WO2023176203A1 - Ion-conducting solid composition and solid-state secondary battery - Google Patents

Ion-conducting solid composition and solid-state secondary battery Download PDF

Info

Publication number
WO2023176203A1
WO2023176203A1 PCT/JP2023/004089 JP2023004089W WO2023176203A1 WO 2023176203 A1 WO2023176203 A1 WO 2023176203A1 JP 2023004089 W JP2023004089 W JP 2023004089W WO 2023176203 A1 WO2023176203 A1 WO 2023176203A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
solid
conducting
solid composition
lithium
Prior art date
Application number
PCT/JP2023/004089
Other languages
French (fr)
Japanese (ja)
Inventor
優貴 上川
Original Assignee
株式会社エンビジョンAescジャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エンビジョンAescジャパン filed Critical 株式会社エンビジョンAescジャパン
Publication of WO2023176203A1 publication Critical patent/WO2023176203A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an ion-conductive solid composition and a solid secondary battery.
  • Solid electrolytes offer various advantages to secondary batteries compared to conventional non-aqueous electrolytes. For example, solid electrolytes have high flame retardancy and can provide high safety to lithium ion secondary batteries. Solid electrolytes can also provide advantages in high energy density, good charge/discharge cycle stability, and electrochemical stability over a wide range of charge/discharge rate conditions. Therefore, efforts are being made to put into practical use all-solid-state batteries that do not use electrolytes and only use solid electrolytes. However, there are various challenges to putting all-solid-state batteries into practical use.
  • the first problem is the contact state between the electrolyte and the electrode. Due to the nanoscale unevenness of the inorganic solid electrolyte layer surface and the electrode surface, fine pores exist at the interface between the inorganic solid electrolyte layer surface and the electrode surface. Two problems can arise from such interfacial pores.
  • the interfacial pores increase the resistance of the solid electrolyte layer/electrode interface.
  • the interfacial pores also make the lithium flux at the solid electrolyte layer/electrode interface non-uniform, concentrate the lithium concentration and current density at the solid electrolyte layer/electrode contact, and increase the formation of lithium dendrites.
  • inorganic solid electrolytes such as inorganic sulfides and oxides have high ionic conductivity (>10 ⁇ 4 S/cm) at room temperature, this high ionic conductivity may not be utilized efficiently.
  • the second problem is the processability of inorganic solid electrolytes such as inorganic sulfides and oxides into thin film electrolyte layers.
  • a solid electrolyte layer with excessive thickness increases the electrical resistance of the solid electrolyte layer due to the electronic resistance of the solid electrolyte.
  • the increase in pore volume and pore diameter between solid electrolyte particles within the solid electrolyte layer increases the formation of lithium dendrites.
  • a nonionically conductive polymer binder is added between solid electrolyte particles, the ionic conductivity and electronic conductivity of the solid electrolyte layer decrease.
  • a polymer electrolyte using an inorganic or organic polymer compound can improve the above-mentioned problems regarding voids at the electrolyte layer/electrode interface and formation of a thin electrolyte layer.
  • polymer electrolytes have inferior ionic conductivity compared to inorganic solid electrolytes.
  • a solid electrolyte is required that has elastoplasticity to the extent that it is possible to form a good solid electrolyte layer/electrode interface and to form a thin film electrolyte layer.
  • inorganic solid electrolytes such as inorganic sulfides and oxides have a narrow redox stable potential range compared to the operating voltage of lithium metal negative electrodes and positive electrodes. It can be easily oxidatively decomposed or reductively decomposed on the surface of the positive electrode during charging and discharging. Oxidative decomposition products or reductive decomposition products of inorganic solid electrolytes have extremely low ionic conductivity and may cause an increase in the resistance of a lithium ion secondary battery during charge/discharge cycles.
  • Patent Document 1 proposes a composite of an inorganic solid electrolyte and an ionic liquid as a solid electrolyte that can solve the first problem.
  • Patent Document 2 proposes an inorganic solid electrolyte and an ion-conductive polymer as a solid electrolyte with excellent moldability that can solve the second problem.
  • the all-solid electrolytes proposed in Patent Document 1 and Patent Document 2 can solve some of the above-mentioned problems, but there is a strong demand for proposals for all-solid electrolytes that can solve all three of the above-mentioned problems. ing. Therefore, the present invention aims to improve the oxidative decomposition or reduction of solid electrolytes by forming an interfacial film that has both high ionic conductivity and high moldability, and has high oxidation/reductive decomposition resistance on the lithium metal surface.
  • An object of the present invention is to provide an ion-conducting solid composition that can prevent decomposition.
  • a further object of the present invention is to provide a solid state secondary battery that utilizes such an ion conductive solid composition and has a high energy density and a long cycle life.
  • One embodiment of the present invention is an ion-conducting solid composition
  • an ion-conducting solid composition comprising at least an ion-conducting amorphous inorganic substance and an ion-conducting polymeric substance having a fluorine atom in its main chain and/or side chain. It is. At least a portion of the surface of the ion-conductive solid composition is coated with lithium fluoride. It is preferable that the ion conductive amorphous inorganic substance is contained in an amount of 80% or more based on the mass of the ion conductive solid composition. Further, it is preferable that the ion conductivity of the ion conductive solid composition is 1 ⁇ 10 ⁇ 2 [S ⁇ m ⁇ 1 ] or more.
  • a second embodiment of the present invention is a solid secondary battery including at least a solid electrolyte containing the ion conductive solid composition, a positive electrode, and a negative electrode.
  • a solid secondary battery including at least a solid electrolyte containing the ion conductive solid composition, a positive electrode, and a negative electrode.
  • at least a portion of the interface between the solid electrolyte and the negative electrode is coated with lithium fluoride.
  • the ion conductive solid composition of the present invention has both high ion conductivity and high moldability.
  • the ion-conductive solid composition of the present invention can form an interfacial film with high oxidation/reduction decomposition resistance on the lithium metal surface. It is possible to prevent this.
  • a solid secondary battery using the ion-conductive solid composition of the present invention has high energy density, excellent cycle characteristics, and long life.
  • the ion-conducting solid composition of one embodiment includes at least an ion-conducting amorphous inorganic substance and an ion-conducting polymeric substance having fluorine atoms in its main chain and/or side chain, At least a portion of the surface of the conductive solid composition is coated with lithium fluoride.
  • ion conductivity refers to a phenomenon in which charges are transported by the movement of ions (anions or cations).
  • the solid composition refers to a composite material that is a mixture of two or more substances and is solid or semi-solid (gel-like) in the room temperature range. That is, an ion-conductive solid composition is a composite material that can create an environment in which charges are transported by anion or cation movement in a solid or semi-solid in the room temperature range.
  • the ion-conducting solid composition of one embodiment includes an ion-conducting amorphous inorganic substance and an ion-conducting polymeric substance having fluorine atoms in its main chain and/or side chain.
  • an amorphous substance means that it is not crystalline, and specifically refers to a substance in which atoms and molecules constituting a solid are not regularly arranged.
  • an amorphous substance may be referred to as an amorphous substance, amorphous, or the like.
  • inorganic substances refer to all substances other than organic substances.
  • an ion-conducting amorphous inorganic material is an amorphous inorganic material that has the property of transporting charge through the movement of anions or cations.
  • ionically conductive amorphous inorganic materials examples include perovskites (e.g., Li 3 xLa (2/3)-x TiO 3 , 0 ⁇ x ⁇ 0.67), lithium superionic conductor compounds (e.g., Li 2+2x Zn 1-x GeO 4 , 0 ⁇ x ⁇ 1; Li 14 ZnGe 4 O 16 ), Thiolisicone® compounds (for example, Li 4-x A 1-y B y S 4 , A is Si, Ge or Sn, B is P, Al, Zn, Ga; Li 10 SnP 2 S 12 ), garnet (for example, Li 7 La 3 Zr 2 O 12 , Li 5 La 3 M 2 O 12 , M is Ta or Nb), Nasicon type lithium Ionic conductors (e.g.
  • perovskites e.g., Li 3 xLa (2/3)-x TiO 3 , 0 ⁇ x ⁇ 0.67
  • lithium superionic conductor compounds e.g., Li 2+2x Zn 1-
  • Li 2 S-SiS 2 LiI-Li 2 SB 2 S 3
  • phosphates for example, Li 1-x Al x Ge 2-x (PO 4 ) 3 (LAGP), Li 1+x Ti 2-x Al x (PO 4 )), ⁇ -silver iodide ( ⁇ -AgI), lithium iodide (LiI) K-priderite (K 1.5 Mg 0.75 Ti 7.25 O 16 ), Na- ⁇ -alumina (Na 2 O.11Al 2 O 3 ), stabilized zirconia (e.g.
  • the ionically conductive amorphous inorganic substance alone has a transference number close to 1, preferably 0.9 or more, more preferably 0.99 or more.
  • the ion-conducting solid composition of one embodiment includes, in addition to the ion-conducting amorphous inorganic substance, an ion-conducting polymeric substance having fluorine atoms in its main chain and/or side chain.
  • a polymer substance is defined as a molecule with a large molecular weight and a substance having a structure composed of many repetitions of units obtained substantially or conceptually from molecules with a small molecular weight. Ru.
  • a polymer substance may be simply referred to as a polymer, and may also be referred to as a polymer compound, polymer, or the like.
  • the polymeric substance used in one embodiment has a fluorine atom in its main chain and/or side chain, and has the above-mentioned ion conductive property.
  • the ion-conducting polymeric substance used in one embodiment may have any shape such as linear, branched, net-like, comb-like, or brush-like. It is preferable that the polymer substance having such a shape has a fluorine atom in either the main chain, the side chain, or both.
  • the main structure constituting the main chain or side chain of the ion-conductive polymer substance can include polyolefin, polyester, polyamine, polyamide, polyaramid, polyurethane, polyether, acrylic resin, polysiloxane, or epoxy resin, etc.
  • the ion-conducting polymer substance used in one embodiment has a fluorine atom in a part of the main chain and/or side chain having the above structure.
  • the main chain and/or side chain terminals of the ion-conductive polymer substance may be substituted with a group selected from cyano, thiol, amide, amino, sulfonic acid, epoxy, carboxyl, or hydroxyl group. good.
  • Ion-conducting polymeric substances having fluorine atoms in the main chain and/or side chains include perfluoropolyether (PFPE), polytetrafluoroethylene (PTFE), perfluoroalkoxyalkane (PFA), polychlorotrifluoroethylene ( PCTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), and other fluororesins, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE) , fluorinated resin copolymers such as ethylene-chlorotrifluoroethylene copolymer (ECTFE) can be suitably used.
  • PFPE perfluoropolyether
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxyalkane
  • PCTFE polychlorotrifluoroethylene
  • PVDF polyvinyliden
  • the ionically conductive polymeric material has a number average molecular weight in the range of 500 g/mol - 50,000 g/mol, preferably 1,000 g/mol - 40,000 g/mol, more preferably 100 g/mol - 10,000 g/mol. It is preferable.
  • the ion-conducting polymeric material has a glass transition temperature of -50°C or lower, preferably -70°C or lower. That is, the ion-conductive polymer substance is preferably glassy or amorphous at room temperature. Further, it is preferable that the ion conductive polymer substance has a relatively low melting point near room temperature. The melting point of the ion conductive polymer substance is 150°C or lower, preferably 100°C or lower, and more preferably 50°C or lower.
  • the content ratio of the ion conductive amorphous inorganic substance in the ion conductive solid composition is 80% or more, preferably 90% or more based on the mass of the ion conductive solid composition. It is preferable that there be.
  • the ion conductive solid composition of one embodiment can be produced by mixing an ion conductive amorphous inorganic substance and an ion conductive polymer substance at the above content ratio. . These components can be manufactured by mixing preferably without using a solvent or the like. These components can be mixed using a machine such as a ball mill, a planetary mixer, an extruder, a kneader, or a kneader.
  • an ion-conducting polymer substance and a suitable solvent are mixed to obtain a solution or suspension, and an ion-conducting amorphous inorganic substance is added to this liquid and mixed. It is also possible to obtain ionically conductive solid-state compositions of the embodiments. At this time, the solvent used may be removed by evaporation using an appropriate method, or may remain in the ion-conductive solid composition as it is.
  • the resulting ion-conducting solid composition may be in any solid form, such as a clay-like solid, a paste-like solid, or a gel-like solid.
  • An ion-conducting solid electrolyte can be formed by adding an appropriate amount of electrolyte to the ion-conducting solid composition of one embodiment.
  • Electrolytes that can be added to the ion-conductive solid composition include lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), and lithium hexafluoroantimonate.
  • LiSbF 6 lithium tetraphenylborate tris(1,2-dimethoxyethane) (LiB(C 6 H 5 ) 4 ), lithium perchlorate (LiClO 4 ), lithium bistrifluoromethanesulfonimide (LiTFSI), lithium bis (fluorosulfonyl)imide (LiFSI), 1-ethyl-3methylimidazolium bis(fluorosulfonylimide) (EMIFSI), 1-methyl-1-propylpyrrolidinium bis(fluorosulfonyl)imide (MPPYFSI), etc. It is preferable to use a lithium salt having an anion diameter of a certain size.
  • potassium salts such as potassium trifluoromethanesulfonate, or sodium salts such as sodium trifluoromethanesulfonate can also be used.
  • concentration of the electrolyte in the ionically conductive solid composition can be about 0.5-10 mol%, preferably 0.8-5 mol%, and more preferably about 1.0-3 mol%.
  • the ion conductive solid electrolyte obtained by adding an appropriate amount of electrolyte to the ion conductive solid composition of the first embodiment has an ionic conductivity of 1 ⁇ 10 ⁇ 2 [S ⁇ m ⁇ 1 ] or more. has. It is preferable that the ionic conductivity of the ion conductive solid electrolyte is high.
  • the ion-conducting solid composition of the first embodiment also includes a dispersant for substantially uniformly dispersing the ion-conducting amorphous inorganic material in the ion-conducting polymer material, and an ion-conducting solid composition.
  • a dispersant for substantially uniformly dispersing the ion-conducting amorphous inorganic material in the ion-conducting polymer material and an ion-conducting solid composition.
  • agents for adjusting the mechanical strength of the composition e.g., plasticizers, reinforcing agents
  • various agents for improving the properties of the ion-conducting solid composition e.g., heat resistant agents, ultraviolet absorbers, antistatic agents
  • the solid electrolyte which includes the ion-conducting solid composition of one embodiment, an electrolyte, and optionally other agents, is preferably formed into a membrane shape.
  • a membrane is a relatively thin layer having a generally planar structure with a predetermined area.
  • the area and thickness of the solid electrolyte can be determined as appropriate depending on the use of the solid secondary battery, desired output, etc., which will be described later.
  • the thickness of the solid electrolyte can be any desired in the range of 10 ⁇ m to 1,000 ⁇ m. It is preferable to obtain a solid electrolyte having an areal capacity in the range of 2 mAh/cm 3 to 5 mAh/cm 3 by appropriately changing the size of the solid electrolyte.
  • At least a portion of the surface of the ion-conductive solid composition is preferably coated with lithium fluoride. It is possible to add an appropriate amount of the above-mentioned electrolyte to the ion-conducting solid composition of one embodiment and use this as an ion-conducting solid electrolyte to form a solid state secondary battery to be described later. can.
  • this solid state secondary battery is charged and discharged, especially during charging, the ion conductive polymer substance contained in the ion conductive solid composition of the first embodiment is reductively decomposed near the negative electrode surface, and lithium fluoride is (LiF) is generated.
  • the generated LiF covers at least a portion of the negative electrode side surface of the solid electrolyte, forming a high quality solid electrolyte interface (Solid Electrolyte Interface, SEI).
  • SEI Solid Electrolyte Interface
  • the presence of SEI on at least a portion of the surface of the solid electrolyte containing the ion-conducting solid composition of one embodiment makes the ion-conducting solid electrolyte electronically insulated, resulting in apparent durability. sexuality will be acquired.
  • a second embodiment of the present invention is a solid secondary battery that includes at least a solid electrolyte containing the ion-conductive solid composition of the first embodiment, a positive electrode, and a negative electrode.
  • the solid electrolyte used in the second embodiment is obtained by adding an electrolyte to the ion conductive solid composition of the first embodiment.
  • the electrolyte is lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium hexafluoroantimonate (LiSbF 6 ), lithium tris tetraphenylborate ( 1,2-dimethoxyethane) (LiB(C 6 H 5 ) 4 ), lithium perchlorate (LiClO 4 ), lithium bistrifluoromethanesulfonimide (LiTFSI), lithium bis(fluorosulfonyl)imide (LiFSI), 1- Lithium salts such as ethyl-3-methylimidazolium bis(fluorosulfonylimide) (EMIFSI), 1-methyl-1-propylpyrrolidinium bis(fluorosulfonyl)imide (MPPYFSI), or potassium trifluoromethanesulfonate, etc
  • the solid secondary battery of the second embodiment is a "solid lithium secondary battery” when a lithium salt is used as the electrolyte, and a “solid potassium secondary battery” when a potassium salt is used as the electrolyte. When sodium salt is used, it becomes a “solid sodium secondary battery.”
  • the positive electrode used in the second embodiment is in the form of a thin plate or sheet in which a positive electrode active material layer is formed by coating or rolling a mixture containing a positive electrode active material on a positive electrode current collector, which is a metal foil such as aluminum foil, and drying the positive electrode current collector.
  • a positive electrode current collector which is a metal foil such as aluminum foil
  • the positive electrode current collector is a battery component. That is, the positive electrode is composed of a positive electrode current collector and a positive electrode active material layer containing a positive electrode active material coated on both or one side of the positive electrode current collector.
  • the positive electrode active material layer preferably includes a positive electrode active material and a binder.
  • a positive electrode active material is a material used in a positive electrode among substances involved in a reaction that generates electrical energy.
  • a binder is generally a substance for binding positive electrode active material particles in order to bring the particle-shaped positive electrode active materials into electrical contact with each other.
  • the positive electrode active material used in the second embodiment preferably contains a lithium-nickel-based composite oxide as the positive electrode active material.
  • Lithium-nickel composite oxide has the general formula Li x Ni y Me (1-y) O 2 (where Me is Al, Mn, Na, Fe, Co, Cr, Cu, Zn, Ca, K, It is a transition metal composite oxide containing lithium and nickel and is represented by at least one metal selected from the group consisting of Mg and Pb. In particular, it is preferable to include a lithium-manganese complex oxide.
