WO2023176017A1 - Oocyte maturation promoter and uses thereof - Google Patents

Oocyte maturation promoter and uses thereof Download PDF

Info

Publication number
WO2023176017A1
WO2023176017A1 PCT/JP2022/033031 JP2022033031W WO2023176017A1 WO 2023176017 A1 WO2023176017 A1 WO 2023176017A1 JP 2022033031 W JP2022033031 W JP 2022033031W WO 2023176017 A1 WO2023176017 A1 WO 2023176017A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
eggs
egg
maturation
oocyte
Prior art date
Application number
PCT/JP2022/033031
Other languages
French (fr)
Japanese (ja)
Inventor
山本徳則
村瀬哲磨
日巻武裕
Original Assignee
山本徳則
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山本徳則 filed Critical 山本徳則
Priority to JP2022574386A priority Critical patent/JP7257012B1/en
Publication of WO2023176017A1 publication Critical patent/WO2023176017A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/28Bone marrow; Haematopoietic stem cells; Mesenchymal stem cells of any origin, e.g. adipose-derived stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives

Definitions

  • the present invention relates to technology that can be used in the field of animal husbandry and assisted reproductive medicine. Specifically, the present invention relates to an oocyte maturation promoter and its uses.
  • sperm and eggs are fertilized outside the body (in vitro fertilization), and the fertilized eggs (embryos) are then implanted into the uterus of another female animal.
  • the quality and condition of the oocytes are important factors that affect the transplant results, as they affect the quality of the fertilized eggs.
  • egg maturation is a necessary condition for successful in vitro fertilization.
  • the condition of the egg cannot be determined by ultrasound or hormone levels, but only by collecting the egg, and fertilization problems due to poor egg maturation are often encountered during in vitro fertilization. Therefore, methods for maturing collected eggs are being explored as a way to increase the pregnancy success rate.
  • Patent Document 1 describes a method of activating sperm by co-cultivating sperm with cells such as adipose tissue-derived stem cells or bone marrow-derived stem cells; It has been described that eggs can be activated by co-culturing them.
  • Patent Document 3 describes a sperm activator containing a crushed product such as adipose tissue-derived stem cells as an active ingredient.
  • JP2015-82987A Unexamined Japanese Patent Publication No. 2016-7161 International Publication No. 2018/038180
  • Patent Documents 1 and 2 sperm and eggs are activated by co-culturing them with adipose tissue-derived stem cells, but since both use cells, It was necessary to start cell culture at the right time, and it lacked ease of adjustment and operation. There are also concerns about the occurrence of adverse events due to the use of living cells.
  • the invention described in Patent Document 3 describes the activation of spermatozoa using a crushed adipose tissue-derived stem cell, but does not describe the activation of eggs.
  • the present inventors focused on the filtrate of adipose tissue-derived stem cell disruption solution and as a result of repeated studies, they discovered that it has the effect of promoting egg maturation in vitro. It was completed. That is, the present invention has the following configuration.
  • the oocyte maturation promoter according to [1] which is used for in vitro fertilization.
  • the oocyte maturation promoter according to [1] or [2], wherein the biological species of the adipose tissue-derived stem cells and the biological species of the eggs are the same.
  • the oocyte maturation promoter according to [1], wherein the biological species of the adipose tissue-derived stem cells is a non-human mammal.
  • the oocyte maturation promoter according to [1], wherein the biological species of the adipose tissue-derived stem cells is human.
  • a method for producing an oocyte maturation promoter including the following steps. (1) A step of disrupting adipose tissue-derived stem cells. (2) A step of filtering the crushed liquid obtained in step (1) or the supernatant obtained by centrifuging the crushed liquid to obtain a filtrate. (3) A step of formulating the filtrate obtained in step (2).
  • a method for producing mature eggs which comprises culturing eggs in the presence of the egg maturation promoter according to [1].
  • An embryo transfer method comprising culturing a fertilized egg produced by the in vitro fertilization method described in [8] or [9], and injecting the grown blastocyst into the uterus of a mammal.
  • the egg maturation promoter of the present invention can mature eggs. More specifically, in vitro fertilization uses collected eggs, but since the eggs collected during egg collection are immature eggs, they cannot be fertilized even if they are inseminated with sperm. By using the oocyte maturation promoter of the present invention, immature oocytes can be matured, making it easier for the fertilization process to proceed. Fertilization rates are improved, and the quality of fertilized eggs and their ability to develop into blastocysts are promoted, resulting in improved implantation rates and, ultimately, pregnancy rates.
  • maturation refers to nuclear maturation and cytoplasmic maturation of an egg.
  • the oocyte maturation promoting agent of the present invention uses a filtrate, adverse events caused by cell administration can be avoided.
  • the cells being administered are alive, so even if pathogens are present, they can hardly be inactivated or removed, posing a risk of infection.
  • the oocyte maturation promoter of the present invention is a cell-free liquid, it can be stored by cryopreservation and can be used for treatment by thawing it when necessary. Therefore, there is no need to time the cell culture for use or increase the number of cells required for treatment, and therefore preparation and handling are easy, and the clinical advantage is extremely large.
  • the present invention relates to an oocyte maturation promoter. More specifically, it contains a crushed filtrate of adipose tissue-derived stem cells as an active ingredient.
  • "containing as an active ingredient” means containing the filtrate of the crushed solution of adipose tissue-derived stem cells in an effective amount for treatment.
  • a mature egg refers to an egg that has undergone nuclear and cytoplasmic maturation.
  • a mature egg can be fertilized with a sperm and, after fertilization, can develop into a blastocyst.
  • an immature egg is an egg that cannot be fertilized even if it is inseminated with a sperm. Since the oocyte maturation promoter of the present invention can be used to promote oocyte maturation, it is easy to obtain mature oocytes.
  • Mature eggs can be fertilized with sperm, which can improve the fertilization rate and also have a positive effect on development after fertilization. This in turn improves the implantation rate and pregnancy rate.
  • whether or not an egg is mature can be determined as "matured” if acceleration of egg maturation can be confirmed by at least one of the following methods.
  • reactive oxygen species ROS
  • COCs cumulus cell-oocyte complexes
  • the cumulus cell layer is an important factor. Generally, when the egg is immature, the cumulus cells are small, and as the egg matures, the cumulus cells grow and expand. Since the degree of swelling of cumulus cells is considered to be an indicator of oocyte maturation, in this specification, we measured the area of COCs, and if the area increased compared to the control, it was determined that the oocyte had matured. to decide. The specific test method is shown. Prepare a maturation medium drop (10 ⁇ L) containing the oocyte maturation promoter of the present invention.
  • One immature oocyte is placed in each drop, and the COCs are photographed with a digital camera before maturation culture begins, and then cultured in a CO 2 incubator (37-40°C, 5% CO 2 . The same applies hereinafter).
  • the COCs after culture are photographed in the same way, and the area of COCs before and after maturation culture is compared.
  • A is the area of COCs after maturation culture divided by the area of COCs before maturation culture, if A is increased compared to the control, the oocyte is judged to be "mature". It is preferable that A is 1.05 times or more compared to the control, and more preferably 1.10 times or more. Further, it is preferable that A is 2.00 times or less as compared to the control.
  • the maturation medium is not particularly limited as long as it is a medium commonly used for oocyte maturation culture, but includes NCSU medium such as NCSU37 medium and NCSU23 medium, Medium 199, Dulbecco's modified Eagle medium (D-MEM) (Nacalai Tesque stock) DMEM/F12 (SIGMA, Gibco, etc.), synthetic fallopian tube fluid (SOF), etc. can be used. Two or more types of media may be used in combination. If necessary, serum, plasma, serum albumin, polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), antibiotics, 2-mercaptoethanol, amino acids, vitamins, inorganic salts, etc. may be added to the medium.
  • NCSU medium such as NCSU37 medium and NCSU23 medium
  • D-MEM Dulbecco's modified Eagle medium (D-MEM) (Nacalai Tesque stock) DMEM/F12 (SIGMA, Gibco, etc.), synthetic fallopian tube fluid (SOF
  • the cells are preferably cultured using a culture container such as a culture dish.
  • the culture conditions may be those commonly used in oocyte maturation culture.
  • an environment of 37°C to 40°C and 5% CO 2 is preferable.
  • the camera used for photographing is not particularly limited as long as it can appropriately measure the area of COCs, but it is preferable to take photographs by installing a digital camera on an inverted microscope.
  • Oxidative stress is said to be deeply involved in the development of oocytes into eggs. Active oxygen that causes oxidative stress is known to be a factor that causes various diseases, and oxidative stress caused by accumulation of active oxygen is particularly a cause of aging. As the egg ages, the normally perfectly round egg may become oval or distorted, making it difficult for it to be fertilized. Additionally, even after fertilization occurs, cells may become difficult to divide or the embryo may stop growing. The decline in pregnancy rates, especially for women in their late 30s and above, is often due to the aging of eggs. It is also said that reduced glutathione protects eggs from active oxygen toxicity, and the amount thereof is used as an indicator of cytoplasmic maturation of eggs.
  • the amount of reactive oxygen species (ROS) and reduced glutathione (GSH) is measured, and when the following requirements are met, it is determined that the egg has "matured".
  • the specific test method is shown. 30 to 40 immature eggs are introduced as a group into 200 ⁇ L of a maturation medium supplemented with the oocyte maturation promoter of the present invention and cultured.
  • Hepes-TLP-PVA Hepes-Tyrode-Lactate-Pyruvate-polyvinylalcohol
  • hyaluronidase 0.1% (w/v) Hepes-Tyrode-Lactate-Pyruvate-polyvinylalcohol (hereinafter also referred to as Hepes-TLP-PVA) supplemented with hyaluronidase was added, and the cumulus cells were detached by pipetting to remove the first polar body. Oocytes confirmed to have been released are selected. Immerse it in 500 ⁇ L of Hepes-TLP-PVA supplemented with 10 ⁇ L of 2',7'-Dichlorofluorecein diacetate and 5 ⁇ L of Cell Tracker Blue CMF 2 HC, and stain for 30 minutes in a CO 2 incubator.
  • ROS is preferably 0.9 or less, more preferably 0.8 or less, and even more preferably 0.7 or less.
  • ROS is preferably 0.1 or more, and more preferably 0.2 or more.
  • GSH is preferably 1.0 or more, more preferably 1.1 or more, and even more preferably 1.3 or more. Further, GSH is preferably 2.0 or less, and preferably 1.8 or less.
  • the conditions used when comparing the areas of COCs can be used.
  • Mitochondria are organelles that produce energy in living organisms, and are thought to be involved in the aging of eggs. Mitochondrial replication is suppressed after oocyte maturation until the morula stage, so the quality of mitochondria already present in mature oocytes is important for early embryonic development. Therefore, the present inventors thought that evaluating the distribution of mitochondria could be used as an index for predicting cytoplasmic maturation. In this specification, the distribution of mitochondria is evaluated, and an egg is determined to be "mature" when the following requirements are met. Refer to the method described in Sha Wei et al. (2010) “Effect of gonadotropins on oocyte maturation in vitro: an animal model.” Fertil Steril, Mar. 15;93(5):1650-61.
  • Type I is when mitochondria are distributed evenly throughout the cytoplasm
  • type II is when mitochondria are distributed around the cell membrane and unevenly distributed inside the cell membrane
  • type II is when mitochondria are distributed only around the cell membrane.
  • the ones that exist are classified as type III.
  • the ratio of type I to the number of test eggs is calculated, and when that of the control is set as "1", if the ratio is greater than 1, the eggs are judged to have "matured”. It is preferably 1.3 times or more, and more preferably 1.5 times or more. Further, it is preferable that the ratio is 5 times or less. (4) Mitochondrial activity evaluation
  • mitochondrial activity is known to be important for the maturation and quality of pig oocytes and subsequent embryonic development, we believe that assessing mitochondrial activity can predict cytoplasmic maturation. We thought that it could be used as an indicator for In this specification, mitochondrial activity is evaluated, and an egg is determined to be "mature” when the following requirements are met. Based on the method described in Lee SK et al. (2014) “The association of mitochondrial potential and copy number with pig oocyte maturation and developmental potential.”, J Reprod Dev. 2014 Apr 24;60(2):128-35 do.
  • the membrane potential difference is calculated by dividing the fluorescence intensity of red, which shows high activity, by the fluorescence intensity of green, which shows low activity, and is used as mitochondrial activity.
  • the control value is set to 1, if the mitochondrial activity is higher than that value, the egg is judged to be ⁇ mature.'' It is preferably 1.01 or more, and more preferably 1.02 or more. Further, the value is preferably 1.10 or less, more preferably 1.07 or less.
  • Adipose-derived stem cells are mesenchymal stem cells.
  • Adipose tissue-derived stem cells also have self-renewal and multipotency, and can differentiate into a variety of cells, including not only fat but also bone, cartilage, nerves, muscle, cardiac muscle, blood vessels, hepatocytes, and pancreatic islet cells. It is known that it is possible.
  • the inventors of the present invention have discovered that the filtrate of the disrupted solution of the stem cells, rather than the adipose tissue-derived stem cells themselves, has the effect of promoting egg maturation.
  • the origin of the ADSC used in the oocyte maturation promoter of the present invention is not particularly limited.
  • the biological species may be determined in consideration of the origin of the eggs used and the use of the eggs (mature eggs) obtained by the method of the present invention.
  • the biological species of ADSC used in the egg maturation promoter and the biological species of the egg may be different, but they are preferably the same.
  • the origin (species) of ADSCs includes humans and non-human mammals.
  • Non-human mammals include cows, pigs, horses, goats, sheep, monkeys, dogs, cats, mice, rats, guinea pigs, hamsters, and the like.
  • cows, pigs, horses, goats, and sheep are preferable because livestock farming can be carried out efficiently.
  • examples of the origin (species) of eggs include humans, non-human mammals, birds, fish, and the like.
  • Non-human mammals include the animals mentioned above.
  • ADSCs also include cells obtained by culturing (including subculture) the somatic stem cells, as long as they maintain pluripotency.
  • ADSCs are prepared in an "isolated state" using adipose tissue separated from a living body as a starting material and as cells constituting a cell population (including cells other than ADSCs derived from adipose tissue).
  • the "isolated state” here refers to a state that has been removed from its original environment (i.e., a state that forms part of a living body), that is, a state that exists in a state different from its original state of existence due to artificial manipulation. It means there is.
  • ADSC in the present invention may be prepared according to a conventional method.
  • ADSC adipose tissue-derived stem cells
  • ADSCs are prepared through steps such as separating stem cells from adipose matrix, washing, concentrating, and culturing.
  • the method for preparing ADSC is not particularly limited. For example, known methods (Fraser JK et al. (2006), Fat tissue: an under appreciated source of stem cells for biotechnology. Trends in Biotechnology; Apr; 24(4): 150-4. Epub 2006 Feb 20. Review.; Zuk PA et al.(2002), Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell; Dec;13(12):4279-95.; Zuk PA et al.(2001), Multilineage cells from ADSCs can be prepared according to human adipose tissue: implications for cell-based therapies.
  • ADSCs Tissue Engineering; Apr; 7(2): 211-28.
  • devices for preparing ADSCs from adipose tissue e.g., Celution® device (Cytori Therapeutics, Inc., San Diego, USA) are commercially available, and ADSCs can be prepared using this device. You can decide. Using this device, a cell population including ADSCs can be separated from adipose tissue (K. Lin. Et al. Cytotherapy (2008) Vol. 10, No. 4, 417-426). A specific example of the method for preparing ADSC is shown below. (1) Preparation of cell populations from adipose tissue
  • Adipose tissue is collected from humans and non-human mammals by excision, suction, or other means.
  • the non-human mammal may be any of the animals mentioned above, including pet animals, livestock, and experimental animals. Furthermore, the age and sex of the creature are not particularly limited.
  • adipose tissue autologous adipose tissue
  • this does not preclude the use of adipose tissue from animals of the same species (allogeneic) or adipose tissue from animals of different species.
  • ADSCs can also be prepared from tissue pieces aspirated during liposuction surgery during cosmetic surgery, or from excised adipose tissue contained in tissue excised from a living body during surgery or the like. Because ADSCs exist around large blood vessels, more can be obtained from excised adipose tissue than from lipoaspirate fluid. On the other hand, preparing stem cells from liposuction fluid results in smaller surgical scars and less burden on the donor.
  • adipose tissue examples include subcutaneous fat, visceral fat, intramuscular fat, and intermuscular fat.
  • subcutaneous fat can be harvested very easily under local anesthesia, so the burden on the donor during collection is low, and it can be said to be a preferable cell source.
  • adipose tissue is used, but it is also possible to use two or more types of adipose tissue in combination.
  • adipose tissue collected in multiple batches may be mixed and used for subsequent operations.
  • the amount of adipose tissue to be collected can be determined by taking into account the type of donor, the type of tissue, or the amount of ADSC required, and is, for example, about 0.5 to 500 g. However, considering the burden on the donor, it is preferable to limit the amount collected at one time to about 10 to 20 g or less.
  • the collected adipose tissue is subjected to the following enzymatic treatment after removing blood components adhering thereto and cutting it into pieces as necessary. Note that blood components can be removed by washing the adipose tissue in an appropriate buffer or culture solution.
  • Enzyme treatment is performed by digesting adipose tissue with enzymes such as collagenase, trypsin, and dispase. Such enzymatic treatments may be carried out using techniques and conditions known to those skilled in the art (see, for example, R. I. Freshney, Culture of Animal Cells: A Manual of Basic Technique, 4th Edition, A John Wiley & Sones Inc., Publication). .
  • the cell population obtained by the above enzyme treatment includes pluripotent stem cells, endothelial cells, stromal cells, hemocyte cells, and/or their precursor cells. The type and ratio of cells constituting the cell population depend on the origin and type of adipose tissue used. (2) Obtaining sedimented cell populations (SVF fractions: stromal vascular fractions)
  • the cell population is then subjected to centrifugation.
  • the sediment obtained by centrifugation is collected as a sedimented cell population (herein also referred to as "SVF fraction").
  • the conditions for centrifugation vary depending on the type and amount of cells, but are, for example, 800 to 1,500 rpm for 1 to 10 minutes. Note that, prior to centrifugation, it is preferable to subject the enzyme-treated cell population to filtration or the like to remove enzyme-undigested tissue and the like contained therein.
