WO2023176685A1 - Fluid pressure control device - Google Patents

Fluid pressure control device Download PDF

Info

Publication number
WO2023176685A1
WO2023176685A1 PCT/JP2023/009044 JP2023009044W WO2023176685A1 WO 2023176685 A1 WO2023176685 A1 WO 2023176685A1 JP 2023009044 W JP2023009044 W JP 2023009044W WO 2023176685 A1 WO2023176685 A1 WO 2023176685A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot
chamber
pressure
valve
passage
Prior art date
Application number
PCT/JP2023/009044
Other languages
French (fr)
Japanese (ja)
Inventor
俊輔 久保
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2023176685A1 publication Critical patent/WO2023176685A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/08Servomotor systems without provision for follow-up action; Circuits therefor with only one servomotor

Definitions

  • the present invention relates to a fluid pressure control device.
  • Japanese Patent Application Publication No. 2010-101400 discloses a control valve that switches the supply and discharge of hydraulic oil to and from a cylinder and controls the expansion and contraction operation of the cylinder, and a load side pressure chamber of the cylinder.
  • a device is disclosed that includes a load holding mechanism interposed in a main passage connecting the control valve.
  • the load holding mechanism includes an operated check valve and a meter-out control valve that is operated by pilot pressure to switch the operation of the operated check valve.
  • the meter-out control valve includes a spool, a pilot chamber to which pilot pressure is introduced, and a piston that is slidably accommodated in the pilot chamber and receives the pilot pressure to move the spool.
  • a drain chamber that communicates with the tank is divided between the spool and the piston so that when pilot pressure is introduced into the pilot chamber, the thrust of the piston is efficiently transmitted to the spool.
  • An annular gap is provided between the piston and the housing for discharging air from the pilot chamber to the drain chamber.
  • air in the drain chamber moves to the pilot chamber through the annular gap between the piston and the housing.
  • the increase in pilot pressure in the pilot room is delayed in response to the operator's input operation due to the influence of the air that has moved to the pilot room side, and the air from the pilot room side drains through the annular gap between the piston and the housing. The increase in pilot pressure in the pilot room is completed after it is discharged into the pilot room.
  • the gas on the pilot room side causes a delay in response to operator input operations when starting the work equipment.
  • An object of the present invention is to prevent the movement of gas from the drain side to the pilot chamber side, and to suppress response delays due to the influence of the gas.
  • a fluid pressure control device for controlling the expansion and contraction operation of a cylinder that drives a load, comprising: a control valve that controls supply of working fluid to the cylinder; and a control valve that controls the supply of working fluid to the cylinder; a pilot control valve that controls pilot pressure guided to the valve; a main passage connecting the control valve and a load-side pressure chamber of the cylinder on which load pressure due to a load acts when the control valve is in a neutral position; a load holding mechanism provided in the main passage, the load holding mechanism allowing the flow of working fluid from the control valve to the load side pressure chamber, while allowing the flow of working fluid from the load side pressure chamber in accordance with back pressure.
  • the switching valve has a pilot chamber to which pilot pressure is introduced through the pilot control valve, a spool that moves according to the pilot pressure in the pilot chamber, and a thrust force applied to the spool in response to the pilot pressure.
  • It has a piston, a drain chamber defined by the spool and the piston, and a gas vent valve provided in the piston for discharging gas from the pilot chamber to the drain chamber, the gas vent valve being , a passage provided across the pilot chamber and the drain chamber, a valve body that opens and closes the passage, and a biasing member that biases the valve body, the valve body being connected to the pilot pressure supply source.
  • the biasing force of the biasing member contacts the first seat portion to block the passage, and when the pilot pressure supply source is driven, the pilot pressure in the pilot chamber is applied to the pilot chamber in which the spool moves.
  • the pressure is lower than the predetermined pressure, the fluid moves against the biasing force of the biasing member and leaves the first seat portion, allowing fluid to flow from the pilot chamber to the drain chamber.
  • FIG. 1 is a fluid pressure circuit diagram of a fluid pressure control device according to an embodiment of the present invention.
  • FIG. 3 is a sectional view of a load holding mechanism of a fluid pressure control device according to an embodiment of the present invention.
  • FIG. 3 is a sectional view of the vicinity of the piston.
  • FIG. 3 is a graph diagram showing the relationship between the pilot pressure in the pilot chamber and the flow rate of air flowing from the pilot chamber to the drain chamber.
  • FIG. 7 is a sectional view of the vicinity of a piston in a load holding mechanism of a fluid pressure control device according to a modification of the embodiment of the present invention.
  • a fluid pressure control device controls the operation of hydraulic work equipment such as a hydraulic excavator.
  • a hydraulic control device 100 that controls the expansion and contraction operation of a cylinder 2 that drives an arm (load) 1 of a hydraulic excavator shown in FIGS. 1 and 2 will be described.
  • the fluid pressure control device may control the expansion and contraction operation of a lift cylinder mounted on a forklift or the like.
  • hydraulic oil is used as the working fluid of the cylinder 2
  • a water-soluble substitute liquid or the like may be used.
  • the cylinder 2 includes a cylindrical cylinder tube 2c, a piston 2d that is slidably inserted into the cylinder tube 2c and partitions the inside of the cylinder tube 2c into a rod side chamber 2a and an anti-rod side chamber 2b, and one end is connected to the piston 2d.
  • a rod 2e whose other end extends outside the cylinder tube 2c and is connected to the arm 1 is provided.
  • the hydraulic excavator is equipped with a power source such as an engine or an electric motor, and the power drives a pump 4 as a fluid pressure supply source and a pilot pump 5 as a pilot pressure supply source.
  • a power source such as an engine or an electric motor
  • the power drives a pump 4 as a fluid pressure supply source and a pilot pump 5 as a pilot pressure supply source.
  • the pilot pump 5 may be eliminated and the pump 4 may also be used as a pilot pressure supply source. That is, the pump 4 may be used as a fluid pressure supply source and a pilot pressure supply source.
  • the hydraulic control device 100 includes a control valve 6 that controls the supply of hydraulic oil from the pump 4 to the cylinder 2, and a pilot control valve 9 that controls pilot pressure guided from the pilot pump 5 to the control valve 6.
  • control valve 6 and the rod side chamber 2a of the cylinder 2 are connected by a first main passage 7, and the control valve 6 and the opposite rod side chamber 2b of the cylinder 2 are connected by a second main passage 8.
  • the control valve 6 is operated by pilot pressure guided from the pilot pump 5 to the pilot chambers 6a, 6b through the pilot control valve 9 when the operator of the hydraulic excavator manually operates the control lever 10.
  • control valve 6 has three positions: a retracted position 6A where the cylinder 2 is contracted, an extended position 6B where the cylinder 2 is extended, and a neutral position 6C where the load on the cylinder 2 is maintained. It switches the supply and discharge of hydraulic oil and controls the expansion and contraction operation of the cylinder 2.
  • a load holding mechanism 20 is provided in the first main passage 7 connected to the rod side chamber 2a, which is a load side pressure chamber.
  • the load holding mechanism 20 holds the load pressure in the rod side chamber 2a when the control valve 6 is in the neutral position 6C, and is fixed to the surface of the cylinder 2, as shown in FIG.
  • the anti-rod side chamber 15b becomes the load side pressure chamber, so when the boom 14 is provided with the load holding mechanism 20, it is connected to the anti-rod side chamber 15b.
  • a load holding mechanism 20 is provided in the main passage.
  • the load holding mechanism 20 operates in conjunction with the control valve 6 by the pilot pressure guided through the operating check valve 21 provided in the first main passage 7 and the pilot control valve 9, and switches the operation of the operating check valve 21. It has a switching valve 22.
  • the operated check valve 21 includes a valve body 24 that opens and closes the first main passage 7, a seat portion 28 on which the valve body 24 is seated, a back pressure chamber 25 facing the back side of the valve body 24, and a rod formed in the valve body 24. It has a passage 26 that always guides the hydraulic oil in the side chamber 2a to the back pressure chamber 25. The passage 26 is provided with a restriction 26a that provides resistance to the hydraulic oil passing therethrough.
  • the first main passage 7 has a cylinder side first main passage 7a that connects the rod side chamber 2a and the operated check valve 21, and a control valve side first main passage 7b that connects the operated check valve 21 and the control valve 6. .
  • the valve body 24 has a first pressure receiving surface 24a on which the pressure of the control valve side first main passage 7b acts, and a second pressure receiving surface 24b on which the pressure of the rod side chamber 2a acts through the cylinder side first main passage 7a. It is formed.
  • a spring 27 as a biasing member that biases the valve body 24 in the closing direction is housed in the back pressure chamber 25 .
  • the pressure in the back pressure chamber 25 and the biasing force of the spring 27 act in a direction to seat the valve body 24 on the seat portion 28 .
  • the operated check valve 21 functions as a check valve that blocks the flow of hydraulic oil from the rod side chamber 2a to the control valve 6. That is, the operating check valve 21 prevents leakage of the hydraulic oil in the rod side chamber 2a, maintains the load pressure, and maintains the stopped state of the arm 1.
  • the switching valve 22 includes a pilot chamber 23 to which pilot pressure is introduced through the pilot control valve 9, a spool 56 (see FIG. 3) that moves according to the pilot pressure in the pilot chamber 23, and an energizer that biases the spool 56 in the closing direction.
  • a spring 36 as a biasing member, a spring chamber 54 (see FIG. 3) housing the spring 36, a drain chamber 51 (see FIG. 3) provided on the opposite side of the spring chamber 54 across the spool 56, and a spring chamber 54 (see FIG. 3) that accommodates the spring 36. It has a drain passage 76 that connects the chamber 54 and the drain chamber 51 to the tank T.
  • a bypass passage 30 and a back pressure passage 31 are connected to the upstream side of the switching valve 22, and a downstream passage 38 is connected to the downstream side of the switching valve 22.
  • the bypass passage 30 is a passage for guiding the hydraulic oil in the rod side chamber 2a to the control valve side first main passage 7b, bypassing the operating check valve 21.
  • the back pressure passage 31 is a passage for guiding the hydraulic oil in the back pressure chamber 25 to the control valve side first main passage 7b.
  • the downstream passage 38 is a passage for guiding the hydraulic oil from the bypass passage 30 and the back pressure passage 31 to the control valve side first main passage 7b.
  • the switching valve 22 switches communication between the bypass passage 30 and the back pressure passage 31 with respect to the downstream passage 38, and controls the flow of hydraulic oil in the first main passage 7 which is on the meter-out side when the cylinder 2 is extended.
  • the switching valve 22 has three ports: a first supply port 32 communicating with the bypass passage 30, a second supply port 33 communicating with the back pressure passage 31, and a discharge port 34 communicating with the downstream passage 38. Moreover, the switching valve 22 has three positions: a cutoff position 22A, a first communication position 22B, and a second communication position 22C.
  • pilot pressure is introduced into the pilot chamber 6b of the control valve 6
  • pilot pressure is also introduced into the pilot chamber 23 at the same time. That is, when the control valve 6 is switched to the extended position 6B, the switching valve 22 is also switched to the first communication position 22B or the second communication position 22C.
  • the switching valve 22 When a pilot pressure equal to or higher than the first predetermined pressure and lower than the second predetermined pressure is introduced into the pilot chamber 23, the switching valve 22 is switched to the first communication position 22B.
  • the first supply port 32 communicates with the discharge port 34.
  • the hydraulic oil in the rod side chamber 2a is guided from the bypass passage 30 to the downstream passage 38 through the switching valve 22. That is, the hydraulic oil in the rod side chamber 2a bypasses the operated check valve 21 and is guided to the control valve side first main passage 7b.
  • the throttle 37 provides resistance to the flow of the hydraulic oil.
  • the second supply port 33 remains blocked.
  • the switching valve 22 When a pilot pressure equal to or higher than the second predetermined pressure is introduced into the pilot chamber 23, the switching valve 22 is switched to the second communication position 22C.
  • the first supply port 32 communicates with the discharge port 34
  • the second supply port 33 also communicates with the discharge port 34.
  • the hydraulic oil in the back pressure chamber 25 is guided from the back pressure passage 31 to the downstream passage 38 through the switching valve 22.
  • the hydraulic oil in the back pressure chamber 25 bypasses the throttle 37, is guided to the control valve side first main passage 7b, and is discharged from the control valve 6 to the tank T.
  • the load holding mechanism 20 has a relief valve 41 that opens when the pressure in the rod side chamber 2a reaches a predetermined pressure and discharges the hydraulic oil in the rod side chamber 2a to the tank T.
  • the relief valve 41 is provided in a relief passage 40 that branches from the upstream side of the switching valve 22 in the bypass passage 30 .
  • the relief passage 40 may be provided branching off from the cylinder side first main passage 7a, or may be directly connected to the rod side chamber 2a.
  • the drain passage 76 is formed by a first drain passage 76a connected to the drain chamber 51, a second drain passage 76b connected to the spring chamber 54, and a confluence of the first drain passage 76a and the second drain passage 76b. It has a confluence drain passage 76c.
  • the combined drain passage 76c communicates with a drain port 77 that opens on the outer surface of the body 60 (see FIG. 3) of the load holding mechanism 20.
  • the drain port 77 is connected to the tank T through a drain hose 78. In this way, the drain in the drain chamber 51 and the spring chamber 54 is discharged to the tank T through the combined drain passage 76c, the drain port 77, and the drain hose 78.
  • a relief valve 43 that opens when the pressure in the control valve side first main passage 7b reaches a predetermined pressure is connected to the control valve side first main passage 7b.
  • a relief valve 44 that opens when the pressure in the second main passage 8 reaches a predetermined pressure is connected to the second main passage 8 .
  • the relief valve 43 and the relief valve 44 are for releasing the high pressure generated in the rod side chamber 2a and the anti-rod side chamber 2b of the cylinder 2, respectively, when a large external force is applied to the arm 1.
  • FIG. 3 is a sectional view of the load holding mechanism 20, showing a state in which pilot pressure is not introduced to the pilot chamber 23 and the switching valve 22 is in the cutoff position 22A.
  • components denoted by the same reference numerals as those shown in FIG. 2 have the same configurations as those shown in FIG.
  • the switching valve 22 is incorporated into the body 60 of the load holding mechanism 20.
  • a spool hole 60a is formed in the body 60, and a substantially cylindrical sleeve 61 is inserted into the spool hole 60a.
  • a spool 56 is slidably incorporated into the sleeve 61.
  • a spring chamber 54 is defined by a cap 57 on the side of one end surface 56a of the spool 56.
  • the spring chamber 54 is connected to the second drain passage 76b through a notch 61a formed in the end surface of the sleeve 61.
  • the hydraulic oil that has leaked into the spring chamber 54 is discharged to the tank T from the second drain passage 76b.
  • the spring chamber 54 includes a first annular spring receiving member 45 whose end surface abuts the one end surface 56a of the spool 56 and into which a pin portion 56c formed to protrude from the one end surface 56a of the spool 56 is inserted into the hollow portion; A second spring receiving member 46 disposed near the bottom of the cap 57 is housed.
  • the spring 36 is interposed in a compressed state between the first spring receiving member 45 and the second spring receiving member 46, and urges the spool 56 in the closing direction via the first spring receiving member 45.
  • a pilot chamber 23 is defined on the side of the other end surface 56b of the spool 56.
  • the pilot chamber 23 is defined by a piston hole 60b formed in communication with the spool hole 60a, and a cap 58 that closes the piston hole 60b.
  • Pilot pressure oil pilot fluid
  • a piston 50 is slidably housed, which receives pilot pressure on the back surface and applies a thrust to the spool 56 against the biasing force of the spring 36.
  • a drain chamber 51 is defined within the piston hole 60b by the spool 56 and the piston 50. Drain chamber 51 is connected to first drain passage 76a. The hydraulic oil that has leaked into the drain chamber 51 is discharged to the tank T from the first drain passage 76a.
  • the piston 50 includes a sliding portion 50a whose outer peripheral surface slides along the inner peripheral surface of the piston hole 60b, and a tip portion that is formed to have a smaller diameter than the sliding portion 50a and faces the other end surface 56b of the spool 56. 50b, and a base end portion 50c that is formed to have a smaller diameter than the sliding portion 50a and faces the distal end surface of the cap 58.
  • pilot pressure oil When pilot pressure oil is supplied into the pilot chamber 23 through the pilot passage 52, pilot pressure acts on the back surface of the base end portion 50c and the annular back surface of the sliding portion 50a. As a result, the piston 50 moves forward, and the tip portion 50b abuts the other end surface 56b of the spool 56 to move the spool 56. In this way, the spool 56 receives the thrust of the piston 50 generated based on the pilot pressure acting on the back surface of the piston 50, and moves against the biasing force of the spring 36.
  • the proximal end 50c Even when the back surface of the proximal end 50c is in contact with the distal end surface of the cap 58, the proximal end 50c has a smaller diameter than the sliding portion 50a, and pilot pressure is applied to the annular back surface of the sliding portion 50a. acts, so the piston 50 can move forward.
  • the spool 56 stops at a position where the urging force of the spring 36 acting on one end surface 56a and the thrust force of the piston 50 acting on the other end surface 56b are balanced, and the switching position of the switching valve 22 is set at the stopping position of the spool 56. Set.
  • the piston 50 is provided with a gas vent valve 80 (see FIG. 4) for discharging air from the pilot chamber 23 to the drain chamber 51.
  • the gas vent valve 80 will be explained in detail later. Note that in FIG. 2, illustration of the gas vent valve 80 is omitted.
  • the sleeve 61 has a first supply port 32 communicating with the bypass passage 30 (see FIG. 2), a second supply port 33 communicating with the back pressure passage 31 (see FIG. 2), and a downstream passage 38 (see FIG. 2). Three communicating discharge ports 34 are formed.
  • the outer circumferential surface of the spool 56 is partially annularly cut out, and the cutout portion and the inner circumferential surface of the sleeve 61 form a first pressure chamber 64, a second pressure chamber 65, a third pressure chamber 66, and A fourth pressure chamber 67 is formed.
  • the first pressure chamber 64 is always in communication with the discharge port 34.
  • the third pressure chamber 66 is always in communication with the first supply port 32.
  • a plurality of throttles 37 are formed on the outer peripheral surface of the land portion 72 of the spool 56 as the spool 56 moves against the biasing force of the spring 36 to communicate the third pressure chamber 66 and the second pressure chamber 65. Ru.
  • the fourth pressure chamber 67 is constantly in communication with the second pressure chamber 65 through a pressure guiding passage 68 formed in the spool 56 in the axial direction.
  • the poppet valve 70 separates from the valve seat 71 and the third pressure chamber 66 and the second pressure chamber 65 communicate with each other through the plurality of throttles 37. It communicates with the discharge port 34 through the chamber 65 and the first pressure chamber 64 . Due to the communication between the first supply port 32 and the discharge port 34, the hydraulic oil in the rod side chamber 2a is guided to the downstream passage 38 (see FIG. 2) through the throttle 37. This state corresponds to the first communication position 22B of the switching valve 22.
  • the spool 56 moves further against the urging force of the spring 36, and the fourth pressure chamber 67 communicates with the second supply port 33.
  • the second supply port 33 communicates with the discharge port 34 through the fourth pressure chamber 67, the pressure guiding passage 68, the second pressure chamber 65, and the first pressure chamber 64. Due to the communication between the second supply port 33 and the discharge port 34, the hydraulic oil in the back pressure chamber 25 is guided to the downstream passage 38 (see FIG. 2), bypassing the throttle 37. This state corresponds to the second communication position 22C of the switching valve 22.
  • the back pressure chamber 25 of the operated check valve 21 is maintained at the pressure of the rod side chamber 2a.
  • the pressure receiving area of the valve body 24 in the closing direction (the area of the back surface of the valve body 24) is larger than the area of the second pressure receiving surface 24b, which is the pressure receiving area in the opening direction. Due to the load acting on the back surface of the body 24 and the biasing force of the spring 27, the valve body 24 is placed in a seated state on the seat portion 28. In this way, the operating check valve 21 prevents the hydraulic oil from leaking in the rod side chamber 2a, and the arm 1 is maintained in a stopped state.
  • the control valve 6 When the operating lever 10 is operated and pilot pressure is guided from the pilot control valve 9 to the pilot chamber 6a of the control valve 6, the control valve 6 is switched to the retracted position 6A by an amount corresponding to the pilot pressure.
  • the discharge pressure of the pump 4 acts on the first pressure receiving surface 24a of the operating check valve 21.
  • the switching valve 22 is in the cutoff position 22A with no pilot pressure introduced into the pilot chamber 23, so the back pressure chamber 25 of the operating check valve 21 is maintained at the pressure of the rod side chamber 2a.
  • the control valve 6 When the operating lever 10 is operated and pilot pressure is guided from the pilot control valve 9 to the pilot chamber 6b of the control valve 6, the control valve 6 is switched to the extended position 6B by an amount corresponding to the pilot pressure. At the same time, pilot pressure is also guided to the pilot chamber 23, so the switching valve 22 is switched to the first communication position 22B or the second communication position 22C depending on the supplied pilot pressure.
  • the switching valve 22 When the pilot pressure guided to the pilot chamber 23 is greater than or equal to the first predetermined pressure and less than the second predetermined pressure, the switching valve 22 is switched to the first communication position 22B. In this case, since the communication between the second supply port 33 and the discharge port 34 is cut off, the back pressure chamber 25 of the operated check valve 21 is maintained at the pressure of the rod side chamber 2a, and the operated check valve 21 is closed. maintain the condition.
  • the switching valve 22 is switched to the first communication position 22B mainly when a crane operation is performed to lower the transported object attached to the bucket 13 to a target position.
  • the pilot pressure introduced into the pilot chamber 6b of the control valve 6 is small, and the control valve 6 is It is only slightly switched to the extended position 6B.
  • the pilot pressure guided to the pilot chamber 23 of the switching valve 22 is also small, being greater than or equal to the first predetermined pressure and less than the second predetermined pressure, and the switching valve 22 is only switched to the first communication position 22B. Therefore, the hydraulic oil in the rod side chamber 2a passes through the throttle 37 and is discharged, and the arm 1 descends at a low speed suitable for crane work.
  • the switching valve 22 when the switching valve 22 is in the first communication position 22B, even if the control valve side first main passage 7b ruptures and the hydraulic oil leaks to the outside, the hydraulic oil will not be discharged from the rod side chamber 2a. Since the flow rate of the hydraulic oil is restricted by the throttle 37, the falling speed of the bucket 13 is suppressed. Therefore, the switching valve 22 can be switched to the cutoff position 22A before the bucket 13 falls to the ground, and the bucket 13 can be prevented from falling suddenly.
  • the throttle 37 is intended to suppress the descending speed of the cylinder 2 when the operating check valve 21 is closed, and also to suppress the falling speed of the bucket 13 when the control valve side first main passage 7b bursts. .
  • the switching valve 22 is switched to the second communication position 22C.
  • the hydraulic oil in the back pressure chamber 25 of the operated check valve 21 is guided from the back pressure passage 31 to the downstream passage 38, bypassing the throttle 37, and is controlled. It is discharged from the valve-side first main passage 7b to the tank T through the control valve 6.
  • a pressure difference is generated before and after the throttle 26a, and the pressure in the back pressure chamber 25 is reduced, so that the force in the closing direction acting on the valve body 24 is reduced, and the valve body 24 is separated from the seat portion 28.
  • the function of the operating check valve 21 as a check valve is canceled.
  • the operating check valve 21 allows the flow of hydraulic oil from the control valve 6 to the rod side chamber 2a, while allowing the flow of hydraulic oil from the rod side chamber 2a to the control valve 6 according to the back pressure, which is the pressure in the back pressure chamber 25. Operates to allow flow of hydraulic oil.
  • the switching valve 22 is switched to the second communication position 22C when performing excavation work, etc., and the pilot pressure guided to the pilot chamber 6b of the control valve 6 is large, and the control valve 6 is switched to the extended position 6B. For this reason, the pilot pressure guided to the pilot chamber 23 of the switching valve 22 is also large and becomes equal to or higher than the second predetermined pressure, so the switching valve 22 is switched to the second communication position 22C.
  • FIG. 4 is a sectional view of the vicinity of the piston 50. Note that in FIG. 3, illustration of the gas vent valve 80 is omitted. Although a case will be described below in which the gas vent valve 80 discharges air from the pilot chamber 23 to the drain chamber 51, what the gas vent valve 80 discharges is not limited to air, and may discharge other gases.
  • An annular gap 69 is provided between the piston 50 and the body 60, specifically, between the outer peripheral surface of the sliding portion 50a of the piston 50 and the inner peripheral surface of the piston hole 60b of the body 60.
  • this gap 69 functions as a passage for discharging air from the pilot chamber 23 side to the drain chamber 51 side.
  • the gap 69 is provided between the piston 50 and the body 60, when the hydraulic excavator is stopped, air from the drain chamber 51 side moves through the gap 69 to the pilot chamber 23 side.
  • the hydraulic oil in the pilot chamber 23 and the pilot passage 52 flows down to the tank T by gravity, so that the pilot chamber 23 and the pilot passage 52 become negative pressure, and as a result, the hydraulic oil in the pilot chamber 23 and the pilot passage 52 flows down from the tank T. Air sucked into the combined drain passage 76c and the first drain passage 76a moves to the pilot chamber 23 and the pilot passage 52 through the gap 69. Further, the load holding mechanism 20 provided in the cylinder 2 that drives the arm 1 is provided at the highest position in the hydraulic excavator, as shown in FIG.
  • the gap 69 between the piston 50 and the body 60 is sealed with an O-ring 99 as a sealing member, and the flow of air through the gap 69 is blocked. Further, the gas vent valve 80 provided in the piston 50 discharges air from the pilot chamber 23 to the drain chamber 51 and blocks the flow of air from the drain chamber 51 to the pilot chamber 23. This will be explained in detail below.
  • the gas vent valve 80 has a passage 81 provided across the pilot chamber 23 and the drain chamber 51, a valve body 82 that opens and closes the passage 81, and a spring 83 as a biasing member that biases the valve body 82.
  • the passage 81 is formed through the piston 50 along the direction of movement of the piston 50.
  • the valve body 82 is a spherical body, and is provided in the middle of the passage 81.
  • the spring 83 is compressed and provided between the valve body 82 and the piston 50.
  • the passage 81 has a valve body accommodating portion 81a that accommodates the valve body 82.
  • the inner diameter of the valve body accommodating portion 81a is larger than the outer diameter of the valve body 82.
  • the inner diameter of the portion other than the valve body accommodating portion 81a is smaller than the outer diameter of the valve body 82.
  • the spring 83 has one end housed in the valve body accommodating portion 81 a and in contact with the valve body 82 , and the other end side provided outside the valve body accommodating portion 81 a and in contact with a stepped portion 50 f formed on the piston 50 .
  • the valve body housing portion 81a has an annular first seat portion 81b with which the valve body 82 contacts due to the biasing force of the spring 83, and a second seat portion 81c with which the valve body 82 contacts due to the pressure of the pilot chamber 23. , is formed.
  • the valve body 82 moves between the first seat portion 81b and the second seat portion 81c within the valve body housing portion 81a.
  • a slit 50d is formed on the end surface of the tip 50b of the piston 50 facing the spool 56.
  • the slit 50d communicates with the passage 81 and opens on the outer peripheral surface of the tip portion 50b.
  • the gas vent valve 80 has a cylindrical housing 84 that is attached to the piston 50 and forms a part of the piston 50.
  • a hole 50e is formed in the end surface of the base end 50c of the piston 50 facing the pilot chamber 23, and the housing 84 is installed in the hole 50e.
  • An O-ring 98 serving as a sealing member is provided between the outer peripheral surface of the housing 84 and the inner peripheral surface of the hole 50e to prevent leakage of pilot pressure oil between the two.
  • the housing 84 may be press-fitted into the hole 50e.
  • the housing 84 is formed with a small diameter hole 84a communicating with the pilot chamber 23, and a large diameter hole 84b communicating with the small diameter hole 84a and having a larger inner diameter than the small diameter hole 84a.
  • the small diameter hole 84a and the large diameter hole 84b constitute a part of the passage 81.
  • the large diameter hole 84b defines the valve body accommodating portion 81a.
  • the step portion formed between the small diameter hole 84a and the large diameter hole 84b constitutes the first seat portion 81b.
  • the opening edge of the passage 81 formed on the bottom surface of the hole 50e constitutes a second seat portion 81c.
  • valve body 82 When attaching the gas vent valve 80 to the piston 50, the valve body 82 is accommodated in the large diameter hole 84b of the housing 84, and the spring 83 is interposed between the valve body 82 and the stepped portion 50f of the piston 50. Then, the housing 84 is inserted into the hole 50e of the piston 50 and attached.
  • FIG. 5 is a graph diagram showing the relationship between the pilot pressure in the pilot chamber 23 and the flow rate of air flowing from the pilot chamber 23 to the drain chamber 51.
  • the pilot pressure oil discharged from the pilot pump 5 is discharged into the tank T through the pilot control valve 9 and into the pilot chamber 23. There is almost no guidance. However, even in such a state, when the pilot pump 5 is driven, the pilot passage 52 and the pilot chamber 23 have a minimum pilot pressure, specifically, a pilot pressure of about 0.05 to 0.2 MPa. acts. In this state, the valve body 82 moves against the biasing force of the spring 83 and separates from the first seat portion 81b, but does not contact the second seat portion 81c.
  • the valve body 82 is located between the first seat portion 81b and the second seat portion 81c due to the balance between the pilot pressure in the pilot chamber 23 and the biasing force of the spring 83.
  • This state is when the pilot pressure in the pilot chamber 23 is less than a predetermined pressure. In this state, as shown in FIG. 5, air flow from the pilot chamber 23 to the drain chamber 51 through the passage 81 is allowed, and air from the pilot chamber 23 side is discharged to the drain chamber 51 side. Therefore, when the hydraulic excavator is started from a stopped state, the air in the pilot chamber 23 is naturally discharged to the drain chamber 51 before the operator operates the operating lever 10. When the operation is started, the response delay of the cylinder 2 to the operation is suppressed.
  • a pilot pressure of 0.3 MPa or more acts on the pilot chamber 23.
  • the valve body 82 moves against the biasing force of the spring 83 and comes into contact with the second seat portion 81c.
  • This state is when the pilot pressure in the pilot chamber 23 is equal to or higher than a predetermined pressure.
  • the flow of air from the pilot chamber 23 to the drain chamber 51 through the passage 81 is blocked, and the flow of pilot pressure oil is also blocked. Therefore, a desired pilot pressure acts on the pilot chamber 23, and the movement of the piston 50 allows the spool 56 to move, so the passage 81 does not adversely affect the operation of the cylinder 2.
  • the predetermined pressure which is the pilot pressure at which the valve body 82 contacts the second seat portion 81c, is set to a pressure lower than the pilot pressure at which the spool 56 moves, and is approximately 0.3 PMa in this embodiment.
  • This predetermined pressure is set according to the capacity of the pilot pump 5, the inner diameter and length of the pilot passage 52, and the like.
  • the initial load of the spring 83 is set so that the valve body 82 contacts the second seat portion 81c at a pressure equal to or higher than the set predetermined pressure.
  • the gas vent valve 80 prevents air from moving from the drain chamber 51 side to the pilot chamber 23 side when the pilot pump 5 is stopped, and when the pilot pump 5 is driven, the operator operates the control lever 10. Since the air in the pilot chamber 23 side is naturally discharged to the drain chamber 51 side before the operation, a delay in the response of the cylinder 2 to the operator's input operation is suppressed. Furthermore, when the operator operates the control lever 10, the flow of pilot pressure oil from the pilot chamber 23 to the drain chamber 51 is blocked, so the gas vent valve 80 adversely affects the operation of the switching valve 22 and the cylinder 2. None.
  • the operator may operate the operating lever 10 to bleed air from the pilot chamber 23 to the drain chamber 51 through the passage 81.
  • the pilot pressure in the pilot chamber 23 does not exceed 0.3 MPa.
  • the valve body 82 of the gas vent valve 80 comes into contact with the first seat portion 81b by the urging force of the spring 83 and blocks the passage 81, so that air does not flow from the drain chamber 51 side to the pilot chamber 23 side. movement is prevented. Furthermore, when the pilot pump 5 is driven and the pilot pressure in the pilot chamber 23 is less than a predetermined pressure, the valve body 82 moves against the biasing force of the spring 83 and separates from the first seat portion 81b. In order to allow air to flow from the pilot chamber 23 to the drain chamber 51, the air from the pilot chamber 23 side is discharged to the drain chamber 51 side, thereby suppressing the response delay of the cylinder 2 due to the influence of air.
  • FIG. 6 is a diagram corresponding to FIG. 4, and is a sectional view of the vicinity of the piston 50.
  • components having the same functions as those in the above embodiment are denoted by the same reference numerals.
  • the configuration of the gas vent valve 80 is different from the above embodiment.
  • the valve body 82 moves against the biasing force of the spring 83, but the second seat portion 81c (see FIG. 4), and does not block the flow of pilot pressure oil from the pilot chamber 23 to the drain chamber 51 through the passage 81.
  • the entire spring 83 is accommodated in the valve body accommodating portion 81a. Specifically, the spring 83 is compressed and provided between the valve body 82 and the bottom surface of the hole 50e formed in the piston 50.
  • the valve body 82 does not come into contact with the second seat portion 81c (see FIG. 4). Pilot pressure oil is allowed to flow into the drain chamber 51.
  • the gas vent valve 80 has an orifice 85 that is provided in the passage 81 and serves as a throttle that provides resistance to the flow of pilot pressure oil from the pilot chamber 23 to the drain chamber 51. Therefore, when the operator operates the control lever 10, the orifice 85 provides resistance to the flow of pilot pressure oil from the pilot chamber 23 to the drain chamber 51, and the desired pilot pressure acts on the pilot chamber 23.
  • the gas vent valve 80 does not adversely affect the operation of the cylinder 2.
  • the orifice 85 is formed in the housing 84.
  • the orifice 85 only needs to be provided in the passage 81, and the position where it is formed is not limited.
  • an orifice 85 may be provided in the passage 81 between the bottom surface of the hole 50e and the slit 50d.
  • a hydraulic control device 100 that controls the expansion and contraction operation of the cylinder 2 that drives the load 1 includes a control valve 6 that controls the supply of working fluid from the pump 4 (fluid pressure supply source) to the cylinder 2; A pilot control valve 9 that controls the pilot pressure guided from the pilot pump 5 (pilot pressure supply source) to the control valve 6, and the load side of the cylinder 2 on which the load pressure from the load 1 acts when the control valve 6 is in the neutral position 6C.
  • the load holding mechanism 20 includes a main passage 7 that connects the pressure chamber 2a and the control valve 6, and a load holding mechanism 20 provided in the main passage 7.
  • an operating check valve 21 that allows the flow of working fluid from the load-side pressure chamber 2a to the control valve 6 according to the back pressure, and a pilot pressure led through the pilot control valve 9 to control the control valve 6 and the control valve 6. It has a switching valve 22 that operates in conjunction with the operating check valve 21 to switch the operation of the operating check valve 21.
  • a spool 56 that moves according to pressure; a piston 50 that applies thrust to the spool 56 in response to pilot pressure; a drain chamber 51 that is partitioned by the spool 56 and the piston 50; It has a gas vent valve 80 for discharging air (gas) to the drain chamber 51, and the gas vent valve 80 includes a passage 81 provided across the pilot chamber 23 and the drain chamber 51, and a valve body that opens and closes the passage 81. 82, and a spring 83 (biasing member) that biases the valve body 82, and when the pilot pump 5 is stopped, the valve body 82 comes into contact with the first seat portion 81b by the biasing force of the spring 83.
  • the passage 81 is shut off, and when the pilot pump 5 is driven and the pilot pressure in the pilot chamber 23 is less than a predetermined pressure lower than the pilot pressure at which the spool 56 moves, It moves away from the first seat portion 81b and allows fluid to flow from the pilot chamber 23 to the drain chamber 51.
  • a gas vent valve 80 for discharging air from the pilot chamber 23 to the drain side is provided on the piston 50, and the valve body 82 of the gas vent valve 80 is moved by the biasing force of the spring 83 when the pilot pump 5 is stopped. Since the passage 81 is blocked by contacting the first seat portion 81b, movement of air from the drain chamber 51 side to the pilot chamber 23 side is prevented. Furthermore, when the pilot pump 5 is driven and the pilot pressure in the pilot chamber 23 is less than a predetermined pressure, the valve body 82 moves against the biasing force of the spring 83 and separates from the first seat portion 81b.
  • the valve body 82 moves against the biasing force of the spring 83 and comes into contact with the second seat portion 81c.
  • the passage 81 is blocked, and the flow of pilot pressure oil from the pilot chamber 23 to the drain chamber 51 is blocked.
  • valve body 82 allows pilot pressure oil to flow from the pilot chamber 23 to the drain chamber 51 through the passage 81 when the pilot pressure in the pilot chamber 23 is higher than a predetermined pressure when the pilot pump 5 is driven. Since the flow is blocked, the gas vent valve 80 does not adversely affect the operation of the cylinder 2.
  • valve body 82 allows pilot pressure oil to flow from the pilot chamber 23 to the drain chamber 51 even when the pilot pressure in the pilot chamber 23 is higher than the predetermined pressure, and the gas vent valve 80 allows the pilot pressure oil to flow from the pilot chamber 23 to the drain chamber 51. It further includes an orifice 85 (restriction) provided at 81 to provide resistance to the flow of pilot pressure oil from pilot chamber 23 to drain chamber 51 .
  • the orifice 85 provides resistance to the flow of pilot pressure oil from the pilot chamber 23 to the drain chamber 51. Therefore, the gas vent valve 80 does not adversely affect the operation of the cylinder 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