  • lithium-manganese-based composite oxide examples include lithium manganate (LiMnO 2 ) having a zigzag layered structure and spinel-type lithium manganate (LiMn 2 O 4 ).
  • the positive electrode active material particularly includes a lithium nickel manganese cobalt composite oxide having a layered crystal structure represented by the general formula Li x Ni y Co z Mn (1-y-z) O 2 .
  • x in the general formula satisfies 1 ⁇ x ⁇ 1.2
  • y and z are positive numbers satisfying y+z ⁇ 1, and the value of y is 0.5 or more.
  • a lithium-nickel-based composite oxide having this general formula is a lithium-nickel-cobalt-manganese composite oxide (hereinafter sometimes referred to as "NCM").
  • NCM is a lithium-nickel composite oxide that is suitably used to increase the capacity of batteries.
  • sulfur can also be used as a positive electrode of a solid state secondary battery.
  • fluororesins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and polyvinyl fluoride (PVF), polyanilines, polythiophenes, polyacetylenes, and polypyrrole are used.
  • conductive polymers such as styrene butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), isoprene rubber (IR), acrylonitrile butadiene rubber (NBR), or carboxymethyl cellulose (CMC), Examples include polysaccharides such as xanthan gum, guar gum, and pectin.
  • the positive electrode active material layer may optionally contain a conductive additive.
  • conductive aids that may be used in some cases include carbon fibers such as carbon nanofibers, carbon blacks such as acetylene black and Ketjen black, carbon materials such as activated carbon, graphite, mesoporous carbon, fullerenes, and carbon nanotubes.
  • electrode additives commonly used for electrode formation such as thickeners, dispersants, and stabilizers, can be appropriately used in the positive electrode active material layer.
  • the negative electrode used in the second embodiment is a thin plate or sheet formed by coating or rolling a mixture containing a negative electrode active material on a negative electrode current collector, which is a metal foil such as copper foil, and drying it to form a negative electrode active material layer.
  • a negative electrode current collector which is a metal foil such as copper foil
  • the negative electrode is composed of a negative electrode current collector and a negative electrode active material layer containing a negative electrode active material coated on both surfaces of the negative electrode current collector.
  • the negative electrode active material layer preferably includes a negative electrode active material and a binder.
  • the negative electrode active material is a substance used in the negative electrode among substances involved in a reaction that generates electrical energy.
  • a binder is generally a substance for binding negative electrode active material particles in order to bring the negative electrode active materials in particle shape into electrical contact with each other.
  • the negative electrode active material used in the second embodiment includes a carbon-based active material.
  • the carbon-based active material is natural graphite, artificial graphite, hard carbon, soft carbon, or any mixture thereof.
  • graphite is a hexagonal hexagonal plate-shaped carbon material, and is sometimes referred to as graphite, graphite, or the like.
  • Natural graphite and artificial graphite include natural graphite with an amorphous carbon coating and artificial graphite with an amorphous carbon coating.
  • amorphous carbon is a carbon material that is entirely amorphous and has a structure in which microcrystals are randomly networked, which may partially have a structure similar to graphite. That's true.
  • amorphous carbon examples include carbon black, coke, activated carbon, carbon fiber, hard carbon, soft carbon, and mesoporous carbon.
  • the interlayer distance d value (d 002 ) is 0.33 nm or more.
  • the crystal structure of artificial graphite is generally thinner than that of natural graphite.
  • the interlayer distance at which lithium ions can be inserted and removed can be estimated by the d value (d 002 ), and if the d value is 0.33 nm or more, lithium ions can be inserted and removed without any problem.
  • the carbon-based active material is preferably in the form of particles having generally uniform or irregular sizes.
  • the negative electrode active material in addition to carbon-based active materials, silicon and silicon-containing active materials, tin and tin-containing active materials can be used. It is also possible to use lithium metal and lithium alloyed metal as the negative electrode of a solid state secondary battery.
  • the binder comprises poly(meth)acrylic acid, a metal salt of poly(meth)acrylic acid, an alkyl ester of poly(meth)acrylic acid, or any mixture thereof.
  • Compounds suitable as binders include, for example, polyacrylic acid, polymethacrylic acid; sodium polyacrylate, potassium polyacrylate, sodium polymethacrylate, potassium polymethacrylate; polyethyl acrylate, polyethyl acrylate, polyacrylic acid.
  • the content of the binder is preferably 2% by mass or more and less than 10% by mass with respect to the total solid content of the negative electrode active material layer. If the content of the binder is too large, a large portion of the surface of the active material will be covered with the binder, which may reduce ionic conductivity and electronic conductivity. Moreover, if the content of the binder is too small, there is a possibility that electrical contact between the negative electrode active material particles may not be properly made.
  • carboxymethylcellulose As a component of the binder, in addition to the above-mentioned compounds, carboxymethylcellulose (referred to as "CMC"), which is a derivative of cellulose, or a metal salt of carboxymethylcellulose (for example, sodium carboxymethylcellulose, potassium carboxymethylcellulose) is included. It is particularly preferable. Carboxymethylcellulose or a metal salt of carboxymethylcellulose plays a role in stabilizing the above binder compound and also stabilizes the electrical contact of the negative electrode active material.
  • the content of CMC or CMC metal salt is 0.05% by mass or more and 1.5% by mass or less based on the total solid content of the negative electrode active material layer. In particular, it is preferably 0.08% by mass or more and 0.8% by mass or less, and more preferably 0.15% by mass or more and 0.30% by mass or less.
  • the negative electrode active material layer may further contain a conductive additive.
  • the conductive aid is a material for reducing the resistance of the electrode.
  • Examples of the conductive aid include carbon fibers such as carbon nanofibers, carbon blacks such as acetylene black and Ketjen black, carbon materials such as activated carbon, graphite, mesoporous carbon, fullerenes, and carbon nanotubes.
  • carbon nanotubes referred to as "CNT"
  • CNT is a material in which a six-membered ring network of carbon atoms (graphene) has a single-wall or multi-layer coaxial tube structure, and includes single-wall carbon nanotubes (single-wall, referred to as "SWNT”) and multi-wall carbon nanotubes. (multilayer, referred to as "MWNT”).
  • SWNT single-wall carbon nanotubes
  • MWNT multi-wall carbon nanotubes.
  • any CNT may be used, it is particularly preferred in embodiments to use SWNT as a conductive aid.
  • the content of CNTs is 0.01% by mass or more and 1% by mass or less, particularly 0.03% by mass or more and 0.8% by mass, based on the total solid content of the negative electrode active material layer.
  • it is further preferably 0.1% by mass or more and 0.5% by mass or less.
  • electrode additives commonly used for electrode formation such as thickeners, dispersants, and stabilizers, can be appropriately used in the negative electrode active material layer.
  • the solid state secondary battery of the second embodiment usually does not include a separator as a component because the solid electrolyte containing the ion conductive solid composition of the first embodiment plays the role of a separator.
  • the separator can be included as a component.
  • a polyolefin film can be used as the separator.
  • Polyolefin is a compound obtained by polymerizing or copolymerizing ⁇ -olefins such as ethylene, propylene, butene, pentene, and hexene.
  • Copolymers can be mentioned.
  • a polyolefin film As a separator, it is particularly advantageous if the polyolefin film has a structure that has pores that are closed when the battery temperature rises, that is, a porous or microporous polyolefin film. Because the polyolefin film has such a structure, even if the battery temperature rises, the separator can close (shut down) and interrupt the ion flow. That is, the uniaxially stretched polyolefin film contracts when the battery is heated and the pores are closed, making it possible to prevent short circuits between the positive and negative electrodes. In order to exhibit a shutdown effect, it is highly preferable to use a porous polyethylene membrane.
  • a crosslinked film can be used as a separator.
  • Porous or microporous polyolefin films have the property of shrinking when heated, so when the battery overheats, the film shrinks and shuts down. However, if the heat shrinkage rate of the film is too large, the area of the film will change significantly, which may even result in a large current flow. Since the crosslinked polyolefin film has an appropriate heat shrinkage rate, it can shrink by the amount to close the pores even when heated, without significantly changing the area.
  • the separator optionally used in the second embodiment may have a heat-resistant fine particle layer on one or both sides of the separator.
  • the heat-resistant fine particle layer provided to prevent overheating of the battery is composed of inorganic fine particles that have a heat resistance of 150° C. or higher and are stable in electrochemical reactions.
  • inorganic fine particles include inorganic oxides such as silica, alumina ( ⁇ -alumina, ⁇ -alumina, ⁇ -alumina), iron oxide, titanium oxide, barium titanate, and zirconium oxide; boehmite, zeolite, apatite, kaolin, Minerals such as spinel, mica, and mullite can be mentioned.
  • the solid state secondary battery of the second embodiment preferably does not contain a liquid electrolyte.
  • a small amount of non-aqueous electrolyte may be included in the solid electrolyte for the purpose of improving the ionic conductivity and electrical conductivity of the solid electrolyte.
  • a non-aqueous electrolyte is an electrically conductive substance made by dissolving an ionic substance in an organic solvent.
  • the above-mentioned positive electrode and negative electrode are stacked, a solid electrolyte is arranged between them, and the solid electrolyte secondary battery element containing this and optionally a nonaqueous electrolyte is the solid state secondary battery of the second embodiment. It is one unit of the main constituent members of.
  • a solid state secondary battery is formed by combining a laminate in which a plurality of positive electrodes and a plurality of negative electrodes are stacked on top of each other via a plurality of solid electrolytes.
  • the liquid electrolyte that can optionally be used is mainly a non-aqueous electrolyte, such as dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), di-n - Chain carbonates such as propyl carbonate, di-t-propyl carbonate, di-n-butyl carbonate, di-isobutyl carbonate, or di-t-butyl carbonate, and propylene carbonate (PC), ethylene carbonate (EC), etc.
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethylmethyl carbonate
  • PC propylene carbonate
  • EC ethylene carbonate
  • Liquid electrolytes include such carbonate mixtures as described above, such as lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), and hexafluoroantimony.
  • lithium acid LiSbF 6
  • lithium tetraphenylborate tris(1,2-dimethoxyethane) LiB(C 6 H 5 ) 4
  • lithium perchlorate LiClO 4
  • lithium bistrifluoromethanesulfonimide LiTFSI
  • LiFSI Lithium bis(fluorosulfonyl)imide
  • EMIFSI 1-ethyl-3methylimidazolium bis(fluorosulfonylimide)
  • MPPYFSI 1-methyl-1-propylpyrrolidinium bis(fluorosulfonyl)imide
  • a lithium salt such as the above, a potassium salt such as potassium trifluoromethanesulfonate, or a sodium salt such as sodium trifluoromethanesulfonate is dissolved therein.
  • the liquid electrolyte may contain a cyclic carbonate compound different from the above-mentioned cyclic carbonate as an additive.
  • a cyclic carbonate compound different from the above-mentioned cyclic carbonate is vinylene carbonate (VC).
  • VC vinylene carbonate
  • a cyclic carbonate compound having a halogen can also be used as an additive.
  • These cyclic carbonates are also compounds that can form protective coatings for the positive electrode and negative electrode during the charging and discharging process of solid secondary batteries. In particular, it is a compound that can prevent a positive electrode active material containing a lithium-nickel composite oxide from being attacked by a sulfur-containing compound such as a disulfonic acid compound or a disulfonic acid ester compound.
  • halogen-containing cyclic carbonate compound examples include fluoroethylene carbonate (FEC), difluoroethylene carbonate, trifluoroethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, trichloroethylene carbonate, and the like.
  • Fluoroethylene carbonate which is a cyclic carbonate compound containing a halogen and an unsaturated bond, is particularly preferably used.
  • the liquid electrolyte may further contain a disulfonic acid compound as an additive.
  • a disulfonic acid compound is a compound having two sulfo groups in one molecule, and includes disulfonate compounds in which the sulfo group forms a salt with a metal ion, or disulfonic acid ester compounds in which the sulfo group forms an ester.
  • One or two of the sulfo groups of the disulfonic acid compound may form a salt with a metal ion, or may be in the form of an anion.
  • disulfonic acid compounds include methanedisulfonic acid, 1,2-ethanedisulfonic acid, 1,3-propanedisulfonic acid, 1,4-butanedisulfonic acid, benzenedisulfonic acid, naphthalenedisulfonic acid, biphenyldisulfonic acid, and Examples include salts (lithium methanedisulfonate, lithium 1,2-ethanedisulfonate, etc.), and anions thereof (methanedisulfonate anion, 1,2-ethanedisulfonate anion, etc.).
  • disulfonic acid compounds include disulfonic acid ester compounds, such as methanedisulfonic acid, 1,2-ethanedisulfonic acid, 1,3-propanedisulfonic acid, 1,4-butanedisulfonic acid, benzenedisulfonic acid, naphthalenedisulfonic acid, Alternatively, chain disulfonic acid esters such as alkyl diesters or aryl diesters of biphenyl disulfonic acid; and cyclic disulfonic acid esters such as methylenemethane disulfonic acid ester, ethylenemethane disulfonic acid ester, and propylenemethane disulfonic acid ester are preferably used. Methylenemethane disulfonic acid ester (MMDS) is particularly preferably used.
  • MMDS Methylenemethane disulfonic acid ester
  • the solid secondary battery of the second embodiment which includes a solid electrolyte, a positive electrode, and a negative electrode, is usually sealed with an exterior body. Sealing means that at least a portion of the solid state secondary battery element is wrapped with an exterior material so as not to be exposed to outside air.
  • the exterior body of a solid state secondary battery is either a casing having gas barrier properties and capable of sealing the solid state secondary battery element, or a bag-shaped body made of a flexible material.
  • an aluminum can, an aluminum laminate sheet made by laminating aluminum foil, polypropylene, or the like can be suitably used. That is, any material may be used for the exterior body as long as it does not expose the solid state secondary battery to the outside.
  • the outermost layer of the exterior body has a heat-resistant protective layer made of polyester, polyamide, liquid crystal polymer, etc.
  • the innermost layer is polyethylene, polypropylene, ionomer, acid-modified polyethylene such as maleic acid-modified polyethylene, acid-modified polyethylene such as maleic acid-modified polypropylene, etc.
  • a laminate film having a sealant layer made of a thermoplastic resin such as a blend of PET can be used.
  • the exterior body may be formed by bonding or welding one or more of these laminate films together and forming multiple layers.
  • Aluminum, tin, copper, nickel, and stainless steel can be used as the gas barrier metal layer.
  • the thickness of the metal layer is preferably 30 to 50 ⁇ m.
  • an aluminum laminate which is a laminate of aluminum foil and a polymer such as polyethylene or polypropylene, can be used.
  • the solid state secondary battery of the second embodiment may be in various forms such as a coin type battery, a laminate type battery, and a wound type battery.
  • At least a portion of the interface with the solid electrolyte negative electrode is preferably coated with lithium fluoride.
  • a suitable amount of the above electrolyte is added to the ion conductive solid composition of the first embodiment, and this is used as the ion conductive solid electrolyte to charge and discharge the solid state secondary battery of the second embodiment.
  • the ion-conductive polymeric substance contained in the ion-conductive solid composition of one embodiment undergoes reductive decomposition near the surface of the negative electrode, producing lithium fluoride (LiF).
  • the generated LiF covers at least a portion of the negative electrode side surface of the solid electrolyte, forming a high quality solid electrolyte interface (Solid Electrolyte Interface, SEI).
  • Example 1 (Preparation of ionically conductive amorphous inorganic material) Li 6 PS 5 Cl particles were prepared as an ion conductive amorphous inorganic material. In an argon-filled glove box, 75 g of 10 mm zirconia balls were placed into an 80 mL zirconia container. Subsequently, 10.0 g of Li 6 PS 5 Cl (NEI Co.) was added and the container was sealed. The container was taken out from the glove box, fixed in a ball mill, and the mixture was ground at 500 rpm for 24 hours to obtain sulfide glass particles (Li 6 PS 5 Cl particles).
  • PFPE perfluoropolyether
  • LiTFSI lithium bistrifluoromethanesulfonimide
  • a solid state secondary battery cell was produced as follows.
  • the assembled laminate was sandwiched between two stainless steel disks and the stainless steel disks were bolted together.
  • Stainless steel tabs were attached to both sides and the container was sealed in a quartz glass container to obtain a lithium metal/ion conductive solid electrolyte/lithium metal solid secondary battery cell.
  • Li 2 S is a substance that can be generated by reductive decomposition of sulfide glass particles (Li 6 PS 5 Cl particles) during a cycle charge/discharge test of a solid state secondary battery.
  • Li 2 S is a substance that has an extremely low ionic conductivity of 10 ⁇ 13 S ⁇ cm ⁇ 1 . If the presence of Li 2 S is observed on the surface of the ion-conductive solid electrolyte after the cycle charge/discharge test, it is considered that the resistance at the interface between the solid electrolyte and the negative electrode has increased.
  • Example 1 a solid secondary battery cell was created in the same manner as in Example 1, except that PEPF was not added to the ion-conductive solid electrolyte. A cycle charge/discharge test was conducted under the same conditions as in Example 1, and then the solid secondary battery cell was disassembled to determine whether lithium fluoride was present on the negative electrode surface of the ion conductive solid electrolyte. Confirmed by F1s spectrum by line photoelectron spectroscopy. Furthermore, whether or not lithium sulfide was present on the negative electrode surface of the ion-conductive solid electrolyte was confirmed by an S2p spectrum using X-ray photoelectron spectroscopy.
  • the ion-conducting solid electrolyte using the combination of the ion-conducting amorphous inorganic material and the ion-conducting polymer material of the present invention has LiF on the surface after cycling charging and discharging of a solid secondary battery using the ion-conducting solid electrolyte. While the formation of Li 2 S was observed, almost no formation of Li 2 S was observed.
  • the ion-conductive solid composition of the present invention forms a high-quality SEI at the interface between the solid electrolyte and the negative electrode, and can prevent reductive decomposition of an amorphous inorganic substance. It can be seen that the solid state secondary battery of the present invention can prevent high resistance and capacity deterioration due to charge/discharge cycles, and can be a battery with a long life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

