WO2023176636A1 - Imaging device - Google Patents

Imaging device Download PDF

Info

Publication number
WO2023176636A1
WO2023176636A1 PCT/JP2023/008829 JP2023008829W WO2023176636A1 WO 2023176636 A1 WO2023176636 A1 WO 2023176636A1 JP 2023008829 W JP2023008829 W JP 2023008829W WO 2023176636 A1 WO2023176636 A1 WO 2023176636A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
imaging device
photodetector
dimensional image
Prior art date
Application number
PCT/JP2023/008829
Other languages
French (fr)
Japanese (ja)
Inventor
磨志 橋本谷
雄介 北川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023176636A1 publication Critical patent/WO2023176636A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor

Definitions

  • the present disclosure relates to an imaging device.
  • Patent Document 1 discloses a wavelength transmission system in which a light source that irradiates a subject with infrared light, infrared detection elements arranged in a two-dimensional array, and a plurality of wavelength transmission filters that transmit different wavelength bands are arranged on a plane.
  • a solid-state imaging device including a filter array is disclosed.
  • the solid-state imaging device disclosed in Patent Document 1 identifies the substance of the object and acquires image information of the object from wavelength information obtained by an infrared detection element.
  • an infrared detection element and a wavelength transmission filter array are integrally formed.
  • the entire device may become unusable, and there is a concern that the yield will decrease.
  • it is necessary to increase the area or reduce the number of pixels. In other words, there is a trade-off between sensor size and spatial resolution.
  • the present disclosure provides an imaging device that can reduce the sensor size while suppressing a decrease in spatial resolution.
  • An imaging device includes a light source unit that structures light into a plurality of two-dimensional bright and dark patterns and emits the light, and a light source unit that emits light from the target object when the light from the light source unit is irradiated onto the target object.
  • a photodetector that detects the light emitted by the object;
  • a calculation unit that reconstructs a two-dimensional image of the object by performing a cross-correlation calculation between a signal output from the photodetector and a corresponding brightness pattern; , the light source section emits light in a plurality of different bands, and the calculation section reconstructs the two-dimensional image for each band.
  • an imaging device includes a light source unit that emits light, and a plurality of light sources that emit light from the target object when the light from the light source unit is irradiated onto the target object.
  • a structuring means for structuring into a dimensional light-dark pattern
  • a photodetector for detecting the light structured by the structuring means
  • a cross-correlation between a signal output from the photodetector and the corresponding light-dark pattern a calculation unit that reconstructs a two-dimensional image of the object by performing calculation, the light source unit emits light of a plurality of mutually different bands, and the calculation unit Reconstruct a two-dimensional image.
  • the senor size can be reduced while suppressing a decrease in spatial resolution.
  • FIG. 1 is a diagram showing the configuration of an imaging device according to Embodiment 1.
  • FIG. 2 is a diagram illustrating a two-dimensional image reconstruction method by the imaging device according to the first embodiment.
  • FIG. 3 is a diagram showing the configuration of an imaging device according to a modification of the first embodiment.
  • FIG. 4 is a diagram showing the configuration of an imaging device according to the second embodiment.
  • FIG. 5 is a diagram showing the configuration of an imaging device according to Embodiment 3.
  • FIG. 6 is a diagram illustrating the principle of an imaging device according to Embodiment 3.
  • FIG. 7 is a diagram showing the configuration of an imaging device according to Embodiment 4.
  • FIG. 8 is a diagram showing the configuration of an imaging device according to a modification of the fourth embodiment.
  • An imaging device includes a light source unit that structures light into a plurality of two-dimensional bright and dark patterns and emits the light, and a light source unit that emits light from the target object when the light from the light source unit is irradiated onto the target object.
  • a photodetector that detects the light emitted by the object;
  • a calculation unit that reconstructs a two-dimensional image of the object by performing a cross-correlation calculation between a signal output from the photodetector and a corresponding brightness pattern; , the light source section emits light in a plurality of different bands, and the calculation section reconstructs the two-dimensional image for each band.
  • the arithmetic unit reconstructs a two-dimensional image by performing a cross-correlation calculation, so a detector with fewer pixels than the number of pixels of the two-dimensional image can be used as a photodetector. That is, the sensor size can be reduced while suppressing a decrease in spatial resolution. For example, a single pixel detector can be used as the photodetector. Furthermore, since a two-dimensional image is reconstructed for each band, it is possible to obtain a distribution of components corresponding to each band. In other words, the imaging device according to this aspect can be effectively used as a small-sized analysis device with high resolution.
  • the light source unit may include a light source and a structuring means for structuring the light from the light source into the plurality of two-dimensional bright and dark patterns.
  • an imaging device includes a light source unit that emits light, and a plurality of light sources that emit light from the target object when the light from the light source unit is irradiated onto the target object.
  • a structuring means for structuring into a dimensional light-dark pattern
  • a photodetector for detecting the light structured by the structuring means
  • a cross-correlation between a signal output from the photodetector and the corresponding light-dark pattern a calculation unit that reconstructs a two-dimensional image of the object by performing calculation, the light source unit emits light of a plurality of mutually different bands, and the calculation unit Reconstruct a two-dimensional image.
  • the arithmetic unit reconstructs a two-dimensional image by performing a cross-correlation calculation, so a detector with fewer pixels than the number of pixels of the two-dimensional image can be used as a photodetector. That is, the sensor size can be reduced while suppressing a decrease in spatial resolution. For example, a single pixel detector can be used as the photodetector. Furthermore, since a two-dimensional image is reconstructed for each band, it is possible to obtain a distribution of components corresponding to each band. In other words, the imaging device according to this aspect can be effectively used as a small-sized analysis device with high resolution.
  • the structuring means includes a plurality of optical elements arranged two-dimensionally, and the plurality of optical elements direct incident light in a first direction and a second direction different from the first direction.
  • the photodetector includes a first light receiving element that receives light emitted from the structuring means in the first direction, and a first light receiving element that receives light emitted from the structuring means in the second direction. and a second light receiving element that receives the light.
  • signals corresponding to two bright and dark patterns can be obtained simultaneously in one measurement, making it possible to shorten measurement time or reconstruct a high-quality two-dimensional image.
  • noise can be removed by using the difference between signals corresponding to two bright and dark patterns, making it possible to reconstruct a high-quality two-dimensional image.
  • the structuring means may be a digital mirror device, an active matrix liquid crystal device, or a spatial light modulator.
  • the light that is, form a two-dimensional light and dark pattern.
  • the plurality of bands may be included in a wavelength band of 2 ⁇ m or more and 10 ⁇ m or less.
  • the mid-infrared band As a result, by using the mid-infrared band, it can be used for component analysis of a target object or inspection for the presence of foreign substances other than the target object.
  • the calculation unit may further estimate the chemical composition of the object based on the signal intensity ratio of the two two-dimensional images for each of at least two bands.
  • the light emitted from the target object may be reflected light generated when the target object reflects at least a portion of the light from the light source section.
  • the light emitted from the object may be transmitted light generated when the object transmits at least a portion of the light from the light source section.
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Therefore, for example, the scales and the like in each figure do not necessarily match. Further, in each figure, substantially the same configurations are denoted by the same reference numerals, and overlapping explanations will be omitted or simplified.
  • FIG. 1 is a diagram showing the configuration of an imaging device 1 according to the present embodiment.
  • the imaging device 1 shown in FIG. 1 is a device that images the object 90 by irradiating the object 90 with light.
  • the imaging device 1 detects reflected light from the object 90 as light emitted from the object 90 when the object 90 is irradiated with light. Since the light irradiated onto the object 90 is absorbed by components contained in the object 90, the intensity of the reflected light from the object 90 changes depending on the amount of light absorbed. The amount of absorption at this time differs for each component included in the target object 90 and for each wavelength band (namely, band) of the irradiated light. Therefore, by irradiating light of a specific band, it is possible to estimate the presence and distribution of components (functional groups) corresponding to the band. Note that in FIG. 1, the path of light emitted from the light source 10, reflected by the object 90, and then reaching the photodetector 30 is schematically represented by a broken line.
  • the object 90 is, for example, a medicine tablet or powder.
  • the imaging device 1 can be used to detect foreign substances contained in medicine tablets or powder.
  • the object 90 is not limited to a medicine tablet or powder, but may be a food product or an industrial product.
  • the object 90 is not limited to a solid object, and may be a liquid or a gas.
  • the imaging device 1 includes a light source 10, a structuring means 20, a photodetector 30, a control section 40, and a calculation section 50. Further, the imaging device 1 includes a plurality of optical elements 61 to 64 and a half mirror 65.
  • the light source 10 emits light in a plurality of different bands.
  • the plurality of bands are included in a wavelength band of 2 ⁇ m or more and 10 ⁇ m or less.
  • the plurality of bands are at least two bands selected from the group of bands shown in Table 1 below.
  • Table 1 shows the specific wavelength range of each band and the components that can be measured when the light of the band is irradiated. For example, by irradiating the object 90 with band A light and detecting the reflected light from the object 90, the presence and distribution of NH can be estimated.
  • the light source 10 can select any band from the band group shown in Table 1 according to the component to be measured, and can irradiate light of the selected band.
  • Each band of light is a narrow band of light having a peak wavelength within the wavelength range of the corresponding band.
  • the half-width of light in each band is, for example, shorter than the bandwidth of the band.
  • the light in each band does not substantially contain wavelength components outside the corresponding band.
  • the light source 10 emits light for each band in a time-division manner.
  • the light source 10 emits band A light and then emits band B light.
  • the light source 10 is, for example, an infrared tunable laser such as a quantum cascade (QC) laser.
  • the light source 10 may be a broadband light source and a wavelength selective light source using a grating or the like, or may include a plurality of filters corresponding to each band.
  • a broadband light source emits light having a predetermined or higher intensity across multiple bands.
  • the broadband light source is an LED (Light Emitting Diode), a halogen lamp, a supercontinuum light source, a superluminescent diode light source, or the like.
  • the plurality of filters corresponding to each band are bandpass filters that transmit light in the corresponding band and block light in other bands.
  • the light source 10 can emit light in a corresponding band by passing light emitted from a broadband light source through one filter selected from a plurality of filters.
  • the light source 10 can emit light for each band in a time-division manner by switching the selected filter.
  • the structuring means 20 structures the light from the light source 10 into a plurality of two-dimensional bright and dark patterns.
  • the bright and dark pattern is represented by "bright” and “dark” for each of a plurality of micro regions arranged in an array on a two-dimensional plane.
  • the structuring means 20 is a transmission type device, and the transmittance can be changed for each micro region. A micro region with high transmittance is "bright", and a micro region with low transmittance is "dark".
  • the structuring means 20 is an active matrix liquid crystal device or a spatial light modulator or the like.
  • a reflective device such as a digital mirror device (DMD) may be used as the structuring means 20, a reflective device such as a digital mirror device (DMD) may be used. An example of using a digital mirror device will be explained later.
  • DMD digital mirror device
  • the structuring means 20 switches the plurality of bright and dark patterns in a time-division manner based on the control by the control unit 40.
  • the plurality of bright and dark patterns are randomly generated based on a predetermined algorithm.
  • the number of bright and dark patterns is several hundred or more, but may be several thousand or more, or even tens of thousands or more. The greater the number of bright and dark patterns, the higher the quality of the two-dimensional image to be reconstructed. On the other hand, by reducing the number of bright and dark patterns, the time required for measurement can be shortened.
  • the number of minute regions corresponds to the number of pixels of the two-dimensional image to be reconstructed. Therefore, by increasing the number of minute regions, a high-definition two-dimensional image can be obtained.
  • the photodetector 30 detects light emitted from the object 90 when irradiated with light from the light source 10.
  • the photodetector 30 irradiates the object 90 with structured light by the structuring means 20 and detects the reflected light of the structured light by the object 90.
  • the photodetector 30 outputs a signal according to the intensity of the detected reflected light.
  • the timing at which the photodetector 30 outputs a signal is controlled by the control unit 40 so as to be synchronized with the timing at which the bright/dark pattern is switched. That is, the photodetector 30 outputs a signal according to the intensity of light (specifically, reflected light) emitted from the object 90 for each bright and dark pattern.
  • the signal output from the photodetector 30 can be associated one-to-one with the bright and dark pattern.
  • the photodetector 30 is, for example, a one-pixel infrared photodetector.
  • the infrared photodetector for example, a HgCdTe detector, an InSb detector, or a bolometer can be used.
  • a one-pixel (single pixel) detector can be used as the photodetector 30, so the photodetector 30 can be made smaller. Furthermore, since a large light-receiving area for one pixel can be ensured, sensitivity can be increased or the dynamic range can be expanded. Additionally, photodetectors sensitive to the mid-infrared band are generally expensive. As the photodetector 30, a simple and compact detector for one pixel can be used, so that cost reduction can also be achieved.
  • the control unit 40 performs overall control of the imaging device 1. Specifically, the control section 40 controls the light source 10, the structuring means 20, the photodetector 30, and the calculation section 50. For example, the control unit 40 controls the timing of turning on and turning off the light source 10 and the timing of switching bands. The control unit 40 controls the switching timing of the plurality of bright and dark patterns by the structuring means 20. Further, the control unit 40 controls the output timing of the signal from the photodetector 30 so as to correspond to each of the plurality of bright and dark patterns. Further, the control unit 40 outputs information to the calculation unit 50 to enable association between brightness and darkness patterns and signals, and association with signals for each band.
  • the calculation unit 50 reconstructs a two-dimensional image of the object 90 by performing a cross-correlation calculation between the signal output from the photodetector 30 and the corresponding brightness/darkness pattern.
  • the calculation unit 50 reconstructs a two-dimensional image for each band. A specific reconstruction method will be explained later.
  • the control unit 40 and the calculation unit 50 are each realized by, for example, an LSI (Large Scale Integration) that is an integrated circuit (IC).
  • LSI Large Scale Integration
  • the integrated circuit is not limited to an LSI, and may be a dedicated circuit or a general-purpose processor.
  • the control unit 40 may be a microcontroller.
  • a microcontroller includes, for example, a nonvolatile memory in which a program is stored, a volatile memory that is a temporary storage area for executing the program, an input/output port, a processor that executes the program, and the like.
  • control unit 40 or the calculation unit 50 may be a programmable FPGA (Field Programmable Gate Array) or a reconfigurable processor in which connections and settings of circuit cells within the LSI can be reconfigured.
  • the functions executed by the control unit 40 or the calculation unit 50 may be realized by software or hardware.
  • the control unit 40 and the calculation unit 50 may use common hardware resources.
  • the optical elements 61 to 64 and the half mirror 65 are provided to adjust the optical path.
  • Each of the optical elements 61 to 64 controls the optical path by utilizing the difference in refractive index from the light propagation space.
  • each of the optical elements 61 to 64 is an element that causes refraction, reflection, dispersion, or scattering.
  • the optical elements 61 to 64 are lenses, diffraction gratings, reflectors, light guides, beam homogenizers, and the like.
  • the optical element 61 is, for example, a collimator that converts the light emitted from the light source 10 into parallel light.
  • the optical element 62 is a collimator that outputs the light structured by the structuring means 20 as parallel light.
  • the optical element 63 is structured by the structuring means 20 and is a projection lens that irradiates light transmitted through the half mirror 65 toward the object 90 .
  • optical element 63 is also an objective lens that condenses light (specifically, reflected light) from target object 90. That is, the optical element 63 is used for both the irradiation optical system and the objective optical system.
  • the optical element 64 is a condensing lens that condenses light from the object 90 and reflected by the half mirror 65 onto the photodetector 30.
  • the half mirror 65 is an optical element that separates the light irradiated onto the object 90 from the light (reflected light) from the object 90. Specifically, the half mirror 65 transmits the light structured by the structuring means 20 and reflects the reflected light from the object 90.
  • the optical element 63 can be used both as an irradiation optical system and an objective optical system. Since the optical axis of the irradiation optical system and the optical axis of the objective optical system can be made the same, it is possible to increase the collection efficiency of reflected light from the target object 90 and to suppress the intrusion of disturbance light that causes noise. Can be done.
  • the optical elements 61 to 64 and the half mirror 65 are formed using a suitable material depending on the wavelength of the light to be transmitted.
  • a suitable material for example, germanium, calcium fluoride, potassium bromide, etc. can be used as a material that transmits light in the mid-infrared band.
  • multilayer films of various dielectrics or metals may be used.
  • the configuration shown in FIG. 1 is only an example and can be modified as appropriate.
  • the structuring means 20 may be arranged between the light source 10 and the optical element 61 or between the optical element 62 and the half mirror 65. In this case, at least one of the optical elements 61 and 62 may not be provided.