A load retention mechanism (20) has a switching valve (22) for switching the operation of an operation check valve (21). The switching valve (22) has a piston (50) that, upon reception of pilot pressure, imparts thrust to a spool (56); and a gas releasing valve (80) that is provided to the piston (50) and that discharges gas from the pilot chamber (23) to a drain side. The gas releasing valve (80) has a valve body (82) for opening/closing a passage (81). The valve body (82) comes into contact with a first sheet part (81b) by a biasing force of a biasing member (83) and blocks the passage (81) during stoppage of a pilot pressure supply source (5), and moves against the biasing force of the biasing member (83) to be separated from the first sheet part (81b) and allows a fluid to flow from the pilot chamber (23) to a drain chamber (51) while the pilot pressure supply source (5) is driving and when the pilot pressure of the pilot chamber (23) is less than a prescribed pressure level which is lower than the pilot pressure for moving the spool (56).

Description

流体圧制御装置Fluid pressure control device
 本発明は、流体圧制御装置に関するものである。 The present invention relates to a fluid pressure control device.
 作業機器の動作を制御する流体圧制御装置として、特開2010-101400号公報には、シリンダに対する作動油の給排を切り換えシリンダの伸縮動作を制御する制御弁と、シリンダの負荷側圧力室と制御弁とを接続するメイン通路に介装された負荷保持機構と、を備えるものが開示されている。
As a fluid pressure control device that controls the operation of work equipment, Japanese Patent Application Publication No. 2010-101400 discloses a control valve that switches the supply and discharge of hydraulic oil to and from a cylinder and controls the expansion and contraction operation of the cylinder, and a load side pressure chamber of the cylinder. A device is disclosed that includes a load holding mechanism interposed in a main passage connecting the control valve.
 負荷保持機構は、オペレートチェック弁と、パイロット圧によって動作してオペレートチェック弁の動作を切り換えるメータアウト制御弁と、を備える。メータアウト制御弁は、スプールと、パイロット圧が導かれるパイロット室と、パイロット室に摺動自在に収容されパイロット圧を受けてスプールを移動させるピストンと、を備える。 The load holding mechanism includes an operated check valve and a meter-out control valve that is operated by pilot pressure to switch the operation of the operated check valve. The meter-out control valve includes a spool, a pilot chamber to which pilot pressure is introduced, and a piston that is slidably accommodated in the pilot chamber and receives the pilot pressure to move the spool.
 この種の流体圧制御装置では、パイロット室にパイロット圧が導かれた際にピストンの推力が効率良くスプールに伝達されるように、スプールとピストンの間にタンクへ連通するドレン室が区画されている。 In this type of fluid pressure control device, a drain chamber that communicates with the tank is divided between the spool and the piston so that when pilot pressure is introduced into the pilot chamber, the thrust of the piston is efficiently transmitted to the spool. There is.
 ピストンとハウジングの間には、パイロット室からドレン室への空気の排出のために、環状隙間が設けられる。作業機器の停止時には、ドレン室側の空気が、ピストンとハウジングの間の環状隙間を通じてパイロット室側へと移動してしまう。作業機器の始動時には、パイロット室側へ移動した空気の影響で、オペレータの入力操作に対してパイロット室のパイロット圧の上昇が遅れ、パイロット室側の空気がピストンとハウジングの間の環状隙間を通じてドレン室へ排出されてからパイロット室のパイロット圧の昇圧が完了する。 An annular gap is provided between the piston and the housing for discharging air from the pilot chamber to the drain chamber. When the work equipment is stopped, air in the drain chamber moves to the pilot chamber through the annular gap between the piston and the housing. When the work equipment is started, the increase in pilot pressure in the pilot room is delayed in response to the operator's input operation due to the influence of the air that has moved to the pilot room side, and the air from the pilot room side drains through the annular gap between the piston and the housing. The increase in pilot pressure in the pilot room is completed after it is discharged into the pilot room.
 このように、パイロット室側の気体は、作業機器の始動時に、オペレータの入力操作に対する応答遅れの原因となる。 In this way, the gas on the pilot room side causes a delay in response to operator input operations when starting the work equipment.
 本発明は、ドレン側からパイロット室側への気体の移動を防止すると共に、気体の影響による応答遅れを抑制することを目的とする。 An object of the present invention is to prevent the movement of gas from the drain side to the pilot chamber side, and to suppress response delays due to the influence of the gas.
 本発明のある態様によれば、負荷を駆動するシリンダの伸縮作動を制御する流体圧制御装置であって、前記シリンダへの作動流体の供給を制御する制御弁と、パイロット圧供給源から前記制御弁に導かれるパイロット圧を制御するパイロット制御弁と、前記制御弁が中立位置の場合に負荷による負荷圧が作用する前記シリンダの負荷側圧力室と前記制御弁とを接続するメイン通路と、前記メイン通路に設けられる負荷保持機構と、を備え、前記負荷保持機構は、前記制御弁から前記負荷側圧力室への作動流体の流れを許容する一方、背圧に応じて前記負荷側圧力室から前記制御弁への作動流体の流れを許容するオペレートチェック弁と、前記パイロット制御弁を通じて導かれるパイロット圧によって前記制御弁と連動して動作し、前記オペレートチェック弁の作動を切り換えるための切換弁と、を有し、前記切換弁は、前記パイロット制御弁を通じてパイロット圧が導かれるパイロット室と、前記パイロット室のパイロット圧に応じて移動するスプールと、パイロット圧を受けて前記スプールに推力を付与するピストンと、前記スプールと前記ピストンによって区画されるドレン室と、前記ピストンに設けられ、前記パイロット室から前記ドレン室へ気体を排出するための気体抜き弁と、を有し、前記気体抜き弁は、前記パイロット室と前記ドレン室にわたって設けられる通路と、前記通路を開閉する弁体と、前記弁体を付勢する付勢部材と、を有し、前記弁体は、前記パイロット圧供給源の停止時には、前記付勢部材の付勢力によって第1シート部に接触して前記通路を遮断し、前記パイロット圧供給源の駆動時であって前記パイロット室のパイロット圧が、前記スプールが移動するパイロット圧よりも低い所定圧力未満の場合には、前記付勢部材の付勢力に抗して移動して前記第1シート部から離れ、前記パイロット室から前記ドレン室への流体の流れを許容する。 According to an aspect of the present invention, there is provided a fluid pressure control device for controlling the expansion and contraction operation of a cylinder that drives a load, comprising: a control valve that controls supply of working fluid to the cylinder; and a control valve that controls the supply of working fluid to the cylinder; a pilot control valve that controls pilot pressure guided to the valve; a main passage connecting the control valve and a load-side pressure chamber of the cylinder on which load pressure due to a load acts when the control valve is in a neutral position; a load holding mechanism provided in the main passage, the load holding mechanism allowing the flow of working fluid from the control valve to the load side pressure chamber, while allowing the flow of working fluid from the load side pressure chamber in accordance with back pressure. an operated check valve that allows a flow of working fluid to the control valve; and a switching valve that operates in conjunction with the control valve by pilot pressure guided through the pilot control valve and switches the operation of the operated check valve. The switching valve has a pilot chamber to which pilot pressure is introduced through the pilot control valve, a spool that moves according to the pilot pressure in the pilot chamber, and a thrust force applied to the spool in response to the pilot pressure. It has a piston, a drain chamber defined by the spool and the piston, and a gas vent valve provided in the piston for discharging gas from the pilot chamber to the drain chamber, the gas vent valve being , a passage provided across the pilot chamber and the drain chamber, a valve body that opens and closes the passage, and a biasing member that biases the valve body, the valve body being connected to the pilot pressure supply source. When stopped, the biasing force of the biasing member contacts the first seat portion to block the passage, and when the pilot pressure supply source is driven, the pilot pressure in the pilot chamber is applied to the pilot chamber in which the spool moves. When the pressure is lower than the predetermined pressure, the fluid moves against the biasing force of the biasing member and leaves the first seat portion, allowing fluid to flow from the pilot chamber to the drain chamber.
油圧ショベルの一部分を示す図である。It is a figure showing a part of a hydraulic excavator. 本発明の実施形態に係る流体圧制御装置の流体圧回路図である。1 is a fluid pressure circuit diagram of a fluid pressure control device according to an embodiment of the present invention. 本発明の実施形態に係る流体圧制御装置の負荷保持機構の断面図である。FIG. 3 is a sectional view of a load holding mechanism of a fluid pressure control device according to an embodiment of the present invention. ピストン周辺の断面図である。FIG. 3 is a sectional view of the vicinity of the piston. パイロット室のパイロット圧と、パイロット室からドレン室へ流れる空気流量との関係を示すグラフ図である。FIG. 3 is a graph diagram showing the relationship between the pilot pressure in the pilot chamber and the flow rate of air flowing from the pilot chamber to the drain chamber. 本発明の実施形態の変形例に係る流体圧制御装置の負荷保持機構におけるピストン周辺の断面図である。FIG. 7 is a sectional view of the vicinity of a piston in a load holding mechanism of a fluid pressure control device according to a modification of the embodiment of the present invention.
 以下、図面を参照して、本発明の実施形態に係る流体圧制御装置について説明する。 Hereinafter, a fluid pressure control device according to an embodiment of the present invention will be described with reference to the drawings.
 流体圧制御装置は、油圧ショベル等の油圧作業機器の動作を制御するものである。本実施形態では、図1及び図2に示す油圧ショベルのアーム(負荷)1を駆動するシリンダ2の伸縮作動を制御する油圧制御装置100について説明する。流体圧制御装置は、フォークリフト等に搭載されるリフトシリンダの伸縮作動を制御するものであってもよい。以下では、シリンダ2の作動流体として、作動油が用いられる場合について説明するが、作動油に代わり、例えば水溶性代替液等を用いてもよい。 A fluid pressure control device controls the operation of hydraulic work equipment such as a hydraulic excavator. In this embodiment, a hydraulic control device 100 that controls the expansion and contraction operation of a cylinder 2 that drives an arm (load) 1 of a hydraulic excavator shown in FIGS. 1 and 2 will be described. The fluid pressure control device may control the expansion and contraction operation of a lift cylinder mounted on a forklift or the like. In the following, a case will be described in which hydraulic oil is used as the working fluid of the cylinder 2, but instead of the hydraulic oil, for example, a water-soluble substitute liquid or the like may be used.
 まず、図2を参照して、油圧制御装置100の油圧回路について説明する。シリンダ2は、筒状のシリンダチューブ2cと、シリンダチューブ2cに摺動自在に挿入されシリンダチューブ2c内をロッド側室2aと反ロッド側室2bに区画するピストン2dと、一端がピストン2dに連結され、他端側がシリンダチューブ2cの外部へ延びてアーム1に連結されるロッド2eと、を備える。 First, the hydraulic circuit of the hydraulic control device 100 will be described with reference to FIG. 2. The cylinder 2 includes a cylindrical cylinder tube 2c, a piston 2d that is slidably inserted into the cylinder tube 2c and partitions the inside of the cylinder tube 2c into a rod side chamber 2a and an anti-rod side chamber 2b, and one end is connected to the piston 2d. A rod 2e whose other end extends outside the cylinder tube 2c and is connected to the arm 1 is provided.
 油圧ショベルには、エンジンや電動モータの動力源が搭載され、その動力によって流体圧供給源としてのポンプ4及びパイロット圧供給源としてのパイロットポンプ5が駆動する。パイロットポンプ5を廃止し、ポンプ4をパイロット圧供給源としても用いてもよい。つまり、ポンプ4を流体圧供給源及びパイロット圧供給源として用いてもよい。 The hydraulic excavator is equipped with a power source such as an engine or an electric motor, and the power drives a pump 4 as a fluid pressure supply source and a pilot pump 5 as a pilot pressure supply source. The pilot pump 5 may be eliminated and the pump 4 may also be used as a pilot pressure supply source. That is, the pump 4 may be used as a fluid pressure supply source and a pilot pressure supply source.
 油圧制御装置100は、ポンプ4からシリンダ2への作動油の供給を制御する制御弁6と、パイロットポンプ5から制御弁6に導かれるパイロット圧を制御するパイロット制御弁9と、を備える。 The hydraulic control device 100 includes a control valve 6 that controls the supply of hydraulic oil from the pump 4 to the cylinder 2, and a pilot control valve 9 that controls pilot pressure guided from the pilot pump 5 to the control valve 6.
 制御弁6とシリンダ2のロッド側室2aとは第1メイン通路7によって接続され、制御弁6とシリンダ2の反ロッド側室2bとは第2メイン通路8によって接続される。 The control valve 6 and the rod side chamber 2a of the cylinder 2 are connected by a first main passage 7, and the control valve 6 and the opposite rod side chamber 2b of the cylinder 2 are connected by a second main passage 8.
 制御弁6は、油圧ショベルのオペレータが操作レバー10を手動操作することに伴ってパイロットポンプ5からパイロット制御弁9を通じてパイロット室6a,6bに導かれるパイロット圧によって動作する。 The control valve 6 is operated by pilot pressure guided from the pilot pump 5 to the pilot chambers 6a, 6b through the pilot control valve 9 when the operator of the hydraulic excavator manually operates the control lever 10.
 具体的には、パイロット室6aにパイロット圧が導かれた場合には、制御弁6は位置6Aに切り換わり、ポンプ4から第1メイン通路7を通じてロッド側室2aに作動油が供給されると共に、反ロッド側室2bの作動油が第2メイン通路8を通じてタンクTへと排出される。これにより、シリンダ2は収縮作動し、アーム1は、図1に示す矢印18の方向へと上昇する。 Specifically, when pilot pressure is introduced into the pilot chamber 6a, the control valve 6 is switched to the position 6A, and hydraulic oil is supplied from the pump 4 to the rod side chamber 2a through the first main passage 7. The hydraulic oil in the opposite-rod side chamber 2b is discharged to the tank T through the second main passage 8. This causes the cylinder 2 to contract and the arm 1 to rise in the direction of the arrow 18 shown in FIG.
 一方、パイロット室6bにパイロット圧が導かれた場合には、制御弁6は位置6Bに切り換わり、ポンプ4から第2メイン通路8を通じて反ロッド側室2bに作動油が供給されると共に、ロッド側室2aの作動油が第1メイン通路7を通じてタンクTへと排出される。これにより、シリンダ2は伸長作動し、アーム1は、図1に示す矢印19の方向へと下降する。 On the other hand, when the pilot pressure is introduced into the pilot chamber 6b, the control valve 6 is switched to the position 6B, and hydraulic oil is supplied from the pump 4 to the anti-rod side chamber 2b through the second main passage 8, and the rod side chamber The hydraulic oil 2a is discharged into the tank T through the first main passage 7. As a result, the cylinder 2 is extended and the arm 1 is lowered in the direction of the arrow 19 shown in FIG.
 パイロット室6a,6bにパイロット圧が導かれない場合には、制御弁6は位置6Cとなり、シリンダ2に対する作動油の給排が遮断され、アーム1は停止した状態を保つ。 When pilot pressure is not guided to the pilot chambers 6a, 6b, the control valve 6 is in position 6C, supply and discharge of hydraulic oil to and from the cylinder 2 is cut off, and the arm 1 remains in a stopped state.
 このように、制御弁6は、シリンダ2を収縮作動させる収縮位置6A、シリンダ2を伸長作動させる伸長位置6B、及びシリンダ2の負荷を保持する中立位置6Cの3ポジションを有し、シリンダ2における作動油の給排を切り換え、シリンダ2の伸縮作動を制御する。 In this way, the control valve 6 has three positions: a retracted position 6A where the cylinder 2 is contracted, an extended position 6B where the cylinder 2 is extended, and a neutral position 6C where the load on the cylinder 2 is maintained. It switches the supply and discharge of hydraulic oil and controls the expansion and contraction operation of the cylinder 2.
 ここで、図1に示すように、バケット13を持ち上げた状態で、制御弁6を中立位置6Cに切り換えアーム1の動きを止めた場合には、バケット13及びアーム1等の自重によって、シリンダ2には伸長する方向の力が作用する。このように、アーム1を駆動するシリンダ2においては、ロッド側室2aが、制御弁6が中立位置6Cの場合に負荷圧が作用する負荷側圧力室となる。 Here, as shown in FIG. 1, if the control valve 6 is switched to the neutral position 6C and the movement of the arm 1 is stopped with the bucket 13 lifted, the weight of the bucket 13, arm 1, etc. will cause the cylinder 2 to A force in the direction of elongation acts on . In this way, in the cylinder 2 that drives the arm 1, the rod side chamber 2a becomes a load side pressure chamber on which load pressure acts when the control valve 6 is in the neutral position 6C.
 負荷側圧力室であるロッド側室2aに接続された第1メイン通路7には、負荷保持機構20が設けられる。負荷保持機構20は、制御弁6が中立位置6Cの場合に、ロッド側室2aの負荷圧を保持するものであり、図1に示すように、シリンダ2の表面に固定される。 A load holding mechanism 20 is provided in the first main passage 7 connected to the rod side chamber 2a, which is a load side pressure chamber. The load holding mechanism 20 holds the load pressure in the rod side chamber 2a when the control valve 6 is in the neutral position 6C, and is fixed to the surface of the cylinder 2, as shown in FIG.
 なお、ブーム14(図1参照)を駆動するシリンダ15においては、反ロッド側室15bが負荷側圧力室となるため、ブーム14に負荷保持機構20を設ける場合には、反ロッド側室15bに接続されたメイン通路に負荷保持機構20が設けられる。 In addition, in the cylinder 15 that drives the boom 14 (see FIG. 1), the anti-rod side chamber 15b becomes the load side pressure chamber, so when the boom 14 is provided with the load holding mechanism 20, it is connected to the anti-rod side chamber 15b. A load holding mechanism 20 is provided in the main passage.
 負荷保持機構20は、第1メイン通路7に設けられたオペレートチェック弁21と、パイロット制御弁9を通じて導かれるパイロット圧によって制御弁6と連動して動作し、オペレートチェック弁21の作動を切り換えるための切換弁22と、を有する。 The load holding mechanism 20 operates in conjunction with the control valve 6 by the pilot pressure guided through the operating check valve 21 provided in the first main passage 7 and the pilot control valve 9, and switches the operation of the operating check valve 21. It has a switching valve 22.