The purpose of the present invention is to provide an ion-conducting solid composition which exhibits both high ion conductivity and high molding processing properties and which can prevent oxidative degradation or reductive degradation of a solid electrolyte by forming an interfacial film having high oxidative/reductive degradation resistance at the surface of metallic lithium. Another purpose is to provide a solid state secondary battery which is obtained using this type of ion-conducting solid composition, has a high energy density, and has a long cycle life. The present invention is: an ion-conducting solid composition that contains at least an ion-conducting amorphous inorganic substance and an ion-conducting polymeric substance having a fluorine atom in a main chain and/or a side chain; and a solid state secondary battery that includes at least a positive electrode, a negative electrode, and an ion-conducting solid composition or ion-conducting solid composition-containing solid electrolyte, in which at least a part of the surface of the ion-conducting solid composition is coated with lithium fluoride.

Description

イオン伝導性固体状組成物および固体状二次電池Ion conductive solid composition and solid secondary battery
 本発明は、イオン伝導性固体状組成物、ならびに固体状二次電池に関する。 The present invention relates to an ion-conductive solid composition and a solid secondary battery.
 固体電解質は、従来の非水電解液と比較して二次電池に様々な優位性をもたらす。たとえば、固体電解質は、高い難燃性を有し、リチウムイオン二次電池に高い安全性をあたえることができる。また、固体状電解質は、幅広い充放電レート条件において、高いエネルギー密度、良好な充放電サイクル安定性、および、電気化学的安定性の優位性を提供することができる。そこで、電解液を使用せず、固体電解質のみを使用した全固体電池の実用化が進められている。ところが、全固体電池の実用化には様々な課題がある。 Solid electrolytes offer various advantages to secondary batteries compared to conventional non-aqueous electrolytes. For example, solid electrolytes have high flame retardancy and can provide high safety to lithium ion secondary batteries. Solid electrolytes can also provide advantages in high energy density, good charge/discharge cycle stability, and electrochemical stability over a wide range of charge/discharge rate conditions. Therefore, efforts are being made to put into practical use all-solid-state batteries that do not use electrolytes and only use solid electrolytes. However, there are various challenges to putting all-solid-state batteries into practical use.
 第一に、電解質と電極の接触状態に関する課題である。無機固体電解質層表面および電極表面のナノスケールの凹凸に起因して、無機固体電解質層表面と電極表面の界面には微細な細孔が存在する。当該界面細孔により2つの問題が生じうる。当該界面細孔は、固体電解質層/電極界面の抵抗を増大させる。また、当該界面細孔は、固体電解質層/電極界面のリチウム流束を不均一化させ、固体電解質層/電極接触部におけるリチウム濃度および電流密度を集中させ、リチウムデンドライトの生成を増大させる。無機硫化物や酸化物等の無機固体電解質は、室温で高いイオン伝導性(>10-4S/cm)を有するが、この高いイオン伝導性を効率よく利用できない場合がありうる。 The first problem is the contact state between the electrolyte and the electrode. Due to the nanoscale unevenness of the inorganic solid electrolyte layer surface and the electrode surface, fine pores exist at the interface between the inorganic solid electrolyte layer surface and the electrode surface. Two problems can arise from such interfacial pores. The interfacial pores increase the resistance of the solid electrolyte layer/electrode interface. The interfacial pores also make the lithium flux at the solid electrolyte layer/electrode interface non-uniform, concentrate the lithium concentration and current density at the solid electrolyte layer/electrode contact, and increase the formation of lithium dendrites. Although inorganic solid electrolytes such as inorganic sulfides and oxides have high ionic conductivity (>10 −4 S/cm) at room temperature, this high ionic conductivity may not be utilized efficiently.
 第二に、無機硫化物や酸化物等の無機固体電解質の薄膜状電解質層への加工性に関する課題である。過剰な厚さを有する固体電解質層は、固体電解質の電子抵抗に起因する固体電解質層の電気抵抗を増大させる。固体電解質層内部における固体電解質粒子間の空孔体積および空孔直径の増大は、リチウムデンドライトの形成を増大させる。また、非イオン伝導性高分子結着剤を固体電解質粒子間に添加すると、固体電解質層のイオン伝導性および電子伝導性が低下する。一方、無機または有機高分子化合物を利用した高分子電解質は、電解質層/電極界面の空隙および薄膜状電解質層形成に関する前記の課題を改善し得る。しかしながら高分子電解質は、無機固体電解質と比較して、イオン伝導度に劣る。
 このように、大型全固体電池の製造や、大型全固体電池の利用(たとえば電動車両)の実現には、固体電解質層のイオン伝導性を犠牲にすること無く、リチウムの析出の発生を抑制し、かつ良好な固体電解質層/電極界面の形成および薄膜状電解質層を形成可能な程度の弾塑性を有する固体電解質が必要となる。
The second problem is the processability of inorganic solid electrolytes such as inorganic sulfides and oxides into thin film electrolyte layers. A solid electrolyte layer with excessive thickness increases the electrical resistance of the solid electrolyte layer due to the electronic resistance of the solid electrolyte. The increase in pore volume and pore diameter between solid electrolyte particles within the solid electrolyte layer increases the formation of lithium dendrites. Furthermore, when a nonionically conductive polymer binder is added between solid electrolyte particles, the ionic conductivity and electronic conductivity of the solid electrolyte layer decrease. On the other hand, a polymer electrolyte using an inorganic or organic polymer compound can improve the above-mentioned problems regarding voids at the electrolyte layer/electrode interface and formation of a thin electrolyte layer. However, polymer electrolytes have inferior ionic conductivity compared to inorganic solid electrolytes.
In this way, in order to manufacture large all-solid-state batteries and realize the use of large all-solid-state batteries (for example, in electric vehicles), it is necessary to suppress the occurrence of lithium precipitation without sacrificing the ionic conductivity of the solid electrolyte layer. A solid electrolyte is required that has elastoplasticity to the extent that it is possible to form a good solid electrolyte layer/electrode interface and to form a thin film electrolyte layer.
 第三に、無機硫化物や酸化物等の無機固体電解質は、リチウム金属負極および正極の作動電圧と比較して、狭い耐酸化還元安定電位域を有するため、無機固体電解質は、リチウム金属負極および正極の表面において充放電中に容易に酸化分解あるいは還元分解されうる。無機固体電解質の酸化分解物または還元分解物は、極めてイオン伝導性が低く、充放電サイクル中にリチウムイオン二次電池の抵抗の上昇を引き起こす虞がある。 Thirdly, inorganic solid electrolytes such as inorganic sulfides and oxides have a narrow redox stable potential range compared to the operating voltage of lithium metal negative electrodes and positive electrodes. It can be easily oxidatively decomposed or reductively decomposed on the surface of the positive electrode during charging and discharging. Oxidative decomposition products or reductive decomposition products of inorganic solid electrolytes have extremely low ionic conductivity and may cause an increase in the resistance of a lithium ion secondary battery during charge/discharge cycles.
 このような課題を解決すべく、これまでに種々の全固体電解質が提案されている。たとえば、特許文献1は、前記の第一の課題を解決し得る固体電解質として、無機固体電解質とイオン液体の複合物が提案されている。特許文献2には、前記の第二の課題を解決し得る成形加工性に優れた固体電解質として、無機固体電解質とイオン伝導性高分子が提案されている。 In order to solve these problems, various all-solid electrolytes have been proposed so far. For example, Patent Document 1 proposes a composite of an inorganic solid electrolyte and an ionic liquid as a solid electrolyte that can solve the first problem. Patent Document 2 proposes an inorganic solid electrolyte and an ion-conductive polymer as a solid electrolyte with excellent moldability that can solve the second problem.
特開2014-82091号公報Japanese Patent Application Publication No. 2014-82091 特開2018-515893号公報JP 2018-515893 Publication
 特許文献1や特許文献2にて提案されている全固体電解質は、前記の一部の課題を解決しうるが、前記の三つの課題をすべて解決するような全固体電解質の提案が強く要望されている。そこで、本発明は、高いイオン伝導性と高い成形加工性とを兼ね備え、かつ、リチウム金属表面にて高い耐酸化/還元分解性を有する界面皮膜を形成することにより、固体電解質の酸化分解または還元分解の防止を可能とする、イオン伝導性固体状組成物を提供することを目的とする。さらに本発明は、このようなイオン伝導性固体状組成物を利用した、エネルギー密度が高く、かつサイクル寿命が長い固体状二次電池を提供することを目的とする。 The all-solid electrolytes proposed in Patent Document 1 and Patent Document 2 can solve some of the above-mentioned problems, but there is a strong demand for proposals for all-solid electrolytes that can solve all three of the above-mentioned problems. ing. Therefore, the present invention aims to improve the oxidative decomposition or reduction of solid electrolytes by forming an interfacial film that has both high ionic conductivity and high moldability, and has high oxidation/reductive decomposition resistance on the lithium metal surface. An object of the present invention is to provide an ion-conducting solid composition that can prevent decomposition. A further object of the present invention is to provide a solid state secondary battery that utilizes such an ion conductive solid composition and has a high energy density and a long cycle life.
 本発明の一の実施形態は、イオン伝導性非晶質無機物質と、主鎖および/または側鎖にフッ素原子を有するイオン伝導性高分子物質と、を少なくとも含む、イオン伝導性固体状組成物である。該イオン伝導性固体状組成物の表面の少なくとも一部が、フッ化リチウムで被覆されていることを特徴とする。
 該イオン伝導性非晶質無機物質が、該イオン伝導性固体状組成物の質量を基準として80%以上含まれていることが好ましい。
 また、該イオン伝導性固体状組成物のイオン伝導度が、1×10-2[S・m-1]以上であることが好ましい。
One embodiment of the present invention is an ion-conducting solid composition comprising at least an ion-conducting amorphous inorganic substance and an ion-conducting polymeric substance having a fluorine atom in its main chain and/or side chain. It is. At least a portion of the surface of the ion-conductive solid composition is coated with lithium fluoride.
It is preferable that the ion conductive amorphous inorganic substance is contained in an amount of 80% or more based on the mass of the ion conductive solid composition.
Further, it is preferable that the ion conductivity of the ion conductive solid composition is 1×10 −2 [S·m −1 ] or more.
 さらに本発明の二の実施形態は、前記のイオン伝導性固体状組成物を含む固体状電解質と、正極と、負極と、を少なくとも含む、固体状二次電池である。
 該固体状電解質と該負極との界面の少なくとも一部が、フッ化リチウムで被覆されていることが好ましい。
Furthermore, a second embodiment of the present invention is a solid secondary battery including at least a solid electrolyte containing the ion conductive solid composition, a positive electrode, and a negative electrode.
Preferably, at least a portion of the interface between the solid electrolyte and the negative electrode is coated with lithium fluoride.
 本発明のイオン伝導性固体状組成物は、高いイオン伝導性と高い成形加工性とを兼ね備える。また本発明のイオン伝導性固体状組成物は、リチウム金属表面にて高い耐酸化/還元分解性を有する界面皮膜を形成することができるため、これを利用した固体電解質の酸化分解または還元分解を防止することが可能である。さらに本発明のイオン伝導性固体状組成物を利用した固体状二次電池は、エネルギー密度が高く、かつサイクル特性に優れ、長い寿命を有する。 The ion conductive solid composition of the present invention has both high ion conductivity and high moldability. In addition, the ion-conductive solid composition of the present invention can form an interfacial film with high oxidation/reduction decomposition resistance on the lithium metal surface. It is possible to prevent this. Further, a solid secondary battery using the ion-conductive solid composition of the present invention has high energy density, excellent cycle characteristics, and long life.
 本発明の実施形態を以下に説明する。一の実施形態のイオン伝導性固体状組成物は、イオン伝導性非晶質無機物質と、主鎖および/または側鎖にフッ素原子を有するイオン伝導性高分子物質と、を少なくとも含み、該イオン伝導性固体状組成物の表面の少なくとも一部が、フッ化リチウムで被覆されていることを特徴とする。 Embodiments of the present invention will be described below. The ion-conducting solid composition of one embodiment includes at least an ion-conducting amorphous inorganic substance and an ion-conducting polymeric substance having fluorine atoms in its main chain and/or side chain, At least a portion of the surface of the conductive solid composition is coated with lithium fluoride.
 本明細書において、イオン伝導性とは、電荷がイオン(アニオンまたはカチオン)の移動によって輸送される現象のことである。また固体状組成物とは、2以上の物質の混合物である複合材料であって、常温の温度範囲において固体または半固体(ゲル状)であるものを指す。すなわち、イオン伝導性固体状組成物は、常温の温度範囲において、固体または半固体の中をアニオンまたはカチオンが移動することにより電荷が輸送される環境を作ることができる複合材料のことである。
 一の実施形態のイオン伝導性固体状組成物は、イオン伝導性非晶質無機物質と、主鎖および/または側鎖にフッ素原子を有するイオン伝導性高分子物質と、を含む。本明細書において非晶質物質とは、結晶質ではない、ということであり、具体的には固体を構成する原子や分子に規則性のある配列が認められない物質を指す。本明細書では非晶質物質を無定形物質、アモルファス等を称することがある。また、無機物質は、有機物質以外のすべての物質のことである。一の実施形態においてイオン伝導性非晶質無機物質とは、アニオンまたはカチオンが移動することにより電荷が輸送されるような特性を有する、無定形の無機物のことである。イオン伝導性非晶質無機物質の例として、ペロブスカイト(たとえば、LixLa(2/3)-xTiO、0≦x≦0.67)、リチウム超イオン伝導体化合物(たとえば、Li2+2xZn1-xGeO、0≦x≦1;Li14ZnGe16)、チオリシコン(登録商標)化合物(たとえば、Li4-x1-y、AはSi、GeまたはSn、BはP、Al、Zn、Ga;Li10SnP12)、ガーネット(たとえば、LiLaZr12、LiLa12、MはTaまたはNb)、ナシコン型リチウムイオン伝導体(たとえば、Li1.3l0.3Ti1.7(PO)、酸化ガラスまたはガラスセラミック(たとえば、LiBO-LiSO、LiO-P、LiO-SiO)、硫化物ガラスまたはガラスセラミック(たとえば、75LiS-25P、LiS-SiS、LiI-LiS-B)、リン酸塩(たとえば、Li1-xAlGe2-x(PO(LAGP)、Li1+xTi2-xAl(PO))、α-ヨウ化銀(α-AgI)、ヨウ化リチウム(LiI)K-プリデライト(K1.5Mg0.75Ti7.2516)、Na-β-アルミナ(NaO・11Al)、安定化ジルコニア(たとえばZr0.85Ca0.15)O)、ナシコン(NaZrSiPO12)、酸化ビスマス((Bi0.750.25)、Li3.6Si0.60.4、LiPSCl、AgSI、およびAgWOが挙げられ、これらの無機物質のうち2以上を組み合わせて用いることができる。イオン伝導性非晶質無機物質は、それ単独で1に近い輸率を有し、好ましくは0.9以上、さらに好ましくは0.99以上の輸率を有する。
As used herein, ion conductivity refers to a phenomenon in which charges are transported by the movement of ions (anions or cations). Further, the solid composition refers to a composite material that is a mixture of two or more substances and is solid or semi-solid (gel-like) in the room temperature range. That is, an ion-conductive solid composition is a composite material that can create an environment in which charges are transported by anion or cation movement in a solid or semi-solid in the room temperature range.