  • the irradiation optical system that irradiates light onto the target object 90 and the objective optical system that acquires the reflected light from the target object 90 may be realized by separate optical elements.
  • the imaging device 1 does not need to include the half mirror 65.
  • FIG. 2 is a diagram showing a two-dimensional image reconstruction method by the imaging device 1 according to the present embodiment.
  • the calculation unit 50 reconstructs a two-dimensional image using a plurality of bright and dark patterns (also referred to as structured patterns) and signals from the photodetector 30 corresponding to each bright and dark pattern. As shown in FIG. 2, a two-dimensional image is reconstructed by multiplying multiple bright and dark patterns by the signal from the photodetector 30 (cross-correlation calculation) and summing the products for each pattern. Ru.
  • a two-dimensional image is reconstructed by multiplying multiple bright and dark patterns by the signal from the photodetector 30 (cross-correlation calculation) and summing the products for each pattern. Ru.
  • reconstruction of a two-dimensional image refers to a plurality of structured patterns generated by the structuring means 20 and irradiated onto the object 90, and images emitted from the object 90 when each structured pattern is irradiated.
  • This refers to mathematically deriving a two-dimensional image (reflectance distribution or transmittance distribution) of the object 90 from the intensity of light.
  • Reconstruction methods include, for example, a method called ghost imaging and a method called single pixel imaging.
  • the subscript r represents the irradiation order of the bright and dark patterns. That is, b r represents the signal intensity from the photodetector 30 corresponding to the light of the r-th bright and dark pattern. I r represents the r-th brightness pattern. x and y are two-dimensional coordinates of the light and dark pattern. T(x,y) is the reflectance of the target object 90. Note that, when using transmitted light from the object 90 as in the fourth embodiment and its modifications described later, T(x, y) is the transmittance of the object 90.
  • n is the number of bright and dark patterns.
  • ⁇ k> is an ensemble average and is expressed by the following equation (3).
  • G(x, y) in Equation (2) is the average value of intensity changes in all bright and dark patterns at the coordinates (x, y). Therefore, when the number n of bright and dark patterns is sufficiently large, G(x, y) approaches T(x, y), and it becomes possible to consider it as a reconstructed two-dimensional image.
  • ⁇ Single pixel imaging> In single-pixel imaging, in principle, M linearly independent brightness and darkness patterns are required in order to obtain a two-dimensional image consisting of N pixels. M is, for example, a value greater than or equal to N. Regarding a linearly independent brightness/darkness pattern I(x,y) consisting of N pixels, if the corresponding signal intensity is B and the image of the object 90 is T, the following equation (4) is satisfied.
  • equation (4) can be regarded as a matrix operation. That is, equation (4) can be expressed as equation (5) below.
  • the matrix T that is, the two-dimensional image T(x, y) can be obtained.
  • the matrix H for example, a Hadamard matrix is used.
  • the calculation unit 50 of the imaging device 1 performs the above-described reconstruction of the two-dimensional image for each band.
  • the bands correspond to the components to be measured, and the amount of reflected light from the object 90 changes depending on the content of the component. Therefore, a two-dimensional image reconstructed for each band can also be regarded as a two-dimensional distribution of corresponding components.
  • the calculation unit 50 may estimate the chemical composition of the object 90 based on the signal intensity ratio of two two-dimensional images for each of at least two bands. For example, by referring to a database in which signal intensity ratios and chemical compositions are registered in association with each other, the calculation unit 50 calculates the chemical composition of the object 90 that matches or is similar to the signal intensity ratio obtained by measurement. Extract as a composition.
  • the database may be stored in a storage unit included in the calculation unit 50, or may be stored in an external device that can communicate with the imaging device 1.
  • the imaging device 1 As described above, in the imaging device 1 according to the present embodiment, a two-dimensional image is reconstructed for each band, so a single pixel detector can be used as the photodetector 30. That is, the sensor size can be reduced while suppressing a decrease in spatial resolution. Furthermore, since a two-dimensional image is reconstructed for each band, it is possible to obtain a distribution of components corresponding to each band. In other words, the imaging device 1 can be effectively used as a small-sized analysis device with high resolution.
  • FIG. 3 is a diagram showing the configuration of an imaging device 2 according to this modification.
  • the imaging device 2 includes a light source section 11 instead of the light source 10 and the structuring means 20, compared to the imaging device 1 shown in FIG.
  • the light source section 11 structures light into a plurality of two-dimensional bright and dark patterns and emits the light. That is, the light source section 11 has the functions of both the light source 10 and the structuring means 20 described above. Specifically, the light source section 11 includes a plurality of light emitting elements arranged two-dimensionally. Each of the plurality of light emitting elements can be turned on and off independently. A bright and dark pattern is generated by turning on and turning off each light emitting element.
  • the light source section 11 is an LED array having LEDs as light emitting elements.
  • the imaging device 2 having the light source section 11 in which the light source 10 and the structuring means 20 are integrated, it is possible to reconstruct a two-dimensional image for each band, similarly to the imaging device 1. It can be used for analysis of the object 90, etc.
  • the second embodiment differs from the first embodiment in that the structuring means is placed on the photodetector side.
  • the explanation will focus on the differences from Embodiment 1, and the explanation of the common points will be omitted or simplified.
  • FIG. 4 is a diagram showing the configuration of the imaging device 101 according to this embodiment. As shown in FIG. 4, the imaging device 101 is different from the imaging device 1 shown in FIG. 1 in the arrangement of the structuring means 20. Specifically, the structuring means 20 is arranged between the half mirror 65 and the optical element 64.
  • the structuring means 20 converts the light emitted from the object 90 (specifically, the reflected light generated by the object 90) into a plurality of two when irradiated with light from the light source 10. Structure into dimensional light-dark patterns.
  • a translucent device such as an active matrix liquid crystal device can be used as in the first embodiment.
  • the calculation unit 50 reconstructs a two-dimensional image of the object 90 by performing a cross-correlation calculation between the signal output from the photodetector 30 and the corresponding brightness/darkness pattern.
  • a specific reconstruction method may utilize ghost imaging or single pixel imaging. Reconstruction of the two-dimensional image is performed for each band.
  • the imaging device 101 since the imaging device 101 according to the present embodiment reconstructs a two-dimensional image for each band, a single-pixel detector can be used as the photodetector 30. That is, the sensor size can be reduced while suppressing a decrease in spatial resolution. Further, as in the first embodiment, since a two-dimensional image is reconstructed for each band, a distribution of components corresponding to each band can be obtained. In other words, the imaging device 101 can be effectively used as a small-sized analysis device with high resolution.
  • the third embodiment differs from the second embodiment in that it includes a plurality of photodetectors. Below, the explanation will focus on the differences from Embodiment 2, and the explanation of the common points will be omitted or simplified.
  • FIG. 5 is a diagram showing the configuration of the imaging device 201 according to this embodiment.
  • the imaging device 201 includes a light source 10, a structuring means 220, two photodetectors 231 and 232, a control section 240, and a calculation section 250. Further, the imaging device 201 includes optical elements 261 to 265 and a half mirror 266.
  • the light source 10 is the same as in Embodiments 1 and 2, and emits light in a plurality of different bands.
  • the structuring means 220 simultaneously structures the incident light (specifically, the reflected light generated by the object 90) into two bright and dark patterns and outputs the structured light.
  • the two bright and dark patterns are a first bright and dark pattern and a second bright and dark pattern whose brightness is inverted from that of the first bright and dark pattern.
  • the two light and dark patterns of light are respectively emitted in a first direction and a second direction different from the first direction.
  • the first direction is an output direction for making light incident on the photodetector 231.
  • the first direction is the direction in which the optical element 264 is located with respect to the structuring means 220.
  • the second direction is an output direction for making light incident on the photodetector 232.
  • the second direction is the direction in which the optical element 265 is located with respect to the structuring means 220.
  • the structuring means 220 includes a plurality of optical elements arranged two-dimensionally.
  • the plurality of optical elements can emit incident light in either the first direction or the second direction.
  • the structuring means 220 is a digital mirror device and has a plurality of movable microscopic mirror surfaces as a plurality of optical elements.
  • the photodetector 231 is an example of a first light receiving element that receives light emitted from the structuring means 220 in the first direction.
  • the photodetector 231 outputs a signal corresponding to the intensity of light of the first bright and dark pattern structured by the structuring means 220.
  • the photodetector 232 is an example of a second light receiving element that receives light emitted from the structuring means 220 in the second direction.
  • the photodetector 232 outputs a signal corresponding to the intensity of the light of the second bright and dark pattern structured by the structuring means 220.
  • photodetectors 231 and 232 are each one-pixel infrared detectors.
  • the control unit 240 like the control unit 40, performs overall control of the imaging device 201. Specifically, the control section 240 controls the light source 10, the structuring means 220, the photodetectors 231 and 232, and the calculation section 250.
  • control unit 240 controls the switching timing of a plurality of bright and dark patterns by the structuring means 220.
  • the control unit 240 since it is possible to simultaneously obtain a signal of one light-dark pattern and a signal of its inverted light-dark pattern, the control unit 240 prevents the formation of an inverted pattern when controlling the structuring means 220. Make it.
  • control unit 240 controls the output timing of the signal from each of the photodetectors 231 and 232 so as to correspond to each of the plurality of bright and dark patterns. Further, the control unit 240 outputs information to the calculation unit 250 to enable association between brightness and darkness patterns and signals, and association with signals for each band.
  • the calculation unit 250 reconstructs a two-dimensional image of the object 90 by performing a cross-correlation calculation between the signals output from each of the photodetectors 231 and 232 and the corresponding brightness/darkness pattern.
  • the calculation unit 250 reconstructs a two-dimensional image for each band.
  • ghost imaging or single pixel imaging can be used as in the first and second embodiments.
  • the optical elements 261 to 265 and the half mirror 266 are provided to adjust the optical path. Like the optical elements 61 to 64, each of the optical elements 261 to 265 controls the optical path by utilizing the difference in refractive index from the light propagation space.
  • the optical element 261 is, for example, a collimator that converts the light emitted from the light source 10 into parallel light.
  • the optical element 262 is a projection lens that irradiates light emitted from the light source 10 and reflected by the half mirror 266 toward the object 90 .
  • optical element 262 is also an objective lens that condenses light (specifically, reflected light) from target object 90. That is, the optical element 262 is used for both the irradiation optical system and the objective optical system.
  • the optical element 263 is a collimator that emits the light reflected from the object 90 and transmitted through the half mirror 266 as parallel light. The optical element 263 irradiates the structuring means 220 with parallel light.
  • the optical element 264 is a condenser lens that condenses the light structured into the first bright and dark pattern by the structuring means 220 onto the photodetector 231 .
  • the optical element 265 is a condenser lens that condenses the light structured into the second bright and dark pattern by the structuring means 220 onto the photodetector 232 .
  • the half mirror 266 is an optical element that separates the light irradiated onto the object 90 from the light (reflected light) from the object 90. Specifically, the half mirror 266 reflects the light from the light source 10 and transmits the reflected light from the object 90.
  • the optical element 262 can be used both as an irradiation optical system and an objective optical system. Since the optical axis of the irradiation optical system and the optical axis of the objective optical system can be made the same, it is possible to improve the collection efficiency of reflected light from the object 90 and to suppress the intrusion of disturbance light.
  • the configuration shown in FIG. 5 is only an example and can be modified as appropriate.
  • the irradiation optical system that irradiates light onto the target object 90 and the objective optical system that acquires the reflected light from the target object 90 may be realized by separate optical elements.
  • the imaging device 201 does not need to include the half mirror 266.
  • FIG. 6 is a diagram showing the principle of the imaging device 201 according to this embodiment.
  • a digital mirror device having five micromirror surfaces 221a to 221e is shown as the structuring means 220.
  • Each of the five micromirror surfaces 221a to 221e corresponds to one pixel.
  • Each of the micromirror surfaces 221a to 221e reflects incident light in either direction A or direction B.
  • the micromirror surfaces 221a, 221b, and 221e reflect the incident light in direction A.
  • the micromirror surfaces 221c and 221d reflect the incident light in direction B.
  • the direction A is an example of the first direction, and the light reflected in the direction A is detected by the photodetector 231 in FIG. 5.
  • Direction B is an example of a second direction, and light reflected in direction B is detected by photodetector 232 in FIG. 5.
  • the light/dark pattern of the light emitted in direction A becomes a pattern in which "bright”, “bright”, “dark”, “dark”, and “bright” are arranged in order from the top.
  • the light/dark pattern of the light emitted in direction B is a pattern in which "dark”, “dark”, “bright”, “bright”, and “dark” are arranged in order from the top. That is, in direction A and direction B, mutually inverted light and dark patterns are obtained.
  • the calculation unit 250 uses the signals of the two bright and dark patterns as detection signals to reconstruct a two-dimensional image. This makes it possible to shorten measurement time or reconstruct a high-quality two-dimensional image.
  • the calculation unit 250 may calculate the difference between the signals corresponding to the two bright and dark patterns, and use the difference signal to reconstruct the two-dimensional image. Noise can be suppressed by using the difference between the inverted light and dark patterns. This makes it possible to reconstruct a high-quality two-dimensional image.
  • Embodiment 4 differs from Embodiments 1 to 3 in that transmitted light from an object is detected. Below, the explanation will focus on the differences from Embodiments 1 to 3, and the explanation of common points will be omitted or simplified.
  • FIG. 7 is a diagram showing the configuration of an imaging device 301 according to this embodiment. As shown in FIG. 7, compared to the imaging device 2 shown in FIG. 1, the imaging device 301 includes optical elements 362 and 363 instead of the optical elements 62 to 64 and the half mirror 65.
  • the optical element 362 is a projection lens that irradiates the object 90 with light structured by the structuring means 20.
  • the target object 90 generates transmitted light by transmitting at least a portion of the irradiated light.
  • the optical element 363 is an objective lens that condenses the light that has passed through the object 90 (that is, the transmitted light) out of the structured light emitted from the optical element 362. Note that the optical element 363 also functions as a lens that focuses light on the photodetector 30, but is not limited thereto. A dedicated lens for condensing light may be provided on the photodetector 30.
  • the imaging device 301 reconstructs a two-dimensional image for each band, a single-pixel detector can be used as the photodetector 30. That is, the sensor size can be reduced while suppressing a decrease in spatial resolution.
  • the structuring means 20 may be arranged not on the light source 10 side but on the photodetector 30 side.
  • FIG. 8 is a diagram showing the configuration of an imaging device 302 according to this modification. As shown in FIG. 8, the imaging device 302 differs from the configuration of the imaging device 301 shown in FIG. 7 in the arrangement of the structuring means 20. The imaging device 302 also includes an optical element 364.
  • the structuring means 20 is arranged between the optical element 363 and the optical element 364. That is, the structuring means 20 structures the light (specifically, transmitted light) emitted from the object 90 when irradiated with the light from the light source 10 into a plurality of two-dimensional bright and dark patterns.
  • Optical element 364 focuses the light structured by structuring means 20 onto photodetector 30 .
  • the imaging device 302 reconstructs a two-dimensional image for each band, a single-pixel detector can be used as the photodetector 30. That is, the sensor size can be reduced while suppressing a decrease in spatial resolution.
  • the imaging device 302 may include two photodetectors 231 and 232 instead of the photodetector 30. That is, in the case of structuring the transmitted light from the object 90, the sensor size can be similarly reduced while suppressing a decrease in spatial resolution.
  • the light emitted by the light source may be light with a longer wavelength than mid-infrared rays.
  • the light emitted from the light source may be far infrared rays with a wavelength band of 10 ⁇ m or more and 30 ⁇ m or less, or may be terahertz waves with a wavelength band of 30 ⁇ m or more and 3 mm or less.
  • the light emitted by the light source may be light with a shorter wavelength than visible light.
  • the light emitted by the light source may be ultraviolet light having a wavelength band of 10 nm or more and 400 nm or less, or may be X-rays or electron beams.
  • the light emitted by the light source may be excitation light that excites the object 90.
  • the object 90 is excited and emits fluorescence when irradiated with light.
  • the photodetector may detect fluorescence from the object 90 as the light emitted from the object 90.
  • the filter may be placed on the photodetector side.
  • the light source 10 may emit broad light including each of the plurality of different bands, as the light of the plurality of different bands.
  • a filter corresponding to a band corresponding to the component to be measured is placed on the light incident side of the photodetector.
  • the photodetector may be an image sensor having multiple pixels.
  • the number of pixels of the image sensor may be smaller than the number of micro areas of the structuring means.
  • the photodetector may include a wavelength conversion member.
  • the wavelength conversion member is, for example, an up-conversion type wavelength conversion member, and converts light in the mid-infrared band to visible light or near-infrared light.
  • an inexpensive visible light sensor or near-infrared light sensor can be used as the photodetector.
  • the present disclosure can be used in various analysis devices and inspection devices, such as component analysis of a target object or determination of foreign matter contamination.
  • Imaging device 10 Light source 11 Light source section 20, 220 Structuring means 30, 231, 232 Photodetector 40, 240 Control section 50, 250 Arithmetic section 61, 62, 63, 64, 261, 262, 263, 264, 265, 362, 363, 364 Optical element 65, 266 Half mirror 90 Object 221a, 221b, 221c, 221d, 221e Microscopic mirror surface