 オペレートチェック弁21は、第1メイン通路7を開閉する弁体24と、弁体24が着座するシート部28と、弁体24の背面に臨む背圧室25と、弁体24に形成されロッド側室2aの作動油を背圧室25へと常時導く通路26と、を有する。通路26には、通過する作動油に抵抗を付与する絞り26aが設けられる。 The operated check valve 21 includes a valve body 24 that opens and closes the first main passage 7, a seat portion 28 on which the valve body 24 is seated, a back pressure chamber 25 facing the back side of the valve body 24, and a rod formed in the valve body 24. It has a passage 26 that always guides the hydraulic oil in the side chamber 2a to the back pressure chamber 25. The passage 26 is provided with a restriction 26a that provides resistance to the hydraulic oil passing therethrough.
 第1メイン通路7は、ロッド側室2aとオペレートチェック弁21を接続するシリンダ側第1メイン通路7aと、オペレートチェック弁21と制御弁6を接続する制御弁側第1メイン通路7bと、を有する。 The first main passage 7 has a cylinder side first main passage 7a that connects the rod side chamber 2a and the operated check valve 21, and a control valve side first main passage 7b that connects the operated check valve 21 and the control valve 6. .
 弁体24には、制御弁側第1メイン通路7bの圧力が作用する第1受圧面24aと、シリンダ側第1メイン通路7aを通じてロッド側室2aの圧力が作用する第2受圧面24bと、が形成される。 The valve body 24 has a first pressure receiving surface 24a on which the pressure of the control valve side first main passage 7b acts, and a second pressure receiving surface 24b on which the pressure of the rod side chamber 2a acts through the cylinder side first main passage 7a. It is formed.
 背圧室25には、弁体24を閉方向に付勢する付勢部材としてのスプリング27が収容される。背圧室25の圧力とスプリング27の付勢力とは、弁体24をシート部28に着座させる方向に作用する。 A spring 27 as a biasing member that biases the valve body 24 in the closing direction is housed in the back pressure chamber 25 . The pressure in the back pressure chamber 25 and the biasing force of the spring 27 act in a direction to seat the valve body 24 on the seat portion 28 .
 弁体24がシート部28に着座した状態では、オペレートチェック弁21は、ロッド側室2aから制御弁6への作動油の流れを遮断する逆止弁としての機能を発揮する。つまり、オペレートチェック弁21は、ロッド側室2a内の作動油の漏れを防止して負荷圧を保持し、アーム1の停止状態を保持する。 When the valve body 24 is seated on the seat portion 28, the operated check valve 21 functions as a check valve that blocks the flow of hydraulic oil from the rod side chamber 2a to the control valve 6. That is, the operating check valve 21 prevents leakage of the hydraulic oil in the rod side chamber 2a, maintains the load pressure, and maintains the stopped state of the arm 1.
 切換弁22は、パイロット制御弁9を通じてパイロット圧が導かれるパイロット室23と、パイロット室23のパイロット圧に応じて移動するスプール56(図3参照)と、スプール56を閉方向に付勢する付勢部材としてのスプリング36と、スプリング36が収容されたスプリング室54(図3参照)と、スプール56を挟んでスプリング室54とは反対側に設けられるドレン室51(図3参照)と、スプリング室54及びドレン室51をタンクTへ接続するドレン通路76と、を有する。 The switching valve 22 includes a pilot chamber 23 to which pilot pressure is introduced through the pilot control valve 9, a spool 56 (see FIG. 3) that moves according to the pilot pressure in the pilot chamber 23, and an energizer that biases the spool 56 in the closing direction. A spring 36 as a biasing member, a spring chamber 54 (see FIG. 3) housing the spring 36, a drain chamber 51 (see FIG. 3) provided on the opposite side of the spring chamber 54 across the spool 56, and a spring chamber 54 (see FIG. 3) that accommodates the spring 36. It has a drain passage 76 that connects the chamber 54 and the drain chamber 51 to the tank T.
 切換弁22の上流側には、バイパス通路30及び背圧通路31が接続され、切換弁22の下流側には下流通路38が接続される。バイパス通路30は、ロッド側室2aの作動油をオペレートチェック弁21をバイパスして制御弁側第1メイン通路7bへと導くための通路である。背圧通路31は、背圧室25の作動油を制御弁側第1メイン通路7bへと導くための通路である。下流通路38は、バイパス通路30及び背圧通路31からの作動油を制御弁側第1メイン通路7bへと導くための通路である。 A bypass passage 30 and a back pressure passage 31 are connected to the upstream side of the switching valve 22, and a downstream passage 38 is connected to the downstream side of the switching valve 22. The bypass passage 30 is a passage for guiding the hydraulic oil in the rod side chamber 2a to the control valve side first main passage 7b, bypassing the operating check valve 21. The back pressure passage 31 is a passage for guiding the hydraulic oil in the back pressure chamber 25 to the control valve side first main passage 7b. The downstream passage 38 is a passage for guiding the hydraulic oil from the bypass passage 30 and the back pressure passage 31 to the control valve side first main passage 7b.
 切換弁22は、下流通路38に対するバイパス通路30及び背圧通路31の連通を切り換え、シリンダ2を伸長作動させる際にメータアウト側となる第1メイン通路7の作動油の流れを制御する。 The switching valve 22 switches communication between the bypass passage 30 and the back pressure passage 31 with respect to the downstream passage 38, and controls the flow of hydraulic oil in the first main passage 7 which is on the meter-out side when the cylinder 2 is extended.
 切換弁22は、バイパス通路30に連通する第1供給ポート32、背圧通路31に連通する第2供給ポート33、及び下流通路38に連通する排出ポート34の3つのポートを有する。また、切換弁22は、遮断位置22A、第1連通位置22B、及び第2連通位置22Cの3ポジションを有する。 The switching valve 22 has three ports: a first supply port 32 communicating with the bypass passage 30, a second supply port 33 communicating with the back pressure passage 31, and a discharge port 34 communicating with the downstream passage 38. Moreover, the switching valve 22 has three positions: a cutoff position 22A, a first communication position 22B, and a second communication position 22C.
 制御弁6のパイロット室6bにパイロット圧が導かれると、同時に、パイロット室23にもパイロット圧が導かれる。つまり、制御弁6を伸長位置6Bに切り換えた場合に、切換弁22も第1連通位置22B又は第2連通位置22Cに切り換わる。 When pilot pressure is introduced into the pilot chamber 6b of the control valve 6, pilot pressure is also introduced into the pilot chamber 23 at the same time. That is, when the control valve 6 is switched to the extended position 6B, the switching valve 22 is also switched to the first communication position 22B or the second communication position 22C.
 具体的に説明すると、パイロット室23にパイロット圧が導かれない場合には、スプリング36の付勢力によって、切換弁22は遮断位置22Aを保つ。遮断位置22Aでは、第1供給ポート32及び第2供給ポート33の双方が遮断される。 Specifically, when pilot pressure is not introduced into the pilot chamber 23, the switching valve 22 is maintained at the shutoff position 22A by the biasing force of the spring 36. At the blocking position 22A, both the first supply port 32 and the second supply port 33 are blocked.
 パイロット室23に第1所定圧力以上第2所定圧力未満のパイロット圧が導かれた場合には、切換弁22は第1連通位置22Bに切り換わる。第1連通位置22Bでは、第1供給ポート32が排出ポート34と連通する。これにより、ロッド側室2aの作動油はバイパス通路30から切換弁22を通じて下流通路38へと導かれる。つまり、ロッド側室2aの作動油はオペレートチェック弁21をバイパスして制御弁側第1メイン通路7bへと導かれる。このとき、絞り37によって作動油の流れに抵抗が付与される。第2供給ポート33は遮断された状態を保つ。 When a pilot pressure equal to or higher than the first predetermined pressure and lower than the second predetermined pressure is introduced into the pilot chamber 23, the switching valve 22 is switched to the first communication position 22B. At the first communication position 22B, the first supply port 32 communicates with the discharge port 34. Thereby, the hydraulic oil in the rod side chamber 2a is guided from the bypass passage 30 to the downstream passage 38 through the switching valve 22. That is, the hydraulic oil in the rod side chamber 2a bypasses the operated check valve 21 and is guided to the control valve side first main passage 7b. At this time, the throttle 37 provides resistance to the flow of the hydraulic oil. The second supply port 33 remains blocked.
 パイロット室23に第2所定圧力以上のパイロット圧が導かれた場合には、切換弁22は第2連通位置22Cに切り換わる。第2連通位置22Cでは、第1供給ポート32が排出ポート34と連通すると共に、第2供給ポート33も排出ポート34と連通する。これにより、背圧室25の作動油は、背圧通路31から切換弁22を通じて下流通路38へと導かれる。このとき、背圧室25の作動油は、絞り37をバイパスして制御弁側第1メイン通路7bへと導かれ、制御弁6からタンクTへと排出される。これにより、絞り26aの前後にて差圧が発生し、背圧室25内の圧力が小さくなるため、弁体24に作用する閉方向の力が小さくなり、弁体24がシート部28から離れ、オペレートチェック弁21の逆止弁としての機能が解除される。 When a pilot pressure equal to or higher than the second predetermined pressure is introduced into the pilot chamber 23, the switching valve 22 is switched to the second communication position 22C. At the second communication position 22C, the first supply port 32 communicates with the discharge port 34, and the second supply port 33 also communicates with the discharge port 34. Thereby, the hydraulic oil in the back pressure chamber 25 is guided from the back pressure passage 31 to the downstream passage 38 through the switching valve 22. At this time, the hydraulic oil in the back pressure chamber 25 bypasses the throttle 37, is guided to the control valve side first main passage 7b, and is discharged from the control valve 6 to the tank T. As a result, a pressure difference is generated before and after the throttle 26a, and the pressure in the back pressure chamber 25 is reduced, so the force in the closing direction acting on the valve body 24 is reduced, and the valve body 24 is separated from the seat portion 28. , the function of the operated check valve 21 as a check valve is canceled.
 負荷保持機構20は、ロッド側室2aの圧力が所定圧力に達した場合に開弁し、ロッド側室2aの作動油をタンクTへ排出するリリーフ弁41を有する。リリーフ弁41は、バイパス通路30における切換弁22の上流から分岐するリリーフ通路40に設けられる。なお、リリーフ通路40は、シリンダ側第1メイン通路7aから分岐して設けられてもよいし、ロッド側室2aに直接接続されてもよい。 The load holding mechanism 20 has a relief valve 41 that opens when the pressure in the rod side chamber 2a reaches a predetermined pressure and discharges the hydraulic oil in the rod side chamber 2a to the tank T. The relief valve 41 is provided in a relief passage 40 that branches from the upstream side of the switching valve 22 in the bypass passage 30 . Note that the relief passage 40 may be provided branching off from the cylinder side first main passage 7a, or may be directly connected to the rod side chamber 2a.
 ドレン通路76は、ドレン室51に接続された第1ドレン通路76aと、スプリング室54に接続された第2ドレン通路76bと、第1ドレン通路76aと第2ドレン通路76bが合流して形成される合流ドレン通路76cと、を有する。合流ドレン通路76cは、負荷保持機構20のボディ60(図3参照)の外面に開口するドレンポート77に連通する。ドレンポート77はドレンホース78を通じてタンクTに接続される。このように、ドレン室51及びスプリング室54のドレンは、合流ドレン通路76c、ドレンポート77、及びドレンホース78を通じてタンクTへ排出される。切換弁22のスプール56の両側にそれぞれ設けられるドレン室51とスプリング室54は双方ともタンクTに連通するため、切換弁22が遮断位置22Aの際には、スプール56の両端には大気圧が作用し、スプール56が意図せずに移動するような事態が防止される。 The drain passage 76 is formed by a first drain passage 76a connected to the drain chamber 51, a second drain passage 76b connected to the spring chamber 54, and a confluence of the first drain passage 76a and the second drain passage 76b. It has a confluence drain passage 76c. The combined drain passage 76c communicates with a drain port 77 that opens on the outer surface of the body 60 (see FIG. 3) of the load holding mechanism 20. The drain port 77 is connected to the tank T through a drain hose 78. In this way, the drain in the drain chamber 51 and the spring chamber 54 is discharged to the tank T through the combined drain passage 76c, the drain port 77, and the drain hose 78. Since the drain chamber 51 and the spring chamber 54, which are provided on both sides of the spool 56 of the switching valve 22, both communicate with the tank T, when the switching valve 22 is in the cutoff position 22A, atmospheric pressure is present at both ends of the spool 56. This prevents the spool 56 from moving unintentionally.
 制御弁側第1メイン通路7bには、制御弁側第1メイン通路7bの圧力が所定圧力に達した場合に開弁するリリーフ弁43が接続される。第2メイン通路8には、第2メイン通路8の圧力が所定圧力に達した場合に開弁するリリーフ弁44が接続される。リリーフ弁43及びリリーフ弁44は、アーム1に大きな外力が作用したときに、それぞれシリンダ2のロッド側室2a及び反ロッド側室2bに生じる高圧を逃がすためのものである。 A relief valve 43 that opens when the pressure in the control valve side first main passage 7b reaches a predetermined pressure is connected to the control valve side first main passage 7b. A relief valve 44 that opens when the pressure in the second main passage 8 reaches a predetermined pressure is connected to the second main passage 8 . The relief valve 43 and the relief valve 44 are for releasing the high pressure generated in the rod side chamber 2a and the anti-rod side chamber 2b of the cylinder 2, respectively, when a large external force is applied to the arm 1.
 次に、主に図3を参照して、切換弁22について詳細に説明する。図3は負荷保持機構20の断面図であり、パイロット室23にパイロット圧が導かれておらず切換弁22が遮断位置22Aである状態を示す。図3において、図2で示した符号と同一の符号を付したものは、図2で示した構成と同一の構成である。 Next, the switching valve 22 will be described in detail, mainly with reference to FIG. 3. FIG. 3 is a sectional view of the load holding mechanism 20, showing a state in which pilot pressure is not introduced to the pilot chamber 23 and the switching valve 22 is in the cutoff position 22A. In FIG. 3, components denoted by the same reference numerals as those shown in FIG. 2 have the same configurations as those shown in FIG.
 切換弁22は、負荷保持機構20のボディ60に組み込まれる。ボディ60にはスプール孔60aが形成され、スプール孔60aには略円筒形状のスリーブ61が挿入される。スリーブ61内には、スプール56が摺動自在に組み込まれる。 The switching valve 22 is incorporated into the body 60 of the load holding mechanism 20. A spool hole 60a is formed in the body 60, and a substantially cylindrical sleeve 61 is inserted into the spool hole 60a. A spool 56 is slidably incorporated into the sleeve 61.
 スプール56の一端面56aの側方には、キャップ57によってスプリング室54が区画される。スプリング室54は、スリーブ61の端面に形成された切り欠き61aを通じて第2ドレン通路76bに接続される。スプリング室54に漏れ込んだ作動油は、第2ドレン通路76bからタンクTへ排出される。 A spring chamber 54 is defined by a cap 57 on the side of one end surface 56a of the spool 56. The spring chamber 54 is connected to the second drain passage 76b through a notch 61a formed in the end surface of the sleeve 61. The hydraulic oil that has leaked into the spring chamber 54 is discharged to the tank T from the second drain passage 76b.
 スプリング室54には、スプール56の一端面56aに端面が当接すると共に中空部にスプール56の一端面56aに突出して形成されたピン部56cが挿入される環状の第1バネ受部材45と、キャップ57の底部近傍に配置された第2バネ受部材46と、が収容される。スプリング36は、第1バネ受部材45と第2バネ受部材46との間に圧縮状態で介装され、第1バネ受部材45を介してスプール56を閉方向に付勢する。 The spring chamber 54 includes a first annular spring receiving member 45 whose end surface abuts the one end surface 56a of the spool 56 and into which a pin portion 56c formed to protrude from the one end surface 56a of the spool 56 is inserted into the hollow portion; A second spring receiving member 46 disposed near the bottom of the cap 57 is housed. The spring 36 is interposed in a compressed state between the first spring receiving member 45 and the second spring receiving member 46, and urges the spool 56 in the closing direction via the first spring receiving member 45.
 スプール56の他端面56bの側方には、パイロット室23が区画される。パイロット室23は、スプール孔60aと連通して形成されたピストン孔60bと、ピストン孔60bを閉塞するキャップ58と、によって区画される。パイロット室23には、ボディ60に形成されたパイロット通路52を通じてパイロット圧油(パイロット流体)が導かれる。パイロット室23内には、背面にパイロット圧を受けてスプール56にスプリング36の付勢力に抗する推力を付与するピストン50が摺動自在に収容される。 A pilot chamber 23 is defined on the side of the other end surface 56b of the spool 56. The pilot chamber 23 is defined by a piston hole 60b formed in communication with the spool hole 60a, and a cap 58 that closes the piston hole 60b. Pilot pressure oil (pilot fluid) is introduced into the pilot chamber 23 through a pilot passage 52 formed in the body 60 . Inside the pilot chamber 23, a piston 50 is slidably housed, which receives pilot pressure on the back surface and applies a thrust to the spool 56 against the biasing force of the spring 36.
 ピストン孔60b内には、スプール56とピストン50によってドレン室51が区画される。ドレン室51は第1ドレン通路76aに接続される。ドレン室51に漏れ込んだ作動油は、第1ドレン通路76aからタンクTへ排出される。 A drain chamber 51 is defined within the piston hole 60b by the spool 56 and the piston 50. Drain chamber 51 is connected to first drain passage 76a. The hydraulic oil that has leaked into the drain chamber 51 is discharged to the tank T from the first drain passage 76a.
 ピストン50は、外周面がピストン孔60bの内周面に沿って摺動する摺動部50aと、摺動部50aと比較して小径に形成され、スプール56の他端面56bに対向する先端部50bと、摺動部50aと比較して小径に形成され、キャップ58の先端面に対向する基端部50cと、を有する。 The piston 50 includes a sliding portion 50a whose outer peripheral surface slides along the inner peripheral surface of the piston hole 60b, and a tip portion that is formed to have a smaller diameter than the sliding portion 50a and faces the other end surface 56b of the spool 56. 50b, and a base end portion 50c that is formed to have a smaller diameter than the sliding portion 50a and faces the distal end surface of the cap 58.
 パイロット通路52を通じてパイロット室23内にパイロット圧油が供給されると、基端部50cの背面と摺動部50aの環状背面とにパイロット圧が作用する。これにより、ピストン50は、前進し、先端部50bがスプール56の他端面56bに当接してスプール56を移動させる。このように、スプール56は、ピストン50の背面に作用するパイロット圧に基づいて発生するピストン50の推力を受け、スプリング36の付勢力に抗して移動する。基端部50cの背面がキャップ58の先端面に当接している場合であっても、基端部50cは摺動部50aと比較して小径であり、摺動部50aの環状背面にパイロット圧が作用するため、ピストン50は前進可能である。 When pilot pressure oil is supplied into the pilot chamber 23 through the pilot passage 52, pilot pressure acts on the back surface of the base end portion 50c and the annular back surface of the sliding portion 50a. As a result, the piston 50 moves forward, and the tip portion 50b abuts the other end surface 56b of the spool 56 to move the spool 56. In this way, the spool 56 receives the thrust of the piston 50 generated based on the pilot pressure acting on the back surface of the piston 50, and moves against the biasing force of the spring 36. Even when the back surface of the proximal end 50c is in contact with the distal end surface of the cap 58, the proximal end 50c has a smaller diameter than the sliding portion 50a, and pilot pressure is applied to the annular back surface of the sliding portion 50a. acts, so the piston 50 can move forward.