The ion-conducting solid composition of one embodiment includes an ion-conducting amorphous inorganic substance and an ion-conducting polymeric substance having fluorine atoms in its main chain and/or side chain. In this specification, an amorphous substance means that it is not crystalline, and specifically refers to a substance in which atoms and molecules constituting a solid are not regularly arranged. In this specification, an amorphous substance may be referred to as an amorphous substance, amorphous, or the like. Furthermore, inorganic substances refer to all substances other than organic substances. In one embodiment, an ion-conducting amorphous inorganic material is an amorphous inorganic material that has the property of transporting charge through the movement of anions or cations. Examples of ionically conductive amorphous inorganic materials include perovskites (e.g., Li 3 xLa (2/3)-x TiO 3 , 0≦x≦0.67), lithium superionic conductor compounds (e.g., Li 2+2x Zn 1-x GeO 4 , 0≦x≦1; Li 14 ZnGe 4 O 16 ), Thiolisicone® compounds (for example, Li 4-x A 1-y B y S 4 , A is Si, Ge or Sn, B is P, Al, Zn, Ga; Li 10 SnP 2 S 12 ), garnet (for example, Li 7 La 3 Zr 2 O 12 , Li 5 La 3 M 2 O 12 , M is Ta or Nb), Nasicon type lithium Ionic conductors (e.g. Li 1.3 A 10.3 Ti 1.7 (PO 4 ) 3 ), oxidized glasses or glass ceramics (e.g. Li 3 BO 3 -Li 2 SO 4 , Li 2 O-P 2 O 5 , Li 2 O-SiO 2 ), sulfide glasses or glass ceramics (e.g. 75Li 2 S-25P 2 S 5 , Li 2 S-SiS 2 , LiI-Li 2 SB 2 S 3 ), phosphates (For example, Li 1-x Al x Ge 2-x (PO 4 ) 3 (LAGP), Li 1+x Ti 2-x Al x (PO 4 )), α-silver iodide (α-AgI), lithium iodide (LiI) K-priderite (K 1.5 Mg 0.75 Ti 7.25 O 16 ), Na-β-alumina (Na 2 O.11Al 2 O 3 ), stabilized zirconia (e.g. Zr 0.85 Ca 0 .15 ) O 2 ), Nasicon (Na 3 Zr 2 Si 2 PO 12 ), Bismuth oxide ((Bi 0.75 Y 0.25 ) 2 O 3 ), Li 3.6 Si 0.6 P 0.4 O 4 , Li6PS5Cl , Ag3SI , and Ag6I4WO4 , and two or more of these inorganic substances can be used in combination. The ionically conductive amorphous inorganic substance alone has a transference number close to 1, preferably 0.9 or more, more preferably 0.99 or more.
 一の実施形態のイオン伝導性固体状組成物は、イオン伝導性非晶質無機物質のほかに、主鎖および/または側鎖にフッ素原子を有するイオン伝導性高分子物質を含む。本明細書において高分子物質とは、分子量が大きい分子であって、分子量が小さい分子から実質的または概念的に得られる単位の多数回の繰り返しで構成した構造を有する物質、であると定義される。本明細書では、高分子物質のことを単に高分子と称することがあり、ほかには高分子化合物、ポリマー等と称することがある。一の実施形態において用いられる高分子物質は、主鎖および/または側鎖にフッ素原子を有し、かつ上記のイオン伝導の性質を有する。一の実施形態で用いるイオン伝導性高分子物質は、線状、分岐状、網状、櫛形状、ブラシ状のいずれの形状を有していても良い。このような形状の高分子物質の主鎖あるいは側鎖のいずれか、あるいはそれらの両方にフッ素原子を有していることが好ましい。イオン伝導性高分子物質の主鎖または側鎖を構成する主構造は、ポリオレフィン、ポリエステル、ポリアミン、ポリアミド、ポリアラミド、ポリウレタン、ポリエーテル、アクリル樹脂、ポリシロキサン、またはエポキシ樹脂等を挙げることができ、これらの2以上の構造を併せ持つ共重合体構造を有していても良い。またこれらの構造を有する高分子物質を2以上選択して混合して用いることもできる。一の実施形態で用いるイオン伝導性高分子物質は、上記の構造を有する主鎖および/または側鎖の一部にフッ素原子が存在している。このほか、イオン伝導性高分子物質の主鎖および/または側鎖の末端には、シアノ、チオール、アミド、アミノ、スルホン酸、エポキシ、カルボキシルまたはヒドロキシル基から選択される基が置換していても良い。主鎖および/または側鎖にフッ素原子を有するイオン伝導性高分子物質として、パーフルオロポリエーテル(PFPE)、ポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシアルカン(PFA)、ポリクロロトリフルオロエチレン(PCTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)等のフッ素樹脂や、四フッ化エチレン-六フッ化プロピレン共重合体(FEP)、エチレン-四フッ化エチレン共重合体(ETFE)、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)等のフッ素化樹脂共重合体を好適に用いることができる。 The ion-conducting solid composition of one embodiment includes, in addition to the ion-conducting amorphous inorganic substance, an ion-conducting polymeric substance having fluorine atoms in its main chain and/or side chain. In this specification, a polymer substance is defined as a molecule with a large molecular weight and a substance having a structure composed of many repetitions of units obtained substantially or conceptually from molecules with a small molecular weight. Ru. In this specification, a polymer substance may be simply referred to as a polymer, and may also be referred to as a polymer compound, polymer, or the like. The polymeric substance used in one embodiment has a fluorine atom in its main chain and/or side chain, and has the above-mentioned ion conductive property. The ion-conducting polymeric substance used in one embodiment may have any shape such as linear, branched, net-like, comb-like, or brush-like. It is preferable that the polymer substance having such a shape has a fluorine atom in either the main chain, the side chain, or both. The main structure constituting the main chain or side chain of the ion-conductive polymer substance can include polyolefin, polyester, polyamine, polyamide, polyaramid, polyurethane, polyether, acrylic resin, polysiloxane, or epoxy resin, etc. It may have a copolymer structure having two or more of these structures. Furthermore, two or more polymeric substances having these structures can be selected and used in combination. The ion-conducting polymer substance used in one embodiment has a fluorine atom in a part of the main chain and/or side chain having the above structure. In addition, the main chain and/or side chain terminals of the ion-conductive polymer substance may be substituted with a group selected from cyano, thiol, amide, amino, sulfonic acid, epoxy, carboxyl, or hydroxyl group. good. Ion-conducting polymeric substances having fluorine atoms in the main chain and/or side chains include perfluoropolyether (PFPE), polytetrafluoroethylene (PTFE), perfluoroalkoxyalkane (PFA), polychlorotrifluoroethylene ( PCTFE), polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), and other fluororesins, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), ethylene-tetrafluoroethylene copolymer (ETFE) , fluorinated resin copolymers such as ethylene-chlorotrifluoroethylene copolymer (ECTFE) can be suitably used.
 イオン伝導性高分子物質は、500g/モル-50,000g/モル、好ましくは1,000g-40,000g/モル、さらに好ましくは100g/モル-10,000g/モルの範囲の数平均分子量を有することが好ましい。
 イオン伝導性高分子物質は、-50℃以下のガラス転移温度、好ましくは-70℃以下のガラス転移温度を有している。すなわちイオン伝導性高分子物質は、常温でガラス状または無定形であることが好ましい。また、イオン伝導性高分子物質は、室温付近の、比較的低い融点を有していることが好ましい。イオン伝導性高分子物質の融点は、150℃以下、好ましくは100℃以下、さらに好ましくは50℃以下である。
The ionically conductive polymeric material has a number average molecular weight in the range of 500 g/mol - 50,000 g/mol, preferably 1,000 g/mol - 40,000 g/mol, more preferably 100 g/mol - 10,000 g/mol. It is preferable.
The ion-conducting polymeric material has a glass transition temperature of -50°C or lower, preferably -70°C or lower. That is, the ion-conductive polymer substance is preferably glassy or amorphous at room temperature. Further, it is preferable that the ion conductive polymer substance has a relatively low melting point near room temperature. The melting point of the ion conductive polymer substance is 150°C or lower, preferably 100°C or lower, and more preferably 50°C or lower.
 一の実施形態において、イオン伝導性固体状組成物中のイオン伝導性非晶質無機物質の含有比は、イオン伝導性固体状組成物の質量を基準として80%以上、好ましくは90%以上であることが好ましい。
 一の実施形態のイオン伝導性固体状組成物は、イオン伝導性非晶質無機物質と、イオン伝導性高分子物質とを、上記の含有比となるように混合することにより製造することができる。これらの成分は、好ましくは溶媒等を用いることなく混合することにより製造することができる。これらの成分の混合は、たとえばボールミル、遊星ミキサ、押出機、ニーダ、混練機等の機械を用いて行うことができる。場合によっては、イオン伝導性高分子物質と、適切な溶媒とを混合して溶液または懸濁液を得て、この液体にイオン伝導性非晶質無機物質を添加して混合することにより、一の実施形態のイオン伝導性固体状組成物を得ることもできる。この際、用いた溶媒は適切な方法で蒸発させて除去しても良く、イオン伝導性固体状組成物中にそのまま残存させても良い。得られるイオン伝導性固体状組成物は、粘土状固体、ペースト状固体、ゲル状固体等、あらゆる固体形状のものであって良い。
In one embodiment, the content ratio of the ion conductive amorphous inorganic substance in the ion conductive solid composition is 80% or more, preferably 90% or more based on the mass of the ion conductive solid composition. It is preferable that there be.
The ion conductive solid composition of one embodiment can be produced by mixing an ion conductive amorphous inorganic substance and an ion conductive polymer substance at the above content ratio. . These components can be manufactured by mixing preferably without using a solvent or the like. These components can be mixed using a machine such as a ball mill, a planetary mixer, an extruder, a kneader, or a kneader. In some cases, an ion-conducting polymer substance and a suitable solvent are mixed to obtain a solution or suspension, and an ion-conducting amorphous inorganic substance is added to this liquid and mixed. It is also possible to obtain ionically conductive solid-state compositions of the embodiments. At this time, the solvent used may be removed by evaporation using an appropriate method, or may remain in the ion-conductive solid composition as it is. The resulting ion-conducting solid composition may be in any solid form, such as a clay-like solid, a paste-like solid, or a gel-like solid.
 一の実施形態のイオン伝導性固体状組成物に、適切な量の電解質を添加することにより、イオン伝導性固体状電解質を形成することができる。イオン伝導性固体状組成物に添加することができる電解質は、六フッ化リン酸リチウム(LiPF)、ホウフッ化リチウム(LiBF)、ヘキサフルオロヒ酸リチウム(LiAsF)、ヘキサフルオロアンチモン酸リチウム(LiSbF)、テトラフェニルほう酸リチウムトリス(1,2-ジメトキシエタン)(LiB(C)、過塩素酸リチウム(LiClO)、リチウムビストリフルオロメタンスルホンイミド(LiTFSI)、リチウムビス(フルオロスルホニル)イミド(LiFSI)、1-エチル-3メチルイミダゾリウムビス(フルオロスルホニルイミド)(EMIFSI)、1-メチル-1-プロピルピロリジニウムビス(フルオロスルホニル)イミド(MPPYFSI)等のような、ある程度のサイズのアニオン径を有するリチウム塩を用いることが好ましい。電解質として、トリフルオロメタンスルホン酸カリウム等のカリウム塩、またはトリフルオロメタンスルホン酸ナトリウム等のナトリウム塩を用いることもできる。イオン導電性固体状組成物中の電解質の濃度は、0.5-10モル%、好ましくは0.8-5モル%、さらに好ましくは1.0-3モル%程度とすることができる。一の実施形態のイオン伝導性固体状組成物に、適切な量の電解質を加えて得られたイオン伝導性固体状電解質は、1×10-2[S・m-1]以上のイオン伝導度を有する。イオン伝導性固体状電解質のイオン伝導度は高いことが好ましい。 An ion-conducting solid electrolyte can be formed by adding an appropriate amount of electrolyte to the ion-conducting solid composition of one embodiment. Electrolytes that can be added to the ion-conductive solid composition include lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), and lithium hexafluoroantimonate. (LiSbF 6 ), lithium tetraphenylborate tris(1,2-dimethoxyethane) (LiB(C 6 H 5 ) 4 ), lithium perchlorate (LiClO 4 ), lithium bistrifluoromethanesulfonimide (LiTFSI), lithium bis (fluorosulfonyl)imide (LiFSI), 1-ethyl-3methylimidazolium bis(fluorosulfonylimide) (EMIFSI), 1-methyl-1-propylpyrrolidinium bis(fluorosulfonyl)imide (MPPYFSI), etc. It is preferable to use a lithium salt having an anion diameter of a certain size. As the electrolyte, potassium salts such as potassium trifluoromethanesulfonate, or sodium salts such as sodium trifluoromethanesulfonate can also be used. The concentration of the electrolyte in the ionically conductive solid composition can be about 0.5-10 mol%, preferably 0.8-5 mol%, and more preferably about 1.0-3 mol%. The ion conductive solid electrolyte obtained by adding an appropriate amount of electrolyte to the ion conductive solid composition of the first embodiment has an ionic conductivity of 1×10 −2 [S·m −1 ] or more. has. It is preferable that the ionic conductivity of the ion conductive solid electrolyte is high.
 一の実施形態のイオン伝導性固体状組成物は、このほか、イオン伝導性高分子物質中にイオン伝導性非晶質無機物質をほぼ均一に分散させるための分散剤や、イオン伝導性固体状組成物の機械的強度を調節するための各種薬剤(たとえば可塑剤、強化剤)、イオン伝導性固体状組成物の性質を改善するための各種薬剤(たとえば耐熱剤、紫外線吸収剤、帯電防止剤)を適宜加えることができる。一の実施形態のイオン伝導性固体状組成物と、電解質と、必要に応じて他の薬剤とを含む、固体状電解質は、好ましくは膜形状に形成する。膜とは、所定の面積を有する概ね平面構造を有する比較的薄い層のことである。固体状電解質の面積や厚さは、後述する固体状二次電池の用途や所望の出力等に応じて適宜定めることができる。たとえば、固体状電解質の厚さは、10μm-1,000μmまでの範囲で、所望のものとすることができる。固体状電解質の大きさを適宜変更することにより、2mAh/cm-5mAh/cmの範囲の面積容量を有する固体状電解質を得ることが好ましい。 In addition, the ion-conducting solid composition of the first embodiment also includes a dispersant for substantially uniformly dispersing the ion-conducting amorphous inorganic material in the ion-conducting polymer material, and an ion-conducting solid composition. Various agents for adjusting the mechanical strength of the composition (e.g., plasticizers, reinforcing agents), various agents for improving the properties of the ion-conducting solid composition (e.g., heat resistant agents, ultraviolet absorbers, antistatic agents) ) can be added as appropriate. The solid electrolyte, which includes the ion-conducting solid composition of one embodiment, an electrolyte, and optionally other agents, is preferably formed into a membrane shape. A membrane is a relatively thin layer having a generally planar structure with a predetermined area. The area and thickness of the solid electrolyte can be determined as appropriate depending on the use of the solid secondary battery, desired output, etc., which will be described later. For example, the thickness of the solid electrolyte can be any desired in the range of 10 μm to 1,000 μm. It is preferable to obtain a solid electrolyte having an areal capacity in the range of 2 mAh/cm 3 to 5 mAh/cm 3 by appropriately changing the size of the solid electrolyte.
 一の実施形態において、イオン伝導性固体状組成物の表面の少なくとも一部が、フッ化リチウムで被覆されていることが好ましい。一の実施形態のイオン伝導性固体状組成物に、上記の電解質を適切な量添加して、これをイオン伝導性の固体状電解質として使用し、後述する固体状二次電池を形成することができる。この固体状二次電池を充放電すると、特に充電時に、一の実施形態のイオン伝導性固体状組成物に含まれているイオン伝導性高分子物質が負極表面付近で還元分解し、フッ化リチウム(LiF)を生成する。生成したLiFは、固体状電解質の負極側表面上の少なくとも一部を被覆し、良質な固体電解質界面(Solid Electrolyte Interface、SEI)を形成する。一の実施形態のイオン伝導性固体状組成物を含む固体状電解質の表面の少なくとも一部にSEIが存在することにより、イオン伝導性固体状電解質が電子的に絶縁されるので、見かけ上の耐久性が獲得されることになる。 In one embodiment, at least a portion of the surface of the ion-conductive solid composition is preferably coated with lithium fluoride. It is possible to add an appropriate amount of the above-mentioned electrolyte to the ion-conducting solid composition of one embodiment and use this as an ion-conducting solid electrolyte to form a solid state secondary battery to be described later. can. When this solid state secondary battery is charged and discharged, especially during charging, the ion conductive polymer substance contained in the ion conductive solid composition of the first embodiment is reductively decomposed near the negative electrode surface, and lithium fluoride is (LiF) is generated. The generated LiF covers at least a portion of the negative electrode side surface of the solid electrolyte, forming a high quality solid electrolyte interface (Solid Electrolyte Interface, SEI). The presence of SEI on at least a portion of the surface of the solid electrolyte containing the ion-conducting solid composition of one embodiment makes the ion-conducting solid electrolyte electronically insulated, resulting in apparent durability. sexuality will be acquired.
 本発明の二の実施形態は、一の実施形態のイオン伝導性固体状組成物を含む固体状電解質と、正極と、負極と、を少なくとも含む、固体状二次電池である。
