, 골육종, 피부암, 폐암, 신경모세포종, 자궁암, 전립선암 및 대장암으로 이루어진 군에서 선택되는 암 진단을 위한 정보 제공 방법.The method of claim 14, wherein the cancer is selected from the group consisting of liver cancer, pancreatic cancer, osteosarcoma, skin cancer, lung cancer, neuroblastoma, uterine cancer, prostate cancer, and colon cancer.
PCT/KR2023/003515 2022-03-18 2023-03-16 Anti b7-h3 monoclonal antibody and use thereof WO2023177232A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220034061 2022-03-18
KR10-2022-0034061 2022-03-18
KR1020230034221A KR20230136875A (en) 2022-03-18 2023-03-15 Anti b7-h3 monoclonal antibody and its use thereof
KR10-2023-0034221 2023-03-15

Publications (1)

Publication Number Publication Date
WO2023177232A1 true WO2023177232A1 (en) 2023-09-21

Family

ID=88024102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/003515 WO2023177232A1 (en) 2022-03-18 2023-03-16 Anti b7-h3 monoclonal antibody and use thereof

Country Status (1)

Country Link
WO (1) WO2023177232A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015181267A1 (en) * 2014-05-29 2015-12-03 Spring Bioscience Corporation Anti-b7-h3 antibodies and diagnostic uses thereof
WO2019225787A1 (en) * 2018-05-24 2019-11-28 에이비엘바이오 주식회사 Anti-b7-h3 antibody and use thereof
US10604582B2 (en) * 2014-09-17 2020-03-31 The United States Of America, As Represented By The Secretary, Department Of Health Anti-CD276 antibodies (B7H3)
KR20210094589A (en) * 2018-11-22 2021-07-29 쑤저우 카노바 바이오파마슈티컬 컴퍼니 리미티드 anti-B7-H3 antibody

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015181267A1 (en) * 2014-05-29 2015-12-03 Spring Bioscience Corporation Anti-b7-h3 antibodies and diagnostic uses thereof
US10604582B2 (en) * 2014-09-17 2020-03-31 The United States Of America, As Represented By The Secretary, Department Of Health Anti-CD276 antibodies (B7H3)
WO2019225787A1 (en) * 2018-05-24 2019-11-28 에이비엘바이오 주식회사 Anti-b7-h3 antibody and use thereof
KR20210094589A (en) * 2018-11-22 2021-07-29 쑤저우 카노바 바이오파마슈티컬 컴퍼니 리미티드 anti-B7-H3 antibody

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RYU CHUN-JE: "Development of clinically applicable naive human pluripotent stem cells by using novel conversion factors", 2021 FINAL REPORT OF CELL REGENERATION TECHNOLOGY DEVELOPMENT PROJECT, SEJONG UNIVERSITY, KOREA, 1 March 2021 (2021-03-01), Korea, pages 1 - 70, XP009549926 *

Similar Documents

Publication Publication Date Title
JP7030909B2 (en) Anti-TROP2 antibody-drug conjugate
JP7468903B2 (en) Antibodies, bispecific antibodies, ADCs and CARs targeting CLDN18.2 and uses thereof
CA3093327C (en) Targeted cd73 antibody and antibody-drug conjugate, and preparation method therefor and uses thereof
KR102584005B1 (en) Method for producing a glycinamide compound
TWI826828B (en) Anti-her3 antibody drug conjugate, and medicine and pharmaceutical composition containing the same
KR20200061376A (en) Antibody-pyrrolobenzodiazepine derivative conjugate
UA127469C2 (en) Drug conjugates comprising antibodies against claudin 18.2
US20210403552A1 (en) Anti-cldn18.2 antibody and uses thereof
CA3143995A1 (en) Anti-tigit antibodies
AU2018271751B2 (en) Anti-human interleukin-2 antibodies and uses thereof
JP6113717B2 (en) Drug conjugate of anti-CDH3 (P-cadherin) antibody
WO2021107566A1 (en) Antibody against c-kit and use thereof
US20220235134A1 (en) Anti-b7-h3 antibodies
WO2023177232A1 (en) Anti b7-h3 monoclonal antibody and use thereof
KR20230136875A (en) Anti b7-h3 monoclonal antibody and its use thereof
JP2022550364A (en) Novel anti-PD-L1/anti-LAG-3 bispecific antibodies and uses thereof
CN116496398B (en) Antibody specifically binding to v5 exon of CD44 and application thereof
US11471538B2 (en) Methods and pharmaceutical compositions for the treatment of cancers associated with activation of the MAPK pathway

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23771111

Country of ref document: EP

Kind code of ref document: A1