 ピストン50の一端部はパイロット室23に臨み、他端部はタンクTに接続されたドレン室51に臨んでいるため、パイロット室23のパイロット圧に基づいて発生するピストン50の推力は効率良くスプール56に伝達される。 Since one end of the piston 50 faces the pilot chamber 23 and the other end faces the drain chamber 51 connected to the tank T, the thrust of the piston 50 generated based on the pilot pressure in the pilot chamber 23 is efficiently transferred to the spool. 56.
 スプール56は、一端面56aに作用するスプリング36の付勢力と他端面56bに作用するピストン50の推力とがバランスした位置で停止し、そのスプール56の停止位置にて切換弁22の切り換え位置が設定される。 The spool 56 stops at a position where the urging force of the spring 36 acting on one end surface 56a and the thrust force of the piston 50 acting on the other end surface 56b are balanced, and the switching position of the switching valve 22 is set at the stopping position of the spool 56. Set.
 ピストン50には、パイロット室23からドレン室51へ空気を排出するための気体抜き弁80(図4参照)が設けられる。気体抜き弁80については、後に詳しく説明する。なお、図2では、気体抜き弁80の図示を省略している。 The piston 50 is provided with a gas vent valve 80 (see FIG. 4) for discharging air from the pilot chamber 23 to the drain chamber 51. The gas vent valve 80 will be explained in detail later. Note that in FIG. 2, illustration of the gas vent valve 80 is omitted.
 スリーブ61には、バイパス通路30(図2参照)に連通する第1供給ポート32、背圧通路31(図2参照)に連通する第2供給ポート33、及び下流通路38(図2参照)に連通する排出ポート34の3つのポートが形成される。 The sleeve 61 has a first supply port 32 communicating with the bypass passage 30 (see FIG. 2), a second supply port 33 communicating with the back pressure passage 31 (see FIG. 2), and a downstream passage 38 (see FIG. 2). Three communicating discharge ports 34 are formed.
 スプール56の外周面は部分的に環状に切り欠かれ、その切り欠かれた部分とスリーブ61の内周面とで、第1圧力室64、第2圧力室65、第3圧力室66、及び第4圧力室67が形成される。 The outer circumferential surface of the spool 56 is partially annularly cut out, and the cutout portion and the inner circumferential surface of the sleeve 61 form a first pressure chamber 64, a second pressure chamber 65, a third pressure chamber 66, and A fourth pressure chamber 67 is formed.
 第1圧力室64は、排出ポート34に常時連通している。第3圧力室66は、第1供給ポート32に常時連通している。スプール56のランド部72の外周面には、スプール56がスプリング36の付勢力に抗して移動することによって、第3圧力室66と第2圧力室65を連通する複数の絞り37が形成される。第4圧力室67は、スプール56に軸方向に形成された導圧通路68を通じて第2圧力室65に常時連通している。 The first pressure chamber 64 is always in communication with the discharge port 34. The third pressure chamber 66 is always in communication with the first supply port 32. A plurality of throttles 37 are formed on the outer peripheral surface of the land portion 72 of the spool 56 as the spool 56 moves against the biasing force of the spring 36 to communicate the third pressure chamber 66 and the second pressure chamber 65. Ru. The fourth pressure chamber 67 is constantly in communication with the second pressure chamber 65 through a pressure guiding passage 68 formed in the spool 56 in the axial direction.
 操作レバー10が操作されずパイロット室23にパイロット圧が導かれない場合には、スプリング36の付勢力によってスプール56に形成されたポペット弁70が、スリーブ61の内周に形成された弁座71に押し付けられ、第2圧力室65と第1圧力室64の連通が遮断される。したがって、第1供給ポート32と排出ポート34との連通が遮断される。これにより、ロッド側室2aの作動油が排出ポート34へと漏れることはない。この状態が、切換弁22の遮断位置22Aに相当する。スプリング36の付勢力によってポペット弁70が弁座71に着座した状態では、第1バネ受部材45の端面とスリーブ61の端面との間には僅かな隙間が存在するため、ポペット弁70は弁座71に対してスプリング36の付勢力によって確実にシートされる。 When the operating lever 10 is not operated and pilot pressure is not guided to the pilot chamber 23, the poppet valve 70 formed on the spool 56 is moved by the urging force of the spring 36 to the valve seat 71 formed on the inner periphery of the sleeve 61. , and communication between the second pressure chamber 65 and the first pressure chamber 64 is cut off. Therefore, communication between the first supply port 32 and the discharge port 34 is cut off. This prevents the hydraulic oil in the rod side chamber 2a from leaking to the discharge port 34. This state corresponds to the cutoff position 22A of the switching valve 22. When the poppet valve 70 is seated on the valve seat 71 due to the biasing force of the spring 36, there is a slight gap between the end face of the first spring receiving member 45 and the end face of the sleeve 61, so the poppet valve 70 is seated on the valve seat 71. The seat 71 is reliably seated by the biasing force of the spring 36.
 操作レバー10が操作されパイロット室23にパイロット圧が導かれ、スプール56に作用するピストン50の推力がスプリング36の付勢力よりも大きくなった場合には、スプール56はスプリング36の付勢力に抗して移動する。これにより、ポペット弁70が弁座71から離れると共に、第3圧力室66と第2圧力室65が複数の絞り37を通じて連通するため、第1供給ポート32は第3圧力室66、第2圧力室65、及び第1圧力室64を通じて排出ポート34と連通する。第1供給ポート32と排出ポート34の連通によって、ロッド側室2aの作動油は、絞り37を通じて下流通路38(図2参照)へ導かれる。この状態が、切換弁22の第1連通位置22Bに相当する。 When the operating lever 10 is operated and pilot pressure is introduced into the pilot chamber 23 and the thrust of the piston 50 acting on the spool 56 becomes greater than the urging force of the spring 36, the spool 56 resists the urging force of the spring 36. and move. As a result, the poppet valve 70 separates from the valve seat 71 and the third pressure chamber 66 and the second pressure chamber 65 communicate with each other through the plurality of throttles 37. It communicates with the discharge port 34 through the chamber 65 and the first pressure chamber 64 . Due to the communication between the first supply port 32 and the discharge port 34, the hydraulic oil in the rod side chamber 2a is guided to the downstream passage 38 (see FIG. 2) through the throttle 37. This state corresponds to the first communication position 22B of the switching valve 22.
 パイロット室23に導かれるパイロット圧が大きくなると、スプール56はスプリング36の付勢力に抗してさらに移動し、第2供給ポート33に第4圧力室67が連通する。これにより、第2供給ポート33は、第4圧力室67、導圧通路68、第2圧力室65、及び第1圧力室64を通じて排出ポート34と連通する。第2供給ポート33と排出ポート34の連通によって、背圧室25の作動油は、絞り37をバイパスして下流通路38(図2参照)へ導かれる。この状態が、切換弁22の第2連通位置22Cに相当する。 When the pilot pressure guided to the pilot chamber 23 increases, the spool 56 moves further against the urging force of the spring 36, and the fourth pressure chamber 67 communicates with the second supply port 33. Thereby, the second supply port 33 communicates with the discharge port 34 through the fourth pressure chamber 67, the pressure guiding passage 68, the second pressure chamber 65, and the first pressure chamber 64. Due to the communication between the second supply port 33 and the discharge port 34, the hydraulic oil in the back pressure chamber 25 is guided to the downstream passage 38 (see FIG. 2), bypassing the throttle 37. This state corresponds to the second communication position 22C of the switching valve 22.
 次に、図2及び図3を参照して、油圧制御装置100の動作について説明する。 Next, the operation of the hydraulic control device 100 will be described with reference to FIGS. 2 and 3.
 制御弁6が中立位置6Cの場合には、ポンプ4が吐出する作動油はシリンダ2に供給されない。このとき、切換弁22のパイロット室23にはパイロット圧が導かれないため、切換弁22は遮断位置22Aの状態となる。 When the control valve 6 is in the neutral position 6C, the hydraulic oil discharged by the pump 4 is not supplied to the cylinder 2. At this time, since pilot pressure is not introduced into the pilot chamber 23 of the switching valve 22, the switching valve 22 is in the shutoff position 22A.
 このため、オペレートチェック弁21の背圧室25は、ロッド側室2aの圧力に維持される。ここで、弁体24における閉方向の受圧面積(弁体24の背面の面積)は、開方向の受圧面積である第2受圧面24bの面積よりも大きいため、背圧室25の圧力による弁体24の背面に作用する荷重とスプリング27の付勢力とによって、弁体24はシート部28に着座した状態となる。このように、オペレートチェック弁21によって、ロッド側室2a内の作動油の漏れが防止され、アーム1の停止状態が保持される。 Therefore, the back pressure chamber 25 of the operated check valve 21 is maintained at the pressure of the rod side chamber 2a. Here, the pressure receiving area of the valve body 24 in the closing direction (the area of the back surface of the valve body 24) is larger than the area of the second pressure receiving surface 24b, which is the pressure receiving area in the opening direction. Due to the load acting on the back surface of the body 24 and the biasing force of the spring 27, the valve body 24 is placed in a seated state on the seat portion 28. In this way, the operating check valve 21 prevents the hydraulic oil from leaking in the rod side chamber 2a, and the arm 1 is maintained in a stopped state.
 操作レバー10が操作され、パイロット制御弁9から制御弁6のパイロット室6aへとパイロット圧が導かれると、制御弁6は、パイロット圧に応じた量だけ収縮位置6Aへと切り換わる。制御弁6が収縮位置6Aへと切り換わると、ポンプ4の吐出圧がオペレートチェック弁21の第1受圧面24aへと作用する。このとき、切換弁22は、パイロット室23にパイロット圧が導かれず遮断位置22Aの状態であるため、オペレートチェック弁21の背圧室25は、ロッド側室2aの圧力に維持される。第1受圧面24aに作用する荷重が、背圧室25の圧力による弁体24の背面に作用する荷重とスプリング27の付勢力との合計荷重よりも大きくなった場合には、弁体24はシート部28から離れる。このようにしてオペレートチェック弁21が開弁すれば、ポンプ4から吐出された作動油はロッド側室2aに供給され、シリンダ2は収縮する。これにより、アーム1は、図1に示す矢印18の方向へと上昇する。 When the operating lever 10 is operated and pilot pressure is guided from the pilot control valve 9 to the pilot chamber 6a of the control valve 6, the control valve 6 is switched to the retracted position 6A by an amount corresponding to the pilot pressure. When the control valve 6 is switched to the retracted position 6A, the discharge pressure of the pump 4 acts on the first pressure receiving surface 24a of the operating check valve 21. At this time, the switching valve 22 is in the cutoff position 22A with no pilot pressure introduced into the pilot chamber 23, so the back pressure chamber 25 of the operating check valve 21 is maintained at the pressure of the rod side chamber 2a. When the load acting on the first pressure receiving surface 24a becomes larger than the total load of the load acting on the back surface of the valve body 24 due to the pressure of the back pressure chamber 25 and the biasing force of the spring 27, the valve body 24 It leaves the seat part 28. When the operating check valve 21 is opened in this manner, the hydraulic oil discharged from the pump 4 is supplied to the rod side chamber 2a, and the cylinder 2 is contracted. As a result, arm 1 rises in the direction of arrow 18 shown in FIG.
 操作レバー10が操作され、パイロット制御弁9から制御弁6のパイロット室6bへとパイロット圧が導かれると、制御弁6はパイロット圧に応じた量だけ伸長位置6Bへと切り換わる。これと同時に、パイロット室23へもパイロット圧が導かれるため、切換弁22は、供給されるパイロット圧に応じて第1連通位置22B又は第2連通位置22Cに切り換わる。 When the operating lever 10 is operated and pilot pressure is guided from the pilot control valve 9 to the pilot chamber 6b of the control valve 6, the control valve 6 is switched to the extended position 6B by an amount corresponding to the pilot pressure. At the same time, pilot pressure is also guided to the pilot chamber 23, so the switching valve 22 is switched to the first communication position 22B or the second communication position 22C depending on the supplied pilot pressure.
 パイロット室23に導かれるパイロット圧が第1所定圧力以上第2所定圧力未満の場合には、切換弁22は第1連通位置22Bに切り換わる。この場合、第2供給ポート33と排出ポート34との連通は遮断された状態であるため、オペレートチェック弁21の背圧室25はロッド側室2aの圧力に維持され、オペレートチェック弁21は閉弁状態を維持する。 When the pilot pressure guided to the pilot chamber 23 is greater than or equal to the first predetermined pressure and less than the second predetermined pressure, the switching valve 22 is switched to the first communication position 22B. In this case, since the communication between the second supply port 33 and the discharge port 34 is cut off, the back pressure chamber 25 of the operated check valve 21 is maintained at the pressure of the rod side chamber 2a, and the operated check valve 21 is closed. maintain the condition.
 一方、第1供給ポート32は排出ポート34と連通するため、ロッド側室2aの作動油は、バイパス通路30から絞り37を通じて下流通路38へ導かれ、制御弁側第1メイン通路7bから制御弁6を通じてタンクTへと排出される。また、反ロッド側室2bには、ポンプ4から吐出される作動油が供給されるため、シリンダ2は伸長する。これにより、アーム1は、図1に示す矢印19の方向へと下降する。 On the other hand, since the first supply port 32 communicates with the discharge port 34, the hydraulic oil in the rod side chamber 2a is guided from the bypass passage 30 to the downstream passage 38 through the throttle 37, and from the control valve side first main passage 7b to the control valve 6. It is discharged into tank T through. Moreover, since the hydraulic oil discharged from the pump 4 is supplied to the opposite-rod side chamber 2b, the cylinder 2 expands. As a result, arm 1 descends in the direction of arrow 19 shown in FIG.
 ここで、切換弁22を第1連通位置22Bに切り換えるのは、バケット13に取り付けた搬送物を、目的の位置に下ろすクレーン作業を行う場合が主である。クレーン作業では、シリンダ2を低速で伸長作動させてアーム1を矢印19の方向へとゆっくりと下降させる必要があるため、制御弁6のパイロット室6bに導かれるパイロット圧は小さく、制御弁6は伸長位置6Bにわずかに切り換えられるだけである。このため、切換弁22のパイロット室23に導かれるパイロット圧も小さく、第1所定圧力以上第2所定圧力未満となり、切換弁22は第1連通位置22Bまでしか切り換わらない。したがって、ロッド側室2aの作動油は絞り37を通過して排出されることになり、アーム1はクレーン作業に適した低速で下降する。 Here, the switching valve 22 is switched to the first communication position 22B mainly when a crane operation is performed to lower the transported object attached to the bucket 13 to a target position. In crane work, it is necessary to extend the cylinder 2 at low speed and slowly lower the arm 1 in the direction of the arrow 19. Therefore, the pilot pressure introduced into the pilot chamber 6b of the control valve 6 is small, and the control valve 6 is It is only slightly switched to the extended position 6B. For this reason, the pilot pressure guided to the pilot chamber 23 of the switching valve 22 is also small, being greater than or equal to the first predetermined pressure and less than the second predetermined pressure, and the switching valve 22 is only switched to the first communication position 22B. Therefore, the hydraulic oil in the rod side chamber 2a passes through the throttle 37 and is discharged, and the arm 1 descends at a low speed suitable for crane work.
 また、切換弁22が第1連通位置22Bの場合において、制御弁側第1メイン通路7bが破裂などして作動油が外部へと漏れるような事態が発生したとしても、ロッド側室2aから排出される作動油の流量は絞り37によって制限されるため、バケット13の落下速度は抑制される。このため、バケット13が地面に落下する前に、切換弁22を遮断位置22Aに切り換えることができ、バケット13の急落下を防止することができる。 Further, when the switching valve 22 is in the first communication position 22B, even if the control valve side first main passage 7b ruptures and the hydraulic oil leaks to the outside, the hydraulic oil will not be discharged from the rod side chamber 2a. Since the flow rate of the hydraulic oil is restricted by the throttle 37, the falling speed of the bucket 13 is suppressed. Therefore, the switching valve 22 can be switched to the cutoff position 22A before the bucket 13 falls to the ground, and the bucket 13 can be prevented from falling suddenly.
 このように、絞り37は、オペレートチェック弁21の閉弁時におけるシリンダ2の下降速度を抑えると共に、制御弁側第1メイン通路7bの破裂時におけるバケット13の落下速度を抑えるためのものである。 In this way, the throttle 37 is intended to suppress the descending speed of the cylinder 2 when the operating check valve 21 is closed, and also to suppress the falling speed of the bucket 13 when the control valve side first main passage 7b bursts. .
 パイロット室23に導かれるパイロット圧が第2所定圧力以上の場合には、切換弁22は第2連通位置22Cに切り換わる。この場合、第2供給ポート33が排出ポート34と連通するため、オペレートチェック弁21の背圧室25の作動油は、背圧通路31から絞り37をバイパスして下流通路38へ導かれ、制御弁側第1メイン通路7bから制御弁6を通じてタンクTへと排出される。これにより、絞り26aの前後で差圧が発生し、背圧室25内の圧力が小さくなるため、弁体24に作用する閉方向の力が小さくなり、弁体24がシート部28から離れ、オペレートチェック弁21の逆止弁としての機能が解除される。 When the pilot pressure guided to the pilot chamber 23 is equal to or higher than the second predetermined pressure, the switching valve 22 is switched to the second communication position 22C. In this case, since the second supply port 33 communicates with the discharge port 34, the hydraulic oil in the back pressure chamber 25 of the operated check valve 21 is guided from the back pressure passage 31 to the downstream passage 38, bypassing the throttle 37, and is controlled. It is discharged from the valve-side first main passage 7b to the tank T through the control valve 6. As a result, a pressure difference is generated before and after the throttle 26a, and the pressure in the back pressure chamber 25 is reduced, so that the force in the closing direction acting on the valve body 24 is reduced, and the valve body 24 is separated from the seat portion 28. The function of the operating check valve 21 as a check valve is canceled.
 このように、オペレートチェック弁21は、制御弁6からロッド側室2aへの作動油の流れを許容する一方、背圧室25の圧力である背圧に応じてロッド側室2aから制御弁6への作動油の流れを許容するように動作する。 In this way, the operating check valve 21 allows the flow of hydraulic oil from the control valve 6 to the rod side chamber 2a, while allowing the flow of hydraulic oil from the rod side chamber 2a to the control valve 6 according to the back pressure, which is the pressure in the back pressure chamber 25. Operates to allow flow of hydraulic oil.