  • the "SVF fraction” obtained here contains ADSCs. Note that the type and ratio of cells constituting the SVF fraction depend on the origin and type of adipose tissue used, the conditions of enzyme treatment, etc. Further, the characteristics of the SVF fraction are shown in International Publication No. 2006/006692A1 pamphlet. (3) Selective culture of adherent cells (ADSC) and cell collection
  • the SVF fraction contains other cellular components (endothelial cells, stromal cells, hemocyte cells, their precursor cells, etc.). Therefore, in one embodiment of the present invention, the following selective culture is performed to remove unnecessary cell components from the SVF fraction. The resulting cells are then used as ADSCs in the present invention. First, the SVF fraction is suspended in an appropriate medium, then seeded onto a culture dish and cultured overnight. Remove floating cells (non-adherent cells) by replacing the medium. Thereafter, culture is continued while changing the medium as appropriate (for example, once every 2 to 4 days). Perform subculture as necessary.
  • passages are not particularly limited, from the viewpoint of maintaining pluripotency and proliferation ability, it is not preferable to repeat passages excessively (it is preferable to limit passages to about 5 passages). Note that a normal culture medium for animal cell culture can be used as the culture medium.
  • DMEM Dulbecco's modified Eagle's Medium
  • ⁇ -MEM Dissui Pharmaceutical Co., Ltd., etc.
  • DMEM:Ham's F12 mixed medium (1:1) (Dainippon Pharmaceutical Co., Ltd., etc.)
  • Ham's F12 medium (Dainippon Pharmaceutical Co., Ltd., etc.)
  • MCDB201 medium (Functional Peptide Institute), etc.
  • a medium supplemented with serum fetal bovine serum, human serum, sheep serum, etc.
  • serum replacement Knockout serum replacement (KSR), etc.
  • the amount of serum or serum substitute added can be set, for example, within the range of 5 to 30% (v/v).
  • Adhesive cells selectively survive and proliferate by the above operations. Subsequently, the proliferated cells are collected.
  • the recovery operation may be carried out in accordance with a conventional method, and for example, the cells can be easily recovered by peeling off the cells after enzyme treatment (trypsin or dispase treatment) with a cell scraper, pipette, or the like.
  • enzyme treatment trypsin or dispase treatment
  • sheet culture is performed using a commercially available temperature-sensitive culture dish, it is also possible to collect the cells directly in the form of a sheet without enzyme treatment.
  • ADSC active-activated fibroblast
  • the following low serum culture is performed instead of or after the operation (3) above.
  • the resulting cells are then used as ADSCs in the present invention.
  • the SVF fraction if this step is performed after (3), use the cells collected in (3)
  • the desired pluripotent stem cells i.e., ADSCs
  • the low-serum culture method requires only a small amount of serum, when ADSCs obtained by the method of the present invention are used for therapeutic purposes, it is possible to use the subject's (patient's) own serum. That is, culture using autologous serum becomes possible.
  • low serum conditions refers to conditions in which the medium contains 5% (v/v) or less of serum.
  • Cells are preferably cultured in a culture solution containing 2% (v/v) or less serum. More preferably, the cells are cultured in a culture solution containing 2% (v/v) or less of serum and 1 to 100 ng/mL of fibroblast growth factor-2 (bFGF).
  • bFGF fibroblast growth factor-2
  • the serum is not limited to fetal bovine serum, but human serum, sheep serum, etc. can be used.
  • human serum more preferably serum of the subject to be treated (ie, autologous serum) is used.
  • the medium a normal medium for animal cell culture can be used, provided that the amount of serum contained during use is low.
  • DMEM Dulbecco's modified Eagle's Medium
  • ⁇ -MEM Dainippon Pharmaceutical Co., Ltd., etc.
  • DMEM Ham's F12 mixed medium (1:1) (Dainippon Pharmaceutical Co., Ltd., etc.), Ham's F12 medium (Dainippon Pharmaceutical Co., Ltd., etc.), MCDB201 medium (Functional Peptide Institute), etc.
  • DMEM Dulbecco's modified Eagle's Medium
  • ⁇ -MEM Dainippon Pharmaceutical Co., Ltd., etc.
  • DMEM Ham's F12 mixed medium (1:1) (Dainippon Pharmaceutical Co., Ltd., etc.), Ham's F12 medium (Dainippon Pharmaceutical Co., Ltd., etc.), MCDB201 medium (Functional Peptide Institute), etc.
  • ADSCs By culturing with the above method, ADSCs can be selectively proliferated. Furthermore, since ADSCs that proliferate under the above culture conditions have high proliferative activity, the number of cells required for the present invention can be easily prepared by subculturing.
  • International Publication No. 2006/006692A1 pamphlet shows the characteristics of cells that selectively proliferate by culturing the SVF fraction in low serum. Subsequently, cells selectively proliferated by the above-described low serum culture are collected. The recovery operation may be performed in the same manner as in the case (3) above. By using the collected ADSCs, a cell population containing highly purified ADSCs can be obtained.
  • cells grown by culturing the SVF fraction in low serum are used.
  • Cells grown by low-serum culture may also be used as ADSCs. That is, in one embodiment of the present invention, cells that proliferate when a cell population obtained from adipose tissue is cultured in low serum are used as ADSCs.
  • the SVF fraction (containing adipose tissue-derived mesenchymal stem cells) may be used as is.
  • “used as is” means used in the present invention without undergoing selective culture.
  • the oocyte maturation promoter of the present invention contains as an active ingredient a filtrate (sometimes referred to as ADSC filtrate) obtained by filtering a crushed solution obtained by crushing ADSC.
  • ADSCs can be disrupted using a general cell disruption method. For example, processing methods using freeze-thaw (processing of freezing and then thawing), ultrasonic waves, a French press, a mortar, a homogenizer, glass beads, etc. can be used.
  • the cells to be subjected to the crushing treatment are not limited to live cells, but dead cells or damaged cells may also be used. Among the above-mentioned crushing treatments, freeze-thaw treatment and ultrasonic treatment are preferred.
  • freezing and thawing treatment is particularly preferable because it is simple, avoids contamination due to contact between machines and cells, and is hygienic.
  • crushing by freezing and thawing preferred conditions described below can be used.
  • disrupting by ultrasonication it is preferable to use unfrozen cells, but since the heat emitted from the equipment often causes protein denaturation and aggregation, cell suspension It is preferable to repeatedly perform short-term treatments while cooling in ice. Specifically, it is preferable to repeat crushing for 5 to 15 seconds with an output of 200 to 300 W and a pause of 10 to 30 seconds multiple times.
  • freezing and thawing is preferably repeated in order to sufficiently lyse cells, because cells expand and form ice crystals during the freezing process, and the ice crystals destroy the cells and are thawed during thawing.
  • Freezing conditions in the freeze-thaw treatment are not particularly limited, but it is preferable to freeze at -20 to -196°C, for example.
  • the melting conditions are also not particularly limited. For example, melting by leaving overnight in a refrigerator at 5°C or lower, melting in a hot water bath (for example, 35 to 40°C), melting at room temperature, etc. can be employed.
  • the concentration of the cell suspension used for disruption is preferably 1 ⁇ 10 4 to 1 ⁇ 10 7 ADSC cells/mL. More preferably, ADSC is 10 ⁇ 10 4 to 500 ⁇ 10 4 cells/mL.
  • the concentration is easy to work with, and a sufficient amount of filtrate can be obtained in one operation.
  • the oocyte maturation promoter of the present invention is prepared by filtering the cell disruption solution and using the obtained filtrate. Unwanted components can be removed by filter filtration. Furthermore, if a filter with an appropriate pore size is used, removal of unnecessary components and sterile filtration can be performed at the same time.
  • the material of the filter used for the filter treatment is not particularly limited, but cellulose acetate and metal filters, which do not easily adsorb proteins, are preferred. Particularly preferred is cellulose acetate.
  • the filter pore size is preferably 0.1 to 0.45 ⁇ m. More preferably 0.15 to 0.3 ⁇ m. If sterile filtration is also performed at the same time, a pore size of 0.2 ⁇ m is preferred.
  • the disruption solution may be centrifuged in advance, and the resulting supernatant may be filtered.
  • the resulting supernatant may be filtered.
  • nuclei and the like can be removed and clogging of the filter can be prevented, allowing efficient filtering.
  • centrifugation is performed in advance, it is preferable to centrifuge at 100 to 1,500 xg for 3 to 10 minutes after ADSC disruption.
  • the temperature during centrifugation is not particularly limited.
  • the filtrate is not used immediately for treatment, it can be stored frozen until use. Preferably, it is stored at -100 to -60°C. Generally, repeated freezing and thawing of cells tends to reduce cell activity and increase the number of dead cells, but the oocyte maturation promoter of the present invention is a filtrate and does not contain stem cells, so No matter how many times it is stored and thawed, its quality remains the same. In the present invention, the obtained filtrate is used as an oocyte maturation promoter. ⁇ Production method of oocyte maturation accelerator>
  • the oocyte maturation promoter in the present invention can be produced by the following steps.
  • the ADSC culture method, crushing treatment method, centrifugation treatment method, and filter filtration method were described above.
  • the oocyte maturation promoter of the present invention can also be used in the form of a composition when used for various purposes described below. Specifically, fetal serum may be included for the purpose of protecting cells as long as its effectiveness is not lost.
  • the obtained filtrate contains other pharmaceutically acceptable ingredients, such as carriers, excipients, disintegrants, buffers, emulsifiers, suspending agents, soothing agents, stabilizers, preservatives, preservatives, It may also be formulated into a formulation containing physiological saline or the like.
  • the oocyte maturation promoter of the present invention is a cell suspension containing ADSCs of 1 ⁇ 10 4 to 1 ⁇ 10 7 cells/mL, preferably a cell suspension containing ADSCs of 10 ⁇ 10 4 to 500 ⁇ 10 4 cells/mL. crush.
  • the resulting filtrate does not actually contain cells, but since the cell suspension at the above concentration is disrupted, the filtrate contains cells equivalent to 1 ⁇ 10 4 to 1 ⁇ 10 7 cells/mL. .
  • the preferable concentration of the cell suspension varies depending on the animal species, but the lower limit is preferably 10 ⁇ 10 4 cells/mL or more, 30 ⁇ 10 4 cells/mL or more, and 50 ⁇ 10 4 cells/mL or more.
  • the upper limit of the concentration of cell suspension is 450 ⁇ 10 4 cells/mL or less, 400 ⁇ 10 4 cells/mL or less, 380 ⁇ 10 4 cells/mL or less, 300 ⁇ 10 4 cells/mL or less, 250 ⁇ 10 4 cells/mL or less, preferably 200 ⁇ 10 4 cells/mL or less.
  • the concentration range of the cell suspension can be determined as any combination of these upper and lower limits.
  • the egg maturation promoter of the present invention is useful for in vitro fertilization, treatment and improvement of infertility caused by decreased egg function, livestock breeding, breeding and maintenance of species (e.g. maintenance of endangered species, maintenance of pet lines, etc.). crossbreeding) etc. Since the oocyte maturation promoter of the present invention can reduce the amount of ROS, it improves the effect of improving the quality of oocytes due to aging. Therefore, the oocyte maturation accelerator of the present invention not only matures oocytes, but can also be used as an oocyte quality improving agent, and is expected to have the effect of improving pregnancy rates in elderly human patients.
  • in vitro fertilization will be explained in detail among the uses of the oocyte maturation promoter of the present invention.
  • Examples of methods for promoting egg maturation include culturing eggs in the presence of the egg maturation promoter of the present invention.
  • the method for producing mature eggs includes culturing eggs in the presence of the egg maturation promoter of the present invention.
  • the eggs to be cultured may be eggs collected from an ovary or cryopreserved eggs.
  • the biological species of the egg and the biological species derived from the egg maturation promoter are preferably the same. Mention may be made of the human or non-human mammals mentioned above.
  • conditions suitable for culturing oocytes can be adopted, but for example, culturing in an environment of 37 to 40°C and 5% CO 2 is preferable.
  • the temperature close to the animal's body temperature.
  • a relatively high temperature 38-39°C
  • a temperature condition of around 37°C is preferable.
  • the medium the previously mentioned NCSU medium, Medium 199, etc. can be used. Two or more types of media may be used in combination. Components that can be added to the medium are also as described above.
  • cells are cultured using a culture container such as a culture dish.
  • the culturing method is not particularly limited as long as the oocytes can be exposed to the oocyte maturation accelerator, such as by culturing the oocyte maturation accelerator and the oocytes together.
  • the oocyte maturation accelerator such as by culturing the oocyte maturation accelerator and the oocytes together.
  • eggs can be placed, suspended, or immersed in a liquid medium containing an egg maturation promoter.
  • the order in which the oocyte maturation promoter and oocytes are added is not particularly limited, and they may be added at the same time and cultured, or may be added and cultured at regular intervals. Specifically, it is preferable to add eggs to a medium containing an egg maturation promoter.
  • the egg maturation promoter is a filtrate obtained by crushing a cell suspension with a concentration of 10 ⁇ 10 4 to 500 ⁇ 10 4 cells/mL.
  • the oocytes are preferably cultured for 1 hour to 4 days. If the culture period is too short, the eggs will not mature sufficiently, so 1 to 3 days is more preferable.
  • the eggs can be collected and used for in vitro fertilization, infertility treatment due to decreased egg function, livestock mating/breeding, breeding, species maintenance, etc. I can do it.
  • One embodiment of the in vitro fertilization method using the egg maturation promoter of the present invention includes (i) a method in which eggs treated with the egg maturation promoter coexist with sperm in vitro; (ii) in the presence of the egg maturation promoter.
  • One method is to allow eggs and sperm to coexist outside the body.
  • Coexistence here refers to the existence of two or more things together; for example, in (i), an egg maturation promoter is mixed with an egg to form a mature egg, and then sperm is added thereto; in (ii), , an egg maturation accelerator, a method of mixing eggs and sperm, etc.
  • Sperm used in the above-mentioned in vitro fertilization include sperm collected by sperm collection, intratesticular sperm collection, microscopic epididymal sperm collection, percutaneous epididymal sperm collection, sperm concentration washing method, etc. , sperm which have been pre-cultured, and sperm which have been thawed after cryopreservation.
  • the spermatozoa are diluted with the same medium and prepared at a concentration of 50 ⁇ 10 4 to 4000 ⁇ 10 4 sperm/mL.
  • the biological species of eggs and sperm are, in principle, the same.
  • the biological species from which eggs or sperm are derived include the aforementioned humans and non-human mammals.
  • the biological species of the egg and the sperm may be different as long as the combination allows fertilization.
  • Culture conditions for eggs and sperm, or mature eggs and sperm, can follow conventional methods for in vitro fertilization.
  • blastocysts In in vitro fertilization, when eggs matured by the egg maturation promoter of the present invention are used, fertilization becomes easier and the fertilization rate improves. When a fertilized egg develops normally, it undergoes repeated somatic cell division. Since the subsequent embryo differentiation is also good, the rate of development into morula and blastocyst is improved. Examples of uses for blastocysts include embryo transfer methods in which the grown blastocyst is injected into the uterus of a mammal. This leads to improved implantation and pregnancy rates. Note that embryo transfer is not limited to blastocyst transfer.
  • ADSC adipose tissue-derived stem cells
  • the cryopreserved cells in the tube were thawed in a 38.5°C water bath and transferred to a 15 mL centrifuge tube. Next, an appropriate amount of PBS (-) supplemented with 10% FCS was added and centrifuged washing was performed several times. After aspirating the supernatant, add 1 mL of selective culture solution (25 mL of Mesen PRO (Gibco) to 25 mL of 2% penicillin-streptomycin, 500 ⁇ L of Growth Supply (Gibco), and 250 ⁇ L of 200 mM L-Glutamin (Nacalai Tesque)).
  • selective culture solution 25 mL of Mesen PRO (Gibco) to 25 mL of 2% penicillin-streptomycin, 500 ⁇ L of Growth Supply (Gibco), and 250 ⁇ L of 200 mM L-Glutamin (Nacalai Tesque)
  • the cells were resuspended, seeded into flasks, and cultured in a CO 2 incubator (38.5° C., 5% CO 2 ) until confluent.
  • Confluent adipose stem cells were detached with 0.25% (w/v) trypsin/1 mmol/l EDTA and collected in a 15 mL centrifuge tube.
  • the inside of the flask was rinsed with PBS (-) supplemented with 10% FCS, and the collected cell solution and rinsing solution were mixed and centrifuged (200 g, 5 minutes). After centrifugation, the supernatant was removed by suction, and 300 ⁇ L of PBS (-) was added to resuspend.
  • the centrifuge tube was kept at 33-36°C, and after washing the ovary with physiological saline, COCs were collected along with the follicular fluid from a follicle with a diameter of approximately 1-5 mm on the ovarian surface.
  • the collected COCs were washed with Hepes-TLP-PVA, and only morphologically normal COCs with sufficient adhesion of cumulus cells were selected under a stereomicroscope (OLYMPUS) and used for experiments.
  • (2) Collection of bovine eggs Ovaries were collected from slaughtered fattened cows (Japanese Black cattle) aged 29 to 30 months. The procedure was the same as for pig oocyte collection, except that COCs were collected by suction along with follicular fluid from follicles approximately 2 to 8 mm in diameter on the ovarian surface. ⁇ Preparation of sperm>
  • the sperm vitality of the prepared sperm suspension was confirmed using an inverted microscope (OLYMPUS).
  • the most active forward movement is +++
  • the most active forward movement is ++
  • the slow forward movement is +
  • the turning or pendulum movement is ⁇
  • the ratio of each component to the total was calculated by substituting it into the following formula.
  • highly motile sperm specifically, a sperm suspension with a sperm vitality of 70 or more, was used in the subsequent experiments. ⁇ In vitro maturation medium>
  • Table 1 is the area of COCs after mature culture divided by the area of COCs before mature culture.
  • FIG. 1 is a diagram when 100 ⁇ 10 4 cells/mL of the pig-derived oocyte maturation promoter of the present invention was added.
  • A is COCs before in vitro maturation culture
  • B is COCs after in vitro maturation culture.
  • Table 1 shows the quantitative measurement results of the area of COCs in each added area.
  • Tables 1A and 1B show that the addition of the oocyte maturation promoter of the present invention increased the area of COCs and caused the cumulus cells to swell.
  • pigs there was a significant concentration-dependent increase especially in the 50 ⁇ 10 4 and 100 ⁇ 10 4 cells/mL categories.
  • cattle significantly higher values were shown compared to controls, especially in the 100 ⁇ 10 4 cells/mL and 200 ⁇ 10 4 cells/mL categories.
