WO2023176796A1 - Scar formation inhibitor, fibroblast proliferation inhibitor, and method for producing nanoparticles - Google Patents

Scar formation inhibitor, fibroblast proliferation inhibitor, and method for producing nanoparticles Download PDF

Info

Publication number
WO2023176796A1
WO2023176796A1 PCT/JP2023/009703 JP2023009703W WO2023176796A1 WO 2023176796 A1 WO2023176796 A1 WO 2023176796A1 JP 2023009703 W JP2023009703 W JP 2023009703W WO 2023176796 A1 WO2023176796 A1 WO 2023176796A1
Authority
WO
WIPO (PCT)
Prior art keywords
optionally substituted
group
compound
alkyl
alkoxy
Prior art date
Application number
PCT/JP2023/009703
Other languages
French (fr)
Japanese (ja)
Inventor
徹 中澤
均 笠井
孝太 佐藤
良卓 小関
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Publication of WO2023176796A1 publication Critical patent/WO2023176796A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/265Esters, e.g. nitroglycerine, selenocyanates of carbonic, thiocarbonic, or thiocarboxylic acids, e.g. thioacetic acid, xanthogenic acid, trithiocarbonic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • Scars which are scars that remain after cuts, burns, ulcers, etc., have healed, are not only a problem in appearance, but can also be accompanied by pain, itching, etc., so it is desirable to suppress their formation.
  • Another problem is that scarring that occurs after glaucoma surgery may impair the effectiveness of the surgery.
  • glaucoma is a disease in which the outlet of the aqueous humor that fills the eye is narrowed and intraocular pressure increases, and filtration surgery is performed to drain the aqueous humor outside the eye.
  • the problem is that the new aqueous humor drainage channel is blocked as the filtering bleb becomes scarred, causing the intraocular pressure to gradually rise again.
  • mitomycin C antioxidantmetabolite
  • continuous use causes severe ocular tissue damage, and the permeability of water-soluble molecules to the corneal and conjunctival membranes is extremely low. Therefore, when mitomycin C is used as an eye drop, it hardly reaches the surgical scar and is not expected to be effective, so its application is limited to intraoperative application. Therefore, the challenge is to find a drug and its drug form that can easily and long-term suppress scarring even after surgery.
  • An object of the present invention is to provide a novel scar formation inhibitor containing as an active ingredient a compound whose effect on inhibiting scar formation has not been known so far.
  • the present inventors continued their intensive research and found that the above problems could be solved by using a compound represented by general formula (I) or a salt thereof, which will be described later.
  • the present invention is based on this new knowledge. Accordingly, the present invention provides the following items:
  • R 1 , R 2 , R 3 and R 4 are the same or different, hydrogen, optionally substituted C1-18 alkyl, optionally substituted C1-18 alkoxy, substituted C7-18 aralkyloxy or optionally substituted phenoxy.
  • Two adjacent ones of R 1 , R 2 , R 3 and R 4 may form an optionally substituted ring together with the carbon atom to which these groups are bonded.
  • Y is optionally substituted C1-18 alkyl, optionally substituted C7-18 aralkyl, optionally substituted phenyl, optionally substituted C1-18 alkoxy, optionally substituted C7-18 aralkyloxy, optionally substituted phenoxy, optionally substituted mono C1-18 alkylamino, optionally substituted mono C7-18 aralkylamino, or optionally substituted monophenylamino show].
  • Fibroblast proliferation inhibitor containing a compound represented by the following general formula (I) or a salt thereof: [In the formula, R 1 , R 2 , R 3 and R 4 are the same or different, hydrogen, optionally substituted C1-18 alkyl, optionally substituted C1-18 alkoxy, substituted C7-18 aralkyloxy or optionally substituted phenoxy. Two adjacent ones of R 1 , R 2 , R 3 and R 4 may form an optionally substituted ring together with the carbon atom to which these groups are bonded.
  • Y is optionally substituted C1-18 alkyl, optionally substituted C7-18 aralkyl, optionally substituted phenyl, optionally substituted C1-18 alkoxy, optionally substituted C7-18 aralkyloxy, optionally substituted phenoxy, optionally substituted mono C1-18 alkylamino, optionally substituted mono C7-18 aralkylamino, or optionally substituted monophenylamino show].
  • R 1 , R 2 , R 3 and R 4 are the same or different and each represents hydrogen, optionally substituted C1-18 alkyl, or optionally substituted C7-18 aralkyloxy. show, Y represents optionally substituted C1-18 alkyl, Item 1.
  • Section 4 The scar formation inhibitor according to Item 1, the fibroblast proliferation inhibitor according to Item 2, or the scar formation inhibitor according to Item 3, which contains nanoparticles containing the compound represented by general formula (I) or a salt thereof. agent or fibroblast proliferation inhibitor.
  • a method for producing nanoparticles comprising a step of injecting a water-miscible organic solvent solution of a compound represented by the following general formula (I) or a salt thereof into water:
  • R 1 , R 2 , R 3 and R 4 are the same or different, hydrogen, optionally substituted C1-18 alkyl, optionally substituted C1-18 alkoxy, substituted C7-18 aralkyloxy or optionally substituted phenoxy.
  • Two adjacent ones of R 1 , R 2 , R 3 and R 4 may form an optionally substituted ring together with the carbon atom to which these groups are bonded.
  • Y is optionally substituted C1-18 alkyl, optionally substituted C7-18 aralkyl, optionally substituted phenyl, optionally substituted C1-18 alkoxy, optionally substituted C7-18 aralkyloxy, optionally substituted phenoxy, optionally substituted mono C1-18 alkylamino, optionally substituted mono C7-18 aralkylamino, or optionally substituted monophenylamino show].
  • R 1 , R 2 , R 3 and R 4 are the same or different and each represents hydrogen, optionally substituted C1-18 alkyl, or optionally substituted C7-18 aralkyloxy. show, Y represents optionally substituted C1-18 alkyl, The method described in Section 5.
  • FIG. 1 shows a SEM image (left side of FIG. 1) of the nanoparticle dispersion prepared in Production Example (1) and a graph (left side of FIG. 1) of changes over time in the particle size distribution of nanoparticles.
  • FIG. 2 shows a SEM image (left side of FIG. 2) of a highly concentrated nanoparticle dispersion prepared in Production Example (2) and a graph (left side of FIG. 2) of changes over time in particle size distribution of nanoparticles.
  • 1 shows the results of cell proliferation inhibition evaluation using nanoparticles in Example 1. The results of HE staining of mouse eyeball samples in Example 2 are shown.
  • FIG. 4 shows the results of Picrosirius red staining of the mouse eyeball sample in Example 2.
  • FIG. 10(A) Shows a graph of the Alamar Blue assay in Example 3.
  • Figure 10(B) Shows a micrograph of HTF.
  • FIG. 10(C) Shows a graph showing the temporal effect of 0.5 ⁇ M N-Col on the viability of HTF.
  • FIG. 10(D) A graph showing the relationship between HTF proliferation and N-Col treatment time.
  • FIG. 10(E) A graph showing the relationship between TGF- ⁇ 1-induced HTF proliferation and N-Col treatment time.
  • FIG. 11(A) Shows a photograph of HTF in Example 3.
  • FIG. 11(B) Shows a graph showing the relationship of wound area to incubation time.
  • FIG. 11(C) Shows a micrograph in transwell assay.
  • FIGS. 11(D) and (E) Graphs showing the results of statistical analysis of invasive cells.
  • FIG. 12(A) A photograph of the collagen gel culture kit in Example 5 is shown.
  • FIG. 12(B) A graph showing the results of statistical analysis of the remaining gel area.
  • FIG. 12(C) Shows the results of statistical analysis of ⁇ -SMA expression detected by Western blot and banding.
  • FIG. 12(D) Shows the results of ⁇ -SMA immunostaining.
  • Figure 12(E) Shows the results of F-actin immunostaining.
  • FIG. 13(A) Shows the results of Ki67 antibody staining in Example 6.
  • Figure 13(B) Shows the analysis results of Ki67 staining.
  • FIG. 13(C) Shows the results of indirect TUNEL method.
  • Figure 13(D) Shows the results of quantitative analysis of TUNEL.
  • FIG. 14(A) Shows the results of Western blotting in Example 7.
  • 14(B) to (F) Shows the quantitative results of Western blot in Example 7.
  • FIG. 14(G) Shows the results of immunostaining for caspase-3. 10 shows a graph of the results of the alamar blue assay in Example 8.
  • the present invention provides a scar formation inhibitor comprising a compound represented by the following general formula (I) or a salt thereof:
  • R 1 , R 2 , R 3 and R 4 are the same or different, hydrogen, optionally substituted C1-18 alkyl, optionally substituted C1-18 alkoxy, substituted C7-18 aralkyloxy or optionally substituted phenoxy. Two adjacent ones of R 1 , R 2 , R 3 and R 4 may form an optionally substituted ring together with the carbon atom to which these groups are bonded.
  • Y is optionally substituted C1-18 alkyl, optionally substituted C7-18 aralkyl, optionally substituted phenyl, optionally substituted C1-18 alkoxy, optionally substituted C7-18 aralkyloxy, optionally substituted phenoxy, optionally substituted mono C1-18 alkylamino, optionally substituted mono C7-18 aralkylamino, or optionally substituted monophenylamino show].
  • the compound represented by general formula (I) may be simply referred to as compound (I).
  • the substituent when a group included in general formula (I) has a substituent, unless otherwise specified, the substituent includes an alkyl group, a dialkylamino group, a monoalkylamino group, an alkoxy group. , an alkoxycarbonyl group, an alkoxycarbonyloxy group, a halogen group, and the like.
  • the number of substituents per said group is, for example, 1 to 3, 1 to 2, unless it is specified otherwise. , 1, etc.
  • C1-18 alkyl may be substituted, and such substituents include dialkylamino group, monoalkylamino group, alkoxy group, alkoxycarbonyl group, alkoxy Examples include carbonyloxy group and halogen group.
  • two adjacent ones of R 1 , R 2 , R 3 and R 4 may form a ring together with the carbon atom to which these groups are bonded.
  • a ring include a 5- to 7-membered ring (9- to 11-membered ring if the number of carbon atoms in the benzene ring to which R 1 , R 2 , R 3 and R 4 are bonded is included).
  • substituents include an alkyl group, a dialkylamino group, a monoalkylamino group, an alkoxy group, an alkoxycarbonyl group, an alkoxycarbonyloxy group, and a halogen group.
  • alkyl group refers to a linear or branched saturated hydrocarbon group, such as a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, dodecyl group , C1-C18 alkyl groups such as tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, etc., preferably C1-C10 alkyl group, more preferably C
  • the "alkoxy group” includes an alkoxy group in which the alkyl moiety is the alkyl group described above. More specifically, examples of the alkoxy group include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, n-pentyloxy group.
  • a C1-C18 alkoxy group such as a tetradecyloxy group, a pentadecyloxy group, a hexadecyloxy group, a heptadecyloxy group, an octadecyloxy group, etc., preferably a C1-C10 alkoxy group, and more preferably Examples include a C1-C8 alkoxy group, more preferably a C1-C6 alkoxy group, particularly preferably a C1-C4 alkoxy group.
  • the "alkoxycarbonyl group” includes an alkoxycarbonyl group in which the alkoxy moiety is the aforementioned alkoxy group. More specifically, examples of the alkoxycarbonyl group include methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, isopropoxycarbonyl group, n-butoxycarbonyl group, isobutoxycarbonyl group, sec-butoxycarbonyl group, tert-butoxycarbonyl group, n-pentyloxycarbonyl group, isopentyloxycarbonyl group, n-hexyloxycarbonyl group, n-heptyloxycarbonyl group, n-octyloxycarbonyl group, n-nonyloxycarbonyl group, n-decyl Oxycarbonyl group, n-undecyloxycarbonyl group, dodecyloxycarbonyl group, tridecyloxycarbony
  • the "alkoxycarbonyloxy group” includes an alkoxycarbonyloxy group in which the alkoxy moiety is the aforementioned alkoxy group. More specifically, examples of the alkoxycarbonyloxy group include methoxycarbonyloxy group, ethoxycarbonyloxy group, n-propoxycarbonyloxy group, isopropoxycarbonyloxy group, n-butoxycarbonyloxy group, and isobutoxycarbonyloxy group.
  • aryl group refers to an aromatic hydrocarbon ring group, such as a C6-C14 aryl group such as a phenyl group, a naphthyl group, an anthracenyl group, and preferably a C6-C10 aryl group. , more preferably a phenyl group.
  • the "aralkyl group” includes, for example, an aralkyl group in which the aryl part is the above-mentioned aryl group and the alkyl part is the above-mentioned alkyl group. More specifically, for example, the aralkyl group includes a benzyl group, 2-phenylethyl group, 3-phenylpropyl group, 1-phenyl-propan-2-yl group, 4-phenyl-butyl group, 4-phenylbutane group.
  • -2-yl group 2-methyl-3-phenylpropyl group, 2-methyl-1-phenylpropan-2-yl group, 5-phenylpentyl group, 6-phenylhexyl group, 7-phenylheptyl group, 8- C7-18 aralkyl such as phenyloctyl group, 9-phenylnonyl group, 10-phenyldecyl group, 11-phenylundecyl group, 12-phenyldodecyl group, naphthylmethyl group, 2-naphthylethyl group, anthracenylmethyl group, etc.
  • Examples include C7-C10 aralkyl groups, and more preferably C7-C8 aralkyl groups.
  • the "aralkyloxy group” includes, for example, an aralkyloxy group in which the aralkyl moiety is the aralkyl group described above. More specifically, for example, as the aralkyl group, benzyloxy group, 2-phenylethyloxy group, 3-phenylpropyloxy group, 1-phenyl-propan-2-yloxy group, 4-phenyl-butyloxy group, 4-phenyl-butyloxy group, -phenylbutan-2-yloxy group, 2-methyl-3-phenylpropyloxy group, 2-methyl-1-phenylpropan-2-yloxy group, 5-phenylpentyloxy group, 6-phenylhexyloxy group, 7- Phenylheptyloxy group, 8-phenyloctyloxy group, 9-phenylnonyloxy group, 10-phenyldecyloxy group, 11-phenylundecyloxy group, 12-phenyl
  • the "monoalkylamino group” includes, for example, the above-mentioned amino group having one alkyl group. More specifically, the monoalkylamino group includes, for example, N-methylamino group, N-ethylamino group, N-n-propylamino group, N-isopropylamino group, N-n-butylamino group, N- -isobutylamino group, N-sec-butylamino group, N-tert-butylamino group, N-n-pentylamino group, N-isopentylamino group, N-n-hexylamino group, N-n-heptylamino group group, N-n-octylamino group, N-n-nonylamino group, N-n-decylamino group, N-n-undecylamino group, N-dodecylamino group, N-tridec
  • dialkylamino group includes, for example, the above-mentioned amino group having two alkyl groups.
  • the two alkyl groups contained in the dialkylamino group may be the same or different.
  • the dialkylamino group includes, for example, monomethylamino group, N,N-diethylamino group, N-methyl-N-ethylamino group, N,N-di-n-propylamino group, N-methyl -Nn-propylamino group, N,N-diisopropylamino group, N,N-di-n-butylamino group, N,N-diisobutylamino group, N,N-di-sec-butylamino group, N , N-di-tert-butylamino group, N,N-di-n-pentylamino group, N,N-diisopentylamino group, N,N-di-
  • the "monoaralkyl amino group” includes, for example, the above-mentioned amino group having one aralkyl group. More specifically, the monoaralkyl amino group includes, for example, N-benzylamino group, N-2-phenylethylamino group, N-3-phenylpropylamino group, and N-1-phenyl-propan-2-ylamino group.
  • Examples include C7-18 aralkylamino groups such as, preferably C7-C10 aralkyla
  • halogen group examples include chlorine, fluorine, bromine, and iodine.
  • R 1 , R 2 , R 3 and R 4 are the same or different and are hydrogen, optionally substituted C1-18 alkyl, or optionally substituted C7- Preferably it represents 18aralkyloxy. It is preferable that 1 to 2 of R 1 , R 2 , R 3 and R 4 represent "optionally substituted C7-18 aralkyloxy", and one represents “optionally substituted C7-18 aralkyloxy”. It is more preferable to represent "aralkyloxy”.
  • R 3 represents “optionally substituted C7-18 aralkyloxy” or a total of two of R 3 and one of R 1 , R 2 and R 4 preferably represent “optionally substituted C7-18 aralkyloxy”. Furthermore, it is preferable that 1 to 3 of R 1 , R 2 , R 3 and R 4 represent “optionally substituted C1-18 alkyl”, and 2 represent “optionally substituted C1-18 alkyl”. -18 alkyl” is preferred.
  • R 1 , R 2 , R 3 and R 4 represent “optionally substituted C1-18 alkyl”
  • R 2 and R 4 represent “optionally substituted C1-18 alkyl” 18 alkyl" or a total of three of R 2 and R 4 and one of R 1 and R 3 preferably represents "optionally substituted C1-18 alkyl.”
  • Y represents "optionally substituted C1-18 alkoxy", “optionally substituted C1-18 alkyl", or “optionally substituted mono-C1-18 alkyl". It is preferable to indicate "amino".
  • the "C1-18 alkoxy" moiety is preferably C1-8 alkoxy, more preferably C2-7 alkoxy, and more preferably C3-6 alkoxy.
  • the "C1-18 alkyl” moiety is preferably C1-9 alkyl, more preferably C2-8 alkoxy, and more preferably C3-7 alkoxy. , C4-6 alkoxy are more preferred.
  • the "C1-18 alkyl” moiety is preferably C1-8 alkyl, more preferably C2-7 alkoxy, and C3-6 alkoxy is More preferred.
  • the term "salt” refers to a pharmaceutically acceptable salt.
  • the salt of compound (I) includes an acid addition salt and a base salt.
  • acid addition salts include inorganic acid salts such as hydrochloride, hydrobromide, hydroiodide, sulfate, perchlorate, phosphate, oxalate, malonate, and succinic acid.
  • Salt maleate, fumarate, lactate, malate, citrate, tartrate, benzoate, trifluoroacetate, acetate, methanesulfonate, p-toluenesulfonate, trifluoromethane
  • examples include organic acid salts such as sulfonates, and acidic amino acid salts such as glutamate and aspartate.
  • Specific examples of salts with bases include alkali metal or alkaline earth metal salts such as sodium salts, potassium salts or calcium salts, salts with organic bases such as pyridine salts and triethylamine salts, and bases such as lysine and arginine.
  • Examples include salts with natural amino acids.
  • Compound (I) or a salt thereof may exist in the form of a hydrate or solvate, and therefore, these hydrates and solvates are also included in compound (I), which is an active ingredient of the present invention. be done. Furthermore, when compound (I) has isomers such as geometric isomers, stereoisomers, optical isomers, etc., these isomers are included in the compounds of the present invention unless otherwise specified.
  • solvents that form solvates include water, alcohols such as ethanol and propanol, organic acids such as acetic acid, esters such as ethyl acetate, ethers such as tetrahydrofuran and diethyl ether, ketones such as acetone, DMSO, etc. Illustrated.
  • Compound (I) can be produced by various methods, for example, by the method shown in the reaction formula below.
  • Compound 2 can be obtained by first oxidizing Compound 1.
  • the oxidizing agent used include pyridinium chlorochromate, pyridinium dichromate, dimethyl sulfoxide/oxalyl chloride, tetrapropylammonium perruthenate, Dess-Martin periodinane, 2,2,6,6-tetramethylpiperidine 1- Examples include oxyl free radicals.
  • the ratio of Compound 1 and the oxidizing agent to be used is not particularly limited, but for example, the latter can be used in an amount of 1 to 2 moles per 1 mole of the former.
  • the reaction can be carried out in the presence of additives such as triethylamine and molecular sieves.
  • reaction temperature of the above reaction is not particularly limited, and the reaction is usually performed at room temperature, cooling, or heating. Preferably, the temperature is 0 to 25°C.
  • reaction time for the above reaction is also not particularly limited, but the reaction can be carried out for 1 to 24 hours, for example.
  • Compound 2 can be further oxidized to obtain Compound 3.
  • the oxidizing agent used include potassium permanganate, hypochlorous acid, and chromium trioxide.
  • the ratio of Compound 1 and the oxidizing agent to be used is not particularly limited, but for example, the latter can be used in an amount of 1 to 2 moles per 1 mole of the former.
  • the reaction can be carried out in the presence of additives such as sodium dihydrogen phosphate, 2-methyl-2-butene, and sulfuric acid.
  • the reaction temperature of the above reaction is not particularly limited, and the reaction is usually performed at room temperature, cooling, or heating. Preferably, the temperature is 0 to 25°C.
  • the reaction time for the above reaction is also not particularly limited, but the reaction can be carried out for 1 to 24 hours, for example.
  • compound (I) can be obtained by reacting compound 3 with deacetylcolchicine 4.
  • the ratio of the compound 3 and deacetylcolchicine 4 to be used is not particularly limited, but for example, the latter can be used in a range of 1 to 1.5 mol per 1 mol of the former.
  • the reaction temperature of the above reaction is not particularly limited, and the reaction is usually performed at room temperature, cooling, or heating. Preferably, the temperature is 0 to 25°C.
  • the reaction time for the above reaction is also not particularly limited, but the reaction can be carried out for 1 to 24 hours, for example.
  • nanoparticles containing compound (I) or a salt thereof.
  • nanoparticles refer to particles having an average particle diameter of less than 1 ⁇ m.
  • nanoparticles of the invention are generally spherical.
  • the average particle diameter can be measured by scanning electron microscopy (SEM) or dynamic light scattering (DLS).
  • SEM scanning electron microscopy
  • DLS dynamic light scattering
  • the average particle diameter of the nanoparticles of the present invention is preferably 10 to 500 nm, more preferably 10 to 100 nm.
  • the nanoparticles of the present invention can typically be prepared by injecting a water-miscible organic solvent solution of compound (I) or its salt into water and dispersing it by the method described below.
  • the nanoparticles of the present invention are organic nanocrystals of compound (I) or a salt thereof, and therefore consist essentially of compound (I) or a salt thereof.
  • the nanoparticles of the present invention may contain components other than compound (I) or its salt (for example, additives to the water-miscible organic solvent used in the nanoparticle manufacturing method). May contain.
  • the content of compound (I) or a salt thereof in the nanoparticles of the present invention is preferably 95% by mass or more, more preferably 99% by mass or more, and even more preferably 99.9% by mass or more.
  • Compound (I) or its salt By making Compound (I) or its salt into nanoparticles, it has excellent permeability through the ocular surface (corneoconjunctiva) compared to other drug forms, and even after surgery, the drug can be administered through the conjunctiva by instillation. Delivery is expected to suppress scarring at the surgical site in the long term.
  • the nanoparticles of the present invention can be produced by a method that includes a step of injecting a solution of compound (I) or a salt thereof in a water-miscible organic solvent into water.
  • a solution of compound (I) or a salt thereof in a water-miscible organic solvent is injected into water using a syringe.
  • the water-miscible organic solvent is not particularly limited as long as it is a good solvent for compound (I) or its salt, and examples thereof include tetrahydrofuran, acetone, dioxane, acetonitrile, methanol, ethanol, propanol, N-methylpyrrolidone, dimethylsulfoxide, etc.
  • acetone, tetrahydrofuran, ethanol, dimethyl sulfoxide and the like are preferred. These solvents can be used alone or in combination.
  • the content of compound (I) or its salt in a water-miscible organic solvent solution of compound (I) or its salt is not particularly limited, but is, for example, 0.1 to 15% by mass, preferably 0.1 to 10% by mass. It can be set appropriately within the range of %.
  • polysorbate 80 (PS80), polyvinylpyrrolidone (PVP), etc. may be added to the water-miscible organic solvent solution.
  • the amount of the water-miscible organic solvent solution of compound (I) or its salt to be injected into water is also not particularly limited, but for example, 0.1 to 1 ml of the water-miscible organic solvent solution to 10 ml of water, preferably 0. .1 to 0.2 ml can be added.
  • the injection time is not particularly limited, it is preferable to inject in 0.1 to 1 second, and more preferably in 0.1 to 0.2 seconds.
  • the temperature of the reaction system in this step is also not particularly limited, but can be appropriately set, for example, in the range of 0 to 30°C, preferably 10 to 20°C. In one embodiment of the invention, it is preferred to stir the water-miscible organic solvent solution after pouring it into water.
  • the stirring speed is not particularly limited, but can be appropriately set, for example, in the range of 1000 to 1500 rpm, preferably 1200 to 1500 rpm.
  • the temperature in the stirring step is the same as in the injection step.
  • the stirring time is not particularly limited, but can be appropriately set, for example, in the range of 1 to 10 seconds, preferably 1 to 3 seconds.
  • the obtained nanoparticles can be used as a dispersion liquid while being dispersed in water.
  • the water-miscible organic solvent used for dissolving compound (I) or its salt and adding it to water is preferably removed before use from the viewpoint of safety.
  • the method for removing the organic solvent is not particularly limited, and any known method can be used, such as distillation under reduced pressure (or normal pressure), dialysis, or the like.
  • the obtained nanoparticles can be isolated and used as a fine powder by performing a solid-liquid separation operation such as filtration on the dispersion.
  • the method can be performed with reference to the description in Patent Document 1.
  • the compound of the present invention or a salt thereof is preferable because when nanoparticles are formed as described above, a highly concentrated dispersion (eg, 0.1 to 10 mM, preferably 1 to 10 mM dispersion) can be obtained.
  • various pharmaceutically acceptable carriers such as isotonic agents, chelating agents, stabilizers, pH adjusting agents, etc.
  • preservatives, antioxidants, solubilizing agents, thickening agents, etc. as anti-scarring compositions.
  • the scarring inhibitor of the present invention can be used as a medicament for the treatment of diseases or conditions that can be treated by inhibiting scarring.
  • diseases or conditions that can be treated by inhibiting scarring include, but are not limited to, scarring of the filtering vesicles after glaucoma filtering surgery, interstitial lung disease, renal fibrosis, and liver fibrosis.
  • diseases or conditions that can be treated by inhibiting scarring include, but are not limited to, scarring of the filtering vesicles after glaucoma filtering surgery, interstitial lung disease, renal fibrosis, and liver fibrosis.
  • tonicity agents examples include sugars such as glucose, trehalose, lactose, fructose, mannitol, xylitol, and sorbitol, polyhydric alcohols such as glycerin, polyethylene glycol, and propylene glycol, and sodium chloride, potassium chloride, and calcium chloride.
  • sugars such as glucose, trehalose, lactose, fructose, mannitol, xylitol, and sorbitol
  • polyhydric alcohols such as glycerin, polyethylene glycol, and propylene glycol
  • sodium chloride potassium chloride
  • calcium chloride examples include inorganic salts.
  • chelating agent examples include edetate salts such as disodium edetate, disodium calcium edetate, trisodium edetate, tetrasodium edetate, and calcium edetate, ethylenediaminetetraacetate, nitrilotriacetic acid or its salt, hexamethalin.
  • edetate salts such as disodium edetate, disodium calcium edetate, trisodium edetate, tetrasodium edetate, and calcium edetate, ethylenediaminetetraacetate, nitrilotriacetic acid or its salt, hexamethalin.
  • examples include acid soda and citric acid.
  • Examples of the stabilizer include sodium hydrogen sulfite.
  • Examples of the pH adjuster include acids such as hydrochloric acid, carbonic acid, acetic acid, and citric acid, as well as alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate, or hydrogen carbonate.
  • alkali metal hydroxides such as sodium hydroxide and potassium hydroxide
  • alkali metal carbonates such as sodium carbonate, or hydrogen carbonate.
  • Examples include salts, alkali metal acetates such as sodium acetate, alkali metal citrates such as sodium citrate, bases such as trometamol, and the like.
  • preservatives include paraoxybenzoic acid esters such as sorbic acid, potassium sorbate, methyl paraoxybenzoate, ethyl paraoxybenzoate, propyl paraoxybenzoate, butyl paraoxybenzoate, chlorhexidine gluconate, benzalkonium chloride, and chloride.
  • examples include quaternary ammonium salts such as benzethonium and cetylpyridinium chloride, alkyl polyaminoethylglycine, chlorobutanol, polyquad, polyhexamethylene biguanide, and chlorhexidine.
  • antioxidants include sodium bisulfite, dry sodium sulfite, sodium pyrosulfite, concentrated mixed tocopherols, and the like.
  • solubilizing agents include sodium benzoate, glycerin, D-sorbitol, glucose, propylene glycol, hydroxypropylmethylcellulose, polyvinylpyrrolidone, macrogol, D-mannitol, and the like.
  • the thickening agent include polyethylene glycol, methylcellulose, ethylcellulose, carmellose sodium, xanthan gum, sodium chondroitin sulfate, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyvinylpyrrolidone, polyvinyl alcohol, and the like.
  • composition may further contain, in addition to compound (I) or a salt thereof, a compound known to have a scar formation inhibiting effect.
  • a compound known to have a scar formation inhibiting effect examples include mitomycin, tranilast, and the like.
  • the content of compound (I) or its salt in the composition is not particularly limited, and is, for example, 90% by mass or more, 70% by mass or more, 50% by mass or more in terms of the content of compound (I). It can be set as appropriate from conditions such as at least 30% by mass, at least 10% by mass, at least 5% by mass, and at least 1% by mass.
  • the formulation form is not particularly limited; for example, oral preparations such as tablets, pills, capsules, powders, granules, syrups, and sublingual preparations; eye drops, injections (intravenous injection, intramuscular injection, local injection, etc.) , gargles, drops, external preparations (ointments, creams, patches, inhalants), and parenteral preparations such as suppositories.
  • oral preparations such as tablets, pills, capsules, powders, granules, syrups, and sublingual preparations
  • injections intravenous injection, intramuscular injection, local injection, etc.
  • gargles gargles
  • drops external preparations (ointments, creams, patches, inhalants), and parenteral preparations such as suppositories.
  • eye drops include eye drops.
  • the content of the compound (I) of the present invention in the preparation varies depending on the route of administration, age, weight, symptoms, etc. of the patient and cannot be unconditionally defined, but the daily dose of the compound (I) is usually about 10 to 5000 mg, More preferably, the amount may be about 100 to 1000 mg. When administering once a day, this amount may be contained in one preparation, and when administering three times a day, one third of this amount may be contained in one preparation.
  • the medicament of the present invention is administered to patients such as mammals.
  • Mammals include humans, monkeys, mice, rats, rabbits, cats, dogs, pigs, cows, horses, sheep, and the like.
  • Fibroblast proliferation inhibitor in the present invention, compound (I) or a salt thereof has a fibroblast proliferation inhibitory effect and can inhibit scar formation. Therefore, in another embodiment, the present invention provides a fibroblast proliferation inhibitor comprising Compound (I) or a salt thereof.
  • the active ingredient, formulation form, amount used, etc. of the fibroblast proliferation inhibitor can be selected in the same manner as the preventive or therapeutic agent of the present invention.
  • the fibroblast proliferation inhibitor of the present invention can also suppress the proliferation of fibroblasts by adding it to fibroblasts in vitro.
  • the fibroblasts may be isolated cells, or may be in the form of cell clusters, tissue pieces, or the like.
  • fibroblasts examples include those derived from humans, mice, rats, guinea pigs, monkeys, dogs, cats, Xenopus, and the like.
  • In vitro proliferation of fibroblasts can be inhibited, for example, by adding compound (I) or a salt thereof to fibroblasts.
  • the amount added is not particularly limited, but can be set so that, for example, the final concentration in the reaction system is in the range of 0.1 to 100 ⁇ M, preferably 1 to 10 ⁇ M.
  • fibroblasts may be used while placed in a solution such as a medium.
  • a medium any medium commonly used for culturing animal cells can be used as appropriate.
  • a medium includes, for example, Dulbecco's modified Eagle's medium. Further, serum, buffer, antibiotics, etc. may be added to the medium as appropriate.
  • Production example (2) Method for producing nanoparticles of compound 5 of the present invention 100 ⁇ L of an acetone solution of compound 5 adjusted to 11.1 mM was injected into 9 mL of water at room temperature using a syringe, and stirred at 1500 rpm for 2 seconds. , an aqueous dispersion of nanoparticles was obtained.
  • 10 wt% of the compound polysorbate 80 was added. After removing acetone, the volume was determined to be 10 mL, and mixed with a 9% aqueous sodium chloride solution at a ratio of 9:1 to prepare. The final concentration of the aqueous dispersion was 0.1 mM.
  • SEM and DLS revealed a particle size of approximately 200 nm.
  • the SEM image of the nanoparticle dispersion of Compound 5 obtained above is shown in the right photograph of FIG.
  • the graph on the left of Figure 1 shows the change in particle size distribution of nanoparticles over time.
  • SEM and DLS revealed a particle size of approximately 200 nm.
  • the SEM image of the highly concentrated nanoparticles of Compound 5 obtained above is shown in the left photograph of FIG.
  • the graph on the right side of Figure 2 shows the change in particle size distribution of nanoparticles over time.
  • the ocular surface layer consists of a hydrophobic corneal epithelium, a hydrophilic corneal stroma, and a tight junction in the outermost layer, which has low permeability to common eye drops.
  • nanoparticles prepared from Compound 5 are thought to pass through tight junctions due to their small size, and are thought to pass through hydrophobic corneal epithelium because they are an aggregate of hydrophobic compounds. It also has hydrophilic properties and is expected to penetrate the hydrophilic corneal stroma.
  • Example 1 Human fibroblasts were seeded in a 96-well plate, and 24 hours later, deacetylcolchicine and nanoparticles of Compound 5 prepared in Production Example (2) above were added to a final concentration of 10-1000 nM. After a further 24 hours, alamar blue reagent was added, and absorbance was measured 2 hours later. The results are shown in Figure 3. As shown in FIG. 3, the nanoparticles of Compound 5 showed approximately the same growth-inhibiting activity as deacetylcolchicine.
  • Example 2 A filtering bleb model was created in both eyes of an 8-week-old male C57BL/6J mouse using the following procedure.
  • a mixed solution of ketamine (180 mg/kg), xylazine (90 mg/kg), and physiological saline was administered intraperitoneally for anesthesia.
  • Approximately one-fourth of the upper conjunctiva was removed using spring scissors to expose the sclera.
  • An anterior chamber puncture was performed from the sclera in the limbus using a 30-gauge needle to create a leakage path for the aqueous humor.
  • the exposed sclera was covered with the peeled conjunctiva, and the conjunctiva was sutured at two locations with 10-0 nylon at the limbus.
  • the extracted solution was dried over magnesium sulfate and the solvent was removed by evaporation under reduced pressure.
  • 1.0 mL of tetrahydrofuran (THF) was put into the eggplant flask containing the obtained residue, and after dissolving it, 0.5 mL of water and 1.5 mL of acetic acid (AcOH) were added.
  • the solution was extracted with ethyl acetate, and the ethyl acetate extract was washed with water.
  • the solvent was removed by distillation under reduced pressure.
  • Production Example (14) Method for Preparing Nanoparticles of Compound 5a 100 ⁇ L of an acetone solution of Compound 5a adjusted to 10 mM was injected into 10 mL of water at room temperature using a syringe, and stirred at 1500 rpm for 2 seconds to form nanoparticles in water. A dispersion was obtained. When preparing the acetone solution, 10 wt% of the compound polysorbate 80 was added. The final concentration of the aqueous dispersion was 0.1 mM. SEM and DLS revealed the particle size to be approximately 130 nm. The photograph of FIG. 6 shows the results of the SEM image of the nanoparticle dispersion of compound 5a obtained above.
  • the particle size distribution of the nanoparticles is shown in the graph of FIG. Production Example (15) Method for Preparing Nanoparticles of Compound 5b 100 ⁇ L of an acetone solution of Compound 5b adjusted to 10 mM was injected into 10 mL of water at room temperature using a syringe, and stirred at 1500 rpm for 2 seconds to form nanoparticles in water. A dispersion was obtained. When preparing the acetone solution, 10 wt% of the compound polysorbate 80 was added. The final concentration of the aqueous dispersion was 0.1 mM. SEM and DLS revealed the particle size to be approximately 100 nm. The photograph of FIG. 7 shows the results of the SEM image of the nanoparticle dispersion of compound 5b obtained above. The particle size distribution of the nanoparticles is shown in the graph of FIG.
  • FIG. 8 shows the result of the SEM image of the nanoparticles with a high concentration of compound 5a obtained above.
  • the particle size distribution of the nanoparticles is shown in the graph of FIG.
  • FIG. 9 shows the result of the SEM image of the nanoparticles with high concentration of compound 5b obtained above.
  • the particle size distribution of the nanoparticles is shown in the graph of FIG.
  • Example 3 Figure 10 Evaluation of N-Col treatment on HTF viability by Alamar Blue assay and cell proliferation by BrdU assay.
  • Human fibroblasts were seeded in 96-well plates, and after 24 hours, Compound 5 nanoparticles were added to a final concentration of 10- It was added at a concentration of 1000 nM. After a further 24 hours, alamar blue reagent was added, and absorbance was measured 2 hours later. Further, human fibroblast cells were seeded in a 96-well plate, and 24 hours later, compound 5 nanoparticles were added to a final concentration of 10-500 nM. After a further 24 hours, the BrdU reagent was added, and the absorbance was measured 24 hours and 48 hours later. The results are shown in FIGS. 10(A) to (E).
  • Figure 10(A) HTF human tenon fibroblast was treated with different concentrations of N-Col (compound 5 (0.1, 0.25, 0.5, 0.75, 1.0 ⁇ M) for 24 hours. At 0.1 ⁇ M and 0.25 ⁇ M, the statistical survival rate was Although no decrease was observed, a statistical decrease was shown from 0.5 ⁇ M to 1.0 ⁇ M compared to the solvent control.
  • FIG. 10(C) 10 ng/mL TGF- Figure 10 shows the temporal effect of 0.5 ⁇ M N-Col on the survival rate of HTF in the presence or absence of ⁇ 1. TGF- ⁇ 1 increased the survival rate of HTF, but this activation was markedly suppressed by N-Col treatment.
  • Example 4 Figure 11 Evaluation of N-Col treatment on HTF motility by scratch assay and transwell assay.
  • Human fibroblasts were seeded in a 6-well plate, and after confirming proliferation, a wound was created and compound 5 nanoparticles were added at a final concentration of 100-500 nM. Images were taken with a microscope every 12 hours and the remaining area was measured.
  • human fibroblast cells were seeded in transwells with a diameter of 8 ⁇ m, and cell migration and invasion were evaluated by crystal violet staining. The results are shown in FIGS. 11(A) to (E).
  • FIG. 11(A) HTF was treated with N-Col (compound 5) for 48 hours with or without TGF- ⁇ 1 induction, and photographs were taken every 12 hours.
  • Example 5 Figure 12. Evaluation of N-Col effects on TGF- ⁇ 1-induced HTF morphology and function.
  • Human fibroblasts were included in a collagen gel, nanoparticles of compound 5 were added, and the cells were seeded in a 24-well plate and cultured. After that, photographs were taken with a microscope over time until 15 days later, and the size of the collagen gel was measured.
  • human fibroblasts were cultured for 48 hours in the presence of compound 5 nanoparticles, and ⁇ -SMA expression was evaluated by Western blotting.
  • human fibroblasts were cultured for 24 hours in the presence of compound 5 nanoparticles, and cell morphology was evaluated by F-actin immunostaining. The results are shown in FIGS. 12(A) to (E).
  • Figure 12(A) Cell contractility was tested using a collagen gel culture kit. TGF- ⁇ 1-induced HTF was treated with 0.1 or 0.5 ⁇ M N-Col (compound 5) for 15 days and photographs were taken daily. Significant differences in gel shrinkage area among all groups occurred on day 5 and reached a peak on day 9. In the TGF- ⁇ 1 group, the gel area decreased and 5 ⁇ M N-Col was completely retained.
  • Figure 12(B) The remaining gel area was measured and statistically analyzed. 0.5 ⁇ M N-Col significantly inhibited TGF- ⁇ 1-induced gel contraction, which returned to untreated levels.
  • FIG. 12(D) Immunostaining of ⁇ -SMA was performed. It was shown that 0.5 ⁇ M N-Col suppressed TGF- ⁇ 1-induced ⁇ -SMA expression, reducing ⁇ -SMA fluorescence to untreated control levels. Scale bar 200 ⁇ m.
  • E F-actin immunostaining with rhodamine phalloidin (red) was performed on HTFs subjected to different treatments. In the TGF- ⁇ 1 group, the cell size was large, the fluorescence intensity indicating the cytoskeleton was strong, and morphological changes such as polygonal shapes were observed. After treatment with 0.5 ⁇ M N-Col, the cells shrank and became rod-shaped. Scale bar is shown in the figure. N-Col; nanocolchicine, ns; no significant difference, *: p ⁇ 0.05, **: p ⁇ 0.01, ***: p ⁇ 0.001 compared to untreated control.
  • Example 6 Figure 13 Effect of N-Col treatment on TGF- ⁇ 1-induced HTF cell cycle and apoptosis.
  • Human fibroblasts were cultured for 24 hours in the presence of compound 5 nanoparticles, and the cell cycle was detected by Ki67 immunostaining, and apoptotic cells were detected by the TUNEL method. Furthermore, the results are shown in FIGS. 13(A) to (D).
  • FIG. 13(B) Quantification of Ki67 staining showed that N-Col significantly reduced Ki67-positive cells in activated HTFs, but not in normal HTFs.
  • FIG. 13(C) Apoptosis of HTF was detected by different treatments using the indirect TUNEL method (white arrow), which is an anti-digoxigenin antibody using rhodamine fluorescent dye. N-Col exerted a significant proapoptotic effect on TGF- ⁇ 1-induced HTF, but this effect was weaker on HTF without TGF- ⁇ 1 treatment.
  • Example 7 Figure 14 Human fibroblasts were cultured for 48 hours with the addition of compound 5 nanoparticles related to fibrosis markers and apoptosis-related proteins in normal and activated HTFs after N-Col treatment. The expression of apoptosis-related factors was evaluated by Western blotting. In addition, activation of caspase-3 was evaluated by culturing human fibroblasts for 24 hours in the presence of compound 5 nanoparticles and staining with an antibody that specifically recognizes cleaved caspase-3. The results are shown in FIGS. 14(A) to (G).
  • 0.5 ⁇ M N-Col increased apoptosis-positive cells in activated HTF, but only a slight increase in normal fibroblasts.
  • Scale bar 200 ⁇ m.
  • Example 8 Figure 15. Alamar Blue assay was performed in the same manner as in Example 3 ( Figure 10A) except that Compound 5a or Compound 5b was used instead of N-Col (Compound 5). The results are shown in FIG. HTF was treated with different concentrations of N-Col (0.1, 0.25, 0.5, 0.75, 1.0 ⁇ M) for 24 h. A decrease in cell viability was shown at 1.0 ⁇ M compared to the solvent control.