 オペレートチェック弁21が開弁すると、ロッド側室2aの作動油は第1メイン通路7を通りタンクTへと排出されるため、シリンダ2は素早く伸長する。つまり、切換弁22を第2連通位置22Cに切り換えると、ロッド側室2aから排出される作動油の流量が多くなるため、反ロッド側室2bに供給される作動油の流量が多くなり、シリンダ2の伸長速度は速くなる。これにより、アーム1は矢印19の方向へと素早く下降する。 When the operating check valve 21 opens, the hydraulic oil in the rod side chamber 2a passes through the first main passage 7 and is discharged to the tank T, so the cylinder 2 quickly expands. In other words, when the switching valve 22 is switched to the second communication position 22C, the flow rate of hydraulic oil discharged from the rod side chamber 2a increases, so the flow rate of hydraulic oil supplied to the non-rod side chamber 2b increases, and the flow rate of the hydraulic oil discharged from the rod side chamber 2a increases. The elongation speed becomes faster. As a result, arm 1 quickly descends in the direction of arrow 19.
 切換弁22を第2連通位置22Cに切り換えるのは、掘削作業等を行う場合であり、制御弁6のパイロット室6bに導かれるパイロット圧は大きく、制御弁6は伸長位置6Bに大きく切り換えられる。このため、切換弁22のパイロット室23に導かれるパイロット圧も大きく、第2所定圧力以上となるため、切換弁22は第2連通位置22Cまで切り換わる。 The switching valve 22 is switched to the second communication position 22C when performing excavation work, etc., and the pilot pressure guided to the pilot chamber 6b of the control valve 6 is large, and the control valve 6 is switched to the extended position 6B. For this reason, the pilot pressure guided to the pilot chamber 23 of the switching valve 22 is also large and becomes equal to or higher than the second predetermined pressure, so the switching valve 22 is switched to the second communication position 22C.
 次に、主に図4を参照して、ピストン50に設けられる気体抜き弁80について説明する。図4は、ピストン50周辺の断面図である。なお、図3では、気体抜き弁80の図示を省略している。以下では、気体抜き弁80がパイロット室23からドレン室51へ空気を排出する場合について説明するが、気体抜き弁80が排出するのは空気には限られず、その他の気体であってもよい。 Next, the gas vent valve 80 provided in the piston 50 will be explained with reference mainly to FIG. 4. FIG. 4 is a sectional view of the vicinity of the piston 50. Note that in FIG. 3, illustration of the gas vent valve 80 is omitted. Although a case will be described below in which the gas vent valve 80 discharges air from the pilot chamber 23 to the drain chamber 51, what the gas vent valve 80 discharges is not limited to air, and may discharge other gases.
 ピストン50とボディ60の間、具体的には、ピストン50の摺動部50aの外周面とボディ60のピストン孔60bの内周面との間には、環状の隙間69が設けられる。従来の切換弁では、この隙間69は、パイロット室23側の空気をドレン室51側へ排出するための通路として機能していた。しかし、ピストン50とボディ60の間に隙間69が設けられることによって、油圧ショベルの停止時には、ドレン室51側の空気が隙間69を通じてパイロット室23側へと移動してしまう。具体的に説明すると、油圧ショベルが停止すると、パイロット室23及びパイロット通路52の作動油が重力でタンクTへ流れ落ちることにより、パイロット室23及びパイロット通路52が負圧となり、その結果、タンクTから合流ドレン通路76c及び第1ドレン通路76aに吸い込まれた空気が、隙間69を通じてパイロット室23及びパイロット通路52へ移動する。また、アーム1を駆動するシリンダ2に設けられる負荷保持機構20は、図1に示すように、油圧ショベルのなかで最も高い位置に設けられる。したがって、油圧ショベルが停止した状態が長時間続くと、ドレン室51、第1ドレン通路76a、第2ドレン通路76b、合流ドレン通路76c、ドレンホース78に空気が溜まる。その溜まった空気は、隙間69を通じてパイロット室23及びパイロット通路52に移動する。 An annular gap 69 is provided between the piston 50 and the body 60, specifically, between the outer peripheral surface of the sliding portion 50a of the piston 50 and the inner peripheral surface of the piston hole 60b of the body 60. In the conventional switching valve, this gap 69 functions as a passage for discharging air from the pilot chamber 23 side to the drain chamber 51 side. However, because the gap 69 is provided between the piston 50 and the body 60, when the hydraulic excavator is stopped, air from the drain chamber 51 side moves through the gap 69 to the pilot chamber 23 side. Specifically, when the hydraulic excavator stops, the hydraulic oil in the pilot chamber 23 and the pilot passage 52 flows down to the tank T by gravity, so that the pilot chamber 23 and the pilot passage 52 become negative pressure, and as a result, the hydraulic oil in the pilot chamber 23 and the pilot passage 52 flows down from the tank T. Air sucked into the combined drain passage 76c and the first drain passage 76a moves to the pilot chamber 23 and the pilot passage 52 through the gap 69. Further, the load holding mechanism 20 provided in the cylinder 2 that drives the arm 1 is provided at the highest position in the hydraulic excavator, as shown in FIG. Therefore, when the hydraulic excavator remains stopped for a long time, air accumulates in the drain chamber 51, the first drain passage 76a, the second drain passage 76b, the combined drain passage 76c, and the drain hose 78. The accumulated air moves to the pilot chamber 23 and the pilot passage 52 through the gap 69.
 このようにして、ドレン室51側からパイロット室23側へ空気が移動してしまうと、油圧ショベルが停止状態から始動した際には、パイロット室23側へ移動した空気の影響で、オペレータの入力操作に対してパイロット室23のパイロット圧の上昇が遅れ、パイロット室23側の空気が隙間69を通じてドレン室51へ排出されてからパイロット室23のパイロット圧の昇圧が完了する。このように、パイロット室23側の空気は、油圧ショベルの始動時に、オペレータの入力操作に対するシリンダ2の応答遅れの原因となる。 If air moves from the drain chamber 51 side to the pilot chamber 23 side in this way, when the hydraulic excavator starts from a stopped state, the operator's input The increase in the pilot pressure in the pilot chamber 23 is delayed with respect to the operation, and the increase in the pilot pressure in the pilot chamber 23 is completed after the air on the pilot chamber 23 side is discharged to the drain chamber 51 through the gap 69. In this way, the air in the pilot chamber 23 causes a delay in the response of the cylinder 2 to the operator's input operation when the hydraulic excavator is started.
 この対策として、本実施形態では、ピストン50とボディ60の間の隙間69は、シール部材としてのOリング99によって封止され、隙間69を通じた空気の流れは遮断される。また、ピストン50に設けられる気体抜き弁80は、パイロット室23からドレン室51へ空気を排出すると共に、ドレン室51からパイロット室23への空気の流れを遮断する。以下に詳細に説明する。 As a countermeasure against this, in this embodiment, the gap 69 between the piston 50 and the body 60 is sealed with an O-ring 99 as a sealing member, and the flow of air through the gap 69 is blocked. Further, the gas vent valve 80 provided in the piston 50 discharges air from the pilot chamber 23 to the drain chamber 51 and blocks the flow of air from the drain chamber 51 to the pilot chamber 23. This will be explained in detail below.
 気体抜き弁80は、パイロット室23とドレン室51にわたって設けられる通路81と、通路81を開閉する弁体82と、弁体82を付勢する付勢部材としてのスプリング83と、を有する。通路81は、ピストン50の移動方向に沿ってピストン50を貫通して形成される。弁体82は、球体であって、通路81の途中に設けられる。スプリング83は、弁体82とピストン50の間に圧縮して設けられる。 The gas vent valve 80 has a passage 81 provided across the pilot chamber 23 and the drain chamber 51, a valve body 82 that opens and closes the passage 81, and a spring 83 as a biasing member that biases the valve body 82. The passage 81 is formed through the piston 50 along the direction of movement of the piston 50. The valve body 82 is a spherical body, and is provided in the middle of the passage 81. The spring 83 is compressed and provided between the valve body 82 and the piston 50.
 通路81は、弁体82を収容する弁体収容部81aを有する。弁体収容部81aの内径は、弁体82の外径よりも大きい。通路81では、弁体収容部81a以外の内径は、弁体82の外径よりも小さい。スプリング83は、一端側が弁体収容部81a内に収容されて弁体82に接触し、他端側が弁体収容部81a外に設けられピストン50に形成された段部50fに接触している。これにより、弁体収容部81aには、スプリング83の付勢力によって弁体82が接触する環状の第1シート部81bと、パイロット室23の圧力によって弁体82が接触する第2シート部81cと、が形成される。弁体82は、弁体収容部81a内において、第1シート部81bと第2シート部81cの間を移動する。 The passage 81 has a valve body accommodating portion 81a that accommodates the valve body 82. The inner diameter of the valve body accommodating portion 81a is larger than the outer diameter of the valve body 82. In the passage 81, the inner diameter of the portion other than the valve body accommodating portion 81a is smaller than the outer diameter of the valve body 82. The spring 83 has one end housed in the valve body accommodating portion 81 a and in contact with the valve body 82 , and the other end side provided outside the valve body accommodating portion 81 a and in contact with a stepped portion 50 f formed on the piston 50 . As a result, the valve body housing portion 81a has an annular first seat portion 81b with which the valve body 82 contacts due to the biasing force of the spring 83, and a second seat portion 81c with which the valve body 82 contacts due to the pressure of the pilot chamber 23. , is formed. The valve body 82 moves between the first seat portion 81b and the second seat portion 81c within the valve body housing portion 81a.
 ピストン50の先端部50bにおけるスプール56に対向する端面にはスリット50dが形成される。スリット50dは、通路81に連通すると共に、先端部50bの外周面に開口する。ピストン50の端面にスリット50dが形成されることによって、ピストン50の先端部50bがスプール56に接触した状態であっても、通路81がスプール56によって閉塞されることはない。 A slit 50d is formed on the end surface of the tip 50b of the piston 50 facing the spool 56. The slit 50d communicates with the passage 81 and opens on the outer peripheral surface of the tip portion 50b. By forming the slit 50d on the end surface of the piston 50, the passage 81 is not blocked by the spool 56 even when the tip 50b of the piston 50 is in contact with the spool 56.
 気体抜き弁80は、ピストン50に取り付けられピストン50の一部を構成する筒状のハウジング84を有する。ピストン50の基端部50cにおけるパイロット室23に面する端面には、穴50eが形成され、ハウジング84は穴50e内に取り付けられる。ハウジング84の外周面と穴50eの内周面との間には、両者の間を通じたパイロット圧油の漏れを防止するために、シール部材としてのOリング98が設けられる。Oリング98を設ける代わりに、ハウジング84を穴50e内に圧入してもよい。 The gas vent valve 80 has a cylindrical housing 84 that is attached to the piston 50 and forms a part of the piston 50. A hole 50e is formed in the end surface of the base end 50c of the piston 50 facing the pilot chamber 23, and the housing 84 is installed in the hole 50e. An O-ring 98 serving as a sealing member is provided between the outer peripheral surface of the housing 84 and the inner peripheral surface of the hole 50e to prevent leakage of pilot pressure oil between the two. Instead of providing the O-ring 98, the housing 84 may be press-fitted into the hole 50e.
 ハウジング84には、パイロット室23に連通する小径孔84aと、小径孔84aと連通し小径孔84aよりも大きな内径を有する大径孔84bと、が形成される。小径孔84a及び大径孔84bは、通路81の一部を構成する。大径孔84bは弁体収容部81aを区画する。小径孔84aと大径孔84bの間に形成された段差部は、第1シート部81bを構成する。穴50eの底面に形成された通路81の開口縁は、第2シート部81cを構成する。 The housing 84 is formed with a small diameter hole 84a communicating with the pilot chamber 23, and a large diameter hole 84b communicating with the small diameter hole 84a and having a larger inner diameter than the small diameter hole 84a. The small diameter hole 84a and the large diameter hole 84b constitute a part of the passage 81. The large diameter hole 84b defines the valve body accommodating portion 81a. The step portion formed between the small diameter hole 84a and the large diameter hole 84b constitutes the first seat portion 81b. The opening edge of the passage 81 formed on the bottom surface of the hole 50e constitutes a second seat portion 81c.
 気体抜き弁80をピストン50に取り付ける際には、ハウジング84の大径孔84bに弁体82を収容した状態で、弁体82とピストン50の段部50fとの間にスプリング83が介在するように、ハウジング84をピストン50の穴50e内に挿入して取り付ける。 When attaching the gas vent valve 80 to the piston 50, the valve body 82 is accommodated in the large diameter hole 84b of the housing 84, and the spring 83 is interposed between the valve body 82 and the stepped portion 50f of the piston 50. Then, the housing 84 is inserted into the hole 50e of the piston 50 and attached.
 次に、気体抜き弁80の動作及び作用について説明する。 Next, the operation and function of the gas vent valve 80 will be explained.
 油圧ショベルに搭載された動力源が停止状態であってパイロットポンプ5の停止時には、パイロット室23のパイロット圧はゼロであるため、弁体82は、スプリング83の付勢力によって第1シート部81bに接触して通路81を遮断する(図4に示す状態)。これにより、油圧ショベルの停止時であっても、通路81を通じたドレン室51側からパイロット室23側への空気の移動が防止される。また、ピストン50とボディ60の間にはOリング99が設けられているため、ピストン50とボディ60の間の隙間69を通じたドレン室51側からパイロット室23側への空気の移動も防止される。 When the power source mounted on the hydraulic excavator is in a stopped state and the pilot pump 5 is stopped, the pilot pressure in the pilot chamber 23 is zero, so the valve body 82 is pushed against the first seat portion 81b by the biasing force of the spring 83. They make contact and block the passage 81 (the state shown in FIG. 4). This prevents air from moving from the drain chamber 51 side to the pilot chamber 23 side through the passage 81 even when the hydraulic excavator is stopped. Furthermore, since an O-ring 99 is provided between the piston 50 and the body 60, air movement from the drain chamber 51 side to the pilot chamber 23 side through the gap 69 between the piston 50 and the body 60 is also prevented. Ru.
 一方、油圧ショベルに搭載された動力源が運転状態であってパイロットポンプ5の駆動時には、弁体82は、スプリング83の付勢力に抗して移動して第1シート部81bから離れる。この際、弁体82は、パイロット室23のパイロット圧が所定圧力未満の場合には第2シート部81cに接触せず、パイロット室23のパイロット圧が所定圧力以上の場合には第2シート部81cに接触する。これについて、図5も参照して詳しくする。図5は、パイロット室23のパイロット圧と、パイロット室23からドレン室51へ流れる空気流量との関係を示すグラフ図である。 On the other hand, when the power source mounted on the hydraulic excavator is in operation and the pilot pump 5 is driven, the valve body 82 moves against the biasing force of the spring 83 and separates from the first seat portion 81b. At this time, the valve body 82 does not contact the second seat portion 81c when the pilot pressure in the pilot chamber 23 is less than a predetermined pressure, and the valve body 82 does not contact the second seat portion 81c when the pilot pressure in the pilot chamber 23 is higher than the predetermined pressure. Contact 81c. This will be explained in detail with reference to FIG. 5 as well. FIG. 5 is a graph diagram showing the relationship between the pilot pressure in the pilot chamber 23 and the flow rate of air flowing from the pilot chamber 23 to the drain chamber 51.
 パイロットポンプ5の駆動時であって、オペレータが操作レバー10を操作していない状態では、パイロットポンプ5から吐出されたパイロット圧油は、パイロット制御弁9を通じてタンクTへと排出され、パイロット室23にはほぼ導かれない。しかし、このような状態であっても、パイロットポンプ5の駆動時には、パイロット通路52及びパイロット室23には、最低限のパイロット圧、具体的には、0.05~0.2MPa程度のパイロット圧が作用する。この状態では、弁体82は、スプリング83の付勢力に抗して移動して第1シート部81bから離れる一方、第2シート部81cには接触しない。つまり、弁体82は、パイロット室23のパイロット圧とスプリング83の付勢力とのバランスにより、第1シート部81bと第2シート部81cの間に位置する。この状態が、パイロット室23のパイロット圧が所定圧力未満の場合である。この状態では、図5に示すように、通路81を通じたパイロット室23からドレン室51への空気の流れが許容され、パイロット室23側の空気がドレン室51側へ排出される。したがって、油圧ショベルが停止状態から始動した際には、オペレータが操作レバー10を操作する前に、パイロット室23側の空気がドレン室51側へ自然と排出されるため、オペレータが操作レバー10の操作を開始した際には、操作に対するシリンダ2の応答遅れが抑制される。 When the pilot pump 5 is being driven and the operator is not operating the operating lever 10, the pilot pressure oil discharged from the pilot pump 5 is discharged into the tank T through the pilot control valve 9 and into the pilot chamber 23. There is almost no guidance. However, even in such a state, when the pilot pump 5 is driven, the pilot passage 52 and the pilot chamber 23 have a minimum pilot pressure, specifically, a pilot pressure of about 0.05 to 0.2 MPa. acts. In this state, the valve body 82 moves against the biasing force of the spring 83 and separates from the first seat portion 81b, but does not contact the second seat portion 81c. That is, the valve body 82 is located between the first seat portion 81b and the second seat portion 81c due to the balance between the pilot pressure in the pilot chamber 23 and the biasing force of the spring 83. This state is when the pilot pressure in the pilot chamber 23 is less than a predetermined pressure. In this state, as shown in FIG. 5, air flow from the pilot chamber 23 to the drain chamber 51 through the passage 81 is allowed, and air from the pilot chamber 23 side is discharged to the drain chamber 51 side. Therefore, when the hydraulic excavator is started from a stopped state, the air in the pilot chamber 23 is naturally discharged to the drain chamber 51 before the operator operates the operating lever 10. When the operation is started, the response delay of the cylinder 2 to the operation is suppressed.
 オペレータが操作レバー10を操作して作業する際には、パイロット室23には、0.3MPa以上のパイロット圧が作用する。この状態では、弁体82は、スプリング83の付勢力に抗して移動して第2シート部81cに接触する。この状態が、パイロット室23のパイロット圧が所定圧力以上の場合である。この状態では、図5に示すように、通路81を通じたパイロット室23からドレン室51への空気の流れが遮断されると共に、パイロット圧油の流れも遮断される。したがって、パイロット室23には所望のパイロット圧が作用し、ピストン50の移動によりスプール56が移動可能となるため、通路81がシリンダ2の動作に悪影響を及ぼすことはない。 When the operator operates the control lever 10 to work, a pilot pressure of 0.3 MPa or more acts on the pilot chamber 23. In this state, the valve body 82 moves against the biasing force of the spring 83 and comes into contact with the second seat portion 81c. This state is when the pilot pressure in the pilot chamber 23 is equal to or higher than a predetermined pressure. In this state, as shown in FIG. 5, the flow of air from the pilot chamber 23 to the drain chamber 51 through the passage 81 is blocked, and the flow of pilot pressure oil is also blocked. Therefore, a desired pilot pressure acts on the pilot chamber 23, and the movement of the piston 50 allows the spool 56 to move, so the passage 81 does not adversely affect the operation of the cylinder 2.
