WO2023176151A1 - Air-conditioning control device and program therefor - Google Patents

Air-conditioning control device and program therefor Download PDF

Info

Publication number
WO2023176151A1
WO2023176151A1 PCT/JP2023/002013 JP2023002013W WO2023176151A1 WO 2023176151 A1 WO2023176151 A1 WO 2023176151A1 JP 2023002013 W JP2023002013 W JP 2023002013W WO 2023176151 A1 WO2023176151 A1 WO 2023176151A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioning
control
air
conditioning control
control unit
Prior art date
Application number
PCT/JP2023/002013
Other languages
French (fr)
Japanese (ja)
Inventor
哲 村松
卓弥 深津
徹 菱沼
Original Assignee
トリニティ工業株式会社
株式会社Proxima Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トリニティ工業株式会社, 株式会社Proxima Technology filed Critical トリニティ工業株式会社
Publication of WO2023176151A1 publication Critical patent/WO2023176151A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B16/00Spray booths
    • B05B16/40Construction elements specially adapted therefor, e.g. floors, walls or ceilings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B16/00Spray booths
    • B05B16/60Ventilation arrangements specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • F24F2110/22Humidity of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption

Definitions

  • the present invention relates to an air conditioning control device that controls the temperature and humidity of taken in outside air by operating a plurality of types of air conditioning equipment, and a program therefor.
  • Paint equipment generally includes equipment such as a paint booth that applies paint to objects to be painted, such as automobile bodies, and a drying oven that dries the paint on the objects that have passed through the coating booth.
  • a painting booth air conditioner supplies air whose temperature and humidity have been adjusted into the painting booth to perform painting.
  • Paint booth air conditioners are made up of equipment such as a heating device, a cooling device, a humidifier (washer), and a blower fan. By operating these devices in combination, the conditioned air reaches the target temperature.
  • the humidity is controlled to be the same (for example, see Patent Documents 1 and 2).
  • PID control is conventionally used as control in this case.
  • model predictive control which performs control while predicting future reactions, has been proposed as a new means for realizing severe temperature and humidity control.
  • model predictive control is a control method that uses a predictive model that appropriately captures the dynamics of an air conditioner. Therefore, it is believed that model predictive control achieves higher control performance than PID control, which is conventional control, and makes it easier to obtain stable control results.
  • Patent No. 3993358 Japanese Patent Application Publication No. 2010-119901
  • the present invention has been made in view of the above problems, and its purpose is to provide an air conditioning control device and an air conditioning control device that can reliably reduce energy consumption required for air conditioning by maintaining strict temperature and humidity control.
  • the goal is to provide programs.
  • the invention described in Means 1 provides an air conditioning control device that controls the amount of operation of the air conditioning equipment in an air conditioning system that adjusts the temperature and humidity of the outside air taken in using a plurality of types of air conditioning equipment.
  • a first air conditioning control section that controls the operation amount of the air conditioning equipment through PID control
  • a second air conditioning control section that controls the operation amount of the air conditioning equipment through model predictive control based on a predictive model
  • a calculation comparison unit that calculates and compares the energy required for the conditioned air to reach the target point by the PID control and the energy required for the conditioned air to reach the target point by the model predictive control
  • a control switching unit that automatically switches to the air conditioning control unit that requires less energy to make the conditioned air reach the target point among the first air conditioning control unit and the second air conditioning control unit to perform control.
  • the gist of this invention is an air conditioning control device characterized by:
  • the invention described in Means 2 provides an air conditioning control device that controls the operation amount of the air conditioning equipment in an air conditioning system that adjusts the temperature and humidity of the outside air taken in using a plurality of types of air conditioning equipment.
  • a first air conditioning control section that controls the operation amount of the air conditioning equipment through PID control
  • a second air conditioning control section that controls the operation amount of the air conditioning equipment through model predictive control based on a predictive model
  • a calculation comparison unit that calculates and compares a deviation from a target value when the conditioned air reaches the target point by the PID control and a deviation from the target value when the conditioned air reaches the target point by the model predictive control
  • the gist of the invention is an air conditioning control device characterized by comprising a control switching section.
  • the first air conditioning control section performs control using PID control and the second air conditioning control section performs control using model predictive control
  • the amount of operation of the air conditioning equipment can be controlled by selecting the control unit.
  • the calculation comparison unit calculates and compares the energy required for the conditioned air to reach the target point using the PID control and the energy required for the conditioned air to reach the target point using the model predictive control.
  • the calculation comparison unit calculates and compares the deviation from the target value when the conditioned air reaches the target point by PID control and the deviation from the target value when the conditioned air reaches the target point by model predictive control. .
  • the control switching section automatically switches to the air conditioning control section that consumes less energy based on the energy comparison result to perform control.
  • the control switching unit automatically switches to the air conditioning control unit with the smaller deviation from the target value (in other words, the air conditioning control unit with higher control accuracy) based on the comparison result of the deviations above, and performs control.
  • the control switching section automatically switches from the second air conditioning control section to the first air conditioning control section to execute PID control. Therefore, strict temperature and humidity control is maintained without being influenced by modeling errors, and the energy consumption required for air conditioning can be reliably reduced.
  • a learning data collection unit collects learning data for additional learning of the prediction model while the first air conditioning control unit is performing the PID control.
  • the first air conditioning control section performs PID control and learns during the PID control.
  • a data collection unit collects learning data. Therefore, severe temperature and humidity control can be continuously performed without interruption. Furthermore, learning data for additional learning can be efficiently collected.
  • the prediction model is newly created based on the learning data collected by the learning data collection unit.
  • the gist is to further include a machine learning section to be created.
  • the machine learning section newly creates a prediction model in which modeling errors are eliminated. Therefore, it is possible to prepare for an update work to replace an old prediction model with the latest prediction model.
  • the invention described in means 5 is, in means 1 or 2, while the second air conditioning control section is performing the model predictive control, the control result is sequentially given as the learning data for each control step.
  • the gist of the present invention is to further include a sequential learning unit that improves the error of the prediction model as needed.
  • the sequential learning section collects learning data for additional learning to improve the error of the predictive model at any time. . Therefore, it becomes easier to continuously perform severe temperature and humidity control by the second air conditioning control section. Furthermore, learning data for additional learning can be efficiently collected.
  • control switching section replaces and updates the old prediction model with the latest prediction model at the stage when the new prediction model is completed, and then updates the old prediction model with the latest prediction model.
  • the gist thereof is to automatically switch from the air conditioning control section to the second air conditioning control section to perform control.
  • the first air conditioning control section is automatically switched to the second air conditioning control section, and the update is performed to eliminate modeling errors.
  • Model predictive control based on the latest predictive model is executed.
  • the model predictive control which is more stable than PID control, is restored, and severe temperature and humidity control can be continuously executed without interruption.
  • the invention according to means 7 is an air conditioner for a paint booth in which the air conditioner includes a preheating device, a humidifying device, a cooling device, and a reheating device as the air conditioning equipment. That is the gist of it.
  • Means 8 comprises an air conditioner that adjusts the temperature and humidity of the outside air taken in using a plurality of types of air conditioning equipment, and a first air conditioning control unit that controls the operation amount of the air conditioning equipment by PID control. and a second air conditioning control unit that controls the operation amount of the air conditioning equipment by model predictive control based on a predictive model, the program for operating an air conditioning control device that controls the conditioned air as a target by the PID control.
  • An air conditioning control device comprising: a control switching step of automatically switching to an air conditioning control section that requires less energy to make the conditioned air reach a target point among the air conditioning control sections to perform control. Its gist is a program for
  • Means 9 comprises an air conditioner that adjusts the temperature and humidity of taken in outside air using a plurality of types of air conditioning equipment, and a first air conditioning control unit that controls the operation amount of the air conditioning equipment by PID control. and a second air conditioning control unit that controls the operation amount of the air conditioning equipment by model predictive control based on a predictive model, the program for operating an air conditioning control device that controls the conditioned air as a target by the PID control.
  • the gist of this article is a program for air conditioning control equipment that features features.
  • the energy required for the conditioned air to reach the target point by PID control and the energy required to cause the conditioned air to reach the target point by the model predictive control are calculated.
  • the energy required is calculated and compared.
  • the deviation from the target value when the conditioned air reaches the target point using PID control and the deviation from the target value when the conditioned air reaches the target point using the model predictive control are calculated and compared.
  • the air conditioning control unit that consumes less energy is automatically switched to perform control.
  • the control is automatically switched to the air conditioning control unit with the smaller deviation from the target value (in other words, the air conditioning control unit with higher control accuracy).
  • control switching section automatically switches from the second air conditioning control section to the first air conditioning control section to execute PID control. Therefore, strict temperature and humidity control is maintained without being influenced by modeling errors, and the energy consumption required for air conditioning can be reliably reduced.
  • an air conditioning control device and an air conditioning control device capable of reliably reducing energy consumption required for air conditioning by constantly maintaining severe temperature and humidity control. program can be provided.
  • FIG. 1 is a block diagram for explaining an air conditioning control device according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating in more detail the connection relationship between the air conditioning control device and the painting booth air conditioner according to the embodiment.
  • 1 is a flowchart for explaining an air conditioning control method performed by an air conditioning control device according to an embodiment. The psychrometric chart for explaining the data collection method in the air conditioning control method performed by the air conditioning control device of the embodiment.
  • FIG. 3 is a block diagram showing a connection relationship between an air conditioning control device, a paint booth air conditioner, and a heat pump according to another embodiment.
  • the air conditioning system 11 of this embodiment shown in FIG. 1 is an air conditioning system 11 for painting equipment, and includes an air conditioning device 21 that adjusts the temperature and humidity of the outside air taken in using a plurality of types of air conditioning equipment. It is configured to include an air conditioning control device 31 that controls the operation amount of air conditioning equipment.
  • the air conditioner 21 in this embodiment is a paint booth air conditioner 21 that includes a plurality of types of air conditioning equipment (a preheating device, a humidifying device, a cooling device, a reheating device, etc.).
  • the paint booth air conditioner 21 in the air conditioning system 11 of this embodiment includes a preheating device 22, a humidifying device 23, a cooling device 24, a reheating device 25, and a first sensor 27a. , a second sensor 27b, a third sensor 27c, and the like.
  • the air conditioning control device 31 in the air conditioning system 11 of this embodiment includes an air supply target input section 32, an air supply setting calculation section 33, a first air conditioning control section 42, a second air conditioning control section 43, a calculation comparison section 44, a control It includes a switching section 45, a learning data collection section 46, a machine learning section 47, a system identification output section 51, and the like.
  • FIG. 2 shows a block diagram for explaining more specific connection relationships of each element.
  • the painting booth to which the conditioned air generated by the painting equipment air conditioning system 11 is supplied is generally installed in an area for applying paint to the object to be coated in the object conveyance line.
  • a painting booth consists of a painting room, an air supply chamber installed above the painting room to supply downflow air (in a fixed direction from above to below) to the painting room, and an air supply chamber installed below the painting room to supply downflow air (in a fixed direction from above to below) to the painting room. It is equipped with an exhaust chamber for exhausting the air inside the painting chamber.
  • conditioned air discharged from the painting booth air conditioner 21 is supplied into the painting room in a downflow from the air supply chamber.
  • the object to be coated is coated by spraying paint mist from a coating machine (not shown).
  • paint mist oversprayed and scattered from the coating machine is discharged from the painting chamber to the exhaust chamber by the downflow of conditioned air acting within the painting chamber.
  • paint mist contained in the air is captured using booth circulating water and paint is recovered.
  • the air exhausted from the exhaust chamber is discharged into the atmosphere by a blower fan.
  • the paint booth air conditioner 21 in this embodiment is configured to include multiple types of air conditioning equipment.
  • the painting booth air conditioner 21 is a device that adjusts air taken in from outside the apparatus to a predetermined temperature (for example, around 23° C.) and a predetermined humidity (for example, around 70% RH), and then sends the air to the painting booth.
  • this paint booth air conditioner 21 includes a preheater 22 (preheating device), a washer 23 (humidifying device), a cooling coil 24 (cooling device), a reheater (reheating device) 25, and a blower fan 26. ing.
  • the preheater 22 is a type of temperature control means that adjusts the temperature of the air taken in, and is a device that heats the air to raise the temperature in advance.
  • the washer 23 is a type of humidity control means that adjusts the humidity of the air taken in, and is a device that increases the humidity of the air by spraying water onto the air that has passed through the preheater 22.
  • the cooling coil 24 is a type of temperature control means that adjusts the temperature of the air taken in, and is a cooling device that cools the air that has passed through the washer 23 to lower the temperature.
  • the reheater 25 is a type of temperature control means that adjusts the temperature of the air taken in, and is a reheating device that heats the air that has passed through the cooling coil 24 again to raise the temperature.
  • the blowing fan 26 is an air pumping device for pumping temperature- and humidity-controlled air (i.e., conditioned air) to the painting booth.
  • Sensing means are provided at multiple locations in the paint booth air conditioner 21.
  • this paint booth air conditioner 21 includes a first sensor 27a for measuring temperature and humidity, a second sensor 27b for measuring temperature and humidity, and a third sensor 27c for measuring temperature.
  • the first sensor 27a is for measuring the temperature and humidity of the outside air before air conditioning, and is arranged near the outside air intake in the paint booth air conditioner 21.
  • the second sensor 27b is for measuring the temperature and humidity of the outside air after air conditioning, and is arranged on the exit side of the blower fan 26 through which the conditioned air is sent out.
  • the third sensor 27c is for measuring the temperature of the outside air that has passed through the preheater 22, and is arranged on the upstream side of the washer 23.
  • the air conditioning control device 31 for painting equipment in this embodiment is a device for controlling the operation amount of air conditioning equipment, and includes a CPU and storage means (ROM, RAM). It is composed of one or more well-known computers such as the following.
  • a program for temperature and humidity control is stored in the storage means of the air conditioning control device 31, and the CPU in the air conditioning control device 31 reads the program from the storage means and sequentially executes the program.
  • the storage means stores data regarding a psychrometric diagram (humid psychrometric table) in which air condition values are expressed as coordinates.
  • the first air conditioning control section 42 in the air conditioning control device 31 controls the operation amount of the air conditioning equipment by PID control.
  • PID control Proportional-Integral-Differential Control
  • the first air conditioning control unit 42 of this embodiment is a PID controller 42, and has the same number (specifically, four) of PID loops as the number of objects to be controlled.
  • the PID controller 42 and each air conditioning device are electrically connected via a control section changeover switch 48, an adder 49, and a driver circuit (not shown). has been done. Furthermore, the PID controller 42 and each of the sensors 27a to 27c are electrically connected. Therefore, when the PID controller 42 and each air conditioning device are connected by the control section changeover switch 48, the PID controller 42 outputs a drive control signal to each control target, and this causes each air conditioning device to The amount of operation of the device is controlled by PID. As a result, the outside temperature and humidity are adjusted so as to reach the target temperature and humidity. Further, measurement results of temperature and humidity are inputted from each of the sensors 27a to 27c. Therefore, the PID controller 42 is capable of performing feedback control based on the measurement results.
  • the second air conditioning control unit 43 in the air conditioning control device 31 controls the operation amount of air conditioning equipment by model predictive control (MPC) based on a predictive model 53.
  • the second air conditioning control unit 43 of this embodiment is an MPC controller 43, and the MPC controller 43 and each air conditioning device (i.e., preheater 22, washer 23, cooling coil 24, reheater 25) are a control unit changeover switch. 48, an adder 49, and a driver circuit (not shown). Further, the MPC controller 43 and each of the sensors 27a to 27c are electrically connected.
  • the MPC controller 43 when the MPC controller 43 and each air conditioning device are connected by the control unit changeover switch 48, the MPC controller 43 outputs a drive control signal to each control target, and this causes each air conditioning device to The amount of operation of the device is controlled by the MPC.
  • the MPC controller 43 includes an optimizer, and the optimizer calculates optimal temperature and humidity control based on a prediction model. As a result, the outside temperature and humidity are adjusted so as to reach the target temperature and humidity. Further, measurement results of temperature and humidity are inputted from each of the sensors 27a to 27c. Therefore, the MPC controller 43 is capable of performing feedback control based on the measurement results.
  • the air supply target input section 32 is electrically connected to the PID controller 42 and the MPC controller 43 via the air supply setting calculation section 33.
  • the air supply target input unit 32 is for inputting target values of temperature and humidity of conditioned air to be supplied to the painting booth, and is configured to include means such as a keyboard and a touch panel.
  • the output signal of the air supply target input section 32 is input to the air supply setting calculation section 33.
  • the air supply setting calculating section 33 and each of the above-mentioned sensors 27a to 27c are electrically connected. Therefore, the measured values of temperature and humidity output from each of the sensors 27a to 27c are input to the air supply setting calculation section 33.