 二の実施形態で用いる固体状電解質は、一の実施形態のイオン伝導性固体状組成物に電解質を添加したものである。ここで電解質は、六フッ化リン酸リチウム(LiPF)、ホウフッ化リチウム(LiBF)、ヘキサフルオロヒ酸リチウム(LiAsF)、ヘキサフルオロアンチモン酸リチウム(LiSbF)、テトラフェニルほう酸リチウムトリス(1,2-ジメトキシエタン)(LiB(C)、過塩素酸リチウム(LiClO)、リチウムビストリフルオロメタンスルホンイミド(LiTFSI)、リチウムビス(フルオロスルホニル)イミド(LiFSI)、1-エチル-3メチルイミダゾリウムビス(フルオロスルホニルイミド)(EMIFSI)、1-メチル-1-プロピルピロリジニウムビス(フルオロスルホニル)イミド(MPPYFSI)等のようなリチウム塩あるいは、トリフルオロメタンスルホン酸カリウム等のカリウム塩、またはトリフルオロメタンスルホン酸ナトリウム等のナトリウム塩の中の1つまたは2以上を組み合わせて用いることができる。二の実施形態の固体状二次電池は、電解質としてリチウム塩を用いた場合は「固体状リチウム二次電池」であり、カリウム塩を用いた場合は「固体状カリウム二次電池」であり、ナトリウム塩を用いた場合は「固体状ナトリウム二次電池」となる。
A second embodiment of the present invention is a solid secondary battery that includes at least a solid electrolyte containing the ion-conductive solid composition of the first embodiment, a positive electrode, and a negative electrode.
The solid electrolyte used in the second embodiment is obtained by adding an electrolyte to the ion conductive solid composition of the first embodiment. Here, the electrolyte is lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), lithium hexafluoroantimonate (LiSbF 6 ), lithium tris tetraphenylborate ( 1,2-dimethoxyethane) (LiB(C 6 H 5 ) 4 ), lithium perchlorate (LiClO 4 ), lithium bistrifluoromethanesulfonimide (LiTFSI), lithium bis(fluorosulfonyl)imide (LiFSI), 1- Lithium salts such as ethyl-3-methylimidazolium bis(fluorosulfonylimide) (EMIFSI), 1-methyl-1-propylpyrrolidinium bis(fluorosulfonyl)imide (MPPYFSI), or potassium trifluoromethanesulfonate, etc. One or more of potassium salts and sodium salts such as sodium trifluoromethanesulfonate can be used in combination. The solid secondary battery of the second embodiment is a "solid lithium secondary battery" when a lithium salt is used as the electrolyte, and a "solid potassium secondary battery" when a potassium salt is used as the electrolyte. When sodium salt is used, it becomes a "solid sodium secondary battery."
 二の実施形態において用いる正極とは、アルミニウム箔等の金属箔である正極集電体に、正極活物質を含む混合物を塗布または圧延および乾燥して正極活物質層を形成した薄板状あるいはシート状の電池部材である。すなわち正極は、正極集電体と、その両面または片面に塗布された正極活物質を含む正極活物質層とから構成される。二の実施形態において、正極活物質層は、正極活物質と、バインダーとを含むことが好ましい。正極活物質とは、電気エネルギーを発生させる反応に関与する物質のうち正極に用いられるものである。またバインダーとは、一般には粒子形状の正極活物質同士を電気的に接触させるために、正極活物質粒子を結着させるための物質である。 The positive electrode used in the second embodiment is in the form of a thin plate or sheet in which a positive electrode active material layer is formed by coating or rolling a mixture containing a positive electrode active material on a positive electrode current collector, which is a metal foil such as aluminum foil, and drying the positive electrode current collector. This is a battery component. That is, the positive electrode is composed of a positive electrode current collector and a positive electrode active material layer containing a positive electrode active material coated on both or one side of the positive electrode current collector. In the second embodiment, the positive electrode active material layer preferably includes a positive electrode active material and a binder. A positive electrode active material is a material used in a positive electrode among substances involved in a reaction that generates electrical energy. Further, a binder is generally a substance for binding positive electrode active material particles in order to bring the particle-shaped positive electrode active materials into electrical contact with each other.
 二の実施形態において用いる正極活物質は、好ましくはリチウム・ニッケル系複合酸化物を正極活物質として含む。リチウム・ニッケル系複合酸化物とは、一般式LiNiMe(1-y)(ここでMeは、Al、Mn、Na、Fe、Co、Cr、Cu、Zn、Ca、K、Mg、およびPbからなる群より選択される、少なくとも1種以上の金属である。)で表される、リチウムとニッケルとを含有する遷移金属複合酸化物である。特にリチウム・マンガン系複合酸化物を含むことが好ましい。リチウム・マンガン系複合酸化物は、たとえばジグザグ層状構造のマンガン酸リチウム(LiMnO)、スピネル型マンガン酸リチウム(LiMn)等を挙げることができる。また正極活物質は、特に、一般式LiNiCoMn(1-y-z)で表される層状結晶構造を有するリチウムニッケルマンガンコバルト複合酸化物を含む。ここで、一般式中のxは1≦x≦1.2であり、yおよびzはy+z<1を満たす正の数であり、yの値が0.5以上である。なお、マンガンの割合が大きくなると単一相の複合酸化物が合成されにくくなるため、1-y-z≦0.4とすることが望ましい。高容量の電池を得るためには、y>1-y-z、y>zとすることが特に好ましい。この一般式を有するリチウム・ニッケル系複合酸化物は、すなわちリチウム・ニッケル・コバルト・マンガン複合酸化物(以下、「NCM」と称することがある。)である。NCMは、電池の高容量化を図るために好適に用いられるリチウム・ニッケル系複合酸化物である。たとえば、一般式LiNiCoMn(1.0-y-z)において、x=1、y=0.8、z=0.1の複合酸化物を「NCM811」と称し、x=1、y=0.5、z=0.2の複合酸化物を「NCM523」と称する。
 なお、固体状二次電池の正極として、硫黄を用いることも可能である。
The positive electrode active material used in the second embodiment preferably contains a lithium-nickel-based composite oxide as the positive electrode active material. Lithium-nickel composite oxide has the general formula Li x Ni y Me (1-y) O 2 (where Me is Al, Mn, Na, Fe, Co, Cr, Cu, Zn, Ca, K, It is a transition metal composite oxide containing lithium and nickel and is represented by at least one metal selected from the group consisting of Mg and Pb. In particular, it is preferable to include a lithium-manganese complex oxide. Examples of the lithium-manganese-based composite oxide include lithium manganate (LiMnO 2 ) having a zigzag layered structure and spinel-type lithium manganate (LiMn 2 O 4 ). The positive electrode active material particularly includes a lithium nickel manganese cobalt composite oxide having a layered crystal structure represented by the general formula Li x Ni y Co z Mn (1-y-z) O 2 . Here, x in the general formula satisfies 1≦x≦1.2, y and z are positive numbers satisfying y+z<1, and the value of y is 0.5 or more. Note that as the proportion of manganese increases, it becomes difficult to synthesize a single-phase composite oxide, so it is desirable that 1-y-z≦0.4. In order to obtain a high capacity battery, it is particularly preferable that y>1-yz and y>z. A lithium-nickel-based composite oxide having this general formula is a lithium-nickel-cobalt-manganese composite oxide (hereinafter sometimes referred to as "NCM"). NCM is a lithium-nickel composite oxide that is suitably used to increase the capacity of batteries. For example, in the general formula Li x Ni y Co z Mn (1.0-yz) O 2 , a composite oxide with x=1, y=0.8, and z=0.1 is called "NCM811", The composite oxide with x=1, y=0.5, and z=0.2 is called "NCM523".
Note that sulfur can also be used as a positive electrode of a solid state secondary battery.
 正極活物質とともに正極活物質層を形成するバインダーとして、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニル(PVF)等のフッ素樹脂、ポリアニリン類、ポリチオフェン類、ポリアセチレン類、ポリピロール類等の導電性ポリマー、スチレンブタジエンラバー(SBR)、ブタジエンラバー(BR)、クロロプレンラバー(CR)、イソプレンラバー(IR)、アクリロニトリルブタジエンラバー(NBR)等の合成ゴム、あるいはカルボキシメチルセルロース(CMC)、キサンタンガム、グアーガム、ペクチン等の多糖類を挙げることができる。 As binders that form the positive electrode active material layer together with the positive electrode active material, fluororesins such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), and polyvinyl fluoride (PVF), polyanilines, polythiophenes, polyacetylenes, and polypyrrole are used. conductive polymers such as styrene butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), isoprene rubber (IR), acrylonitrile butadiene rubber (NBR), or carboxymethyl cellulose (CMC), Examples include polysaccharides such as xanthan gum, guar gum, and pectin.
 また正極活物質層には、場合により導電助剤が含まれていても良い。場合により用いられる導電助剤として、カーボンナノファイバー等のカーボン繊維、アセチレンブラック、ケッチェンブラック等のカーボンブラック、活性炭、黒鉛、メソポーラスカーボン、フラーレン類、カーボンナノチューブ等の炭素材料が挙げられる。その他、正極活物質層には、増粘剤、分散剤、安定剤等の、電極形成のために一般的に用いられる電極添加剤を適宜使用することができる。 Further, the positive electrode active material layer may optionally contain a conductive additive. Examples of conductive aids that may be used in some cases include carbon fibers such as carbon nanofibers, carbon blacks such as acetylene black and Ketjen black, carbon materials such as activated carbon, graphite, mesoporous carbon, fullerenes, and carbon nanotubes. In addition, electrode additives commonly used for electrode formation, such as thickeners, dispersants, and stabilizers, can be appropriately used in the positive electrode active material layer.
 二の実施形態において用いる負極とは、銅箔等の金属箔である負極集電体に、負極活物質を含む混合物を塗布または圧延および乾燥して負極活物質層を形成した薄板状あるいはシート状の電池部材である。すなわち負極は、負極集電体と、その両面に塗布された負極活物質を含む負極活物質層とから構成される。二の実施形態において、負極活物質層は、負極活物質と、バインダーとを含むことが好ましい。負極活物質とは、電気エネルギーを発生させる反応に関与する物質のうち負極に用いられるものである。またバインダーとは、一般には粒子形状の負極活物質同士を電気的に接触させるために、負極活物質粒子を結着させるための物質である。 The negative electrode used in the second embodiment is a thin plate or sheet formed by coating or rolling a mixture containing a negative electrode active material on a negative electrode current collector, which is a metal foil such as copper foil, and drying it to form a negative electrode active material layer. This is a battery component. That is, the negative electrode is composed of a negative electrode current collector and a negative electrode active material layer containing a negative electrode active material coated on both surfaces of the negative electrode current collector. In the second embodiment, the negative electrode active material layer preferably includes a negative electrode active material and a binder. The negative electrode active material is a substance used in the negative electrode among substances involved in a reaction that generates electrical energy. Moreover, a binder is generally a substance for binding negative electrode active material particles in order to bring the negative electrode active materials in particle shape into electrical contact with each other.
 二の実施形態において用いる負極活物質は、炭素系活物質を含む。炭素系活物質は、天然黒鉛、人造黒鉛、ハードカーボン、ソフトカーボン、またはこれらの任意の混合物であることが好ましい。ここで黒鉛とは、六方晶系六角板状結晶の炭素材料であり、石墨、グラファイト等と称されることがある。天然黒鉛および人造黒鉛は、非晶質炭素による被覆を有する天然黒鉛、および非晶質炭素による被覆を有する人造黒鉛を含む。ここで、非晶質炭素とは、部分的に黒鉛に類似するような構造を有していてもよい、微結晶がランダムにネットワークした構造をとった、全体として非晶質である炭素材料のことである。非晶質炭素として、カーボンブラック、コークス、活性炭、カーボンファイバー、ハードカーボン、ソフトカーボン、メソポーラスカーボン等が挙げられる。人造黒鉛を用いる場合、層間距離d値(d002)が0.33nm以上のものであることが好ましい。人造黒鉛の結晶の構造は、一般的に天然黒鉛よりも薄い。人造黒鉛を非水電解質二次電池、特にリチウムイオン二次電池用負極活物質として用いる場合は、リチウムイオンが挿入可能な層間距離を有している必要がある。リチウムイオンの挿脱が可能な層間距離はd値(d002)で見積もることができ、d値が0.33nm以上であれば問題なくリチウムイオンの挿脱が行われる。二の実施形態において、炭素系活物質は、概ね均一のまたは不揃いの大きさを有する粒子の形態であることが好ましい。
 負極活物質は、炭素系活物質のほか、ケイ素およびケイ素含有活物質、スズおよびスズ含有活物質を用いることができる。また、固体状二次電池の負極として、リチウム金属およびリチウム合金化金属を用いることも可能である。
The negative electrode active material used in the second embodiment includes a carbon-based active material. Preferably, the carbon-based active material is natural graphite, artificial graphite, hard carbon, soft carbon, or any mixture thereof. Here, graphite is a hexagonal hexagonal plate-shaped carbon material, and is sometimes referred to as graphite, graphite, or the like. Natural graphite and artificial graphite include natural graphite with an amorphous carbon coating and artificial graphite with an amorphous carbon coating. Here, amorphous carbon is a carbon material that is entirely amorphous and has a structure in which microcrystals are randomly networked, which may partially have a structure similar to graphite. That's true. Examples of amorphous carbon include carbon black, coke, activated carbon, carbon fiber, hard carbon, soft carbon, and mesoporous carbon. When using artificial graphite, it is preferable that the interlayer distance d value (d 002 ) is 0.33 nm or more. The crystal structure of artificial graphite is generally thinner than that of natural graphite. When artificial graphite is used as a negative electrode active material for nonaqueous electrolyte secondary batteries, particularly lithium ion secondary batteries, it is necessary to have an interlayer distance that allows insertion of lithium ions. The interlayer distance at which lithium ions can be inserted and removed can be estimated by the d value (d 002 ), and if the d value is 0.33 nm or more, lithium ions can be inserted and removed without any problem. In the second embodiment, the carbon-based active material is preferably in the form of particles having generally uniform or irregular sizes.
As the negative electrode active material, in addition to carbon-based active materials, silicon and silicon-containing active materials, tin and tin-containing active materials can be used. It is also possible to use lithium metal and lithium alloyed metal as the negative electrode of a solid state secondary battery.
 炭素系活物質、ケイ素系活物質、スズ系活物質等の負極活物質は、バインダーにより粒子同士を結着させることで電気的な接触を良好にすることもできる。バインダーは、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸の金属塩、ポリ(メタ)アクリル酸のアルキルエステルまたはそれらの任意の混合物を含むことが好ましい。バインダーとして好適な化合物は、たとえば、ポリアクリル酸、ポリメタクリル酸;ポリアクリル酸ナトリウム、ポリアクリル酸カリウム、ポリメタクリル酸ナトリウム、ポリメタクリル酸カリウム;ポリアクリル酸エチル、ポリアクリル酸エチル、ポリアクリル酸ブチル、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸ブチルであり、これらの任意の混合物であっても良い。バインダーの含有量は、負極活物質層の固形分総量に対して、2質量%以上10質量%未満であることが好ましい。バインダーの含有量が多すぎると、活物質表面がバインダーに覆われる部分が多くなるため、イオン伝導性や電子伝導性が低下するおそれがある。また、バインダーの含有量が少なすぎると、負極活物質粒子同士の電気的接触が適切に行われないおそれがある。 For negative electrode active materials such as carbon-based active materials, silicon-based active materials, and tin-based active materials, good electrical contact can be achieved by binding the particles together with a binder. Preferably, the binder comprises poly(meth)acrylic acid, a metal salt of poly(meth)acrylic acid, an alkyl ester of poly(meth)acrylic acid, or any mixture thereof. Compounds suitable as binders include, for example, polyacrylic acid, polymethacrylic acid; sodium polyacrylate, potassium polyacrylate, sodium polymethacrylate, potassium polymethacrylate; polyethyl acrylate, polyethyl acrylate, polyacrylic acid. These include butyl, polymethyl methacrylate, polyethyl methacrylate, and polybutyl methacrylate, and may be any mixture thereof. The content of the binder is preferably 2% by mass or more and less than 10% by mass with respect to the total solid content of the negative electrode active material layer. If the content of the binder is too large, a large portion of the surface of the active material will be covered with the binder, which may reduce ionic conductivity and electronic conductivity. Moreover, if the content of the binder is too small, there is a possibility that electrical contact between the negative electrode active material particles may not be properly made.