 弁体82が第2シート部81cに接触するパイロット圧である所定圧力は、スプール56が移動するパイロット圧よりも低い圧力に設定され、本実施形態では0.3PMa程度である。この所定圧力は、パイロットポンプ5の容量や、パイロット通路52の内径及び長さ等に応じて設定される。そして、その設定された所定圧力以上で弁体82が第2シート部81cに接触するように、スプリング83の初期荷重が設定される。 The predetermined pressure, which is the pilot pressure at which the valve body 82 contacts the second seat portion 81c, is set to a pressure lower than the pilot pressure at which the spool 56 moves, and is approximately 0.3 PMa in this embodiment. This predetermined pressure is set according to the capacity of the pilot pump 5, the inner diameter and length of the pilot passage 52, and the like. The initial load of the spring 83 is set so that the valve body 82 contacts the second seat portion 81c at a pressure equal to or higher than the set predetermined pressure.
 以上のように、気体抜き弁80により、パイロットポンプ5の停止時には、ドレン室51側からパイロット室23側への空気の移動が防止され、パイロットポンプ5の駆動時には、オペレータが操作レバー10を操作する前に、パイロット室23側の空気がドレン室51側へ自然と排出されるため、オペレータの入力操作に対するシリンダ2の応答遅れが抑制される。さらに、オペレータが操作レバー10を操作する作業時には、パイロット室23からドレン室51へのパイロット圧油の流れが遮断されるため、気体抜き弁80が切換弁22及びシリンダ2の動作に悪影響を及ぼすことはない。 As described above, the gas vent valve 80 prevents air from moving from the drain chamber 51 side to the pilot chamber 23 side when the pilot pump 5 is stopped, and when the pilot pump 5 is driven, the operator operates the control lever 10. Since the air in the pilot chamber 23 side is naturally discharged to the drain chamber 51 side before the operation, a delay in the response of the cylinder 2 to the operator's input operation is suppressed. Furthermore, when the operator operates the control lever 10, the flow of pilot pressure oil from the pilot chamber 23 to the drain chamber 51 is blocked, so the gas vent valve 80 adversely affects the operation of the switching valve 22 and the cylinder 2. Never.
 なお、油圧ショベルが停止状態から始動した際に、オペレータが操作レバー10を操作することによって、通路81を通じたパイロット室23からドレン室51への空気抜きを行うようにしてもよい。ただ、この場合には、弁体82が第2シート部81cに接触しないように(本実施形態ではパイロット室23のパイロット圧が0.3MPa以上とならないように)、操作レバー10を操作する必要がある。つまり、スプール56が移動しないように操作レバー10を操作する必要がある。 Note that when the hydraulic excavator is started from a stopped state, the operator may operate the operating lever 10 to bleed air from the pilot chamber 23 to the drain chamber 51 through the passage 81. However, in this case, it is necessary to operate the operating lever 10 so that the valve body 82 does not come into contact with the second seat portion 81c (in this embodiment, so that the pilot pressure in the pilot chamber 23 does not exceed 0.3 MPa). There is. In other words, it is necessary to operate the operating lever 10 so that the spool 56 does not move.
 以上の実施形態によれば、以下に示す効果を奏する。 According to the above embodiment, the following effects are achieved.
 気体抜き弁80の弁体82は、パイロットポンプ5の停止時にはスプリング83の付勢力によって第1シート部81bに接触して通路81を遮断するため、ドレン室51側からパイロット室23側への空気の移動が防止される。また、弁体82は、パイロットポンプ5の駆動時であってパイロット室23のパイロット圧が所定圧力未満の場合には、スプリング83の付勢力に抗して移動して第1シート部81bから離れ、パイロット室23からドレン室51への空気の流れを許容するため、パイロット室23側の空気がドレン室51側へ排出され、空気の影響によるシリンダ2の応答遅れが抑制される。 When the pilot pump 5 is stopped, the valve body 82 of the gas vent valve 80 comes into contact with the first seat portion 81b by the urging force of the spring 83 and blocks the passage 81, so that air does not flow from the drain chamber 51 side to the pilot chamber 23 side. movement is prevented. Furthermore, when the pilot pump 5 is driven and the pilot pressure in the pilot chamber 23 is less than a predetermined pressure, the valve body 82 moves against the biasing force of the spring 83 and separates from the first seat portion 81b. In order to allow air to flow from the pilot chamber 23 to the drain chamber 51, the air from the pilot chamber 23 side is discharged to the drain chamber 51 side, thereby suppressing the response delay of the cylinder 2 due to the influence of air.
 また、オペレータが操作レバー10を操作する作業時には、通路81を通じたパイロット室23からドレン室51へのパイロット圧油の流れが遮断されるため、気体抜き弁80がシリンダ2の動作に悪影響を及ぼすことはない。 Furthermore, when the operator operates the control lever 10, the flow of pilot pressure oil from the pilot chamber 23 to the drain chamber 51 through the passage 81 is blocked, so the gas vent valve 80 has a negative effect on the operation of the cylinder 2. Never.
 以下に、図6を参照して、上記実施形態の変形例について説明する。図6は、図4に対応する図であり、ピストン50周辺の断面図である。図6において、上記実施形態と同様の機能を有する構成には、同一の符号を付す。本変形例では、気体抜き弁80の構成が上記実施形態と異なる。 A modification of the above embodiment will be described below with reference to FIG. FIG. 6 is a diagram corresponding to FIG. 4, and is a sectional view of the vicinity of the piston 50. In FIG. 6, components having the same functions as those in the above embodiment are denoted by the same reference numerals. In this modification, the configuration of the gas vent valve 80 is different from the above embodiment.
 本変形例においても、弁体82は、パイロットポンプ5の停止時にはスプリング83の付勢力によって第1シート部81bに接触して通路81を遮断するため、ドレン室51側からパイロット室23側への空気の移動が防止される。また、弁体82は、パイロットポンプ5の駆動時であってパイロット室23のパイロット圧が所定圧力未満の場合には、スプリング83の付勢力に抗して移動して第1シート部81bから離れ、パイロット室23からドレン室51への空気の流れを許容するため、パイロット室23側の空気がドレン室51側へ排出され、空気の影響によるシリンダ2の応答遅れが抑制される。この点では、本変形例は、上記実施形態と同じである。 Also in this modification, when the pilot pump 5 is stopped, the valve body 82 contacts the first seat portion 81b and blocks the passage 81 due to the biasing force of the spring 83, so that the valve body 82 blocks the passage 81 from the drain chamber 51 side to the pilot chamber 23 side. Air movement is prevented. Furthermore, when the pilot pump 5 is driven and the pilot pressure in the pilot chamber 23 is less than a predetermined pressure, the valve body 82 moves against the biasing force of the spring 83 and separates from the first seat portion 81b. In order to allow air to flow from the pilot chamber 23 to the drain chamber 51, the air from the pilot chamber 23 side is discharged to the drain chamber 51 side, thereby suppressing the response delay of the cylinder 2 due to the influence of air. In this respect, this modification is the same as the above embodiment.
 しかし、本変形例の気体抜き弁80では、パイロット室23のパイロット圧が所定圧力以上の場合であっても、弁体82は、スプリング83の付勢力に抗して移動するが第2シート部81c(図4参照)には接触せず、通路81を通じたパイロット室23からドレン室51へのパイロット圧油の流れを遮断しない。これは、上記実施形態とは異なり、スプリング83の全体が弁体収容部81aに収容されるためである。具体的には、スプリング83は、弁体82とピストン50に形成される穴50eの底面との間に圧縮して設けられる。 However, in the gas vent valve 80 of this modification, even if the pilot pressure in the pilot chamber 23 is higher than a predetermined pressure, the valve body 82 moves against the biasing force of the spring 83, but the second seat portion 81c (see FIG. 4), and does not block the flow of pilot pressure oil from the pilot chamber 23 to the drain chamber 51 through the passage 81. This is because, unlike the above embodiment, the entire spring 83 is accommodated in the valve body accommodating portion 81a. Specifically, the spring 83 is compressed and provided between the valve body 82 and the bottom surface of the hole 50e formed in the piston 50.
 本変形例では、パイロット室23のパイロット圧が所定圧力以上の場合であっても、弁体82は、第2シート部81c(図4参照)に接触しないため、通路81を通じたパイロット室23からドレン室51へのパイロット圧油の流れを許容する。しかし、気体抜き弁80は、通路81に設けられパイロット室23からドレン室51へのパイロット圧油の流れに抵抗を付与する絞りとしてのオリフィス85を有する。したがって、オペレータが操作レバー10を操作する作業時には、オリフィス85によりパイロット室23からドレン室51へのパイロット圧油の流れに抵抗が付与され、パイロット室23には所望のパイロット圧が作用するため、気体抜き弁80がシリンダ2の動作に悪影響を及ぼすことはない。 In this modification, even if the pilot pressure in the pilot chamber 23 is higher than a predetermined pressure, the valve body 82 does not come into contact with the second seat portion 81c (see FIG. 4). Pilot pressure oil is allowed to flow into the drain chamber 51. However, the gas vent valve 80 has an orifice 85 that is provided in the passage 81 and serves as a throttle that provides resistance to the flow of pilot pressure oil from the pilot chamber 23 to the drain chamber 51. Therefore, when the operator operates the control lever 10, the orifice 85 provides resistance to the flow of pilot pressure oil from the pilot chamber 23 to the drain chamber 51, and the desired pilot pressure acts on the pilot chamber 23. The gas vent valve 80 does not adversely affect the operation of the cylinder 2.
 本変形例では、オリフィス85は、ハウジング84に形成される。しかし、オリフィス85は、通路81に設けられればよく、形成される位置は限定されない。例えば、通路81おける、穴50eの底面とスリット50dとの間にオリフィス85を設けてもよい。 In this modification, the orifice 85 is formed in the housing 84. However, the orifice 85 only needs to be provided in the passage 81, and the position where it is formed is not limited. For example, an orifice 85 may be provided in the passage 81 between the bottom surface of the hole 50e and the slit 50d.
 以下、本発明の実施形態の構成、作用、及び効果をまとめて説明する。 Hereinafter, the configuration, operation, and effects of the embodiments of the present invention will be collectively described.
 負荷1を駆動するシリンダ2の伸縮作動を制御する油圧制御装置100(流体圧制御装置)は、ポンプ4(流体圧供給源)からシリンダ2への作動流体の供給を制御する制御弁6と、パイロットポンプ5(パイロット圧供給源)から制御弁6に導かれるパイロット圧を制御するパイロット制御弁9と、制御弁6が中立位置6Cの場合に負荷1による負荷圧が作用するシリンダ2の負荷側圧力室2aと制御弁6とを接続するメイン通路7と、メイン通路7に設けられる負荷保持機構20と、を備え、負荷保持機構20は、制御弁6から負荷側圧力室2aへの作動流体の流れを許容する一方、背圧に応じて負荷側圧力室2aから制御弁6への作動流体の流れを許容するオペレートチェック弁21と、パイロット制御弁9を通じて導かれるパイロット圧によって制御弁6と連動して動作し、オペレートチェック弁21の作動を切り換えるための切換弁22と、を有し、切換弁22は、パイロット制御弁9を通じてパイロット圧が導かれるパイロット室23と、パイロット室23のパイロット圧に応じて移動するスプール56と、パイロット圧を受けてスプール56に推力を付与するピストン50と、スプール56とピストン50によって区画されるドレン室51と、ピストン50に設けられ、パイロット室23からドレン室51へ空気(気体)を排出するための気体抜き弁80と、を有し、気体抜き弁80は、パイロット室23とドレン室51にわたって設けられる通路81と、通路81を開閉する弁体82と、弁体82を付勢するスプリング83(付勢部材)と、を有し、弁体82は、パイロットポンプ5の停止時には、スプリング83の付勢力によって第1シート部81bに接触して通路81を遮断し、パイロットポンプ5の駆動時であってパイロット室23のパイロット圧が、スプール56が移動するパイロット圧よりも低い所定圧力未満の場合には、スプリング83の付勢力に抗して移動して第1シート部81bから離れ、パイロット室23からドレン室51への流体の流れを許容する。 A hydraulic control device 100 (fluid pressure control device) that controls the expansion and contraction operation of the cylinder 2 that drives the load 1 includes a control valve 6 that controls the supply of working fluid from the pump 4 (fluid pressure supply source) to the cylinder 2; A pilot control valve 9 that controls the pilot pressure guided from the pilot pump 5 (pilot pressure supply source) to the control valve 6, and the load side of the cylinder 2 on which the load pressure from the load 1 acts when the control valve 6 is in the neutral position 6C. The load holding mechanism 20 includes a main passage 7 that connects the pressure chamber 2a and the control valve 6, and a load holding mechanism 20 provided in the main passage 7. and an operating check valve 21 that allows the flow of working fluid from the load-side pressure chamber 2a to the control valve 6 according to the back pressure, and a pilot pressure led through the pilot control valve 9 to control the control valve 6 and the control valve 6. It has a switching valve 22 that operates in conjunction with the operating check valve 21 to switch the operation of the operating check valve 21. A spool 56 that moves according to pressure; a piston 50 that applies thrust to the spool 56 in response to pilot pressure; a drain chamber 51 that is partitioned by the spool 56 and the piston 50; It has a gas vent valve 80 for discharging air (gas) to the drain chamber 51, and the gas vent valve 80 includes a passage 81 provided across the pilot chamber 23 and the drain chamber 51, and a valve body that opens and closes the passage 81. 82, and a spring 83 (biasing member) that biases the valve body 82, and when the pilot pump 5 is stopped, the valve body 82 comes into contact with the first seat portion 81b by the biasing force of the spring 83. The passage 81 is shut off, and when the pilot pump 5 is driven and the pilot pressure in the pilot chamber 23 is less than a predetermined pressure lower than the pilot pressure at which the spool 56 moves, It moves away from the first seat portion 81b and allows fluid to flow from the pilot chamber 23 to the drain chamber 51.
 この構成では、パイロット室23からドレン側へ空気を排出するための気体抜き弁80がピストン50に設けられ、気体抜き弁80の弁体82は、パイロットポンプ5の停止時にはスプリング83の付勢力によって第1シート部81bに接触して通路81を遮断するため、ドレン室51側からパイロット室23側への空気の移動が防止される。また、弁体82は、パイロットポンプ5の駆動時であってパイロット室23のパイロット圧が所定圧力未満の場合には、スプリング83の付勢力に抗して移動して第1シート部81bから離れ、パイロット室23からドレン室51への流体の流れを許容するため、パイロット室23側の空気がドレン室51側へ排出され、空気の影響によるシリンダ2の応答遅れが抑制される。よって、ドレン側からパイロット室23側への空気の移動を防止すると共に、空気の影響による応答遅れを抑制することができる。 In this configuration, a gas vent valve 80 for discharging air from the pilot chamber 23 to the drain side is provided on the piston 50, and the valve body 82 of the gas vent valve 80 is moved by the biasing force of the spring 83 when the pilot pump 5 is stopped. Since the passage 81 is blocked by contacting the first seat portion 81b, movement of air from the drain chamber 51 side to the pilot chamber 23 side is prevented. Furthermore, when the pilot pump 5 is driven and the pilot pressure in the pilot chamber 23 is less than a predetermined pressure, the valve body 82 moves against the biasing force of the spring 83 and separates from the first seat portion 81b. In order to allow fluid to flow from the pilot chamber 23 to the drain chamber 51, air from the pilot chamber 23 side is discharged to the drain chamber 51 side, and response delay of the cylinder 2 due to the influence of air is suppressed. Therefore, it is possible to prevent air from moving from the drain side to the pilot chamber 23 side, and to suppress response delays due to the influence of air.
 また、弁体82は、パイロットポンプ5の駆動時であってパイロット室23のパイロット圧が所定圧力以上の場合には、スプリング83の付勢力に抗して移動して第2シート部81cに接触して通路81を遮断し、パイロット室23からドレン室51へのパイロット圧油の流れを遮断する。 Further, when the pilot pump 5 is driven and the pilot pressure in the pilot chamber 23 is higher than a predetermined pressure, the valve body 82 moves against the biasing force of the spring 83 and comes into contact with the second seat portion 81c. The passage 81 is blocked, and the flow of pilot pressure oil from the pilot chamber 23 to the drain chamber 51 is blocked.
 この構成では、弁体82は、パイロットポンプ5の駆動時であってパイロット室23のパイロット圧が所定圧力以上の場合には、通路81を通じたパイロット室23からドレン室51へのパイロット圧油の流れを遮断するため、気体抜き弁80がシリンダ2の動作に悪影響を及ぼすことはない。 In this configuration, the valve body 82 allows pilot pressure oil to flow from the pilot chamber 23 to the drain chamber 51 through the passage 81 when the pilot pressure in the pilot chamber 23 is higher than a predetermined pressure when the pilot pump 5 is driven. Since the flow is blocked, the gas vent valve 80 does not adversely affect the operation of the cylinder 2.
 また、弁体82は、パイロット室23のパイロット圧が前記所定圧力以上の場合であっても、パイロット室23からドレン室51へのパイロット圧油の流れを許容し、気体抜き弁80は、通路81に設けられパイロット室23からドレン室51へのパイロット圧油の流れに抵抗を付与するオリフィス85(絞り)をさらに有する。 Further, the valve body 82 allows pilot pressure oil to flow from the pilot chamber 23 to the drain chamber 51 even when the pilot pressure in the pilot chamber 23 is higher than the predetermined pressure, and the gas vent valve 80 allows the pilot pressure oil to flow from the pilot chamber 23 to the drain chamber 51. It further includes an orifice 85 (restriction) provided at 81 to provide resistance to the flow of pilot pressure oil from pilot chamber 23 to drain chamber 51 .
 この構成では、パイロットポンプ5の駆動時であってパイロット室23のパイロット圧が所定圧力以上の場合にはオリフィス85によりパイロット室23からドレン室51へのパイロット圧油の流れに抵抗が付与されるため、気体抜き弁80がシリンダ2の動作に悪影響を及ぼすことはない。 In this configuration, when the pilot pump 5 is driven and the pilot pressure in the pilot chamber 23 is higher than a predetermined pressure, the orifice 85 provides resistance to the flow of pilot pressure oil from the pilot chamber 23 to the drain chamber 51. Therefore, the gas vent valve 80 does not adversely affect the operation of the cylinder 2.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 Although the embodiments of the present invention have been described above, the above embodiments merely show a part of the application examples of the present invention, and are not intended to limit the technical scope of the present invention to the specific configurations of the above embodiments. do not have.
 本願は2022年3月16日に日本国特許庁に出願された特願2022-41672に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2022-41672 filed with the Japan Patent Office on March 16, 2022, and the entire contents of this application are incorporated herein by reference.