Landscapes

  • Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Dermatology (AREA)
  • Emergency Medicine (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The problem to be solved by the present invention is to provide a novel scar formation inhibitor having, as an active ingredient, a compound that has not been conventionally known to have an effect for inhibiting scar formation. The present invention provides a scar formation inhibitor containing a compound represented by general formula (I) or a salt thereof [see description, etc., for R1, R2, R3, R4, and Y].

Description

瘢痕形成抑制剤、線維芽細胞増殖抑制剤及びナノ粒子の製造方法Scar formation inhibitor, fibroblast proliferation inhibitor, and method for producing nanoparticles
 [関連出願の相互参照]
 本出願は、2022年3月15日に出願された、日本国特許出願第2022-040442号明細書(その開示全体が参照により本明細書中に援用される)に基づく優先権を主張する。本発明は、瘢痕形成抑制剤、線維芽細胞増殖抑制剤及びナノ粒子の製造方法に関する。
[Cross reference to related applications]
This application claims priority based on Japanese Patent Application No. 2022-040442, filed on March 15, 2022, the entire disclosure of which is incorporated herein by reference. The present invention relates to a scar formation inhibitor, a fibroblast proliferation inhibitor, and a method for producing nanoparticles.
 切り傷、火傷、潰瘍等が治ったあとに残る傷あとである瘢痕は、見た目の問題だけでなく、痛み、痒み等を伴うこともあるため、その形成を抑制することが望まれている。また、緑内障の手術後に生じる瘢痕が手術の効果を損なう場合があるという問題もある。具体的には、緑内障は眼内を満たす房水の出口が狭窄し眼圧が上昇する疾患であり、房水を眼外へ排出するための濾過手術が行われる。しかし問題点として、形成した濾過胞の瘢痕化に伴い新しい房水の排出路が塞がり、徐々に眼圧が再上昇する点が挙げられている。マイトマイシンC(代謝拮抗薬)が瘢痕化を抑制することが知見として得られているが、継続的使用では眼組織障害が強く、また水溶性分子の角結膜浸透性は極めて低い。従って、マイトマイシンCは、点眼薬だと手術痕までほとんど到達せず、効果が期待できないため、その適用は術中塗布のみである。そのため、術後も簡便かつ長期的に瘢痕化を抑制できる薬物およびその薬剤形態を見出すことが課題として挙げられる。 Scars, which are scars that remain after cuts, burns, ulcers, etc., have healed, are not only a problem in appearance, but can also be accompanied by pain, itching, etc., so it is desirable to suppress their formation. Another problem is that scarring that occurs after glaucoma surgery may impair the effectiveness of the surgery. Specifically, glaucoma is a disease in which the outlet of the aqueous humor that fills the eye is narrowed and intraocular pressure increases, and filtration surgery is performed to drain the aqueous humor outside the eye. However, the problem is that the new aqueous humor drainage channel is blocked as the filtering bleb becomes scarred, causing the intraocular pressure to gradually rise again. It has been found that mitomycin C (antimetabolite) suppresses scarring, but continuous use causes severe ocular tissue damage, and the permeability of water-soluble molecules to the corneal and conjunctival membranes is extremely low. Therefore, when mitomycin C is used as an eye drop, it hardly reaches the surgical scar and is not expected to be effective, so its application is limited to intraoperative application. Therefore, the challenge is to find a drug and its drug form that can easily and long-term suppress scarring even after surgery.
特許第6479485号公報Patent No. 6479485
 本発明は、これまで瘢痕の形成抑制効果について知られていなかった化合物を有効成分とする新規の瘢痕形成抑制剤を提供することを課題とする。 An object of the present invention is to provide a novel scar formation inhibitor containing as an active ingredient a compound whose effect on inhibiting scar formation has not been known so far.
 かかる状況の下、本発明者らは、鋭意研究を続けた結果、後述する一般式(I)で表される化合物又はその塩を用いることにより、上記課題を解決し得ることを見出した。本発明はかかる新規の知見に基づくものである。従って、本発明は以下の項を提供する: Under such circumstances, the present inventors continued their intensive research and found that the above problems could be solved by using a compound represented by general formula (I) or a salt thereof, which will be described later. The present invention is based on this new knowledge. Accordingly, the present invention provides the following items:
 項1.下記一般式(I)で表される化合物又はその塩を含む瘢痕形成抑制剤:
Figure JPOXMLDOC01-appb-C000004
[式中、R、R、R及びRは、同一又は異なって、水素、置換されていてもよいC1-18アルキル、置換されていてもよいC1-18アルコキシ、置換されていてもよいC7-18アラルキルオキシ又は置換されていてもよいフェノキシを示す。
、R、R及びRのうち隣り合う2つが、これらの基が結合する炭素原子と共に、置換されていてもよい環を形成してもよい。
Yは、置換されていてもよいC1-18アルキル、置換されていてもよいC7-18アラルキル、置換されていてもよいフェニル、置換されていてもよいC1-18アルコキシ、置換されていてもよいC7-18アラルキルオキシ、置換されていてもよいフェノキシ、置換されていてもよいモノC1-18アルキルアミノ、置換されていてもよいモノC7-18アラルキルアミノ又は置換されていてもよいモノフェニルアミノを示す]。
Item 1. A scar formation inhibitor containing a compound represented by the following general formula (I) or a salt thereof:
Figure JPOXMLDOC01-appb-C000004
[In the formula, R 1 , R 2 , R 3 and R 4 are the same or different, hydrogen, optionally substituted C1-18 alkyl, optionally substituted C1-18 alkoxy, substituted C7-18 aralkyloxy or optionally substituted phenoxy.
Two adjacent ones of R 1 , R 2 , R 3 and R 4 may form an optionally substituted ring together with the carbon atom to which these groups are bonded.
Y is optionally substituted C1-18 alkyl, optionally substituted C7-18 aralkyl, optionally substituted phenyl, optionally substituted C1-18 alkoxy, optionally substituted C7-18 aralkyloxy, optionally substituted phenoxy, optionally substituted mono C1-18 alkylamino, optionally substituted mono C7-18 aralkylamino, or optionally substituted monophenylamino show].
 項2.下記一般式(I)で表される化合物又はその塩を含む線維芽細胞増殖抑制剤:
Figure JPOXMLDOC01-appb-C000005
[式中、R、R、R及びRは、同一又は異なって、水素、置換されていてもよいC1-18アルキル、置換されていてもよいC1-18アルコキシ、置換されていてもよいC7-18アラルキルオキシ又は置換されていてもよいフェノキシを示す。
、R、R及びRのうち隣り合う2つが、これらの基が結合する炭素原子と共に、置換されていてもよい環を形成してもよい。
Yは、置換されていてもよいC1-18アルキル、置換されていてもよいC7-18アラルキル、置換されていてもよいフェニル、置換されていてもよいC1-18アルコキシ、置換されていてもよいC7-18アラルキルオキシ、置換されていてもよいフェノキシ、置換されていてもよいモノC1-18アルキルアミノ、置換されていてもよいモノC7-18アラルキルアミノ又は置換されていてもよいモノフェニルアミノを示す]。
Item 2. Fibroblast proliferation inhibitor containing a compound represented by the following general formula (I) or a salt thereof:
Figure JPOXMLDOC01-appb-C000005
[In the formula, R 1 , R 2 , R 3 and R 4 are the same or different, hydrogen, optionally substituted C1-18 alkyl, optionally substituted C1-18 alkoxy, substituted C7-18 aralkyloxy or optionally substituted phenoxy.
Two adjacent ones of R 1 , R 2 , R 3 and R 4 may form an optionally substituted ring together with the carbon atom to which these groups are bonded.
Y is optionally substituted C1-18 alkyl, optionally substituted C7-18 aralkyl, optionally substituted phenyl, optionally substituted C1-18 alkoxy, optionally substituted C7-18 aralkyloxy, optionally substituted phenoxy, optionally substituted mono C1-18 alkylamino, optionally substituted mono C7-18 aralkylamino, or optionally substituted monophenylamino show].
 項3.一般式(I)中、R、R、R及びRは、同一又は異なって、水素、置換されていてもよいC1-18アルキル又は置換されていてもよいC7-18アラルキルオキシを示し、
Yは、置換されていてもよいC1-18アルキルを示す、
項1に記載の瘢痕形成抑制剤又は項2に記載の線維芽細胞増殖抑制剤。
Item 3. In general formula (I), R 1 , R 2 , R 3 and R 4 are the same or different and each represents hydrogen, optionally substituted C1-18 alkyl, or optionally substituted C7-18 aralkyloxy. show,
Y represents optionally substituted C1-18 alkyl,
Item 1. The scar formation inhibitor according to Item 1 or the fibroblast proliferation inhibitor according to Item 2.
 項4.一般式(I)で表される化合物又はその塩を含むナノ粒子を含む、項1に記載の瘢痕形成抑制剤、項2に記載の線維芽細胞増殖抑制剤又は項3に記載の瘢痕形成抑制剤もしくは線維芽細胞増殖抑制剤。 Section 4. The scar formation inhibitor according to Item 1, the fibroblast proliferation inhibitor according to Item 2, or the scar formation inhibitor according to Item 3, which contains nanoparticles containing the compound represented by general formula (I) or a salt thereof. agent or fibroblast proliferation inhibitor.
 項5.下記一般式(I)で表される化合物又はその塩の水混和性有機溶媒溶液を水に注入する工程を含む、ナノ粒子の製造方法:
Figure JPOXMLDOC01-appb-C000006
[式中、R、R、R及びRは、同一又は異なって、水素、置換されていてもよいC1-18アルキル、置換されていてもよいC1-18アルコキシ、置換されていてもよいC7-18アラルキルオキシ又は置換されていてもよいフェノキシを示す。
、R、R及びRのうち隣り合う2つが、これらの基が結合する炭素原子と共に、置換されていてもよい環を形成してもよい。
Yは、置換されていてもよいC1-18アルキル、置換されていてもよいC7-18アラルキル、置換されていてもよいフェニル、置換されていてもよいC1-18アルコキシ、置換されていてもよいC7-18アラルキルオキシ、置換されていてもよいフェノキシ、置換されていてもよいモノC1-18アルキルアミノ、置換されていてもよいモノC7-18アラルキルアミノ又は置換されていてもよいモノフェニルアミノを示す]。
Item 5. A method for producing nanoparticles, comprising a step of injecting a water-miscible organic solvent solution of a compound represented by the following general formula (I) or a salt thereof into water:
Figure JPOXMLDOC01-appb-C000006
[In the formula, R 1 , R 2 , R 3 and R 4 are the same or different, hydrogen, optionally substituted C1-18 alkyl, optionally substituted C1-18 alkoxy, substituted C7-18 aralkyloxy or optionally substituted phenoxy.
Two adjacent ones of R 1 , R 2 , R 3 and R 4 may form an optionally substituted ring together with the carbon atom to which these groups are bonded.
Y is optionally substituted C1-18 alkyl, optionally substituted C7-18 aralkyl, optionally substituted phenyl, optionally substituted C1-18 alkoxy, optionally substituted C7-18 aralkyloxy, optionally substituted phenoxy, optionally substituted mono C1-18 alkylamino, optionally substituted mono C7-18 aralkylamino, or optionally substituted monophenylamino show].
 項6.一般式(I)中、R、R、R及びRは、同一又は異なって、水素、置換されていてもよいC1-18アルキル又は置換されていてもよいC7-18アラルキルオキシを示し、
Yは、置換されていてもよいC1-18アルキルを示す、
項5に記載の方法。
Item 6. In general formula (I), R 1 , R 2 , R 3 and R 4 are the same or different and each represents hydrogen, optionally substituted C1-18 alkyl, or optionally substituted C7-18 aralkyloxy. show,
Y represents optionally substituted C1-18 alkyl,
The method described in Section 5.
 本発明によれば、これまで瘢痕の形成抑制効果について知られていなかった化合物を有効成分とする新規の瘢痕形成抑制剤を提供することができる。 According to the present invention, it is possible to provide a novel scar formation inhibitor containing as an active ingredient a compound whose effect on inhibiting scar formation has not been known so far.
製造例(1)において作製したナノ粒子分散液のSEM像(図1左)及びナノ粒子の粒径分布の経時変化のグラフ(図1左右)を示す。FIG. 1 shows a SEM image (left side of FIG. 1) of the nanoparticle dispersion prepared in Production Example (1) and a graph (left side of FIG. 1) of changes over time in the particle size distribution of nanoparticles. 製造例(2)において作製した高濃度ナノ粒子分散液のSEM像(図2左)及びナノ粒子の粒径分布の経時変化のグラフ(図2左右)を示す。FIG. 2 shows a SEM image (left side of FIG. 2) of a highly concentrated nanoparticle dispersion prepared in Production Example (2) and a graph (left side of FIG. 2) of changes over time in particle size distribution of nanoparticles. 実施例1におけるナノ粒子による細胞増殖抑制評価の結果を示す。1 shows the results of cell proliferation inhibition evaluation using nanoparticles in Example 1. 実施例2におけるマウス眼球サンプルのHE染色の結果を示す。The results of HE staining of mouse eyeball samples in Example 2 are shown. 実施例2におけるマウス眼球サンプルの図4に、Picrosirius red染色の結果を示す。FIG. 4 shows the results of Picrosirius red staining of the mouse eyeball sample in Example 2. 製造例(14)における化合物5aのナノ粒子のSEM像及び粒径分布のグラフを示す。2 shows an SEM image and a graph of particle size distribution of nanoparticles of Compound 5a in Production Example (14). 製造例(15)における化合物5bのナノ粒子のSEM像及び粒径分布のグラフを示す。2 shows an SEM image and a graph of particle size distribution of nanoparticles of Compound 5b in Production Example (15). 製造例(16)における化合物5aのナノ粒子のSEM像及び粒径分布のグラフを示す。2 shows a SEM image and a graph of particle size distribution of nanoparticles of Compound 5a in Production Example (16). 製造例(17)における化合物5bのナノ粒子のSEM像及び粒径分布のグラフを示す。2 shows a SEM image and a graph of particle size distribution of nanoparticles of Compound 5b in Production Example (17). 図10(A):実施例3におけるアラマーブルーアッセイのグラフを示す。図10(B):HTFの顕微鏡写真を示す。図10(C):HTFの生存率に対する0.5 μM N-Colの時間的影響を示すグラフを示す。図10(D):N-Col処理時間に対するHTFの増殖の関係を示すグラフを示す。図10(E):N-Col処理時間に対するTGF-β1誘導HTFの増殖の関係を示すグラフを示す。FIG. 10(A): Shows a graph of the Alamar Blue assay in Example 3. Figure 10(B): Shows a micrograph of HTF. FIG. 10(C): Shows a graph showing the temporal effect of 0.5 μM N-Col on the viability of HTF. FIG. 10(D): A graph showing the relationship between HTF proliferation and N-Col treatment time. FIG. 10(E): A graph showing the relationship between TGF-β1-induced HTF proliferation and N-Col treatment time. 図11(A):実施例3におけるHTFの写真を示す。図11(B):インキュベーション時間に対する創傷面積の関係を示すグラフを示す。図11(C):トランスウェルアッセイにおける顕微鏡写真を示す。図11(D)(E):侵襲性細胞の統計解析の結果を示すグラフを示す。FIG. 11(A): Shows a photograph of HTF in Example 3. FIG. 11(B): Shows a graph showing the relationship of wound area to incubation time. FIG. 11(C): Shows a micrograph in transwell assay. FIGS. 11(D) and (E): Graphs showing the results of statistical analysis of invasive cells. 図12(A):実施例5におけるコラーゲンゲル培養キットの写真を示す。図12(B):残存ゲル面積の統計学的分析結果を示すグラフを示す。図12(C):ウェスタンブロットおよびバンドによって検出されたα-SMA の発現を統計学的分析結果を示す。図12(D):α-SMAの免疫染色の結果を示す。図12(E):F-アクチン免疫染色の結果を示す。FIG. 12(A): A photograph of the collagen gel culture kit in Example 5 is shown. FIG. 12(B): A graph showing the results of statistical analysis of the remaining gel area. Figure 12(C): Shows the results of statistical analysis of α-SMA expression detected by Western blot and banding. FIG. 12(D): Shows the results of α-SMA immunostaining. Figure 12(E): Shows the results of F-actin immunostaining. 図13(A):実施例6におけるKi67抗体染色の結果を示す。図13(B):Ki67染色の解析結果を示す。図13(C):間接TUNEL法の結果を示す。図13(D):TUNELの定量解析結果を示す。FIG. 13(A): Shows the results of Ki67 antibody staining in Example 6. Figure 13(B): Shows the analysis results of Ki67 staining. FIG. 13(C): Shows the results of indirect TUNEL method. Figure 13(D): Shows the results of quantitative analysis of TUNEL. 図14(A):実施例7におけるウェスタンブロットの結果を示す。図14(B)~(F):実施例7におけるウェスタンブロットの定量結果を示す。図14(G):カスパーゼ-3の免疫染色の結果を示す。FIG. 14(A): Shows the results of Western blotting in Example 7. 14(B) to (F): Shows the quantitative results of Western blot in Example 7. FIG. 14(G): Shows the results of immunostaining for caspase-3. 実施例8におけるアラマーブルーアッセイの結果のグラフを示す。10 shows a graph of the results of the alamar blue assay in Example 8.
 瘢痕形成抑制剤
 一実施形態において、本発明は、下記一般式(I)で表される化合物又はその塩を含む瘢痕形成抑制剤を提供する:
Scar formation inhibitor In one embodiment, the present invention provides a scar formation inhibitor comprising a compound represented by the following general formula (I) or a salt thereof:
Figure JPOXMLDOC01-appb-C000007
[式中、R、R、R及びRは、同一又は異なって、水素、置換されていてもよいC1-18アルキル、置換されていてもよいC1-18アルコキシ、置換されていてもよいC7-18アラルキルオキシ又は置換されていてもよいフェノキシを示す。
、R、R及びRのうち隣り合う2つが、これらの基が結合する炭素原子と共に、置換されていてもよい環を形成してもよい。
Yは、置換されていてもよいC1-18アルキル、置換されていてもよいC7-18アラルキル、置換されていてもよいフェニル、置換されていてもよいC1-18アルコキシ、置換されていてもよいC7-18アラルキルオキシ、置換されていてもよいフェノキシ、置換されていてもよいモノC1-18アルキルアミノ、置換されていてもよいモノC7-18アラルキルアミノ又は置換されていてもよいモノフェニルアミノを示す]。本発明において、一般式(I)で表される化合物を単に化合物(I)と示すこともある。
Figure JPOXMLDOC01-appb-C000007
[In the formula, R 1 , R 2 , R 3 and R 4 are the same or different, hydrogen, optionally substituted C1-18 alkyl, optionally substituted C1-18 alkoxy, substituted C7-18 aralkyloxy or optionally substituted phenoxy.
Two adjacent ones of R 1 , R 2 , R 3 and R 4 may form an optionally substituted ring together with the carbon atom to which these groups are bonded.
Y is optionally substituted C1-18 alkyl, optionally substituted C7-18 aralkyl, optionally substituted phenyl, optionally substituted C1-18 alkoxy, optionally substituted C7-18 aralkyloxy, optionally substituted phenoxy, optionally substituted mono C1-18 alkylamino, optionally substituted mono C7-18 aralkylamino, or optionally substituted monophenylamino show]. In the present invention, the compound represented by general formula (I) may be simply referred to as compound (I).
 本発明において、一般式(I)に含まれる基が置換基を有する場合、そうでないことが明示されていない限り、当該置換基としては、アルキル基、ジアルキルアミノ基、モノアルキルアミノ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、ハロゲン基等が挙げられる。一般式(I)に含まれる基が置換基を有する場合、そうでないことが明示されていない限り、当該基1つあたりの置換基の数としては、例えば、1~3個、1~2個、1個等が挙げられる。 In the present invention, when a group included in general formula (I) has a substituent, unless otherwise specified, the substituent includes an alkyl group, a dialkylamino group, a monoalkylamino group, an alkoxy group. , an alkoxycarbonyl group, an alkoxycarbonyloxy group, a halogen group, and the like. When a group included in general formula (I) has a substituent, the number of substituents per said group is, for example, 1 to 3, 1 to 2, unless it is specified otherwise. , 1, etc.
 本発明において、一般式(I)における「C1-18アルキル」、「C7-18アラルキル」、「フェニル」、「C1-18アルコキシ」、「C7-18アラルキルオキシ」、「フェノキシ」、「モノC1-18アルキルアミノ」、「モノC7-18アラルキルアミノ」又は「モノフェニルアミノ」は置換されていてよく、かかる置換基としては、ジアルキルアミノ基、モノアルキルアミノ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、またはハロゲン基が挙げられる。 In the present invention, "C1-18 alkyl", "C7-18 aralkyl", "phenyl", "C1-18 alkoxy", "C7-18 aralkyloxy", "phenoxy", "mono C1 "-18 alkylamino", "mono C7-18 aralkylamino" or "monophenylamino" may be substituted, and such substituents include dialkylamino group, monoalkylamino group, alkoxy group, alkoxycarbonyl group, alkoxy Examples include carbonyloxy group and halogen group.
 前述のように、一般式(I)において、R、R、R及びRのうち隣り合う2つは、これらの基が結合する炭素原子と共に環を形成してもよい。かかる環としては、5~7員環(R、R、R及びRが結合するベンゼン環の炭素数を含めると9~11員環)等が挙げられる。かかる環は置換されていてもよく、かかる置換基としては、アルキル基、ジアルキルアミノ基、モノアルキルアミノ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルオキシ基、ハロゲン基等が挙げられる。 As mentioned above, in general formula (I), two adjacent ones of R 1 , R 2 , R 3 and R 4 may form a ring together with the carbon atom to which these groups are bonded. Examples of such a ring include a 5- to 7-membered ring (9- to 11-membered ring if the number of carbon atoms in the benzene ring to which R 1 , R 2 , R 3 and R 4 are bonded is included). Such a ring may be substituted, and examples of such substituents include an alkyl group, a dialkylamino group, a monoalkylamino group, an alkoxy group, an alkoxycarbonyl group, an alkoxycarbonyloxy group, and a halogen group.
 本発明において「アルキル基」とは、直鎖状又は分枝鎖状の飽和炭化水素基を示し、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基等のC1-C18アルキル基が挙げられ、好ましくはC1-C10アルキル基が挙げられ、より好ましくはC1-C8アルキル基等が挙げられ、さらに好ましくはC1-C6アルキル基等が挙げられ、特に好ましくはC1-C4アルキル基等が挙げられる。 In the present invention, the term "alkyl group" refers to a linear or branched saturated hydrocarbon group, such as a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, isopentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, dodecyl group , C1-C18 alkyl groups such as tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, etc., preferably C1-C10 alkyl group, more preferably C1-C8 alkyl group etc. More preferred are C1-C6 alkyl groups, particularly preferred are C1-C4 alkyl groups.
 本発明において「アルコキシ基」としては、アルキル部分が前述のアルキル基であるアルコキシ基が挙げられる。より具体的には、アルコキシ基としては、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、n-ウンデシルオキシ基、ドデシルオキシ基、トリデシルオキシ基、テトラデシルオキシ基、ペンタデシルオキシ基、ヘキサデシルオキシ基、ヘプタデシルオキシ基、オクタデシルオキシ基等のC1-C18アルコキシ基が挙げられ、好ましくはC1-C10アルコキシ基等が挙げられ、より好ましくはC1-C8アルコキシ基等が挙げられ、さらに好ましくはC1-C6アルコキシ基等が挙げられ、特に好ましくはC1-C4アルコキシ基等が挙げられる。 In the present invention, the "alkoxy group" includes an alkoxy group in which the alkyl moiety is the alkyl group described above. More specifically, examples of the alkoxy group include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, n-pentyloxy group. group, isopentyloxy group, n-hexyloxy group, n-heptyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group, n-undecyloxy group, dodecyloxy group, tridecyloxy group , a C1-C18 alkoxy group such as a tetradecyloxy group, a pentadecyloxy group, a hexadecyloxy group, a heptadecyloxy group, an octadecyloxy group, etc., preferably a C1-C10 alkoxy group, and more preferably Examples include a C1-C8 alkoxy group, more preferably a C1-C6 alkoxy group, particularly preferably a C1-C4 alkoxy group.
 本発明において「アルコキシカルボニル基」としては、アルコキシ部分が前述のアルコキシ基であるアルコキシカルボニル基が挙げられる。より具体的には、アルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、イソプロポキシカルボニル基、n-ブトキシカルボニル基、イソブトキシカルボニル基、sec-ブトキシカルボニル基、tert-ブトキシカルボニル基、n-ペンチルオキシカルボニル基、イソペンチルオキシカルボニル基、n-ヘキシルオキシカルボニル基、n-ヘプチルオキシカルボニル基、n-オクチルオキシカルボニル基、n-ノニルオキシカルボニル基、n-デシルオキシカルボニル基、n-ウンデシルオキシカルボニル基、ドデシルオキシカルボニル基、トリデシルオキシカルボニル基、テトラデシルオキシカルボニル基、ペンタデシルオキシカルボニル基、ヘキサデシルオキシカルボニル基、ヘプタデシルオキシカルボニル基、オクタデシルオキシカルボニル基等のC1-C18アルコキシカルボニル基が挙げられ、好ましくはC1-C10アルコキシカルボニル基等が挙げられ、より好ましくはC1-C8アルコキシカルボニル基等が挙げられ、さらに好ましくはC1-C6アルコキシカルボニル基等が挙げられ、特に好ましくはC1-C4アルコキシカルボニル基等が挙げられる。 In the present invention, the "alkoxycarbonyl group" includes an alkoxycarbonyl group in which the alkoxy moiety is the aforementioned alkoxy group. More specifically, examples of the alkoxycarbonyl group include methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, isopropoxycarbonyl group, n-butoxycarbonyl group, isobutoxycarbonyl group, sec-butoxycarbonyl group, tert-butoxycarbonyl group, n-pentyloxycarbonyl group, isopentyloxycarbonyl group, n-hexyloxycarbonyl group, n-heptyloxycarbonyl group, n-octyloxycarbonyl group, n-nonyloxycarbonyl group, n-decyl Oxycarbonyl group, n-undecyloxycarbonyl group, dodecyloxycarbonyl group, tridecyloxycarbonyl group, tetradecyloxycarbonyl group, pentadecyloxycarbonyl group, hexadecyloxycarbonyl group, heptadecyloxycarbonyl group, octadecyloxycarbonyl group C1-C18 alkoxycarbonyl groups such as groups, preferably C1-C10 alkoxycarbonyl groups, more preferably C1-C8 alkoxycarbonyl groups, still more preferably C1-C6 alkoxycarbonyl groups, etc. Among them, C1-C4 alkoxycarbonyl group is particularly preferred.