  • the air supply setting calculation unit 33 performs calculations based on the input target temperature and humidity values and measured values, and calculates the minimum enthalpy for reaching the target temperature and humidity. Then, the air supply setting calculation unit 33 sets a target value for the operation amount of each air conditioning device based on the calculation result, and outputs the target value to the PID controller 42 and the MPC controller 43.
  • the calculation comparison unit 44 calculates and compares the energy required for the conditioned air to reach the target point by PID control and the energy required for the conditioned air to reach the target point by MPC.
  • the energy required for the conditioned air to reach the target point by PID control is calculated, for example, based on the operation amount (control amount) of each air conditioning device determined by the PID controller 42.
  • the energy required for the MPC to cause the conditioned air to reach the target point is calculated, for example, based on the operation amount (control amount) of each air conditioning device determined by the MPC controller 43. Note that the calculation comparison unit 44 can also understand by comparing the stability of PID control and the stability of MPC.
  • the control switching unit 45 automatically switches to the air conditioning control unit that requires less energy to make the conditioned air reach the target point between the PID controller 42 and the MPC controller 43 to perform control. That is, between the PID controller 42 and the MPC controller 43, the air conditioning control unit that can perform more stable temperature and humidity control is automatically switched to perform control.
  • the control switching section 45 is electrically connected to the calculation comparison section 44 and operates based on the comparison result output from the calculation comparison section 44 .
  • This control switching section 45 is electrically connected to a control section changeover switch 48.
  • the control switching unit 45 connects one of the PID controller 42 and the MPC controller 43 to each air conditioning device by controlling the control unit changeover switch 48. It should be noted that this control switching unit 45 is understood to be a fail-safe unit that automatically switches to relatively stable PID control when undesirable behavior such as generation and expansion of modeling errors is detected during MPC execution. Good too.
  • the system identification output unit 51 is a part that randomly outputs step signals used for system identification.
  • the output signal from the system identification output section 51 is added to the manipulated variable command signal from the PID controller 42 and the manipulated variable command signal from the MPC controller 43. Note that the system identification output unit 51 operates when performing random vibration of air conditioning equipment, which will be described later.
  • this air conditioning control device 31 includes a learning data collection unit 46 that collects learning data for a prediction model used for MPC of the paint booth air conditioner 21.
  • the learning data collection unit 46 collects learning data for additional learning of the prediction model while the PID controller 42 is performing PID control.
  • the learning data collection unit 46 collects measured values (PV), control amounts (or manipulated variables, MV), and results as learning data, as shown in FIG. 2, and creates a results database.
  • the program for collecting learning data is stored in the storage means in the air conditioning control device 31.
  • the CPU in the air conditioning control device 31 reads out the programs from the storage means and executes them sequentially as necessary.
  • the learning data collection unit 46 collects data through each step of region setting, learning start point setting, state point movement, and data collection.
  • a region R1 for creating a prediction model on the psychrometric diagram that is, a region to be subjected to temperature and humidity control (control target region R1) is set.
  • the control target region R1 can also be rephrased as a region in which a high-quality predictive model is desired in order to realize highly accurate temperature and humidity control.
  • a plurality of learning start points S1 to S9 are set within the set control target region R1, which serve as starting points when performing random vibration of the air conditioning equipment.
  • the number and positions of learning starting points S1 to S9 and the order in which they are moved are also set.
  • nine points are set as learning starting points S1 to S9 (see FIG. 4).
  • the number of learning starting points S1 to S9 is preferably 10 or more.
  • the positions of the learning starting points S1 to S9 are also not limited and may be set arbitrarily, for example, at positions spaced apart from each other on the psychrometric diagram.
  • the conditioned air state point K1 is moved to the first learning start point S1 by operating the air conditioning equipment under PID control to perform temperature and humidity control.
  • learning data is collected by randomly exciting the air conditioning equipment while moving the conditioned air state point K1 between a plurality of learning start points S1 to S9 within the control target region R1. Specifically, control is performed to return the conditioned air state point K1 displaced from the learning starting points S1 to S9 to the learning starting points S1 to S9 by PID control (see FIG. 4). PID control is also performed when moving the conditioned air state point K1 from the current learning start point to the next learning start point.
  • the machine learning unit 47 newly creates a prediction model 52 based on the learning data collected by the learning data collection unit 46 while the PID controller 42 is performing PID control. Note that the newly created latest prediction model 52 is temporarily stored in a storage area within the machine learning unit 47, for example. Then, when the new prediction model 52 is completed, the control switching unit 45 updates the old prediction model 53 by replacing it with the latest prediction model 52. Thereafter, the control switching unit 45 automatically switches from the PID controller 42 to the MPC controller 43 to execute MPC.
  • step S110 is first executed. That is, the control switching unit 45 drives the control unit changeover switch 48 to connect the MPC controller 43 and each air conditioning device. Then, a drive control signal is output from the MPC controller 43 to each controlled object, and thereby the operation amount of each air conditioning device is controlled by the MPC. As a result, the temperature and humidity control based on MPC adjusts the outside temperature and humidity to reach the target temperature and humidity.
  • the calculation comparison unit 44 calculates the energy E1 required for the conditioned air to reach the target point by PID control and the energy E2 required for the conditioned air to reach the target point by MPC.
  • the calculated energies E1 and E2 are compared. Specifically, it is determined whether the energy E1 required for the conditioned air to reach the target point using PID control is smaller than the energy E2 required for the conditioned air to reach the target point using the MPC. If the determination result in step S130 is NO, that is, if E1 ⁇ E2, it is considered that MPC is being performed based on a prediction model with no modeling error. Therefore, the current control result by MPC is in a more stable state than the control result by PID control. In this case, the process returns to step S110 and continues to perform temperature and humidity control based on MPC.
  • step S130 If the determination result in step S130 is YES, that is, if E1 ⁇ E2, it is considered that MPC is being performed based on a degraded prediction model due to modeling errors. Therefore, the current control result by MPC is in a state that is unstable compared to the control result by PID control. In this case, the process moves to step S140, and automatically switches from MPC to PID control to execute temperature and humidity control. That is, the control switching unit 45 drives the control unit changeover switch 48 to switch the connection between the PID controller 43 and each air conditioning device.
  • the learning data collection unit 46 operates to collect learning data for the prediction model used for MPC control during PID control (see FIG. 4). Specifically, first, a control target region R1 for creating a prediction model is set on the psychrometric diagram. Next, within the set control target region R1, a plurality of learning starting points S1 to S9, which are the starting points when performing random vibration of the air conditioning equipment, and their movement order are set. Next, the conditioned air state point K1 is moved to the first learning start point S1 by PID control. Next, the system identification output unit 51 is activated to perform random vibration starting from the learning start point S1.
  • control is executed to return the conditioned air state point K1 displaced from the learning starting point S1 to the learning starting point S1 by PID control.
  • the conditioned air state point K1 is moved from the current learning starting point S1 to the next learning starting point S2, and similar random vibration is performed. After that, such random vibration is sequentially moved to the learning starting points S3 to S9 and executed respectively.
  • the machine learning unit 47 operates to take in the learning data collected by the learning data collection unit 46, and performs machine learning to create the latest predictive model 52 based on the learning data.
  • the machine learning unit 47 temporarily stores the latest predictive model 52 in its own storage area.
  • step S170 the control switching unit 45 operates to determine whether the latest prediction model 52 has been completed. If the determination result in step S170 is NO, that is, if the latest prediction model 52 is not yet completed, the process returns to step S150 to continue collecting learning data and performing machine learning. Note that while this is being executed, temperature and humidity control by PID control is maintained. If the determination result in step S170 is YES, that is, if the latest prediction model 52 is completed, the process moves to the next step S180. Then, the control switching unit 45 operates to update the old prediction model 53 by replacing it with the latest prediction model 52. In the next step S190, after automatically switching from PID control to MPC, the process returns to the first step S110.
  • control switching section 45 drives the control section changeover switch 48 to switch the connection between the MPC controller 43 and each air conditioning device. Then, the MPC controller 43 outputs a drive control signal to each controlled object, and each air conditioning device returns to a state where it is controlled based on the operation amount from the MPC.
  • the air conditioning control device 31 of this embodiment includes the PID controller 42 which is the first air conditioning control section, the MPC controller 43 which is the second air conditioning control section, the calculation comparison section 44, the control switching section 45, etc. We are prepared. Therefore, it is possible to select either the PID controller 42 or the MPC controller 43 to control the operation amount of the air conditioning equipment.
  • the calculation comparison unit 44 calculates and compares the energy E1 required for the conditioned air to reach the target point by PID control and the energy E2 required for the conditioned air to reach the target point by MPC. Based on the comparison result, the control switching unit 45 automatically switches to the air conditioning control unit that requires less energy consumption to perform control.
  • control switching section 45 automatically switches from the MPC controller 43 to the PID controller 42 to execute PID control. Therefore, strict temperature and humidity control is maintained without being influenced by modeling errors, and the energy consumption required for air conditioning can be reliably reduced.
  • the PID controller 42 performs PID control, and during the PID control, the learning data collection unit 46 collects training data. Therefore, severe temperature and humidity control can be continuously performed without interruption. Furthermore, learning data for additional learning can be efficiently collected.
  • the machine learning unit 47 newly creates a prediction model 52 with modeling errors eliminated. Therefore, it is possible to reliably prepare for the update work of replacing the old prediction model 52 with the latest prediction model 53.
  • an air conditioner for a painting booth is provided with a preheater 22 (preheating device), a washer 23 (humidifying device), a cooling coil 24 (cooling device), a reheater (reheating device) 25, and a blower fan 26 as air conditioning equipment.
  • a preheater 22 preheating device
  • a washer 23 humidity
  • a cooling coil 24 cooling device
  • a reheater reheating device
  • a blower fan 26 as air conditioning equipment.
  • the device 21 is used, the present invention is not limited to this, and a different device configuration may be adopted.
  • the cooling coil 24 may be provided in two stages instead of one, or may be omitted if unnecessary.
  • the reheater 25 may also be omitted if unnecessary.
  • air conditioners are not limited to those that have the function of heating, humidifying, and cooling the outside air taken in, but also those that have heating and humidifying functions but do not have cooling functions, and those that have cooling and humidifying functions and heating It may be one that does not have any function.
  • the air conditioning system 11 of the present invention is embodied as an air conditioning system for painting equipment that includes an air conditioner 21 for a painting booth, but it may of course be embodied in an air conditioning system that includes an air conditioning system other than for use in a painting booth.
  • learning data for additional learning of the prediction model 53 is collected while the PID controller 42, which is the first air conditioning control unit, is performing PID control, but the present invention is limited to this. Not done.
  • the latest external prediction model 53 created by another device with the same specifications may be imported to replace the old one.
  • the latest prediction model 53 created by the air conditioning control device 31 of this embodiment can be used not only in one's own device, but also by being ported to another device with the same specifications. Good too.
  • learning data for additional learning of the prediction model 53 is collected only while the PID controller 42, which is the first air conditioning control unit, is performing PID control.
  • the MPC controller 43 which is the second air conditioning control unit
  • it is configured to include a sequential learning section that improves the error of the prediction model as needed, and while the second air conditioning control section is performing MPC, the control results are used as learning data for each control step.
  • the information may be sequentially given to the sequential learning section. According to this configuration, it becomes easier to continuously perform severe temperature and humidity control by the second air conditioning control section. Furthermore, learning data for additional learning can be efficiently collected.
  • the above embodiment includes two air conditioning control units that control the operation amount of air conditioning equipment using two different control methods (PID control and MPC). Then, a calculation comparison unit 44 calculates and compares the energy required for the conditioned air to reach the target point for each of the two air conditioning control units, and a control switching unit 45 calculates the energy required for the two air conditioning control units to reach the target point.
  • a calculation comparison unit 44 calculates and compares the energy required for the conditioned air to reach the target point for each of the two air conditioning control units
  • a control switching unit 45 calculates the energy required for the two air conditioning control units to reach the target point.
  • the configuration is such that control is performed by automatically switching to , the present invention is not limited to this.
  • three or more air conditioning control units may be provided that control the operation amount of the air conditioning equipment using three or more different control methods (PID control, MPC, and other controls).
  • the calculation and comparison section 44 calculates and compares the energy required for the conditioned air to reach the target point for each of the three or more air conditioning control sections
  • the control switching section 45 calculates and compares the energy required for the conditioned air to reach the target point.
  • the configuration may be such that the control is automatically switched to the one that requires the least amount of energy.
  • a calculation comparison section 44 that calculates and compares the stability of control results for each of three or more air conditioning control sections. You can also use it as
  • the calculation comparison unit 44 calculates and compares the energy required for the conditioned air to reach the target point for each of the two air conditioning control units, and the control switching unit 45 calculates and compares the energy required for the conditioned air to reach the target point.
  • the configuration is such that the control is performed by automatically switching to the one that requires less energy, the present invention is not limited to this.
  • the calculation comparison unit 44 calculates and compares the deviation from the target value when the conditioned air reaches the target point by PID control and the deviation from the target value when the conditioned air reaches the target point by MPC. It's okay.
  • control switching unit 45 automatically switches between the two air conditioning control units to the one that has a smaller deviation from the target value when the conditioned air reaches the target point (in other words, the one that has higher control accuracy). Control may also be performed. According to this configuration, even if a decrease in control accuracy is expected, the control switching unit automatically switches the air conditioning control unit in advance, and the control accuracy is maintained at a high level. Therefore, strict temperature and humidity control is maintained, and energy consumption required for air conditioning can be reliably reduced.
  • the calculation comparison is performed based on the temperature and humidity measurement results from the three sensing means (first, second, and third sensors 27a, 27b, and 27c) provided in the painting booth air conditioner 21.
  • the unit 44 performs energy calculation and comparison, and the PID controller 42 and MPC controller 43 perform feedback control
  • the present invention is not limited thereto.
  • measurement results from sensing means provided in equipment other than the painting booth air conditioner 21 may be used.
  • An air conditioning control device 31A of another embodiment shown in FIG. 5 is configured such that a heat source and cold water are supplied to the paint booth air conditioner 21 from a heat pump (HP).
  • the paint booth air conditioner 21 and the heat pump are connected in a flow path manner by a first path 61 that supplies a heat source and a second path 62 that supplies cold water.
  • a fourth sensor 27d is provided on the first path 61 that supplies a heat source to the preheater 22.
  • a fifth sensor 27e is provided on the first path 61 that supplies the heat source to the reheater 25.
  • a sixth sensor 27f is provided on the second path 62 that supplies cold water to the cooling coil 24.
  • Examples of the fourth sensor 27d and the fifth sensor 27e include a gas flow rate sensor, a steam flow rate sensor, a hot water temperature flow rate sensor, and the like.
  • Examples of the sixth sensor 27f include a cold water flow rate sensor, a cold water temperature sensor, and the like.
  • the calculation comparison unit 44 calculates and compares energy based on the sensing information from the sensors 27d to 27f, and the PID controller 42 and MPC controller 43 perform feedback control. You may also do so. In this way, by using the sensing information from the energy-related sensors, the calculation and comparison of energy by the calculation comparison unit 44 becomes more accurate, and it becomes possible to more reliably reduce the energy consumption required for air conditioning. Note that, of course, the operating power of the heat pump may be sensed and the sensing information may be used for the above-mentioned calculation comparison.
  • An air conditioning control device that controls the amount of operation of the air conditioning equipment in an air conditioning system that adjusts the temperature and humidity of the outside air taken in using multiple types of air conditioning equipment, the air conditioning equipment controlling the amount of operation of the air conditioning equipment using different control methods.
  • a plurality of air conditioning control units that control the operation amount of the air conditioning control units;
  • a calculation comparison unit that calculates and compares the energy required for the conditioned air to reach the target point for each of the plurality of air conditioning control units; and the plurality of air conditioning control units.
  • An air conditioning control device comprising: a control switching unit that automatically switches to an air conditioning control unit that requires the least amount of energy to bring the conditioned air to a target point to perform control.
  • An air conditioning control device that controls the amount of operation of the air conditioning equipment in an air conditioning system that adjusts the temperature and humidity of the outside air taken in using multiple types of air conditioning equipment, the air conditioning equipment controlling the amount of operation of the air conditioning equipment using different control methods.
  • a plurality of air conditioning control units that control the operation amount of the air conditioning control unit, a calculation comparison unit that calculates and compares the stability of the temperature and humidity control results, and an air conditioning control unit that has the highest stability among the plurality of air conditioning control units.
  • An air conditioning control device comprising: a control switching section that automatically switches to perform control.
  • the calculation comparison section performs the calculation comparison of the energy based on sensing information from a temperature and humidity sensor provided in the air conditioner.
  • the calculation comparison unit is configured to calculate the energy of Calculating and comparing the energy based on sensing information from related sensors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Details Or Accessories Of Spraying Plant Or Apparatus (AREA)