  • the oocytes were immersed in 500 ⁇ L of Hepes-TLP-PVA supplemented with 10 ⁇ L of 2',7'-Dichlorofluorecein diacetate (Sigma-Aldrich) and 5 ⁇ L of Cell Tracker Blue CMF 2 HC (Invitrogen), and placed in a CO 2 incubator. The cells were stained for 30 minutes. After washing the stained eggs with Hepes-TLP-PVA, fluorescence images were taken and recorded using a fluorescence microscope (OLYMPUS) equipped with a digital camera (Canon) using UV filters of 460 nm for ROS and 365 nm for GSH. .
  • OLEDUS fluorescence microscope
  • the addition of the oocyte maturation promoter of the present invention reduces activated oxygen species (ROS) and increases glutathione (GSH).
  • ROS activated oxygen species
  • GSH glutathione
  • the ROS content significantly decreased in a concentration-dependent manner in the 50 ⁇ 10 4 and 100 ⁇ 10 4 cells/mL categories
  • GSH content significantly increased in a concentration-dependent manner.
  • the ROS content showed significantly lower values in a concentration-dependent manner in the 100 ⁇ 10 4 cells/mL and 200 ⁇ 10 4 cells/mL categories.
  • the GSH content showed higher values in the categories of 100 ⁇ 10 4 cells/mL, 200 ⁇ 10 4 cells/mL, and 400 ⁇ 10 4 cells/mL compared to the control.
  • the oocyte maturation promoter of the present invention suppressed oxidative stress and improved the degree of oocyte cytoplasmic maturation.
  • the decrease in ROS content indicates that the decline in oocyte quality caused by oxidative stress was suppressed and improved.
  • Pig oocytes were selected by the method described above.
  • Stock A was prepared using the Mito Tracker® Red CMXRos (Invitrogen) kit according to the instructions.
  • CMXRos Invitrogen
  • To 1 ⁇ L of Stock A 149 ⁇ L of Amikamycin (100 mg titer) (Meiji Seika Pharma) supplemented Medium 199 (Gibco) was added and mixed.
  • 1850 ⁇ L of Medium 199 (Gibco) was mixed to create multiple 150 ⁇ L microdroplets.
  • Pig eggs selected from each addition group were washed with 0.3% (w/v) PVA-PBS and then transferred into the microdroplets in groups of about 10 eggs.
  • Type I has mitochondria distributed uniformly throughout the cytoplasm ( Figure 2A); Type II is the type in which mitochondria are distributed around the cell membrane and is also unevenly distributed inside the cell membrane ( Figure 2B). Type III cells were defined as those in which mitochondria were distributed only around the cell membrane (Fig. 2C), and the distribution of mitochondria was evaluated by calculating the respective proportions.
  • Pig oocytes were selected by the method described above.
  • Stock A was prepared using MitoProbe (registered trademark) JC-1 Assay Kit (Invitrogen) according to the instructions.
  • 1092.5 ⁇ L of Medium 199 (Gibco) supplemented with amikamycin (100 mg titer) (Meiji Seika Pharma) was added to 57.5 ⁇ L of Stock A and mixed to produce multiple 80 ⁇ L microdroplets.
  • Pig eggs selected from each addition group were washed with 0.3% (w/v) PVA-PBS and then transferred into the microdroplets in groups of about 10 eggs. Thereafter, the cells were allowed to stand for 50 minutes in a CO 2 incubator, and the mitochondria were stained.
  • the addition of the oocyte maturation promoter of the present invention significantly increased mitochondrial activity compared to the control, especially in the 100 ⁇ 10 4 cells/mL category.
  • Mitochondrial activity is known to be important for the maturation and quality of pig oocytes and subsequent embryonic development, and the results in Table 4 demonstrate that the oocyte maturation promoter of the present invention improves mitochondrial function. I understand. Furthermore, since it is known that low mitochondrial activity causes apoptosis, improvement of mitochondrial activity by the oocyte maturation promoter of the present invention also leads to suppression of early apoptosis.
  • the oocyte maturation promoter of the present invention matures the cytoplasm of the oocyte, thereby sufficiently maintaining the subsequent embryonic development potential, which in turn contributes to improving the fertilization rate, implantation rate, and pregnancy rate. Guessed. ⁇ In vitro fertilization>
  • COCs were cultured for in vitro maturation in an in vitro maturation medium supplemented with various concentrations of the oocyte maturation promoter of the present invention. , performed in vitro fertilization. Specifically, several dozen immature eggs (pigs: 30 to 40, cows: 20 to 35) are added to 200 ⁇ L of in vitro maturation medium supplemented with 20 ⁇ L of the oocyte maturation promoter of the present invention at various concentrations. and cultured in a CO 2 incubator (38.5°C, 5% CO 2 ) (pig: 42 hours, cow: 22 hours).
  • Hepes-TLP-PVA supplemented with 0.1% (w/v) hyaluronidase (Sigma-Aldrich) was sprinkled onto the COCs, and the remaining cumulus cells were peeled off using a glass pipette, leaving about 2 or 3 layers of cumulus cells.
  • wash multiple times with 80 ⁇ L of microdroplets of IVF medium (PFM, Research Institute for the Functional Peptides, Co., Ltd.), and add 90 to 180 ⁇ L of IVF for each group of 20 to 40 eggs.
  • microdroplets of medium for use. 10 to 20 ⁇ L of sperm suspension was added thereto for insemination.
  • the final sperm concentration was adjusted to 1.0 ⁇ 10 6 animals/mL for pigs and 2.0 ⁇ 10 7 animals/mL for cows. Thereafter, the eggs were co-cultured in a CO 2 incubator (38.5° C., 5% CO 2 ) for 6 hours after insemination, and then the eggs were transferred to a development medium and cultured for 6 hours. Thereafter, the in vitro fertilization status, maturation rate, and normal fertilization rate were evaluated according to the following method, and a comparative study was performed in each addition period. Analysis was performed using a one-way analysis of variance test method, and a multiple comparison test was performed using the Tukey-Kramer method for comparison between each addition interval. (1) Confirmation of IVF status
  • the maturation rate, sperm penetration rate, normal fertilization rate, and fertilization efficiency increased particularly in the 50 ⁇ 10 4 and 100 ⁇ 10 4 cells/mL categories.
  • the polyspermic fertilization rate decreased particularly in the 50 ⁇ 10 4 and 100 ⁇ 10 4 cells/mL categories.
  • the maturation rate and normal fertilization rate particularly increase in the 100 ⁇ 10 4 cells/mL and 200 ⁇ 10 4 cells/mL, especially in the 200 ⁇ 10 4 cells/mL category. mL had the highest value.
  • Cumulus cell secreted factors include important factors that induce meiosis in oocytes, and are said to be involved in the progression of nuclear maturation of oocytes during the in vitro maturation culture process.
  • Table 1 when the oocyte maturation promoting agent of the present invention is added, the swelling of cumulus cells is remarkable, so it is likely that many maturation-related factors are secreted from the cumulus cells by the oocyte maturation promoting agent of the present invention. It is presumed that this stimulated the nuclear maturation of oocytes. Similarly, it is speculated that the swelling of cumulus cells contributed to the increased sperm penetration rate.
  • fertilization efficiency can be improved by using eggs to which the oocyte maturation promoter of the present invention has been added. It can be said that it is natural that it will increase.
  • the cleavage rate and subsequent blastocyst formation status were measured by the following method. Specifically, in vitro fertilization was performed on pigs and cows using the above method, and two days after insemination, the cleavage status was observed under an inverted microscope (OLYMPUS). The rate was calculated.
  • Table 6A The results of the cleavage rate and cleavage status in pigs up to the 4-cell stage are shown in Table 6A, the formation status from then on to the blastocyst stage is shown in Table 6B, and the results of the apoptotic cell ratio are shown in Table 6C.
  • Table 7A shows the cleavage status and blastocyst formation rate up to the 2-cell stage in cattle, and Table 7B shows the results of the total number of blastocyst cells and the percentage of apoptotic cells.
  • the differentiation rate of ICM and TE in blastocysts when the oocyte maturation promoting agent of the present invention was added was evaluated by the following method.
  • in vitro fertilization was performed using the above method, and the morphologically recognized blastocysts obtained after 7 days of insemination were immersed in 6 ⁇ L of 0.5% (w/v) pronase solution. , dissolved the zona pellucida. Washed with Hepes-TLP-PVA, added reaction solution A (10 ⁇ L of Anti-Pig Serum antibody produced in rabbit (Sigma-Aldrich) and 50 ⁇ L of PBS(-)), and stained in a CO 2 incubator for 1 hour. .
  • reaction solution B (5 ⁇ L of Complement sera from guinea pig (Sigma-Aldrich) and 50 ⁇ L of PI-Hoechst 33342-PBS stock) was added, and the mixture was incubated again in the CO 2 incubator for 1 hour. Stained. After staining, the cells were washed with Hepes-TLP-PVA, and fluorescence images were recorded using a 365 nm UV filter using a fluorescence microscope (Olympus) equipped with a digital camera.
  • the stained nuclei were counted, and those with 32 or more cells were considered to be blastocysts, and the total number of blastocyst cells was calculated.
  • ICM cells stained with blue fluorescence and TE cells stained with red fluorescence were each counted, and the proportion of ICM cells and TE cells relative to the total number of blastocyst cells was calculated.
  • in vitro fertilization was performed using the above method, and the morphologically recognized blastocysts obtained 7 days after insemination were incubated in 500 ⁇ L of 4% (w/v) paraformaldehyde. It was immersed and fixed for 30 minutes at room temperature and protected from light.
  • the cells were immersed in primary antibody CDX2 (D11D10) Rabbit mAb (Cell Signaling Technology, Danvers, MA, USA) diluted 1:50 with 0.3% PVA-PBS at 4°C for 24 hours in the dark.
  • primary antibody reaction the embryos were washed several times with 0.3% PVA-PBS, and the secondary antibody Anti-rabbit IgG (H+L), F (ab')2 Fragment ( The cells were immersed in Alexa Fluor (registered trademark) 555 Conjugate; Cell Signaling Technology) solution at 4°C for 1 hour in the dark, to stain TE cells (red fluorescence).
  • the nuclei were stained by immersion in 0.3% PBS-PVA containing 10 ⁇ g/mL Hoechst 33342 at 4 °C in the dark for 15 minutes, mounted on a glass slide, covered with a cover glass, and covered with a top coat. did. Fluorescence images of the prepared whole-mount specimens were recorded and observed using a fluorescence microscope (OLYMPUS) equipped with a digital camera (Canon) using UV filters of 365 nm for Hoechst 33342 and 546 nm for Alexa Fluor (registered trademark) 555. .
  • the addition of the oocyte maturation promoter of the present invention increases the cell number in all cases.
  • the total cell number, ICM cell number, and ICM cell percentage significantly increased, especially at concentrations of 50 ⁇ 10 4 cells/mL and 100 ⁇ 10 4 cells/mL.
  • the total cell number was significantly higher than the control, especially in the 200 ⁇ 10 4 cells/mL category, and the ICM and TE cell counts were also higher than the control in all experimental categories. It became the value.
  • the results of the ratio of the number of ICM cells to the total number of blastocyst cells showed a tendency for the rate of differentiation into ICM to increase in all experimental categories.
  • oocyte maturation can be promoted, thereby improving the fertilization rate.
  • the present invention is effective for use in crossbreeding and breeding of livestock (improving the success rate and efficiency of embryo transfer), breeding and maintenance of species (for example, maintenance of endangered species, maintenance of pet lines, or crossbreeding), etc. . It is also effective in treating infertility caused by functional decline such as poor egg maturation. It can also improve the quality of aged eggs.

Abstract

Provided is an oocyte maturation promoter that can be used in the fields of animal husbandry and assisted reproductive technology, and to uses thereof. An oocyte maturation promoter according to the present invention contains a filtrate of a disrupted adipose tissue-derived stem cell solution., as an active ingredient.

Description

卵子成熟促進剤及びその用途Oocyte maturation accelerator and its uses
 本発明は、畜産分野及び生殖補助医療分野で利用可能な技術に関する。具体的には、卵子成熟促進剤及びその用途に関する。 The present invention relates to technology that can be used in the field of animal husbandry and assisted reproductive medicine. Specifically, the present invention relates to an oocyte maturation promoter and its uses.
 畜産分野及び生殖補助医療分野において、体外で精子と卵子を受精させ(体外受精)、その後受精卵(胚)を他の雌畜の子宮に移植する技術が用いられている。卵子の質や状態は、受精卵の品質に影響を及ぼすため、移植成績を左右する重要な因子である。
 特に、未成熟卵子は精子と受精できないため、卵子の成熟は、体外受精成功の必要条件である。しかしながら、卵子の状態は超音波やホルモン値で知ることはできず、採卵することにより初めて知ることが出来るため、卵の成熟不良による受精障害は体外受精でしばしば遭遇する事例である。そのため、妊娠成功率を高める方法の一つとして、採取した卵子の成熟方法が模索されている。
BACKGROUND ART In the field of livestock farming and assisted reproductive medicine, a technique is used in which sperm and eggs are fertilized outside the body (in vitro fertilization), and the fertilized eggs (embryos) are then implanted into the uterus of another female animal. The quality and condition of the oocytes are important factors that affect the transplant results, as they affect the quality of the fertilized eggs.
In particular, since immature eggs cannot be fertilized by sperm, egg maturation is a necessary condition for successful in vitro fertilization. However, the condition of the egg cannot be determined by ultrasound or hormone levels, but only by collecting the egg, and fertilization problems due to poor egg maturation are often encountered during in vitro fertilization. Therefore, methods for maturing collected eggs are being explored as a way to increase the pregnancy success rate.
 ところで、本発明者らは、脂肪組織由来幹細胞がフィーダー細胞の役割を有し、生殖プロセスにも活性的に作用するとの仮説の下で研究を行い、脂肪組織由来幹細胞やその破砕物がin vitroにおいて精子及び卵子を活性化する作用を有することを発見し特許出願を行っている(特許文献1~3参照)。例えば特許文献1には脂肪組織由来幹細胞や骨髄由来幹細胞等の細胞と精子を共培養することで精子を活性化する方法が記載されており、例えば特許文献2には、脂肪組織由来幹細胞と卵子を共培養することで、卵子を活性化することが記載されている。また、例えば特許文献3には、脂肪組織由来幹細胞等の破砕物を有効成分とする精子活性化剤が記載されている。 By the way, the present inventors conducted research under the hypothesis that adipose tissue-derived stem cells have the role of feeder cells and also act actively in reproductive processes, and found that adipose tissue-derived stem cells and their crushed products were in vitro. discovered that it has the effect of activating sperm and eggs, and has filed a patent application (see Patent Documents 1 to 3). For example, Patent Document 1 describes a method of activating sperm by co-cultivating sperm with cells such as adipose tissue-derived stem cells or bone marrow-derived stem cells; It has been described that eggs can be activated by co-culturing them. Furthermore, for example, Patent Document 3 describes a sperm activator containing a crushed product such as adipose tissue-derived stem cells as an active ingredient.
特開2015-82987号公報JP2015-82987A 特開2016―7161号公報Unexamined Japanese Patent Publication No. 2016-7161 国際公開第2018/038180号International Publication No. 2018/038180
 畜産分野及び生殖補助医療分野においては、受胎効率や妊娠成功率を上げることが求められている。
 例えばウシ等の畜産分野において、優良な遺伝形質を持った子畜を多数生産することは畜産物の付加価値の向上につながり、畜産経営における収益性も向上する。ウシ以外の畜産、例えばブタにおいては体外受精の件数は近年増加しているものの、ウシの実施例に比べるとまだ少ない。ブタにおいては、2つ以上の精子が卵細胞質と融合してしまう多精子受精が高率で起こるため、正常な受精である単一受精率の向上に結びつかない。そしてヒトにおいて体外受精の成功率の向上は、我が国の超少子高齢化に歯止めをかける一つの手段となり得ると期待される。このように畜産分野及び生殖補助医療分野においては受胎率や受精率を向上させるための方法が検討されている。
In the fields of livestock farming and assisted reproductive medicine, there is a need to increase conception efficiency and pregnancy success rates.
For example, in the field of livestock farming such as cattle, producing a large number of offspring with excellent genetic traits leads to an increase in the added value of livestock products and improves the profitability of livestock farming. Although the number of cases of in vitro fertilization in livestock other than cows, such as pigs, has increased in recent years, it is still small compared to cases of in vitro fertilization in cattle. In pigs, polyspermic fertilization, in which two or more sperm fuse with the egg cytoplasm, occurs at a high rate, so this does not lead to an improvement in the single fertilization rate, which is normal fertilization. Improving the success rate of in vitro fertilization in humans is expected to be a means of halting Japan's extremely low birthrate and aging population. In this way, methods for improving conception rates and fertilization rates are being studied in the livestock industry and assisted reproductive medicine fields.
 しかしながら、特許文献1や2に記載された発明においては、脂肪組織由来幹細胞と精子や卵子を共培養することにより、精子や卵子を活性化しているが、いずれも細胞を用いることから、使用するタイミングを見計らって細胞培養を開始する必要があり、調整や操作の簡便性に欠けた。また、生きた細胞を用いることによる有害事象の発生も懸念される。特許文献3に記載された発明においては脂肪組織由来幹細胞の破砕物を用いた精子の活性化については記載されているが、卵子については記載されていない。 However, in the inventions described in Patent Documents 1 and 2, sperm and eggs are activated by co-culturing them with adipose tissue-derived stem cells, but since both use cells, It was necessary to start cell culture at the right time, and it lacked ease of adjustment and operation. There are also concerns about the occurrence of adverse events due to the use of living cells. The invention described in Patent Document 3 describes the activation of spermatozoa using a crushed adipose tissue-derived stem cell, but does not describe the activation of eggs.
 上記課題を解決すべく、本発明者らは脂肪組織由来幹細胞破砕液の濾液に着目し検討を重ねた結果、in vitroにおいて卵子の成熟を促進させるという、効果があることを見出し、本発明を完成するに至った。すなわち、本発明は、以下の構成を有する。 In order to solve the above problems, the present inventors focused on the filtrate of adipose tissue-derived stem cell disruption solution and as a result of repeated studies, they discovered that it has the effect of promoting egg maturation in vitro. It was completed. That is, the present invention has the following configuration.