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

An imaging device (1) comprises: a light source unit that emits light structured into a plurality of two-dimensional light/dark patterns; a light detector (30) that detects light emitted from an object (90) when the object (90) is illuminated with light from the light source unit; and a computation unit (50) that reconstructs a two-dimensional image of the object (90) by performing cross-correlation operation between a signal outputted from the light detector (30) and a corresponding light/dark pattern. The light source unit emits light in a plurality of different bands. The computation unit (50) reconstructs a two-dimensional image for each band.

Description

撮像装置Imaging device
 本開示は、撮像装置に関する。 The present disclosure relates to an imaging device.
 特許文献1には、赤外光を被写体に照射する光源と、2次元アレイ状に配列された赤外線検出素子と、透過する波長帯域が異なる複数の波長透過フィルタが平面上に配列された波長透過フィルタアレイと、を備える固体撮像装置が開示されている。特許文献1に開示された固体撮像装置は、赤外線検出素子によって得られる波長情報から、被写体の物質を同定するとともに、被写体の像情報を取得する。 Patent Document 1 discloses a wavelength transmission system in which a light source that irradiates a subject with infrared light, infrared detection elements arranged in a two-dimensional array, and a plurality of wavelength transmission filters that transmit different wavelength bands are arranged on a plane. A solid-state imaging device including a filter array is disclosed. The solid-state imaging device disclosed in Patent Document 1 identifies the substance of the object and acquires image information of the object from wavelength information obtained by an infrared detection element.
特開2016-163125号公報Japanese Patent Application Publication No. 2016-163125
 特許文献1に開示された固体撮像装置では、赤外線検出素子と波長透過フィルタアレイとを一体的に形成している。この場合、1つの波長帯域でも不良が生じると全体が使用できなくなる可能性があり、歩留まりの低下が懸念される。また、多くの波長帯域を検出可能にするためには、面積を増やすか、画素数を減らす必要がある。つまり、センササイズと空間分解能とがトレードオフの関係にある。 In the solid-state imaging device disclosed in Patent Document 1, an infrared detection element and a wavelength transmission filter array are integrally formed. In this case, if a defect occurs in even one wavelength band, the entire device may become unusable, and there is a concern that the yield will decrease. Furthermore, in order to be able to detect many wavelength bands, it is necessary to increase the area or reduce the number of pixels. In other words, there is a trade-off between sensor size and spatial resolution.
 そこで、本開示は、空間分解能の低下を抑制しながらセンササイズを小型化することができる撮像装置を提供する。 Therefore, the present disclosure provides an imaging device that can reduce the sensor size while suppressing a decrease in spatial resolution.
 本開示の一態様に係る撮像装置は、光を複数の2次元の明暗パターンに構造化して出射する光源部と、前記光源部からの光が対象物に照射された場合に前記対象物から出射される光を検出する光検出器と、前記光検出器から出力される信号と、対応する明暗パターンとの相互相関演算を行うことで、前記対象物の2次元画像を再構成する演算部と、を備え、前記光源部は、互いに異なる複数のバンドの光を出射し、前記演算部は、前記バンド毎に前記2次元画像を再構成する。 An imaging device according to an aspect of the present disclosure includes a light source unit that structures light into a plurality of two-dimensional bright and dark patterns and emits the light, and a light source unit that emits light from the target object when the light from the light source unit is irradiated onto the target object. a photodetector that detects the light emitted by the object; a calculation unit that reconstructs a two-dimensional image of the object by performing a cross-correlation calculation between a signal output from the photodetector and a corresponding brightness pattern; , the light source section emits light in a plurality of different bands, and the calculation section reconstructs the two-dimensional image for each band.
 また、本開示の別の一態様に係る撮像装置は、光を出射する光源部と、前記光源部からの光が対象物に照射された場合に前記対象物から出射される光を複数の2次元の明暗パターンに構造化する構造化手段と、前記構造化手段によって構造化された光を検出する光検出器と、前記光検出器から出力される信号と、対応する明暗パターンとの相互相関演算を行うことで、前記対象物の2次元画像を再構成する演算部と、を備え、前記光源部は、互いに異なる複数のバンドの光を出射し、前記演算部は、前記バンド毎に前記2次元画像を再構成する。 Further, an imaging device according to another aspect of the present disclosure includes a light source unit that emits light, and a plurality of light sources that emit light from the target object when the light from the light source unit is irradiated onto the target object. a structuring means for structuring into a dimensional light-dark pattern; a photodetector for detecting the light structured by the structuring means; and a cross-correlation between a signal output from the photodetector and the corresponding light-dark pattern. a calculation unit that reconstructs a two-dimensional image of the object by performing calculation, the light source unit emits light of a plurality of mutually different bands, and the calculation unit Reconstruct a two-dimensional image.
 本開示によれば、空間分解能の低下を抑制しながらセンササイズを小型化することができる。 According to the present disclosure, the sensor size can be reduced while suppressing a decrease in spatial resolution.
図1は、実施の形態1に係る撮像装置の構成を示す図である。FIG. 1 is a diagram showing the configuration of an imaging device according to Embodiment 1. 図2は、実施の形態1に係る撮像装置による2次元画像の再構成方法を示す図である。FIG. 2 is a diagram illustrating a two-dimensional image reconstruction method by the imaging device according to the first embodiment. 図3は、実施の形態1の変形例に係る撮像装置の構成を示す図である。FIG. 3 is a diagram showing the configuration of an imaging device according to a modification of the first embodiment. 図4は、実施の形態2に係る撮像装置の構成を示す図である。FIG. 4 is a diagram showing the configuration of an imaging device according to the second embodiment. 図5は、実施の形態3に係る撮像装置の構成を示す図である。FIG. 5 is a diagram showing the configuration of an imaging device according to Embodiment 3. 図6は、実施の形態3に係る撮像装置の原理を示す図である。FIG. 6 is a diagram illustrating the principle of an imaging device according to Embodiment 3. 図7は、実施の形態4に係る撮像装置の構成を示す図である。FIG. 7 is a diagram showing the configuration of an imaging device according to Embodiment 4. 図8は、実施の形態4の変形例に係る撮像装置の構成を示す図である。FIG. 8 is a diagram showing the configuration of an imaging device according to a modification of the fourth embodiment.
 (本開示の概要)
 本開示の一態様に係る撮像装置は、光を複数の2次元の明暗パターンに構造化して出射する光源部と、前記光源部からの光が対象物に照射された場合に前記対象物から出射される光を検出する光検出器と、前記光検出器から出力される信号と、対応する明暗パターンとの相互相関演算を行うことで、前記対象物の2次元画像を再構成する演算部と、を備え、前記光源部は、互いに異なる複数のバンドの光を出射し、前記演算部は、前記バンド毎に前記2次元画像を再構成する。
(Summary of this disclosure)
An imaging device according to an aspect of the present disclosure includes a light source unit that structures light into a plurality of two-dimensional bright and dark patterns and emits the light, and a light source unit that emits light from the target object when the light from the light source unit is irradiated onto the target object. a photodetector that detects the light emitted by the object; a calculation unit that reconstructs a two-dimensional image of the object by performing a cross-correlation calculation between a signal output from the photodetector and a corresponding brightness pattern; , the light source section emits light in a plurality of different bands, and the calculation section reconstructs the two-dimensional image for each band.
 これにより、演算部が相互相関演算を行うことで2次元画像を再構成するので、光検出器として、2次元画像の画素数より少ない画素の検出器を利用することができる。すなわち、空間分解能の低下を抑制しながらセンササイズを小型化することができる。例えば、光検出器として、単画素の検出器を利用することができる。また、バンド毎に2次元画像を再構成するので、各バンドに対応した成分の分布を得ることができる。つまり、本態様に係る撮像装置は、分解能が高い小型の分析装置などとして有効に利用可能である。 As a result, the arithmetic unit reconstructs a two-dimensional image by performing a cross-correlation calculation, so a detector with fewer pixels than the number of pixels of the two-dimensional image can be used as a photodetector. That is, the sensor size can be reduced while suppressing a decrease in spatial resolution. For example, a single pixel detector can be used as the photodetector. Furthermore, since a two-dimensional image is reconstructed for each band, it is possible to obtain a distribution of components corresponding to each band. In other words, the imaging device according to this aspect can be effectively used as a small-sized analysis device with high resolution.
 また、例えば、前記光源部は、光源と、前記光源からの光を前記複数の2次元の明暗パターンに構造化する構造化手段と、を含んでもよい。 Further, for example, the light source unit may include a light source and a structuring means for structuring the light from the light source into the plurality of two-dimensional bright and dark patterns.
 また、本開示の別の一態様に係る撮像装置は、光を出射する光源部と、前記光源部からの光が対象物に照射された場合に前記対象物から出射される光を複数の2次元の明暗パターンに構造化する構造化手段と、前記構造化手段によって構造化された光を検出する光検出器と、前記光検出器から出力される信号と、対応する明暗パターンとの相互相関演算を行うことで、前記対象物の2次元画像を再構成する演算部と、を備え、前記光源部は、互いに異なる複数のバンドの光を出射し、前記演算部は、前記バンド毎に前記2次元画像を再構成する。 Further, an imaging device according to another aspect of the present disclosure includes a light source unit that emits light, and a plurality of light sources that emit light from the target object when the light from the light source unit is irradiated onto the target object. a structuring means for structuring into a dimensional light-dark pattern; a photodetector for detecting the light structured by the structuring means; and a cross-correlation between a signal output from the photodetector and the corresponding light-dark pattern. a calculation unit that reconstructs a two-dimensional image of the object by performing calculation, the light source unit emits light of a plurality of mutually different bands, and the calculation unit Reconstruct a two-dimensional image.
 これにより、演算部が相互相関演算を行うことで2次元画像を再構成するので、光検出器として、2次元画像の画素数より少ない画素の検出器を利用することができる。すなわち、空間分解能の低下を抑制しながらセンササイズを小型化することができる。例えば、光検出器として、単画素の検出器を利用することができる。また、バンド毎に2次元画像を再構成するので、各バンドに対応した成分の分布を得ることができる。つまり、本態様に係る撮像装置は、分解能が高い小型の分析装置などとして有効に利用可能である。 As a result, the arithmetic unit reconstructs a two-dimensional image by performing a cross-correlation calculation, so a detector with fewer pixels than the number of pixels of the two-dimensional image can be used as a photodetector. That is, the sensor size can be reduced while suppressing a decrease in spatial resolution. For example, a single pixel detector can be used as the photodetector. Furthermore, since a two-dimensional image is reconstructed for each band, it is possible to obtain a distribution of components corresponding to each band. In other words, the imaging device according to this aspect can be effectively used as a small-sized analysis device with high resolution.
 また、例えば、前記構造化手段は、2次元に配列された複数の光学素子を含み、前記複数の光学素子は、入射する光を、第1方向と、当該第1方向とは異なる第2方向とのいずれかに出射可能であり、前記光検出器は、前記構造化手段から前記第1方向に出射される光を受光する第1受光素子と、前記構造化手段から前記第2方向に出射される光を受光する第2受光素子と、を含んでもよい。 Further, for example, the structuring means includes a plurality of optical elements arranged two-dimensionally, and the plurality of optical elements direct incident light in a first direction and a second direction different from the first direction. The photodetector includes a first light receiving element that receives light emitted from the structuring means in the first direction, and a first light receiving element that receives light emitted from the structuring means in the second direction. and a second light receiving element that receives the light.
 これにより、1回の測定で2つの明暗パターンに対応する信号を同時に得ることができるので、測定時間の短縮、又は、高画質の2次元画像の再構成が可能になる。あるいは、2つの明暗パターンに対応する信号の差分を利用することにより、ノイズを除去することもできるので、高画質の2次元画像の再構成が可能になる。 As a result, signals corresponding to two bright and dark patterns can be obtained simultaneously in one measurement, making it possible to shorten measurement time or reconstruct a high-quality two-dimensional image. Alternatively, noise can be removed by using the difference between signals corresponding to two bright and dark patterns, making it possible to reconstruct a high-quality two-dimensional image.
 また、例えば、前記構造化手段は、デジタルミラーデバイス、アクティブマトリクス液晶デバイス又は空間光変調器であってもよい。 Also, for example, the structuring means may be a digital mirror device, an active matrix liquid crystal device, or a spatial light modulator.
 これにより、光の構造化、すなわち、2次元の明暗パターンを容易に形成することができる。 Thereby, it is possible to easily structure the light, that is, form a two-dimensional light and dark pattern.
 また、例えば、前記複数のバンドは、2μm以上10μm以下の波長帯域に含まれてもよい。 Further, for example, the plurality of bands may be included in a wavelength band of 2 μm or more and 10 μm or less.
 これにより、中赤外帯域を利用することで、対象物の成分分析又は対象物以外の異物の有無の検査などに利用することができる。 As a result, by using the mid-infrared band, it can be used for component analysis of a target object or inspection for the presence of foreign substances other than the target object.
 また、例えば、前記演算部は、さらに、少なくとも2つのバンドの各々に対する2つの前記2次元画像の信号強度比に基づいて、前記対象物の化学組成を推定してもよい。 Furthermore, for example, the calculation unit may further estimate the chemical composition of the object based on the signal intensity ratio of the two two-dimensional images for each of at least two bands.
 これにより、対象物の詳細な成分分析が可能になる。 This enables detailed component analysis of the target object.
 また、例えば、前記対象物から出射される光は、前記対象物が前記光源部からの光の少なくとも一部を反射することで発生する反射光であってもよい。 Furthermore, for example, the light emitted from the target object may be reflected light generated when the target object reflects at least a portion of the light from the light source section.
 これにより、透過率が低い対象物の分析に有用である。 This makes it useful for analyzing objects with low transmittance.
 また、例えば、前記対象物から出射される光は、前記対象物が前記光源部からの光の少なくとも一部を透過することで発生する透過光であってもよい。 Furthermore, for example, the light emitted from the object may be transmitted light generated when the object transmits at least a portion of the light from the light source section.
 これにより、透過率が高い対象物の分析に有用である。 This makes it useful for analyzing objects with high transmittance.
 以下では、実施の形態について、図面を参照しながら具体的に説明する。 Hereinafter, embodiments will be specifically described with reference to the drawings.
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Note that all embodiments described below are comprehensive or specific examples. The numerical values, shapes, materials, components, arrangement positions and connection forms of the components, steps, order of steps, etc. shown in the following embodiments are examples, and do not limit the present disclosure. Further, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims will be described as arbitrary constituent elements.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。 Furthermore, each figure is a schematic diagram and is not necessarily strictly illustrated. Therefore, for example, the scales and the like in each figure do not necessarily match. Further, in each figure, substantially the same configurations are denoted by the same reference numerals, and overlapping explanations will be omitted or simplified.
 (実施の形態1)
 まず、実施の形態1に係る撮像装置の構成について、図1を用いて説明する。図1は、本実施の形態に係る撮像装置1の構成を示す図である。
(Embodiment 1)
First, the configuration of the imaging device according to Embodiment 1 will be described using FIG. 1. FIG. 1 is a diagram showing the configuration of an imaging device 1 according to the present embodiment.
 図1に示される撮像装置1は、対象物90に光を照射して対象物90を撮像する装置である。本実施の形態では、撮像装置1は、対象物90に光が照射された場合に対象物90から出射される光として、対象物90からの反射光を検出する。対象物90に照射した光は、対象物90に含まれる成分によって吸収を受けるため、対象物90からの反射光の強度は、光の吸収量に応じて変化する。このときの吸収量は、対象物90に含まれる成分毎、及び、照射される光の波長帯域(すなわち、バンド)毎に異なる。したがって、特定のバンドの光を照射することで、当該バンドに対応する成分(官能基)の存在及び分布を推定することができる。なお、図1では、光源10から出射され、対象物90で反射された後、光検出器30に至る光の経路を破線で模式的に表している。 The imaging device 1 shown in FIG. 1 is a device that images the object 90 by irradiating the object 90 with light. In this embodiment, the imaging device 1 detects reflected light from the object 90 as light emitted from the object 90 when the object 90 is irradiated with light. Since the light irradiated onto the object 90 is absorbed by components contained in the object 90, the intensity of the reflected light from the object 90 changes depending on the amount of light absorbed. The amount of absorption at this time differs for each component included in the target object 90 and for each wavelength band (namely, band) of the irradiated light. Therefore, by irradiating light of a specific band, it is possible to estimate the presence and distribution of components (functional groups) corresponding to the band. Note that in FIG. 1, the path of light emitted from the light source 10, reflected by the object 90, and then reaching the photodetector 30 is schematically represented by a broken line.
 対象物90は、例えば薬の錠剤又は粉末である。撮像装置1は、薬の錠剤又は粉末に含まれる異物の検出に利用することができる。なお、対象物90は、薬の錠剤又は粉末には限定されず、食料品又は工業的な生産物であってもよい。また、対象物90は、固形物(固体)には限定されず、液体又は気体であってもよい。 The object 90 is, for example, a medicine tablet or powder. The imaging device 1 can be used to detect foreign substances contained in medicine tablets or powder. Note that the object 90 is not limited to a medicine tablet or powder, but may be a food product or an industrial product. Furthermore, the object 90 is not limited to a solid object, and may be a liquid or a gas.