 本発明において「アルコキシカルボニルオキシ基」としては、アルコキシ部分が前述のアルコキシ基であるアルコキシカルボニルオキシ基が挙げられる。より具体的には、アルコキシカルボニルオキシ基としては、例えば、メトキシカルボニルオキシ基、エトキシカルボニルオキシ基、n-プロポキシカルボニルオキシ基、イソプロポキシカルボニルオキシ基、n-ブトキシカルボニルオキシ基、イソブトキシカルボニルオキシ基、sec-ブトキシカルボニルオキシ基、tert-ブトキシカルボニルオキシ基、n-ペンチルオキシカルボニルオキシ基、イソペンチルオキシカルボニルオキシ基、n-ヘキシルオキシカルボニルオキシ基、n-ヘプチルオキシカルボニルオキシ基、n-オクチルオキシカルボニルオキシ基、n-ノニルオキシカルボニルオキシ基、n-デシルオキシカルボニルオキシ基、n-ウンデシルオキシカルボニルオキシ基、ドデシルオキシカルボニルオキシ基、トリデシルオキシカルボニルオキシ基、テトラデシルオキシカルボニルオキシ基、ペンタデシルオキシカルボニルオキシ基、ヘキサデシルオキシカルボニルオキシ基、ヘプタデシルオキシカルボニルオキシ基、オクタデシルオキシカルボニルオキシ基等のC1-C18アルコキシカルボニルオキシ基が挙げられ、好ましくはC1-C10アルコキシカルボニルオキシ基等が挙げられ、より好ましくはC1-C8アルコキシカルボニルオキシ基等が挙げられ、さらに好ましくはC1-C6アルコキシカルボニルオキシ基等が挙げられ、特に好ましくはC1-C4アルコキシカルボニルオキシ基等が挙げられる。 In the present invention, the "alkoxycarbonyloxy group" includes an alkoxycarbonyloxy group in which the alkoxy moiety is the aforementioned alkoxy group. More specifically, examples of the alkoxycarbonyloxy group include methoxycarbonyloxy group, ethoxycarbonyloxy group, n-propoxycarbonyloxy group, isopropoxycarbonyloxy group, n-butoxycarbonyloxy group, and isobutoxycarbonyloxy group. , sec-butoxycarbonyloxy group, tert-butoxycarbonyloxy group, n-pentyloxycarbonyloxy group, isopentyloxycarbonyloxy group, n-hexyloxycarbonyloxy group, n-heptyloxycarbonyloxy group, n-octyloxy group Carbonyloxy group, n-nonyloxycarbonyloxy group, n-decyloxycarbonyloxy group, n-undecyloxycarbonyloxy group, dodecyloxycarbonyloxy group, tridecyloxycarbonyloxy group, tetradecyloxycarbonyloxy group, penta Examples include C1-C18 alkoxycarbonyloxy groups such as decyloxycarbonyloxy group, hexadecyloxycarbonyloxy group, heptadecyloxycarbonyloxy group, and octadecyloxycarbonyloxy group, and preferably C1-C10 alkoxycarbonyloxy group. More preferred are C1-C8 alkoxycarbonyloxy groups, still more preferred are C1-C6 alkoxycarbonyloxy groups, and particularly preferred are C1-C4 alkoxycarbonyloxy groups.
 本発明において「アリール基」としては、芳香族炭化水素環基を示し、例えば、フェニル基、ナフチル基、アントラセニル基等のC6-C14アリール基が挙げられ、好ましくはC6-C10アリール基が挙げられ、より好ましくはフェニル基等が挙げられる。 In the present invention, the "aryl group" refers to an aromatic hydrocarbon ring group, such as a C6-C14 aryl group such as a phenyl group, a naphthyl group, an anthracenyl group, and preferably a C6-C10 aryl group. , more preferably a phenyl group.
 本発明において「アラルキル基」としては、例えば、アリール部分が前述のアリール基でありかつアルキル部分が前述のアルキル基であるアラルキル基が挙げられる。より具体的には、例えば、アラルキル基としては、ベンジル基、2-フェニルエチル基、3-フェニルプロピル基、1-フェニル-プロパン-2-イル基、4-フェニル-ブチル基、4-フェニルブタン-2-イル基、2-メチル-3-フェニルプロピル基、2-メチル-1-フェニルプロパン-2-イル基、5-フェニルペンチル基、6-フェニルヘキシル基、7-フェニルヘプチル基、8-フェニルオクチル基、9-フェニルノニル基、10-フェニルデシル基、11-フェニルウンデシル基、12-フェニルドデシル基、ナフチルメチル基、2-ナフチルエチル基、アントラセニルメチル基等のC7-18アラルキル基が挙げられ、好ましくはC7-C10アラルキル基等が挙げられ、より好ましくはC7-C8アラルキル基等が挙げられる。 In the present invention, the "aralkyl group" includes, for example, an aralkyl group in which the aryl part is the above-mentioned aryl group and the alkyl part is the above-mentioned alkyl group. More specifically, for example, the aralkyl group includes a benzyl group, 2-phenylethyl group, 3-phenylpropyl group, 1-phenyl-propan-2-yl group, 4-phenyl-butyl group, 4-phenylbutane group. -2-yl group, 2-methyl-3-phenylpropyl group, 2-methyl-1-phenylpropan-2-yl group, 5-phenylpentyl group, 6-phenylhexyl group, 7-phenylheptyl group, 8- C7-18 aralkyl such as phenyloctyl group, 9-phenylnonyl group, 10-phenyldecyl group, 11-phenylundecyl group, 12-phenyldodecyl group, naphthylmethyl group, 2-naphthylethyl group, anthracenylmethyl group, etc. Examples include C7-C10 aralkyl groups, and more preferably C7-C8 aralkyl groups.
 本発明において「アラルキルオキシ基」としては、例えば、アラルキル部分が前述のアラルキル基であるアラルキルオキシ基が挙げられる。より具体的には、例えば、アラルキル基としては、ベンジルオキシ基、2-フェニルエチルオキシ基、3-フェニルプロピルオキシ基、1-フェニル-プロパン-2-イルオキシ基、4-フェニル-ブチルオキシ基、4-フェニルブタン-2-イルオキシ基、2-メチル-3-フェニルプロピルオキシ基、2-メチル-1-フェニルプロパン-2-イルオキシ基、5-フェニルペンチルオキシ基、6-フェニルヘキシルオキシ基、7-フェニルヘプチルオキシ基、8-フェニルオクチルオキシ基、9-フェニルノニルオキシ基、10-フェニルデシルオキシ基、11-フェニルウンデシルオキシ基、12-フェニルドデシルオキシ基、ナフチルメチルオキシ基、2-ナフチルエチルオキシ基、アントラセニルメチルオキシ基等のC7-18アラルキルオキシ基が挙げられ、好ましくはC7-C10アラルキルオキシ基等が挙げられ、より好ましくはC7-C8アラルキルオキシ基等が挙げられる。 In the present invention, the "aralkyloxy group" includes, for example, an aralkyloxy group in which the aralkyl moiety is the aralkyl group described above. More specifically, for example, as the aralkyl group, benzyloxy group, 2-phenylethyloxy group, 3-phenylpropyloxy group, 1-phenyl-propan-2-yloxy group, 4-phenyl-butyloxy group, 4-phenyl-butyloxy group, -phenylbutan-2-yloxy group, 2-methyl-3-phenylpropyloxy group, 2-methyl-1-phenylpropan-2-yloxy group, 5-phenylpentyloxy group, 6-phenylhexyloxy group, 7- Phenylheptyloxy group, 8-phenyloctyloxy group, 9-phenylnonyloxy group, 10-phenyldecyloxy group, 11-phenylundecyloxy group, 12-phenyldodecyloxy group, naphthylmethyloxy group, 2-naphthylethyl Examples include C7-18 aralkyloxy groups such as oxy and anthracenylmethyloxy groups, preferably C7-C10 aralkyloxy groups, and more preferably C7-C8 aralkyloxy groups.
 本発明において「モノアルキルアミノ基」としては、例えば、前述のアルキル基を1つ有するアミノ基が挙げられる。より具体的には、モノアルキルアミノ基としては、例えば、N-メチルアミノ基、N-エチルアミノ基、N-n-プロピルアミノ基、N-イソプロピルアミノ基、N-n-ブチルアミノ基、N-イソブチルアミノ基、N-sec-ブチルアミノ基、N-tert-ブチルアミノ基、N-n-ペンチルアミノ基、N-イソペンチルアミノ基、N-n-ヘキシルアミノ基、N-n-ヘプチルアミノ基、N-n-オクチルアミノ基、N-n-ノニルアミノ基、N-n-デシルアミノ基、N-n-ウンデシルアミノ基、N-ドデシルアミノ基、N-トリデシルアミノ基、N-テトラデシルアミノ基、N-ペンタデシルアミノ基、N-ヘキサデシルアミノ基、N-ヘプタデシルアミノ基、N-オクタデシル基等のモノC1-C18アルキルアミノ基が挙げられ、好ましくはモノC1-C10アルキルアミノ基が挙げられ、より好ましくはモノC1-C8アルキルアミノ基等が挙げられ、さらに好ましくはモノC1-C6アルキルアミノ基等が挙げられ、特に好ましくはモノC1-C4アルキルアミノ基等が挙げられる。 In the present invention, the "monoalkylamino group" includes, for example, the above-mentioned amino group having one alkyl group. More specifically, the monoalkylamino group includes, for example, N-methylamino group, N-ethylamino group, N-n-propylamino group, N-isopropylamino group, N-n-butylamino group, N- -isobutylamino group, N-sec-butylamino group, N-tert-butylamino group, N-n-pentylamino group, N-isopentylamino group, N-n-hexylamino group, N-n-heptylamino group group, N-n-octylamino group, N-n-nonylamino group, N-n-decylamino group, N-n-undecylamino group, N-dodecylamino group, N-tridecylamino group, N-tetradecyl Examples include mono-C1-C18 alkylamino groups such as amino group, N-pentadecylamino group, N-hexadecylamino group, N-heptadecylamino group, and N-octadecyl group, preferably mono-C1-C10 alkylamino group. More preferred are mono C1-C8 alkylamino groups, even more preferred are mono C1-C6 alkylamino groups, and particularly preferred are mono C1-C4 alkylamino groups.
 本発明において「ジアルキルアミノ基」としては、例えば、前述のアルキル基を2つ有するアミノ基が挙げられる。ジアルキルアミノ基に含まれる2つのアルキル基は同一でも異なっていてもよい。より具体的には、ジアルキルアミノ基としては、例えば、モノメチルアミノ基、N,N-ジエチルアミノ基、N-メチル-N-エチルアミノ基、N,N-ジ-n-プロピルアミノ基、N-メチル-N-n-プロピルアミノ基、N,N-ジイソプロピルアミノ基、N,N-ジ-n-ブチルアミノ基、N,N-ジイソブチルアミノ基、N,N-ジ-sec-ブチルアミノ基、N,N-ジ-tert-ブチルアミノ基、N,N-ジ-n-ペンチルアミノ基、N,N-ジイソペンチルアミノ基、N,N-ジ-n-ヘキシルアミノ基、N,N-ジ-n-ヘプチルアミノ基、N,N-ジ-n-オクチルアミノ基、N,N-ジ-n-ノニルアミノ基、N,N-ジ-n-デシルアミノ基、N,N-ジ-n-ウンデシルアミノ基、N,N-ジドデシルアミノ基、N,N-ジトリデシルアミノ基、N,N-ジテトラデシルアミノ基、N,N-ジペンタデシルアミノ基、N,N-ジヘキサデシルアミノ基、N,N-ジヘプタデシルアミノ基、N,N-ジオクタデシル基等のジC1-C18アルキルアミノ基が挙げられ、好ましくはジC1-C10アルキルアミノ基が挙げられ、より好ましくはジC1-C8アルキルアミノ基等が挙げられ、さらに好ましくはジC1-C6アルキルアミノ基等が挙げられ、特に好ましくはジC1-C4アルキルアミノ基等が挙げられる。 In the present invention, the "dialkylamino group" includes, for example, the above-mentioned amino group having two alkyl groups. The two alkyl groups contained in the dialkylamino group may be the same or different. More specifically, the dialkylamino group includes, for example, monomethylamino group, N,N-diethylamino group, N-methyl-N-ethylamino group, N,N-di-n-propylamino group, N-methyl -Nn-propylamino group, N,N-diisopropylamino group, N,N-di-n-butylamino group, N,N-diisobutylamino group, N,N-di-sec-butylamino group, N , N-di-tert-butylamino group, N,N-di-n-pentylamino group, N,N-diisopentylamino group, N,N-di-n-hexylamino group, N,N-di-n-hexylamino group, -n-heptylamino group, N,N-di-n-octylamino group, N,N-di-n-nonylamino group, N,N-di-n-decylamino group, N,N-di-n-un Decylamino group, N,N-didodecylamino group, N,N-ditridecylamino group, N,N-ditetradecylamino group, N,N-dipentadecylamino group, N,N-dihexadecylamino group group, di-C1-C18 alkylamino groups such as N,N-diheptadecylamino group, N,N-dioctadecyl group, etc., preferably di-C1-C10 alkylamino group, more preferably di-C1-C10 alkylamino group. Examples include -C8 alkylamino group, more preferably di-C1-C6 alkylamino group, particularly preferably di-C1-C4 alkylamino group.
 本発明において「モノアラルキルアミノ基」としては、例えば、前述のアラルキル基を1つ有するアミノ基が挙げられる。より具体的には、モノアラルキルアミノ基としては、例えば、N-ベンジルアミノ基、N-2-フェニルエチルアミノ基、N-3-フェニルプロピルアミノ基、N-1-フェニル-プロパン-2-イルアミノ基、N-4-フェニル-ブチルアミノ基、N-4-フェニルブタン-2-イルアミノ基、N-2-メチル-3-フェニルプロピルアミノ基、N-2-メチル-1-フェニルプロパン-2-イルアミノ基、N-5-フェニルペンチルアミノ基、N-6-フェニルヘキシルアミノ基、N-7-フェニルヘプチルアミノ基、N-8-フェニルオクチルアミノ基、N-9-フェニルノニルアミノ基、N-10-フェニルデシルアミノ基、N-11-フェニルウンデシルアミノ基、N-12-フェニルドデシルアミノ基、N-ナフチルメチルアミノ基、N-2-ナフチルエチルアミノ基、N-アントラセニルメチルアミノ基等のC7-18アラルキルアミノ基が挙げられ、好ましくはC7-C10アラルキルアミノ基等が挙げられ、より好ましくはC7-C8アラルキルアミノ基等が挙げられる。 In the present invention, the "monoaralkyl amino group" includes, for example, the above-mentioned amino group having one aralkyl group. More specifically, the monoaralkyl amino group includes, for example, N-benzylamino group, N-2-phenylethylamino group, N-3-phenylpropylamino group, and N-1-phenyl-propan-2-ylamino group. group, N-4-phenyl-butylamino group, N-4-phenylbutan-2-ylamino group, N-2-methyl-3-phenylpropylamino group, N-2-methyl-1-phenylpropan-2- ylamino group, N-5-phenylpentylamino group, N-6-phenylhexylamino group, N-7-phenylheptylamino group, N-8-phenyloctylamino group, N-9-phenylnonylamino group, N- 10-phenyldecylamino group, N-11-phenylundecylamino group, N-12-phenyldodecylamino group, N-naphthylmethylamino group, N-2-naphthylethylamino group, N-anthracenylmethylamino group Examples include C7-18 aralkylamino groups such as, preferably C7-C10 aralkylamino groups, and more preferably C7-C8 aralkylamino groups.
 本発明において「ハロゲン基」としては、塩素、フッ素、臭素、ヨウ素等が挙げられる。 In the present invention, examples of the "halogen group" include chlorine, fluorine, bromine, and iodine.
 本発明において、一般式(I)中、R、R、R及びRは、同一又は異なって、水素、置換されていてもよいC1-18アルキル又は置換されていてもよいC7-18アラルキルオキシを示すことが好ましい。R、R、R及びRのうち1~2個が「置換されていてもよいC7-18アラルキルオキシ」を示すことが好ましく、1個が「置換されていてもよいC7-18アラルキルオキシ」を示すことがより好ましい。R、R、R及びRのうち1~2個が「置換されていてもよいC7-18アラルキルオキシ」を示す場合、Rが「置換されていてもよいC7-18アラルキルオキシ」を示すか、RとR、R及びRのうち1個の合計2個が「置換されていてもよいC7-18アラルキルオキシ」を示すことが好ましい。また、R、R、R及びRのうち、1~3個が「置換されていてもよいC1-18アルキル」を示すことが好ましく、2個が「置換されていてもよいC1-18アルキル」を示すことが好ましい。R、R、R及びRのうち、2~3個が「置換されていてもよいC1-18アルキル」を示す場合、R及びRが「置換されていてもよいC1-18アルキル」を示すか、R及びRと、R及びRのうち1個の合計3個が「置換されていてもよいC1-18アルキル」を示すことが好ましい。 In the present invention, in general formula (I), R 1 , R 2 , R 3 and R 4 are the same or different and are hydrogen, optionally substituted C1-18 alkyl, or optionally substituted C7- Preferably it represents 18aralkyloxy. It is preferable that 1 to 2 of R 1 , R 2 , R 3 and R 4 represent "optionally substituted C7-18 aralkyloxy", and one represents "optionally substituted C7-18 aralkyloxy". It is more preferable to represent "aralkyloxy". When one or two of R 1 , R 2 , R 3 and R 4 represent "optionally substituted C7-18 aralkyloxy", R 3 represents "optionally substituted C7-18 aralkyloxy" ” or a total of two of R 3 and one of R 1 , R 2 and R 4 preferably represent “optionally substituted C7-18 aralkyloxy”. Furthermore, it is preferable that 1 to 3 of R 1 , R 2 , R 3 and R 4 represent "optionally substituted C1-18 alkyl", and 2 represent "optionally substituted C1-18 alkyl". -18 alkyl” is preferred. When 2 to 3 of R 1 , R 2 , R 3 and R 4 represent "optionally substituted C1-18 alkyl", R 2 and R 4 represent "optionally substituted C1-18 alkyl" 18 alkyl" or a total of three of R 2 and R 4 and one of R 1 and R 3 preferably represents "optionally substituted C1-18 alkyl."
 また、一般式(I)中、Yは、「置換されていてもよいC1-18アルコキシ」、「置換されていてもよいC1-18アルキル」又は「置換されていてもよいモノC1-18アルキルアミノ」を示すことが好ましい。Yが「置換されていてもよいC1-18アルコキシ」を示す場合、「C1-18アルコキシ」部分としては、C1-8アルコキシが好ましく、C2-7アルコキシがより好ましく、C3-6アルコキシがより好ましい。Yが「置換されていてもよいC1-18アルキル」を示す場合、「C1-18アルキル」部分としては、C1-9アルキルが好ましく、C2-8アルコキシがより好ましく、C3-7アルコキシがより好ましく、C4-6アルコキシがより好ましい。Yが「置換されていてもよいモノC1-18アルキルアミノ」を示す場合、「C1-18アルキル」部分としては、C1-8アルキルが好ましく、C2-7アルコキシがより好ましく、C3-6アルコキシがより好ましい。 In general formula (I), Y represents "optionally substituted C1-18 alkoxy", "optionally substituted C1-18 alkyl", or "optionally substituted mono-C1-18 alkyl". It is preferable to indicate "amino". When Y represents "optionally substituted C1-18 alkoxy", the "C1-18 alkoxy" moiety is preferably C1-8 alkoxy, more preferably C2-7 alkoxy, and more preferably C3-6 alkoxy. . When Y represents "optionally substituted C1-18 alkyl", the "C1-18 alkyl" moiety is preferably C1-9 alkyl, more preferably C2-8 alkoxy, and more preferably C3-7 alkoxy. , C4-6 alkoxy are more preferred. When Y represents "optionally substituted mono C1-18 alkylamino", the "C1-18 alkyl" moiety is preferably C1-8 alkyl, more preferably C2-7 alkoxy, and C3-6 alkoxy is More preferred.
 本発明において、塩とは、薬学的に許容され得る塩を意図する。また、化合物(I)の塩は、酸付加塩と塩基との塩を包含する。酸付加塩の具体例として、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、硫酸塩、過塩素酸塩、リン酸塩等の無機酸塩、シュウ酸塩、マロン酸塩、コハク酸塩、マレイン酸塩、フマル酸塩、乳酸塩、リンゴ酸塩、クエン酸塩、酒石酸塩、安息香酸塩、トリフルオロ酢酸塩、酢酸塩、メタンスルホン酸塩、p-トルエンスルホン酸塩、トリフルオロメタンスルホン酸塩等の有機酸塩、及びグルタミン酸塩、アスパラギン酸塩等の酸性アミノ酸塩が挙げられる。塩基との塩の具体例としては、ナトリウム塩、カリウム塩又はカルシウム塩のようなアルカリ金属又はアルカリ土類金属塩、ピリジン塩、トリエチルアミン塩のような有機塩基との塩、リジン、アルギニン等の塩基性アミノ酸との塩等が挙げられる。 In the present invention, the term "salt" refers to a pharmaceutically acceptable salt. Further, the salt of compound (I) includes an acid addition salt and a base salt. Specific examples of acid addition salts include inorganic acid salts such as hydrochloride, hydrobromide, hydroiodide, sulfate, perchlorate, phosphate, oxalate, malonate, and succinic acid. Salt, maleate, fumarate, lactate, malate, citrate, tartrate, benzoate, trifluoroacetate, acetate, methanesulfonate, p-toluenesulfonate, trifluoromethane Examples include organic acid salts such as sulfonates, and acidic amino acid salts such as glutamate and aspartate. Specific examples of salts with bases include alkali metal or alkaline earth metal salts such as sodium salts, potassium salts or calcium salts, salts with organic bases such as pyridine salts and triethylamine salts, and bases such as lysine and arginine. Examples include salts with natural amino acids.
 化合物(I)又はその塩は、水和物又は溶媒和物の形で存在することもあるので、これらの水和物及び溶媒和物もまた本発明の有効成分である化合物(I)に包含される。また、化合物(I)には、幾何異性体、立体異性体、光学異性体等の異性体が存在する場合、特に明記しない限り、これらの異性体は本発明化合物に包含される。 Compound (I) or a salt thereof may exist in the form of a hydrate or solvate, and therefore, these hydrates and solvates are also included in compound (I), which is an active ingredient of the present invention. be done. Furthermore, when compound (I) has isomers such as geometric isomers, stereoisomers, optical isomers, etc., these isomers are included in the compounds of the present invention unless otherwise specified.
 溶媒和物を形成する溶媒としては、水、エタノール、プロパノール等のアルコール、酢酸等の有機酸、酢酸エチル等のエステル類、テトラヒドロフラン、ジエチルエーテル等のエーテル類、アセトン等のケトン類、DMSO等が例示される。 Examples of solvents that form solvates include water, alcohols such as ethanol and propanol, organic acids such as acetic acid, esters such as ethyl acetate, ethers such as tetrahydrofuran and diethyl ether, ketones such as acetone, DMSO, etc. Illustrated.
 化合物(I)は、種々の方法により製造され得るが、例えば下記反応式で示される方法により製造される。 Compound (I) can be produced by various methods, for example, by the method shown in the reaction formula below.
[反応式-1]
Figure JPOXMLDOC01-appb-C000008
 [式中、R1、R、R、R及びYは前述の通り]
[Reaction formula-1]
Figure JPOXMLDOC01-appb-C000008
[In the formula, R 1 , R 2 , R 3 , R 4 and Y are as described above]
 反応式-1においては、まず、化合物1を酸化して化合物2を得ることができる。使用する酸化剤としては、例えば、クロロクロム酸ピリジニウム、ニクロム酸ピリジニウム、ジメチルスルホキシド/塩化オキサリル、過ルテニウム酸テトラプロピルアンモニウム、デス・マーチン・ペルヨージナン、2,2,6,6-テトラメチルピペリジン1-オキシル フリーラジカル等が挙げられる。化合物1と酸化剤との使用割合は特に限定されないが、例えば、前者1モルに対し後者を1~2モルで使用することができる。当該反応は、トリエチルアミン、モレキュラーシーブス等の添加剤の存在下で行うことができる。また、上記反応の反応温度は特に限定されず、通常、室温、冷却又は加熱下で反応が行われる。好ましくは、0~25℃等が挙げられる。上記反応の反応時間も特に限定されないが、例えば、1~24時間反応させることができる。 In Reaction Formula-1, Compound 2 can be obtained by first oxidizing Compound 1. Examples of the oxidizing agent used include pyridinium chlorochromate, pyridinium dichromate, dimethyl sulfoxide/oxalyl chloride, tetrapropylammonium perruthenate, Dess-Martin periodinane, 2,2,6,6-tetramethylpiperidine 1- Examples include oxyl free radicals. The ratio of Compound 1 and the oxidizing agent to be used is not particularly limited, but for example, the latter can be used in an amount of 1 to 2 moles per 1 mole of the former. The reaction can be carried out in the presence of additives such as triethylamine and molecular sieves. Moreover, the reaction temperature of the above reaction is not particularly limited, and the reaction is usually performed at room temperature, cooling, or heating. Preferably, the temperature is 0 to 25°C. The reaction time for the above reaction is also not particularly limited, but the reaction can be carried out for 1 to 24 hours, for example.
 次に、化合物2をさらに酸化して化合物3を得ることができる。使用する酸化剤としては、例えば、過マンガン酸カリウム、次亜塩素酸、三酸化クロム等が挙げられる。化合物1と酸化剤との使用割合は特に限定されないが、例えば、前者1モルに対し後者を1~2モルで使用することができる。当該反応は、リン酸二水素ナトリウム、2-メチル-2-ブテン、硫酸等の添加剤の存在下で行うことができる。また、上記反応の反応温度は特に限定されず、通常、室温、冷却又は加熱下で反応が行われる。好ましくは、0~25℃等が挙げられる。上記反応の反応時間も特に限定されないが、例えば、1~24時間反応させることができる。 Next, Compound 2 can be further oxidized to obtain Compound 3. Examples of the oxidizing agent used include potassium permanganate, hypochlorous acid, and chromium trioxide. The ratio of Compound 1 and the oxidizing agent to be used is not particularly limited, but for example, the latter can be used in an amount of 1 to 2 moles per 1 mole of the former. The reaction can be carried out in the presence of additives such as sodium dihydrogen phosphate, 2-methyl-2-butene, and sulfuric acid. Moreover, the reaction temperature of the above reaction is not particularly limited, and the reaction is usually performed at room temperature, cooling, or heating. Preferably, the temperature is 0 to 25°C. The reaction time for the above reaction is also not particularly limited, but the reaction can be carried out for 1 to 24 hours, for example.
 次に、化合物3とデアセチルコルヒチン4とを反応させることにより、化合物(I)を得ることができる。上記化合物3とデアセチルコルヒチン4との使用割合は特に限定されないが、例えば、前者1モルに対し後者を1~1.5モルの範囲で使用することができる。また、上記反応の反応温度は特に限定されず、通常、室温、冷却又は加熱下で反応が行われる。好ましくは、0~25℃等が挙げられる。上記反応の反応時間も特に限定されないが、例えば、1~24時間反応させることができる。 Next, compound (I) can be obtained by reacting compound 3 with deacetylcolchicine 4. The ratio of the compound 3 and deacetylcolchicine 4 to be used is not particularly limited, but for example, the latter can be used in a range of 1 to 1.5 mol per 1 mol of the former. Moreover, the reaction temperature of the above reaction is not particularly limited, and the reaction is usually performed at room temperature, cooling, or heating. Preferably, the temperature is 0 to 25°C. The reaction time for the above reaction is also not particularly limited, but the reaction can be carried out for 1 to 24 hours, for example.
 これらの反応は、通常、反応に悪影響を及ぼさない慣用の溶媒、例えば、ジクロロメタン、トリエチルアミン、アセトン、メチルエチルケトン、テトラヒドロフラン、ジオキサン、ジエチルエーテルジグライム、アセトニトリル、N,N-ジメチルホルムアミド、ジメチルスルホキシド等、これらの混合溶媒の中で行われる。 These reactions are usually carried out using conventional solvents that do not adversely affect the reaction, such as dichloromethane, triethylamine, acetone, methyl ethyl ketone, tetrahydrofuran, dioxane, diethyl ether diglyme, acetonitrile, N,N-dimethylformamide, dimethyl sulfoxide, etc. It is carried out in a mixed solvent of
 ナノ粒子の製造方法
 本発明は、化合物(I)又はその塩を含むナノ粒子を提供する。本発明においてナノ粒子とは、平均粒子径が1μm未満の粒子を示す。典型的な実施形態において、本発明のナノ粒子は、略球形である。本発明において平均粒子径は、走査型電子顕微鏡(SEM)又は動的光散乱法(DLS)により測定することができる。本発明のナノ粒子の平均粒子径は、好ましくは10~500nmであり、より好ましくは10~100nmである。本発明のナノ粒子は、典型的には、後述する方法により化合物(I)又はその塩の水混和性有機溶媒溶液を水に注入し、分散させることにより調製することができる。従って、典型的な実施形態において、本発明のナノ粒子は、化合物(I)又はその塩の有機ナノ結晶であるため、実質的に化合物(I)又はその塩のみからなる。ただし、本発明の効果が得られる範囲において、本発明のナノ粒子は、化合物(I)又はその塩以外の成分(例えば、ナノ粒子の製法に用いた水混和性有機溶媒に対する添加物等)を含んでいてもよい。例えば、本発明のナノ粒子における化合物(I)又はその塩の含有量は95質量以上が好ましく、99質量%以上がより好ましく、99.9質量%以上がより好ましい。化合物(I)又はその塩をナノ粒子化することにより、他の薬剤形態と比較して、眼表面(角結膜)からの浸透性に優れており、術後も点眼により、結膜を介した薬物送達で術部位の瘢痕化を長期的に抑制することが予想される。
Method for producing nanoparticles The present invention provides nanoparticles containing compound (I) or a salt thereof. In the present invention, nanoparticles refer to particles having an average particle diameter of less than 1 μm. In typical embodiments, nanoparticles of the invention are generally spherical. In the present invention, the average particle diameter can be measured by scanning electron microscopy (SEM) or dynamic light scattering (DLS). The average particle diameter of the nanoparticles of the present invention is preferably 10 to 500 nm, more preferably 10 to 100 nm. The nanoparticles of the present invention can typically be prepared by injecting a water-miscible organic solvent solution of compound (I) or its salt into water and dispersing it by the method described below. Therefore, in a typical embodiment, the nanoparticles of the present invention are organic nanocrystals of compound (I) or a salt thereof, and therefore consist essentially of compound (I) or a salt thereof. However, to the extent that the effects of the present invention can be obtained, the nanoparticles of the present invention may contain components other than compound (I) or its salt (for example, additives to the water-miscible organic solvent used in the nanoparticle manufacturing method). May contain. For example, the content of compound (I) or a salt thereof in the nanoparticles of the present invention is preferably 95% by mass or more, more preferably 99% by mass or more, and even more preferably 99.9% by mass or more. By making Compound (I) or its salt into nanoparticles, it has excellent permeability through the ocular surface (corneoconjunctiva) compared to other drug forms, and even after surgery, the drug can be administered through the conjunctiva by instillation. Delivery is expected to suppress scarring at the surgical site in the long term.