Abstract

Provided is an air-conditioning control device capable of maintaining severe temperature and humidity control and reliably reducing the energy consumption required for air conditioning. This air-conditioning control device 31 comprises a first air-conditioning control unit 42, a second air-conditioning control unit 43, a calculation comparison unit 44, and a control switching unit 45. The first air-conditioning control unit 42 controls the amount of operation of an air-conditioning facility by using PID control. The second air-conditioning control unit 43 controls the amount of operation of the air-conditioning facility by using model prediction control based on a prediction model 53. The calculation comparison unit 44 calculates and compares an energy E1 required for reaching a target point of air-conditioned air using the PID control and an energy E2 required for reaching the target point of air-conditioned air using the model prediction control. The control switching unit 45 performs automatic switching to the air-conditioning control unit that requires less energy for reaching the target point of air-conditioned air, and causes the air-conditioning control unit to perform control. Selected drawing: FIG. 1.

Description

空調制御装置及びそのためのプログラムAir conditioning control device and its program
 本発明は、取り込んだ外気の温湿度を複数種の空調用機器を操作して調整する制御を行う空調制御装置及びそのためのプログラムに関するものである。 The present invention relates to an air conditioning control device that controls the temperature and humidity of taken in outside air by operating a plurality of types of air conditioning equipment, and a program therefor.
 一般的に塗装設備は、自動車ボディ等の被塗物に塗料を塗布する塗装ブースや、塗装ブースを通過した被塗物上の塗料を乾燥させる乾燥炉などの装置を備えている。このような塗装設備では、塗装ブース用空調機によって温湿度を調整した空気を塗装ブース内に送気し、塗装を行っている。また、塗装ブース用空調機は、加熱装置、冷却装置、加湿装置(ワッシャ)、送風ファンなどの機器で構成されており、これらの機器を組み合わせて動作させることで、空調空気が目標とする温湿度となるように制御を行っている(例えば、特許文献1、2を参照)。また、この場合の制御としては、PID制御が従来用いられている。 Painting equipment generally includes equipment such as a paint booth that applies paint to objects to be painted, such as automobile bodies, and a drying oven that dries the paint on the objects that have passed through the coating booth. In such painting equipment, a painting booth air conditioner supplies air whose temperature and humidity have been adjusted into the painting booth to perform painting. Paint booth air conditioners are made up of equipment such as a heating device, a cooling device, a humidifier (washer), and a blower fan. By operating these devices in combination, the conditioned air reaches the target temperature. The humidity is controlled to be the same (for example, see Patent Documents 1 and 2). Furthermore, PID control is conventionally used as control in this case.
 ところで、自動車の塗装ブースにおけるブース用空調機は、製品の塗装品質を維持するため、シビアな温湿度制御を必要とする。そして近年では、シビアな温湿度制御を実現するための新たな手段として、未来の反応を予測しながら制御を行うモデル予測制御(MPC)を採用したものが提案されている。ここで、モデル予測制御は、空調装置のダイナミクスを適切に捉え、モデル化した予測モデルを使用するといった制御方法である。それゆえ、モデル予測制御によれば、従来の制御であるPID制御よりも高い制御性能が実現され、安定した制御結果が得やすくなると考えられている。 By the way, booth air conditioners in automobile painting booths require strict temperature and humidity control in order to maintain the quality of the product's coating. In recent years, model predictive control (MPC), which performs control while predicting future reactions, has been proposed as a new means for realizing severe temperature and humidity control. Here, model predictive control is a control method that uses a predictive model that appropriately captures the dynamics of an air conditioner. Therefore, it is believed that model predictive control achieves higher control performance than PID control, which is conventional control, and makes it easier to obtain stable control results.
特許3993358号公報Patent No. 3993358 特開2010-119901号公報Japanese Patent Application Publication No. 2010-119901
 しかしながら、モデル予測制御は、想定外の外乱や経年による変化の影響によって、予測モデルと実際の反応との間で誤差が生じることがある。このようにモデル化誤差が生じた場合、PID制御に比べて制御結果が不安定になり、シビアな温湿度制御を維持できなくなる。それゆえ、エネルギーの消費量が増えるといった事態になり、空調に要するエネルギー消費量の低減が達成できなくなる。 However, in model predictive control, errors may occur between the predictive model and the actual response due to unexpected disturbances or changes over time. When a modeling error occurs in this way, the control result becomes unstable compared to PID control, and severe temperature and humidity control cannot be maintained. Therefore, the amount of energy consumed increases, making it impossible to reduce the amount of energy consumed for air conditioning.
 本発明は上記の課題に鑑みてなされたものであり、その目的は、シビアな温湿度制御を維持することで、空調に要するエネルギー消費量を確実に低減することができる空調制御装置及びそのためのプログラムを提供することにある。 The present invention has been made in view of the above problems, and its purpose is to provide an air conditioning control device and an air conditioning control device that can reliably reduce energy consumption required for air conditioning by maintaining strict temperature and humidity control. The goal is to provide programs.
 上記課題を解決するために、手段1に記載の発明は、取り込んだ外気の温湿度を複数種の空調用機器を用いて調整する空調装置における前記空調用機器の操作量を制御する空調制御装置であって、PID制御により前記空調用機器の操作量を制御する第1空調制御部と、予測モデルに基づいたモデル予測制御により前記空調用機器の操作量を制御する第2空調制御部と、前記PID制御により空調空気を目標点まで到達させるのに要するエネルギーと、前記モデル予測制御により前記空調空気を目標点まで到達させるのに要するエネルギーとを算出して比較する算出比較部と、前記第1空調制御部及び前記第2空調制御部のうち、前記空調空気を目標点まで到達させるのに要するエネルギーが少ないほうの空調制御部に自動的に切り換えて制御を行わせる制御切換部とを備えたことを特徴とする空調制御装置をその要旨とする。 In order to solve the above problem, the invention described in Means 1 provides an air conditioning control device that controls the amount of operation of the air conditioning equipment in an air conditioning system that adjusts the temperature and humidity of the outside air taken in using a plurality of types of air conditioning equipment. a first air conditioning control section that controls the operation amount of the air conditioning equipment through PID control; a second air conditioning control section that controls the operation amount of the air conditioning equipment through model predictive control based on a predictive model; a calculation comparison unit that calculates and compares the energy required for the conditioned air to reach the target point by the PID control and the energy required for the conditioned air to reach the target point by the model predictive control; A control switching unit that automatically switches to the air conditioning control unit that requires less energy to make the conditioned air reach the target point among the first air conditioning control unit and the second air conditioning control unit to perform control. The gist of this invention is an air conditioning control device characterized by:
 上記課題を解決するために、手段2に記載の発明は、取り込んだ外気の温湿度を複数種の空調用機器を用いて調整する空調装置における前記空調用機器の操作量を制御する空調制御装置であって、PID制御により前記空調用機器の操作量を制御する第1空調制御部と、予測モデルに基づいたモデル予測制御により前記空調用機器の操作量を制御する第2空調制御部と、前記PID制御により空調空気を目標点まで到達させるときの目標値に対する偏差と、前記モデル予測制御により前記空調空気を目標点まで到達させるときの目標値に対する偏差とを算出して比較する算出比較部と、前記第1空調制御部及び前記第2空調制御部のうち、前記空調空気を目標点まで到達させるときの目標値に対する偏差が小さいほうの空調制御部に自動的に切り換えて制御を行わせる制御切換部とを備えたことを特徴とする空調制御装置をその要旨とする。 In order to solve the above problem, the invention described in Means 2 provides an air conditioning control device that controls the operation amount of the air conditioning equipment in an air conditioning system that adjusts the temperature and humidity of the outside air taken in using a plurality of types of air conditioning equipment. a first air conditioning control section that controls the operation amount of the air conditioning equipment through PID control; a second air conditioning control section that controls the operation amount of the air conditioning equipment through model predictive control based on a predictive model; a calculation comparison unit that calculates and compares a deviation from a target value when the conditioned air reaches the target point by the PID control and a deviation from the target value when the conditioned air reaches the target point by the model predictive control; Then, between the first air conditioning control unit and the second air conditioning control unit, the air conditioning control unit that has a smaller deviation from the target value when the conditioned air reaches the target point is automatically switched to perform control. The gist of the invention is an air conditioning control device characterized by comprising a control switching section.
 従って、手段1、2に記載の発明によると、PID制御により制御を行う第1空調制御部、モデル予測制御により制御を行う第2空調制御部の2つを備えているため、いずれかの空調制御部を選択して空調用機器の操作量を制御することができる。算出比較部は、PID制御により空調空気を目標点まで到達させるのに要するエネルギーと、モデル予測制御により空調空気を目標点まで到達させるのに要するエネルギーとを算出して比較する。あるいは算出比較部は、PID制御により空調空気を目標点まで到達させるときの目標値に対する偏差と、モデル予測制御により空調空気を目標点まで到達させるときの目標値に対する偏差とを算出して比較する。そして制御切換部は、上記エネルギーの比較結果に基づいて、エネルギー消費量が少なくて済むほうの空調制御部に自動的に切り換えて制御を行わせる。あるいは制御切換部は、上記偏差の比較結果に基づいて、目標値に対する偏差が小さいほうの空調制御部(換言すると制御の正確性が高いほうの空調制御部)に自動的に切り換えて制御を行わせる。例えば、モデル予測制御の実行中にモデル化誤差が生じた場合、制御結果がPID制御に比べて不安定になり、制御の正確性が低下することで、空調に要するエネルギー消費量が増加することが想定される。この場合には、制御切換部が第2空調制御部から第1空調制御部に自動的に切り換えてPID制御を実行させる。従って、モデル化誤差の影響を受けることがなく、シビアな温湿度制御が維持されることから、空調に要するエネルギー消費量を確実に低減することができる。 Therefore, according to the invention described in Means 1 and 2, since the first air conditioning control section performs control using PID control and the second air conditioning control section performs control using model predictive control, either of the air conditioning control sections is provided. The amount of operation of the air conditioning equipment can be controlled by selecting the control unit. The calculation comparison unit calculates and compares the energy required for the conditioned air to reach the target point using the PID control and the energy required for the conditioned air to reach the target point using the model predictive control. Alternatively, the calculation comparison unit calculates and compares the deviation from the target value when the conditioned air reaches the target point by PID control and the deviation from the target value when the conditioned air reaches the target point by model predictive control. . The control switching section automatically switches to the air conditioning control section that consumes less energy based on the energy comparison result to perform control. Alternatively, the control switching unit automatically switches to the air conditioning control unit with the smaller deviation from the target value (in other words, the air conditioning control unit with higher control accuracy) based on the comparison result of the deviations above, and performs control. let For example, if a modeling error occurs during the execution of model predictive control, the control results will become unstable compared to PID control, the accuracy of control will decrease, and the energy consumption required for air conditioning will increase. is assumed. In this case, the control switching section automatically switches from the second air conditioning control section to the first air conditioning control section to execute PID control. Therefore, strict temperature and humidity control is maintained without being influenced by modeling errors, and the energy consumption required for air conditioning can be reliably reduced.
 手段3に記載の発明は、手段1または2において、前記第1空調制御部が前記PID制御を行っている最中に、前記予測モデルの追加学習のための学習データを収集する学習データ収集部をさらに備えることをその要旨とする。 In the invention according to means 3, in means 1 or 2, a learning data collection unit collects learning data for additional learning of the prediction model while the first air conditioning control unit is performing the PID control. The gist of this is to further provide the following.
 従って、手段3に記載の発明によると、モデル化誤差の発生により第2空調制御部がモデル予測制御を実行できなくても、第1空調制御部がPID制御を行うとともに、その最中に学習データ収集部が学習データを収集する。このため、シビアな温湿度制御を中断させずに継続して実行することができる。また、追加学習のための学習データを効率よく収集することができる。 Therefore, according to the invention described in Means 3, even if the second air conditioning control section cannot execute model predictive control due to the occurrence of modeling errors, the first air conditioning control section performs PID control and learns during the PID control. A data collection unit collects learning data. Therefore, severe temperature and humidity control can be continuously performed without interruption. Furthermore, learning data for additional learning can be efficiently collected.
 手段4に記載の発明は、手段3において、前記第1空調制御部が前記PID制御を行っている最中に、前記学習データ収集部が収集した前記学習データに基づいて前記予測モデルを新たに作成する機械学習部をさらに備えることをその要旨とする。 In the invention described in Means 4, in Means 3, while the first air conditioning control unit is performing the PID control, the prediction model is newly created based on the learning data collected by the learning data collection unit. The gist is to further include a machine learning section to be created.
 従って、手段4に記載の発明によると、第1空調制御部がPID制御を行っている最中に、機械学習部がモデル化誤差を解消した予測モデルを新たに作成する。よって、古い予測モデルを最新の予測モデルに置き換える更新作業に備えておくことができる。 Therefore, according to the invention described in means 4, while the first air conditioning control section is performing PID control, the machine learning section newly creates a prediction model in which modeling errors are eliminated. Therefore, it is possible to prepare for an update work to replace an old prediction model with the latest prediction model.
 手段5に記載の発明は、手段1または2において、前記第2空調制御部が前記モデル予測制御を行っている最中に、制御ステップごとに制御結果を前記学習データとして逐次的に与えることで、前記予測モデルの誤差を随時改善する逐次学習部をさらに備えることをその要旨とする。 The invention described in means 5 is, in means 1 or 2, while the second air conditioning control section is performing the model predictive control, the control result is sequentially given as the learning data for each control step. The gist of the present invention is to further include a sequential learning unit that improves the error of the prediction model as needed.
 従って、手段5に記載の発明によると、第2空調制御部がモデル予測制御を行っている最中に、逐次学習部が予測モデルの誤差を随時改善する追加学習のための学習データを収集する。このため、第2空調制御部によるシビアな温湿度制御を継続して実行しやすくなる。また、追加学習のための学習データを効率よく収集することができる。 Therefore, according to the invention described in means 5, while the second air conditioning control section is performing model predictive control, the sequential learning section collects learning data for additional learning to improve the error of the predictive model at any time. . Therefore, it becomes easier to continuously perform severe temperature and humidity control by the second air conditioning control section. Furthermore, learning data for additional learning can be efficiently collected.
 手段6に記載の発明は、手段4または5において、前記制御切換部は、新たな前記予測モデルが完成した段階で、古い予測モデルを最新の前記予測モデルに置き換えて更新した後、前記第1空調制御部から前記第2空調制御部に自動的に切り換えて制御を行わせることをその要旨とする。 In the invention described in means 6, in the means 4 or 5, the control switching section replaces and updates the old prediction model with the latest prediction model at the stage when the new prediction model is completed, and then updates the old prediction model with the latest prediction model. The gist thereof is to automatically switch from the air conditioning control section to the second air conditioning control section to perform control.
 従って、手段6に記載の発明によると、追加学習が終了して新たな予測モデルが完成すると、第1空調制御部から第2空調制御部に自動的に切り換えられ、モデル化誤差を解消した更新後の最新の予測モデルに基づくモデル予測制御が実行される。その結果、PID制御よりも安定度が増したモデル予測制御に復帰して、シビアな温湿度制御を中断させずに継続して実行することができる。 Therefore, according to the invention described in means 6, when the additional learning is completed and a new prediction model is completed, the first air conditioning control section is automatically switched to the second air conditioning control section, and the update is performed to eliminate modeling errors. Model predictive control based on the latest predictive model is executed. As a result, the model predictive control, which is more stable than PID control, is restored, and severe temperature and humidity control can be continuously executed without interruption.
 手段7に記載の発明は、手段1乃至6のいずれか1項において、前記空調装置は、予熱装置、加湿装置、冷却装置及び再熱装置を前記空調用機器として含む塗装ブース用空調機であることをその要旨とする。 The invention according to means 7 is an air conditioner for a paint booth in which the air conditioner includes a preheating device, a humidifying device, a cooling device, and a reheating device as the air conditioning equipment. That is the gist of it.
 手段8に記載の発明は、取り込んだ外気の温湿度を複数種の空調用機器を用いて調整する空調装置を構成し、PID制御により前記空調用機器の操作量を制御する第1空調制御部と、予測モデルに基づいたモデル予測制御により前記空調用機器の操作量を制御する第2空調制御部とを備える空調制御装置を動作させるためのプログラムであって、前記PID制御により空調空気を目標点まで到達させるのに要するエネルギーと、前記モデル予測制御により前記空調空気を目標点まで到達させるのに要するエネルギーとを算出して比較する算出比較ステップと、前記第1空調制御部及び前記第2空調制御部のうち、前記空調空気を目標点まで到達させるのに要するエネルギーが少ないほうの空調制御部に自動的に切り換えて制御を行わせる制御切換ステップとを含むことを特徴とする空調制御装置用プログラムをその要旨とする。 The invention described in Means 8 comprises an air conditioner that adjusts the temperature and humidity of the outside air taken in using a plurality of types of air conditioning equipment, and a first air conditioning control unit that controls the operation amount of the air conditioning equipment by PID control. and a second air conditioning control unit that controls the operation amount of the air conditioning equipment by model predictive control based on a predictive model, the program for operating an air conditioning control device that controls the conditioned air as a target by the PID control. a calculation comparison step of calculating and comparing the energy required for the conditioned air to reach the target point and the energy required for the conditioned air to reach the target point by the model predictive control; An air conditioning control device comprising: a control switching step of automatically switching to an air conditioning control section that requires less energy to make the conditioned air reach a target point among the air conditioning control sections to perform control. Its gist is a program for
 手段9に記載の発明は、取り込んだ外気の温湿度を複数種の空調用機器を用いて調整する空調装置を構成し、PID制御により前記空調用機器の操作量を制御する第1空調制御部と、予測モデルに基づいたモデル予測制御により前記空調用機器の操作量を制御する第2空調制御部とを備える空調制御装置を動作させるためのプログラムであって、前記PID制御により空調空気を目標点まで到達させるときの目標値に対する偏差と、前記モデル予測制御により前記空調空気を目標点まで到達させるときの目標値に対する偏差とを算出して比較する算出比較ステップと、前記第1空調制御部及び前記第2空調制御部のうち、前記空調空気を目標点まで到達させるときの目標値に対する偏差が小さいほうの空調制御部に自動的に切り換えて制御を行わせる制御切換ステップとを含むことを特徴とする空調制御装置用プログラムをその要旨とする。 The invention described in Means 9 comprises an air conditioner that adjusts the temperature and humidity of taken in outside air using a plurality of types of air conditioning equipment, and a first air conditioning control unit that controls the operation amount of the air conditioning equipment by PID control. and a second air conditioning control unit that controls the operation amount of the air conditioning equipment by model predictive control based on a predictive model, the program for operating an air conditioning control device that controls the conditioned air as a target by the PID control. a calculation comparison step of calculating and comparing a deviation from a target value when the conditioned air is brought to the target point and a deviation from the target value when the conditioned air is made to reach the target point by the model predictive control, and the first air conditioning control unit and a control switching step of automatically switching to the air conditioning control unit among the second air conditioning control units that has a smaller deviation from the target value when the conditioned air reaches the target point to perform control. The gist of this article is a program for air conditioning control equipment that features features.