 バインダーの成分として、上記の化合物のほか、さらにセルロースの誘導体であるカルボキシメチルセルロース(「CMC」と称する。)、またはカルボキシメチルセルロースの金属塩(たとえば、カルボキシメチルセルロースナトリウム、カルボキシメチルセルロースカリウム)が含まれていることが特に好ましい。カルボキシメチルセルロースまたはカルボキシメチルセルロースの金属塩は、上記のバインダー化合物を安定化させる役割を果たし、負極活物質の電気的接触をも安定化させる。バインダーの成分としてCMCまたはCMCの金属塩をさらに添加する場合、CMCまたはCMC金属塩の含有量は、負極活物質層の固形分総量に対して0.05質量%以上1.5質量%以下、特に0.08質量%以上0.8質量%以下、さらに0.15質量%以上0.30質量%以下であることが好ましい。 As a component of the binder, in addition to the above-mentioned compounds, carboxymethylcellulose (referred to as "CMC"), which is a derivative of cellulose, or a metal salt of carboxymethylcellulose (for example, sodium carboxymethylcellulose, potassium carboxymethylcellulose) is included. It is particularly preferable. Carboxymethylcellulose or a metal salt of carboxymethylcellulose plays a role in stabilizing the above binder compound and also stabilizes the electrical contact of the negative electrode active material. When CMC or a metal salt of CMC is further added as a component of the binder, the content of CMC or CMC metal salt is 0.05% by mass or more and 1.5% by mass or less based on the total solid content of the negative electrode active material layer. In particular, it is preferably 0.08% by mass or more and 0.8% by mass or less, and more preferably 0.15% by mass or more and 0.30% by mass or less.
 負極活物質層は、さらに導電助剤を含んでいても良い。導電助剤は、電極の抵抗を低減するための材料である。導電助剤として、カーボンナノファイバー等のカーボン繊維、アセチレンブラック、ケッチェンブラック等のカーボンブラック、活性炭、黒鉛、メソポーラスカーボン、フラーレン類、カーボンナノチューブ等の炭素材料が挙げられる。二の実施形態において、導電助剤としてカーボンナノチューブ(「CNT」と称する。)用いることが特に好ましい。CNTは、炭素原子の六員環ネットワーク(グラフェン)が単層または多層の同軸管構造を有する物質のことであり、シングルウォールカーボンナノチューブ(単層、「SWNT」と称する。)とマルチウォールカーボンナノチューブ(多層、「MWNT」と称する。)がある。いずれのCNTを用いてもよいが、特に実施形態では、SWNTを導電助剤として用いることが好ましい。 The negative electrode active material layer may further contain a conductive additive. The conductive aid is a material for reducing the resistance of the electrode. Examples of the conductive aid include carbon fibers such as carbon nanofibers, carbon blacks such as acetylene black and Ketjen black, carbon materials such as activated carbon, graphite, mesoporous carbon, fullerenes, and carbon nanotubes. In the second embodiment, it is particularly preferable to use carbon nanotubes (referred to as "CNT") as the conductive aid. CNT is a material in which a six-membered ring network of carbon atoms (graphene) has a single-wall or multi-layer coaxial tube structure, and includes single-wall carbon nanotubes (single-wall, referred to as "SWNT") and multi-wall carbon nanotubes. (multilayer, referred to as "MWNT"). Although any CNT may be used, it is particularly preferred in embodiments to use SWNT as a conductive aid.
 導電助剤としてCNTを用いる場合、CNTの含有量は、負極活物質層の固形分総量に対して、0.01質量%以上1質量%以下、特に0.03質量%以上0.8質量%以下、さらに0.1質量%以上0.5質量%以下であることが好ましい。 When using CNTs as a conductive aid, the content of CNTs is 0.01% by mass or more and 1% by mass or less, particularly 0.03% by mass or more and 0.8% by mass, based on the total solid content of the negative electrode active material layer. Hereinafter, it is further preferably 0.1% by mass or more and 0.5% by mass or less.
 その他、負極活物質層には、増粘剤、分散剤、安定剤等の、電極形成のために一般的に用いられる電極添加剤を適宜使用することができる。 In addition, electrode additives commonly used for electrode formation, such as thickeners, dispersants, and stabilizers, can be appropriately used in the negative electrode active material layer.
 二の実施形態の固体状二次電池は、一の実施形態のイオン伝導性固体状組成物を含む固体状電解質が、セパレータの役割を果たすため、通常はセパレータを構成部材として含まない。ただし、上記したように、一の実施形態のイオン伝導性固体状組成物を得る際に、溶媒を用いた場合等、セパレータを用いたほうが良い場合は、セパレータを構成部材として含むことができる。セパレータは、たとえばポリオレフィンフィルムを用いることができる。ポリオレフィンとは、エチレン、プロピレン、ブテン、ペンテン、へキセンなどのα-オレフィンを重合または共重合させて得られる化合物のことであり、たとえば、ポリエチレン、ポリプロピレン、ポリブテン、ポリペンテン、ポリヘキセンのほか、これらの共重合体を挙げることができる。セパレータとしてポリオレフィンフィルムを用いる場合は、電池温度上昇時に閉塞される空孔を有する構造、すなわち多孔質あるいは微多孔質のポリオレフィンフィルムであれば特に好都合である。ポリオレフィンフィルムがこのような構造を有していることにより、万一電池温度が上昇しても、セパレータが閉塞して(シャットダウンして)、イオン流を寸断することができる。すなわち一軸延伸ポリオレフィンフィルムは、電池の加熱時に収縮して孔が塞がるため、正負極間の短絡を防ぐことが可能となる。シャットダウン効果を発揮するためには、多孔質のポリエチレン膜を用いることが非常に好ましい。 The solid state secondary battery of the second embodiment usually does not include a separator as a component because the solid electrolyte containing the ion conductive solid composition of the first embodiment plays the role of a separator. However, as described above, when it is better to use a separator, such as when a solvent is used when obtaining the ion-conductive solid composition of one embodiment, the separator can be included as a component. For example, a polyolefin film can be used as the separator. Polyolefin is a compound obtained by polymerizing or copolymerizing α-olefins such as ethylene, propylene, butene, pentene, and hexene. For example, in addition to polyethylene, polypropylene, polybutene, polypentene, and polyhexene, Copolymers can be mentioned. When using a polyolefin film as a separator, it is particularly advantageous if the polyolefin film has a structure that has pores that are closed when the battery temperature rises, that is, a porous or microporous polyolefin film. Because the polyolefin film has such a structure, even if the battery temperature rises, the separator can close (shut down) and interrupt the ion flow. That is, the uniaxially stretched polyolefin film contracts when the battery is heated and the pores are closed, making it possible to prevent short circuits between the positive and negative electrodes. In order to exhibit a shutdown effect, it is highly preferable to use a porous polyethylene membrane.
 また、架橋されたフィルムをセパレータとして用いることができる。多孔質または微孔質ポリオレフィンフィルムは加熱時に収縮する性質を有するため、電池の過熱時にはフィルムが収縮してシャットダウンする。しかしながらフィルムの熱収縮率が大きすぎると、フィルムの面積が大きく変化してしまい、かえって大電流の流れを生じることにもなりかねない。架橋されているポリオレフィンフィルムは、熱収縮率が適切であるため、過熱時にも、大きく面積を変化させることなく孔を塞ぐ分だけ収縮することができる。 Additionally, a crosslinked film can be used as a separator. Porous or microporous polyolefin films have the property of shrinking when heated, so when the battery overheats, the film shrinks and shuts down. However, if the heat shrinkage rate of the film is too large, the area of the film will change significantly, which may even result in a large current flow. Since the crosslinked polyolefin film has an appropriate heat shrinkage rate, it can shrink by the amount to close the pores even when heated, without significantly changing the area.
 二の実施形態において場合により用いられるセパレータは、該セパレータの片面または両面に耐熱性微粒子層を有していてもよい。この際、電池の過熱を防止するために設けられた耐熱性微粒子層は、耐熱温度が150℃以上の耐熱性を有し、電気化学反応に安定な無機微粒子から構成される。このような無機微粒子として、シリカ、アルミナ(α-アルミナ、β-アルミナ、θ-アルミナ)、酸化鉄、酸化チタン、チタン酸バリウム、酸化ジルコニウムなどの無機酸化物;ベーマイト、ゼオライト、アパタイト、カオリン、スピネル、マイカ、ムライトなどの鉱物を挙げることができる。 The separator optionally used in the second embodiment may have a heat-resistant fine particle layer on one or both sides of the separator. At this time, the heat-resistant fine particle layer provided to prevent overheating of the battery is composed of inorganic fine particles that have a heat resistance of 150° C. or higher and are stable in electrochemical reactions. Such inorganic fine particles include inorganic oxides such as silica, alumina (α-alumina, β-alumina, θ-alumina), iron oxide, titanium oxide, barium titanate, and zirconium oxide; boehmite, zeolite, apatite, kaolin, Minerals such as spinel, mica, and mullite can be mentioned.
 二の実施形態の固体状二次電池は、液体状の電解質は含まないことが好ましい。ただし固体状電解質のイオン伝導性や導電性を向上させることを目的として、固体状電解質中に少量の非水電解質が含まれていても良い。非水電解質は、イオン性物質を有機溶媒に溶解させた電気伝導性のある物質のことである。上記の正極と負極とが重ね合わせられ、それらの間に固体状電解質が配置され、これと場合により非水電解質を含む固体状電解質二次電池素子が、二の実施形態の固体状二次電池の主構成部材の一単位である。通常は、複数の正極と複数の負極とが複数の固体状電解質を介して重ね合わされてできた積層物が組み合わされて固体状二次電池が形成されている。二の実施形態において、場合により用いることができる液体状の電解質は、主に非水電解液であって、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジ-n-プロピルカーボネート、ジ-t-プロピルカーボネート、ジ-n-ブチルカーボネート、ジ-イソブチルカーボネート、またはジ-t-ブチルカーボネート等の鎖状カーボネートと、プロピレンカーボネート(PC)、エチレンカーボネート(EC)等の環状カーボネートとを含む混合物であることが好ましい。液体状の電解質は、このようなカーボネート混合物に、上記のような、六フッ化リン酸リチウム(LiPF)、ホウフッ化リチウム(LiBF)、ヘキサフルオロヒ酸リチウム(LiAsF)、ヘキサフルオロアンチモン酸リチウム(LiSbF)、テトラフェニルほう酸リチウムトリス(1,2-ジメトキシエタン)(LiB(C)、過塩素酸リチウム(LiClO)、リチウムビストリフルオロメタンスルホンイミド(LiTFSI)、リチウムビス(フルオロスルホニル)イミド(LiFSI)、1-エチル-3メチルイミダゾリウムビス(フルオロスルホニルイミド)(EMIFSI)、1-メチル-1-プロピルピロリジニウムビス(フルオロスルホニル)イミド(MPPYFSI)等のようなリチウム塩あるいは、トリフルオロメタンスルホン酸カリウム等のカリウム塩、またはトリフルオロメタンスルホン酸ナトリウム等のナトリウム塩を溶解させたものである。 The solid state secondary battery of the second embodiment preferably does not contain a liquid electrolyte. However, a small amount of non-aqueous electrolyte may be included in the solid electrolyte for the purpose of improving the ionic conductivity and electrical conductivity of the solid electrolyte. A non-aqueous electrolyte is an electrically conductive substance made by dissolving an ionic substance in an organic solvent. The above-mentioned positive electrode and negative electrode are stacked, a solid electrolyte is arranged between them, and the solid electrolyte secondary battery element containing this and optionally a nonaqueous electrolyte is the solid state secondary battery of the second embodiment. It is one unit of the main constituent members of. Usually, a solid state secondary battery is formed by combining a laminate in which a plurality of positive electrodes and a plurality of negative electrodes are stacked on top of each other via a plurality of solid electrolytes. In the second embodiment, the liquid electrolyte that can optionally be used is mainly a non-aqueous electrolyte, such as dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), di-n - Chain carbonates such as propyl carbonate, di-t-propyl carbonate, di-n-butyl carbonate, di-isobutyl carbonate, or di-t-butyl carbonate, and propylene carbonate (PC), ethylene carbonate (EC), etc. A mixture containing a cyclic carbonate is preferable. Liquid electrolytes include such carbonate mixtures as described above, such as lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), lithium hexafluoroarsenate (LiAsF 6 ), and hexafluoroantimony. lithium acid (LiSbF 6 ), lithium tetraphenylborate tris(1,2-dimethoxyethane) (LiB(C 6 H 5 ) 4 ), lithium perchlorate (LiClO 4 ), lithium bistrifluoromethanesulfonimide (LiTFSI), Lithium bis(fluorosulfonyl)imide (LiFSI), 1-ethyl-3methylimidazolium bis(fluorosulfonylimide) (EMIFSI), 1-methyl-1-propylpyrrolidinium bis(fluorosulfonyl)imide (MPPYFSI), etc. A lithium salt such as the above, a potassium salt such as potassium trifluoromethanesulfonate, or a sodium salt such as sodium trifluoromethanesulfonate is dissolved therein.
 液体状の電解質は、このほか、添加剤として上記の環状カーボネートとは異なる環状カーボネート化合物を含んでいてもよい。添加剤として用いられる環状カーボネートとしてビニレンカーボネート(VC)が挙げられる。また、添加剤として、ハロゲンを有する環状カーボネート化合物を用いることもできる。これらの環状カーボネートも、固体状二次電池の充放電過程において正極ならびに負極の保護被膜を形成することができる化合物である。特に、ジスルホン酸化合物またはジスルホン酸エステル化合物のような硫黄を含む化合物による、リチウム・ニッケル系複合酸化物を含有する正極活物質への攻撃を防ぐことができる化合物である。ハロゲンを有する環状カーボネート化合物として、フルオロエチレンカーボネート(FEC)、ジフルオロエチレンカーボネート、トリフルオロエチレンカーボネート、クロロエチレンカーボネート、ジクロロエチレンカーボネート、トリクロロエチレンカーボネート等を挙げることができる。ハロゲンを有し不飽和結合を有する環状カーボネート化合物であるフルオロエチレンカーボネートは特に好ましく用いられる。 In addition to this, the liquid electrolyte may contain a cyclic carbonate compound different from the above-mentioned cyclic carbonate as an additive. An example of the cyclic carbonate used as an additive is vinylene carbonate (VC). Moreover, a cyclic carbonate compound having a halogen can also be used as an additive. These cyclic carbonates are also compounds that can form protective coatings for the positive electrode and negative electrode during the charging and discharging process of solid secondary batteries. In particular, it is a compound that can prevent a positive electrode active material containing a lithium-nickel composite oxide from being attacked by a sulfur-containing compound such as a disulfonic acid compound or a disulfonic acid ester compound. Examples of the halogen-containing cyclic carbonate compound include fluoroethylene carbonate (FEC), difluoroethylene carbonate, trifluoroethylene carbonate, chloroethylene carbonate, dichloroethylene carbonate, trichloroethylene carbonate, and the like. Fluoroethylene carbonate, which is a cyclic carbonate compound containing a halogen and an unsaturated bond, is particularly preferably used.