[1]脂肪組織由来幹細胞破砕液の濾液を有効成分として含有する、卵子成熟促進剤。
[2]体外受精に使用される、[1]に記載の卵子成熟促進剤。
[3]前記脂肪組織由来幹細胞の生物種と、卵子の生物種が同一である、[1]又は[2]に記載の卵子成熟促進剤。
[4]前記脂肪組織由来幹細胞の生物種が非ヒト哺乳動物である、[1]に記載の卵子成熟促進剤。
[5] 前記脂肪組織由来幹細胞の生物種がヒトである、[1]に記載の卵子成熟促進剤。
[6] コントロールを1としたときに、ROS値が1未満である、[1]に記載の卵子成熟促進剤。
[7]以下の工程を含む、卵子成熟促進剤の製造方法。
(1)脂肪組織由来幹細胞を破砕する工程。
(2)工程(1)で得られた破砕液又は前記破砕液を遠心処理して得られた上清を、フィルター処理し、濾液を得る工程。
(3)工程(2)で得られた濾液を製剤化する工程。
[8][1]に記載の卵子成熟促進剤存在下で、卵子を培養する、成熟卵子の製造方法。
[9][1]に記載の卵子成熟促進剤で処理した卵子を、精子と生体外で共存させる、体外受精方法。
[10][1]に記載の卵子成熟促進剤存在下で、卵子と精子を生体外で共存させる、体外受精方法。
[11][8]又は[9]に記載の体外受精方法により生成した受精卵を培養し、成育した胚盤胞を哺乳動物の子宮に注入する、胚移植方法。
[12][1]に記載の卵子成熟促進剤の卵子の質の改善剤としての使用。
[1] An oocyte maturation promoter containing a filtrate of adipose tissue-derived stem cell disruption solution as an active ingredient.
[2] The oocyte maturation promoter according to [1], which is used for in vitro fertilization.
[3] The oocyte maturation promoter according to [1] or [2], wherein the biological species of the adipose tissue-derived stem cells and the biological species of the eggs are the same.
[4] The oocyte maturation promoter according to [1], wherein the biological species of the adipose tissue-derived stem cells is a non-human mammal.
[5] The oocyte maturation promoter according to [1], wherein the biological species of the adipose tissue-derived stem cells is human.
[6] The oocyte maturation promoter according to [1], which has a ROS value of less than 1 when the control is set to 1.
[7] A method for producing an oocyte maturation promoter, including the following steps.
(1) A step of disrupting adipose tissue-derived stem cells.
(2) A step of filtering the crushed liquid obtained in step (1) or the supernatant obtained by centrifuging the crushed liquid to obtain a filtrate.
(3) A step of formulating the filtrate obtained in step (2).
[8] A method for producing mature eggs, which comprises culturing eggs in the presence of the egg maturation promoter according to [1].
[9] An in vitro fertilization method, in which an egg treated with the egg maturation promoter according to [1] is allowed to coexist with sperm in vitro.
[10] An in vitro fertilization method in which eggs and sperm are allowed to coexist in vitro in the presence of the egg maturation promoter according to [1].
[11] An embryo transfer method comprising culturing a fertilized egg produced by the in vitro fertilization method described in [8] or [9], and injecting the grown blastocyst into the uterus of a mammal.
[12] Use of the oocyte maturation accelerator according to [1] as an oocyte quality improving agent.
 本発明の卵子成熟促進剤は、卵子を成熟させることができる。より具体的には、体外受精においては、採卵した卵子を用いるが、採卵で採れる卵子は未成熟卵子であるため、それらを精子と媒精しても受精できない。本発明の卵子成熟促進剤を用いれば、未成熟卵子を成熟させることができるため、受精プロセスが進行しやすくなる。受精率が向上し、さらに、受精卵の品質や胚盤胞への発生能が促進されるため、着床率、ひいては妊娠率が向上する。なお、本明細書において成熟とは卵子の核成熟及び細胞質成熟をいう。
 また、本発明の卵成熟促進剤は濾液を用いるため、細胞投与による有害事象を回避できる。例えば、一般的に細胞投与する場合、投与する細胞は生きているため、病原体が混ざっていても不活性化や除去がほとんどできず感染リスクがある。
 さらに、細胞投与する場合は、患者のスケジュールに合わせて細胞を培養する必要がある。一般的には凍結融解した細胞は治療には用いない。細胞の活性が落ちたり、細胞が死んだりすることがあるためである。一方、本発明の卵子成熟促進剤は細胞を含まない液体であるため、凍結保存による保存が可能であり、必要なときに融解することで治療に用いることができる。したがって、使用するタイミングを見計らって細胞培養を行う必要も、治療に必要な数まで細胞を増やす必要もないため、調製や取扱が容易であり、臨床上の利点が極めて大きい。
The egg maturation promoter of the present invention can mature eggs. More specifically, in vitro fertilization uses collected eggs, but since the eggs collected during egg collection are immature eggs, they cannot be fertilized even if they are inseminated with sperm. By using the oocyte maturation promoter of the present invention, immature oocytes can be matured, making it easier for the fertilization process to proceed. Fertilization rates are improved, and the quality of fertilized eggs and their ability to develop into blastocysts are promoted, resulting in improved implantation rates and, ultimately, pregnancy rates. In this specification, maturation refers to nuclear maturation and cytoplasmic maturation of an egg.
Furthermore, since the oocyte maturation promoting agent of the present invention uses a filtrate, adverse events caused by cell administration can be avoided. For example, when cells are generally administered, the cells being administered are alive, so even if pathogens are present, they can hardly be inactivated or removed, posing a risk of infection.
Furthermore, when administering cells, it is necessary to culture the cells according to the patient's schedule. Frozen and thawed cells are generally not used for treatment. This is because cell activity may decrease or cells may die. On the other hand, since the oocyte maturation promoter of the present invention is a cell-free liquid, it can be stored by cryopreservation and can be used for treatment by thawing it when necessary. Therefore, there is no need to time the cell culture for use or increase the number of cells required for treatment, and therefore preparation and handling are easy, and the clinical advantage is extremely large.
卵丘細胞-卵母細胞複合体(COCs)の面積比較試験において、成熟培養前のCOCsの面積(A)と、培養後のCOCsの面積(B)In the area comparison test of cumulus cell-oocyte complexes (COCs), the area of COCs before maturation culture (A) and the area of COCs after culture (B) 卵子におけるミトコンドリアの分布状況(A:ミトコンドリアが細胞質全体に均一に分布しているI型、B:ミトコンドリアが細胞膜周辺に分布し、内側にも不均一であるが分布しているII型、C:ミトコンドリアが細胞膜周辺にのみ分布しているIII型)Mitochondria distribution status in the egg (A: Type I, in which mitochondria are distributed uniformly throughout the cytoplasm, B: Type II, in which mitochondria are distributed around the cell membrane and also unevenly distributed inside the cell, C: Type III, in which mitochondria are distributed only around the cell membrane)
 本発明は、卵子成熟促進剤に関する。より具体的には、脂肪組織由来幹細胞の破砕濾液を有効成分として含有する。なお、本明細書において「有効成分として含有する」とは、治療をする上で有効量の脂肪組織由来幹細胞の破砕液の濾液を含有することを意味する。
<卵子成熟促進剤>
TECHNICAL FIELD The present invention relates to an oocyte maturation promoter. More specifically, it contains a crushed filtrate of adipose tissue-derived stem cells as an active ingredient. In addition, in this specification, "containing as an active ingredient" means containing the filtrate of the crushed solution of adipose tissue-derived stem cells in an effective amount for treatment.
<Egg maturation accelerator>
 本発明において成熟卵子とは、核成熟及び細胞質成熟した卵子をいう。成熟卵子は、精子との受精が可能であり、受精後、胚盤胞まで成育できる。なお、未成熟卵子とは、精子と媒精しても受精が不可能な卵子をいう。
 本発明の卵子成熟促進剤を用いれば卵子の成熟を促進させることができるため、成熟卵子を得られやすい。成熟卵子は精子との受精が可能であるため、受精率を向上させることができ、さらには受精後の発生にも好影響を及ぼす。ひいては着床率、妊娠率が向上する。
 本発明において、卵子が成熟しているか否かの判断は、以下の少なくとも1つの方法によって卵子の成熟促進が確認できれば、その卵子は「成熟した」と判断できる。中でも活性酸素種(ROS)は卵子の老化にも関係するため、特に高齢患者における妊娠率の指標ともいえる。
(1)卵丘細胞-卵母細胞複合体(COCs)の面積比較
In the present invention, a mature egg refers to an egg that has undergone nuclear and cytoplasmic maturation. A mature egg can be fertilized with a sperm and, after fertilization, can develop into a blastocyst. Note that an immature egg is an egg that cannot be fertilized even if it is inseminated with a sperm.
Since the oocyte maturation promoter of the present invention can be used to promote oocyte maturation, it is easy to obtain mature oocytes. Mature eggs can be fertilized with sperm, which can improve the fertilization rate and also have a positive effect on development after fertilization. This in turn improves the implantation rate and pregnancy rate.
In the present invention, whether or not an egg is mature can be determined as "matured" if acceleration of egg maturation can be confirmed by at least one of the following methods. Among them, reactive oxygen species (ROS) are also related to the aging of eggs, so they can be considered an indicator of pregnancy rates, especially in elderly patients.
(1) Area comparison of cumulus cell-oocyte complexes (COCs)
 受精において、卵丘細胞層は重要な因子である。一般的に、卵子が未成熟な場合は卵丘細胞も小さく、卵子が成熟するにつれ、卵丘細胞は増殖・膨化して大きくなる。卵丘細胞の膨化具合は卵細胞質成熟の指標とされているため、本明細書においては、COCsの面積を測定し、コントロールよりも面積が増加していたものは、卵子が「成熟した」と判断する。
 具体的な試験方法を示す。本発明の卵子成熟促進剤を添加した成熟培地ドロップ(10μL)を作製する。未成熟卵子を各ドロップに1個ずつ入れ、成熟培養開始前にCOCsをデジタルカメラで撮影した後、CO2インキュベーター(37~40℃、5%CO2。以下同じ。)にて培養する。培養後のCOCsを同様に撮影して、成熟培養前後のCOCsの面積を比較する。成熟培養後のCOCsの面積を成熟培養前のCOCsの面積で割ったものをAとしたときに、Aがコントロールよりも増加していたものは、卵子が「成熟した」と判断する。コントロールに対してAが1.05倍以上になると好ましく、1.10倍以上になるとより好ましい。また、コントロールに対してAが2.00倍以下であると好ましい。
In fertilization, the cumulus cell layer is an important factor. Generally, when the egg is immature, the cumulus cells are small, and as the egg matures, the cumulus cells grow and expand. Since the degree of swelling of cumulus cells is considered to be an indicator of oocyte maturation, in this specification, we measured the area of COCs, and if the area increased compared to the control, it was determined that the oocyte had matured. to decide.
The specific test method is shown. Prepare a maturation medium drop (10 μL) containing the oocyte maturation promoter of the present invention. One immature oocyte is placed in each drop, and the COCs are photographed with a digital camera before maturation culture begins, and then cultured in a CO 2 incubator (37-40°C, 5% CO 2 . The same applies hereinafter). The COCs after culture are photographed in the same way, and the area of COCs before and after maturation culture is compared. When A is the area of COCs after maturation culture divided by the area of COCs before maturation culture, if A is increased compared to the control, the oocyte is judged to be "mature". It is preferable that A is 1.05 times or more compared to the control, and more preferably 1.10 times or more. Further, it is preferable that A is 2.00 times or less as compared to the control.
 成熟培地は卵子の成熟培養において一般的に用いられている培地であれば特に限定されないが、NCSU37培地やNCSU23培地等のNCSU培地、Medium199、ダルベッコ変法イーグル培地(D-MEM) (ナカライテスク株式会社、シグマ社、Gibco社等)、DMEM/F12(SIGMA社、Gibco社等) 、合成卵管液(SOF) 等を用いることができる。二種以上の培地を併用することにしてもよい。必要であれば培地に、血清、血漿、血清アルブミン、ポリビニルアルコール(PVA) 、ポリビニルピロリドン(PVP) 、抗生物質、2-メルカプトエタノール、アミノ酸、ビタミン、無機塩等を添加してもよい。培養は、培養皿等の培養容器を用いて細胞を培養することが好ましい。
 培養条件は、卵子の成熟培養において一般的に用いられている条件あればよい。例えば37℃~40℃、5%CO2の環境下が好ましい。
 撮影に供するカメラはCOCsの面積を適切に測れるのであれば特に限定されないが、倒立顕微鏡にデジタルカメラを設置して撮影することが好ましい。
(2) 活性酸素種 (ROS) 及びグルタチオン (GSH) 含有量の評価
The maturation medium is not particularly limited as long as it is a medium commonly used for oocyte maturation culture, but includes NCSU medium such as NCSU37 medium and NCSU23 medium, Medium 199, Dulbecco's modified Eagle medium (D-MEM) (Nacalai Tesque stock) DMEM/F12 (SIGMA, Gibco, etc.), synthetic fallopian tube fluid (SOF), etc. can be used. Two or more types of media may be used in combination. If necessary, serum, plasma, serum albumin, polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), antibiotics, 2-mercaptoethanol, amino acids, vitamins, inorganic salts, etc. may be added to the medium. The cells are preferably cultured using a culture container such as a culture dish.
The culture conditions may be those commonly used in oocyte maturation culture. For example, an environment of 37°C to 40°C and 5% CO 2 is preferable.
The camera used for photographing is not particularly limited as long as it can appropriately measure the area of COCs, but it is preferable to take photographs by installing a digital camera on an inverted microscope.
(2) Evaluation of reactive oxygen species (ROS) and glutathione (GSH) content
 卵母細胞から卵子への発育には酸化ストレスが深くかかわっていると言われている。酸化ストレスを引き起こす活性酸素は、様々な疾病をもたらす要因になることが知られており、活性酸素の蓄積による酸化ストレスは、特に老化の原因となる。卵子が老化すると、本来であれば綺麗な円形である卵子が、楕円形やいびつな形になることがあり、受精しにくくなる。また、受精しても細胞分裂しにくくなったり、胚の成長が止まったりすることもある。特に30代後半以降の女性における妊娠率の低下は、卵子の老化によることが多い。また、還元型グルタチオンは活性酸素毒性から卵子を守るとも言われており、これらの量は卵子の細胞質成熟の指標として用いられている。そこで本明細書においては、活性酸素種(ROS)及び還元型グルタチオン(GSH)量を測定し、以下の要件を満たすときに、卵子が「成熟した」と判断する。
 具体的な試験方法を示す。本発明の卵子成熟促進剤を添加した成熟培地200μLに未成熟卵子30~40個を1群として導入し、培養する。成熟培養後に0.1 % (w/v) ヒアルロニダーゼ添加Hepes-Tyrode-Lactate-Pyruvate-polyvinylalcohol (以下、Hepes-TLP-PVAともいう。) を加えてピペッティングにより卵丘細胞を剥離し、第一極体の放出が確認された卵子を選抜する。
 それを10μLの2‘,7’-Dichlorofluorecein diacetate及び5μLのCell Tracker Blue CMF2HCを添加した500 μLのHepes-TLP-PVAに浸漬し、CO2インキュベーター内で30分間染色する。染色した卵子を洗浄後、蛍光顕微鏡で、ROSは460 nm、GSHは365 nmの各UVフィルターを用いて蛍光画像を撮影記録する。コントロールを「1」としたときに、ROSは1未満に、又はGSHは1より大きくなっていたときに卵子が「成熟した」と判断する。ROSは0.9以下が好ましく、0.8以下がより好ましく、0.7以下が更に好ましい。また、ROSは0.1以上が好ましく、0.2以上が更に好ましい。GSHは1.0以上が好ましく、1.1以上がより好ましく、1.3以上が更に好ましい。また、GSHは2.0以下が好ましく、1.8以下が好ましい。培地や培養条件は、COCsの面積比較の際の条件を援用できる。
(3)ミトコンドリアの分布状況
Oxidative stress is said to be deeply involved in the development of oocytes into eggs. Active oxygen that causes oxidative stress is known to be a factor that causes various diseases, and oxidative stress caused by accumulation of active oxygen is particularly a cause of aging. As the egg ages, the normally perfectly round egg may become oval or distorted, making it difficult for it to be fertilized. Additionally, even after fertilization occurs, cells may become difficult to divide or the embryo may stop growing. The decline in pregnancy rates, especially for women in their late 30s and above, is often due to the aging of eggs. It is also said that reduced glutathione protects eggs from active oxygen toxicity, and the amount thereof is used as an indicator of cytoplasmic maturation of eggs. Therefore, in this specification, the amount of reactive oxygen species (ROS) and reduced glutathione (GSH) is measured, and when the following requirements are met, it is determined that the egg has "matured".
The specific test method is shown. 30 to 40 immature eggs are introduced as a group into 200 μL of a maturation medium supplemented with the oocyte maturation promoter of the present invention and cultured. After maturation culture, 0.1% (w/v) Hepes-Tyrode-Lactate-Pyruvate-polyvinylalcohol (hereinafter also referred to as Hepes-TLP-PVA) supplemented with hyaluronidase was added, and the cumulus cells were detached by pipetting to remove the first polar body. Oocytes confirmed to have been released are selected.
Immerse it in 500 μL of Hepes-TLP-PVA supplemented with 10 μL of 2',7'-Dichlorofluorecein diacetate and 5 μL of Cell Tracker Blue CMF 2 HC, and stain for 30 minutes in a CO 2 incubator. After washing the stained eggs, record fluorescence images using a fluorescence microscope using UV filters of 460 nm for ROS and 365 nm for GSH. When the control is set as "1", the egg is judged to be "mature" when ROS is less than 1 or GSH is greater than 1. ROS is preferably 0.9 or less, more preferably 0.8 or less, and even more preferably 0.7 or less. Further, ROS is preferably 0.1 or more, and more preferably 0.2 or more. GSH is preferably 1.0 or more, more preferably 1.1 or more, and even more preferably 1.3 or more. Further, GSH is preferably 2.0 or less, and preferably 1.8 or less. For the medium and culture conditions, the conditions used when comparing the areas of COCs can be used.