 従って、手段8、9に記載の発明によると、算出比較ステップにて、PID制御により空調空気を目標点まで到達させるのに要するエネルギーと、モデル予測制御により空調空気を目標点まで到達させるのに要するエネルギーが算出比較される。あるいは、PID制御により空調空気を目標点まで到達させるときの目標値に対する偏差と、モデル予測制御により空調空気を目標点まで到達させるときの目標値に対する偏差とが算出比較される。続く制御切換ステップでは、この比較結果に基づいて、エネルギー消費量が少なくて済むほうの空調制御部に自動的に切り換えて制御を行わせる。あるいは、目標値に対する偏差が小さいほうの空調制御部(換言すると制御の正確性が高いほうの空調制御部)に自動的に切り換えて制御を行わせる。例えば、モデル予測制御の実行中にモデル化誤差が生じた場合、制御結果がPID制御に比べて不安定になり、制御の正確性が低下することで、空調に要するエネルギー消費量が増加することが想定される。この場合には、制御切換部が第2空調制御部から第1空調制御部に自動的に切り換えてPID制御を実行させる。従って、モデル化誤差の影響を受けることがなく、シビアな温湿度制御が維持されることから、空調に要するエネルギー消費量を確実に低減することができる。 Therefore, according to the invention described in Means 8 and 9, in the calculation comparison step, the energy required for the conditioned air to reach the target point by PID control and the energy required to cause the conditioned air to reach the target point by the model predictive control are calculated. The energy required is calculated and compared. Alternatively, the deviation from the target value when the conditioned air reaches the target point using PID control and the deviation from the target value when the conditioned air reaches the target point using the model predictive control are calculated and compared. In the subsequent control switching step, based on this comparison result, the air conditioning control unit that consumes less energy is automatically switched to perform control. Alternatively, the control is automatically switched to the air conditioning control unit with the smaller deviation from the target value (in other words, the air conditioning control unit with higher control accuracy). For example, if a modeling error occurs during the execution of model predictive control, the control results will become unstable compared to PID control, the accuracy of control will decrease, and the energy consumption required for air conditioning will increase. is assumed. In this case, the control switching section automatically switches from the second air conditioning control section to the first air conditioning control section to execute PID control. Therefore, strict temperature and humidity control is maintained without being influenced by modeling errors, and the energy consumption required for air conditioning can be reliably reduced.
 以上詳述したように、請求項1~9に記載の発明によると、シビアな温湿度制御を絶えず維持することで、空調に要するエネルギー消費量を確実に低減することができる空調制御装置及びそのためのプログラムを提供することができる。 As described in detail above, according to the invention according to claims 1 to 9, there is provided an air conditioning control device and an air conditioning control device capable of reliably reducing energy consumption required for air conditioning by constantly maintaining severe temperature and humidity control. program can be provided.
本発明を具体化した実施形態の空調制御装置を説明するためのブロック図。FIG. 1 is a block diagram for explaining an air conditioning control device according to an embodiment of the present invention. 実施形態の空調制御装置と塗装ブース用空調機との接続関係をより具体的に示したブロック図。FIG. 2 is a block diagram illustrating in more detail the connection relationship between the air conditioning control device and the painting booth air conditioner according to the embodiment. 実施形態の空調制御装置が行う空調制御方法を説明するためのフローチャート。1 is a flowchart for explaining an air conditioning control method performed by an air conditioning control device according to an embodiment. 実施形態の空調制御装置が行う空調制御方法におけるデータ収集方法を説明するための湿り空気線図。The psychrometric chart for explaining the data collection method in the air conditioning control method performed by the air conditioning control device of the embodiment. 別の実施形態の空調制御装置と塗装ブース用空調機とヒートポンプとの接続関係を示したブロック図。FIG. 3 is a block diagram showing a connection relationship between an air conditioning control device, a paint booth air conditioner, and a heat pump according to another embodiment.
 以下、本発明を具体化した一実施形態の空調システム11における空調制御装置を図1~図4に基づき詳細に説明する。 Hereinafter, an air conditioning control device in an air conditioning system 11 according to an embodiment of the present invention will be described in detail based on FIGS. 1 to 4.
 図1に示される本実施形態の空調システム11は、上記のとおり塗装設備用空調システム11であって、取り込んだ外気の温湿度を複数種の空調用機器を用いて調整する空調装置21と、空調用機器の操作量を制御する空調制御装置31とを含んで構成される。本実施形態における空調装置21は、複数種の空調用機器(予熱装置、加湿装置、冷却装置、再熱装置等)を含んで構成された塗装ブース用空調機21である。 As described above, the air conditioning system 11 of this embodiment shown in FIG. 1 is an air conditioning system 11 for painting equipment, and includes an air conditioning device 21 that adjusts the temperature and humidity of the outside air taken in using a plurality of types of air conditioning equipment. It is configured to include an air conditioning control device 31 that controls the operation amount of air conditioning equipment. The air conditioner 21 in this embodiment is a paint booth air conditioner 21 that includes a plurality of types of air conditioning equipment (a preheating device, a humidifying device, a cooling device, a reheating device, etc.).
 図1にて概略的に示されるように、本実施形態の空調システム11における塗装ブース用空調機21は、予熱装置22、加湿装置23、冷却装置24、再熱装置25、第1のセンサ27a、第2のセンサ27b、第3のセンサ27c等を備えている。一方、本実施形態の空調システム11における空調制御装置31は、送気目標入力部32、送気設定演算部33、第1空調制御部42、第2空調制御部43、算出比較部44、制御切換部45、学習データ収集部46、機械学習部47、システム同定出力部51等を備えている。なお、図2には各要素のより具体的な接続関係を説明するためのブロック図が示されている。 As schematically shown in FIG. 1, the paint booth air conditioner 21 in the air conditioning system 11 of this embodiment includes a preheating device 22, a humidifying device 23, a cooling device 24, a reheating device 25, and a first sensor 27a. , a second sensor 27b, a third sensor 27c, and the like. On the other hand, the air conditioning control device 31 in the air conditioning system 11 of this embodiment includes an air supply target input section 32, an air supply setting calculation section 33, a first air conditioning control section 42, a second air conditioning control section 43, a calculation comparison section 44, a control It includes a switching section 45, a learning data collection section 46, a machine learning section 47, a system identification output section 51, and the like. Note that FIG. 2 shows a block diagram for explaining more specific connection relationships of each element.
 塗装設備用空調システム11によって生成される空調空気の供給対象である塗装ブースは、一般的に、被塗物搬送ラインにおいて被塗物に塗料を塗布するためエリアに設置されている。塗装ブースは、塗装室と、塗装室の上側に設けられ塗装室にダウンフロー(上方から下方に向かう一定方向)の空気を供給するための給気室と、塗装室の下側に設けられその塗装室内の空気を排気するための排気室とを備えている。本実施形態の塗装ブースでは、塗装ブース用空調機21から排出される空調空気が給気室からダウンフローで塗装室内に供給される。 The painting booth to which the conditioned air generated by the painting equipment air conditioning system 11 is supplied is generally installed in an area for applying paint to the object to be coated in the object conveyance line. A painting booth consists of a painting room, an air supply chamber installed above the painting room to supply downflow air (in a fixed direction from above to below) to the painting room, and an air supply chamber installed below the painting room to supply downflow air (in a fixed direction from above to below) to the painting room. It is equipped with an exhaust chamber for exhausting the air inside the painting chamber. In the painting booth of this embodiment, conditioned air discharged from the painting booth air conditioner 21 is supplied into the painting room in a downflow from the air supply chamber.
 塗装ブースの塗装室では、図示しない塗装機から塗料ミストを噴射することで被塗物の塗装が行われる。このとき、塗装機からオーバースプレーされて飛散した塗料ミストは、塗装室内に作用するダウンフローの空調空気によって塗装室から排気室に排出される。排気室では、ブース循環水を使用して空気中に含まれる塗料ミストが捕捉され塗料が回収される。また、排気室から排出される空気は、送風ファンによって大気に放出される。 In the coating room of the coating booth, the object to be coated is coated by spraying paint mist from a coating machine (not shown). At this time, paint mist oversprayed and scattered from the coating machine is discharged from the painting chamber to the exhaust chamber by the downflow of conditioned air acting within the painting chamber. In the exhaust chamber, paint mist contained in the air is captured using booth circulating water and paint is recovered. Moreover, the air exhausted from the exhaust chamber is discharged into the atmosphere by a blower fan.
 図1、図2に示されるように、本実施形態における塗装ブース用空調機21(空調装置)は、複数種の空調用機器を含んで構成されている。この塗装ブース用空調機21は、装置外部から取り入れた空気を所定温度(例えば23℃前後)及び所定湿度(例えば70%RH前後)に調節して塗装ブースへ送気するための装置である。具体的に説明すると、この塗装ブース用空調機21は、プレヒータ22(予熱装置)、ワッシャ23(加湿装置)、クーリングコイル24(冷却装置)、レヒータ(再熱装置)25及び送風ファン26を備えている。 As shown in FIGS. 1 and 2, the paint booth air conditioner 21 (air conditioner) in this embodiment is configured to include multiple types of air conditioning equipment. The painting booth air conditioner 21 is a device that adjusts air taken in from outside the apparatus to a predetermined temperature (for example, around 23° C.) and a predetermined humidity (for example, around 70% RH), and then sends the air to the painting booth. Specifically, this paint booth air conditioner 21 includes a preheater 22 (preheating device), a washer 23 (humidifying device), a cooling coil 24 (cooling device), a reheater (reheating device) 25, and a blower fan 26. ing.
 プレヒータ22は、取り込んだ空気の温度を調整する調温手段の一種であって、空気を加熱してあらかじめ温度を上げるための装置である。ワッシャ23は、取り込んだ空気の湿度を調整する調湿手段の一種であって、プレヒータ22を経た空気に対する水の噴射により空気の湿度を上げるための装置である。クーリングコイル24は、取り込んだ空気の温度を調整する調温手段の一種であって、ワッシャ23を経た空気を冷却して温度を下げるための冷却装置である。レヒータ25は、取り込んだ空気の温度を調整する調温手段の一種であって、クーリングコイル24を経た空気を再び加熱して温度を上げる再熱装置である。送風ファン26は、調温及び調湿された空気(即ち空調空気)を塗装ブースに圧送するための空気圧送装置である。 The preheater 22 is a type of temperature control means that adjusts the temperature of the air taken in, and is a device that heats the air to raise the temperature in advance. The washer 23 is a type of humidity control means that adjusts the humidity of the air taken in, and is a device that increases the humidity of the air by spraying water onto the air that has passed through the preheater 22. The cooling coil 24 is a type of temperature control means that adjusts the temperature of the air taken in, and is a cooling device that cools the air that has passed through the washer 23 to lower the temperature. The reheater 25 is a type of temperature control means that adjusts the temperature of the air taken in, and is a reheating device that heats the air that has passed through the cooling coil 24 again to raise the temperature. The blowing fan 26 is an air pumping device for pumping temperature- and humidity-controlled air (i.e., conditioned air) to the painting booth.
 塗装ブース用空調機21における複数の箇所には、センシング手段が設けられている。具体的にいうと、この塗装ブース用空調機21は、温湿度測定用の第1のセンサ27a、温湿度測定用の第2のセンサ27b、温度測定用の第3のセンサ27cを備えている。第1のセンサ27aは、空調前の外気の温湿度を測定するためのものであって、塗装ブース用空調機21における外気の取り込み口付近に配置されている。第2のセンサ27bは、空調後の外気の温湿度を測定するためのものであって、空調空気が送り出される送風ファン26の出口側に配置されている。第3のセンサ27cは、プレヒータ22を経た外気の温度を測定するためのものであって、ワッシャ23の上流側に配置されている。 Sensing means are provided at multiple locations in the paint booth air conditioner 21. Specifically, this paint booth air conditioner 21 includes a first sensor 27a for measuring temperature and humidity, a second sensor 27b for measuring temperature and humidity, and a third sensor 27c for measuring temperature. . The first sensor 27a is for measuring the temperature and humidity of the outside air before air conditioning, and is arranged near the outside air intake in the paint booth air conditioner 21. The second sensor 27b is for measuring the temperature and humidity of the outside air after air conditioning, and is arranged on the exit side of the blower fan 26 through which the conditioned air is sent out. The third sensor 27c is for measuring the temperature of the outside air that has passed through the preheater 22, and is arranged on the upstream side of the washer 23.
 図1、図2に示されるように、本実施形態における塗装設備用の空調制御装置31は、空調用機器の操作量を制御するための装置であって、CPUや記憶手段(ROM、RAM)等からなる周知のコンピュータ1台あるいは複数台により構成されている。 As shown in FIGS. 1 and 2, the air conditioning control device 31 for painting equipment in this embodiment is a device for controlling the operation amount of air conditioning equipment, and includes a CPU and storage means (ROM, RAM). It is composed of one or more well-known computers such as the following.
 空調制御装置31における記憶手段内には、温湿度制御のためのプログラムが格納されており、空調制御装置31内のCPUは当該プログラムを記憶手段から読み出して順次実行するようになっている。記憶手段内には、このプログラムのほかに、空気の状態値を座標に表した湿り空気線図に関するデータ(湿り空気線図テーブル)が格納されている。ちなみに、エンタルピーは湿り空気線図の右上に行くほど高くなり、逆に左下にいくほど低くなる。 A program for temperature and humidity control is stored in the storage means of the air conditioning control device 31, and the CPU in the air conditioning control device 31 reads the program from the storage means and sequentially executes the program. In addition to this program, the storage means stores data regarding a psychrometric diagram (humid psychrometric table) in which air condition values are expressed as coordinates. By the way, enthalpy increases as you move toward the top right of the psychrometric diagram, and conversely decreases as you move toward the bottom left.
 図1、図2に示されるように、空調制御装置31における第1空調制御部42は、PID制御により空調用機器の操作量を制御する。PID制御(Proportional-Integral-Differential Control)とは、フィードバック制御の一種であって、入力値の制御を出力値と目標値との偏差、その積分及び微分の3要素によって行う制御のことを指す。本実施形態の第1空調制御部42はPIDコントローラ42であって、制御対象の数と同数(具体的には4つ)のPIDループを有している。PIDコントローラ42と、各空調用機器(即ち、プレヒータ22、ワッシャ23、クーリングコイル24、レヒータ25)とは、制御部切換スイッチ48、加算器49及び図示しないドライバ回路を介してそれぞれ電気的に接続されている。また、PIDコントローラ42と上記各センサ27a~27cとは、電気的に接続されている。従って、制御部切換スイッチ48によりPIDコントローラ42と各空調用機器との間が接続されている場合には、PIDコントローラ42から各制御対象に対して駆動制御信号が出力され、これによって各空調用機器の操作量がPID制御される。その結果、外気温湿度が目標温湿度に到達するように調整されるようになっている。また、上記各センサ27a~27cからは温湿度の測定結果が入力される。そのため、PIDコントローラ42は、その測定結果に基づいてフィードバック制御を行うことができるようになっている。 As shown in FIGS. 1 and 2, the first air conditioning control section 42 in the air conditioning control device 31 controls the operation amount of the air conditioning equipment by PID control. PID control (Proportional-Integral-Differential Control) is a type of feedback control, and refers to control in which input values are controlled using three elements: the deviation between the output value and the target value, its integral, and its derivative. The first air conditioning control unit 42 of this embodiment is a PID controller 42, and has the same number (specifically, four) of PID loops as the number of objects to be controlled. The PID controller 42 and each air conditioning device (namely, the preheater 22, the washer 23, the cooling coil 24, and the reheater 25) are electrically connected via a control section changeover switch 48, an adder 49, and a driver circuit (not shown). has been done. Furthermore, the PID controller 42 and each of the sensors 27a to 27c are electrically connected. Therefore, when the PID controller 42 and each air conditioning device are connected by the control section changeover switch 48, the PID controller 42 outputs a drive control signal to each control target, and this causes each air conditioning device to The amount of operation of the device is controlled by PID. As a result, the outside temperature and humidity are adjusted so as to reach the target temperature and humidity. Further, measurement results of temperature and humidity are inputted from each of the sensors 27a to 27c. Therefore, the PID controller 42 is capable of performing feedback control based on the measurement results.
 図1、図2に示されるように、空調制御装置31における第2空調制御部43は、予測モデル53に基づいたモデル予測制御(MPC;Model Predictive Control)により空調用機器の操作量を制御する。本実施形態の第2空調制御部43はMPCコントローラ43であって、MPCコントローラ43と、各空調用機器(即ち、プレヒータ22、ワッシャ23、クーリングコイル24、レヒータ25)とは、制御部切換スイッチ48、加算器49及び図示しないドライバ回路を介してそれぞれ電気的に接続されている。また、MPCコントローラ43と上記各センサ27a~27cとは、電気的に接続されている。従って、制御部切換スイッチ48によりMPCコントローラ43と各空調用機器との間が接続されている場合には、MPCコントローラ43から各制御対象に対して駆動制御信号が出力され、これによって各空調用機器の操作量がMPCにより制御される。MPCコントローラ43は、最適化器を含んで構成されており、その最適化器が予測モデルに基づいて最適な温湿度制御を算出する。その結果、外気温湿度が目標温湿度に到達するように調整されるようになっている。また、上記各センサ27a~27cから温湿度の測定結果が入力される。そのため、MPCコントローラ43は、その測定結果に基づいてフィードバック制御を行うことができるようになっている。 As shown in FIGS. 1 and 2, the second air conditioning control unit 43 in the air conditioning control device 31 controls the operation amount of air conditioning equipment by model predictive control (MPC) based on a predictive model 53. . The second air conditioning control unit 43 of this embodiment is an MPC controller 43, and the MPC controller 43 and each air conditioning device (i.e., preheater 22, washer 23, cooling coil 24, reheater 25) are a control unit changeover switch. 48, an adder 49, and a driver circuit (not shown). Further, the MPC controller 43 and each of the sensors 27a to 27c are electrically connected. Therefore, when the MPC controller 43 and each air conditioning device are connected by the control unit changeover switch 48, the MPC controller 43 outputs a drive control signal to each control target, and this causes each air conditioning device to The amount of operation of the device is controlled by the MPC. The MPC controller 43 includes an optimizer, and the optimizer calculates optimal temperature and humidity control based on a prediction model. As a result, the outside temperature and humidity are adjusted so as to reach the target temperature and humidity. Further, measurement results of temperature and humidity are inputted from each of the sensors 27a to 27c. Therefore, the MPC controller 43 is capable of performing feedback control based on the measurement results.
 送気目標入力部32は、送気設定演算部33を介して、PIDコントローラ42及びMPCコントローラ43に電気的に接続されている。送気目標入力部32は、塗装ブースに送気するための空調空気の温湿度の目標値を入力するためのものであって、キーボードやタッチパネル等のような手段を含んで構成されている。送気目標入力部32の出力信号は、送気設定演算部33に入力される。 The air supply target input section 32 is electrically connected to the PID controller 42 and the MPC controller 43 via the air supply setting calculation section 33. The air supply target input unit 32 is for inputting target values of temperature and humidity of conditioned air to be supplied to the painting booth, and is configured to include means such as a keyboard and a touch panel. The output signal of the air supply target input section 32 is input to the air supply setting calculation section 33.