 図1に示されるように、撮像装置1は、光源10と、構造化手段20と、光検出器30と、制御部40と、演算部50と、を備える。また、撮像装置1は、複数の光学素子61~64と、ハーフミラー65と、を備える。 As shown in FIG. 1, the imaging device 1 includes a light source 10, a structuring means 20, a photodetector 30, a control section 40, and a calculation section 50. Further, the imaging device 1 includes a plurality of optical elements 61 to 64 and a half mirror 65.
 光源10は、互いに異なる複数のバンドの光を出射する。複数のバンドは、2μm以上10μm以下の波長帯域に含まれる。例えば、複数のバンドは、以下の表1に示されるバンド群の中から選択される少なくとも2つのバンドである。 The light source 10 emits light in a plurality of different bands. The plurality of bands are included in a wavelength band of 2 μm or more and 10 μm or less. For example, the plurality of bands are at least two bands selected from the group of bands shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1は、各バンドの具体的な波長範囲と、当該バンドの光を照射した場合に測定可能な成分と、を表している。例えば、バンドAの光を対象物90に照射し、対象物90による反射光を検出することで、N-Hの存在及び分布を推定することができる。光源10は、測定対象とする成分に応じて、表1に示されるバンド群から任意のバンドを選択し、選択したバンドの光を照射することができる。 Table 1 shows the specific wavelength range of each band and the components that can be measured when the light of the band is irradiated. For example, by irradiating the object 90 with band A light and detecting the reflected light from the object 90, the presence and distribution of NH can be estimated. The light source 10 can select any band from the band group shown in Table 1 according to the component to be measured, and can irradiate light of the selected band.
 各バンドの光は、対応するバンドの波長範囲内にピーク波長を有する狭帯域の光である。各バンドの光の半値幅は、例えば、バンドの帯域幅より短い。各バンドの光は、対応するバンド外の波長成分を実質的に含まない。 Each band of light is a narrow band of light having a peak wavelength within the wavelength range of the corresponding band. The half-width of light in each band is, for example, shorter than the bandwidth of the band. The light in each band does not substantially contain wavelength components outside the corresponding band.
 本実施の形態では、光源10は、時分割でバンド毎の光を出射する。例えば、光源10は、バンドAの光を出射した後、バンドBの光を出射する。 In this embodiment, the light source 10 emits light for each band in a time-division manner. For example, the light source 10 emits band A light and then emits band B light.
 光源10は、例えば、量子カスケード(QC)レーザなどの赤外波長可変レーザである。あるいは、また、光源10は、広帯域光源とグレーティング等による波長選択光源でもよく、また各バンドに対応した複数のフィルタと、を有してもよい。 The light source 10 is, for example, an infrared tunable laser such as a quantum cascade (QC) laser. Alternatively, the light source 10 may be a broadband light source and a wavelength selective light source using a grating or the like, or may include a plurality of filters corresponding to each band.
 広帯域光源は、複数のバンドに亘って所定以上の強度を有する光を出射する。例えば、広帯域光源は、LED(Light Emitting Diode)、ハロゲンランプ、スーパーコンティニウム光源、又は、スーパールミネッセントダイオード光源などである。 A broadband light source emits light having a predetermined or higher intensity across multiple bands. For example, the broadband light source is an LED (Light Emitting Diode), a halogen lamp, a supercontinuum light source, a superluminescent diode light source, or the like.
 各バンドに対応した複数のフィルタは、対応するバンドの光を透過させ、かつ、対応するバンド以外の光を遮断するバンドパスフィルタである。光源10は、広帯域光源から出射した光を、複数のフィルタから選択した一のフィルタを通すことにより、対応するバンドの光を出射することができる。光源10は、選択するフィルタを切り替えることにより、時分割でバンド毎の光を出射することができる。 The plurality of filters corresponding to each band are bandpass filters that transmit light in the corresponding band and block light in other bands. The light source 10 can emit light in a corresponding band by passing light emitted from a broadband light source through one filter selected from a plurality of filters. The light source 10 can emit light for each band in a time-division manner by switching the selected filter.
 構造化手段20は、光源10からの光を複数の2次元の明暗パターンに構造化する。明暗パターンは、2次元平面においてアレイ状に配列された複数の微小領域毎の「明」と「暗」とによって表される。図1では、構造化手段20は、透過型デバイスであり、微小領域毎に透過率を変化させることができる。透過率が高い微小領域が「明」となり、透過率が低い微小領域が「暗」となる。具体的には、構造化手段20は、アクティブマトリクス液晶デバイス又は空間光変調器などである。なお、構造化手段20としては、デジタルミラーデバイス(DMD)のような反射型デバイスが用いられてもよい。デジタルミラーデバイスを利用する例については後で説明する。 The structuring means 20 structures the light from the light source 10 into a plurality of two-dimensional bright and dark patterns. The bright and dark pattern is represented by "bright" and "dark" for each of a plurality of micro regions arranged in an array on a two-dimensional plane. In FIG. 1, the structuring means 20 is a transmission type device, and the transmittance can be changed for each micro region. A micro region with high transmittance is "bright", and a micro region with low transmittance is "dark". In particular, the structuring means 20 is an active matrix liquid crystal device or a spatial light modulator or the like. Note that as the structuring means 20, a reflective device such as a digital mirror device (DMD) may be used. An example of using a digital mirror device will be explained later.
 構造化手段20は、制御部40による制御に基づいて、複数の明暗パターンを時分割で切り替える。複数の明暗パターンは、例えば、所定のアルゴリズムに基づいてランダムに生成される。明暗パターンの数は、数百以上であるが、数千以上であってもよく、数万以上であってもよい。明暗パターンの数が多い程、再構成される2次元画像の画質を高めることができる。一方で、明暗パターンの数を少なくすることで、測定に要する時間を短くすることができる。 The structuring means 20 switches the plurality of bright and dark patterns in a time-division manner based on the control by the control unit 40. For example, the plurality of bright and dark patterns are randomly generated based on a predetermined algorithm. The number of bright and dark patterns is several hundred or more, but may be several thousand or more, or even tens of thousands or more. The greater the number of bright and dark patterns, the higher the quality of the two-dimensional image to be reconstructed. On the other hand, by reducing the number of bright and dark patterns, the time required for measurement can be shortened.
 微小領域の数は、再構成される2次元画像の画素数に対応する。このため、微小領域の数を増やすことにより、高精細な2次元画像を得ることができる。 The number of minute regions corresponds to the number of pixels of the two-dimensional image to be reconstructed. Therefore, by increasing the number of minute regions, a high-definition two-dimensional image can be obtained.
 光検出器30は、光源10からの光が照射された場合に対象物90から出射される光を検出する。本実施の形態では、光検出器30は、構造化手段20によって構造化された光が対象物90に照射され、その構造化された光の対象物90による反射光を検出する。光検出器30は、検出した反射光の強度に応じた信号を出力する。光検出器30が信号を出力するタイミングは、明暗パターンの切り替えのタイミングと同期するように制御部40によって制御される。すなわち、光検出器30は、明暗パターン毎に、対象物90から出射される光(具体的には、反射光)の強度に応じた信号を出力する。光検出器30から出力される信号は、明暗パターンと一対一に対応付けることができる。 The photodetector 30 detects light emitted from the object 90 when irradiated with light from the light source 10. In this embodiment, the photodetector 30 irradiates the object 90 with structured light by the structuring means 20 and detects the reflected light of the structured light by the object 90. The photodetector 30 outputs a signal according to the intensity of the detected reflected light. The timing at which the photodetector 30 outputs a signal is controlled by the control unit 40 so as to be synchronized with the timing at which the bright/dark pattern is switched. That is, the photodetector 30 outputs a signal according to the intensity of light (specifically, reflected light) emitted from the object 90 for each bright and dark pattern. The signal output from the photodetector 30 can be associated one-to-one with the bright and dark pattern.
 光検出器30は、例えば、1画素の赤外光検出器である。赤外光検出器としては、例えば、HgCdTe検出器、InSb検出器、又は、ボロメータなどを利用することができる。 The photodetector 30 is, for example, a one-pixel infrared photodetector. As the infrared photodetector, for example, a HgCdTe detector, an InSb detector, or a bolometer can be used.
 本実施の形態では、光検出器30として1画素(単画素)の検出器を利用できるので、光検出器30の小型化が可能である。また、1画素の受光面積を大きく確保することができるので、感度を高めることができ、又は、ダイナミックレンジを広げることができる。また、一般的に、中赤外帯域に感度を有する光検出器は高価である。光検出器30として、1画素分の単純な構成かつ小型の検出器を利用することができるので、低コスト化も実現することができる。 In this embodiment, a one-pixel (single pixel) detector can be used as the photodetector 30, so the photodetector 30 can be made smaller. Furthermore, since a large light-receiving area for one pixel can be ensured, sensitivity can be increased or the dynamic range can be expanded. Additionally, photodetectors sensitive to the mid-infrared band are generally expensive. As the photodetector 30, a simple and compact detector for one pixel can be used, so that cost reduction can also be achieved.
 制御部40は、撮像装置1の全体的な制御を行う。具体的には、制御部40は、光源10、構造化手段20、光検出器30及び演算部50を制御する。例えば、制御部40は、光源10の点灯及び消灯のタイミング、並びに、バンドの切り替えタイミングを制御する。制御部40は、構造化手段20による複数の明暗パターンの切り替えタイミングを制御する。また、制御部40は、複数の明暗パターンの各々に対応するように、光検出器30からの信号の出力タイミングを制御する。また、制御部40は、演算部50に対して、明暗パターンと信号との対応付け、及び、バンド毎の信号との対応付けを可能にするための情報を出力する。 The control unit 40 performs overall control of the imaging device 1. Specifically, the control section 40 controls the light source 10, the structuring means 20, the photodetector 30, and the calculation section 50. For example, the control unit 40 controls the timing of turning on and turning off the light source 10 and the timing of switching bands. The control unit 40 controls the switching timing of the plurality of bright and dark patterns by the structuring means 20. Further, the control unit 40 controls the output timing of the signal from the photodetector 30 so as to correspond to each of the plurality of bright and dark patterns. Further, the control unit 40 outputs information to the calculation unit 50 to enable association between brightness and darkness patterns and signals, and association with signals for each band.
 演算部50は、光検出器30から出力される信号と、対応する明暗パターンとの相互相関演算を行うことで、対象物90の2次元画像を再構成する。演算部50は、バンド毎に2次元画像を再構成する。具体的な再構成の手法については、後で説明する。 The calculation unit 50 reconstructs a two-dimensional image of the object 90 by performing a cross-correlation calculation between the signal output from the photodetector 30 and the corresponding brightness/darkness pattern. The calculation unit 50 reconstructs a two-dimensional image for each band. A specific reconstruction method will be explained later.
 制御部40及び演算部50はそれぞれ、例えば、集積回路(IC)であるLSI(Large Scale Integration)によって実現される。なお、集積回路は、LSIに限られず、専用回路又は汎用プロセッサであってもよい。例えば、制御部40は、マイクロコントローラであってもよい。マイクロコントローラは、例えば、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどを含んでいる。また、制御部40又は演算部50は、プログラム可能なFPGA(Field Programmable Gate Array)、又は、LSI内の回路セルの接続及び設定が再構成可能なリコンフィギュラブルプロセッサであってもよい。制御部40又は演算部50が実行する機能は、ソフトウェアで実現されてもよく、ハードウェアで実現されてもよい。制御部40は、演算部50と共通のハードウェア資源を利用してもよい。 The control unit 40 and the calculation unit 50 are each realized by, for example, an LSI (Large Scale Integration) that is an integrated circuit (IC). Note that the integrated circuit is not limited to an LSI, and may be a dedicated circuit or a general-purpose processor. For example, the control unit 40 may be a microcontroller. A microcontroller includes, for example, a nonvolatile memory in which a program is stored, a volatile memory that is a temporary storage area for executing the program, an input/output port, a processor that executes the program, and the like. Further, the control unit 40 or the calculation unit 50 may be a programmable FPGA (Field Programmable Gate Array) or a reconfigurable processor in which connections and settings of circuit cells within the LSI can be reconfigured. The functions executed by the control unit 40 or the calculation unit 50 may be realized by software or hardware. The control unit 40 and the calculation unit 50 may use common hardware resources.
 光学素子61~64と、ハーフミラー65とは、光路を調整するために設けられている。光学素子61~64はそれぞれ、光の伝播空間との屈折率の違いを利用して光路を制御する。具体的には、光学素子61~64はそれぞれ、屈折、反射、分散又は散乱などを起こさせる素子である。例えば、光学素子61~64は、レンズ、回折格子、反射鏡、ライトガイド、ビームホモジナイザなどである。 The optical elements 61 to 64 and the half mirror 65 are provided to adjust the optical path. Each of the optical elements 61 to 64 controls the optical path by utilizing the difference in refractive index from the light propagation space. Specifically, each of the optical elements 61 to 64 is an element that causes refraction, reflection, dispersion, or scattering. For example, the optical elements 61 to 64 are lenses, diffraction gratings, reflectors, light guides, beam homogenizers, and the like.
 光学素子61は、例えば、光源10から発せられる光を平行光に変換するコリメータである。光学素子62は、構造化手段20によって構造化された光を平行光として出力するコリメータである。光学素子63は、構造化手段20によって構造化され、ハーフミラー65を透過した光を対象物90に向けて照射する投影レンズである。本実施の形態では、光学素子63は、対象物90からの光(具体的には反射光)を集光する対物レンズでもある。すなわち、光学素子63は、照射光学系と対物光学系とで兼用される。光学素子64は、対象物90からの光であってハーフミラー65で反射された光を光検出器30に集光する集光レンズである。 The optical element 61 is, for example, a collimator that converts the light emitted from the light source 10 into parallel light. The optical element 62 is a collimator that outputs the light structured by the structuring means 20 as parallel light. The optical element 63 is structured by the structuring means 20 and is a projection lens that irradiates light transmitted through the half mirror 65 toward the object 90 . In this embodiment, optical element 63 is also an objective lens that condenses light (specifically, reflected light) from target object 90. That is, the optical element 63 is used for both the irradiation optical system and the objective optical system. The optical element 64 is a condensing lens that condenses light from the object 90 and reflected by the half mirror 65 onto the photodetector 30.
 ハーフミラー65は、対象物90に照射する光と、対象物90からの光(反射光)とを分離する光学素子である。具体的には、ハーフミラー65は、構造化手段20によって構造化された光を透過させ、対象物90からの反射光を反射する。ハーフミラー65を利用することによって、光学素子63を照射光学系と対物光学系とで兼用することができる。照射光学系の光軸と対物光学系の光軸とを同一にすることができるので、対象物90からの反射光の収集効率を高めるとともに、ノイズの要因となる外乱光の侵入を抑制することができる。 The half mirror 65 is an optical element that separates the light irradiated onto the object 90 from the light (reflected light) from the object 90. Specifically, the half mirror 65 transmits the light structured by the structuring means 20 and reflects the reflected light from the object 90. By using the half mirror 65, the optical element 63 can be used both as an irradiation optical system and an objective optical system. Since the optical axis of the irradiation optical system and the optical axis of the objective optical system can be made the same, it is possible to increase the collection efficiency of reflected light from the target object 90 and to suppress the intrusion of disturbance light that causes noise. Can be done.
 光学素子61~64及びハーフミラー65は、透過させる光の波長に応じて適した材料を用いて形成される。例えば、中赤外帯域の光を透過させる材料としては、ゲルマニウム、フッ化カルシウム、臭化カリウムなどを使用することができる。あるいは、各種誘電体又は各種金属の多層膜が使用されてもよい。 The optical elements 61 to 64 and the half mirror 65 are formed using a suitable material depending on the wavelength of the light to be transmitted. For example, germanium, calcium fluoride, potassium bromide, etc. can be used as a material that transmits light in the mid-infrared band. Alternatively, multilayer films of various dielectrics or metals may be used.
 なお、図1に示される構成は、一例に過ぎず、適宜変更が可能である。例えば、構造化手段20は、光源10と光学素子61との間に配置されてもよく、光学素子62とハーフミラー65との間に配置されてもよい。この場合において、光学素子61及び62の少なくとも一方は設けられていなくてもよい。 Note that the configuration shown in FIG. 1 is only an example and can be modified as appropriate. For example, the structuring means 20 may be arranged between the light source 10 and the optical element 61 or between the optical element 62 and the half mirror 65. In this case, at least one of the optical elements 61 and 62 may not be provided.
 また、例えば、対象物90に対して光を照射する照射光学系と、対象物90からの反射光を取得する対物光学系とは、それぞれ別の光学素子によって実現されてもよい。この場合、撮像装置1は、ハーフミラー65を備えなくてもよい。 Furthermore, for example, the irradiation optical system that irradiates light onto the target object 90 and the objective optical system that acquires the reflected light from the target object 90 may be realized by separate optical elements. In this case, the imaging device 1 does not need to include the half mirror 65.
 [再構成方法]
 続いて、撮像装置1による2次元画像の再構成方法について、図2を用いて説明する。
[Reconstruction method]
Next, a method for reconstructing a two-dimensional image by the imaging device 1 will be described using FIG. 2.
 図2は、本実施の形態に係る撮像装置1による2次元画像の再構成方法を示す図である。 FIG. 2 is a diagram showing a two-dimensional image reconstruction method by the imaging device 1 according to the present embodiment.
 演算部50は、複数の明暗パターン(構造化パターンとも称される)と、各明暗パターンに対応する光検出器30からの信号と、を用いて2次元画像を再構成する。図2に示されるように、複数の明暗パターンと光検出器30からの信号とを掛け合わせ(相互相関演算)、得られたパターン毎の積を合算することにより、2次元画像が再構成される。 The calculation unit 50 reconstructs a two-dimensional image using a plurality of bright and dark patterns (also referred to as structured patterns) and signals from the photodetector 30 corresponding to each bright and dark pattern. As shown in FIG. 2, a two-dimensional image is reconstructed by multiplying multiple bright and dark patterns by the signal from the photodetector 30 (cross-correlation calculation) and summing the products for each pattern. Ru.