 本発明のナノ粒子は、化合物(I)又はその塩の水混和性有機溶媒溶液を水に注入する工程を含む方法により製造することができる。本発明の方法においては、まず、シリンジを用いて化合物(I)又はその塩の水混和性有機溶媒溶液を水に注入する。水混和性有機溶媒としては、化合物(I)又はその塩の良溶媒であれば特に限定されず、例えば、テトラヒドロフラン、アセトン、ジオキサン、アセトニトリル、メタノール、エタノール、プロパノール、N-メチルピロリドン、ジメチルスルホキシド等を挙げることができ、溶解性及び安全性の観点から、アセトン、テトラヒドロフラン、エタノール、ジメチルスルホキシド等が好ましい。これらの溶媒は一種単独で又は複数種類を混合して使用することができる。化合物(I)又はその塩の水混和性有機溶媒溶液中の化合物(I)又はその塩の含有量は特に限定されないが、例えば、0.1~15質量%、好ましくは0.1~10質量%の範囲で適宜設定できる。水混和性有機溶媒溶液には、化合物(I)又はその塩以外に、ポリソルベート80(PS80)、ポリビニルピロリドン(PVP)等を添加してもよい。水に注入する、化合物(I)又はその塩の水混和性有機溶媒溶液の量も特に限定されないが、例えば、水10mlに対し、水混和性有機溶媒溶液を0.1~1ml、好ましくは0.1~0.2ml添加することができる。注入時間は特に限定されないが、例えば、0.1~1秒で注入することが好ましく、0.1~0.2秒で注入することがより好ましい。当該工程の反応系の温度も特に限定されないが、例えば、0~30℃、好ましくは10~20℃の範囲で適宜設定できる。本発明の一実施形態において、水混和性有機溶媒溶液を水に注入後、攪拌することが好ましい。攪拌速度は特に限定されないが、例えば、1000~1500rpm、好ましくは1200~1500rpmの範囲で適宜設定できる。攪拌工程における温度は注入工程と同様である。攪拌時間は特に限定されないが、例えば、1~10秒、好ましくは1~3秒の範囲で適宜設定できる。水混和性有機溶媒溶液の水への注入及び任意選択での攪拌により、化合物(I)又はその塩が結晶化又は粒子化し、その結果、化合物(I)又はその塩のナノ粒子の水分散液を得ることができる。本発明の一実施形態において、得られたナノ粒子は、水に分散された状態のまま分散液として使用することができる。分散液として使用する場合、化合物(I)又はその塩の溶解及び水への添加のために用いた水混和性有機溶媒は、安全性の観点から、使用前に除去しておくことが好ましい。有機溶媒の除去方法は特に限定されず、公知の方法を使用することができ、例えば、減圧(あるいは常圧)下での留去、透析等を用いて取り除くこともできる。本発明の別の実施形態において、得られたナノ粒子は、分散液に対し、濾過等の固液分離操作を行うことによって微粒子粉末として単離して使用することもできる。上記製造方法を使用するにあたっては、例えば、原料として化合物(I)又はその塩を用いる以外、特許文献1の記載を参照して行うことができる。本発明の化合物又はその塩は、上記のようにナノ粒子を形成した場合、高濃度分散液(例えば、0.1~10mM、好ましくは1~10mMの分散液)を得ることができるため好ましい。 The nanoparticles of the present invention can be produced by a method that includes a step of injecting a solution of compound (I) or a salt thereof in a water-miscible organic solvent into water. In the method of the present invention, first, a solution of compound (I) or a salt thereof in a water-miscible organic solvent is injected into water using a syringe. The water-miscible organic solvent is not particularly limited as long as it is a good solvent for compound (I) or its salt, and examples thereof include tetrahydrofuran, acetone, dioxane, acetonitrile, methanol, ethanol, propanol, N-methylpyrrolidone, dimethylsulfoxide, etc. From the viewpoint of solubility and safety, acetone, tetrahydrofuran, ethanol, dimethyl sulfoxide and the like are preferred. These solvents can be used alone or in combination. The content of compound (I) or its salt in a water-miscible organic solvent solution of compound (I) or its salt is not particularly limited, but is, for example, 0.1 to 15% by mass, preferably 0.1 to 10% by mass. It can be set appropriately within the range of %. In addition to compound (I) or its salt, polysorbate 80 (PS80), polyvinylpyrrolidone (PVP), etc. may be added to the water-miscible organic solvent solution. The amount of the water-miscible organic solvent solution of compound (I) or its salt to be injected into water is also not particularly limited, but for example, 0.1 to 1 ml of the water-miscible organic solvent solution to 10 ml of water, preferably 0. .1 to 0.2 ml can be added. Although the injection time is not particularly limited, it is preferable to inject in 0.1 to 1 second, and more preferably in 0.1 to 0.2 seconds. The temperature of the reaction system in this step is also not particularly limited, but can be appropriately set, for example, in the range of 0 to 30°C, preferably 10 to 20°C. In one embodiment of the invention, it is preferred to stir the water-miscible organic solvent solution after pouring it into water. The stirring speed is not particularly limited, but can be appropriately set, for example, in the range of 1000 to 1500 rpm, preferably 1200 to 1500 rpm. The temperature in the stirring step is the same as in the injection step. The stirring time is not particularly limited, but can be appropriately set, for example, in the range of 1 to 10 seconds, preferably 1 to 3 seconds. Injection of the water-miscible organic solvent solution into water and optionally stirring results in crystallization or particleization of compound (I) or its salt, resulting in an aqueous dispersion of nanoparticles of compound (I) or its salt. can be obtained. In one embodiment of the present invention, the obtained nanoparticles can be used as a dispersion liquid while being dispersed in water. When used as a dispersion, the water-miscible organic solvent used for dissolving compound (I) or its salt and adding it to water is preferably removed before use from the viewpoint of safety. The method for removing the organic solvent is not particularly limited, and any known method can be used, such as distillation under reduced pressure (or normal pressure), dialysis, or the like. In another embodiment of the present invention, the obtained nanoparticles can be isolated and used as a fine powder by performing a solid-liquid separation operation such as filtration on the dispersion. When using the above manufacturing method, for example, except for using compound (I) or a salt thereof as a raw material, the method can be performed with reference to the description in Patent Document 1. The compound of the present invention or a salt thereof is preferable because when nanoparticles are formed as described above, a highly concentrated dispersion (eg, 0.1 to 10 mM, preferably 1 to 10 mM dispersion) can be obtained.
 本発明においては、化合物(I)又はその塩そのものを瘢痕形成抑制剤として用いても、薬学的に許容される各種担体(例えば、例えば等張化剤、キレート剤、安定化剤、pH調節剤、防腐剤、抗酸化剤、溶解補助剤、粘稠化剤等)と組み合わせた瘢痕形成抑制剤組成物として用いてもよい。 In the present invention, even if compound (I) or a salt thereof itself is used as a scar formation inhibitor, various pharmaceutically acceptable carriers (such as isotonic agents, chelating agents, stabilizers, pH adjusting agents, etc.) may be used. , preservatives, antioxidants, solubilizing agents, thickening agents, etc.) as anti-scarring compositions.
 本発明の瘢痕形成抑制剤は瘢痕形成抑制により治療され得る疾患又は状態の治療のための医薬として用いることができる。かかる実施形態おいて、瘢痕形成抑制により治療され得る疾患又は状態としては、特に限定されないが、例えば、緑内障の濾過手術後の濾過胞の瘢痕化、間質性肺疾患、腎線維化、肝線維化等が挙げられる。 The scarring inhibitor of the present invention can be used as a medicament for the treatment of diseases or conditions that can be treated by inhibiting scarring. In such embodiments, diseases or conditions that can be treated by inhibiting scarring include, but are not limited to, scarring of the filtering vesicles after glaucoma filtering surgery, interstitial lung disease, renal fibrosis, and liver fibrosis. For example,
 等張化剤としては、例えば、グルコース、トレハロース、ラクトース、フルクトース、マンニトール、キシリトール、ソルビトール等の糖類、グリセリン、ポリエチレングリコール、プロピレングリコール等の多価アルコール類、塩化ナトリウム、塩化カリウム、塩化カルシウム等の無機塩類等が挙げられる。 Examples of tonicity agents include sugars such as glucose, trehalose, lactose, fructose, mannitol, xylitol, and sorbitol, polyhydric alcohols such as glycerin, polyethylene glycol, and propylene glycol, and sodium chloride, potassium chloride, and calcium chloride. Examples include inorganic salts.
 キレート剤としては、例えば、エデト酸二ナトリウム、エデト酸カルシウム二ナトリウム、エデト酸三ナトリウム、エデト酸四ナトリウム、エデト酸カルシウム等のエデト酸塩類、エチレンジアミン四酢酸塩、ニトリロ三酢酸又はその塩、ヘキサメタリン酸ソーダ、クエン酸等が挙げられる。 Examples of the chelating agent include edetate salts such as disodium edetate, disodium calcium edetate, trisodium edetate, tetrasodium edetate, and calcium edetate, ethylenediaminetetraacetate, nitrilotriacetic acid or its salt, hexamethalin. Examples include acid soda and citric acid.
 安定化剤としては、例えば、亜硫酸水素ナトリウム等が挙げられる。 Examples of the stabilizer include sodium hydrogen sulfite.
 pH調節剤としては、例えば、塩酸、炭酸、酢酸、クエン酸等の酸が挙げられ、さらに水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸ナトリウム等のアルカリ金属炭酸塩又は炭酸水素塩、酢酸ナトリウム等のアルカリ金属酢酸塩、クエン酸ナトリウム等のアルカリ金属クエン酸塩、トロメタモール等の塩基等が挙げられる。 Examples of the pH adjuster include acids such as hydrochloric acid, carbonic acid, acetic acid, and citric acid, as well as alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal carbonates such as sodium carbonate, or hydrogen carbonate. Examples include salts, alkali metal acetates such as sodium acetate, alkali metal citrates such as sodium citrate, bases such as trometamol, and the like.
 防腐剤としては、例えば、ソルビン酸、ソルビン酸カリウム、パラオキシ安息香酸メチル、パラオキシ安息香酸エチル、パラオキシ安息香酸プロピル、パラオキシ安息香酸ブチル等のパラオキシ安息香酸エステル、グルコン酸クロルヘキシジン、塩化ベンザルコニウム、塩化ベンゼトニウム、塩化セチルピリジニウム等の第4級アンモニウム塩、アルキルポリアミノエチルグリシン、クロロブタノール、ポリクォード、ポリヘキサメチレンビグアニド、クロルヘキシジン等が挙げられる。 Examples of preservatives include paraoxybenzoic acid esters such as sorbic acid, potassium sorbate, methyl paraoxybenzoate, ethyl paraoxybenzoate, propyl paraoxybenzoate, butyl paraoxybenzoate, chlorhexidine gluconate, benzalkonium chloride, and chloride. Examples include quaternary ammonium salts such as benzethonium and cetylpyridinium chloride, alkyl polyaminoethylglycine, chlorobutanol, polyquad, polyhexamethylene biguanide, and chlorhexidine.
 抗酸化剤としては、例えば、亜硫酸水素ナトリウム、乾燥亜硫酸ナトリウム、ピロ亜硫酸ナトリウム、濃縮混合トコフェロール等が挙げられる。 Examples of antioxidants include sodium bisulfite, dry sodium sulfite, sodium pyrosulfite, concentrated mixed tocopherols, and the like.
 溶解補助剤としては、例えば、安息香酸ナトリウム、グリセリン、D-ソルビトール、ブドウ糖、プロピレングリコール、ヒドロキシプロピルメチルセルロース、ポリビニルピロリドン、マクロゴール、D-マンニトール等が挙げられ、
 粘稠化剤としては、例えば、ポリエチレングリコール、メチルセルロース、エチルセルロース、カルメロースナトリウム、キサンタンガム、コンドロイチン硫酸ナトリウム、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルピロリドン、ポリビニルアルコール等が挙げられる。
Examples of solubilizing agents include sodium benzoate, glycerin, D-sorbitol, glucose, propylene glycol, hydroxypropylmethylcellulose, polyvinylpyrrolidone, macrogol, D-mannitol, and the like.
Examples of the thickening agent include polyethylene glycol, methylcellulose, ethylcellulose, carmellose sodium, xanthan gum, sodium chondroitin sulfate, hydroxyethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyvinylpyrrolidone, polyvinyl alcohol, and the like.
 また、上記組成物は、化合物(I)又はその塩以外に、瘢痕形成抑制効果を有することが知られている化合物をさらに含んでいてもよい。瘢痕形成抑制効果を有することが知られている化合物としては、例えば、マイトマイシン、トラニラスト等が挙げられる。 Furthermore, the above composition may further contain, in addition to compound (I) or a salt thereof, a compound known to have a scar formation inhibiting effect. Examples of compounds known to have an inhibitory effect on scar formation include mitomycin, tranilast, and the like.
 組成物の実施形態において、組成物中の化合物(I)又はその塩の含有量は特に限定されず、化合物(I)の含有量換算で、例えば、90質量%以上、70質量%以上、50質量%以上、30質量%以上、10質量%以上、5質量%以上、1質量%以上等の条件から適宜設定できる。 In the embodiment of the composition, the content of compound (I) or its salt in the composition is not particularly limited, and is, for example, 90% by mass or more, 70% by mass or more, 50% by mass or more in terms of the content of compound (I). It can be set as appropriate from conditions such as at least 30% by mass, at least 10% by mass, at least 5% by mass, and at least 1% by mass.
 製剤形態は、特に限定されず、例えば錠剤、丸剤、カプセル剤、散剤、顆粒剤、シロップ剤、舌下剤等の経口投与剤;点眼剤、注射剤(静脈注射、筋肉注射、局所注射等)、含嗽剤、点滴剤、外用剤(軟膏、クリーム、貼付薬、吸入薬)、座剤等の非経口投与剤等の各種製剤形態を挙げることができる。上記製剤形態のうち、好ましいものとしては、例えば、点眼剤等が挙げられる。 The formulation form is not particularly limited; for example, oral preparations such as tablets, pills, capsules, powders, granules, syrups, and sublingual preparations; eye drops, injections (intravenous injection, intramuscular injection, local injection, etc.) , gargles, drops, external preparations (ointments, creams, patches, inhalants), and parenteral preparations such as suppositories. Among the above formulations, preferred examples include eye drops.
 製剤中の本発明の化合物(I)の含有量は、投与経路、患者の年齢、体重、症状等によって異なり一概に規定できないが、化合物(I)の1日投与量が通常10~5000mg程度、より好ましくは100~1000mg程度になる量とすればよい。1日1回投与する場合は、1製剤中にこの量が含まれていればよく、1日3回投与する場合は、1製剤中にこの3分の1量が含まれていればよい。 The content of the compound (I) of the present invention in the preparation varies depending on the route of administration, age, weight, symptoms, etc. of the patient and cannot be unconditionally defined, but the daily dose of the compound (I) is usually about 10 to 5000 mg, More preferably, the amount may be about 100 to 1000 mg. When administering once a day, this amount may be contained in one preparation, and when administering three times a day, one third of this amount may be contained in one preparation.
 本発明の医薬は、哺乳動物等の患者に投与される。哺乳動物としては、ヒト、サル、マウス、ラット、ウサギ、ネコ、イヌ、ブタ、ウシ、ウマ、ヒツジ等が挙げられる。 The medicament of the present invention is administered to patients such as mammals. Mammals include humans, monkeys, mice, rats, rabbits, cats, dogs, pigs, cows, horses, sheep, and the like.
 線維芽細胞増殖抑制剤
 本発明において、化合物(I)又はその塩は、線維芽細胞増殖抑制効果を有し、瘢痕形成抑制をすることができる。そのため、別の実施形態において、本発明は、化合物(I)又はその塩を含む、線維芽細胞増殖抑制剤を提供する。線維芽細胞増殖抑制剤の有効成分、製剤形態、使用量等としては、本発明の予防又は治療剤と同様に選択することができる。さらに、本発明の線維芽細胞増殖抑制剤は、生体外で、線維芽細胞に添加することによって、線維芽細胞の増殖を抑制することもできる。また、線維芽細胞としては、単離した細胞であっても、細胞塊、組織片等の形態であってもよい。また、これらの線維芽細胞としては、ヒト、マウス、ラット、モルモット、サル、イヌ、ネコ、アフリカツメガエル等に由来するものが挙げられる。生体外での線維芽細胞の増殖抑制は、例えば、線維芽細胞に化合物(I)又はその塩を添加することにより行うことができる。添加量としては、特に限定されないが、例えば、反応系中の最終濃度として、0.1~100μM、好ましくは1~10μMの範囲となるよう設定できる。
Fibroblast proliferation inhibitor In the present invention, compound (I) or a salt thereof has a fibroblast proliferation inhibitory effect and can inhibit scar formation. Therefore, in another embodiment, the present invention provides a fibroblast proliferation inhibitor comprising Compound (I) or a salt thereof. The active ingredient, formulation form, amount used, etc. of the fibroblast proliferation inhibitor can be selected in the same manner as the preventive or therapeutic agent of the present invention. Furthermore, the fibroblast proliferation inhibitor of the present invention can also suppress the proliferation of fibroblasts by adding it to fibroblasts in vitro. Furthermore, the fibroblasts may be isolated cells, or may be in the form of cell clusters, tissue pieces, or the like. Examples of these fibroblasts include those derived from humans, mice, rats, guinea pigs, monkeys, dogs, cats, Xenopus, and the like. In vitro proliferation of fibroblasts can be inhibited, for example, by adding compound (I) or a salt thereof to fibroblasts. The amount added is not particularly limited, but can be set so that, for example, the final concentration in the reaction system is in the range of 0.1 to 100 μM, preferably 1 to 10 μM.
 本発明の方法においては、線維芽細胞は、培地等の溶液中に配置した状態で用いてもよい。培地としては、動物細胞の培養に通常用いられる培地を適宜使用することができる。かかる培地としては、例えば、ダルベッコ改変イーグル培地、等が挙げられる。また、培地には、血清、緩衝剤、抗生剤等を適宜添加してもよい。 In the method of the present invention, fibroblasts may be used while placed in a solution such as a medium. As the medium, any medium commonly used for culturing animal cells can be used as appropriate. Such a medium includes, for example, Dulbecco's modified Eagle's medium. Further, serum, buffer, antibiotics, etc. may be added to the medium as appropriate.
 以下に実施例を例示して本発明の具体的な実施形態を詳細に説明するが、本発明はかかる実施例に限定されない。 Specific embodiments of the present invention will be described below in detail by way of examples, but the present invention is not limited to these examples.
 製造例(1)(S)-4-(ベンジルオキシ)-3,5-ジメチル-2-(2-メチル-4-オキソ-4-((1,2,3,10-テトラメトキシ-9-オキソ-5,6,7,9-テトラヒドロベンゾ[a]ヘプタレン-7-イル)アミノ)ブタン-2-イル)フェニルイソブチルカーボネート((S)-4-(benzyloxy)-3,5-dimethyl-2-(2-methyl-4-oxo-4-((1,2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydrobenzo[a]heptalen-7-yl)amino)butan-2-yl)phenyl isobutyl carbonate)の製造 Production example (1) (S)-4-(benzyloxy)-3,5-dimethyl-2-(2-methyl-4-oxo-4-((1,2,3,10-tetramethoxy-9- Oxo-5,6,7,9-tetrahydrobenzo[a]heptalen-7-yl)amino)butan-2-yl)phenylisobutyl carbonate ((S)-4-(benzyloxy)-3,5-dimethyl-2 -(2-methyl-4-oxo-4-((1,2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydrobenzo[a]heptalen-7-yl)amino)butan- Production of 2-yl)phenyl isobutyl carbonate)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 スターラーバーを備えたナスフラスコにデアセチルコルヒチン4(173.2mg、0.485mmol)、化合物3’(206.0mg、0.481mmol)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC・HCl)(182.1mg、0.950mmol)、4-ジメチルアミノピリジン(DMAP)(10.7mg、0.0466mmol)を入れ、ジクロロメタン5.0mLに溶解させた。室温で2時間撹拌後、溶媒の減圧留去により得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=100/0-50/1)で精製して表題化合物(319.7mg、86%)を淡黄色固体として得た。以下、表題化合物を化合物5と示すこともある。 Deacetylcolchicine 4 (173.2 mg, 0.485 mmol), compound 3' (206.0 mg, 0.481 mmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride in an eggplant flask equipped with a stirrer bar. Salt (EDC·HCl) (182.1 mg, 0.950 mmol) and 4-dimethylaminopyridine (DMAP) (10.7 mg, 0.0466 mmol) were added and dissolved in 5.0 mL of dichloromethane. After stirring at room temperature for 2 hours, the residue obtained by distilling off the solvent under reduced pressure was purified by silica gel column chromatography (chloroform/methanol = 100/0-50/1) to give the title compound (319.7 mg, 86%). Obtained as a pale yellow solid. Hereinafter, the title compound may be referred to as compound 5.
 H-NMR(CDCl, 400MHz): δ= 1.04-1.06(6H, m), 1.35-1.42(1H, m), 1.58(3H, overlaps with peak of water), 1.65(3H, s), 2.04-2.17(1H, m), 2.24-2.39(9H, m), 2.69(1H, d, J=13.4Hz), 3.60(3H, s), 3.73(3H, s), 3.90(3H, s), 3.94(3H, s), 4.12-4.16(1H, m), 4.19-4.23(1H, m), 4.30-4.37(1H, m), 4.60(1H, d, J=10.8Hz), 4.69(1H, d, J=10.8Hz), 6.14(1H, d, J=7.1Hz), 6.40(1H, s), 6.71(2H, d, J=11.0Hz), 6.77(1H, s), 7.16-7.19(2H, m), 7.34-7.47(5H, m) 1 H-NMR (CDCl 3 , 400 MHz): δ = 1.04-1.06 (6H, m), 1.35-1.42 (1H, m), 1.58 (3H, overlaps with peak of water ), 1.65 (3H, s), 2.04-2.17 (1H, m), 2.24-2.39 (9H, m), 2.69 (1H, d, J=13.4Hz ), 3.60 (3H, s), 3.73 (3H, s), 3.90 (3H, s), 3.94 (3H, s), 4.12-4.16 (1H, m) , 4.19-4.23 (1H, m), 4.30-4.37 (1H, m), 4.60 (1H, d, J=10.8Hz), 4.69 (1H, d, J = 10.8Hz), 6.14 (1H, d, J = 7.1Hz), 6.40 (1H, s), 6.71 (2H, d, J = 11.0Hz), 6.77 ( 1H, s), 7.16-7.19 (2H, m), 7.34-7.47 (5H, m)
 製造例(2)本発明の化合物5のナノ粒子の作製方法
 11.1mMに調整した化合物5のアセトン溶液100μLを水9mL中に注射器を用いて室温下注入し、2秒間、1500rpmで撹拌して、ナノ粒子の水分散液を得た。アセトン溶液を調整する際に化合物の10wt%のポリソルベート80を添加している。アセトンを除去した後に10mLになるよう定量し、9%塩化ナトリウム水溶液と9:1の割合で混合させ作製した。最終的な水分散液の濃度は0.1mMとなった。SEM及びDLSにより粒径が約200nmであることが明らかになった。上記で得られた化合物5のナノ粒子分散液のSEM像の結果を図1右の写真に示す。ナノ粒子の粒径分布の経時変化を図1左のグラフに示す。
Production example (2) Method for producing nanoparticles of compound 5 of the present invention 100 μL of an acetone solution of compound 5 adjusted to 11.1 mM was injected into 9 mL of water at room temperature using a syringe, and stirred at 1500 rpm for 2 seconds. , an aqueous dispersion of nanoparticles was obtained. When preparing the acetone solution, 10 wt% of the compound polysorbate 80 was added. After removing acetone, the volume was determined to be 10 mL, and mixed with a 9% aqueous sodium chloride solution at a ratio of 9:1 to prepare. The final concentration of the aqueous dispersion was 0.1 mM. SEM and DLS revealed a particle size of approximately 200 nm. The SEM image of the nanoparticle dispersion of Compound 5 obtained above is shown in the right photograph of FIG. The graph on the left of Figure 1 shows the change in particle size distribution of nanoparticles over time.
 製造例(3)化合物5における高濃度のナノ粒子の作製方法
 72.2mMに調整した化合物5のアセトン溶液100μLを水9mL中に注射器を用いて室温下注入し、2秒間、1500rpmで撹拌して、ナノ粒子の水分散液を得た。アセトン溶液を調整する際に化合物の10wt%のポリソルベート80を添加している。アセトンを除去した後に10mLになるよう定量し、9%塩化ナトリウム水溶液と9:1の割合で混合させ作製した。最終的な水分散液の濃度は0.65mMとなった。SEM及びDLSにより粒径が約200nmであることが明らかになった。上記で得られた化合物5の高濃度のナノ粒子のSEM像の結果を図2左の写真に示す。ナノ粒子の粒径分布の経時変化を図2右のグラフに示す。
Production Example (3) Method for producing high-concentration nanoparticles of Compound 5 100 μL of an acetone solution of Compound 5 adjusted to 72.2 mM was injected into 9 mL of water at room temperature using a syringe, and stirred at 1500 rpm for 2 seconds. , an aqueous dispersion of nanoparticles was obtained. When preparing the acetone solution, 10 wt% of the compound polysorbate 80 was added. After removing acetone, the volume was determined to be 10 mL, and mixed with a 9% aqueous sodium chloride solution at a ratio of 9:1 to prepare. The final concentration of the aqueous dispersion was 0.65mM. SEM and DLS revealed a particle size of approximately 200 nm. The SEM image of the highly concentrated nanoparticles of Compound 5 obtained above is shown in the left photograph of FIG. The graph on the right side of Figure 2 shows the change in particle size distribution of nanoparticles over time.
 上記結果に示されるように、化合物5を用いることにより長期間安定なナノ粒子を形成することができた。眼表層は疎水的な角膜上皮、親水的な角膜実質、最表層にタイトジャンクションを形成しているため、一般的な点眼薬の透過性が低い。一方、化合物5から調製したナノ粒子は、サイズが小さいためにタイトジャンクションを透過し、疎水的な化合物の集合体であるため、疎水的な角膜上皮も透過すると考えられる上、ナノ粒子表面は電荷を帯びやすいため、親水的な性質も有しており、親水的な角膜実質も透過することが予想される。 As shown in the above results, by using Compound 5, it was possible to form nanoparticles that were stable for a long period of time. The ocular surface layer consists of a hydrophobic corneal epithelium, a hydrophilic corneal stroma, and a tight junction in the outermost layer, which has low permeability to common eye drops. On the other hand, nanoparticles prepared from Compound 5 are thought to pass through tight junctions due to their small size, and are thought to pass through hydrophobic corneal epithelium because they are an aggregate of hydrophobic compounds. It also has hydrophilic properties and is expected to penetrate the hydrophilic corneal stroma.
 実施例1