 送気設定演算部33と上記各センサ27a~27cとは電気的に接続されている。従って、送気設定演算部33には、各センサ27a~27cから出力される温度や湿度の測定値が入力される。送気設定演算部33は、入力した温湿度の目標値と測定値とに基づいて演算を行い、目標温湿度に到達させるのに最小となるエンタルピーを算出する。そして送気設定演算部33は、その算出結果に基づいて各空調用機器の操作量の目標値を設定し、その目標値をPIDコントローラ42及びMPCコントローラ43に出力する。 The air supply setting calculating section 33 and each of the above-mentioned sensors 27a to 27c are electrically connected. Therefore, the measured values of temperature and humidity output from each of the sensors 27a to 27c are input to the air supply setting calculation section 33. The air supply setting calculation unit 33 performs calculations based on the input target temperature and humidity values and measured values, and calculates the minimum enthalpy for reaching the target temperature and humidity. Then, the air supply setting calculation unit 33 sets a target value for the operation amount of each air conditioning device based on the calculation result, and outputs the target value to the PID controller 42 and the MPC controller 43.
 算出比較部44は、PID制御により空調空気を目標点まで到達させるのに要するエネルギーと、MPCにより空調空気を目標点まで到達させるのに要するエネルギーとを算出して比較する。この場合、PID制御により空調空気を目標点まで到達させるのに要するエネルギーは、例えばPIDコントローラ42が決定した各空調用機器の操作量(制御量)に基づいて算出される。MPCにより空調空気を目標点まで到達させるのに要するエネルギーは、例えばMPCコントローラ43が決定した各空調用機器の操作量(制御量)に基づいて算出される。なお、算出比較部44は、PID制御の安定性とMPCの安定性とを比較すると把握することもできる。 The calculation comparison unit 44 calculates and compares the energy required for the conditioned air to reach the target point by PID control and the energy required for the conditioned air to reach the target point by MPC. In this case, the energy required for the conditioned air to reach the target point by PID control is calculated, for example, based on the operation amount (control amount) of each air conditioning device determined by the PID controller 42. The energy required for the MPC to cause the conditioned air to reach the target point is calculated, for example, based on the operation amount (control amount) of each air conditioning device determined by the MPC controller 43. Note that the calculation comparison unit 44 can also understand by comparing the stability of PID control and the stability of MPC.
 制御切換部45は、PIDコントローラ42及びMPCコントローラ43のうち、空調空気を目標点まで到達させるのに要するエネルギーが少ないほうの空調制御部に自動的に切り換えて制御を行わせる。つまり、PIDコントローラ42及びMPCコントローラ43のうち、より安定した温湿度制御を行うことができるほうの空調制御部に自動的に切り換えて制御を行わせる。具体的には、制御切換部45は算出比較部44と電気的に接続されていて、算出比較部44から出力された比較結果に基づいて動作する。この制御切換部45は制御部切換スイッチ48に電気的に接続されている。制御切換部45は、制御部切換スイッチ48を切換制御することにより、PIDコントローラ42及びMPCコントローラ43のうち一方と各空調用機器側との間を接続させる。なお、この制御切換部45は、MPC実行時にモデル化誤差の発生及び拡大という好ましくない挙動を検知したときに、相対的に安定なPID制御に自動的に切り換えるフェイルセーフ部であると把握してもよい。 The control switching unit 45 automatically switches to the air conditioning control unit that requires less energy to make the conditioned air reach the target point between the PID controller 42 and the MPC controller 43 to perform control. That is, between the PID controller 42 and the MPC controller 43, the air conditioning control unit that can perform more stable temperature and humidity control is automatically switched to perform control. Specifically, the control switching section 45 is electrically connected to the calculation comparison section 44 and operates based on the comparison result output from the calculation comparison section 44 . This control switching section 45 is electrically connected to a control section changeover switch 48. The control switching unit 45 connects one of the PID controller 42 and the MPC controller 43 to each air conditioning device by controlling the control unit changeover switch 48. It should be noted that this control switching unit 45 is understood to be a fail-safe unit that automatically switches to relatively stable PID control when undesirable behavior such as generation and expansion of modeling errors is detected during MPC execution. Good too.
 システム同定出力部51は、システム同定のために用いるステップ信号をランダムに出力する部分である。加算器49において、システム同定出力部51からの出力信号は、PIDコントローラ42からの操作量指令信号、MPCコントローラ43からの操作量指令信号に加算されるようになっている。なお、システム同定出力部51は、後述する空調用機器のランダム加振を行う際に作動する。 The system identification output unit 51 is a part that randomly outputs step signals used for system identification. In the adder 49, the output signal from the system identification output section 51 is added to the manipulated variable command signal from the PID controller 42 and the manipulated variable command signal from the MPC controller 43. Note that the system identification output unit 51 operates when performing random vibration of air conditioning equipment, which will be described later.
 さらにこの空調制御装置31は、塗装ブース用空調機21のMPCに使用される予測モデルの学習データを収集する学習データ収集部46を備えている。学習データ収集部46は、PIDコントローラ42がPID制御を行っている最中に、予測モデルの追加学習のための学習データを収集する。具体的にいうと、学習データ収集部46は、図2に示すように測定値(PV)、制御量(あるいは操作量、MV)、実績を学習データとして収集し、実績データベースを作成する。なお、学習データ収集のためのプログラムは、空調制御装置31における記憶手段内に格納されている。空調制御装置31内のCPUは、必要に応じて当該プログラムを記憶手段から読み出し、順次実行するようになっている。 Further, this air conditioning control device 31 includes a learning data collection unit 46 that collects learning data for a prediction model used for MPC of the paint booth air conditioner 21. The learning data collection unit 46 collects learning data for additional learning of the prediction model while the PID controller 42 is performing PID control. Specifically, the learning data collection unit 46 collects measured values (PV), control amounts (or manipulated variables, MV), and results as learning data, as shown in FIG. 2, and creates a results database. Note that the program for collecting learning data is stored in the storage means in the air conditioning control device 31. The CPU in the air conditioning control device 31 reads out the programs from the storage means and executes them sequentially as necessary.
 学習データ収集部46は、領域設定、学習開始点設定、状態点移動、データ収集の各ステップによりデータを収集する。 The learning data collection unit 46 collects data through each step of region setting, learning start point setting, state point movement, and data collection.
 図4に示されるように、領域設定ステップでは、湿り空気線図上にて予測モデルを作成する領域R1、即ち温湿度制御の対象としたい領域(制御対象領域R1)の設定を行う。当該制御対象領域R1は、高精度な温湿度制御を実現するために高品質の予測モデルが欲しい領域、と言い換えることもできる。 As shown in FIG. 4, in the region setting step, a region R1 for creating a prediction model on the psychrometric diagram, that is, a region to be subjected to temperature and humidity control (control target region R1) is set. The control target region R1 can also be rephrased as a region in which a high-quality predictive model is desired in order to realize highly accurate temperature and humidity control.
 学習開始点設定ステップでは、設定された制御対象領域R1内に、空調用機器のランダム加振を行うときの起点となる複数の学習開始点S1~S9の設定を行う。この場合、具体的には学習開始点S1~S9の数や位置、それらの移動順序についても設定する。本実施形態では9つの点を学習開始点S1~S9として設定している(図4参照)。なお、学習開始点S1~S9の数は、好ましくは10点以上がよい。学習開始点S1~S9の位置も限定されず任意に設定され、例えば湿り空気線図上にて互いに離間した位置に設定される。 In the learning start point setting step, a plurality of learning start points S1 to S9 are set within the set control target region R1, which serve as starting points when performing random vibration of the air conditioning equipment. In this case, specifically, the number and positions of learning starting points S1 to S9 and the order in which they are moved are also set. In this embodiment, nine points are set as learning starting points S1 to S9 (see FIG. 4). Note that the number of learning starting points S1 to S9 is preferably 10 or more. The positions of the learning starting points S1 to S9 are also not limited and may be set arbitrarily, for example, at positions spaced apart from each other on the psychrometric diagram.
 状態点移動ステップでは、空調空気状態点K1を、PID制御によって空調用機器を操作して温湿度制御を行い、最初の学習開始点S1まで移動させる。 In the state point moving step, the conditioned air state point K1 is moved to the first learning start point S1 by operating the air conditioning equipment under PID control to perform temperature and humidity control.
 データ収集ステップでは、空調空気状態点K1を制御対象領域R1内における複数の学習開始点S1~S9間で移動させながら、空調用機器のランダム加振を行うことにより、学習データを収集する。具体的には、学習開始点S1~S9から変位した空調空気状態点K1をPID制御により当該学習開始点S1~S9まで戻す制御を行うようになっている(図4参照)。また、空調空気状態点K1を現在の学習開始点から次の学習開始点まで移動させる際にも、PID制御を行うようになっている。 In the data collection step, learning data is collected by randomly exciting the air conditioning equipment while moving the conditioned air state point K1 between a plurality of learning start points S1 to S9 within the control target region R1. Specifically, control is performed to return the conditioned air state point K1 displaced from the learning starting points S1 to S9 to the learning starting points S1 to S9 by PID control (see FIG. 4). PID control is also performed when moving the conditioned air state point K1 from the current learning start point to the next learning start point.
 機械学習部47は、PIDコントローラ42がPID制御を行っている最中に、学習データ収集部46が収集した学習データに基づいて予測モデル52を新たに作成する。なお、新たに作成された最新の予測モデル52は、例えば機械学習部47内の記憶領域に一時的に格納される。そして制御切換部45は、新たな予測モデル52が完成した段階で、古い予測モデル53を最新の予測モデル52に置き換えて更新する。その後、制御切換部45は、PIDコントローラ42からMPCコントローラ43に自動的に切り換えてMPCを実行させる。 The machine learning unit 47 newly creates a prediction model 52 based on the learning data collected by the learning data collection unit 46 while the PID controller 42 is performing PID control. Note that the newly created latest prediction model 52 is temporarily stored in a storage area within the machine learning unit 47, for example. Then, when the new prediction model 52 is completed, the control switching unit 45 updates the old prediction model 53 by replacing it with the latest prediction model 52. Thereafter, the control switching unit 45 automatically switches from the PID controller 42 to the MPC controller 43 to execute MPC.
 次に、図3のフローチャートに基づき、図4の湿り空気線図を参照しながら、本実施形態の温湿度制御方法の手順について説明する。なお、このフローチャートに示す手順は一例であり、これとは別の手順により本実施形態の温湿度制御方法を実行しても勿論構わない。 Next, the procedure of the temperature and humidity control method of this embodiment will be explained based on the flowchart of FIG. 3 and with reference to the psychrometric diagram of FIG. 4. Note that the procedure shown in this flowchart is just an example, and it goes without saying that the temperature and humidity control method of this embodiment may be executed using a different procedure.
 本実施形態の温湿度制御方法では、まずステップS110が実行される。即ち、制御切換部45が制御部切換スイッチ48を駆動し、MPCコントローラ43と各空調用機器との間を接続する。すると、MPCコントローラ43から各制御対象に対して駆動制御信号が出力され、これによって各空調用機器の操作量がMPCにて制御される。その結果、MPCに基づく温湿度制御によって、外気温湿度が目標温湿度に到達するように調整される。 In the temperature and humidity control method of this embodiment, step S110 is first executed. That is, the control switching unit 45 drives the control unit changeover switch 48 to connect the MPC controller 43 and each air conditioning device. Then, a drive control signal is output from the MPC controller 43 to each controlled object, and thereby the operation amount of each air conditioning device is controlled by the MPC. As a result, the temperature and humidity control based on MPC adjusts the outside temperature and humidity to reach the target temperature and humidity.
 次のステップS120では、算出比較部44がPID制御により空調空気を目標点まで到達させるのに要するエネルギーE1と、MPCにより空調空気を目標点まで到達させるのに要するエネルギーE2とを算出する。次のステップS130では、算出した上記エネルギーE1、E2同士を比較する。具体的には、PID制御により空調空気を目標点まで到達させるのに要するエネルギーE1が、MPCにより空調空気を目標点まで到達させるのに要するエネルギーE2より小さいか否かについて判定する。ステップS130での判定結果がNOの場合、つまりE1≧E2である場合には、モデル化誤差がない予測モデルに基づいてMPCが行われていると考えられる。よって、現時点でのMPCによる制御結果が、PID制御による制御結果に比べて安定した状態となっている。この場合には、ステップS110に戻って引き続きMPCに基づく温湿度制御を実行する。 In the next step S120, the calculation comparison unit 44 calculates the energy E1 required for the conditioned air to reach the target point by PID control and the energy E2 required for the conditioned air to reach the target point by MPC. In the next step S130, the calculated energies E1 and E2 are compared. Specifically, it is determined whether the energy E1 required for the conditioned air to reach the target point using PID control is smaller than the energy E2 required for the conditioned air to reach the target point using the MPC. If the determination result in step S130 is NO, that is, if E1≧E2, it is considered that MPC is being performed based on a prediction model with no modeling error. Therefore, the current control result by MPC is in a more stable state than the control result by PID control. In this case, the process returns to step S110 and continues to perform temperature and humidity control based on MPC.
 ステップS130での判定結果がYESの場合、つまりE1<E2である場合には、モデル化誤差が生じて劣化した予測モデルに基づいてMPCが行われていると考えられる。よって、現時点でのMPCによる制御結果が、PID制御による制御結果に比べて不安定になった状態となっている。この場合には、ステップS140に移行し、MPCからPID制御に自動的に切り換えて温湿度制御を実行する。即ち、制御切換部45が制御部切換スイッチ48を駆動し、PIDコントローラ43と各空調用機器との間の接続に切り換える。 If the determination result in step S130 is YES, that is, if E1<E2, it is considered that MPC is being performed based on a degraded prediction model due to modeling errors. Therefore, the current control result by MPC is in a state that is unstable compared to the control result by PID control. In this case, the process moves to step S140, and automatically switches from MPC to PID control to execute temperature and humidity control. That is, the control switching unit 45 drives the control unit changeover switch 48 to switch the connection between the PID controller 43 and each air conditioning device.
 次のステップS150では、学習データ収集部46が作動して、MPC制御に使用される予測モデルの学習データをPID制御の最中に収集する(図4参照)。具体的には、まず湿り空気線図上にて予測モデルを作成する制御対象領域R1を設定する。次に、設定された制御対象領域R1内に、空調用機器のランダム加振を行うときの起点となる複数の学習開始点S1~S9及びそれらの移動順序を設定する。次に、PID制御によって空調空気状態点K1を最初の学習開始点S1まで移動させる。次に、システム同定出力部51が作動し、学習開始点S1を起点としてランダム加振を行う。すると、学習開始点S1から変位した空調空気状態点K1をPID制御により当該学習開始点S1まで戻す制御が実行される。最初の学習開始点S1でのデータ収集が終了したら、空調空気状態点K1を現在の学習開始点S1から次の学習開始点S2まで移動させ、同様のランダム加振を行う。その後、このようなランダム加振を学習開始点S3~S9まで順に移動してそれぞれ実行する。 In the next step S150, the learning data collection unit 46 operates to collect learning data for the prediction model used for MPC control during PID control (see FIG. 4). Specifically, first, a control target region R1 for creating a prediction model is set on the psychrometric diagram. Next, within the set control target region R1, a plurality of learning starting points S1 to S9, which are the starting points when performing random vibration of the air conditioning equipment, and their movement order are set. Next, the conditioned air state point K1 is moved to the first learning start point S1 by PID control. Next, the system identification output unit 51 is activated to perform random vibration starting from the learning start point S1. Then, control is executed to return the conditioned air state point K1 displaced from the learning starting point S1 to the learning starting point S1 by PID control. When data collection at the first learning starting point S1 is completed, the conditioned air state point K1 is moved from the current learning starting point S1 to the next learning starting point S2, and similar random vibration is performed. After that, such random vibration is sequentially moved to the learning starting points S3 to S9 and executed respectively.
 次のステップS160では、機械学習部47が作動して学習データ収集部46が収集した学習データを取り込み、その学習データに基づいて最新の予測モデル52を作成するための機械学習を行う。そして、最新の予測モデル52が完成したら、機械学習部47はその最新の予測モデル52を自身の記憶領域に一時的に格納する。 In the next step S160, the machine learning unit 47 operates to take in the learning data collected by the learning data collection unit 46, and performs machine learning to create the latest predictive model 52 based on the learning data. When the latest predictive model 52 is completed, the machine learning unit 47 temporarily stores the latest predictive model 52 in its own storage area.
 次のステップS170では、制御切換部45が作動し、最新の予測モデル52が完成した否かを判定する。ステップS170での判定結果がNOの場合、つまり最新の予測モデル52がまだ完成していない場合には、ステップS150に戻って引き続き学習データの収集及び機械学習が実行される。なお、これを実行している際にPID制御による温湿度制御は維持される。ステップS170での判定結果がYESの場合、つまり最新の予測モデル52が完成した場合には、次のステップS180に移行する。すると、制御切換部45が作動して、古い予測モデル53を最新の予測モデル52に置き換えて更新する。次のステップS190では、PID制御からMPCに自動的に切り換えた後、最初のステップS110に戻るようになっている。即ち、制御切換部45が制御部切換スイッチ48を駆動し、MPCコントローラ43と各空調用機器との間の接続に切り換える。すると、MPCコントローラ43から各制御対象に対して駆動制御信号が出力され、各空調用機器がMPCからの操作量に基づいて制御される状態に復帰する。 In the next step S170, the control switching unit 45 operates to determine whether the latest prediction model 52 has been completed. If the determination result in step S170 is NO, that is, if the latest prediction model 52 is not yet completed, the process returns to step S150 to continue collecting learning data and performing machine learning. Note that while this is being executed, temperature and humidity control by PID control is maintained. If the determination result in step S170 is YES, that is, if the latest prediction model 52 is completed, the process moves to the next step S180. Then, the control switching unit 45 operates to update the old prediction model 53 by replacing it with the latest prediction model 52. In the next step S190, after automatically switching from PID control to MPC, the process returns to the first step S110. That is, the control switching section 45 drives the control section changeover switch 48 to switch the connection between the MPC controller 43 and each air conditioning device. Then, the MPC controller 43 outputs a drive control signal to each controlled object, and each air conditioning device returns to a state where it is controlled based on the operation amount from the MPC.
 従って、本実施の形態によれば以下の効果を得ることができる。 Therefore, according to this embodiment, the following effects can be obtained.
 (1)本実施形態の空調制御装置31は、上記のとおり、第1空調制御部であるPIDコントローラ42、第2空調制御部であるMPCコントローラ43、算出比較部44、制御切換部45等を備えている。従って、PIDコントローラ42及びMPCコントローラ43のうちのいずれかを選択して空調用機器の操作量を制御することができる。算出比較部44は、PID制御により空調空気を目標点まで到達させるのに要するエネルギーE1と、MPCにより空調空気を目標点まで到達させるのに要するエネルギーE2とを算出して比較する。制御切換部45は、この比較結果に基づいてエネルギー消費量が少なくて済むほうの空調制御部に自動的に切り換えて制御を行わせる。例えば、MPCの実行中にモデル化誤差が生じた場合、制御結果がPID制御に比べて不安定になり、空調に要するエネルギー消費量が増加することが想定される。この場合には、制御切換部45がMPCコントローラ43からPIDコントローラ42に自動的に切り換えてPID制御を実行させる。従って、モデル化誤差の影響を受けることがなく、シビアな温湿度制御が維持されることから、空調に要するエネルギー消費量を確実に低減することができる。 (1) As described above, the air conditioning control device 31 of this embodiment includes the PID controller 42 which is the first air conditioning control section, the MPC controller 43 which is the second air conditioning control section, the calculation comparison section 44, the control switching section 45, etc. We are prepared. Therefore, it is possible to select either the PID controller 42 or the MPC controller 43 to control the operation amount of the air conditioning equipment. The calculation comparison unit 44 calculates and compares the energy E1 required for the conditioned air to reach the target point by PID control and the energy E2 required for the conditioned air to reach the target point by MPC. Based on the comparison result, the control switching unit 45 automatically switches to the air conditioning control unit that requires less energy consumption to perform control. For example, if a modeling error occurs during execution of MPC, the control result will be unstable compared to PID control, and it is assumed that the energy consumption required for air conditioning will increase. In this case, the control switching section 45 automatically switches from the MPC controller 43 to the PID controller 42 to execute PID control. Therefore, strict temperature and humidity control is maintained without being influenced by modeling errors, and the energy consumption required for air conditioning can be reliably reduced.