 すなわち、2次元画像の再構成とは、構造化手段20によって生成され、対象物90に照射された複数の構造化パターンと、各々の構造化パターンを照射した際に対象物90から出射される光の強度とから、対象物90の2次元画像(反射率分布または透過率分布)を数学的に導出することを言う。 In other words, reconstruction of a two-dimensional image refers to a plurality of structured patterns generated by the structuring means 20 and irradiated onto the object 90, and images emitted from the object 90 when each structured pattern is irradiated. This refers to mathematically deriving a two-dimensional image (reflectance distribution or transmittance distribution) of the object 90 from the intensity of light.
 再構成の方法は、例えば、ゴーストイメージングと言われる手法と、シングルピクセルイメージングと言われる手法とがある。 Reconstruction methods include, for example, a method called ghost imaging and a method called single pixel imaging.
 <ゴーストイメージング>
 ゴーストイメージングでは、光検出器30からの信号強度をbとすると、bは、以下の式(1)で表される。
<Ghost imaging>
In ghost imaging, if the signal intensity from the photodetector 30 is b r , b r is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 式(1)において、添字rは、明暗パターンの照射順序を表している。すなわち、bは、r番目の明暗パターンの光に対応する光検出器30からの信号強度を表している。Iは、r番目の明暗パターンを表している。x及びyは、明暗パターンの2次元座標である。T(x,y)は、対象物90の反射率である。なお、後述する実施の形態4及びその変形例のように、対象物90からの透過光を利用する場合、T(x,y)は、対象物90の透過率である。 In equation (1), the subscript r represents the irradiation order of the bright and dark patterns. That is, b r represents the signal intensity from the photodetector 30 corresponding to the light of the r-th bright and dark pattern. I r represents the r-th brightness pattern. x and y are two-dimensional coordinates of the light and dark pattern. T(x,y) is the reflectance of the target object 90. Note that, when using transmitted light from the object 90 as in the fourth embodiment and its modifications described later, T(x, y) is the transmittance of the object 90.
 ゴーストイメージングでは、対象物90の2次元画像を再構成するために、以下の式(2)で表される2次相関関数を定義する。 In ghost imaging, in order to reconstruct a two-dimensional image of the object 90, a quadratic correlation function expressed by the following equation (2) is defined.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、nは、明暗パターンの数である。<k>は、アンサンブル平均であり、以下の式(3)で表される。 Here, n is the number of bright and dark patterns. <k> is an ensemble average and is expressed by the following equation (3).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(2)におけるG(x,y)は、座標(x,y)での全ての明暗パターンでの強度変化の平均値になる。このため、明暗パターンの数nが十分に大きい場合には、G(x,y)は、T(x,y)に近づき、再構成される2次元画像とみなすことが可能になる。 G(x, y) in Equation (2) is the average value of intensity changes in all bright and dark patterns at the coordinates (x, y). Therefore, when the number n of bright and dark patterns is sufficiently large, G(x, y) approaches T(x, y), and it becomes possible to consider it as a reconstructed two-dimensional image.
 <シングルピクセルイメージング>
 シングルピクセルイメージングでは、N個の画素からなる2次元画像を得るためには、原理的には、1次独立なM個の明暗パターンが必要になる。Mは、例えばN以上の値である。N個の画素からなる1次独立な明暗パターンI(x,y)について、対応する信号強度をBとし、対象物90の像をTとすると、以下の式(4)の関係を満たす。
<Single pixel imaging>
In single-pixel imaging, in principle, M linearly independent brightness and darkness patterns are required in order to obtain a two-dimensional image consisting of N pixels. M is, for example, a value greater than or equal to N. Regarding a linearly independent brightness/darkness pattern I(x,y) consisting of N pixels, if the corresponding signal intensity is B and the image of the object 90 is T, the following equation (4) is satisfied.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 Tは、2次元画像としてT(x,y)で表すことができるので、式(4)を行列演算とみなすことが可能である。すなわち、式(4)は、以下の式(5)で表すことができる。 Since T can be expressed as T(x, y) as a two-dimensional image, equation (4) can be regarded as a matrix operation. That is, equation (4) can be expressed as equation (5) below.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 つまり、行列Hの逆行列を利用することで、行列T、すなわち、2次元画像T(x、y)を求めることができる。行列Hとしては、例えば、アダマール行列が利用される。 In other words, by using the inverse matrix of the matrix H, the matrix T, that is, the two-dimensional image T(x, y) can be obtained. As the matrix H, for example, a Hadamard matrix is used.
 以上のように、2次元画像の再構成の手法として、ゴーストイメージングとシングルピクセルイメージングとの2つの手法を説明したが、2次元画像が再構成できれば、その具体的な手法は特に限定されない。本実施の形態に係る撮像装置1の演算部50は、上述した2次元画像の再構成をバンド毎に行う。バンドは、表1に示したように、測定対象の成分に対応しており、成分の含有量に応じて対象物90からの反射光の光量が変化する。したがって、バンド毎に再構成される2次元画像は、対応する成分の2次元分布とみなすことも可能になる。 As described above, two methods, ghost imaging and single pixel imaging, have been described as methods for reconstructing a two-dimensional image, but the specific method is not particularly limited as long as a two-dimensional image can be reconstructed. The calculation unit 50 of the imaging device 1 according to the present embodiment performs the above-described reconstruction of the two-dimensional image for each band. As shown in Table 1, the bands correspond to the components to be measured, and the amount of reflected light from the object 90 changes depending on the content of the component. Therefore, a two-dimensional image reconstructed for each band can also be regarded as a two-dimensional distribution of corresponding components.
 本実施の形態では、演算部50は、少なくとも2つのバンドの各々に対する2つの2次元画像の信号強度比に基づいて、対象物90の化学組成を推定してもよい。例えば、演算部50は、信号強度比と化学組成とが対応付けられて登録されたデータベースを参照することで、測定により得られた信号強度比に一致又は類似する化学組成を対象物90の化学組成として抽出する。データベースは、演算部50が有する記憶部に記憶されていてもよく、撮像装置1と通信可能な外部機器に記憶されていてもよい。 In the present embodiment, the calculation unit 50 may estimate the chemical composition of the object 90 based on the signal intensity ratio of two two-dimensional images for each of at least two bands. For example, by referring to a database in which signal intensity ratios and chemical compositions are registered in association with each other, the calculation unit 50 calculates the chemical composition of the object 90 that matches or is similar to the signal intensity ratio obtained by measurement. Extract as a composition. The database may be stored in a storage unit included in the calculation unit 50, or may be stored in an external device that can communicate with the imaging device 1.
 以上のように、本実施の形態に係る撮像装置1では、2次元画像をバンド毎に再構成するので、光検出器30として単画素の検出器を利用することができる。すなわち、空間分解能の低下を抑制しながらセンササイズを小型化することができる。また、バンド毎に2次元画像を再構成するので、各バンドに対応した成分の分布を得ることができる。つまり、撮像装置1は、分解能が高い小型の分析装置などとして有効に利用可能である。 As described above, in the imaging device 1 according to the present embodiment, a two-dimensional image is reconstructed for each band, so a single pixel detector can be used as the photodetector 30. That is, the sensor size can be reduced while suppressing a decrease in spatial resolution. Furthermore, since a two-dimensional image is reconstructed for each band, it is possible to obtain a distribution of components corresponding to each band. In other words, the imaging device 1 can be effectively used as a small-sized analysis device with high resolution.
 [変形例]
 以下では、実施の形態1の変形例について、図3を用いて説明する。
[Modified example]
A modification of the first embodiment will be described below with reference to FIG. 3.
 図3は、本変形例に係る撮像装置2の構成を示す図である。図3に示されるように、撮像装置2は、図1に示される撮像装置1と比較して、光源10及び構造化手段20の代わりに、光源部11を備える。 FIG. 3 is a diagram showing the configuration of an imaging device 2 according to this modification. As shown in FIG. 3, the imaging device 2 includes a light source section 11 instead of the light source 10 and the structuring means 20, compared to the imaging device 1 shown in FIG.
 光源部11は、光を複数の2次元の明暗パターンに構造化して出射する。すなわち、光源部11は、上述した光源10及び構造化手段20の両方の機能を有する。具体的には、光源部11は、2次元に配列された複数の発光素子を有する。複数の発光素子は、各々が独立して点灯及び消灯が可能である。各発光素子の点灯及び消灯によって、明暗パターンが生成される。例えば、光源部11は、発光素子としてLEDを有するLEDアレイである。 The light source section 11 structures light into a plurality of two-dimensional bright and dark patterns and emits the light. That is, the light source section 11 has the functions of both the light source 10 and the structuring means 20 described above. Specifically, the light source section 11 includes a plurality of light emitting elements arranged two-dimensionally. Each of the plurality of light emitting elements can be turned on and off independently. A bright and dark pattern is generated by turning on and turning off each light emitting element. For example, the light source section 11 is an LED array having LEDs as light emitting elements.
 このように、光源10及び構造化手段20が一体化された光源部11を有する撮像装置2であっても、撮像装置1と同様に、バンド毎の2次元画像を再構成することができ、対象物90の分析などに利用することができる。 In this way, even with the imaging device 2 having the light source section 11 in which the light source 10 and the structuring means 20 are integrated, it is possible to reconstruct a two-dimensional image for each band, similarly to the imaging device 1. It can be used for analysis of the object 90, etc.
 (実施の形態2)
 続いて、実施の形態2について説明する。
(Embodiment 2)
Next, Embodiment 2 will be described.
 実施の形態2では、実施の形態1と比較して、構造化手段が光検出器側に配置されている点が相違する。以下では、実施の形態1との相違点を中心に説明を行い、共通点の説明を省略又は簡略化する。 The second embodiment differs from the first embodiment in that the structuring means is placed on the photodetector side. Below, the explanation will focus on the differences from Embodiment 1, and the explanation of the common points will be omitted or simplified.
 図4は、本実施の形態に係る撮像装置101の構成を示す図である。図4に示されるように、撮像装置101は、図1に示される撮像装置1と比較して、構造化手段20の配置が相違する。具体的には、構造化手段20は、ハーフミラー65と光学素子64との間に配置されている。 FIG. 4 is a diagram showing the configuration of the imaging device 101 according to this embodiment. As shown in FIG. 4, the imaging device 101 is different from the imaging device 1 shown in FIG. 1 in the arrangement of the structuring means 20. Specifically, the structuring means 20 is arranged between the half mirror 65 and the optical element 64.
 本実施の形態では、構造化手段20は、光源10からの光が照射された場合に対象物90から出射される光(具体的には、対象物90が発生させる反射光)を複数の2次元の明暗パターンに構造化する。構造化手段20としては、実施の形態1と同様に、アクティブマトリクス液晶デバイスのような透光型デバイスを利用することができる。 In the present embodiment, the structuring means 20 converts the light emitted from the object 90 (specifically, the reflected light generated by the object 90) into a plurality of two when irradiated with light from the light source 10. Structure into dimensional light-dark patterns. As the structuring means 20, a translucent device such as an active matrix liquid crystal device can be used as in the first embodiment.
 演算部50は、実施の形態1と同様に、光検出器30から出力される信号と、対応する明暗パターンとの相互相関演算を行うことで、対象物90の2次元画像を再構成する。具体的な再構成の方法は、ゴーストイメージング又はシングルピクセルイメージングを利用することができる。2次元画像の再構成は、バンド毎に行われる。 Similarly to the first embodiment, the calculation unit 50 reconstructs a two-dimensional image of the object 90 by performing a cross-correlation calculation between the signal output from the photodetector 30 and the corresponding brightness/darkness pattern. A specific reconstruction method may utilize ghost imaging or single pixel imaging. Reconstruction of the two-dimensional image is performed for each band.
 このように、対象物90からの反射光を構造化手段20が構造化した場合も、実施の形態1と同様に、2次元画像の再構成が可能である。本実施の形態に係る撮像装置101は、2次元画像をバンド毎に再構成するので、光検出器30として単画素の検出器を利用することができる。すなわち、空間分解能の低下を抑制しながらセンササイズを小型化することができる。また、実施の形態1と同様に、バンド毎に2次元画像を再構成するので、各バンドに対応した成分の分布を得ることができる。つまり、撮像装置101は、分解能が高い小型の分析装置などとして有効に利用可能である。 In this way, even when the structuring means 20 structures the reflected light from the target object 90, it is possible to reconstruct a two-dimensional image as in the first embodiment. Since the imaging device 101 according to the present embodiment reconstructs a two-dimensional image for each band, a single-pixel detector can be used as the photodetector 30. That is, the sensor size can be reduced while suppressing a decrease in spatial resolution. Further, as in the first embodiment, since a two-dimensional image is reconstructed for each band, a distribution of components corresponding to each band can be obtained. In other words, the imaging device 101 can be effectively used as a small-sized analysis device with high resolution.
 (実施の形態3)
 続いて、実施の形態3について説明する。
(Embodiment 3)
Next, Embodiment 3 will be described.
 実施の形態3では、実施の形態2と比較して、複数の光検出器を備える点が相違する。以下では、実施の形態2との相違点を中心に説明を行い、共通点の説明を省略又は簡略化する。 The third embodiment differs from the second embodiment in that it includes a plurality of photodetectors. Below, the explanation will focus on the differences from Embodiment 2, and the explanation of the common points will be omitted or simplified.
 図5は、本実施の形態に係る撮像装置201の構成を示す図である。撮像装置201は、光源10と、構造化手段220と、2つの光検出器231及び232と、制御部240と、演算部250と、を備える。また、撮像装置201は、光学素子261~265と、ハーフミラー266と、を備える。 FIG. 5 is a diagram showing the configuration of the imaging device 201 according to this embodiment. The imaging device 201 includes a light source 10, a structuring means 220, two photodetectors 231 and 232, a control section 240, and a calculation section 250. Further, the imaging device 201 includes optical elements 261 to 265 and a half mirror 266.
 光源10は、実施の形態1及び2と同じであり、互いに異なる複数のバンドの光を出射する。 The light source 10 is the same as in Embodiments 1 and 2, and emits light in a plurality of different bands.
 構造化手段220は、入射する光(具体的には、対象物90が発生させる反射光)を2つの明暗パターンに同時に構造化して出射する。2つの明暗パターンは、第1明暗パターンと、当該第1明暗パターンとは明暗が反転した第2明暗パターンと、である。 The structuring means 220 simultaneously structures the incident light (specifically, the reflected light generated by the object 90) into two bright and dark patterns and outputs the structured light. The two bright and dark patterns are a first bright and dark pattern and a second bright and dark pattern whose brightness is inverted from that of the first bright and dark pattern.
 2つの明暗パターンの光はそれぞれ、第1方向と、当該第1方向とは異なる第2方向とに出射される。第1方向は、光検出器231に光を入射させるための出射方向である。図5に示される例では、第1方向は、構造化手段220を基準として光学素子264が位置する方向である。第2方向は、光検出器232に光を入射させるための出射方向である。第2方向は、構造化手段220を基準として光学素子265が位置する方向である。 The two light and dark patterns of light are respectively emitted in a first direction and a second direction different from the first direction. The first direction is an output direction for making light incident on the photodetector 231. In the example shown in FIG. 5, the first direction is the direction in which the optical element 264 is located with respect to the structuring means 220. The second direction is an output direction for making light incident on the photodetector 232. The second direction is the direction in which the optical element 265 is located with respect to the structuring means 220.
 具体的には、構造化手段220は、2次元に配列された複数の光学素子を含む。複数の光学素子は、入射する光を、第1方向と第2方向とのいずれかに出射可能である。例えば、構造化手段220は、デジタルミラーデバイスであり、複数の光学素子として可動式の複数の微小鏡面を有する。 Specifically, the structuring means 220 includes a plurality of optical elements arranged two-dimensionally. The plurality of optical elements can emit incident light in either the first direction or the second direction. For example, the structuring means 220 is a digital mirror device and has a plurality of movable microscopic mirror surfaces as a plurality of optical elements.
 光検出器231は、構造化手段220から第1方向に出射される光を受光する第1受光素子の一例である。光検出器231は、構造化手段220によって構造化された第1明暗パターンの光の強度に応じた信号を出力する。 The photodetector 231 is an example of a first light receiving element that receives light emitted from the structuring means 220 in the first direction. The photodetector 231 outputs a signal corresponding to the intensity of light of the first bright and dark pattern structured by the structuring means 220.
 光検出器232は、構造化手段220から第2方向に出射される光を受光する第2受光素子の一例である。光検出器232は、構造化手段220によって構造化された第2明暗パターンの光の強度に応じた信号を出力する。例えば、光検出器231及び232はそれぞれが、1画素の赤外線検出器である。 The photodetector 232 is an example of a second light receiving element that receives light emitted from the structuring means 220 in the second direction. The photodetector 232 outputs a signal corresponding to the intensity of the light of the second bright and dark pattern structured by the structuring means 220. For example, photodetectors 231 and 232 are each one-pixel infrared detectors.
 制御部240は、制御部40と同様に、撮像装置201の全体的な制御を行う。具体的には、制御部240は、光源10、構造化手段220、光検出器231及び232、並びに、演算部250を制御する。 The control unit 240, like the control unit 40, performs overall control of the imaging device 201. Specifically, the control section 240 controls the light source 10, the structuring means 220, the photodetectors 231 and 232, and the calculation section 250.
 例えば、制御部240は、構造化手段220による複数の明暗パターンの切り替えタイミングを制御する。本実施の形態では、一の明暗パターンの信号と、その反転の明暗パターンの信号とを同時に得ることができるので、制御部240は、構造化手段220を制御する場合に反転パターンが形成されないようにする。また、制御部240は、複数の明暗パターンの各々に対応するように、光検出器231及び232の各々からの信号の出力タイミングを制御する。また、制御部240は、演算部250に対して、明暗パターンと信号との対応付け、及び、バンド毎の信号との対応付けを可能にするための情報を出力する。 For example, the control unit 240 controls the switching timing of a plurality of bright and dark patterns by the structuring means 220. In the present embodiment, since it is possible to simultaneously obtain a signal of one light-dark pattern and a signal of its inverted light-dark pattern, the control unit 240 prevents the formation of an inverted pattern when controlling the structuring means 220. Make it. Further, the control unit 240 controls the output timing of the signal from each of the photodetectors 231 and 232 so as to correspond to each of the plurality of bright and dark patterns. Further, the control unit 240 outputs information to the calculation unit 250 to enable association between brightness and darkness patterns and signals, and association with signals for each band.