 ヒト繊維芽細胞を96ウェルプレートに播種し、24時間後にデアセチルコルヒチンならびに上記製造例(2)で作製した化合物5のナノ粒子を終濃度10-1000 nMとなるように添加した。さらに24時間後にアラマーブルー試薬を添加したのち、2時間後に吸光度を測定した。結果を図3に示す。図3に示すように、化合物5のナノ粒子はデアセチルコルヒチンとほぼ同等の増殖抑制活性を示した。
Example 1
Human fibroblasts were seeded in a 96-well plate, and 24 hours later, deacetylcolchicine and nanoparticles of Compound 5 prepared in Production Example (2) above were added to a final concentration of 10-1000 nM. After a further 24 hours, alamar blue reagent was added, and absorbance was measured 2 hours later. The results are shown in Figure 3. As shown in FIG. 3, the nanoparticles of Compound 5 showed approximately the same growth-inhibiting activity as deacetylcolchicine.
 実施例2
 C57BL/6Jマウス オス8週齢に対して濾過胞モデルを以下の手順で両眼に作成した。ケタミン(180mg/kg)、キシラジン(90mg/kg)、生理食塩水の混合溶液を腹腔内投与し、麻酔した。
上方の結膜約4分の1をスプリング剪刀で剥離し、強膜を露出させた。
角膜輪部の強膜から30ゲージ針で前房穿刺を行い、房水の漏出経路を作成した。
露出した強膜を剥離した結膜で被覆し、角膜輪部で結膜を10-0ナイロンで2か所強角膜縫合した。
術直後に感染予防のために、オフロキサシン軟膏を塗布した。
術翌日から高濃度コルヒチンナノ点眼または生理食塩水(コントロール)点眼10μlを各2匹ずつに1日4回(9時、13時、17時、20時)点眼した。上記工程において、高濃度コルヒチンナノ点眼としては、上記製造例(3)で作製した化合物5の高濃度ナノ粒子の水分散液を用いた。
術7日目と14日目に高濃度コルヒチンナノ点眼、生理食塩水点眼を行ったマウス1匹ずつ、頸椎脱臼による安楽死の上、眼球摘出を行い、4%パラホルムアルデヒド内で固定した。得られた各サンプルについて、HE染色又はPicrosirius red染色(コラーゲン染色)を行った。HE染色の結果を図4に、Picrosirius red染色の結果を図5に示す。図4及び5に示されるように、生理食塩水を点滴した場合、濾過胞が瘢痕化により塞がってしまったが、コルヒチン誘導体の高濃度ナノ粒子を点眼した場合、濾過胞構造が維持された。
Example 2
A filtering bleb model was created in both eyes of an 8-week-old male C57BL/6J mouse using the following procedure. A mixed solution of ketamine (180 mg/kg), xylazine (90 mg/kg), and physiological saline was administered intraperitoneally for anesthesia.
Approximately one-fourth of the upper conjunctiva was removed using spring scissors to expose the sclera.
An anterior chamber puncture was performed from the sclera in the limbus using a 30-gauge needle to create a leakage path for the aqueous humor.
The exposed sclera was covered with the peeled conjunctiva, and the conjunctiva was sutured at two locations with 10-0 nylon at the limbus.
Immediately after surgery, ofloxacin ointment was applied to prevent infection.
From the day after surgery, 10 μl of high-concentration colchicine nano eye drops or physiological saline (control) eye drops were instilled into the eyes of two animals each four times a day (9:00, 1:00 p.m., 5:00 p.m., and 8:00 p.m.). In the above step, an aqueous dispersion of high-concentration nanoparticles of Compound 5 prepared in Production Example (3) above was used as the high-concentration colchicine nano-eye drop.
On the 7th and 14th days after surgery, one mouse each received high-concentration colchicine nano-eye drops and physiological saline eye drops.The mouse was euthanized by cervical dislocation, the eyeball was enucleated, and the mouse was fixed in 4% paraformaldehyde. Each sample obtained was subjected to HE staining or Picrosirius red staining (collagen staining). The results of HE staining are shown in FIG. 4, and the results of Picrosirius red staining are shown in FIG. As shown in FIGS. 4 and 5, when physiological saline was instilled, the filtering bleb was blocked by scarring, but when highly concentrated colchicine derivative nanoparticles were instilled into the eye, the filtering bleb structure was maintained.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 製造例(4)4-(benzyloxy)-2-(4-((tert-butyldimethylsilyl)oxy)-2-methylbutan-2-yl)-3,5-dimethylphenol(化合物7)の製造 Production Example (4) Production of 4-(benzyloxy)-2-(4-((tert-butyldimethylsilyl)oxy)-2-methylbutan-2-yl)-3,5-dimethylphenol (compound 7)
 スターラーバーを備えたナスフラスコに化合物6(10.7g、34.0mmol)、4-ジメチルアミノピリジン(DMAP)(6.32g、51.7mmol)を入れ、テトラヒドロフラン(THF)50.0mLに0℃で溶解させた。得られた溶解物にtert-ブチルジメチルシリルクロリド(TBSCl)(6.44g、42.7mmol)のTHF溶液50.0mLを添加した後、得られた溶解物を室温で15時間反応させた。得られた反応物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=100/0-1/1)で精製して化合物7(13.3g、91%)を淡黄色固体として得た。 Compound 6 (10.7 g, 34.0 mmol) and 4-dimethylaminopyridine (DMAP) (6.32 g, 51.7 mmol) were placed in an eggplant flask equipped with a stirrer bar, and added to 50.0 mL of tetrahydrofuran (THF) at 0°C. It was dissolved in After adding 50.0 mL of a THF solution of tert-butyldimethylsilyl chloride (TBSCl) (6.44 g, 42.7 mmol) to the obtained melt, the obtained melt was reacted at room temperature for 15 hours. The resulting reaction product was purified by silica gel column chromatography (hexane/ethyl acetate = 100/0-1/1) to obtain Compound 7 (13.3 g, 91%) as a pale yellow solid.
 H-NMR(CDCl, 400MHz): δ= 0.021(6H, s), 0.872(9H, s), 1.60(6H, s), 2.07(2H, t, J=6.6Hz), 2.20(3H, s), 2.41(3H, s), 3.63(2H, t, J=6.6Hz), 4.70(2H, s), 5.75(1H, s), 6.47(1H, s), 7.32-7.36(1H, m), 7.38-7.42(2H, m), 7.46-7.49(2H, m)。 1 H-NMR (CDCl 3 , 400 MHz): δ = 0.021 (6H, s), 0.872 (9H, s), 1.60 (6H, s), 2.07 (2H, t, J = 6.6Hz), 2.20 (3H, s), 2.41 (3H, s), 3.63 (2H, t, J=6.6Hz), 4.70 (2H, s), 5.75 (1H, s), 6.47 (1H, s), 7.32-7.36 (1H, m), 7.38-7.42 (2H, m), 7.46-7.49 (2H , m).
 製造例(5)4-(benzyloxy)-2-(4-((tert-butyldimethylsilyl)oxy)-2-methylbutan-2-yl)-3,5-dimethylphenyl 4-methylpentanoate(化合物8a)の製造
 スターラーバーを備えたナスフラスコに化合物7(117.5mg、0.274mmol)、4-ジメチルアミノピリジン(DMAP)(19.6mg、0.160mmol)を入れ、ジクロロメタン(CHCl)2.3mLに室温で溶解させた。得られた溶解物に4-メチルバレリルクロリド(0.035mL、0.255mmol)及びトリエチルアミン(TEA)(0.040mL、0.287mmol)を添加した後、得られた溶解物を室温で24時間反応させた。得られた反応物をシリカゲルカラムクロマトグラフィー(クロロホルム)で精製して化合物8a(115.0mg、80%)を黄色オイルとして得た。
Production example (5) 4-(benzyloxy)-2-(4-((tert-butyldimethylsilyl)oxy)-2-methylbutan-2-yl)-3,5-dimethylphenyl 4-methylpentanoate (compound 8a) manufacturing stirrer bar Compound 7 (117.5 mg, 0.274 mmol) and 4- dimethylaminopyridine (DMAP) (19.6 mg, 0.160 mmol) were placed in a round bottom flask equipped with It was dissolved in After adding 4-methylvaleryl chloride (0.035 mL, 0.255 mmol) and triethylamine (TEA) (0.040 mL, 0.287 mmol) to the resulting lysate, the resulting lysate was incubated at room temperature for 24 hours. Made it react. The obtained reaction product was purified by silica gel column chromatography (chloroform) to obtain Compound 8a (115.0 mg, 80%) as a yellow oil.
 H-NMR(CDCl, 400MHz): δ= -0.019(6H, s), 0.850(9H, s), 0.965(6H, d, J=6.4Hz), 1.47(6H, s), 1.64-1.67(3H, m), 2.06(2H, t, J=7.6Hz), 2.25(3H, s), 2.47(3H, s), 2.54(2H, t, J=7.7Hz), 3.51(2H, t, J=7.6Hz), 4.73(2H, s), 6.56(1H, s), 7.33-7.37(1H, m), 7.39-7.43(2H, m), 7.47-7.49(2H, m)。 1H -NMR (CDCl 3 , 400MHz): δ = -0.019 (6H, s), 0.850 (9H, s), 0.965 (6H, d, J = 6.4Hz), 1.47 (6H, s), 1.64-1.67 (3H, m), 2.06 (2H, t, J=7.6Hz), 2.25 (3H, s), 2.47 (3H, s ), 2.54 (2H, t, J=7.7Hz), 3.51 (2H, t, J=7.6Hz), 4.73 (2H, s), 6.56 (1H, s), 7.33-7.37 (1H, m), 7.39-7.43 (2H, m), 7.47-7.49 (2H, m).
 製造例(6)4-(benzyloxy)-2-(4-hydroxy-2-methylbutan-2-yl)-3,5-dimethylphenyl 4-methylpentanoate(化合物9a)の製造
 スターラーバーを備えたナスフラスコに化合物8a(84.1mg、0.160mmol)を入れ、テトラヒドロフラン(THF)4.8mLに室温で溶解させた。得られた溶解物に酢酸(AcOH)1.6mL及び水(HO)1.6mLを添加した後、得られた溶解物を室温で12時間反応させた。得られた反応物をシリカゲルカラムクロマトグラフィー(クロロホルム)で精製して化合物9a(53.4mg、84%)を淡黄色オイルとして得た。
Production Example (6) Production of 4-(benzyloxy)-2-(4-hydroxy-2-methylbutan-2-yl)-3,5-dimethylphenyl 4-methylpentanoate (Compound 9a) The compound was placed in an eggplant flask equipped with a stirrer bar. 8a (84.1 mg, 0.160 mmol) was added and dissolved in 4.8 mL of tetrahydrofuran (THF) at room temperature. After adding 1.6 mL of acetic acid (AcOH) and 1.6 mL of water (H 2 O) to the obtained melt, the obtained melt was reacted at room temperature for 12 hours. The obtained reaction product was purified by silica gel column chromatography (chloroform) to obtain Compound 9a (53.4 mg, 84%) as a pale yellow oil.
 H-NMR(CDCl, 400MHz): δ= 0.968(6H, d, J=6.4Hz), 1.27(1H, t, J=5.7Hz), 1.47(6H, s), 1.64-1.68(3H, m), 2.09(2H, t, J=7.2Hz), 2.26(3H, s), 2.47(3H, s), 2.54(2H, t, J=7.7Hz), 3.56(2H, q, J=6.7Hz), 4.75(2H, s), 6.57(1H, s), 7.33-7.37(1H, m), 7.38-7.42(2H, m), 7.46-7.48(2H, m)。 1H -NMR (CDCl 3 , 400MHz): δ = 0.968 (6H, d, J = 6.4Hz), 1.27 (1H, t, J = 5.7Hz), 1.47 (6H, s ), 1.64-1.68 (3H, m), 2.09 (2H, t, J=7.2Hz), 2.26 (3H, s), 2.47 (3H, s), 2. 54 (2H, t, J=7.7Hz), 3.56 (2H, q, J=6.7Hz), 4.75 (2H, s), 6.57 (1H, s), 7.33- 7.37 (1H, m), 7.38-7.42 (2H, m), 7.46-7.48 (2H, m).
 製造例(7)4-(benzyloxy)-3,5-dimethyl-2-(2-methyl-4-oxobutan-2-yl)phenyl 4-methylpentanoate(化合物2a)の製造
 スターラーバーを備えたナスフラスコに化合物9a(393.4mg、0.992mmol)を入れ、ジクロロメタン(CHCl)12.0mLに0℃で溶解させた。得られた溶解物にジメチルスルホキシド(DMSO)(1.00mL、14.1mmol)、トリエチルアミン(TEA)(0.570mL、4.09mmol)、三酸化硫黄-ピリジン錯体(Py・SO)(339.2mg、2.13mmol)を添加した後、得られた溶解物を室温で12時間反応させた。得られた反応物をシリカゲルカラムクロマトグラフィー(クロロホルム)で精製して化合物2a(324.8mg、80%)を無色オイルとして得た。
Production Example (7) Production of 4-(benzyloxy)-3,5-dimethyl-2-(2-methyl-4-oxobutan-2-yl)phenyl 4-methylpentanoate (compound 2a) In an eggplant flask equipped with a stirrer bar. Compound 9a (393.4 mg, 0.992 mmol) was added and dissolved in 12.0 mL of dichloromethane (CH 2 Cl 2 ) at 0°C. Dimethyl sulfoxide (DMSO) (1.00 mL, 14.1 mmol), triethylamine (TEA) (0.570 mL, 4.09 mmol), and sulfur trioxide-pyridine complex (Py.SO 3 ) (339. After adding 2 mg, 2.13 mmol), the resulting lysate was reacted for 12 hours at room temperature. The obtained reaction product was purified by silica gel column chromatography (chloroform) to obtain Compound 2a (324.8 mg, 80%) as a colorless oil.
 H-NMR(CDCl, 400MHz): δ= 0.964(6H, d, J=6.4Hz), 1.58(6H, s), 1.64-1.67(3H, m), 2.26(3H, s), 2.47(3H, s), 2.54(2H, d, J=7.7Hz), 2.83(2H, d, J=2.6Hz), 4.76(2H, s), 6.61(1H, s), 7.32-7.37(1H, m), 7.38-7.42(2H, m), 7.45-7.48(2H, m), 9.56(1H, t, J=2.7Hz)。 1 H-NMR (CDCl 3 , 400 MHz): δ = 0.964 (6H, d, J = 6.4Hz), 1.58 (6H, s), 1.64-1.67 (3H, m), 2.26 (3H, s), 2.47 (3H, s), 2.54 (2H, d, J=7.7Hz), 2.83 (2H, d, J=2.6Hz), 4. 76 (2H, s), 6.61 (1H, s), 7.32-7.37 (1H, m), 7.38-7.42 (2H, m), 7.45-7.48 ( 2H, m), 9.56 (1H, t, J=2.7Hz).
 製造例(8)3-(3-(benzyloxy)-2,4-dimethyl-6-((4-methylpentanoyl)oxy)phenyl)-3-methylbutanoic acid(化合物3a)の製造
 スターラーバーを備えたナスフラスコに化合物2a(248.4mg、0.605mmol)を入れ、テトラヒドロフラン2(THF)4.0mL及びtert-ブチルアルコール(t-BuOH)6.0mLに室温で溶解させた。得られた溶解物に2-メチル-2-ブテン(0.650mL、6.13mmol)及び亜塩素酸ナトリウム(NaClO)(107.7mg、1.19mmol)、リン酸二水素ナトリウム(NaHPO)(153.4mg、1.28mmol)の水溶液6.0mLを添加した後、得られた溶解物を室温で12時間反応させた。得られた反応物をシリカゲルカラムクロマトグラフィー(クロロホルム)で精製して化合物3a(247.4g、96%)を白色固体として得た。
Production Example (8) Production of 3-(3-(benzyloxy)-2,4-dimethyl-6-((4-methylpentanoyl)oxy)phenyl)-3-methylbutanoic acid (compound 3a) Eggplant flask equipped with stirrer bar Compound 2a (248.4 mg, 0.605 mmol) was added to the solution and dissolved in 4.0 mL of tetrahydrofuran 2 (THF) and 6.0 mL of tert-butyl alcohol (t-BuOH) at room temperature. 2-Methyl-2-butene (0.650 mL, 6.13 mmol), sodium chlorite (NaClO 2 ) (107.7 mg, 1.19 mmol), and sodium dihydrogen phosphate (NaH 2 PO After adding 6.0 mL of an aqueous solution of 4 ) (153.4 mg, 1.28 mmol), the resulting solution was reacted at room temperature for 12 hours. The obtained reaction product was purified by silica gel column chromatography (chloroform) to obtain Compound 3a (247.4 g, 96%) as a white solid.
H-NMR(CDCl, 400MHz): δ= 0.956(6H, d, J=6.4Hz), 1.61(6H, s),1.63-1.69(3H, m), 2.24(3H, s), 2.48(3H, s), 2.57(2H, t, J=7.7Hz), 2.87(2H, s), 4.75(2H, s), 6.59(1H, s), 7.32-7.36(1H, m), 7.38-7.42(2H, m), 7.46-7.48(2H, m)。 1 H-NMR (CDCl 3 , 400 MHz): δ = 0.956 (6H, d, J = 6.4Hz), 1.61 (6H, s), 1.63-1.69 (3H, m), 2.24 (3H, s), 2.48 (3H, s), 2.57 (2H, t, J=7.7Hz), 2.87 (2H, s), 4.75 (2H, s) , 6.59 (1H, s), 7.32-7.36 (1H, m), 7.38-7.42 (2H, m), 7.46-7.48 (2H, m).
 製造例(9)(S)-4-(benzyloxy)-3,5-dimethyl-2-(2-methyl-4-oxo-4-((1,2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydrobenzo「a」heptalen-7-yl)amino)butan-2-yl)phenyl 4-methylpentanoate(化合物5a)の製造
 スターラーバーを備えたナスフラスコにデアセチルコルヒチン4(26.0mg、72.7μmol)、化合物3a(26.5mg、62.1μmol)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC・HCl)(25.3mg、0.132mmol)、4-ジメチルアミノピリジン(DMAP)(1.50mg、12.3μmol)を入れ、ジクロロメタン(CHCl)3.1mLに溶解させた。室温で24時間撹拌後、溶媒の減圧留去により得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=100/0-10/1)で精製して化合物5a(54.4mg、98%)を黄色固体として得た。
Production example (9) (S)-4-(benzyloxy)-3,5-dimethyl-2-(2-methyl-4-oxo-4-((1,2,3,10-tetramethoxy-9-oxo- Production of 5,6,7,9-tetrahydrobenzo "a" heptalen-7-yl)amino)butan-2-yl)phenyl 4-methylpentanoate (compound 5a) Deacetylcolchicine 4 (26 .0mg, 72.7μmol), Compound 3a (26.5mg, 62.1μmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC HCl) (25.3mg, 0.132mmol) , 4-dimethylaminopyridine (DMAP) (1.50 mg, 12.3 μmol) was dissolved in 3.1 mL of dichloromethane (CH 2 Cl 2 ). After stirring at room temperature for 24 hours, the residue obtained by distilling off the solvent under reduced pressure was purified by silica gel column chromatography (chloroform/methanol = 100/0-10/1) to obtain compound 5a (54.4 mg, 98%). Obtained as a yellow solid.
 H-NMR(CDCl, 400MHz): δ= 0.986-1.01(6H, m), 1.35-1.43(1H, m), 1.52(1H, overlaps with peak of water), 1.59(3H, s), 1.63(3H, s), 1.70-1.74(3H, m), 2.22-2.37(9H, m)2.60-2.66(3H, m), 3.60(3H, s), 3.70(3H, s), 3.89(3H, s), 3.95(3H, s), 4.24-4.30(1H, m), 4.58(1H, d, J=10.8Hz), 4.71(1H, d, J=10.8Hz), 6.00(1H, d, J=6.6Hz), 6.39(1H, s), 6.63(1H, s), 6.72(1H, d, J=11.1Hz), 7.17-7.19(2H, m), 7.34-7.38(1H, m), 7.40-7.43(2H, m), 7.45-7.47(2H, m)。 1 H-NMR (CDCl 3 , 400 MHz): δ = 0.986-1.01 (6H, m), 1.35-1.43 (1H, m), 1.52 (1H, overlaps with peak of water ), 1.59 (3H, s), 1.63 (3H, s), 1.70-1.74 (3H, m), 2.22-2.37 (9H, m) 2.60-2 .66 (3H, m), 3.60 (3H, s), 3.70 (3H, s), 3.89 (3H, s), 3.95 (3H, s), 4.24-4. 30 (1H, m), 4.58 (1H, d, J=10.8Hz), 4.71 (1H, d, J=10.8Hz), 6.00 (1H, d, J=6.6Hz ), 6.39 (1H, s), 6.63 (1H, s), 6.72 (1H, d, J=11.1Hz), 7.17-7.19 (2H, m), 7. 34-7.38 (1H, m), 7.40-7.43 (2H, m), 7.45-7.47 (2H, m).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 製造例(10)4-(benzyloxy)-2-(4-hydroxy-2-methylbutan-2-yl)-3,5-dimethylphenyl isobutylcarbamate(化合物9b)の製造
 スターラーバーを備えた2口ナスフラスコに炭酸ビス(トリクロロメチル)(29.7mg、0.10mmol)を入れ、アルゴン雰囲気下、超脱水ジクロロメタン(CHCl)2.0mLで溶解させた溶液を0℃に冷却し、15分間攪拌した。その後、ピリジン(0.019mL、0.24mmol)を加え、さらに25分間攪拌した。超脱水ジCHCl2mLに溶解させた化合物7(85.7mg、0.20mmol)の溶液を0℃で混合物に滴下した。2時間攪拌後、さらにピリジン(0.024mL、0.30mmol)を入れ、0℃で10分間攪拌した。続いて、同じ温度でイソブチルアミン(0.024mL、0.24mmol)を滴下した。20分間攪拌した後に室温に昇温した。室温で1.5時間攪拌後、溶液をCHClで抽出し、CHCl抽出溶液を水で洗浄した。抽出溶液を硫酸マグネシウムで脱水し、減圧留去により溶媒を除去した。得られた残渣が入ったナスフラスコにテトラヒドロフラン(THF)1.0mLを入れ、溶解した後に水0.5mLと酢酸(AcOH)1.5mLを加えた。室温で11時間攪拌後、溶液を酢酸エチルで抽出し、酢酸エチル抽出溶液を水で洗浄した。抽出溶液を硫酸マグネシウムで脱水した後に、減圧留去により溶媒を除去した。得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=100/1-50/1)で精製して化合物9b(82.3mg、77%)を淡黄色オイルとして得た。また、回転異性体により化合物9bのH-NMRスペクトルは2種類(Major:Minor=100:16)観測された。
Production Example (10) Production of 4-(benzyloxy)-2-(4-hydroxy-2-methylbutan-2-yl)-3,5-dimethylphenyl isobutylcarbamate (compound 9b) Carbonic acid was added to a two-necked eggplant flask equipped with a stirrer bar. A solution containing bis(trichloromethyl) (29.7 mg, 0.10 mmol) and dissolved in 2.0 mL of super-dehydrated dichloromethane (CH 2 Cl 2 ) under an argon atmosphere was cooled to 0° C. and stirred for 15 minutes. Then, pyridine (0.019 mL, 0.24 mmol) was added and stirred for an additional 25 minutes. A solution of compound 7 (85.7 mg, 0.20 mmol) dissolved in 2 mL of super dry di - CH2Cl2 was added dropwise to the mixture at 0<0>C. After stirring for 2 hours, pyridine (0.024 mL, 0.30 mmol) was further added, and the mixture was stirred at 0°C for 10 minutes. Subsequently, isobutylamine (0.024 mL, 0.24 mmol) was added dropwise at the same temperature. After stirring for 20 minutes, the temperature was raised to room temperature. After stirring at room temperature for 1.5 hours, the solution was extracted with CH 2 Cl 2 and the CH 2 Cl 2 extract was washed with water. The extracted solution was dried over magnesium sulfate and the solvent was removed by evaporation under reduced pressure. 1.0 mL of tetrahydrofuran (THF) was put into the eggplant flask containing the obtained residue, and after dissolving it, 0.5 mL of water and 1.5 mL of acetic acid (AcOH) were added. After stirring at room temperature for 11 hours, the solution was extracted with ethyl acetate, and the ethyl acetate extract was washed with water. After dehydrating the extracted solution with magnesium sulfate, the solvent was removed by distillation under reduced pressure. The resulting residue was purified by silica gel column chromatography (chloroform/methanol = 100/1-50/1) to obtain Compound 9b (82.3 mg, 77%) as a pale yellow oil. Furthermore, two types of 1 H-NMR spectra (Major: Minor = 100:16) were observed for Compound 9b due to rotamers.
 H-NMR(CDCl, 400MHz):δ=0.96(6H, d, J=6.7Hz), 0.99(0.96H, d, J=6.8Hz), 1.47-1.55(6.96H, m), 1.69-1.91(2.32H, m), 2.08(2.32H, t, J=6.8Hz), 2.25(3.48H, s), 2.47(3.48H, s), 3.11(2H, t, J=6.5Hz), 3.17(0.32H, t, J=6.4Hz), 3.58(2.32H, t, J=6.8Hz), 4.74(2.32H, s), 4.80-4.89(0.16H, m), 5.14(1H, t, J=6.0Hz), 6.63(0.16H, s), 6.66(1H, s), 7.31-7.37(1.16H, m), 7.37-7.44(2.32H, m), 7.44-7.51(2.32H, m)。 1 H-NMR (CDCl 3 , 400 MHz): δ = 0.96 (6H, d, J = 6.7 Hz), 0.99 (0.96 H, d, J = 6.8 Hz), 1.47-1 .55 (6.96H, m), 1.69-1.91 (2.32H, m), 2.08 (2.32H, t, J=6.8Hz), 2.25 (3.48H, s), 2.47 (3.48H, s), 3.11 (2H, t, J=6.5Hz), 3.17 (0.32H, t, J=6.4Hz), 3.58( 2.32H, t, J=6.8Hz), 4.74(2.32H, s), 4.80-4.89(0.16H, m), 5.14(1H, t, J=6 .0Hz), 6.63 (0.16H, s), 6.66 (1H, s), 7.31-7.37 (1.16H, m), 7.37-7.44 (2.32H , m), 7.44-7.51 (2.32H, m).
 製造例(11)4-(benzyloxy)-3,5-dimethyl-2-(2-methyl-4-oxobutan-2-yl)phenyl isobutylcarbamate(化合物2b)の製造
 スターラーバーを備えたナスフラスコに化合物9b(27.3mg、0.066mmol)を入れ、ジクロロメタン(CHCl)1.3mLに0℃で溶解させた。得られた溶解物にジメチルスルホキシド(DMSO)(0.065mL、0.92mmol)、トリエチルアミン(TEA)(0.037mL、0.26mmol)、三酸化硫黄-ピリジン錯体(Py・SO)(21mg、0.13mmol)を添加した後、得られた溶解物を室温で13時間反応させた。得られた反応物をシリカゲルカラムクロマトグラフィー(ヘキサン/酢酸エチル=5/1)で精製して化合物2b(19.6mg、72%)を無色オイルとして得た。また、回転異性体により化合物2bのH-NMRスペクトルは2種類(Major:Minor=100:20)観測された。
Production Example (11) Production of 4-(benzyloxy)-3,5-dimethyl-2-(2-methyl-4-oxobutan-2-yl)phenyl isobutylcarbamate (compound 2b) Compound 9b was placed in an eggplant flask equipped with a stirrer bar. (27.3 mg, 0.066 mmol) was added and dissolved in 1.3 mL of dichloromethane (CH 2 Cl 2 ) at 0°C. Dimethyl sulfoxide (DMSO) (0.065 mL, 0.92 mmol), triethylamine (TEA) (0.037 mL, 0.26 mmol), sulfur trioxide-pyridine complex (Py SO 3 ) (21 mg, After adding 0.13 mmol), the resulting lysate was reacted at room temperature for 13 hours. The resulting reaction product was purified by silica gel column chromatography (hexane/ethyl acetate = 5/1) to obtain Compound 2b (19.6 mg, 72%) as a colorless oil. Furthermore, two types of 1 H-NMR spectra (Major: Minor = 100:20) were observed for Compound 2b due to rotamers.
 H-NMR(CDCl, 400MHz):δ=0.97(6H, d, J=6.7Hz), 0.99(1.2H, d, J=7.0Hz), 1.60(7.2H, s), 1.73-1.93(1.2H, m), 2.26(3.6H, s), 2.48(3.6H, s), 2.80(2H, d, J=2.6Hz), 2.85(0.4H, d, J=2.4Hz), 3.11(2H, t, J=6.5Hz), 3.16(0.4H, t, J=6.5Hz), 4.74(2.4H, s), 4.77-4.85(0.2H, m), 5.06(1H, t, J=6.0Hz), 6.68(0.2H, s), 6.70(1H, s), 7.31-7.37(1.2H, m), 7.37-7.44(2.4H, m), 7.44-7.50(2.4H, m)。 1H -NMR (CDCl 3 , 400MHz): δ = 0.97 (6H, d, J = 6.7Hz), 0.99 (1.2H, d, J = 7.0Hz), 1.60 (7 .2H, s), 1.73-1.93 (1.2H, m), 2.26 (3.6H, s), 2.48 (3.6H, s), 2.80 (2H, d , J=2.6Hz), 2.85 (0.4H, d, J=2.4Hz), 3.11 (2H, t, J=6.5Hz), 3.16 (0.4H, t, J=6.5Hz), 4.74 (2.4H, s), 4.77-4.85 (0.2H, m), 5.06 (1H, t, J=6.0Hz), 6. 68 (0.2H, s), 6.70 (1H, s), 7.31-7.37 (1.2H, m), 7.37-7.44 (2.4H, m), 7. 44-7.50 (2.4H, m).
 製造例(12)3-(3-(benzyloxy)-6-((isobutylcarbamoyl)oxy)-2,4-dimethylphenyl)-3-methylbutanoic acid(化合物3b)の製造
 スターラーバーを備えたナスフラスコに化合物2b(19.6mg、0.048mmol)を入れ、テトラヒドロフラン(THF)1.0mL及びtert-ブチルアルコール(t-BuOH)0.5mLに室温で溶解させた。得られた溶解物に2-メチル-2-ブテン(0.051mL、0.48mmol)及び亜塩素酸ナトリウム(NaClO)(8.7mg、0.096mmol)、リン酸二水素ナトリウム(NaHPO)(17.3mg、0.14mmol)の水溶液1.0mLを添加した後、得られた溶解物を室温で12時間反応させた。得られた反応物をシリカゲルカラムクロマトグラフィー(クロロホルム/メタノール=30/1)で精製して化合物3b(19.1mg、93%)を無色オイルとして得た。また、回転異性体により化合物3bのH-NMRスペクトルは2種類(Major:Minor=100:15)観測された。
Production Example (12) Production of 3-(3-(benzyloxy)-6-((isobutylcarbamoyl)oxy)-2,4-dimethylphenyl)-3-methylbutanoic acid (compound 3b) Compound 2b was added to an eggplant flask equipped with a stirrer bar. (19.6 mg, 0.048 mmol) was dissolved in 1.0 mL of tetrahydrofuran (THF) and 0.5 mL of tert-butyl alcohol (t-BuOH) at room temperature. 2-Methyl-2-butene (0.051 mL, 0.48 mmol), sodium chlorite (NaClO 2 ) (8.7 mg, 0.096 mmol), and sodium dihydrogen phosphate (NaH 2 PO After adding 1.0 mL of an aqueous solution of 4 ) (17.3 mg, 0.14 mmol), the resulting solution was reacted at room temperature for 12 hours. The resulting reaction product was purified by silica gel column chromatography (chloroform/methanol = 30/1) to obtain Compound 3b (19.1 mg, 93%) as a colorless oil. Furthermore, two types of 1 H-NMR spectra (Major: Minor = 100:15) were observed for Compound 3b due to rotamers.
 H-NMR(CDCl, 400MHz):δ=0.92-1.01(6.9H, m), 1.62(6.9H, s), 1.83(1.15H, sep, J=6.7Hz), 2.23(3.45H, s), 2.48(3H, s), 2.49(0.45H, s), 2.81(2.3H, s), 3.10(2H, t, J=6.5Hz), 3.18(0.3H, t, J=6.2Hz), 4.73(2.3H, s), 5.26(1.15H, t, J=6.1Hz), 6.63(0.15H, s), 6.67(1H, s), 7.31-7.37(1.15H, m), 7.37-7.43(2.3H, m), 7.43-7.50(2.3H, m)。 1 H-NMR (CDCl 3 , 400 MHz): δ = 0.92-1.01 (6.9 H, m), 1.62 (6.9 H, s), 1.83 (1.15 H, sep, J =6.7Hz), 2.23 (3.45H, s), 2.48 (3H, s), 2.49 (0.45H, s), 2.81 (2.3H, s), 3. 10 (2H, t, J=6.5Hz), 3.18 (0.3H, t, J=6.2Hz), 4.73 (2.3H, s), 5.26 (1.15H, t , J=6.1Hz), 6.63 (0.15H, s), 6.67 (1H, s), 7.31-7.37 (1.15H, m), 7.37-7.43 (2.3H, m), 7.43-7.50 (2.3H, m).