 (2)本実施形態の空調制御装置31では、モデル化誤差の発生によりMPCコントローラ43がMPCを実行できなくても、PIDコントローラ42がPID制御を行うとともに、その最中に学習データ収集部46が学習データを収集する。このため、シビアな温湿度制御を中断させずに継続して実行することができる。また、追加学習のための学習データを効率よく収集することができる。 (2) In the air conditioning control device 31 of the present embodiment, even if the MPC controller 43 is unable to execute MPC due to the occurrence of a modeling error, the PID controller 42 performs PID control, and during the PID control, the learning data collection unit 46 collects training data. Therefore, severe temperature and humidity control can be continuously performed without interruption. Furthermore, learning data for additional learning can be efficiently collected.
 (3)本実施形態の空調制御装置31では、PIDコントローラ42がPID制御を行っている最中に、機械学習部47がモデル化誤差を解消した予測モデル52を新たに作成する。よって、古い予測モデル52を最新の予測モデル53に置き換える更新作業に確実に備えておくことができる。 (3) In the air conditioning control device 31 of this embodiment, while the PID controller 42 is performing PID control, the machine learning unit 47 newly creates a prediction model 52 with modeling errors eliminated. Therefore, it is possible to reliably prepare for the update work of replacing the old prediction model 52 with the latest prediction model 53.
 (4)本実施形態の空調制御装置31では、追加学習が終了して新たな予測モデル52が完成すると、古い予測モデル53を最新の予測モデル52に速やかに置き換えられて更新される。その後、PIDコントローラ42からMPCコントローラ43に自動的に切り換えられ、モデル化誤差を解消した更新後の最新の予測モデル52に基づくMPCが実行される。その結果、PID制御よりも安定度が増したMPCに復帰して、シビアな温湿度制御を中断させずに継続して実行することができる。 (4) In the air conditioning control device 31 of this embodiment, when the additional learning is completed and the new prediction model 52 is completed, the old prediction model 53 is promptly replaced with the latest prediction model 52 and updated. Thereafter, the PID controller 42 is automatically switched to the MPC controller 43, and MPC is executed based on the updated latest prediction model 52 that eliminates modeling errors. As a result, it is possible to return to MPC, which is more stable than PID control, and continue to perform severe temperature and humidity control without interruption.
 なお、本発明の各実施の形態は以下のように変更してもよい。 Note that each embodiment of the present invention may be modified as follows.
 ・上記実施形態では、プレヒータ22(予熱装置)、ワッシャ23(加湿装置)、クーリングコイル24(冷却装置)、レヒータ(再熱装置)25及び送風ファン26を空調用機器として備えた塗装ブース用空調機21を用いたが、これに限定されず、異なる装置構成を採用してもよい。例えばクーリングコイル24を1段ではなく2段にしてもよいほか、不要であれば省略してもよい。レヒータ25も不要であれば省略してもよい。つまり、空調装置は取り入れた外気を加温、加湿及び冷却する機能を有するものに限らず、加温及び加湿機能を有しかつ冷却機能を有しないもの、冷却及び加湿機能を有しかつ加温機能を有しないものであってもよい。 - In the above embodiment, an air conditioner for a painting booth is provided with a preheater 22 (preheating device), a washer 23 (humidifying device), a cooling coil 24 (cooling device), a reheater (reheating device) 25, and a blower fan 26 as air conditioning equipment. Although the device 21 is used, the present invention is not limited to this, and a different device configuration may be adopted. For example, the cooling coil 24 may be provided in two stages instead of one, or may be omitted if unnecessary. The reheater 25 may also be omitted if unnecessary. In other words, air conditioners are not limited to those that have the function of heating, humidifying, and cooling the outside air taken in, but also those that have heating and humidifying functions but do not have cooling functions, and those that have cooling and humidifying functions and heating It may be one that does not have any function.
 ・上記実施形態では、本発明の空調システム11を塗装ブース用空調機21を備える塗装設備用空調システムに具体化したが、塗装ブース用途以外の空調装置を備えるものに具体化しても勿論よい。 - In the above embodiment, the air conditioning system 11 of the present invention is embodied as an air conditioning system for painting equipment that includes an air conditioner 21 for a painting booth, but it may of course be embodied in an air conditioning system that includes an air conditioning system other than for use in a painting booth.
 ・上記実施形態では、第1空調制御部であるPIDコントローラ42がPID制御を行っている最中に、予測モデル53の追加学習のための学習データを収集するように構成したが、これに限定されない。例えば、同一仕様の別の装置で作成された外部の最新の予測モデル53を取り込み、古いものと置き換えてもよい。また、これとは逆に、本実施形態の空調制御装置31によって作成された最新の予測モデル53を、自身の装置で利用するばかりではなく、同一仕様の別の装置に移植して利用してもよい。 - In the above embodiment, learning data for additional learning of the prediction model 53 is collected while the PID controller 42, which is the first air conditioning control unit, is performing PID control, but the present invention is limited to this. Not done. For example, the latest external prediction model 53 created by another device with the same specifications may be imported to replace the old one. In addition, on the contrary, the latest prediction model 53 created by the air conditioning control device 31 of this embodiment can be used not only in one's own device, but also by being ported to another device with the same specifications. Good too.
 ・上記実施形態では、第1空調制御部であるPIDコントローラ42がPID制御を行っている最中に限り、予測モデル53の追加学習のための学習データを収集する例を示したが、これに限定されない。例えば、第2空調制御部であるMPCコントローラ43がMPCを行っている最中にも同様の学習データ収集を行っても勿論よい。具体的には、例えば、予測モデルの誤差を随時改善する逐次学習部を備えるものとして構成し、第2空調制御部がMPCを行っている最中に、制御ステップごとに制御結果を学習データとして逐次学習部に逐次的に与えるようにしてもよい。この構成によると、第2空調制御部によるシビアな温湿度制御を継続して実行しやすくなる。また、追加学習のための学習データを効率よく収集することができる。 - In the above embodiment, an example was shown in which learning data for additional learning of the prediction model 53 is collected only while the PID controller 42, which is the first air conditioning control unit, is performing PID control. Not limited. For example, it is of course possible to collect similar learning data while the MPC controller 43, which is the second air conditioning control unit, is performing MPC. Specifically, for example, it is configured to include a sequential learning section that improves the error of the prediction model as needed, and while the second air conditioning control section is performing MPC, the control results are used as learning data for each control step. The information may be sequentially given to the sequential learning section. According to this configuration, it becomes easier to continuously perform severe temperature and humidity control by the second air conditioning control section. Furthermore, learning data for additional learning can be efficiently collected.
 ・上記実施形態では、互いに異なる2種の制御方法(PID制御とMPC)により空調用機器の操作量を制御する2つの空調制御部を備えていた。そして、空調空気を目標点まで到達させるのに要するエネルギーを算出比較部44で2つの空調制御部ごとに算出して比較し、制御切換部45で2つの空調制御部のうち当該エネルギーが少ないものに自動的に切り換えて制御を行わせるように構成したが、これに限定されない。例えば、互いに異なる3種以上の制御方法(PID制御とMPCとそれら以外の制御)により空調用機器の操作量を制御する3つ以上の空調制御部を備えていてもよい。そして、空調空気を目標点まで到達させるのに要するエネルギーを算出比較部44で3つ以上の空調制御部ごとに算出して比較し、制御切換部45で3つ以上の空調制御部のうち当該エネルギーが最も少ないものに自動的に切り換えて制御を行わせるように構成してもよい。なお、エネルギーを3つ以上の空調制御部ごとに算出して比較する算出比較部44に代えて、制御結果の安定度を3つ以上の空調制御部ごとに算出して比較する算出比較部44としてもよい。 - The above embodiment includes two air conditioning control units that control the operation amount of air conditioning equipment using two different control methods (PID control and MPC). Then, a calculation comparison unit 44 calculates and compares the energy required for the conditioned air to reach the target point for each of the two air conditioning control units, and a control switching unit 45 calculates the energy required for the two air conditioning control units to reach the target point. Although the configuration is such that control is performed by automatically switching to , the present invention is not limited to this. For example, three or more air conditioning control units may be provided that control the operation amount of the air conditioning equipment using three or more different control methods (PID control, MPC, and other controls). Then, the calculation and comparison section 44 calculates and compares the energy required for the conditioned air to reach the target point for each of the three or more air conditioning control sections, and the control switching section 45 calculates and compares the energy required for the conditioned air to reach the target point. The configuration may be such that the control is automatically switched to the one that requires the least amount of energy. Note that instead of the calculation comparison section 44 that calculates and compares energy for each of three or more air conditioning control sections, a calculation comparison section 44 that calculates and compares the stability of control results for each of three or more air conditioning control sections. You can also use it as
 ・上記実施形態では、空調空気を目標点まで到達させるのに要するエネルギーを算出比較部44で2つの空調制御部ごとに算出して比較し、制御切換部45で2つの空調制御部のうち当該エネルギーが少ないものに自動的に切り換えて制御を行わせるように構成したが、これに限定されない。例えば、算出比較部44によって、PID制御により空調空気を目標点まで到達させるときの目標値に対する偏差と、MPCにより空調空気を目標点まで到達させるときの目標値に対する偏差とを算出して比較してもよい。そして、制御切換部45によって、2つの空調制御部のうち、空調空気を目標点まで到達させるときの目標値に対する偏差が小さいもの(換言すると制御の正確性が高いもの)に自動的に切り換えて制御を行わせるようにしてもよい。この構成によると、制御の正確性低下が予想される場合であっても、事前に制御切換部が空調制御部を自動的に切り換えて、制御の正確性が高いままに維持される。従って、シビアな温湿度制御が維持され、空調に要するエネルギー消費量を確実に低減することができる。 - In the above embodiment, the calculation comparison unit 44 calculates and compares the energy required for the conditioned air to reach the target point for each of the two air conditioning control units, and the control switching unit 45 calculates and compares the energy required for the conditioned air to reach the target point. Although the configuration is such that the control is performed by automatically switching to the one that requires less energy, the present invention is not limited to this. For example, the calculation comparison unit 44 calculates and compares the deviation from the target value when the conditioned air reaches the target point by PID control and the deviation from the target value when the conditioned air reaches the target point by MPC. It's okay. Then, the control switching unit 45 automatically switches between the two air conditioning control units to the one that has a smaller deviation from the target value when the conditioned air reaches the target point (in other words, the one that has higher control accuracy). Control may also be performed. According to this configuration, even if a decrease in control accuracy is expected, the control switching unit automatically switches the air conditioning control unit in advance, and the control accuracy is maintained at a high level. Therefore, strict temperature and humidity control is maintained, and energy consumption required for air conditioning can be reliably reduced.
 ・上記実施形態では、塗装ブース用空調機21に設けられた3つのセンシング手段(第1、第2、第3のセンサ27a、27b、27c)からの温湿度の測定結果に基づいて、算出比較部44がエネルギーの算出比較を行い、かつ、PIDコントローラ42及びMPCコントローラ43がフィードバック制御を行っていたが、これに限定されない。例えば、塗装ブース用空調機21以外の機器に設けられたセンシング手段からの測定結果を利用してもよい。図5に示す別の実施形態の空調制御装置31Aでは、塗装ブース用空調機21に対してヒートポンプ(HP)から熱源及び冷水が供給されるような構成となっている。塗装ブース用空調機21とヒートポンプとの間は、熱源を供給する第1経路61と、冷水を供給する第2経路62とによりそれぞれ流路的に接続されている。プレヒータ22に熱源を供給する第1経路61上には、第4のセンサ27dが設けられている。レヒータ25に熱源を供給する第1経路61上には、第5のセンサ27eが設けられている。クーリングコイル24に冷水を供給する第2経路62上には、第6のセンサ27fが設けられている。第4のセンサ27d及び第5のセンサ27eとしては、例えば、ガス流量センサ、蒸気流量センサ、温水温度流量センサなどを挙げることができる。第6のセンサ27fとしては、例えば、冷水流量センサ、冷水温度センサなどを挙げることができる。そして、センサ27a~27cからのセンシング情報に加え、センサ27d~27fからのセンシング情報に基づいて、算出比較部44がエネルギーの算出比較を行い、かつ、PIDコントローラ42及びMPCコントローラ43がフィードバック制御を行うようにしてもよい。このように、エネルギー関連のセンサからのセンシング情報を利用すると、算出比較部44によるエネルギーの算出比較がいっそう的確になり、ひいては空調に要するエネルギー消費量をより確実に低減することが可能となる。なお、ヒートポンプの運転電力をセンシングし、そのセンシング情報を上記の算出比較等に利用しても勿論よい。 - In the above embodiment, the calculation comparison is performed based on the temperature and humidity measurement results from the three sensing means (first, second, and third sensors 27a, 27b, and 27c) provided in the painting booth air conditioner 21. Although the unit 44 performs energy calculation and comparison, and the PID controller 42 and MPC controller 43 perform feedback control, the present invention is not limited thereto. For example, measurement results from sensing means provided in equipment other than the painting booth air conditioner 21 may be used. An air conditioning control device 31A of another embodiment shown in FIG. 5 is configured such that a heat source and cold water are supplied to the paint booth air conditioner 21 from a heat pump (HP). The paint booth air conditioner 21 and the heat pump are connected in a flow path manner by a first path 61 that supplies a heat source and a second path 62 that supplies cold water. A fourth sensor 27d is provided on the first path 61 that supplies a heat source to the preheater 22. A fifth sensor 27e is provided on the first path 61 that supplies the heat source to the reheater 25. A sixth sensor 27f is provided on the second path 62 that supplies cold water to the cooling coil 24. Examples of the fourth sensor 27d and the fifth sensor 27e include a gas flow rate sensor, a steam flow rate sensor, a hot water temperature flow rate sensor, and the like. Examples of the sixth sensor 27f include a cold water flow rate sensor, a cold water temperature sensor, and the like. Then, in addition to the sensing information from the sensors 27a to 27c, the calculation comparison unit 44 calculates and compares energy based on the sensing information from the sensors 27d to 27f, and the PID controller 42 and MPC controller 43 perform feedback control. You may also do so. In this way, by using the sensing information from the energy-related sensors, the calculation and comparison of energy by the calculation comparison unit 44 becomes more accurate, and it becomes possible to more reliably reduce the energy consumption required for air conditioning. Note that, of course, the operating power of the heat pump may be sensed and the sensing information may be used for the above-mentioned calculation comparison.
 次に、特許請求の範囲に記載された技術的思想のほかに、前述した実施形態によって把握される技術的思想を以下に列挙する。 Next, in addition to the technical ideas described in the claims, technical ideas grasped by the above-described embodiments are listed below.
 (1)取り込んだ外気の温湿度を複数種の空調用機器を用いて調整する空調装置における前記空調用機器の操作量を制御する空調制御装置であって、互いに異なる制御方法により前記空調用機器の操作量を制御する複数の空調制御部と、空調空気を目標点まで到達させるのに要するエネルギーを前記複数の空調制御部ごとに算出して比較する算出比較部と、前記複数の空調制御部のうち、前記空調空気を目標点まで到達させるのに要するエネルギーが最も少ない空調制御部に自動的に切り換えて制御を行わせる制御切換部とを備えたことを特徴とする空調制御装置。 (1) An air conditioning control device that controls the amount of operation of the air conditioning equipment in an air conditioning system that adjusts the temperature and humidity of the outside air taken in using multiple types of air conditioning equipment, the air conditioning equipment controlling the amount of operation of the air conditioning equipment using different control methods. a plurality of air conditioning control units that control the operation amount of the air conditioning control units; a calculation comparison unit that calculates and compares the energy required for the conditioned air to reach the target point for each of the plurality of air conditioning control units; and the plurality of air conditioning control units. An air conditioning control device comprising: a control switching unit that automatically switches to an air conditioning control unit that requires the least amount of energy to bring the conditioned air to a target point to perform control.
 (2)取り込んだ外気の温湿度を複数種の空調用機器を用いて調整する空調装置における前記空調用機器の操作量を制御する空調制御装置であって、互いに異なる制御方法により前記空調用機器の操作量を制御する複数の空調制御部と、温湿度制御結果の安定度を算出して比較する算出比較部と、前記複数の空調制御部のうち、前記安定度が最も高い空調制御部に自動的に切り換えて制御を行わせる制御切換部とを備えたことを特徴とする空調制御装置。 (2) An air conditioning control device that controls the amount of operation of the air conditioning equipment in an air conditioning system that adjusts the temperature and humidity of the outside air taken in using multiple types of air conditioning equipment, the air conditioning equipment controlling the amount of operation of the air conditioning equipment using different control methods. a plurality of air conditioning control units that control the operation amount of the air conditioning control unit, a calculation comparison unit that calculates and compares the stability of the temperature and humidity control results, and an air conditioning control unit that has the highest stability among the plurality of air conditioning control units. An air conditioning control device comprising: a control switching section that automatically switches to perform control.
 (3)上記手段1~9のいずれかにおいて、前記算出比較部は、前記空調装置に設けた温湿度センサからのセンシング情報に基づいて、前記エネルギーの算出比較を行うこと。 (3) In any of the above means 1 to 9, the calculation comparison section performs the calculation comparison of the energy based on sensing information from a temperature and humidity sensor provided in the air conditioner.
 (4)上記手段1~9のいずれかにおいて、前記算出比較部は、前記空調装置と前記空調装置に熱源及び冷水を供給するヒートポンプとの間を流路的に接続する経路上に設けたエネルギー関連のセンサからのセンシング情報に基づいて、前記エネルギーの算出比較を行うこと。 (4) In any one of the above means 1 to 9, the calculation comparison unit is configured to calculate the energy of Calculating and comparing the energy based on sensing information from related sensors.
21:空調装置としての塗装ブース用空調機
22:空調用機器である予熱装置としてのプレヒータ
23:空調用機器である加湿装置としてのワッシャ
24:空調用機器である冷却装置としてのクーリングコイル
25:空調用機器である再熱装置としてのレヒータ
31、31A:空調制御装置
42:第1空調制御部としてのPIDコントローラ
43:第2空調制御部としてのMPCコントローラ
44:算出比較部
45:制御切換部
46:学習データ収集部
47:機械学習部
52:(最新の)予測モデル
53:予測モデル
E1、E2:エネルギー
21: Paint booth air conditioner as an air conditioning device 22: Preheater 23 as a preheating device which is an air conditioning device: Washer 24 as a humidifying device which is an air conditioning device: Cooling coil 25 as a cooling device which is an air conditioning device: Reheater 31, 31A as a reheating device which is an air conditioning device: Air conditioning control device 42: PID controller 43 as a first air conditioning control section: MPC controller 44 as a second air conditioning control section: Calculation comparison section 45: Control switching section 46: Learning data collection unit 47: Machine learning unit 52: (latest) prediction model 53: Prediction models E1, E2: Energy