 演算部250は、光検出器231及び232の各々から出力される信号と、対応する明暗パターンとの相互相関演算を行うことで、対象物90の2次元画像を再構成する。演算部250は、バンド毎に2次元画像を再構成する。具体的な再構成の手法については、実施の形態1及び2と同様に、ゴーストイメージング又はシングルピクセルイメージングを利用することができる。 The calculation unit 250 reconstructs a two-dimensional image of the object 90 by performing a cross-correlation calculation between the signals output from each of the photodetectors 231 and 232 and the corresponding brightness/darkness pattern. The calculation unit 250 reconstructs a two-dimensional image for each band. As for a specific reconstruction method, ghost imaging or single pixel imaging can be used as in the first and second embodiments.
 光学素子261~265と、ハーフミラー266とは、光路を調整するために設けられている。光学素子261~265はそれぞれ、光学素子61~64と同様に、光の伝播空間との屈折率の違いを利用して光路を制御する。 The optical elements 261 to 265 and the half mirror 266 are provided to adjust the optical path. Like the optical elements 61 to 64, each of the optical elements 261 to 265 controls the optical path by utilizing the difference in refractive index from the light propagation space.
 光学素子261は、例えば、光源10から発せられる光を平行光に変換するコリメータである。光学素子262は、光源10から出射され、ハーフミラー266で反射された光を対象物90に向けて照射する投影レンズである。本実施の形態では、光学素子262は、対象物90からの光(具体的には反射光)を集光する対物レンズでもある。すなわち、光学素子262は、照射光学系と対物光学系とで兼用される。光学素子263は、対象物90からの反射光であって、ハーフミラー266を透過した光を平行光として出射するコリメータである。光学素子263は、平行光を構造化手段220に照射する。光学素子264は、構造化手段220で第1明暗パターンに構造化された光を光検出器231に集光する集光レンズである。光学素子265は、構造化手段220で第2明暗パターンに構造化された光を光検出器232に集光する集光レンズである。 The optical element 261 is, for example, a collimator that converts the light emitted from the light source 10 into parallel light. The optical element 262 is a projection lens that irradiates light emitted from the light source 10 and reflected by the half mirror 266 toward the object 90 . In this embodiment, optical element 262 is also an objective lens that condenses light (specifically, reflected light) from target object 90. That is, the optical element 262 is used for both the irradiation optical system and the objective optical system. The optical element 263 is a collimator that emits the light reflected from the object 90 and transmitted through the half mirror 266 as parallel light. The optical element 263 irradiates the structuring means 220 with parallel light. The optical element 264 is a condenser lens that condenses the light structured into the first bright and dark pattern by the structuring means 220 onto the photodetector 231 . The optical element 265 is a condenser lens that condenses the light structured into the second bright and dark pattern by the structuring means 220 onto the photodetector 232 .
 ハーフミラー266は、対象物90に照射する光と、対象物90からの光(反射光)とを分離する光学素子である。具体的には、ハーフミラー266は、光源10からの光を反射し、対象物90からの反射光を透過させる。ハーフミラー266を利用することによって、光学素子262を照射光学系と対物光学系とで兼用することができる。照射光学系の光軸と対物光学系の光軸とを同一にすることができるので、対象物90からの反射光の収集効率を高めるとともに、外乱光の侵入を抑制することができる。 The half mirror 266 is an optical element that separates the light irradiated onto the object 90 from the light (reflected light) from the object 90. Specifically, the half mirror 266 reflects the light from the light source 10 and transmits the reflected light from the object 90. By using the half mirror 266, the optical element 262 can be used both as an irradiation optical system and an objective optical system. Since the optical axis of the irradiation optical system and the optical axis of the objective optical system can be made the same, it is possible to improve the collection efficiency of reflected light from the object 90 and to suppress the intrusion of disturbance light.
 なお、図5に示される構成は、一例に過ぎず、適宜変更が可能である。例えば、対象物90に対して光を照射する照射光学系と、対象物90からの反射光を取得する対物光学系とは、それぞれ別の光学素子によって実現されてもよい。この場合、撮像装置201は、ハーフミラー266を備えなくてもよい。 Note that the configuration shown in FIG. 5 is only an example and can be modified as appropriate. For example, the irradiation optical system that irradiates light onto the target object 90 and the objective optical system that acquires the reflected light from the target object 90 may be realized by separate optical elements. In this case, the imaging device 201 does not need to include the half mirror 266.
 図6は、本実施の形態に係る撮像装置201の原理を示す図である。図6では、簡単のため、構造化手段220として、5つの微小鏡面221a~221eを有するデジタルミラーデバイスを示している。5つの微小鏡面221a~221eの各々が1画素に相当する。 FIG. 6 is a diagram showing the principle of the imaging device 201 according to this embodiment. In FIG. 6, for simplicity, a digital mirror device having five micromirror surfaces 221a to 221e is shown as the structuring means 220. Each of the five micromirror surfaces 221a to 221e corresponds to one pixel.
 各微小鏡面221a~221eは、方向A及び方向Bのいずれかに入射光を反射させる。図6に示される例では、微小鏡面221a、221b及び221eは、方向Aに入射光を反射させる。微小鏡面221c及び221dは、方向Bに入射光を反射させる。なお、方向Aは、第1方向の一例であり、方向Aに反射された光は、図5の光検出器231によって検出される。方向Bは、第2方向の一例であり、方向Bに反射された光は、図5の光検出器232によって検出される。 Each of the micromirror surfaces 221a to 221e reflects incident light in either direction A or direction B. In the example shown in FIG. 6, the micromirror surfaces 221a, 221b, and 221e reflect the incident light in direction A. In the example shown in FIG. The micromirror surfaces 221c and 221d reflect the incident light in direction B. Note that the direction A is an example of the first direction, and the light reflected in the direction A is detected by the photodetector 231 in FIG. 5. Direction B is an example of a second direction, and light reflected in direction B is detected by photodetector 232 in FIG. 5.
 これにより、方向Aに出射される光の明暗パターンは、上から順に「明」、「明」、「暗」、「暗」、「明」で並んだパターンになる。方向Bに出射される光の明暗パターンは、上から順に「暗」、「暗」、「明」、「明」、「暗」で並んだパターンになる。すなわち、方向Aと方向Bとでは、互いに反転した明暗パターンが得られる。 As a result, the light/dark pattern of the light emitted in direction A becomes a pattern in which "bright", "bright", "dark", "dark", and "bright" are arranged in order from the top. The light/dark pattern of the light emitted in direction B is a pattern in which "dark", "dark", "bright", "bright", and "dark" are arranged in order from the top. That is, in direction A and direction B, mutually inverted light and dark patterns are obtained.
 これにより、1回の光の入射、すなわち、1回の測定で、2つの明暗パターンに対応する信号を得ることができる。演算部250は、2つの明暗パターンの信号をそれぞれ、検出信号として2次元画像の再構成に利用する。これにより、測定時間の短縮、又は、高画質の2次元画像の再構成が可能になる。 Thereby, signals corresponding to two bright and dark patterns can be obtained with one incident of light, that is, one measurement. The calculation unit 250 uses the signals of the two bright and dark patterns as detection signals to reconstruct a two-dimensional image. This makes it possible to shorten measurement time or reconstruct a high-quality two-dimensional image.
 あるいは、演算部250は、2つの明暗パターンに対応する信号の差分を算出し、差分信号を2次元画像の再構成に利用してもよい。反転した明暗パターンの差分を利用することで、ノイズを抑制することができる。これにより、高画質の2次元画像の再構成が可能になる。 Alternatively, the calculation unit 250 may calculate the difference between the signals corresponding to the two bright and dark patterns, and use the difference signal to reconstruct the two-dimensional image. Noise can be suppressed by using the difference between the inverted light and dark patterns. This makes it possible to reconstruct a high-quality two-dimensional image.
 (実施の形態4)
 続いて、実施の形態4について説明する。
(Embodiment 4)
Next, Embodiment 4 will be described.
 実施の形態4では、実施の形態1~3と比較して、対象物からの透過光を検出する点が相違する。以下では、実施の形態1~3との相違点を中心に説明を行い、共通点の説明を省略又は簡略化する。 Embodiment 4 differs from Embodiments 1 to 3 in that transmitted light from an object is detected. Below, the explanation will focus on the differences from Embodiments 1 to 3, and the explanation of common points will be omitted or simplified.
 図7は、本実施の形態に係る撮像装置301の構成を示す図である。図7に示されるように、撮像装置301は、図1に示される撮像装置2と比較して、光学素子62~64及びハーフミラー65の代わりに、光学素子362及び363を備える。 FIG. 7 is a diagram showing the configuration of an imaging device 301 according to this embodiment. As shown in FIG. 7, compared to the imaging device 2 shown in FIG. 1, the imaging device 301 includes optical elements 362 and 363 instead of the optical elements 62 to 64 and the half mirror 65.
 光学素子362は、構造化手段20によって構造化された光を対象物90に向けて照射する投影レンズである。対象物90は、照射された光の少なくとも一部を透過することで透過光を発生させる。光学素子363は、光学素子362から出射された構造化された光のうち、対象物90を透過した光(すなわち、透過光)を集光する対物レンズである。なお、光学素子363は、光検出器30に光を集光するレンズとしても機能するが、これに限定されない。光検出器30に光を集光する専用のレンズが設けられていてもよい。 The optical element 362 is a projection lens that irradiates the object 90 with light structured by the structuring means 20. The target object 90 generates transmitted light by transmitting at least a portion of the irradiated light. The optical element 363 is an objective lens that condenses the light that has passed through the object 90 (that is, the transmitted light) out of the structured light emitted from the optical element 362. Note that the optical element 363 also functions as a lens that focuses light on the photodetector 30, but is not limited thereto. A dedicated lens for condensing light may be provided on the photodetector 30.
 このように、対象物90からの透過光を検出した場合も、実施の形態1と同様に、2次元画像の再構成が可能である。本実施の形態に係る撮像装置301は、2次元画像をバンド毎に再構成するので、光検出器30として単画素の検出器を利用することができる。すなわち、空間分解能の低下を抑制しながらセンササイズを小型化することができる。 In this way, even when the transmitted light from the object 90 is detected, it is possible to reconstruct a two-dimensional image as in the first embodiment. Since the imaging device 301 according to this embodiment reconstructs a two-dimensional image for each band, a single-pixel detector can be used as the photodetector 30. That is, the sensor size can be reduced while suppressing a decrease in spatial resolution.
 なお、実施の形態2と同様に、構造化手段20は、光源10側ではなく、光検出器30側に配置されていてもよい。 Note that, similarly to the second embodiment, the structuring means 20 may be arranged not on the light source 10 side but on the photodetector 30 side.
 図8は、本変形例に係る撮像装置302の構成を示す図である。図8に示されるように、撮像装置302は、図7に示される撮像装置301の構成と比較して、構造化手段20の配置が相違する。また、撮像装置302は、光学素子364を備える。 FIG. 8 is a diagram showing the configuration of an imaging device 302 according to this modification. As shown in FIG. 8, the imaging device 302 differs from the configuration of the imaging device 301 shown in FIG. 7 in the arrangement of the structuring means 20. The imaging device 302 also includes an optical element 364.
 本変形例では、構造化手段20は、光学素子363と光学素子364との間に配置されている。すなわち、構造化手段20は、光源10からの光が照射された場合に対象物90から出射される光(具体的には、透過光)を複数の2次元の明暗パターンに構造化する。光学素子364は、構造化手段20によって構造化された光を光検出器30に集光する。 In this modification, the structuring means 20 is arranged between the optical element 363 and the optical element 364. That is, the structuring means 20 structures the light (specifically, transmitted light) emitted from the object 90 when irradiated with the light from the light source 10 into a plurality of two-dimensional bright and dark patterns. Optical element 364 focuses the light structured by structuring means 20 onto photodetector 30 .
 このように、対象物90からの透過光を構造化した場合も、実施の形態1と同様に、2次元画像の再構成が可能である。本変形例に係る撮像装置302は、2次元画像をバンド毎に再構成するので、光検出器30として単画素の検出器を利用することができる。すなわち、空間分解能の低下を抑制しながらセンササイズを小型化することができる。 In this way, even when the transmitted light from the object 90 is structured, it is possible to reconstruct a two-dimensional image as in the first embodiment. Since the imaging device 302 according to this modification reconstructs a two-dimensional image for each band, a single-pixel detector can be used as the photodetector 30. That is, the sensor size can be reduced while suppressing a decrease in spatial resolution.
 なお、撮像装置302は、実施の形態3と同様に、光検出器30の代わりに、2つの光検出器231及び232を備えてもよい。すなわち、対象物90からの透過光を構造化する場合においても同様に、空間分解能の低下を抑制しながらセンササイズを小型化することができる。 Note that, similarly to the third embodiment, the imaging device 302 may include two photodetectors 231 and 232 instead of the photodetector 30. That is, in the case of structuring the transmitted light from the object 90, the sensor size can be similarly reduced while suppressing a decrease in spatial resolution.
 (他の実施の形態)
 以上、1つ又は複数の態様に係る撮像装置について、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したもの、及び、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の範囲内に含まれる。
(Other embodiments)
Although the imaging device according to one or more aspects has been described above based on the embodiments, the present disclosure is not limited to these embodiments. Unless departing from the gist of the present disclosure, various modifications that can be thought of by those skilled in the art to this embodiment, and configurations constructed by combining components of different embodiments are also included within the scope of the present disclosure. It will be done.
 例えば、光源が出射する光は、中赤外線よりも長波長側の光であってもよい。具体的には、光源が出射する光は、波長帯域が10μm以上30μm以下の遠赤外線であってもよく、波長帯域が30μm以上3mm以下のテラヘルツ波であってもよい。 For example, the light emitted by the light source may be light with a longer wavelength than mid-infrared rays. Specifically, the light emitted from the light source may be far infrared rays with a wavelength band of 10 μm or more and 30 μm or less, or may be terahertz waves with a wavelength band of 30 μm or more and 3 mm or less.
 あるいは、光源が出射する光は、可視光よりも短波長側の光であってもよい。具体的には、光源が出射する光は、波長帯域が10nm以上400nm以下の紫外線であってもよく、X線又は電子線であってもよい。 Alternatively, the light emitted by the light source may be light with a shorter wavelength than visible light. Specifically, the light emitted by the light source may be ultraviolet light having a wavelength band of 10 nm or more and 400 nm or less, or may be X-rays or electron beams.
 また、例えば、光源が出射する光は、対象物90を励起させる励起光であってもよい。この場合、対象物90は、光が照射された場合に励起されて蛍光を発する。光検出器は、対象物90から出射される光として、対象物90からの蛍光を検出してもよい。 Furthermore, for example, the light emitted by the light source may be excitation light that excites the object 90. In this case, the object 90 is excited and emits fluorescence when irradiated with light. The photodetector may detect fluorescence from the object 90 as the light emitted from the object 90.
 また、例えば、光源10として、広帯域光源とフィルタとを利用する場合において、フィルタは、光検出器側に配置されてもよい。つまり、光源10は、互いに異なる複数のバンドの光として、互いに異なる複数のバンドの各々を含むブロードな光を出射してもよい。この場合、測定対象とする成分に応じたバンドに対応するフィルタは、光検出器の光入射側に配置される。 Furthermore, for example, when a broadband light source and a filter are used as the light source 10, the filter may be placed on the photodetector side. In other words, the light source 10 may emit broad light including each of the plurality of different bands, as the light of the plurality of different bands. In this case, a filter corresponding to a band corresponding to the component to be measured is placed on the light incident side of the photodetector.
 また、光検出器は、複数の画素を有するイメージセンサであってもよい。イメージセンサの画素数は、構造化手段の微小領域の数より少なくてよい。複数の画素の各々の検出結果を利用することで、より画質の良い2次元画像を再構成することができる。あるいは、複数の画素の各々には、バンド毎の光が入射されてもよい。これにより、複数のバンドの光の検出を同時に行うことができる。 Additionally, the photodetector may be an image sensor having multiple pixels. The number of pixels of the image sensor may be smaller than the number of micro areas of the structuring means. By using the detection results of each of the plurality of pixels, a two-dimensional image with better image quality can be reconstructed. Alternatively, light for each band may be incident on each of the plurality of pixels. Thereby, light in multiple bands can be detected simultaneously.
 また、光検出器は、波長変換部材を有してもよい。波長変換部材は、例えば、アップコンバージョン型の波長変換部材であり、中赤外帯域の光を可視光又は近赤外光に変換する。これにより、光検出器は、安価な可視光センサ又は近赤外光センサを利用することができる。 Additionally, the photodetector may include a wavelength conversion member. The wavelength conversion member is, for example, an up-conversion type wavelength conversion member, and converts light in the mid-infrared band to visible light or near-infrared light. Thereby, an inexpensive visible light sensor or near-infrared light sensor can be used as the photodetector.
 また、上記の各実施の形態は、請求の範囲又はその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 Additionally, various changes, substitutions, additions, omissions, etc. can be made to each of the above embodiments within the scope of the claims or their equivalents.
 本開示は、対象物の成分分析又は異物混入の判別などの各種分析装置及び検査装置に利用することができる。 The present disclosure can be used in various analysis devices and inspection devices, such as component analysis of a target object or determination of foreign matter contamination.
1、2、101、201、301、302 撮像装置
10 光源
11 光源部
20、220 構造化手段
30、231、232 光検出器
40、240 制御部
50、250 演算部
61、62、63、64、261、262、263、264、265、362、363、364 光学素子
65、266 ハーフミラー
90 対象物
221a、221b、221c、221d、221e 微小鏡面
1, 2, 101, 201, 301, 302 Imaging device 10 Light source 11 Light source section 20, 220 Structuring means 30, 231, 232 Photodetector 40, 240 Control section 50, 250 Arithmetic section 61, 62, 63, 64, 261, 262, 263, 264, 265, 362, 363, 364 Optical element 65, 266 Half mirror 90 Object 221a, 221b, 221c, 221d, 221e Microscopic mirror surface