(3) Distribution of mitochondria
 ミトコンドリアは生体内でエネルギーを作り出す細胞小器官であり、卵子の老化にも関与しているとされる。ミトコンドリアの複製は、卵子の成熟後、桑実期胚まで抑制されているため、成熟卵子にあらかじめ存在しているミトコンドリアの品質が初期胚発生には重要である。そこで本発明者らは、ミトコンドリアの分布を評価することは、細胞質成熟を予測する指標として用いることができると考えた。本明細書においては、ミトコンドリアの分布状況を評価し、以下の要件を満たすときに卵子が「成熟した」と判断する。
 Sha Wei et al. (2010) “Effect of gonadotropins on oocyte maturation in vitro: an animal model.” Fertil Steril, Mar. 15;93(5):1650-61 に記載の方法を参考にする。具体的には、Mito Tracker(登録商標)Red CMXRos (Invitrogen)のキットを使い、指示書に従い調製したStock A 1 μLに対してアミカマイシン(100 mg 力価) (Meiji Seikaファルマ) 添加 Medium 199 (Gibco) 149 μLを入れて混和する。さらに、Medium 199 (Gibco) 1850 μLを混和し、150 μLの微小滴を複数作製する。卵子の選抜は、先述した方法により行う。
Mitochondria are organelles that produce energy in living organisms, and are thought to be involved in the aging of eggs. Mitochondrial replication is suppressed after oocyte maturation until the morula stage, so the quality of mitochondria already present in mature oocytes is important for early embryonic development. Therefore, the present inventors thought that evaluating the distribution of mitochondria could be used as an index for predicting cytoplasmic maturation. In this specification, the distribution of mitochondria is evaluated, and an egg is determined to be "mature" when the following requirements are met.
Refer to the method described in Sha Wei et al. (2010) “Effect of gonadotropins on oocyte maturation in vitro: an animal model.” Fertil Steril, Mar. 15;93(5):1650-61. Specifically, using the Mito Tracker® Red CMXRos (Invitrogen) kit, amikamycin (100 mg titer) (Meiji Seika Pharma) was added to 1 μL of Stock A prepared according to the instructions Medium 199 ( Gibco) Add 149 μL and mix. Furthermore, mix 1850 μL of Medium 199 (Gibco) to create multiple 150 μL microdroplets. Egg selection is performed by the method described above.
 選抜卵子を洗浄後、約10個を1群として前記微小滴に移した後、CO2インキュベーターにて30分間静置し、ミトコンドリアを染色する。その後卵子を洗浄し、共焦点レーザースキャン顕微鏡で、Rhodamineフィルターを用いて撮影し、画像解析する。
 ミトコンドリアが細胞質全体に均一に分布しているものをI型、ミトコンドリアが細胞膜周辺に分布し、内側にも不均一であるが分布しているものをII型 、ミトコンドリアが細胞膜周辺にのみ分布しているものをIII型とする。供試卵数に対するI型の割合を算出し、コントロールのそれを「1」としたときに、その割合が1より大きければ卵子が「成熟した」と判断する。1.3倍以上であれば好ましく、1.5倍以上であればより好ましい。また、前記割合が5倍以下であれば好ましい。
 (4)ミトコンドリアの活性評価
After washing the selected eggs, about 10 eggs are transferred into the microdroplet as a group, and then left standing in a CO 2 incubator for 30 minutes to stain mitochondria. The eggs are then washed and photographed using a confocal laser scanning microscope using a Rhodamine filter for image analysis.
Type I is when mitochondria are distributed evenly throughout the cytoplasm, type II is when mitochondria are distributed around the cell membrane and unevenly distributed inside the cell membrane, and type II is when mitochondria are distributed only around the cell membrane. The ones that exist are classified as type III. The ratio of type I to the number of test eggs is calculated, and when that of the control is set as "1", if the ratio is greater than 1, the eggs are judged to have "matured". It is preferably 1.3 times or more, and more preferably 1.5 times or more. Further, it is preferable that the ratio is 5 times or less.
(4) Mitochondrial activity evaluation
 ミトコンドリア活性は、ブタの卵母細胞の成熟や品質及びその後の胚発生に重要であることが知られていることから、本発明者らは、ミトコンドリアの活性を評価することは、細胞質成熟を予測する指標として用いることができると考えた。本明細書においては、ミトコンドリアの活性を評価し、以下の要件を満たすときに、卵子が「成熟した」と判断する。
 Lee SK et al. (2014) “The association of mitochondrial potential and copy number with pig oocyte maturation and developmental potential.”, J Reprod Dev. 2014 Apr 24;60(2):128-35に記載の方法を参考にする。具体的には、MitoProbe(登録商標) JC-1 Assay Kit (Invitrogen)のキットを使い、指示書に従い調製したStock A 57.5 μLに対してアミカマイシン(100 mg 力価) (Meiji Seika ファルマ)添加Medium 199 (Gibco)を1092.5 μL入れて混和し、80 μLの微小滴を複数作製する。卵子の選抜は、先述した方法により行う。
 選抜卵子を洗浄後、約10個を1群として前記微小滴に移した後、CO2インキュベーターにて50分間静置し、ミトコンドリアを染色する。その後卵子を洗浄後、共焦点レーザースキャン顕微鏡で、Rhodamineフィルター及びFITCフィルターを用いて撮影し、画像解析する。高い活性を示すredの蛍光強度を、低い活性を示すgreenの蛍光強度で割ることで膜電位差を算出し、ミトコンドリア活性とする。コントロールの値を「1」としたときに、ミトコンドリア活性がそれより高ければ卵子が「成熟した」と判断する。1.01以上あると好ましく、1.02以上あるとより好ましい。また、前記値が1.10以下が好ましく、1.07以下がより好ましい。
<脂肪組織由来幹細胞>
Since mitochondrial activity is known to be important for the maturation and quality of pig oocytes and subsequent embryonic development, we believe that assessing mitochondrial activity can predict cytoplasmic maturation. We thought that it could be used as an indicator for In this specification, mitochondrial activity is evaluated, and an egg is determined to be "mature" when the following requirements are met.
Based on the method described in Lee SK et al. (2014) “The association of mitochondrial potential and copy number with pig oocyte maturation and developmental potential.”, J Reprod Dev. 2014 Apr 24;60(2):128-35 do. Specifically, using MitoProbe (registered trademark) JC-1 Assay Kit (Invitrogen), amikamycin (100 mg titer) (Meiji Seika Pharma) was added to 57.5 μL of Stock A prepared according to the instructions. Add 1092.5 μL of 199 (Gibco) and mix to create multiple 80 μL microdroplets. Egg selection is performed by the method described above.
After washing the selected eggs, about 10 eggs are transferred into the microdroplet as a group, and then left standing in a CO 2 incubator for 50 minutes to stain mitochondria. After washing the eggs, the eggs are photographed using a confocal laser scanning microscope using a Rhodamine filter and a FITC filter, and the images are analyzed. The membrane potential difference is calculated by dividing the fluorescence intensity of red, which shows high activity, by the fluorescence intensity of green, which shows low activity, and is used as mitochondrial activity. When the control value is set to 1, if the mitochondrial activity is higher than that value, the egg is judged to be ``mature.'' It is preferably 1.01 or more, and more preferably 1.02 or more. Further, the value is preferably 1.10 or less, more preferably 1.07 or less.
<Adipose tissue-derived stem cells>
 間葉系幹細胞である、脂肪組織由来幹細胞(Adipose-derived stem cells: ASC、Adipose-derived regeneration cells: ADSC、Adipose-derived mesenchymal stem cells: AT-MSC, AD-MSC等と呼ばれる。以下、単に「ADSC」ということがある。)は、体性幹細胞の一種であり、脂肪組織に含まれる幹細胞である。脂肪組織由来幹細胞も自己複製能及び多分化能を有しており、脂肪だけではなく、骨、軟骨、神経、筋肉、心筋、血管、肝細胞、膵島細胞等、多様な細胞に分化することが可能であることが知られている。
 本発明の発明者らは、脂肪組織由来幹細胞それ自体ではなく、前記幹細胞の破砕液の濾液に、卵子の成熟を促進させる効果があることを見出した。
Adipose-derived stem cells (ASC, Adipose-derived regeneration cells: ADSC, Adipose-derived mesenchymal stem cells: AT-MSC, AD-MSC, etc.) are mesenchymal stem cells.Hereinafter, simply referred to as “ (sometimes referred to as "ADSC") is a type of somatic stem cell, and is a stem cell contained in adipose tissue. Adipose tissue-derived stem cells also have self-renewal and multipotency, and can differentiate into a variety of cells, including not only fat but also bone, cartilage, nerves, muscle, cardiac muscle, blood vessels, hepatocytes, and pancreatic islet cells. It is known that it is possible.
The inventors of the present invention have discovered that the filtrate of the disrupted solution of the stem cells, rather than the adipose tissue-derived stem cells themselves, has the effect of promoting egg maturation.
 本発明の卵子成熟促進剤に用いるADSCの由来、即ち生物種は特に限定されない。使用する卵子の由来、及び本発明の方法によって得られる卵子(成熟卵子) の用途を考慮して生物種を決定するとよい。所望の効果、即ち卵子が成熟される限りにおいて、卵子成熟促進剤に使用するADSCの生物種と、卵子の生物種とは異なっていてもよいが、同一が好ましい。免疫拒絶の問題を回避するために、卵子成熟促進剤を適用する対象(レシピエント)と同一の個体からADSCを採取して卵子成熟促進剤とすることが好ましい。 The origin of the ADSC used in the oocyte maturation promoter of the present invention, that is, the biological species, is not particularly limited. The biological species may be determined in consideration of the origin of the eggs used and the use of the eggs (mature eggs) obtained by the method of the present invention. As long as the desired effect is achieved, that is, the egg is matured, the biological species of ADSC used in the egg maturation promoter and the biological species of the egg may be different, but they are preferably the same. In order to avoid the problem of immune rejection, it is preferable to collect ADSCs from the same individual as the subject (recipient) to which the egg maturation promoter is applied and use them as the egg maturation promoter.
 ADSCの由来(生物種)としては、ヒト又は非ヒト哺乳動物が挙げられる。非ヒト哺乳動物としては、ウシ、ブタ、ウマ、ヤギ、ヒツジ、サル、イヌ、ネコ、マウス、ラット、モルモット、ハムスター等が挙げられる。効率的に畜産業を営めるため、非ヒト哺乳動物の中でもウシ、ブタ、ウマ、ヤギ又はヒツジが好ましい。また、卵子の由来(生物種)としては、ヒト、非ヒト哺乳動物、鳥類、魚類等が挙げられる。非ヒト哺乳動物としては、先述した動物が挙げられる。
<脂肪組織由来幹細胞の調製方法>
The origin (species) of ADSCs includes humans and non-human mammals. Non-human mammals include cows, pigs, horses, goats, sheep, monkeys, dogs, cats, mice, rats, guinea pigs, hamsters, and the like. Among non-human mammals, cows, pigs, horses, goats, and sheep are preferable because livestock farming can be carried out efficiently. In addition, examples of the origin (species) of eggs include humans, non-human mammals, birds, fish, and the like. Non-human mammals include the animals mentioned above.
<Method for preparing adipose tissue-derived stem cells>
 本発明においてADSCは、多能性を維持している限りにおいて、当該体性幹細胞の培養(継代培養を含む)により得られる細胞もADSCに該当するものとする。通常ADSCは、生体から分離された脂肪組織を出発材料とし、細胞集団(脂肪組織に由来するADSC以外の細胞を含む)を構成する細胞として「単離された状態」に調製される。ここでの「単離された状態」とは、その本来の環境(即ち生体の一部を構成した状態)から取り出された状態、即ち人為的操作によって本来の存在状態と異なる状態で存在していることを意味する。
 なお、本発明におけるADSCの調製は常法に従えばよい。ADSCは各種用途に広く用いられているため、当業者であれば文献や成書を参考にして調製することもできる。公的な細胞バンクから分譲された細胞や市販の細胞等を用いることにしてもよい。以下、細胞の調製方法の例として、脂肪組織由来幹細胞の調製法(一例)を説明する。
In the present invention, ADSCs also include cells obtained by culturing (including subculture) the somatic stem cells, as long as they maintain pluripotency. Typically, ADSCs are prepared in an "isolated state" using adipose tissue separated from a living body as a starting material and as cells constituting a cell population (including cells other than ADSCs derived from adipose tissue). The "isolated state" here refers to a state that has been removed from its original environment (i.e., a state that forms part of a living body), that is, a state that exists in a state different from its original state of existence due to artificial manipulation. It means there is.
Incidentally, ADSC in the present invention may be prepared according to a conventional method. Since ADSC is widely used for various purposes, those skilled in the art can also prepare it with reference to literature and books. Cells distributed from public cell banks or commercially available cells may also be used. Hereinafter, as an example of the cell preparation method, a method (one example) for preparing adipose tissue-derived stem cells will be described.
 ADSCは、脂肪基質からの幹細胞の分離、洗浄、濃縮、培養等の工程を経て調製される。ADSCの調製法は特に限定されない。例えば公知の方法(Fraser JK et al.(2006), Fat tissue: an under appreciated source of stem cells for biotechnology. Trends in Biotechnology; Apr; 24(4): 150-4. Epub 2006 Feb 20. Review.; Zuk PA et al.(2002), Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell; Dec;13(12):4279-95.; Zuk PA et al.(2001), Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering; Apr; 7(2): 211-28.等が参考になる)に従ってADSCを調製することができる。また、脂肪組織からADSCを調製するための装置(例えば、Celution(登録商標)装置(サイトリ・セラピューティクス社、米国、サンディエゴ))も市販されており、当該装置を利用してADSCを調製することにしてもよい。当該装置を利用すると、脂肪組織より、ADSCを含む細胞集団を分離できる(K. Lin. Et al. Cytotherapy(2008)Vol. 10, No.4, 417-426)。以下、ADSCの調製法の具体例を示す。
(1)脂肪組織からの細胞集団の調製
ADSCs are prepared through steps such as separating stem cells from adipose matrix, washing, concentrating, and culturing. The method for preparing ADSC is not particularly limited. For example, known methods (Fraser JK et al. (2006), Fat tissue: an under appreciated source of stem cells for biotechnology. Trends in Biotechnology; Apr; 24(4): 150-4. Epub 2006 Feb 20. Review.; Zuk PA et al.(2002), Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell; Dec;13(12):4279-95.; Zuk PA et al.(2001), Multilineage cells from ADSCs can be prepared according to human adipose tissue: implications for cell-based therapies. Tissue Engineering; Apr; 7(2): 211-28. Additionally, devices for preparing ADSCs from adipose tissue (e.g., Celution® device (Cytori Therapeutics, Inc., San Diego, USA)) are commercially available, and ADSCs can be prepared using this device. You can decide. Using this device, a cell population including ADSCs can be separated from adipose tissue (K. Lin. Et al. Cytotherapy (2008) Vol. 10, No. 4, 417-426). A specific example of the method for preparing ADSC is shown below.
(1) Preparation of cell populations from adipose tissue
 脂肪組織はヒト及び非ヒト哺乳動物から切除、吸引等の手段で採取される。非ヒト哺乳動物は先述した動物であればよく、ペット動物、家畜、実験動物は問わない。また、生物の年齢、性別は特に限定されない。なお、免疫拒絶の問題を回避するため、卵子成熟促進剤を適用する対象(レシピエント)と同一の個体から脂肪組織(自己脂肪組織)を採取することが好ましい。但し、同種の動物の脂肪組織(他家)又は異種動物の脂肪組織の使用を妨げるものではない。
 なお、ヒトにおいては、美容整形の際の脂肪吸引手術により吸引される組織片や、外科手術等の際に生体から切除される組織に含まれる切除脂肪組織から、ADSCを調製することもできる。ADSCは太い血管の周囲に存在するため脂肪吸引液よりも切除脂肪組織から多く得ることができる。一方、脂肪吸引液から幹細胞を調製したほうが、手術跡が小さく済みドナーの負担が小さい。
Adipose tissue is collected from humans and non-human mammals by excision, suction, or other means. The non-human mammal may be any of the animals mentioned above, including pet animals, livestock, and experimental animals. Furthermore, the age and sex of the creature are not particularly limited. In order to avoid the problem of immune rejection, it is preferable to collect adipose tissue (autologous adipose tissue) from the same individual as the subject (recipient) to whom the oocyte maturation promoter is applied. However, this does not preclude the use of adipose tissue from animals of the same species (allogeneic) or adipose tissue from animals of different species.
In addition, in humans, ADSCs can also be prepared from tissue pieces aspirated during liposuction surgery during cosmetic surgery, or from excised adipose tissue contained in tissue excised from a living body during surgery or the like. Because ADSCs exist around large blood vessels, more can be obtained from excised adipose tissue than from lipoaspirate fluid. On the other hand, preparing stem cells from liposuction fluid results in smaller surgical scars and less burden on the donor.
 脂肪組織として皮下脂肪、内臓脂肪、筋肉内脂肪、筋肉間脂肪を例示できる。この中でも皮下脂肪は局所麻酔下で非常に簡単に採取できるため、採取の際のドナーへの負担が少なく、好ましい細胞源といえる。通常は一種類の脂肪組織を用いるが、二種類以上の脂肪組織を併用することも可能である。また、複数回に分けて採取した脂肪組織(同種の脂肪組織でなくてもよい)を混合し、以降の操作に使用してもよい。 Examples of adipose tissue include subcutaneous fat, visceral fat, intramuscular fat, and intermuscular fat. Among these, subcutaneous fat can be harvested very easily under local anesthesia, so the burden on the donor during collection is low, and it can be said to be a preferable cell source. Usually one type of adipose tissue is used, but it is also possible to use two or more types of adipose tissue in combination. Alternatively, adipose tissue collected in multiple batches (not necessarily the same type of adipose tissue) may be mixed and used for subsequent operations.
 脂肪組織の採取量は、ドナーの種類や組織の種類、或いは必要とされるADSCの量を考慮して定めることができ、例えば0.5~500g程度である。但し、ドナーへの負担を考慮して一度に採取する量を約10~20g以下にすることが好ましい。採取した脂肪組織は、必要に応じてそれに付着した血液成分の除去及び細片化を経た後、以下の酵素処理に供される。なお、脂肪組織を適当な緩衝液や培養液中で洗浄することによって血液成分を除去することができる。 The amount of adipose tissue to be collected can be determined by taking into account the type of donor, the type of tissue, or the amount of ADSC required, and is, for example, about 0.5 to 500 g. However, considering the burden on the donor, it is preferable to limit the amount collected at one time to about 10 to 20 g or less. The collected adipose tissue is subjected to the following enzymatic treatment after removing blood components adhering thereto and cutting it into pieces as necessary. Note that blood components can be removed by washing the adipose tissue in an appropriate buffer or culture solution.