Claims (3)

  1.  負荷を駆動するシリンダの伸縮作動を制御する流体圧制御装置であって、
     前記シリンダへの作動流体の供給を制御する制御弁と、
     パイロット圧供給源から前記制御弁に導かれるパイロット圧を制御するパイロット制御弁と、
     前記制御弁が中立位置の場合に負荷による負荷圧が作用する前記シリンダの負荷側圧力室と前記制御弁とを接続するメイン通路と、
     前記メイン通路に設けられる負荷保持機構と、を備え、
     前記負荷保持機構は、
     前記制御弁から前記負荷側圧力室への作動流体の流れを許容する一方、背圧に応じて前記負荷側圧力室から前記制御弁への作動流体の流れを許容するオペレートチェック弁と、
     前記パイロット制御弁を通じて導かれるパイロット圧によって前記制御弁と連動して動作し、前記オペレートチェック弁の作動を切り換えるための切換弁と、を有し、
     前記切換弁は、
     前記パイロット制御弁を通じてパイロット圧が導かれるパイロット室と、
     前記パイロット室のパイロット圧に応じて移動するスプールと、
     パイロット圧を受けて前記スプールに推力を付与するピストンと、
     前記スプールと前記ピストンによって区画されるドレン室と、
     前記ピストンに設けられ、前記パイロット室から前記ドレン室へ気体を排出するための気体抜き弁と、を有し、
     前記気体抜き弁は、
     前記パイロット室と前記ドレン室にわたって設けられる通路と、
     前記通路を開閉する弁体と、
     前記弁体を付勢する付勢部材と、を有し、
     前記弁体は、前記パイロット圧供給源の停止時には、前記付勢部材の付勢力によって第1シート部に接触して前記通路を遮断し、前記パイロット圧供給源の駆動時であって前記パイロット室のパイロット圧が、前記スプールが移動するパイロット圧よりも低い所定圧力未満の場合には、前記付勢部材の付勢力に抗して移動して前記第1シート部から離れ、前記パイロット室から前記ドレン室への流体の流れを許容する
    流体圧制御装置。
    A fluid pressure control device that controls the expansion and contraction operation of a cylinder that drives a load,
    a control valve that controls supply of working fluid to the cylinder;
    a pilot control valve that controls pilot pressure guided from a pilot pressure supply source to the control valve;
    a main passage connecting the control valve and a load-side pressure chamber of the cylinder on which load pressure due to a load acts when the control valve is in a neutral position;
    A load holding mechanism provided in the main passage,
    The load holding mechanism is
    an operated check valve that allows a flow of working fluid from the control valve to the load-side pressure chamber, and also allows a flow of working fluid from the load-side pressure chamber to the control valve depending on back pressure;
    a switching valve that operates in conjunction with the control valve by pilot pressure guided through the pilot control valve to switch the operation of the operating check valve;
    The switching valve is
    a pilot chamber into which pilot pressure is introduced through the pilot control valve;
    a spool that moves according to pilot pressure in the pilot chamber;
    a piston that applies thrust to the spool in response to pilot pressure;
    a drain chamber defined by the spool and the piston;
    a gas vent valve provided on the piston for discharging gas from the pilot chamber to the drain chamber;
    The gas vent valve is
    a passageway provided across the pilot chamber and the drain chamber;
    a valve body that opens and closes the passage;
    a biasing member that biases the valve body;
    When the pilot pressure supply source is stopped, the valve body contacts the first seat part to block the passage by the biasing force of the biasing member, and when the pilot pressure supply source is driven, the valve body closes the passage. If the pilot pressure of the spool is less than a predetermined pressure lower than the pilot pressure at which the spool moves, the spool moves against the biasing force of the biasing member and moves away from the first seat portion, and the spool moves from the pilot chamber to the predetermined pressure. A fluid pressure control device that allows fluid to flow into the drain chamber.
  2.  請求項1に記載の流体圧制御装置であって、
     前記弁体は、前記パイロット圧供給源の駆動時であって前記パイロット室のパイロット圧が前記所定圧力以上の場合には、前記付勢部材の付勢力に抗して移動して第2シート部に接触して前記通路を遮断し、前記パイロット室から前記ドレン室へのパイロット流体の流れを遮断する
    流体圧制御装置。
    The fluid pressure control device according to claim 1,
    When the pilot pressure supply source is driven and the pilot pressure in the pilot chamber is equal to or higher than the predetermined pressure, the valve body moves against the biasing force of the biasing member and closes the second seat portion. A fluid pressure control device that contacts and blocks the passage to block the flow of pilot fluid from the pilot chamber to the drain chamber.
  3.  請求項1に記載の流体圧制御装置であって、
     前記弁体は、前記パイロット室のパイロット圧が前記所定圧力以上の場合であっても、前記パイロット室から前記ドレン室へのパイロット流体の流れを許容し、
     前記気体抜き弁は、前記通路に設けられ前記パイロット室から前記ドレン室へのパイロット流体の流れに抵抗を付与する絞りをさらに有する
    流体圧制御装置。
    The fluid pressure control device according to claim 1,
    The valve body allows pilot fluid to flow from the pilot chamber to the drain chamber even if the pilot pressure in the pilot chamber is equal to or higher than the predetermined pressure,
    The gas vent valve further includes a throttle provided in the passage and providing resistance to the flow of pilot fluid from the pilot chamber to the drain chamber.
PCT/JP2023/009044 2022-03-16 2023-03-09 Fluid pressure control device WO2023176685A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022041672 2022-03-16
JP2022-041672 2022-03-16