Claims (9)

  1.  光を複数の2次元の明暗パターンに構造化して出射する光源部と、
     前記光源部からの光が対象物に照射された場合に前記対象物から出射される光を検出する光検出器と、
     前記光検出器から出力される信号と、対応する明暗パターンとの相互相関演算を行うことで、前記対象物の2次元画像を再構成する演算部と、を備え、
     前記光源部は、互いに異なる複数のバンドの光を出射し、
     前記演算部は、前記バンド毎に前記2次元画像を再構成する、
     撮像装置。
    a light source unit that structures and emits light into a plurality of two-dimensional bright and dark patterns;
    a photodetector that detects light emitted from the object when the object is irradiated with light from the light source;
    a calculation unit that reconstructs a two-dimensional image of the object by performing a cross-correlation calculation between the signal output from the photodetector and the corresponding brightness pattern;
    The light source unit emits light in a plurality of different bands,
    The calculation unit reconstructs the two-dimensional image for each band,
    Imaging device.
  2.  前記光源部は、
     光源と、
     前記光源からの光を前記複数の2次元の明暗パターンに構造化する構造化手段と、を含む、
     請求項1に記載の撮像装置。
    The light source section is
    a light source and
    structuring means for structuring the light from the light source into the plurality of two-dimensional bright and dark patterns;
    The imaging device according to claim 1.
  3.  光を出射する光源部と、
     前記光源部からの光が対象物に照射された場合に前記対象物から出射される光を複数の2次元の明暗パターンに構造化する構造化手段と、
     前記構造化手段によって構造化された光を検出する光検出器と、
     前記光検出器から出力される信号と、対応する明暗パターンとの相互相関演算を行うことで、前記対象物の2次元画像を再構成する演算部と、を備え、
     前記光源部は、互いに異なる複数のバンドの光を出射し、
     前記演算部は、前記バンド毎に前記2次元画像を再構成する、
     撮像装置。
    a light source unit that emits light;
    structuring means for structuring light emitted from the object into a plurality of two-dimensional bright and dark patterns when the object is irradiated with light from the light source;
    a photodetector that detects the light structured by the structuring means;
    a calculation unit that reconstructs a two-dimensional image of the object by performing a cross-correlation calculation between the signal output from the photodetector and the corresponding brightness pattern;
    The light source unit emits light in a plurality of different bands,
    The calculation unit reconstructs the two-dimensional image for each band,
    Imaging device.
  4.  前記構造化手段は、2次元に配列された複数の光学素子を含み、
     前記複数の光学素子は、入射する光を、第1方向と、当該第1方向とは異なる第2方向とのいずれかに出射可能であり、
     前記光検出器は、
     前記構造化手段から前記第1方向に出射される光を受光する第1受光素子と、
     前記構造化手段から前記第2方向に出射される光を受光する第2受光素子と、を含む、
     請求項2に記載の撮像装置。
    The structuring means includes a plurality of optical elements arranged two-dimensionally,
    The plurality of optical elements are capable of emitting incident light in either a first direction or a second direction different from the first direction,
    The photodetector is
    a first light receiving element that receives light emitted from the structuring means in the first direction;
    a second light receiving element that receives light emitted from the structuring means in the second direction;
    The imaging device according to claim 2.
  5.  前記構造化手段は、デジタルミラーデバイス、アクティブマトリクス液晶デバイス又は空間光変調器である、
     請求項2から4のいずれか1項に記載の撮像装置。
    the structuring means is a digital mirror device, an active matrix liquid crystal device or a spatial light modulator;
    The imaging device according to any one of claims 2 to 4.
  6.  前記複数のバンドは、2μm以上10μm以下の波長帯域に含まれる、
     請求項1から5のいずれか1項に記載の撮像装置。
    The plurality of bands are included in a wavelength band of 2 μm or more and 10 μm or less,
    The imaging device according to any one of claims 1 to 5.
  7.  前記演算部は、さらに、少なくとも2つのバンドの各々に対する2つの前記2次元画像の信号強度比に基づいて、前記対象物の化学組成を推定する、
     請求項1から6のいずれか1項に記載の撮像装置。
    The calculation unit further estimates the chemical composition of the object based on a signal intensity ratio of the two two-dimensional images for each of at least two bands.
    An imaging device according to any one of claims 1 to 6.
  8.  前記対象物から出射される光は、前記対象物が前記光源部からの光の少なくとも一部を反射することで発生する反射光である、
     請求項1から7のいずれか1項に記載の撮像装置。
    The light emitted from the target object is reflected light generated when the target object reflects at least a part of the light from the light source unit.
    An imaging device according to any one of claims 1 to 7.
  9.  前記対象物から出射される光は、前記対象物が前記光源部からの光の少なくとも一部を透過することで発生する透過光である、
     請求項1から7のいずれか1項に記載の撮像装置。
    The light emitted from the target object is transmitted light generated when the target object transmits at least a part of the light from the light source unit.
    An imaging device according to any one of claims 1 to 7.
PCT/JP2023/008829 2022-03-16 2023-03-08 Imaging device WO2023176636A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-041322 2022-03-16
JP2022041322 2022-03-16