 また、液体状の電解質は、添加剤としてジスルホン酸化合物をさらに含んでいてもよい。ジスルホン酸化合物とは、一分子内にスルホ基を2つ有する化合物であり、スルホ基が金属イオンと共に塩を形成したジスルホン酸塩化合物、あるいはスルホ基がエステルを形成したジスルホン酸エステル化合物を包含する。ジスルホン酸化合物のスルホ基の1つまたは2つは、金属イオンと共に塩を形成していてもよく、アニオンの状態であってもよい。ジスルホン酸化合物の例として、メタンジスルホン酸、1,2-エタンジスルホン酸、1,3-プロパンジスルホン酸、1,4-ブタンジスルホン酸、ベンゼンジスルホン酸、ナフタレンジスルホン酸、ビフェニルジスルホン酸、およびこれらの塩(メタンジスルホン酸リチウム、1,2-エタンジスルホン酸リチウム等)、およびこれらのアニオン(メタンジスルホン酸アニオン、1,2-エタンジスルホン酸アニオン等)が挙げられる。またジスルホン酸化合物としてはジスルホン酸エステル化合物が挙げられ、メタンジスルホン酸、1,2-エタンジスルホン酸、1,3-プロパンジスルホン酸、1,4-ブタンジスルホン酸、ベンゼンジスルホン酸、ナフタレンジスルホン酸、またはビフェニルジスルホン酸のアルキルジエステルまたはアリールジエステル等の鎖状ジスルホン酸エステル;ならびにメチレンメタンジスルホン酸エステル、エチレンメタンジスルホン酸エステル、プロピレンメタンジスルホン酸エステル等の環状ジスルホン酸エステルが好ましく用いられる。メチレンメタンジスルホン酸エステル(MMDS)は特に好ましく用いられる。 Furthermore, the liquid electrolyte may further contain a disulfonic acid compound as an additive. A disulfonic acid compound is a compound having two sulfo groups in one molecule, and includes disulfonate compounds in which the sulfo group forms a salt with a metal ion, or disulfonic acid ester compounds in which the sulfo group forms an ester. . One or two of the sulfo groups of the disulfonic acid compound may form a salt with a metal ion, or may be in the form of an anion. Examples of disulfonic acid compounds include methanedisulfonic acid, 1,2-ethanedisulfonic acid, 1,3-propanedisulfonic acid, 1,4-butanedisulfonic acid, benzenedisulfonic acid, naphthalenedisulfonic acid, biphenyldisulfonic acid, and Examples include salts (lithium methanedisulfonate, lithium 1,2-ethanedisulfonate, etc.), and anions thereof (methanedisulfonate anion, 1,2-ethanedisulfonate anion, etc.). Examples of disulfonic acid compounds include disulfonic acid ester compounds, such as methanedisulfonic acid, 1,2-ethanedisulfonic acid, 1,3-propanedisulfonic acid, 1,4-butanedisulfonic acid, benzenedisulfonic acid, naphthalenedisulfonic acid, Alternatively, chain disulfonic acid esters such as alkyl diesters or aryl diesters of biphenyl disulfonic acid; and cyclic disulfonic acid esters such as methylenemethane disulfonic acid ester, ethylenemethane disulfonic acid ester, and propylenemethane disulfonic acid ester are preferably used. Methylenemethane disulfonic acid ester (MMDS) is particularly preferably used.
 固体状電解質と、正極と、負極とを含む二の実施形態の固体状二次電池は、通常は、外装体で封止される。封止とは、固体状二次電池素子の少なくとも一部が外気に触れないように、外装体材料により包まれていることを意味する。固体状二次電池の外装体は、ガスバリア性を有し、固体状二次電池素子を封止することが可能な筐体か、あるいは柔軟な材料から構成される袋形状のものである。外装体は、アルミニウム缶や、アルミニウム箔とポリプロピレン等を積層したアルミニウムラミネートシートなどを好適に使用することができる。すなわち外装体は、固体状二次電池を外部に露出させない材料であればいかなるものを使用してもよい。外装体の最外層にポリエステル、ポリアミド、液晶性ポリマーなどの耐熱性の保護層を有し、最内層にポリエチレン、ポリプロピレン、アイオノマー、マレイン酸変性ポリエチレンなどの酸変性ポリエチレン、マレイン酸変性ポリプロピレンなどの酸変性ポリプロピレン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエチレンイソフタレート(PEI)、PETとPENのブレンド、PETとPEIのブレンド、ポリアミド樹脂、ポリアミド樹脂とPETのブレンド、キシリレン基含有ポリアミドとPETのブレンドなどからなる熱可塑性樹脂から構成されたシーラント層を有するラミネートフィルムを用いることができる。外装体は、これらのラミネートフィルムを1枚または複数枚組み合わせて接着または溶着し、さらに多層化したものを用いて形成してもよい。ガスバリア性金属層としてアルミニウム、スズ、銅、ニッケル、ステンレス鋼を用いることができる。金属層の厚みは30~50μmであることが好ましい。特に好適には、アルミニウム箔と、ポリエチレンやポリプロピレン等のポリマーとの積層体であるアルミニウムラミネートを使用することができる。
 二の実施形態の固体状二次電池は、コイン型電池、ラミネート型電池、巻回型電池など、種々の形態であってよい。
The solid secondary battery of the second embodiment, which includes a solid electrolyte, a positive electrode, and a negative electrode, is usually sealed with an exterior body. Sealing means that at least a portion of the solid state secondary battery element is wrapped with an exterior material so as not to be exposed to outside air. The exterior body of a solid state secondary battery is either a casing having gas barrier properties and capable of sealing the solid state secondary battery element, or a bag-shaped body made of a flexible material. As the exterior body, an aluminum can, an aluminum laminate sheet made by laminating aluminum foil, polypropylene, or the like can be suitably used. That is, any material may be used for the exterior body as long as it does not expose the solid state secondary battery to the outside. The outermost layer of the exterior body has a heat-resistant protective layer made of polyester, polyamide, liquid crystal polymer, etc., and the innermost layer is polyethylene, polypropylene, ionomer, acid-modified polyethylene such as maleic acid-modified polyethylene, acid-modified polyethylene such as maleic acid-modified polypropylene, etc. Modified polypropylene, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethylene isophthalate (PEI), blends of PET and PEN, blends of PET and PEI, polyamide resins, blends of polyamide resin and PET, xylylene group-containing polyamides and A laminate film having a sealant layer made of a thermoplastic resin such as a blend of PET can be used. The exterior body may be formed by bonding or welding one or more of these laminate films together and forming multiple layers. Aluminum, tin, copper, nickel, and stainless steel can be used as the gas barrier metal layer. The thickness of the metal layer is preferably 30 to 50 μm. Particularly preferably, an aluminum laminate, which is a laminate of aluminum foil and a polymer such as polyethylene or polypropylene, can be used.
The solid state secondary battery of the second embodiment may be in various forms such as a coin type battery, a laminate type battery, and a wound type battery.
 二の実施形態において、固体状電解質負極との界面の少なくとも一部が、フッ化リチウムで被覆されていることが好ましい。一の実施形態のイオン伝導性固体状組成物に、上記の電解質を適切な量添加して、これをイオン伝導性の固体状電解質として使用した二の実施形態の固体状二次電池を充放電すると、特に充電時に、一の実施形態のイオン伝導性固体状組成物に含まれているイオン伝導性高分子物質が負極表面付近で還元分解し、フッ化リチウム(LiF)を生成する。生成したLiFは、固体状電解質の負極側表面上の少なくとも一部を被覆し、良質な固体電解質界面(Solid Electrolyte Interface、SEI)を形成する。一の実施形態のイオン伝導性固体状組成物を含む固体状電解質の表面の少なくとも一部にSEIが存在することにより、イオン伝導性固体状電解質が電子的に絶縁されるので、見かけ上の耐久性が獲得されることになる。 In the second embodiment, at least a portion of the interface with the solid electrolyte negative electrode is preferably coated with lithium fluoride. A suitable amount of the above electrolyte is added to the ion conductive solid composition of the first embodiment, and this is used as the ion conductive solid electrolyte to charge and discharge the solid state secondary battery of the second embodiment. Then, especially during charging, the ion-conductive polymeric substance contained in the ion-conductive solid composition of one embodiment undergoes reductive decomposition near the surface of the negative electrode, producing lithium fluoride (LiF). The generated LiF covers at least a portion of the negative electrode side surface of the solid electrolyte, forming a high quality solid electrolyte interface (Solid Electrolyte Interface, SEI). The presence of SEI on at least a portion of the surface of the solid electrolyte containing the ion-conducting solid composition of one embodiment makes the ion-conducting solid electrolyte electronically insulated, resulting in apparent durability. sexuality will be acquired.
 以上、本発明の実施形態について説明した。以下には本発明の実施例を説明する。上記実施形態ならびに以下に記載する実施例は、いずれも本発明を例示的説明したに過ぎず、本発明の技術的範囲を特定の実施形態あるいは具体的実施例の構成に限定する趣旨ではない。
[実施例1]
(イオン導電性非晶質無機物質の調製)
 イオン導電性非晶質無機物質として、LiPSCl粒子を調製した。
 アルゴンが充填されたグローブボックス内で、75gの10mmジルコニアボールを80mLジルコニア製容器の中に入れた。続いて、10.0gのLiPSCl(NEI Co.)を入れ、容器を密閉した。容器をグローブボックスから取り出し、ボールミルに固定し、混合物を500rpmで24時間粉砕し、硫化物ガラス微粒子(LiPSCl粒子)を得た。
The embodiments of the present invention have been described above. Examples of the present invention will be described below. The embodiments described above and the examples described below are merely illustrative explanations of the present invention, and are not intended to limit the technical scope of the present invention to the specific embodiments or the configurations of specific examples.
[Example 1]
(Preparation of ionically conductive amorphous inorganic material)
Li 6 PS 5 Cl particles were prepared as an ion conductive amorphous inorganic material.
In an argon-filled glove box, 75 g of 10 mm zirconia balls were placed into an 80 mL zirconia container. Subsequently, 10.0 g of Li 6 PS 5 Cl (NEI Co.) was added and the container was sealed. The container was taken out from the glove box, fixed in a ball mill, and the mixture was ground at 500 rpm for 24 hours to obtain sulfide glass particles (Li 6 PS 5 Cl particles).
(イオン伝導性固体状電解質の調製)
 イオン伝導性高分子物質として市販のパーフルオロポリエーテル(PFPE、分子量約1,000g/モル)を用いた。不活性雰囲気下のグローブボックス内で、45.45gのPFPEと、市販のリチウムビストリフルオロメタンスルホンイミド(LiTFSI)4.55gを混合した。次いで、80mLのジルコニア製カップに、このPFPEとLiTFSIの混合物0.2gと、75gの10mmジルコニアボールと、上記のように得られた1.8gの硫化物ガラス微粒子を充填した。粉砕時間全体にわたり不活性雰囲気下に留まるように、ジルコニア製カップを密閉した。ジルコニア製カップをボールミルに固定し、370rpmで2時間混合し、イオン導電性固体状電解質を得た。
(Preparation of ion conductive solid electrolyte)
Commercially available perfluoropolyether (PFPE, molecular weight approximately 1,000 g/mol) was used as the ion-conducting polymer material. In a glove box under an inert atmosphere, 45.45 g of PFPE and 4.55 g of commercially available lithium bistrifluoromethanesulfonimide (LiTFSI) were mixed. Next, an 80 mL zirconia cup was filled with 0.2 g of this mixture of PFPE and LiTFSI, 75 g of 10 mm zirconia balls, and 1.8 g of the sulfide glass fine particles obtained as described above. The zirconia cup was sealed so that it remained under an inert atmosphere throughout the milling time. A zirconia cup was fixed to a ball mill and mixed at 370 rpm for 2 hours to obtain an ion conductive solid electrolyte.
 (固体状二次電池の作製)
 固体状二次電池セルは以下のように作製した。2枚のリチウム金属負極(直径約1センチ)の間に、上記のように得られたイオン伝導性固体状電解質(直径1cm、厚さ約0.75mm)を配置した。組み立てられた積層物を2つのステンレス鋼ディスクの間に挟み、ステンレス鋼ディスクをボルトにて固定した。ステンレス製タブを両側に取り付け、石英ガラス製容器に密閉し、リチウム金属/イオン伝導性固体状電解質/リチウム金属の固体状二次電池セルを得た。
(Production of solid state secondary battery)
A solid state secondary battery cell was produced as follows. The ion conductive solid electrolyte (diameter 1 cm, thickness approximately 0.75 mm) obtained as described above was placed between two lithium metal negative electrodes (diameter approximately 1 cm). The assembled laminate was sandwiched between two stainless steel disks and the stainless steel disks were bolted together. Stainless steel tabs were attached to both sides and the container was sealed in a quartz glass container to obtain a lithium metal/ion conductive solid electrolyte/lithium metal solid secondary battery cell.
 (固体状二次電池セルのサイクル充放電試験)
 固体状二次電池セルを25℃の雰囲気下に静置し、50μA/cm2の電流密度にて1時間ごとに転極させ、当該サイクルを200サイクル実施した。
(Cycle charge and discharge test of solid state secondary battery cell)
The solid secondary battery cell was left standing in an atmosphere at 25° C., and the polarity was reversed every hour at a current density of 50 μA/cm 2 , and this cycle was performed for 200 cycles.
 (固体状電解質表面のフッ化リチウムの存在の確認)
 サイクル充放電試験終了後、固体状二次電池セルを分解し、イオン伝導性固体状電解質の負極側表面にフッ化リチウムが存在するか否かを、X線光電子分光法によるF1sスペクトルにより確認した。
(Confirmation of the presence of lithium fluoride on the surface of the solid electrolyte)
After the cycle charge/discharge test was completed, the solid secondary battery cell was disassembled, and the presence or absence of lithium fluoride on the negative electrode side surface of the ion-conductive solid electrolyte was confirmed by F1s spectrum using X-ray photoelectron spectroscopy. .
 (固体状電解質表面の硫化リチウムの存在の確認)
 サイクル充放電試験終了後、固体状二次電池セルを分解し、イオン伝導性固体状電解質の負極側表面に硫化リチウム(LiS)が存在するか否かを、X線光電子分光法によるS2pスペクトルにより確認した。なお、LiSは、固体状二次電池のサイクル充放電試験中に、硫化物ガラス微粒子(LiPSCl粒子)が還元分解することにより生成しうる物質である。LiSは、10-13S・cm-1という極めて低いイオン伝導性を有する物質である。サイクル充放電試験後のイオン伝導性固体状電解質の表面にLiSの存在が認められる場合は、固体状電解質と負極との界面の抵抗が増大していることが考えられる。
(Confirmation of the presence of lithium sulfide on the surface of the solid electrolyte)
After the cycle charge/discharge test is completed, the solid secondary battery cell is disassembled, and the presence or absence of lithium sulfide (Li 2 S) on the negative electrode side surface of the ion-conductive solid electrolyte is determined by S2p using X-ray photoelectron spectroscopy. Confirmed by spectrum. Note that Li 2 S is a substance that can be generated by reductive decomposition of sulfide glass particles (Li 6 PS 5 Cl particles) during a cycle charge/discharge test of a solid state secondary battery. Li 2 S is a substance that has an extremely low ionic conductivity of 10 −13 S·cm −1 . If the presence of Li 2 S is observed on the surface of the ion-conductive solid electrolyte after the cycle charge/discharge test, it is considered that the resistance at the interface between the solid electrolyte and the negative electrode has increased.
[比較例1]
 実施例1において、イオン伝導性固体状電解質にPEPFを添加しないこと以外は、実施例1と同様に固体状二次電池セルを作成した。実施例1と同条件にてサイクル充放電試験を行い、その後、固体状二次電池セルを分解して、イオン伝導性固体状電解質の負極表面にフッ化リチウムが存在するか否かを、X線光電子分光法によるF1sスペクトルにより確認した。また、イオン伝導性固体状電解質の負極表面に硫化リチウムが存在するか否かを、X線光電子分光法によるS2pスペクトルにより確認した。
[Comparative example 1]
In Example 1, a solid secondary battery cell was created in the same manner as in Example 1, except that PEPF was not added to the ion-conductive solid electrolyte. A cycle charge/discharge test was conducted under the same conditions as in Example 1, and then the solid secondary battery cell was disassembled to determine whether lithium fluoride was present on the negative electrode surface of the ion conductive solid electrolyte. Confirmed by F1s spectrum by line photoelectron spectroscopy. Furthermore, whether or not lithium sulfide was present on the negative electrode surface of the ion-conductive solid electrolyte was confirmed by an S2p spectrum using X-ray photoelectron spectroscopy.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 本発明のイオン伝導性非晶質無機物質とイオン伝導性高分子物質との組み合わせを使用したイオン伝導性固体状電解質は、これを用いた固体状二次電池のサイクル充放電後に表面上にLiFの生成が認められる一方、LiSの生成はほとんど認められなかった。本発明のイオン伝導性固体状組成物は、固体状電解質と負極との界面に良質なSEIを形成し、非晶質無機物質の還元分解を防ぐことができる。本発明の固体状二次電池は、充放電サイクルに伴う高抵抗化や容量劣化を防ぐことができ、寿命の長い電池となりうることがわかる。 The ion-conducting solid electrolyte using the combination of the ion-conducting amorphous inorganic material and the ion-conducting polymer material of the present invention has LiF on the surface after cycling charging and discharging of a solid secondary battery using the ion-conducting solid electrolyte. While the formation of Li 2 S was observed, almost no formation of Li 2 S was observed. The ion-conductive solid composition of the present invention forms a high-quality SEI at the interface between the solid electrolyte and the negative electrode, and can prevent reductive decomposition of an amorphous inorganic substance. It can be seen that the solid state secondary battery of the present invention can prevent high resistance and capacity deterioration due to charge/discharge cycles, and can be a battery with a long life.