 酵素処理は、脂肪組織をコラゲナーゼ、トリプシン、ディスパーゼ等の酵素によって消化することにより行う。このような酵素処理は当業者に既知の手法及び条件により実施すればよい(例えば、R. I. Freshney, Culture of Animal Cells: A Manual of Basic Technique, 4th Edition, A John Wiley & Sones Inc., Publication参照)。以上の酵素処理によって得られた細胞集団は、多能性幹細胞、内皮細胞、間質細胞、血球系細胞、及び/又はこれらの前駆細胞等を含む。細胞集団を構成する細胞の種類や比率等は、使用した脂肪組織の由来や種類に依存する。
(2)沈降細胞集団(SVF画分:stromal vascular fractions)の取得
Enzyme treatment is performed by digesting adipose tissue with enzymes such as collagenase, trypsin, and dispase. Such enzymatic treatments may be carried out using techniques and conditions known to those skilled in the art (see, for example, R. I. Freshney, Culture of Animal Cells: A Manual of Basic Technique, 4th Edition, A John Wiley & Sones Inc., Publication). . The cell population obtained by the above enzyme treatment includes pluripotent stem cells, endothelial cells, stromal cells, hemocyte cells, and/or their precursor cells. The type and ratio of cells constituting the cell population depend on the origin and type of adipose tissue used.
(2) Obtaining sedimented cell populations (SVF fractions: stromal vascular fractions)
 細胞集団は続いて遠心処理に供される。遠心処理による沈渣を沈降細胞集団(本明細書では「SVF画分」ともいう)として回収する。遠心処理の条件は、細胞の種類や量によって異なるが、例えば1~10分間、800~1,500rpmである。なお、遠心処理に先立ち、酵素処理後の細胞集団を濾過等に供し、その中に含まれる酵素未消化組織等を除去しておくことが好ましい。
 ここで得られた「SVF画分」はADSCを含む。なお、SVF画分を構成する細胞の種類や比率等は、使用した脂肪組織の由来や種類、酵素処理の条件等に依存する。また、国際公開第2006/006692A1号パンフレットにはSVF画分の特徴が示されている。
(3)接着性細胞(ADSC)の選択培養及び細胞の回収
The cell population is then subjected to centrifugation. The sediment obtained by centrifugation is collected as a sedimented cell population (herein also referred to as "SVF fraction"). The conditions for centrifugation vary depending on the type and amount of cells, but are, for example, 800 to 1,500 rpm for 1 to 10 minutes. Note that, prior to centrifugation, it is preferable to subject the enzyme-treated cell population to filtration or the like to remove enzyme-undigested tissue and the like contained therein.
The "SVF fraction" obtained here contains ADSCs. Note that the type and ratio of cells constituting the SVF fraction depend on the origin and type of adipose tissue used, the conditions of enzyme treatment, etc. Further, the characteristics of the SVF fraction are shown in International Publication No. 2006/006692A1 pamphlet.
(3) Selective culture of adherent cells (ADSC) and cell collection
 SVF画分にはADSCの他、他の細胞成分(内皮細胞、間質細胞、血球系細胞、これらの前駆細胞等)が含まれる。そこで本発明の一態様では以下の選択培養を行い、SVF画分から不要な細胞成分を除去する。そして、その結果得られた細胞をADSCとして本発明に用いる。
 まず、SVF画分を適当な培地に懸濁した後、培養皿に播種し、一晩培養する。培地交換によって浮遊細胞(非接着性細胞)を除去する。その後、適宜培地交換(例えば2~4日に一度)をしながら培養を継続する。必要に応じて継代培養を行う。継代数は特に限定されないが、多能性と増殖能力の維持の観点からは過度に継代を繰り返すことは好ましくない(5継代程度までに留めておくことが好ましい)。なお、培養用の培地には、通常の動物細胞培養用の培地を使用することができる。例えば、Dulbecco's modified Eagle's Medium(DMEM)(日水製薬株式会社等)、α-MEM(大日本製薬株式会社等)、DMEM:Ham'sF12混合培地(1:1)(大日本製薬株式会社等)、Ham'sF12medium(大日本製薬株式会社等)、MCDB201培地(機能性ペプチド研究所)等を使用することができる。血清(ウシ胎仔血清、ヒト血清、羊血清等)又は血清代替物(Knockout serum replacement(KSR)等)を添加した培地を使用することにしてもよい。血清又は血清代替物の添加量は例えば5~30%(v/v)の範囲内で設定可能である。
In addition to ADSCs, the SVF fraction contains other cellular components (endothelial cells, stromal cells, hemocyte cells, their precursor cells, etc.). Therefore, in one embodiment of the present invention, the following selective culture is performed to remove unnecessary cell components from the SVF fraction. The resulting cells are then used as ADSCs in the present invention.
First, the SVF fraction is suspended in an appropriate medium, then seeded onto a culture dish and cultured overnight. Remove floating cells (non-adherent cells) by replacing the medium. Thereafter, culture is continued while changing the medium as appropriate (for example, once every 2 to 4 days). Perform subculture as necessary. Although the number of passages is not particularly limited, from the viewpoint of maintaining pluripotency and proliferation ability, it is not preferable to repeat passages excessively (it is preferable to limit passages to about 5 passages). Note that a normal culture medium for animal cell culture can be used as the culture medium. For example, Dulbecco's modified Eagle's Medium (DMEM) (Nissui Pharmaceutical Co., Ltd., etc.), α-MEM (Dainippon Pharmaceutical Co., Ltd., etc.), DMEM:Ham's F12 mixed medium (1:1) (Dainippon Pharmaceutical Co., Ltd., etc.) , Ham's F12 medium (Dainippon Pharmaceutical Co., Ltd., etc.), MCDB201 medium (Functional Peptide Institute), etc. can be used. A medium supplemented with serum (fetal bovine serum, human serum, sheep serum, etc.) or serum replacement (Knockout serum replacement (KSR), etc.) may also be used. The amount of serum or serum substitute added can be set, for example, within the range of 5 to 30% (v/v).
 以上の操作によって接着性細胞が選択的に生存・増殖する。続いて、増殖した細胞を回収する。回収操作は常法に従えばよく、例えば酵素処理(トリプシンやディスパーゼ処理)後の細胞をセルスクレイパーやピペット等で剥離することによって容易に回収することができる。また、市販の温度感受性培養皿等を用いてシート培養した場合は、酵素処理をせずにそのままシート状に細胞を回収することも可能である。このようにして回収した細胞(ADSC)を用いることにより、ADSCを高純度で含有する細胞集団を調製することができる。
(4)低血清培養(低血清培地での選択的培養)及び細胞の回収
Adhesive cells selectively survive and proliferate by the above operations. Subsequently, the proliferated cells are collected. The recovery operation may be carried out in accordance with a conventional method, and for example, the cells can be easily recovered by peeling off the cells after enzyme treatment (trypsin or dispase treatment) with a cell scraper, pipette, or the like. Furthermore, when sheet culture is performed using a commercially available temperature-sensitive culture dish, it is also possible to collect the cells directly in the form of a sheet without enzyme treatment. By using the cells (ADSC) collected in this way, a cell population containing ADSC in high purity can be prepared.
(4) Low serum culture (selective culture in low serum medium) and cell collection
 本発明の一態様では、上記(3)の操作の代わりに又は上記(3)の操作の後に以下の低血清培養を行う。そして、その結果得られた細胞をADSCとして本発明に用いる。
 低血清培養では、SVF画分((3)の後にこの工程を実施する場合には(3)で回収した細胞を用いる)を低血清条件下で培養し、目的の多能性幹細胞(即ちADSC)を選択的に増殖させる。低血清培養法では用いる血清が少量で済むことから、本発明の方法で得られたADSCを治療目的に使用する場合、対象(患者)自身の血清を使用することが可能となる。即ち、自己血清を用いた培養が可能となる。ここでの「低血清条件下」とは5%(v/v)以下の血清を培地中に含む条件である。好ましくは2%(v/v)以下の血清を含む培養液中で細胞培養する。更に好ましくは、2%(v/v)以下の血清と1~100ng/mLの線維芽細胞増殖因子-2(bFGF)を含有する培養液中で細胞培養する。
In one aspect of the present invention, the following low serum culture is performed instead of or after the operation (3) above. The resulting cells are then used as ADSCs in the present invention.
In low-serum culture, the SVF fraction (if this step is performed after (3), use the cells collected in (3)) is cultured under low-serum conditions, and the desired pluripotent stem cells (i.e., ADSCs) are cultured under low-serum conditions. ) to selectively grow. Since the low-serum culture method requires only a small amount of serum, when ADSCs obtained by the method of the present invention are used for therapeutic purposes, it is possible to use the subject's (patient's) own serum. That is, culture using autologous serum becomes possible. Here, "low serum conditions" refers to conditions in which the medium contains 5% (v/v) or less of serum. Cells are preferably cultured in a culture solution containing 2% (v/v) or less serum. More preferably, the cells are cultured in a culture solution containing 2% (v/v) or less of serum and 1 to 100 ng/mL of fibroblast growth factor-2 (bFGF).
 血清はウシ胎仔血清に限られるものではなく、ヒト血清や羊血清等を用いることができる。本発明の方法で得られた活性化精子をヒトの治療に使用する場合には、好ましくはヒト血清、更に好ましくは治療対象の血清( 即ち自己血清) を用いる。
 培地は、使用の際に含有する血清量が低いことを条件として、通常の動物細胞培養用の培地を使用することができる。例えば、Dulbecco's modified Eagle's Medium(DMEM)(日水製薬株式会社等)、α-MEM(大日本製薬株式会社等)、DMEM: Ham's F12混合培地(1:1)(大日本製薬株式会社等)、Ham's F12 medium(大日本製薬株式会社等)、MCDB201培地(機能性ペプチド研究所)等を使用することができる。
The serum is not limited to fetal bovine serum, but human serum, sheep serum, etc. can be used. When the activated sperm obtained by the method of the present invention is used for human treatment, preferably human serum, more preferably serum of the subject to be treated (ie, autologous serum) is used.
As the medium, a normal medium for animal cell culture can be used, provided that the amount of serum contained during use is low. For example, Dulbecco's modified Eagle's Medium (DMEM) (Nissui Pharmaceutical Co., Ltd., etc.), α-MEM (Dainippon Pharmaceutical Co., Ltd., etc.), DMEM: Ham's F12 mixed medium (1:1) (Dainippon Pharmaceutical Co., Ltd., etc.), Ham's F12 medium (Dainippon Pharmaceutical Co., Ltd., etc.), MCDB201 medium (Functional Peptide Institute), etc. can be used.
 以上の方法で培養することによって、ADSCを選択的に増殖させることができる。また、上記の培養条件で増殖するADSCは高い増殖活性を持つので、継代培養によって、本発明に必要とされる数の細胞を容易に調製することができる。なお、国際公開第2006/006692A1号パンフレットには、SVF画分を低血清培養することによって選択的に増殖する細胞の特徴が示されている。
 続いて、上記の低血清培養によって選択的に増殖した細胞を回収する。回収操作は上記(3)の場合と同様に行えばよい。回収したADSCを用いることにより、ADSCを高純度で含有する細胞集団を得ることができる。
By culturing with the above method, ADSCs can be selectively proliferated. Furthermore, since ADSCs that proliferate under the above culture conditions have high proliferative activity, the number of cells required for the present invention can be easily prepared by subculturing. In addition, International Publication No. 2006/006692A1 pamphlet shows the characteristics of cells that selectively proliferate by culturing the SVF fraction in low serum.
Subsequently, cells selectively proliferated by the above-described low serum culture are collected. The recovery operation may be performed in the same manner as in the case (3) above. By using the collected ADSCs, a cell population containing highly purified ADSCs can be obtained.
 以上の方法では、SVF画分を低血清培養して増殖した細胞が利用に供されることになるが、脂肪組織から得た細胞集団を直接(SVF画分を得るための遠心処理を介することなく)低血清培養することによって増殖した細胞をADSCとして用いることにしてもよい。即ち本発明の一態様では、脂肪組織から得た細胞集団を低血清培養したときに増殖した細胞をADSCとして用いる。また、選択的培養(上記(3)及び(4))によって得られる多能性幹細胞ではなく、SVF画分(脂肪組織由来間葉系幹細胞を含有する)をそのまま用いることにしてもよい。なお、ここでの「そのまま用いて」とは、選択的培養を経ることなく本発明に用いること、を意味する。
<脂肪組織由来幹細胞破砕液の濾液の調製方法>
In the above method, cells grown by culturing the SVF fraction in low serum are used. Cells grown by low-serum culture may also be used as ADSCs. That is, in one embodiment of the present invention, cells that proliferate when a cell population obtained from adipose tissue is cultured in low serum are used as ADSCs. Alternatively, instead of the pluripotent stem cells obtained by selective culture ((3) and (4) above), the SVF fraction (containing adipose tissue-derived mesenchymal stem cells) may be used as is. Here, "used as is" means used in the present invention without undergoing selective culture.
<Method for preparing filtrate of adipose tissue-derived stem cell disruption solution>
 本発明の卵子成熟促進剤は、ADSCを破砕処理した破砕液を濾過して得られた濾液(ADSC濾液と言うこともある)を有効成分として含有する。
 ADSCの破砕は、一般的な細胞破砕方法を用いることができる。例えば、凍結融解(凍結した後融解する処理)、超音波、フレンチプレス、乳鉢、ホモジナイザー、ガラスビーズ等を用いた処理方法を利用することができる。また、破砕処理に供する細胞として、生細胞に限らず、死細胞や障害を受けた細胞を用いることにしてもよい。上記破砕処理の中でも凍結融解処理及び超音波処理が好ましい。特に凍結融解処理は簡便であり、また、機械と細胞の接触による汚染を回避でき、衛生的である点から特に好ましい。凍結融解にて破砕する場合は、後述する好ましい条件を用いることができる。超音波処理にて破砕する場合は、凍結していない細胞を用いて破砕処理することが好ましいが、機器から発せられる熱の影響により、しばしばタンパク質の変性や凝集が引き起こされるため、細胞懸濁液を氷中で冷却しながら短時間の処理を繰り返し行うことが好ましい。具体的には、200~300Wの出力で5~15秒間の破砕と、10~30秒間の休止を複数回繰り返すことが好ましい。
The oocyte maturation promoter of the present invention contains as an active ingredient a filtrate (sometimes referred to as ADSC filtrate) obtained by filtering a crushed solution obtained by crushing ADSC.
ADSCs can be disrupted using a general cell disruption method. For example, processing methods using freeze-thaw (processing of freezing and then thawing), ultrasonic waves, a French press, a mortar, a homogenizer, glass beads, etc. can be used. Furthermore, the cells to be subjected to the crushing treatment are not limited to live cells, but dead cells or damaged cells may also be used. Among the above-mentioned crushing treatments, freeze-thaw treatment and ultrasonic treatment are preferred. In particular, freezing and thawing treatment is particularly preferable because it is simple, avoids contamination due to contact between machines and cells, and is hygienic. When crushing by freezing and thawing, preferred conditions described below can be used. When disrupting by ultrasonication, it is preferable to use unfrozen cells, but since the heat emitted from the equipment often causes protein denaturation and aggregation, cell suspension It is preferable to repeatedly perform short-term treatments while cooling in ice. Specifically, it is preferable to repeat crushing for 5 to 15 seconds with an output of 200 to 300 W and a pause of 10 to 30 seconds multiple times.
 なお、凍結融解は、凍結過程で細胞が膨張し氷晶が形成され、その氷晶が細胞を破壊することで解凍時に溶解されるため、十分に溶解させるためには繰り返し行うことが好ましい。具体的には、凍結融解処理を1~5回繰り返すことが好ましい。凍結融解処理における凍結の条件は特に限定されないが、例えば、-20~-196℃で凍結することが好ましい。融解の条件も特に限定されない。例えば、5℃以下の冷蔵庫にて一晩おくことでの融解、湯煎(例えば35~40℃)での融解、室温での融解等を採用することができる。
 破砕に用いる細胞懸濁液濃度は、ADSCが1×104 ~1×107 cells/mLが好ましい。ADSCが10×104~500×104 cells/mLがより好ましい。作業しやすい濃度であり、1回の作業で十分量の濾液を取ることができる。
Note that freezing and thawing is preferably repeated in order to sufficiently lyse cells, because cells expand and form ice crystals during the freezing process, and the ice crystals destroy the cells and are thawed during thawing. Specifically, it is preferable to repeat the freezing and thawing process 1 to 5 times. Freezing conditions in the freeze-thaw treatment are not particularly limited, but it is preferable to freeze at -20 to -196°C, for example. The melting conditions are also not particularly limited. For example, melting by leaving overnight in a refrigerator at 5°C or lower, melting in a hot water bath (for example, 35 to 40°C), melting at room temperature, etc. can be employed.
The concentration of the cell suspension used for disruption is preferably 1×10 4 to 1×10 7 ADSC cells/mL. More preferably, ADSC is 10×10 4 to 500×10 4 cells/mL. The concentration is easy to work with, and a sufficient amount of filtrate can be obtained in one operation.
 本発明の卵子成熟促進剤は前記細胞破砕液をフィルター濾過し、得られた濾液を用いる。フィルター濾過によって不要成分を除去することができる。また、適切な孔径のフィルターを使用すれば、不要成分の除去と滅菌濾過を同時に行うことができる。フィルター処理に使用するフィルターの材質は特に限定されないが、タンパク質が吸着しにくいセルロースアセテート、金属製のフィルターが好ましい。特にセルロースアセテートが好ましい。フィルター孔径は0.1~0.45μmが好ましい。0.15~0.3μmが更に好ましい。滅菌濾過も同時に行う場合は0.2μmの孔径が好ましい。
 なお、破砕液を事前に遠心処理して、得られた上清をフィルター処理してもよい。破砕液をフィルター処理前に遠心処理することにより、核等が取り除かれ、フィルターの目詰まりを防ぐことができるため、効率良くフィルター処理をすることが可能となる。事前に遠心処理する場合は、ADSC破砕後、100~1,500×gで3~10分間遠心することが好ましい。また、遠心処理時の温度は特に限定されない。
The oocyte maturation promoter of the present invention is prepared by filtering the cell disruption solution and using the obtained filtrate. Unwanted components can be removed by filter filtration. Furthermore, if a filter with an appropriate pore size is used, removal of unnecessary components and sterile filtration can be performed at the same time. The material of the filter used for the filter treatment is not particularly limited, but cellulose acetate and metal filters, which do not easily adsorb proteins, are preferred. Particularly preferred is cellulose acetate. The filter pore size is preferably 0.1 to 0.45 μm. More preferably 0.15 to 0.3 μm. If sterile filtration is also performed at the same time, a pore size of 0.2 μm is preferred.