 製造例(13)(S)-4-(benzyloxy)-3,5-dimethyl-2-(2-methyl-4-oxo-4-((1,2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydrobenzo「a」heptalen-7-yl)amino)butan-2-yl)phenyl isobutylcarbamate(化合物5b)の製造
 スターラーバーを備えたナスフラスコにデアセチルコルヒチン4(16.1mg、45.0μmol)、化合物3b(19.1mg、45.0μmol)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC・HCl)(17.2mg、90.0μmol)、4-ジメチルアミノピリジン(DMAP)(0.54mg、4.48μmol)を入れ、ジクロロメタン(CHCl)1.0mLに溶解させた。室温で8.5時間撹拌後、溶媒の減圧留去により得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム/アセトン/酢酸エチル=6/1/1)で精製して化合物5b(32.2mg、93%)を白色固体として得た。また、回転異性体により化合物5bのH-NMRスペクトルは2種類(Major:Minor=100:12)観測された。
Production example (13) (S)-4-(benzyloxy)-3,5-dimethyl-2-(2-methyl-4-oxo-4-((1,2,3,10-tetramethoxy-9-oxo- Production of 5,6,7,9-tetrahydrobenzo "a" heptalen-7-yl) amino) butan-2-yl) phenyl isobutylcarbamate (compound 5b) Deacetylcolchicine 4 (16.1 mg) was placed in an eggplant flask equipped with a stirrer bar. , 45.0 μmol), Compound 3b (19.1 mg, 45.0 μmol), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC HCl) (17.2 mg, 90.0 μmol), 4 -Dimethylaminopyridine (DMAP) (0.54 mg, 4.48 μmol) was added and dissolved in 1.0 mL of dichloromethane (CH 2 Cl 2 ). After stirring at room temperature for 8.5 hours, the residue obtained by distilling off the solvent under reduced pressure was purified by silica gel column chromatography (chloroform/acetone/ethyl acetate = 6/1/1) to obtain compound 5b (32.2 mg, 93 %) as a white solid. Furthermore, two types of 1 H-NMR spectra (Major: Minor = 100:12) were observed for Compound 5b due to rotamers.
 H-NMR(CDCl, 400MHz):δ=0.97-1.07(6.72H, m), 1.60-1.66(7.84H, m), 1.95(1.12H, sep, J=6.7Hz), 2.19-2.37(5.96H, m), 2.40(3H, s), 2.54(1H, d, J=13.8Hz), 2.64(1.12H, d, J=13.8Hz), 2.69(0.12H, d, J=12.8Hz), 3.14-3.33(2.24H, m), 3.59(0.36H, s), 3.60(3H, s), 3.67(0.36H, s), 3.74(3H, s), 3.90(3.36H, s), 3.93(0.36H, s), 3.95(3H, s), 4.28(1.12H, ddd, J=11.7, 6.5, 6.4Hz), 4.57(0.12H, d, J=10.9Hz), 4.60-4.68(1.12H, m), 4.71(1H, d, J=10.8Hz), 6.27(1.12H, d, J=6.5Hz), 6.36(0.12H, s), 6.39(1H, s), 6.48(1.12H, t, J=6.1Hz), 6.65-6.80(2.24H, m), 7.20(1H, d, J=10.6Hz), 7.32-7.51(6.72H, m)。 1 H-NMR (CDCl 3 , 400 MHz): δ = 0.97-1.07 (6.72 H, m), 1.60-1.66 (7.84 H, m), 1.95 (1.12 H , sep, J=6.7Hz), 2.19-2.37 (5.96H, m), 2.40 (3H, s), 2.54 (1H, d, J=13.8Hz), 2 .64 (1.12H, d, J=13.8Hz), 2.69 (0.12H, d, J=12.8Hz), 3.14-3.33 (2.24H, m), 3. 59 (0.36H, s), 3.60 (3H, s), 3.67 (0.36H, s), 3.74 (3H, s), 3.90 (3.36H, s), 3 .93 (0.36H, s), 3.95 (3H, s), 4.28 (1.12H, ddd, J=11.7, 6.5, 6.4Hz), 4.57 (0. 12H, d, J=10.9Hz), 4.60-4.68 (1.12H, m), 4.71 (1H, d, J=10.8Hz), 6.27 (1.12H, d , J=6.5Hz), 6.36 (0.12H, s), 6.39 (1H, s), 6.48 (1.12H, t, J=6.1Hz), 6.65-6 .80 (2.24H, m), 7.20 (1H, d, J=10.6Hz), 7.32-7.51 (6.72H, m).
 製造例(14)化合物5aのナノ粒子の作製方法
 10mMに調整した化合物5aのアセトン溶液100μLを水10mL中に注射器を用いて室温下注入し、2秒間、1500rpmで撹拌して、ナノ粒子の水分散液を得た。アセトン溶液を調整する際に化合物の10wt%のポリソルベート80を添加している。最終的な水分散液の濃度は0.1mMとなった。SEM及びDLSにより、粒径が約130nmであることが明らかになった。上記で得られた化合物5aのナノ粒子分散液のSEM像の結果を図6の写真に示す。ナノ粒子の粒径分布を図6のグラフに示す。
 製造例(15)化合物5bのナノ粒子の作製方法
 10mMに調整した化合物5bのアセトン溶液100μLを水10mL中に注射器を用いて室温下注入し、2秒間、1500rpmで撹拌して、ナノ粒子の水分散液を得た。アセトン溶液を調整する際に化合物の10wt%のポリソルベート80を添加している。最終的な水分散液の濃度は0.1mMとなった。SEM及びDLSにより、粒径が約100nmであることが明らかになった。上記で得られた化合物5bのナノ粒子分散液のSEM像の結果を図7の写真に示す。ナノ粒子の粒径分布を図7のグラフに示す。
Production Example (14) Method for Preparing Nanoparticles of Compound 5a 100 μL of an acetone solution of Compound 5a adjusted to 10 mM was injected into 10 mL of water at room temperature using a syringe, and stirred at 1500 rpm for 2 seconds to form nanoparticles in water. A dispersion was obtained. When preparing the acetone solution, 10 wt% of the compound polysorbate 80 was added. The final concentration of the aqueous dispersion was 0.1 mM. SEM and DLS revealed the particle size to be approximately 130 nm. The photograph of FIG. 6 shows the results of the SEM image of the nanoparticle dispersion of compound 5a obtained above. The particle size distribution of the nanoparticles is shown in the graph of FIG.
Production Example (15) Method for Preparing Nanoparticles of Compound 5b 100 μL of an acetone solution of Compound 5b adjusted to 10 mM was injected into 10 mL of water at room temperature using a syringe, and stirred at 1500 rpm for 2 seconds to form nanoparticles in water. A dispersion was obtained. When preparing the acetone solution, 10 wt% of the compound polysorbate 80 was added. The final concentration of the aqueous dispersion was 0.1 mM. SEM and DLS revealed the particle size to be approximately 100 nm. The photograph of FIG. 7 shows the results of the SEM image of the nanoparticle dispersion of compound 5b obtained above. The particle size distribution of the nanoparticles is shown in the graph of FIG.
 製造例(16)化合物5aにおける高濃度のナノ粒子の作製方法
 72.2mMに調整した化合物5aのアセトン溶液100μLを水9mL中に注射器を用いて室温下注入し、2秒間、1500rpmで撹拌して、ナノ粒子の水分散液を得た。アセトン溶液を調整する際に化合物の10wt%のポリソルベート80を添加している。アセトンを除去した後に10mLになるよう定量し、9w/v%塩化ナトリウム水溶液と9:1の割合で混合させ作製した。最終的な水分散液の濃度は0.65mMとなった。SEM及びDLSにより、粒径が約170nmであることが明らかになった。上記で得られた化合物5aの高濃度のナノ粒子のSEM像の結果を図8の写真に示す。ナノ粒子の粒径分布を図8のグラフに示す。
Production Example (16) Method for producing high-concentration nanoparticles of Compound 5a 100 μL of an acetone solution of Compound 5a adjusted to 72.2 mM was injected into 9 mL of water at room temperature using a syringe, and stirred at 1500 rpm for 2 seconds. , an aqueous dispersion of nanoparticles was obtained. When preparing the acetone solution, 10 wt% of the compound polysorbate 80 was added. After removing acetone, the volume was determined to be 10 mL, and mixed with a 9 w/v % sodium chloride aqueous solution at a ratio of 9:1 to prepare. The final concentration of the aqueous dispersion was 0.65mM. SEM and DLS revealed the particle size to be approximately 170 nm. The photograph of FIG. 8 shows the result of the SEM image of the nanoparticles with a high concentration of compound 5a obtained above. The particle size distribution of the nanoparticles is shown in the graph of FIG.
 製造例(17)化合物5bにおける高濃度のナノ粒子の作製方法
 72.2mMに調整した化合物5bのアセトン溶液100μLを水9mL中に注射器を用いて室温下注入し、2秒間、1500rpmで撹拌して、ナノ粒子の水分散液を得た。アセトン溶液を調整する際に化合物の10wt%のポリソルベート80を添加している。アセトンを除去した後に10mLになるよう定量し、9w/v%塩化ナトリウム水溶液と9:1の割合で混合させ作製した。最終的な水分散液の濃度は0.65mMとなった。SEM及びDLSにより、粒径が約130nmであることが明らかになった。上記で得られた化合物5bの高濃度のナノ粒子のSEM像の結果を図9の写真に示す。ナノ粒子の粒径分布を図9のグラフに示す。
Production Example (17) Method for producing high-concentration nanoparticles of Compound 5b 100 μL of an acetone solution of Compound 5b adjusted to 72.2 mM was injected into 9 mL of water at room temperature using a syringe, and stirred at 1500 rpm for 2 seconds. , an aqueous dispersion of nanoparticles was obtained. When preparing the acetone solution, 10 wt% of the compound polysorbate 80 was added. After removing acetone, the volume was determined to be 10 mL, and mixed with a 9 w/v % sodium chloride aqueous solution at a ratio of 9:1 to prepare. The final concentration of the aqueous dispersion was 0.65mM. SEM and DLS revealed the particle size to be approximately 130 nm. The photograph of FIG. 9 shows the result of the SEM image of the nanoparticles with high concentration of compound 5b obtained above. The particle size distribution of the nanoparticles is shown in the graph of FIG.
 実施例3
 図10.  アラマーブルーアッセイによるHTFの生存率とBrdUアッセイによる細胞増殖に関するN-Col処理の評価
 ヒト繊維芽細胞を96ウェルプレートに播種し、24時間後に化合物5のナノ粒子を終濃度10-1000 nMとなるように添加した。さらに24時間後にアラマーブルー試薬を添加したのち、2時間後に吸光度を測定した。また、ヒト繊維芽細胞を96ウェルプレートに播種し、24時間後に化合物5のナノ粒子を終濃度10-500 nMとなるように添加した。さらに24時間後にBrdU試薬を添加したのち、24時間後ならびに48時間後に吸光度を測定した。結果を図10(A)~(E)に示す。
Example 3
Figure 10. Evaluation of N-Col treatment on HTF viability by Alamar Blue assay and cell proliferation by BrdU assay. Human fibroblasts were seeded in 96-well plates, and after 24 hours, Compound 5 nanoparticles were added to a final concentration of 10- It was added at a concentration of 1000 nM. After a further 24 hours, alamar blue reagent was added, and absorbance was measured 2 hours later. Further, human fibroblast cells were seeded in a 96-well plate, and 24 hours later, compound 5 nanoparticles were added to a final concentration of 10-500 nM. After a further 24 hours, the BrdU reagent was added, and the absorbance was measured 24 hours and 48 hours later. The results are shown in FIGS. 10(A) to (E).
 図10(A) HTF(human tenon fibroblast)を異なる濃度のN-Col(化合物5 (0.1、0.25、0.5、0.75、1.0μM)で24時間処理した。0.1 μMおよび0.25 μMでは統計的生存率の低下は見られなかったが、溶媒対照と比較して0.5 μMから1.0 μMにおいて統計的に減少が示された。  図10(B) N-Col処理(0.1、0.5、1.0μM)を施したHTFを24時間顕微鏡観察した。HTFをTGF-β1とN-Colで共処理している間、細胞は収縮した(黒い矢印)。スケールバー= 200 μm.  図10(C)  10 ng/mL TGF-β1の有無による、HTFの生存率に対する0.5 μM N-Colの時間的影響を示す。TGF-β1はHTFの生存率を増加したが、この活性化はN-Col処理によって著しく抑制した。  図10(D) TGF-β1誘導なしの通常のHTFの増殖に対するN-Col処理(それぞれ0、0.1、0.25、0.5 μM)の時間的影響を示す。 BrdU吸光度の低下は24時間では見られなかったが、細胞を0.25および0.5μM N-Colで処理している間は48時間でBrdU吸光度の低下が観察された。  図10(E) TGF-β1誘導HTFを異なる濃度のN-Col(それぞれ0、0.1、0.25、0.5μM)で24時間および48時間処理した。 BrdU吸光度の低下は、0.25および0.5μM治療群において、24時間で始まり、48時間でピークに達した。N-Col;ナノコルヒチン、ns;有意性なし、未処理対照と比較 して、#p < 0.05、TGF-β1群と比較して、*: p < 0.05, **: p < 0.01, ***: p < 0.001。 Figure 10(A) HTF (human tenon fibroblast) was treated with different concentrations of N-Col (compound 5 (0.1, 0.25, 0.5, 0.75, 1.0 μM) for 24 hours. At 0.1 μM and 0.25 μM, the statistical survival rate was Although no decrease was observed, a statistical decrease was shown from 0.5 μM to 1.0 μM compared to the solvent control. Figure 10(B) HTF with N-Col treatment (0.1, 0.5, 1.0 μM) was observed under a microscope for 24 hours. Cells contracted (black arrow) while HTF was co-treated with TGF-β1 and N-Col. Scale bar = 200 μm. Figure 10(C) 10 ng/mL TGF- Figure 10 shows the temporal effect of 0.5 μM N-Col on the survival rate of HTF in the presence or absence of β1. TGF-β1 increased the survival rate of HTF, but this activation was markedly suppressed by N-Col treatment. (D) Shows the temporal effects of N-Col treatment (0, 0.1, 0.25, and 0.5 μM, respectively) on the proliferation of normal HTF without TGF-β1 induction. Although no decrease in BrdU absorbance was observed at 24 h. , a decrease in BrdU absorbance was observed at 48 h while cells were treated with 0.25 and 0.5 μM N-Col. N-Col; nanocolchicine; ns; no significance, compared with untreated control, # p < 0.05, compared with TGF-β1 group, *: p < 0.05, **: p < 0.01, ***: p < 0.001.
 実施例4
 図11 スクラッチアッセイおよびトランスウェルアッセイによるHTFの運動性に対するN-Col治療の評価   
ヒト繊維芽細胞を6ウェルプレートに播種し、増殖を確認後に創傷を作成したのち化合物5のナノ粒子を終濃度100-500 nMとなるように添加した。12時間おきに顕微鏡で撮影し残面積を測定した。また、ヒト繊維芽細胞を8 μm径のトランスウェルに播種し、細胞の移動ならびに浸潤をクリスタルバイオレット染色により評価した。結果を図11(A)~(E)に示す。
 図11(A) TGF-β1誘導の有無にかかわらず、HTFをN-Col(化合物5)で48時間処理し、12時間ごとに  写真を撮影した。
Example 4
Figure 11 Evaluation of N-Col treatment on HTF motility by scratch assay and transwell assay.
Human fibroblasts were seeded in a 6-well plate, and after confirming proliferation, a wound was created and compound 5 nanoparticles were added at a final concentration of 100-500 nM. Images were taken with a microscope every 12 hours and the remaining area was measured. In addition, human fibroblast cells were seeded in transwells with a diameter of 8 μm, and cell migration and invasion were evaluated by crystal violet staining. The results are shown in FIGS. 11(A) to (E).
FIG. 11(A) HTF was treated with N-Col (compound 5) for 48 hours with or without TGF-β1 induction, and photographs were taken every 12 hours.
  コントロール群およびTGF-β1群における  創傷面積の減少は、2つの0.5 μM N-Col群におけるそれよりも有意に速かった。 スケールバー= 1 mm.  図11 (B)創傷面積は、0、12、24、36、および48時間の時点で測定された。 N-Col治療はTGF-β1によって誘導される創傷治癒を顕著に抑制することが示された。図11(C) HTFの移動および浸潤はトランスウェルアッセイによって評価された。 N-Col治療は、TGF-β1によって誘導される細胞の移動および浸潤を有意に阻害することができるが、正常なTHFにおける影響は少なかった。 スケールバー= 2 mm 図11(D-E) 移動した細胞または侵襲性細胞を顕微鏡下で計算し、統計解析を行った。
N-Col;ナノコルヒチン、ns; 有意差なし、未処理対照と比較して、*: p < 0.05, **: p < 0.01, ***: p < 0.001。
The decrease in wound area in the control group and TGF-β1 group was significantly faster than that in the two 0.5 μM N-Col groups. Scale bar = 1 mm. Figure 11 (B) Wound area was measured at 0, 12, 24, 36, and 48 hours. N-Col treatment was shown to significantly suppress wound healing induced by TGF-β1. Figure 11(C) HTF migration and invasion was assessed by transwell assay. N-Col treatment could significantly inhibit cell migration and invasion induced by TGF-β1, but the effect was less in normal THF. Scale bar = 2 mm Figure 11 (DE) Migrated or invasive cells were calculated under the microscope and statistical analysis was performed.
N-Col; nanocolchicine, ns; no significant difference, *: p < 0.05, **: p < 0.01, ***: p < 0.001 compared to untreated control.
 実施例5
 図12.  TGF-β1誘導性HTFの形態および機能に対するN-Col効果の評価  
ヒト繊維芽細胞をコラーゲンゲルに包含し、化合物5のナノ粒子を添加して24ウェルプレートに播種して培養した。その後15日後まで経時的に顕微鏡で撮影しコラーゲンゲルのサイズを計測した。また、化合物5のナノ粒子添加下でヒト繊維芽細胞を48時間培養し、α-SMA発現をウェスタンブロッティングにより評価した。また、化合物5のナノ粒子添加下でヒト繊維芽細胞を24時間培養し、細胞形態をF-アクチン免疫染色により評価した。結果を図12(A)~(E)に示す。 図12(A) 細胞収縮性は、コラーゲンゲル培養キットを用いて試験した。TGF-β1誘導性HTFを0.1または0.5μM N-Col(化合物5)で15日間処理し、毎日写真を撮影した。すべてのグループ間でゲル収縮面積の有意差は5日目に発生し、9日目にピークに達した。TGF-β1群ではゲル面積が縮小し、5 μM N-Colは完全に保持された。図12(B) 残存ゲル面積を測定し、統計学的に分析した。 0.5 μM N-Colは、TGF-β1によって誘導されるゲル収縮を顕著に阻害し、未処理レベルに戻ったことを示した。  図12 (C) ウェスタンブロットおよびバンドによって検出されたα-SMA の発現を統計学的に分析した。0.5 μM N-Colはα-SMA発現を阻害した。 各バンドの強度はGAPDHで正規化した。   図12(D) α-SMAの免疫染色を実施した。0.5 μM N-ColがTGF-β1誘導性のα-SMA発現を抑制し、α-SMA蛍光が未処理の対照レベルまで低下することが示された。スケールバー = 200 μm.   
(E) ローダミンファロイジン(赤色)によるF-アクチン免疫染色は、異なる処理を施したHTFで実施した。 TGF-β1群では細胞サイズが大きく、細胞骨格を示す蛍光強度が強く、多角形形状が見られる形態変化が見られた。0.5 μM N-Col処理を行った後、細胞は収縮し、棒状になった。 スケールバーを図に示す。 N-Col;ナノコルヒチン、ns; 有意差なし、未処理対照と比較して、*: p < 0.05, **: p < 0.01, ***: p < 0.001。
Example 5
Figure 12. Evaluation of N-Col effects on TGF-β1-induced HTF morphology and function.
Human fibroblasts were included in a collagen gel, nanoparticles of compound 5 were added, and the cells were seeded in a 24-well plate and cultured. After that, photographs were taken with a microscope over time until 15 days later, and the size of the collagen gel was measured. Furthermore, human fibroblasts were cultured for 48 hours in the presence of compound 5 nanoparticles, and α-SMA expression was evaluated by Western blotting. Furthermore, human fibroblasts were cultured for 24 hours in the presence of compound 5 nanoparticles, and cell morphology was evaluated by F-actin immunostaining. The results are shown in FIGS. 12(A) to (E). Figure 12(A) Cell contractility was tested using a collagen gel culture kit. TGF-β1-induced HTF was treated with 0.1 or 0.5 μM N-Col (compound 5) for 15 days and photographs were taken daily. Significant differences in gel shrinkage area among all groups occurred on day 5 and reached a peak on day 9. In the TGF-β1 group, the gel area decreased and 5 μM N-Col was completely retained. Figure 12(B) The remaining gel area was measured and statistically analyzed. 0.5 μM N-Col significantly inhibited TGF-β1-induced gel contraction, which returned to untreated levels. Figure 12 (C) α-SMA expression detected by Western blot and banding was statistically analyzed. 0.5 μM N-Col inhibited α-SMA expression. The intensity of each band was normalized with GAPDH. FIG. 12(D) Immunostaining of α-SMA was performed. It was shown that 0.5 μM N-Col suppressed TGF-β1-induced α-SMA expression, reducing α-SMA fluorescence to untreated control levels. Scale bar = 200 μm.
(E) F-actin immunostaining with rhodamine phalloidin (red) was performed on HTFs subjected to different treatments. In the TGF-β1 group, the cell size was large, the fluorescence intensity indicating the cytoskeleton was strong, and morphological changes such as polygonal shapes were observed. After treatment with 0.5 μM N-Col, the cells shrank and became rod-shaped. Scale bar is shown in the figure. N-Col; nanocolchicine, ns; no significant difference, *: p < 0.05, **: p < 0.01, ***: p < 0.001 compared to untreated control.
 実施例6
 図13.  TGF-β1  誘導性HTFの細胞周期およびアポトーシスに対するN-Col処理の効果  
化合物5のナノ粒子添加下でヒト繊維芽細胞を24時間培養し、細胞周期をKi67免疫染色により、アポトーシス細胞をTUNEL法により検出した。また、結果を図13(A)~(D)に示す。図13(A) 異なる処理後のHTFは、Ki67抗体(白矢尻)によって染色された。0.5 μM N-Col(化合物5)がTGF-β1によって活性化されたKi67発現を抑制することが明らかになった。  図13(B) Ki67染色の定量は、N-Colが活性化HTFのKi67陽性細胞を著しく減少させたが、正常なHTFでは減少させなかったことを示した。 図13(C) ローダミン蛍光色素を用いた抗ジゴキシゲニン抗体である間接TUNEL法(白矢印)による異なる処理によるHTFのアポトーシスを検出した。 N-ColはTGF-β1誘導HTFに対して有意なアポトーシス促進効果を発揮したが、TGF-β1処理を行わないHTFではこの効果が弱かった。 図13(D) TUNELの定量は、N-Colが活性化HTFでアポトーシス細胞を顕著に増加させ、正常なHTFでわずかに増加させることを示した。スケールバー= 200 μm. N-Col;ナノコルヒチン、ns; 有意差なし、未処理対照と比較して、*: p < 0.05, **: p < 0.01, ***: p < 0.001。
Example 6
Figure 13. Effect of N-Col treatment on TGF-β1-induced HTF cell cycle and apoptosis.
Human fibroblasts were cultured for 24 hours in the presence of compound 5 nanoparticles, and the cell cycle was detected by Ki67 immunostaining, and apoptotic cells were detected by the TUNEL method. Furthermore, the results are shown in FIGS. 13(A) to (D). Figure 13(A) HTFs after different treatments were stained with Ki67 antibody (white arrowheads). It was revealed that 0.5 μM N-Col (compound 5) suppressed Ki67 expression activated by TGF-β1. Figure 13(B) Quantification of Ki67 staining showed that N-Col significantly reduced Ki67-positive cells in activated HTFs, but not in normal HTFs. FIG. 13(C) Apoptosis of HTF was detected by different treatments using the indirect TUNEL method (white arrow), which is an anti-digoxigenin antibody using rhodamine fluorescent dye. N-Col exerted a significant proapoptotic effect on TGF-β1-induced HTF, but this effect was weaker on HTF without TGF-β1 treatment. Figure 13(D) TUNEL quantification showed that N-Col significantly increased apoptotic cells in activated HTF and slightly increased in normal HTF. Scale bar = 200 μm. N-Col; nanocolchicine, ns; no significant difference, compared to untreated control, *: p < 0.05, **: p < 0.01, ***: p < 0.001.
 実施例7
 図14.  N-Col処理後の正常HTFおよび活性化HTFにおける線維化マーカーおよびアポトーシス関連タンパク質の関連
化合物5のナノ粒子添加下でヒト繊維芽細胞を48時間培養し、繊維芽細胞の活性化やアポトーシス関連因子の発現をウェスタンブロッティングにより評価した。また、化合物5のナノ粒子添加下でヒト繊維芽細胞を24時間培養し、切断されたカスパーゼ3を特異的に認識する抗体で染色することにより、カスパーゼ3の活性化を評価した。結果を図14(A)~(G)に示す。  図14(A)HTFは、TGF-β1誘導の有無にかかわらず、N-Col(化合物5)投与量(それぞれ0.1、0.25、0.5 μM)で処理した。タンパク質レベルはウェスタンブロットによって測定した。 相対発現レベルは、密度分析によって決定した。図14(B-F) バンドの定量は、0.5 μM N-ColがCol-I、フィブロネクチン、α-SMAの発現およびリン酸化ERK1/2/全ERK1/2の比率を変化させなかった。TGF-β 1前処理なしの正常なHTFではBax/Bcl-2比をわずかに増加させたことを示した。一方、TGF-β1添加による活性化HTFでは、0.5 μMN-Colは、リン酸化ERK1/2/全ERK1/2の減少およびBax/Bcl-2の増加とともに、Col-Iおよびα-SMAの発現を著しく低下させた。図14(G)切断されたカスパーゼ-3の免疫染色を行った。 0.5 μM N-Colは、活性化HTFのアポトーシス陽性細胞を増加させたが、正常な線維芽細胞ではわずかな増加にとどまった。 スケールバー = 200 μm. N-Col;ナノコルヒチン、ns; 有意差なし、未処理対照と比較して、*: p < 0.05, **: p < 0.01, ***: p < 0.001、TGF-β1群と比較して、#p < 0.05 
Example 7
Figure 14. Human fibroblasts were cultured for 48 hours with the addition of compound 5 nanoparticles related to fibrosis markers and apoptosis-related proteins in normal and activated HTFs after N-Col treatment. The expression of apoptosis-related factors was evaluated by Western blotting. In addition, activation of caspase-3 was evaluated by culturing human fibroblasts for 24 hours in the presence of compound 5 nanoparticles and staining with an antibody that specifically recognizes cleaved caspase-3. The results are shown in FIGS. 14(A) to (G). Figure 14 (A) HTFs were treated with N-Col (compound 5) doses (0.1, 0.25, 0.5 μM, respectively) with or without TGF-β1 induction. Protein levels were measured by Western blot. Relative expression levels were determined by density analysis. Figure 14 (BF) Band quantification showed that 0.5 μM N-Col did not change the expression of Col-I, fibronectin, α-SMA, or the ratio of phosphorylated ERK1/2/total ERK1/2. We showed that normal HTF without TGF-β1 pretreatment slightly increased the Bax/Bcl-2 ratio. On the other hand, in activated HTF by addition of TGF-β1, 0.5 μMN-Col reduced the expression of Col-I and α-SMA, while decreasing phosphorylated ERK1/2/total ERK1/2 and increasing Bax/Bcl-2. significantly decreased. FIG. 14(G) Immunostaining of cleaved caspase-3 was performed. 0.5 μM N-Col increased apoptosis-positive cells in activated HTF, but only a slight increase in normal fibroblasts. Scale bar = 200 μm. N-Col; nanocolchicine, ns; no significant difference, compared to untreated control, *: p < 0.05, **: p < 0.01, ***: p < 0.001, TGF- # p < 0.05 compared to β1 group
 実施例8
 図15.N-Col(化合物5)に代えて、化合物5a又は化合物5bを用いる以外、実施例3(図10A)と同様にして、アラマーブルーアッセイを行った。結果を図15に示す。HTFを異なる濃度のN-Col(0.1、0.25、0.5、0.75、1.0μM)で24時間処理した。溶媒対照と比較して1.0 μMにおいて細胞生存率の減少が示された。
Example 8
Figure 15. Alamar Blue assay was performed in the same manner as in Example 3 (Figure 10A) except that Compound 5a or Compound 5b was used instead of N-Col (Compound 5). The results are shown in FIG. HTF was treated with different concentrations of N-Col (0.1, 0.25, 0.5, 0.75, 1.0 μM) for 24 h. A decrease in cell viability was shown at 1.0 μM compared to the solvent control.