Publications (1)

Publication Number Publication Date
WO2023176685A1 true WO2023176685A1 (en) 2023-09-21

Family

ID=88023295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009044 WO2023176685A1 (en) 2022-03-16 2023-03-09 Fluid pressure control device

Country Status (1)

Country Link
WO (1) WO2023176685A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187416A (en) * 1991-06-20 1993-07-27 Linde Ag Air vent device for liquid-operated device
JP2002317802A (en) * 2001-04-20 2002-10-31 Shin Caterpillar Mitsubishi Ltd Bleeder structure for pilot operation control valve
JP2019027504A (en) * 2017-07-28 2019-02-21 Kyb株式会社 Fluid pressure control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05187416A (en) * 1991-06-20 1993-07-27 Linde Ag Air vent device for liquid-operated device
JP2002317802A (en) * 2001-04-20 2002-10-31 Shin Caterpillar Mitsubishi Ltd Bleeder structure for pilot operation control valve
JP2019027504A (en) * 2017-07-28 2019-02-21 Kyb株式会社 Fluid pressure control device

Similar Documents

Publication Publication Date Title
JP5948260B2 (en) Fluid pressure control device
JP5822233B2 (en) Fluid pressure control device
CN108138809B (en) Fluid pressure control device
WO2015087744A1 (en) Fluid pressure control device
WO2015037433A1 (en) Fluid pressure control device
WO2016056564A1 (en) Fluid pressure control device
JP4918001B2 (en) Fluid pressure control device
JP6857571B2 (en) Fluid pressure controller
WO2023176685A1 (en) Fluid pressure control device
JP6706170B2 (en) Fluid pressure controller
WO2023176686A1 (en) Fluid pressure control device
JP2004132411A (en) Hydraulic control device
WO2023017719A1 (en) Fluid pressure control device
JP5184299B2 (en) Fluid pressure control device
JP6502813B2 (en) Fluid pressure control device
WO2015174250A1 (en) Fluidic control device
JP2012197909A (en) Fluid pressure control device
JP2000104842A (en) Pressure control valve
JP2004204923A (en) Hydraulic control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770641

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)