Claims (5)

  1.  イオン伝導性非晶質無機物質と、主鎖および/または側鎖にフッ素原子を有するイオン伝導性高分子物質と、を少なくとも含む、イオン伝導性固体状組成物であって、
     該イオン伝導性固体状組成物の表面の少なくとも一部が、フッ化リチウムで被覆されている、イオン伝導性固体状組成物。
    An ion-conducting solid composition comprising at least an ion-conducting amorphous inorganic substance and an ion-conducting polymeric substance having a fluorine atom in its main chain and/or side chain,
    An ion conductive solid composition, wherein at least a portion of the surface of the ion conductive solid composition is coated with lithium fluoride.
  2.  該イオン伝導性非晶質無機物質が、該イオン伝導性固体状組成物の質量を基準として80%以上含まれている、請求項1に記載のイオン伝導性固体状組成物。 The ion conductive solid composition according to claim 1, wherein the ion conductive amorphous inorganic substance is contained in an amount of 80% or more based on the mass of the ion conductive solid composition.
  3.  該イオン伝導性固体状組成物のイオン伝導度が、1×10-2[S・m-1]以上である、請求項1または2に記載のイオン伝導性固体状組成物。 The ion conductive solid composition according to claim 1 or 2, wherein the ion conductivity of the ion conductive solid composition is 1×10 −2 [S·m −1 ] or more.
  4.  請求項1~3のいずれか一項に記載のイオン伝導性固体状組成物を含む固体状電解質と、正極と、負極と、を少なくとも含む、固体状二次電池。 A solid secondary battery comprising at least a solid electrolyte containing the ion conductive solid composition according to any one of claims 1 to 3, a positive electrode, and a negative electrode.
  5.  該固体状電解質と該負極との界面の少なくとも一部が、フッ化リチウムで被覆されている、請求項4に記載の固体状二次電池。
     
    The solid state secondary battery according to claim 4, wherein at least a portion of the interface between the solid electrolyte and the negative electrode is coated with lithium fluoride.
PCT/JP2023/004089 2022-03-15 2023-02-08 Ion-conducting solid composition and solid-state secondary battery WO2023176203A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-040116 2022-03-15
JP2022040116A JP2023135090A (en) 2022-03-15 2022-03-15 Ion conductive solid composition and solid secondary battery

Publications (1)

Publication Number Publication Date
WO2023176203A1 true WO2023176203A1 (en) 2023-09-21

Family

ID=88022761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004089 WO2023176203A1 (en) 2022-03-15 2023-02-08 Ion-conducting solid composition and solid-state secondary battery

Country Status (2)

Country Link
JP (1) JP2023135090A (en)
WO (1) WO2023176203A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018515893A (en) * 2015-05-21 2018-06-14 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒルThe University Of North Carolina At Chapel Hill Hybrid solid single ion conducting electrolyte for alkaline batteries

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018515893A (en) * 2015-05-21 2018-06-14 ザ ユニバーシティ オブ ノース カロライナ アット チャペル ヒルThe University Of North Carolina At Chapel Hill Hybrid solid single ion conducting electrolyte for alkaline batteries

Also Published As

Publication number Publication date
JP2023135090A (en) 2023-09-28

Similar Documents

Publication Publication Date Title
US11145857B2 (en) High capacity polymer cathode and high energy density rechargeable cell comprising the cathode
KR102486801B1 (en) Secondary battery
ES2932440T3 (en) Lithium-sulfur battery
US20210226247A1 (en) Composite solid electrolytes for high-performance metallic or metal-ion batteries
US20220216512A1 (en) Solid electrolyte composite and all-solid-state battery electrode comprising same
JP4283598B2 (en) Non-aqueous electrolyte solution and lithium ion secondary battery
EP2645455A1 (en) Composite electrode active material, electrode and lithium battery containing the composite electrode active material, and method of preparing the composite electrode active material
JP2010225539A (en) Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6948474B2 (en) Negative electrode sheet for all-solid-state secondary batteries and all-solid-state secondary batteries
CN112602208B (en) Electrode for all-solid battery and method of manufacturing electrode assembly including the same
CN112018443A (en) Additive, electrolyte for lithium secondary battery, and lithium secondary battery comprising the same
JP2022137005A (en) Electrode, lithium battery including the same, and manufacturing method therefore
JP2017212117A (en) Positive electrode for lithium ion secondary battery
JP5614433B2 (en) Non-aqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery
CN115832191A (en) Positive electrode comprising conductive carbon additive
WO2023176203A1 (en) Ion-conducting solid composition and solid-state secondary battery
WO2021192260A1 (en) Solid-state battery production method and solid-state battery
CN114792844A (en) Electrolyte for electrochemical cells with silicon-containing electrodes
KR102510889B1 (en) Positive electrode for lithium secondary battery, preparing method thereof, and lithium secondary battery comprising the same
US20240178443A1 (en) All-solid secondary battery
JP6616278B2 (en) Electrode for lithium ion secondary battery
US20240154103A1 (en) Composite cathode active material, method of preparing the same, cathode including the same, and all-solid secondary battery including the same
KR102639661B1 (en) Lithium Secondary Battery
JP2023128201A (en) Negative electrode for non-aqueous electrolyte secondary battery and the non-aqueous electrolyte secondary battery using them
WO2024202301A1 (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770164

Country of ref document: EP

Kind code of ref document: A1