Note that the disruption solution may be centrifuged in advance, and the resulting supernatant may be filtered. By centrifuging the crushed solution before filtering, nuclei and the like can be removed and clogging of the filter can be prevented, allowing efficient filtering. If centrifugation is performed in advance, it is preferable to centrifuge at 100 to 1,500 xg for 3 to 10 minutes after ADSC disruption. Furthermore, the temperature during centrifugation is not particularly limited.
 濾液をすぐに治療に使わない場合は、使用時まで凍結保存することができる。-100~-60℃で保存することが好ましい。一般的に、細胞の凍結融解を繰り返すと、細胞の活性が落ちたり、死細胞が増えたりする傾向にあるが、本発明の卵子成熟促進剤は、濾液であり、幹細胞を含まないため、冷凍保存と融解を何度繰り返してもその品質は変わらない。本発明においては得られた濾液を卵子成熟促進剤として用いる。
<卵子成熟促進剤の製造方法>
If the filtrate is not used immediately for treatment, it can be stored frozen until use. Preferably, it is stored at -100 to -60°C. Generally, repeated freezing and thawing of cells tends to reduce cell activity and increase the number of dead cells, but the oocyte maturation promoter of the present invention is a filtrate and does not contain stem cells, so No matter how many times it is stored and thawed, its quality remains the same. In the present invention, the obtained filtrate is used as an oocyte maturation promoter.
<Production method of oocyte maturation accelerator>
 本発明における卵子成熟促進剤は、以下の工程により製造することができる。ADSCの培養方法、破砕処理方法、遠心処理方法及びフィルター濾過方法は前述した。
(1)脂肪組織由来幹細胞を破砕する工程。
(2)工程(1)で得られた破砕液又は前記破砕液を遠心処理して得られた上清を、フィルター処理し、濾液を得る工程。
(3)工程(2)で得られた濾液を製剤化する工程。
 本発明の卵子成熟促進剤は、後述する各種用途への利用に際し、組成物の形態で利用することもできる。具体的には、その有効性を失わない範囲において、細胞の保護を目的として胎子血清を含有させてもよい。さらに、得られた濾液に、製剤上許容される他の成分、例えば、担体、賦形剤、崩壊剤、緩衝剤、乳化剤、懸濁剤、無痛化剤、安定剤、保存剤、防腐剤、生理食塩水等を含有させて製剤化しても良い。
 本発明の卵子成熟促進剤は、ADSCが1×104 ~1×107 cells/mLの細胞懸濁液、好ましくはADSCが10×104~500×104 cells/mLの細胞懸濁液を破砕する。得られる濾液には実際には細胞は含まれていないが、前記濃度の細胞懸濁液を破砕するので濾液には1×104 ~1×107 cells/mL相当の細胞が含まれている。好ましくは10×104~500×104 cells/mL相当である。細胞懸濁液の濃度の好ましい濃度は動物種によって異なるが、下限は10×10cells/mL以上、30×10cells/mL以上、50×10cells/mL以上が好ましい。細胞懸濁液の濃度の上限は、450×10cells/mL以下、400×10cells/mL以下、380×10cells/mL以下、300×10cells/mL以下、250×10cells/mL以下、200×10cells/mL以下が好ましい。細胞懸濁液の濃度の範囲は、これら上限値および下限値の任意の組み合わせとして決定することができる。なお、ブタにおいては30×104~150×104 cells/mLがより好ましく、40×104~130×104 cells/mLが更に好ましい。ウシにおいては60×104~450×104 cells/mLがより好ましく、70×104~400×104 cells/mLが更に好ましい。
<卵子成熟促進剤の用途>
The oocyte maturation promoter in the present invention can be produced by the following steps. The ADSC culture method, crushing treatment method, centrifugation treatment method, and filter filtration method were described above.
(1) A step of disrupting adipose tissue-derived stem cells.
(2) A step of filtering the crushed liquid obtained in step (1) or the supernatant obtained by centrifuging the crushed liquid to obtain a filtrate.
(3) A step of formulating the filtrate obtained in step (2).
The oocyte maturation promoter of the present invention can also be used in the form of a composition when used for various purposes described below. Specifically, fetal serum may be included for the purpose of protecting cells as long as its effectiveness is not lost. Furthermore, the obtained filtrate contains other pharmaceutically acceptable ingredients, such as carriers, excipients, disintegrants, buffers, emulsifiers, suspending agents, soothing agents, stabilizers, preservatives, preservatives, It may also be formulated into a formulation containing physiological saline or the like.
The oocyte maturation promoter of the present invention is a cell suspension containing ADSCs of 1×10 4 to 1×10 7 cells/mL, preferably a cell suspension containing ADSCs of 10×10 4 to 500×10 4 cells/mL. crush. The resulting filtrate does not actually contain cells, but since the cell suspension at the above concentration is disrupted, the filtrate contains cells equivalent to 1×10 4 to 1×10 7 cells/mL. . It is preferably equivalent to 10×10 4 to 500×10 4 cells/mL. The preferable concentration of the cell suspension varies depending on the animal species, but the lower limit is preferably 10×10 4 cells/mL or more, 30×10 4 cells/mL or more, and 50×10 4 cells/mL or more. The upper limit of the concentration of cell suspension is 450×10 4 cells/mL or less, 400×10 4 cells/mL or less, 380×10 4 cells/mL or less, 300×10 4 cells/mL or less, 250×10 4 cells/mL or less, preferably 200×10 4 cells/mL or less. The concentration range of the cell suspension can be determined as any combination of these upper and lower limits. In addition, for pigs, 30×10 4 to 150×10 4 cells/mL is more preferable, and 40×10 4 to 130×10 4 cells/mL is even more preferable. For cattle, 60×10 4 to 450×10 4 cells/mL is more preferable, and 70×10 4 to 400×10 4 cells/mL is even more preferable.
<Applications of oocyte maturation accelerator>
 本発明の卵子成熟促進剤は、体外受精、卵子の機能低下に起因する不妊症の治療や改善、家畜の繁殖や、育種・種の維持(例えば絶滅危惧種の維持、ペットの系統の維持又は交雑) 等に利用され得る。
 本発明の卵子成熟促進剤は、ROS量を低減させることができるため、卵子の老化による質の低下改善効果を改善する。よって、本発明の卵子成熟促進剤は、卵子を成熟させるだけでなく、卵子の質改善剤として用いることもでき、ヒト高齢患者の妊娠率向上効果が期待される。
 以下、本発明の卵子成熟促進剤の用途の中で、体外受精について詳細に説明する。尚、本発明に特徴的な条件、即ち、本発明の卵子成熟促進剤を使用すること以外については常法に従えばよい(例えば、家畜人工受精講習会テキスト(家畜体内受精卵・家畜体外受精卵移植編)(日本家畜人工受精師協会) 等が参考になる) 。
<体外受精における卵子の成熟促進方法>
The egg maturation promoter of the present invention is useful for in vitro fertilization, treatment and improvement of infertility caused by decreased egg function, livestock breeding, breeding and maintenance of species (e.g. maintenance of endangered species, maintenance of pet lines, etc.). crossbreeding) etc.
Since the oocyte maturation promoter of the present invention can reduce the amount of ROS, it improves the effect of improving the quality of oocytes due to aging. Therefore, the oocyte maturation accelerator of the present invention not only matures oocytes, but can also be used as an oocyte quality improving agent, and is expected to have the effect of improving pregnancy rates in elderly human patients.
Hereinafter, in vitro fertilization will be explained in detail among the uses of the oocyte maturation promoter of the present invention. Note that, except for the conditions characteristic of the present invention, that is, the use of the oocyte maturation promoter of the present invention, conventional methods may be followed (for example, the livestock artificial fertilization course text (Livestock internally fertilized eggs, livestock in vitro fertilization (Egg Transplantation Edition) (Japan Livestock Artificial Insemination Technicians Association) etc. may be helpful).
<Method for promoting egg maturation in in vitro fertilization>
 卵子の成熟促進方法としては、本発明の卵子成熟促進剤存在下で、卵子を培養することが挙げられる。言い換えると、成熟卵子の製造方法としては、本発明の卵子成熟促進剤存在下で、卵子を培養することが挙げられる。
 培養に供する卵子は、卵巣より採卵した卵子であっても良いし、凍結保存した卵子であっても良い。卵子の生物種と、卵子成熟促進剤由来の生物種は同一が好ましい。先述したヒト又は非ヒト哺乳動物が挙げられる。
Examples of methods for promoting egg maturation include culturing eggs in the presence of the egg maturation promoter of the present invention. In other words, the method for producing mature eggs includes culturing eggs in the presence of the egg maturation promoter of the present invention.
The eggs to be cultured may be eggs collected from an ovary or cryopreserved eggs. The biological species of the egg and the biological species derived from the egg maturation promoter are preferably the same. Mention may be made of the human or non-human mammals mentioned above.
 培養には、卵子の培養に適した条件を採用することができるが、例えば37~40℃、5%CO2の環境下での培養が好ましい。但し、卵子の動物種を考慮し、動物の体温に近い温度に設定することが好ましい。例えばブタやウシ等の家畜の卵子を用いる場合、比較的高温(38~39℃) に設定するとよい。また、ヒトの卵子であれば37℃前後の温度条件が好ましい。培地として、先述したNCSU培地やMedium199等を用いることができる。二種以上の培地を併用することにしてもよい。培地に添加可能な成分も、先述した通りである。典型的には培養皿等の培養容器を用いて細胞を培養する。 For culturing, conditions suitable for culturing oocytes can be adopted, but for example, culturing in an environment of 37 to 40°C and 5% CO 2 is preferable. However, considering the animal species of the egg, it is preferable to set the temperature close to the animal's body temperature. For example, when using eggs from livestock such as pigs and cows, it is recommended to set the temperature to a relatively high temperature (38-39°C). Furthermore, in the case of human eggs, a temperature condition of around 37°C is preferable. As the medium, the previously mentioned NCSU medium, Medium 199, etc. can be used. Two or more types of media may be used in combination. Components that can be added to the medium are also as described above. Typically, cells are cultured using a culture container such as a culture dish.
 培養方法は、卵子成熟促進剤と卵子を一緒に培養するなどして、卵子を卵子成熟促進剤に曝露させることができれば、その方法は特に限定されない。例えば卵子成熟促進剤を含む液体培地中に卵子を配置、懸濁、又は浸すことができる。卵子成熟促進剤と卵子を添加する順番は特に限定されず、同時に添加して培養してもよいし、一定の間隔をあけて添加して培養してもよい。具体的には卵子成熟促進剤を添加した培地に卵子を添加することが好ましい。
 10×104~500×104 cells/mLの濃度の細胞懸濁液を破砕した濾液である卵子成熟促進剤10~50μLに対して、卵子を10~70個添加することが好ましい。
 卵子成熟促進剤投与後、卵子は1時間~4日間培養することが好ましい。培養期間が短すぎると卵子が十分に成熟しないため、1~3日がより好ましい。
 先述した方法のいずれかにより卵子が成熟したことを確認できたら卵子を回収して、体外受精や卵子機能低下に起因する不妊治療、家畜の交配・繁殖、育種・種の維持等に利用することができる。
The culturing method is not particularly limited as long as the oocytes can be exposed to the oocyte maturation accelerator, such as by culturing the oocyte maturation accelerator and the oocytes together. For example, eggs can be placed, suspended, or immersed in a liquid medium containing an egg maturation promoter. The order in which the oocyte maturation promoter and oocytes are added is not particularly limited, and they may be added at the same time and cultured, or may be added and cultured at regular intervals. Specifically, it is preferable to add eggs to a medium containing an egg maturation promoter.
It is preferable to add 10 to 70 eggs to 10 to 50 μL of the egg maturation promoter, which is a filtrate obtained by crushing a cell suspension with a concentration of 10× 10 4 to 500×10 4 cells/mL.
After administration of the oocyte maturation promoter, the oocytes are preferably cultured for 1 hour to 4 days. If the culture period is too short, the eggs will not mature sufficiently, so 1 to 3 days is more preferable.
Once it is confirmed that the eggs have matured using one of the methods mentioned above, the eggs can be collected and used for in vitro fertilization, infertility treatment due to decreased egg function, livestock mating/breeding, breeding, species maintenance, etc. I can do it.
 本発明の卵子成熟促進剤を用いた体外受精方法の一態様としては、(i)卵子成熟促進剤で処理した卵子を、精子と生体外で共存させる方法、(ii)卵子成熟促進剤存在下で、卵子と精子を生体外で共存させる方法が挙げられる。ここで共存とは2つ以上のものが一緒に存在することをいい、例えば(i)では卵子成熟促進剤と卵子を混合して成熟卵子とし、そこへ精子を添加する方法、(ii)では、卵子成熟促進剤、卵子、精子を混合する方法などが挙げられる。 One embodiment of the in vitro fertilization method using the egg maturation promoter of the present invention includes (i) a method in which eggs treated with the egg maturation promoter coexist with sperm in vitro; (ii) in the presence of the egg maturation promoter. One method is to allow eggs and sperm to coexist outside the body. Coexistence here refers to the existence of two or more things together; for example, in (i), an egg maturation promoter is mixed with an egg to form a mature egg, and then sperm is added thereto; in (ii), , an egg maturation accelerator, a method of mixing eggs and sperm, etc.
 上記体外受精において使用される精子としては、採精、精巣内精子採取法、顕微鏡下精巣上体精子採取法、経皮的精巣上体精子採取法、精子濃縮洗浄法等により取得された精子や、該精子を前培養した精子や、これらを凍結保存後に解凍した精子等を挙げることができる。精子は培地等希釈し、50×104~4000×104匹/mLとなるように調製することが好ましい。受精効率を上げるために、運動性の高い精子を使うことが好ましい。
 なお、卵子と精子の生物種は原則として同一である。卵子又は精子の由来となる生物種としては、先述したヒト、非ヒト哺乳動物が挙げられる。但し、受精可能な組合せであれば、卵子の生物種と精子の生物種が異なっていてもよい。
 卵子及び精子、又は成熟卵子及び精子の培養条件は、体外受精の常法に従うことができる。
Sperm used in the above-mentioned in vitro fertilization include sperm collected by sperm collection, intratesticular sperm collection, microscopic epididymal sperm collection, percutaneous epididymal sperm collection, sperm concentration washing method, etc. , sperm which have been pre-cultured, and sperm which have been thawed after cryopreservation. Preferably, the spermatozoa are diluted with the same medium and prepared at a concentration of 50×10 4 to 4000×10 4 sperm/mL. In order to increase fertilization efficiency, it is preferable to use highly motile sperm.
In addition, the biological species of eggs and sperm are, in principle, the same. The biological species from which eggs or sperm are derived include the aforementioned humans and non-human mammals. However, the biological species of the egg and the sperm may be different as long as the combination allows fertilization.
Culture conditions for eggs and sperm, or mature eggs and sperm, can follow conventional methods for in vitro fertilization.
 体外受精において、本発明の卵子成熟促進剤によって成熟した卵子を用いると、受精しやすくなるため受精率が向上する。受精卵が正常に発生すると、体細胞分裂を繰り返す。その後の胚の分化も良好であることから、桑実胚や胚盤胞への発生率が向上する。胚盤胞の用途としては、成育した胚盤胞を哺乳動物の子宮に注入する、胚移植方法が挙げられる。着床率や妊娠率の向上へとつながる。なお、胚移植は胚盤胞の移植に限定されるものではない。 In in vitro fertilization, when eggs matured by the egg maturation promoter of the present invention are used, fertilization becomes easier and the fertilization rate improves. When a fertilized egg develops normally, it undergoes repeated somatic cell division. Since the subsequent embryo differentiation is also good, the rate of development into morula and blastocyst is improved. Examples of uses for blastocysts include embryo transfer methods in which the grown blastocyst is injected into the uterus of a mammal. This leads to improved implantation and pregnancy rates. Note that embryo transfer is not limited to blastocyst transfer.
 以下に実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。実験に用いたADSC濾液の調製方法、モデル動物及び測定方法を以下に記載する。なお本実施例においては同種の動物間で実験を行った。
<ADSC濾液(凍結融解)の調製>
(1)ブタ脂肪組織由来幹細胞(ADSC)
EXAMPLES The present invention will be explained in detail with reference to Examples below, but the present invention is not limited to these Examples in any way. The method for preparing the ADSC filtrate used in the experiment, the model animal, and the measurement method are described below. In this example, experiments were conducted using animals of the same species.
<Preparation of ADSC filtrate (freeze-thaw)>
(1) Porcine adipose tissue-derived stem cells (ADSC)
 屠殺されたブタの臍帯皮下脂肪を約4g切り取り、下記方法により継代培養を行った。継代培養したADSCは、細胞保存用チューブに分注後、-80℃で凍結保存した。 Approximately 4 g of umbilical cord subcutaneous fat from a slaughtered pig was cut out and subcultured using the following method. The subcultured ADSCs were dispensed into cell storage tubes and stored frozen at -80°C.