Claims (9)

  1.  取り込んだ外気の温湿度を複数種の空調用機器を用いて調整する空調装置における前記空調用機器の操作量を制御する空調制御装置であって、
     PID制御により前記空調用機器の操作量を制御する第1空調制御部と、
     予測モデルに基づいたモデル予測制御により前記空調用機器の操作量を制御する第2空調制御部と、
     前記PID制御により空調空気を目標点まで到達させるのに要するエネルギーと、前記モデル予測制御により前記空調空気を目標点まで到達させるのに要するエネルギーとを算出して比較する算出比較部と、
     前記第1空調制御部及び前記第2空調制御部のうち、前記空調空気を目標点まで到達させるのに要するエネルギーが少ないほうの空調制御部に自動的に切り換えて制御を行わせる制御切換部と
    を備えたことを特徴とする空調制御装置。
    An air conditioning control device that controls the amount of operation of the air conditioning equipment in an air conditioning system that adjusts the temperature and humidity of taken in outside air using multiple types of air conditioning equipment,
    a first air conditioning control unit that controls the operation amount of the air conditioning equipment by PID control;
    a second air conditioning control unit that controls the operation amount of the air conditioning equipment by model predictive control based on a predictive model;
    a calculation comparison unit that calculates and compares the energy required for the conditioned air to reach the target point by the PID control and the energy required for the conditioned air to reach the target point by the model predictive control;
    A control switching unit that automatically switches to the air conditioning control unit that requires less energy to make the conditioned air reach the target point among the first air conditioning control unit and the second air conditioning control unit to perform control; An air conditioning control device characterized by comprising:
  2.  取り込んだ外気の温湿度を複数種の空調用機器を用いて調整する空調装置における前記空調用機器の操作量を制御する空調制御装置であって、
     PID制御により前記空調用機器の操作量を制御する第1空調制御部と、
     予測モデルに基づいたモデル予測制御により前記空調用機器の操作量を制御する第2空調制御部と、
     前記PID制御により空調空気を目標点まで到達させるときの目標値に対する偏差と、前記モデル予測制御により前記空調空気を目標点まで到達させるときの目標値に対する偏差とを算出して比較する算出比較部と、
     前記第1空調制御部及び前記第2空調制御部のうち、前記空調空気を目標点まで到達させるときの目標値に対する偏差が小さいほうの空調制御部に自動的に切り換えて制御を行わせる制御切換部と
    を備えたことを特徴とする空調制御装置。
    An air conditioning control device that controls the amount of operation of the air conditioning equipment in an air conditioning system that adjusts the temperature and humidity of taken in outside air using multiple types of air conditioning equipment,
    a first air conditioning control unit that controls the operation amount of the air conditioning equipment by PID control;
    a second air conditioning control unit that controls the operation amount of the air conditioning equipment by model predictive control based on a predictive model;
    a calculation comparison unit that calculates and compares a deviation from a target value when the conditioned air reaches the target point by the PID control and a deviation from the target value when the conditioned air reaches the target point by the model predictive control; and,
    Control switching that automatically switches to the air conditioning control unit that has a smaller deviation from a target value when the conditioned air reaches a target point, among the first air conditioning control unit and the second air conditioning control unit, to perform control. An air conditioning control device comprising:
  3.  前記第1空調制御部が前記PID制御を行っている最中に、前記予測モデルの追加学習のための学習データを収集する学習データ収集部をさらに備えることを特徴とする請求項1または2に記載の空調制御装置。 3. The apparatus according to claim 1, further comprising a learning data collection section that collects learning data for additional learning of the prediction model while the first air conditioning control section is performing the PID control. The air conditioning control device described.
  4.  前記第1空調制御部が前記PID制御を行っている最中に、前記学習データ収集部が収集した前記学習データに基づいて前記予測モデルを新たに作成する機械学習部をさらに備えることを特徴とする請求項3に記載の空調制御装置。 The system further includes a machine learning unit that newly creates the prediction model based on the learning data collected by the learning data collection unit while the first air conditioning control unit is performing the PID control. The air conditioning control device according to claim 3.
  5.  前記第2空調制御部が前記モデル予測制御を行っている最中に、制御ステップごとに制御結果を前記学習データとして逐次的に与えることで、前記予測モデルの誤差を随時改善する逐次学習部をさらに備えることを特徴とする請求項1または2に記載の空調制御装置。 A sequential learning unit that improves errors in the predictive model as needed by sequentially providing control results as the learning data for each control step while the second air conditioning control unit is performing the model predictive control. The air conditioning control device according to claim 1 or 2, further comprising: an air conditioning control device according to claim 1;
  6.  前記制御切換部は、新たな前記予測モデルが完成した段階で、古い予測モデルを最新の前記予測モデルに置き換えて更新した後、前記第1空調制御部から前記第2空調制御部に切り換えて制御を行わせることを特徴とする請求項4または5に記載の空調制御装置。 When the new prediction model is completed, the control switching unit updates the old prediction model by replacing it with the latest prediction model, and then switches from the first air conditioning control unit to the second air conditioning control unit for control. The air conditioning control device according to claim 4 or 5, wherein the air conditioning control device performs the following.
  7.  前記空調装置は塗装設備用の空調装置であり、前記空調用機器は予熱装置、加湿装置、冷却装置及び再熱装置を含む塗装ブース用空調機であることを特徴とする請求項1乃至6のいずれか1項に記載の空調制御装置。 7. The air conditioner according to claim 1, wherein the air conditioner is an air conditioner for painting equipment, and the air conditioner is an air conditioner for a paint booth including a preheating device, a humidifying device, a cooling device, and a reheating device. The air conditioning control device according to any one of the items.
  8.  取り込んだ外気の温湿度を複数種の空調用機器を用いて調整する空調装置を構成し、PID制御により前記空調用機器の操作量を制御する第1空調制御部と、予測モデルに基づいたモデル予測制御により前記空調用機器の操作量を制御する第2空調制御部とを備える空調制御装置を動作させるためのプログラムであって、
     前記PID制御により空調空気を目標点まで到達させるのに要するエネルギーと、前記モデル予測制御により前記空調空気を目標点まで到達させるのに要するエネルギーとを算出して比較する算出比較ステップと、
     前記第1空調制御部及び前記第2空調制御部のうち、前記空調空気を目標点まで到達させるのに要するエネルギーが少ないほうの空調制御部に自動的に切り換えて制御を行わせる制御切換ステップと
    を含むことを特徴とする空調制御装置用プログラム。
    A first air conditioning control unit that configures an air conditioner that adjusts the temperature and humidity of the outside air taken in using multiple types of air conditioning equipment, and that controls the operation amount of the air conditioning equipment by PID control, and a model based on a prediction model. A program for operating an air conditioning control device comprising a second air conditioning control unit that controls the operation amount of the air conditioning equipment by predictive control,
    a calculation comparison step of calculating and comparing the energy required for the conditioned air to reach the target point by the PID control and the energy required for the conditioned air to reach the target point by the model predictive control;
    A control switching step of automatically switching to the air conditioning control unit that requires less energy to make the conditioned air reach the target point among the first air conditioning control unit and the second air conditioning control unit to perform control; A program for an air conditioning control device, comprising:
  9.  取り込んだ外気の温湿度を複数種の空調用機器を用いて調整する空調装置を構成し、PID制御により前記空調用機器の操作量を制御する第1空調制御部と、予測モデルに基づいたモデル予測制御により前記空調用機器の操作量を制御する第2空調制御部とを備える空調制御装置を動作させるためのプログラムであって、
     前記PID制御により空調空気を目標点まで到達させるときの目標値に対する偏差と、前記モデル予測制御により前記空調空気を目標点まで到達させるときの目標値に対する偏差とを算出して比較する算出比較ステップと、
     前記第1空調制御部及び前記第2空調制御部のうち、前記空調空気を目標点まで到達させるときの目標値に対する偏差が小さいほうの空調制御部に自動的に切り換えて制御を行わせる制御切換ステップと
    を含むことを特徴とする空調制御装置用プログラム。
    A first air conditioning control unit that configures an air conditioner that adjusts the temperature and humidity of the outside air taken in using multiple types of air conditioning equipment, and that controls the operation amount of the air conditioning equipment by PID control, and a model based on a prediction model. A program for operating an air conditioning control device comprising a second air conditioning control unit that controls the operation amount of the air conditioning equipment by predictive control,
    a calculation comparison step of calculating and comparing a deviation from a target value when the conditioned air reaches the target point by the PID control and a deviation from the target value when the conditioned air reaches the target point by the model predictive control; and,
    Control switching that automatically switches to the air conditioning control unit that has a smaller deviation from a target value when the conditioned air reaches a target point, among the first air conditioning control unit and the second air conditioning control unit, to perform control. A program for an air conditioning control device, comprising steps.
PCT/JP2023/002013 2022-03-17 2023-01-24 Air-conditioning control device and program therefor WO2023176151A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-043203 2022-03-17
JP2022043203A JP2023137152A (en) 2022-03-17 2022-03-17 Air conditioning device and program for the same