Claims (6)

  1.  下記一般式(I)で表される化合物又はその塩を含む瘢痕形成抑制剤:
    Figure JPOXMLDOC01-appb-C000001
    [式中、R、R、R及びRは、同一又は異なって、水素、置換されていてもよいC1-18アルキル、置換されていてもよいC1-18アルコキシ、置換されていてもよいC7-18アラルキルオキシ又は置換されていてもよいフェノキシを示す。
    、R、R及びRのうち隣り合う2つが、これらの基が結合する炭素原子と共に、置換されていてもよい環を形成してもよい。
    Yは、置換されていてもよいC1-18アルキル、置換されていてもよいC7-18アラルキル、置換されていてもよいフェニル、置換されていてもよいC1-18アルコキシ、置換されていてもよいC7-18アラルキルオキシ、置換されていてもよいフェノキシ、置換されていてもよいモノC1-18アルキルアミノ、置換されていてもよいモノC7-18アラルキルアミノ又は置換されていてもよいモノフェニルアミノを示す]。
    A scar formation inhibitor containing a compound represented by the following general formula (I) or a salt thereof:
    Figure JPOXMLDOC01-appb-C000001
    [In the formula, R 1 , R 2 , R 3 and R 4 are the same or different, hydrogen, optionally substituted C1-18 alkyl, optionally substituted C1-18 alkoxy, substituted C7-18 aralkyloxy or optionally substituted phenoxy.
    Two adjacent ones of R 1 , R 2 , R 3 and R 4 may form an optionally substituted ring together with the carbon atom to which these groups are bonded.
    Y is optionally substituted C1-18 alkyl, optionally substituted C7-18 aralkyl, optionally substituted phenyl, optionally substituted C1-18 alkoxy, optionally substituted C7-18 aralkyloxy, optionally substituted phenoxy, optionally substituted mono C1-18 alkylamino, optionally substituted mono C7-18 aralkylamino, or optionally substituted monophenylamino show].
  2.  下記一般式(I)で表される化合物又はその塩を含む線維芽細胞増殖抑制剤:
    Figure JPOXMLDOC01-appb-C000002
    [式中、R、R、R及びRは、同一又は異なって、水素、置換されていてもよいC1-18アルキル、置換されていてもよいC1-18アルコキシ、置換されていてもよいC7-18アラルキルオキシ又は置換されていてもよいフェノキシを示す。
    、R、R及びRのうち隣り合う2つが、これらの基が結合する炭素原子と共に、置換されていてもよい環を形成してもよい。
    Yは、置換されていてもよいC1-18アルキル、置換されていてもよいC7-18アラルキル、置換されていてもよいフェニル、置換されていてもよいC1-18アルコキシ、置換されていてもよいC7-18アラルキルオキシ、置換されていてもよいフェノキシ、置換されていてもよいモノC1-18アルキルアミノ、置換されていてもよいモノC7-18アラルキルアミノ又は置換されていてもよいモノフェニルアミノを示す]。
    Fibroblast proliferation inhibitor containing a compound represented by the following general formula (I) or a salt thereof:
    Figure JPOXMLDOC01-appb-C000002
    [In the formula, R 1 , R 2 , R 3 and R 4 are the same or different, hydrogen, optionally substituted C1-18 alkyl, optionally substituted C1-18 alkoxy, substituted C7-18 aralkyloxy or optionally substituted phenoxy.
    Two adjacent ones of R 1 , R 2 , R 3 and R 4 may form an optionally substituted ring together with the carbon atom to which these groups are bonded.
    Y is optionally substituted C1-18 alkyl, optionally substituted C7-18 aralkyl, optionally substituted phenyl, optionally substituted C1-18 alkoxy, optionally substituted C7-18 aralkyloxy, optionally substituted phenoxy, optionally substituted mono C1-18 alkylamino, optionally substituted mono C7-18 aralkylamino, or optionally substituted monophenylamino show].
  3.  一般式(I)中、R、R、R及びRは、同一又は異なって、水素、置換されていてもよいC1-18アルキル又は置換されていてもよいC7-18アラルキルオキシを示し、
    Yは、置換されていてもよいC1-18アルコキシ、置換されていてもよいC1-18アルキル又は置換されていてもよいモノC1-18アルキルアミノを示す、
    請求項1に記載の瘢痕形成抑制剤又は請求項2に記載の線維芽細胞増殖抑制剤。
    In general formula (I), R 1 , R 2 , R 3 and R 4 are the same or different and each represents hydrogen, optionally substituted C1-18 alkyl, or optionally substituted C7-18 aralkyloxy. show,
    Y represents optionally substituted C1-18 alkoxy, optionally substituted C1-18 alkyl, or optionally substituted mono C1-18 alkylamino,
    The scar formation inhibitor according to claim 1 or the fibroblast proliferation inhibitor according to claim 2.
  4.  一般式(I)で表される化合物又はその塩を含むナノ粒子を含む、請求項1に記載の瘢痕形成抑制剤、請求項2に記載の線維芽細胞増殖抑制剤又は請求項3に記載の瘢痕形成抑制剤もしくは線維芽細胞増殖抑制剤。 The scar formation inhibitor according to claim 1, the fibroblast proliferation inhibitor according to claim 2, or the fibroblast proliferation inhibitor according to claim 3, which comprises nanoparticles containing the compound represented by general formula (I) or a salt thereof. Scar formation inhibitors or fibroblast proliferation inhibitors.
  5.  下記一般式(I)で表される化合物又はその塩の水混和性有機溶媒溶液を水に注入する工程を含む、ナノ粒子の製造方法:
    Figure JPOXMLDOC01-appb-C000003
    [式中、R、R、R及びRは、同一又は異なって、水素、置換されていてもよいC1-18アルキル、置換されていてもよいC1-18アルコキシ、置換されていてもよいC7-18アラルキルオキシ又は置換されていてもよいフェノキシを示す。
    、R、R及びRのうち隣り合う2つが、これらの基が結合する炭素原子と共に、置換されていてもよい環を形成してもよい。
    Yは、置換されていてもよいC1-18アルキル、置換されていてもよいC7-18アラルキル、置換されていてもよいフェニル、置換されていてもよいC1-18アルコキシ、置換されていてもよいC7-18アラルキルオキシ、置換されていてもよいフェノキシ、置換されていてもよいモノC1-18アルキルアミノ、置換されていてもよいモノC7-18アラルキルアミノ又は置換されていてもよいモノフェニルアミノを示す]。
    A method for producing nanoparticles, comprising a step of injecting a water-miscible organic solvent solution of a compound represented by the following general formula (I) or a salt thereof into water:
    Figure JPOXMLDOC01-appb-C000003
    [In the formula, R 1 , R 2 , R 3 and R 4 are the same or different, hydrogen, optionally substituted C1-18 alkyl, optionally substituted C1-18 alkoxy, substituted C7-18 aralkyloxy or optionally substituted phenoxy.
    Two adjacent ones of R 1 , R 2 , R 3 and R 4 may form an optionally substituted ring together with the carbon atom to which these groups are bonded.
    Y is optionally substituted C1-18 alkyl, optionally substituted C7-18 aralkyl, optionally substituted phenyl, optionally substituted C1-18 alkoxy, optionally substituted C7-18 aralkyloxy, optionally substituted phenoxy, optionally substituted mono C1-18 alkylamino, optionally substituted mono C7-18 aralkylamino, or optionally substituted monophenylamino show].
  6.  一般式(I)中、R、R、R及びRは、同一又は異なって、水素、置換されていてもよいC1-18アルキル又は置換されていてもよいC7-18アラルキルオキシを示し、
    Yは、置換されていてもよいC1-18アルコキシ、置換されていてもよいC1-18アルキル又は置換されていてもよいモノC1-18アルキルアミノを示す、
    請求項5に記載の方法。 
    In general formula (I), R 1 , R 2 , R 3 and R 4 are the same or different and each represents hydrogen, optionally substituted C1-18 alkyl, or optionally substituted C7-18 aralkyloxy. show,
    Y represents optionally substituted C1-18 alkoxy, optionally substituted C1-18 alkyl, or optionally substituted mono C1-18 alkylamino,
    The method according to claim 5.
PCT/JP2023/009703 2022-03-15 2023-03-13 Scar formation inhibitor, fibroblast proliferation inhibitor, and method for producing nanoparticles WO2023176796A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022040442 2022-03-15
JP2022-040442 2022-03-15