Publications (1)

Publication Number Publication Date
WO2023176636A1 true WO2023176636A1 (en) 2023-09-21

Family

ID=88023180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008829 WO2023176636A1 (en) 2022-03-16 2023-03-08 Imaging device

Country Status (1)

Country Link
WO (1) WO2023176636A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150085136A1 (en) * 2013-09-26 2015-03-26 Xerox Corporation Hybrid single-pixel camera switching mode for spatial and spot/area measurements
WO2020149140A1 (en) * 2019-01-17 2020-07-23 株式会社小糸製作所 Vehicle-mounted imaging device, vehicle light, and automobile
CN112903731A (en) * 2019-12-02 2021-06-04 中国科学院物理研究所 Method and device for neutron intensity correlated imaging
WO2021119799A1 (en) * 2019-12-17 2021-06-24 Quantum Valley Ideas Laboratories Single pixel imaging of electromagnetic fields

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150085136A1 (en) * 2013-09-26 2015-03-26 Xerox Corporation Hybrid single-pixel camera switching mode for spatial and spot/area measurements
WO2020149140A1 (en) * 2019-01-17 2020-07-23 株式会社小糸製作所 Vehicle-mounted imaging device, vehicle light, and automobile
CN112903731A (en) * 2019-12-02 2021-06-04 中国科学院物理研究所 Method and device for neutron intensity correlated imaging
WO2021119799A1 (en) * 2019-12-17 2021-06-24 Quantum Valley Ideas Laboratories Single pixel imaging of electromagnetic fields

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GIBSON GRAHAM M., JOHNSON STEVEN D., PADGETT MILES J.: "Single-pixel imaging 12 years on: a review", OPTICS EXPRESS, vol. 28, no. 19, 14 September 2020 (2020-09-14), pages 28190 - 28208, XP093090011, DOI: 10.1364/OE.403195 *

Similar Documents

Publication Publication Date Title
US11852793B2 (en) Infrared imaging microscope using tunable laser radiation
US11867610B2 (en) Dynamic high-speed high-sensitivity imaging device and imaging method
TW201921132A (en) Overlay metrology using multiple parameter configurations
TWI714716B (en) System and method for hyperspectral imaging metrology
CN106456070B (en) Image forming apparatus and method
JP6814983B2 (en) Imaging device
SE1400400A1 (en) An imaging system parallelizing compressive sensing imaging
CN112639582B (en) Hyperspectral apparatus and method
JP2017508160A (en) Optical interference device
CN114502930A (en) Detector array and spectrometer system
WO2023176636A1 (en) Imaging device
JP2018054448A (en) Spectrum measurement method
JP2012047502A (en) Spectroscopic image acquisition device and method
TWI521162B (en) Light source device
WO2023176638A1 (en) Optical device
WO2011134111A1 (en) Optical spectrometer and method for enhancing signal intensity for optical spectroscopy
JP7309640B2 (en) optical inspection equipment
WO2021044992A1 (en) Spectral image generation device
TW202235852A (en) Optical metrology utilizing short-wave infrared wavelengths
JP2021051074A (en) Spectroscopic analyzer
CN107242860B (en) Fluorescent molecule chromatographic imaging system and method
WO2017034517A1 (en) Digital spectroscopic and holographic microscope and method thereof
US20230010628A1 (en) Imaging system and a method for imaging a sample
US20210255096A1 (en) Optical assembly for the hyperspectral illumination and evaluation of an object
TW202242391A (en) Scanning scatterometry overlay measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770592

Country of ref document: EP

Kind code of ref document: A1