Publications (1)

Publication Number Publication Date
WO2023176151A1 true WO2023176151A1 (en) 2023-09-21

Family

ID=88022698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002013 WO2023176151A1 (en) 2022-03-17 2023-01-24 Air-conditioning control device and program therefor

Country Status (2)

Country Link
JP (1) JP2023137152A (en)
WO (1) WO2023176151A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002323252A (en) * 2001-04-24 2002-11-08 Toyota Motor Corp Temperature change amount calculating method for controlling air conditioner, and feedforward control method for the air conditioner
JP2004239580A (en) * 2003-02-10 2004-08-26 Trinity Ind Corp Air conditioner and its control system
JP2013543569A (en) * 2010-08-20 2013-12-05 ヴィジレント コーポレイション Energy optimal control decision for HVAC system
JP2021092386A (en) * 2018-05-07 2021-06-17 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company System, method and non-transitory computer-readable media with cost target optimization

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002323252A (en) * 2001-04-24 2002-11-08 Toyota Motor Corp Temperature change amount calculating method for controlling air conditioner, and feedforward control method for the air conditioner
JP2004239580A (en) * 2003-02-10 2004-08-26 Trinity Ind Corp Air conditioner and its control system
JP2013543569A (en) * 2010-08-20 2013-12-05 ヴィジレント コーポレイション Energy optimal control decision for HVAC system
JP2021092386A (en) * 2018-05-07 2021-06-17 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company System, method and non-transitory computer-readable media with cost target optimization

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "Annual energy bill reduced by 3 million yen! Succeeded in significantly reducing the energy consumption of air conditioning equipment using our unique control AI "Smart MPC"! Since learning is possible with a small amount of data, it can be introduced in one day, and performance improves rapidly wit", 28 February 2022 (2022-02-28), XP093092990, Retrieved from the Internet <URL:https://prtimes.jp/main/html/rd/p/000000004.000074074.html> *

Also Published As

Publication number Publication date
JP2023137152A (en) 2023-09-29

Similar Documents

Publication Publication Date Title
US7957842B2 (en) Apparatus and method for controlling an air supply for drying painted vehicles and other objects
Yordanova et al. A two-variable fuzzy control design with application to an air-conditioning system
JPS61138041A (en) Operating method of air conditioning device
CN111365828A (en) Model prediction control method for realizing energy-saving temperature control of data center by combining machine learning
CN101650552B (en) System and method for predicting and controlling capability of multi-connection type variable frequency air conditioner
JP2020501097A (en) Controller for air conditioning system and method for controlling air conditioning system
CN105066321A (en) Method of conditioning exterior air for a spray booth
CN108224701A (en) For controlling the device and method of Car Body Painting air-conditioning system
Li et al. A novel proportional-derivative (PD) law based fuzzy logic principles assisted controller for simultaneously controlling indoor temperature and humidity using a direct expansion (DX) air conditioning (A/C) system
US10948214B2 (en) HVAC system with economizer switchover control
US20160102882A1 (en) Method for the conditioning of air, and air-conditioning system
JP5839483B2 (en) Air conditioner for painting booth
KR20200127378A (en) System and method for controlling air conditioner
WO2023176151A1 (en) Air-conditioning control device and program therefor
JP2002048378A (en) Method and apparatus for controlling temperature and humidity, or temperature
JP3712329B2 (en) Process control unit
WO2023176152A1 (en) Learning data collection method for controlling air-conditioning device, and air-conditioning system
CN107656438B (en) Control method, control device, storage medium and equipment
JP7151680B2 (en) painting system
JP4383688B2 (en) Temperature change amount calculation method for air conditioner control, and feedforward control method for air conditioner
JP5493814B2 (en) Control method and apparatus for coating air conditioner
JPH0926803A (en) Fuzzy adaptive controller
JPH08123556A (en) Temperature/humidity controller
JP2011185559A (en) Air conditioning device and method of controlling the same
CN101578559A (en) Painting system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770113

Country of ref document: EP

Kind code of ref document: A1