Publications (1)

Publication Number Publication Date
WO2023176796A1 true WO2023176796A1 (en) 2023-09-21

Family

ID=88023800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009703 WO2023176796A1 (en) 2022-03-15 2023-03-13 Scar formation inhibitor, fibroblast proliferation inhibitor, and method for producing nanoparticles

Country Status (1)

Country Link
WO (1) WO2023176796A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4190673A (en) * 1978-05-10 1980-02-26 Nelson Research & Development Company Colchicine ophthalmic composition and method of use
WO2011102668A2 (en) * 2010-02-18 2011-08-25 Han Duck Jong Colchicine derivatives or pharmaceutically acceptable salts thereof, method for preparing said derivatives, and pharmaceutical composition comprising said derivatives
JP2016132616A (en) * 2015-01-15 2016-07-25 大内新興化学工業株式会社 Nanoparticle formulations for eye disease therapy
US20170348211A1 (en) * 2016-06-03 2017-12-07 Colradel, LLC Compositions and methods of administering a colchicine based topical composition for the prevention of radiation fibrosis
JP2018083778A (en) * 2016-11-24 2018-05-31 国立大学法人東北大学 Compositions for maintaining filtration bleb

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4190673A (en) * 1978-05-10 1980-02-26 Nelson Research & Development Company Colchicine ophthalmic composition and method of use
WO2011102668A2 (en) * 2010-02-18 2011-08-25 Han Duck Jong Colchicine derivatives or pharmaceutically acceptable salts thereof, method for preparing said derivatives, and pharmaceutical composition comprising said derivatives
JP2016132616A (en) * 2015-01-15 2016-07-25 大内新興化学工業株式会社 Nanoparticle formulations for eye disease therapy
US20170348211A1 (en) * 2016-06-03 2017-12-07 Colradel, LLC Compositions and methods of administering a colchicine based topical composition for the prevention of radiation fibrosis
JP2018083778A (en) * 2016-11-24 2018-05-31 国立大学法人東北大学 Compositions for maintaining filtration bleb

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ARNOLD BROSSI ET AL.: "Biological effects of modified colchines. 2. Evaluation of catecholic colchines, colchifolines, colchide, and novel N-acyl and N-Aroyldeacetylcolchines.", JOURNAL OF MEDICINAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 26, 1 January 1983 (1983-01-01), US , pages 1365 - 1369, XP002452124, ISSN: 0022-2623, DOI: 10.1021/jm00364a006 *

Similar Documents

Publication Publication Date Title
RU2676694C9 (en) Toxic aldehyde related diseases and treatment
AU2006249866B2 (en) Compositions and methods of treating retinal disease
EP3130583B1 (en) Kynurenine-3-monooxygenase inhibitors, pharmaceutical compositions, and methods of use thereof
CN109415363B (en) Novel mitochondrial uncoupling agents for the treatment of metabolic diseases and cancer
KR101312740B1 (en) Aqueous eye drops with accelerated intraocular migration
TWI435874B (en) A cyclohexane derivative and the medical and pharmaceutical use
US20190169175A1 (en) Novel pyridinium compounds
JPH11501288A (en) Metalloproteinase inhibitors
JP2019523260A (en) Chiral peptide
TW202132289A (en) 1,2,4-oxadiazole derivatives as liver x receptor agonists
CA3141998A1 (en) Pharmacological agents for treating protein aggregation diseases of the eye
CA2220024C (en) Thiazolidine-4-carboxylic acid derivatives as cytoprotective agents
AU2013260056A1 (en) Compounds with TRPV4 activity, compositions and associated methods thereof
WO2023176796A1 (en) Scar formation inhibitor, fibroblast proliferation inhibitor, and method for producing nanoparticles
AU771130B2 (en) Ophthalmic compositions for treating ocular hypertension
HU194159B (en) Process for preparing n- square brackets open 6-methoxy-5- /perfluoroalkyl/-1-naphtoyl square brackets closed -n-methylglycines and their thionaphtyl analogues and pharmaceuticals comprising such active substance
JP2022542645A (en) Compounds for the treatment of eye disorders
KR20210056827A (en) Novel benzensulfonamide derivatives and use thereof
US9968566B2 (en) Pharmaceutical composition for prophylaxis and/or treatment of corneal and conjunctival diseases or presbyopia containing stilbene compound as active ingredient
JP2010150243A (en) Treating agent of retinochoroidal degeneration disorder containing pyridine-3-carbaldehyde o-(piperidin-1-yl-propyl)-oxime derivative as active ingredient
KR101032006B1 (en) Hydroxymorpholinone derivative and medicinal use thereof
US7145013B2 (en) 3-thia-4-arylquinolin-2-one derivatives
WO2023111817A1 (en) Crystalline forms of [(1r,5s,6r)-3-{2-[(2s)-2-methylazetidin-1-yl]-6-(trifluoromethyl) pyrimidin-4-yl}-3-azabicyclo[3.1.0]hex-6-yl]acetic acid
US20200237715A1 (en) COX-2 Inhibitors for the Treatment of Ocular Disease
JP6520019B2 (en) Novel stilbene derivative

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770751

Country of ref document: EP

Kind code of ref document: A1