 チューブに入った凍結保存細胞を38.5℃のウォーターバスにて融解し、15mLの遠心管に移した。次いで適量の10% FCS添加PBS (-) を添加して数回遠心洗浄した。上清を吸引除去後、細胞沈殿物に選択培養液(Mesen PRO (Gibco) 25mLに対して2%ペニシリン-ストレプトマイシン、Growth Supply (Gibco) 500μL 、200mMのL-Glutamin (ナカライテスク) 250μL) 1mL加えて細胞を再浮遊させ、フラスコへ播種し、CO2インキュベーター (38.5 ℃、5 % CO2) 下でコンフルエントになるまで培養した。コンフルエントになった脂肪幹細胞は 0.25 %(w/v) トリプシン / 1mmol/l EDTAで細胞を剥離し、15 mLの遠沈管に回収した。さらに、10% FCS添加PBS (-) でフラスコ内をリンスし、回収した細胞液とリンス液を混合して遠心分離 (200g、5分間) を行った。遠心分離後、 上清を吸引除去し、300μLのPBS (-) を加え再懸濁させた。その後、細胞懸濁液にPBS (-) を加えて濃度調整し、クライオチューブに分注後、-25℃フリーザで凍結することで細胞を破砕した。
 一晩以上凍結した後、室温で融解し、遠心処理後(1,000g、3分間)、上清を0.2μmのメンブレンフィルター(Advantec)を用いて濾過滅菌した。その後、濾液にPBS(-)を加えて濃度調整し、本発明の卵子成熟促進剤とした。卵子成熟促進剤は、使用時までは-25℃で保存し、用いるときに室温で融解した。
(2)ウシ脂肪組織由来幹細胞(ADSC)
 ウシの枝肉臍部皮下脂肪を採取した。ブタと同様の操作により、卵子成熟促進剤を調整した。
<卵子の採取>
The cryopreserved cells in the tube were thawed in a 38.5°C water bath and transferred to a 15 mL centrifuge tube. Next, an appropriate amount of PBS (-) supplemented with 10% FCS was added and centrifuged washing was performed several times. After aspirating the supernatant, add 1 mL of selective culture solution (25 mL of Mesen PRO (Gibco) to 25 mL of 2% penicillin-streptomycin, 500 μL of Growth Supply (Gibco), and 250 μL of 200 mM L-Glutamin (Nacalai Tesque)). The cells were resuspended, seeded into flasks, and cultured in a CO 2 incubator (38.5° C., 5% CO 2 ) until confluent. Confluent adipose stem cells were detached with 0.25% (w/v) trypsin/1 mmol/l EDTA and collected in a 15 mL centrifuge tube. Furthermore, the inside of the flask was rinsed with PBS (-) supplemented with 10% FCS, and the collected cell solution and rinsing solution were mixed and centrifuged (200 g, 5 minutes). After centrifugation, the supernatant was removed by suction, and 300 μL of PBS (-) was added to resuspend. Thereafter, PBS (-) was added to the cell suspension to adjust the concentration, dispensed into cryotubes, and then frozen in a -25°C freezer to disrupt the cells.
After freezing for at least one night, the cells were thawed at room temperature, centrifuged (1,000 g, 3 minutes), and the supernatant was sterilized by filtration using a 0.2 μm membrane filter (Advantec). Thereafter, PBS(-) was added to the filtrate to adjust the concentration, and the oocyte maturation promoter of the present invention was obtained. The oocyte maturation accelerator was stored at -25°C until use and thawed at room temperature when used.
(2) Bovine adipose tissue-derived stem cells (ADSC)
Subcutaneous fat from the umbilical region of the bovine carcass was collected. An oocyte maturation promoter was prepared using the same procedure as for pigs.
<Collection of eggs>
 (1)ブタの卵子の採取
 屠殺された、春機発動前の雌の三元交雑豚 (ランドレース種、大ヨークシャー種、デュロック種を交配した雑種豚) から 卵巣を採取した。採取した卵巣は直ちに50 mL遠沈管中の、100μg/mL硫酸カナマイシン (Meiji Seika Pharma Co., Ltd.) を添加した0.85 % (w/v) 塩化ナトリウム溶液(生理食塩水)へ浸漬した。遠沈管は、33~36℃に保温し、生理食塩水で卵巣を洗浄後、卵巣表面にある直径約1~5 mmの卵胞から卵胞液と共に COCsを吸引採取した。採取したCOCsを、Hepes-TLP-PVAで洗浄し、実体顕微鏡 (OLYMPUS) 下で卵丘細胞が十分に付着した形態的に正常なCOCsのみを選抜し、実験に供した。
 (2)ウシの卵子の採取
 屠殺された、29~30ヶ月齢の肥育雌ウシ(黒毛和種)から 卵巣を採取した。卵巣表面にある直径約2~8 mmの卵胞から卵胞液と共に COCsを吸引採取した以外は、ブタの卵子採取と同様に行った。
<精子の調製>
(1) Collection of ovum from pigs Ovaries were collected from slaughtered female three-way crossbred pigs (crossbred pigs of Landrace, Large Yorkshire, and Duroc breeds) before the start of spring. The collected ovaries were immediately immersed in a 0.85% (w/v) sodium chloride solution (physiological saline) containing 100 μg/mL kanamycin sulfate (Meiji Seika Pharma Co., Ltd.) in a 50 mL centrifuge tube. The centrifuge tube was kept at 33-36°C, and after washing the ovary with physiological saline, COCs were collected along with the follicular fluid from a follicle with a diameter of approximately 1-5 mm on the ovarian surface. The collected COCs were washed with Hepes-TLP-PVA, and only morphologically normal COCs with sufficient adhesion of cumulus cells were selected under a stereomicroscope (OLYMPUS) and used for experiments.
(2) Collection of bovine eggs Ovaries were collected from slaughtered fattened cows (Japanese Black cattle) aged 29 to 30 months. The procedure was the same as for pig oocyte collection, except that COCs were collected by suction along with follicular fluid from follicles approximately 2 to 8 mm in diameter on the ovarian surface.
<Preparation of sperm>
(1)ブタの精子の調製
 大ヨークシャー種の人工授精用精液(独立行政法人家畜改良センター茨城農場)を使用した。人工授精用精液は 媒精3日前に採取されたものである。1mLの人工授精用精液に、9 mLの精子洗浄液(NaCl 9μg/mL、BSA1μg/m、Kanamycin 0.1μL)を加え、遠心洗浄(1,800 rpm、5分間)した。遠心洗浄終了後、上澄みを取り除き、あらかじめ38.5℃に温めておいた体外受精用培地(PFM, Research Institute for the Functional Peptides, Co., Ltd.)を加えて希釈し、精子濃度が1.0 × 106匹/mLになるように調製して精子懸濁液とした。
(2)ウシの精子の調製
 黒毛和種の人工授精用凍結ストロー精液(岐阜県畜産研究所飛騨牛研究部提供)を使用した。ストローに充填され、液体窒素で保存されているウシ凍結精液ストローを38℃の湯温中で20秒間浸漬することによって融解し、CO2インキュベーターで気相平衡したBO-Theophylline (BO-medium (Brackett et al., 1975);10 mM Theophylline)を用いて洗浄・遠心分離 (1,800 rpm、5分間) を2回行った。遠心処理後、媒精時の精子濃度が2.0×107匹/mlとなるようBO-Theophylline及びBO-BSA-Heparin (BO-medium、1% Bovine serum albumin、2.5 IU/ml Heparin)で希釈し、精子懸濁液とした。
(1) Preparation of pig sperm Semen for artificial insemination of the Greater Yorkshire breed (Ibaraki Farm, Livestock Breeding Center, Independent Administrative Institution) was used. Semen for artificial insemination was collected 3 days before insemination. 9 mL of sperm washing solution (NaCl 9 μg/mL, BSA 1 μg/m, Kanamycin 0.1 μL) was added to 1 mL of semen for artificial insemination, and centrifugal washing was performed (1,800 rpm, 5 minutes). After centrifugal washing, remove the supernatant and add in vitro fertilization medium (PFM, Research Institute for the Functional Peptides, Co., Ltd.) pre-warmed to 38.5°C to dilute to a sperm concentration of 1.0 × 10 6 A sperm suspension was prepared at a concentration of sperm per mL.
(2) Preparation of bovine sperm Frozen straw semen for artificial insemination of Japanese black cattle (provided by Hida Cattle Research Department, Gifu Prefectural Livestock Research Institute) was used. Frozen bovine semen straws filled in straws and stored in liquid nitrogen were thawed by immersing them in hot water at 38°C for 20 seconds, and BO - Theophylline (BO-medium (Brackett Washing and centrifugation (1,800 rpm, 5 minutes) were performed twice using 10 mM Theophylline (10 mM Theophylline). After centrifugation, dilute with BO-Theophylline and BO-BSA-Heparin (BO-medium, 1% Bovine serum albumin, 2.5 IU/ml Heparin) so that the sperm concentration at the time of insemination is 2.0 × 10 7 sperm/ml. , and a sperm suspension.
 調製した精子懸濁液の精子活力を倒立顕微鏡(OLYMPUS)で確認した。最も活発な前進運動を 示すものを+++、活発な前進運動を示すものを++、緩慢な前進 運動を示す ものを+、旋回又は振り子運動を示すものを±、全く運動していないものを-と評価し、それぞれの全体に占める割合を以下の式に代入することで求めた。本発明の卵子成熟促進剤の効果を適切に判断するために、運動性の高い精子、具体的には、精子活力が70以上である精子懸濁液を以降の実験に用いた。
Figure JPOXMLDOC01-appb-M000001
<体外成熟培地>
The sperm vitality of the prepared sperm suspension was confirmed using an inverted microscope (OLYMPUS). The most active forward movement is +++, the most active forward movement is ++, the slow forward movement is +, the turning or pendulum movement is ±, and there is no movement at all -. The ratio of each component to the total was calculated by substituting it into the following formula. In order to appropriately judge the effect of the oocyte maturation promoter of the present invention, highly motile sperm, specifically, a sperm suspension with a sperm vitality of 70 or more, was used in the subsequent experiments.
Figure JPOXMLDOC01-appb-M000001
<In vitro maturation medium>
 ブタの場合は、体外成熟培地(1g/mL PVA,、10IU/mL eCG、10IU/mL hCG 0.01μg/mL EGF、10% pig follicular fluid 添加Medium199)180μLの微小滴に、各種濃度の本発明の卵子成熟促進剤を20μLずつ添加した。200μLの体外成熟培地の微小滴をコントロールとした。
 ウシの場合は、体外成熟培地(10% fetal bovine serum 添加Medium199)を用いた以外はブタと同様に行った。
<卵丘細胞-卵母細胞複合体(COCs)の面積比較試験>
In the case of pigs, various concentrations of the present invention were added to a 180 μL microdroplet of in vitro maturation medium (Medium 199 supplemented with 1 g/mL PVA, 10 IU/mL eCG, 10 IU/mL hCG, 0.01 μg/mL EGF, and 10% pig follicular fluid). 20 μL each of oocyte maturation accelerator was added. A microdroplet of 200 μL of in vitro maturation medium served as a control.
In the case of cattle, the same procedure as for pigs was performed except that an in vitro maturation medium (Medium 199 supplemented with 10% fetal bovine serum) was used.
<Area comparison test of cumulus cell-oocyte complexes (COCs)>
 種々の濃度の本発明の卵子成熟促進剤を添加した体外成熟培地ドロップ(10μL)を10個ずつ作製し、未成熟卵子を各ドロップに1個ずつ入れ、成熟培養開始前にすべてのCOCsを倒立顕微鏡 (OLYMPUS)に設置したデジタル カメラ (Canon) で撮影した後、CO2インキュベーター (38.5 ℃、5%CO2)下で培養した(ブタ:42時間、ウシ:22時間)。その後各添加区におけるCOCsを同様に撮影した。撮影した画像は、画像解析ソフトImage J (National Institutes of Health) を用いて、成熟培養前後の各添加区のCOCsの面積を測定し平均値を比較した(n=8)。一元配置分散分析検定法を用いて解析し、各添加区間の比較にはTukey-Kramer法を用いた。
 面積比較試験の結果を図1及び表1A(ブタ)、表1B(ウシ)に示す。なお、表1のXは、成熟培養後のCOCsの面積を成熟培養前のCOCsの面積で割ったものである。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Prepare 10 in vitro maturation medium drops (10 μL) containing various concentrations of the oocyte maturation promoter of the present invention, place one immature oocyte in each drop, and invert all COCs before starting the maturation culture. After photographing with a digital camera (Canon) installed on a microscope (OLYMPUS), the cells were cultured in a CO 2 incubator (38.5°C, 5% CO 2 ) (pig: 42 hours, cow: 22 hours). Thereafter, COCs in each addition area were photographed in the same manner. Using the image analysis software Image J (National Institutes of Health), the area of COCs in each added area before and after maturation culture was measured and the average values were compared (n=8). Analysis was performed using a one-way analysis of variance test method, and the Tukey-Kramer method was used to compare each addition interval.
The results of the area comparison test are shown in FIG. 1 and Tables 1A (pig) and 1B (cow). Note that X in Table 1 is the area of COCs after mature culture divided by the area of COCs before mature culture.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 図1は、ブタ由来の本発明の卵子成熟促進剤を100×10cells/mL添加した際の図である。Aは、体外成熟培養前のCOCs、Bは体外成熟培養後のCOCsである。表1は各添加区のCOCsの面積の定量的な測定結果である。表1A及び表1Bより、本発明の卵子成熟促進剤の添加により、COCsの面積が増加し、卵丘細胞が膨化したことが分かる。ブタにおいては特に50×104及び100×10cells/mLの区分において濃度依存的に有意に増加した。ウシにおいては、特に100×104 cells/mL 及び200×104 cells/mLの 区分において、コントロールと比較して有意に高い値を示した。
 卵丘細胞の膨化は細胞質成熟の指標とされ、卵母細胞の成熟、精子侵入及び受精に関与していると言われている。また、顕著な卵丘細胞の膨化は、ブタやウシの卵母細胞の成熟及びその後の胚発生能に正の影響を及ぼすことも明らかにされている。このように、卵丘細胞の膨化は卵母細胞の成熟及びその後の胚発生能に非常に重要な役割を果たしていると考えられている。本発明の卵子成熟促進剤の添加により、卵丘細胞が顕著に増加した、という上記結果から、本発明の卵子成熟促進剤が卵母細胞の成熟改善に寄与したことが分かる。
<活性酸素種(ROS)及び還元型グルタチオン(GSH)量の測定>
FIG. 1 is a diagram when 100×10 4 cells/mL of the pig-derived oocyte maturation promoter of the present invention was added. A is COCs before in vitro maturation culture, and B is COCs after in vitro maturation culture. Table 1 shows the quantitative measurement results of the area of COCs in each added area. Tables 1A and 1B show that the addition of the oocyte maturation promoter of the present invention increased the area of COCs and caused the cumulus cells to swell. In pigs, there was a significant concentration-dependent increase especially in the 50×10 4 and 100×10 4 cells/mL categories. In cattle, significantly higher values were shown compared to controls, especially in the 100×10 4 cells/mL and 200×10 4 cells/mL categories.
Swelling of cumulus cells is considered an indicator of cytoplasmic maturation and is said to be involved in oocyte maturation, sperm entry, and fertilization. It has also been revealed that significant cumulus cell swelling has a positive effect on the maturation of pig and bovine oocytes and their subsequent embryonic development potential. As described above, the swelling of cumulus cells is thought to play a very important role in the maturation of oocytes and the subsequent ability to develop embryos. The above result that the number of cumulus cells increased significantly with the addition of the oocyte maturation promoter of the present invention indicates that the oocyte maturation promoter of the present invention contributed to improving oocyte maturation.
<Measurement of reactive oxygen species (ROS) and reduced glutathione (GSH) levels>
 種々の濃度の本発明の卵子成熟促進剤を添加した体外成熟培地200μLに、未成熟卵子30~40個を1群として添加し、CO2インキュベーター (38.5 ℃、5 % CO2)下で42時間培養した。
 体外成熟培養後、0.1% (w/v) ヒアルロニダーゼ (Sigma-Aldrich) 添加Hepes-TLP-PVA を加え、機械的ピペッティングを行うことにより、卵丘細胞を全て剥離した。その後、第1極体の放出が確認された卵子を選抜した。前記卵子は、10 μLの2‘,7’-Dichlorofluorecein diacetate(Sigma-Aldrich)及び5μLのCell Tracker Blue CMF2HC(Invitrogen)を添加した500 μLのHepes-TLP-PVAに浸漬し、CO2インキュベーター内で30分間染色した。染色した卵子はHepes-TLP-PVAで洗浄後、デジタルカメラ(Canon)を設置した蛍光顕微鏡 (OLYMPUS) で、ROSは460 nm、GSHは365 nmの各UVフィルターを用いて蛍光画像を撮影記録した。得られた蛍光画像を白黒化し、画像解析ソフトImage J (NationalInstitutes of Health)で解析し、得られた 蛍光輝度から、コントロールを対照にし、相対的に各添加区のROS 及びGSH含有量を算出した(n=3)。一元配置分散分析検定法を用いて解析し、各添加区間の比較にはTukey-Kramer法を用いた。
 ブタの結果を表2A、ウシの結果を表2Bに示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
30 to 40 immature eggs were added as a group to 200 μL of in vitro maturation medium supplemented with various concentrations of the oocyte maturation promoter of the present invention, and incubated in a CO 2 incubator (38.5°C, 5% CO 2 ) for 42 hours. Cultured.
After in vitro maturation culture, Hepes-TLP-PVA supplemented with 0.1% (w/v) hyaluronidase (Sigma-Aldrich) was added, and all cumulus cells were detached by mechanical pipetting. Thereafter, eggs in which release of the first polar body was confirmed were selected. The oocytes were immersed in 500 μL of Hepes-TLP-PVA supplemented with 10 μL of 2',7'-Dichlorofluorecein diacetate (Sigma-Aldrich) and 5 μL of Cell Tracker Blue CMF 2 HC (Invitrogen), and placed in a CO 2 incubator. The cells were stained for 30 minutes. After washing the stained eggs with Hepes-TLP-PVA, fluorescence images were taken and recorded using a fluorescence microscope (OLYMPUS) equipped with a digital camera (Canon) using UV filters of 460 nm for ROS and 365 nm for GSH. . The obtained fluorescence images were converted into black and white and analyzed using the image analysis software Image J (National Institutes of Health), and from the obtained fluorescence brightness, the relative ROS and GSH contents of each addition group were calculated with respect to the control. (n=3). Analysis was performed using a one-way analysis of variance test method, and the Tukey-Kramer method was used to compare each addition interval.
The results for pigs are shown in Table 2A, and the results for cattle are shown in Table 2B.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表2A及び表2Bから明らかなように、本発明の卵子成熟促進剤の添加により、活性化酸素種(ROS)は減少し、グルタチオン(GSH)は増加していることが分かる。特にブタにおいては50×104及び100×10cells/mLの区分においてROS含有量は濃度依存的に有意に減少し、GSH含有量は濃度依存的に有意に増加した。ウシにおいては100×104 cells/mL及び 200×104 cells/mLの区分において、ROS含有量は濃度依存的に有意に低い値を示した。またGSH含有量はコントロールに比べて100×104 cells/mL、200×104 cells/mL及び400×104 cells/mLの区分において高い値を示した。したがって、本発明の卵子成熟促進剤は、酸化ストレスを抑制し、卵子の細胞質の成熟度合いを改善させたことが分かる。特にROS含有量が低下したことから酸化ストレスによる卵子の質の低下を抑制・改善させたことが分かる。
<成熟卵子におけるミトコンドリアの分布状況>
As is clear from Tables 2A and 2B, the addition of the oocyte maturation promoter of the present invention reduces activated oxygen species (ROS) and increases glutathione (GSH). Particularly in pigs, the ROS content significantly decreased in a concentration-dependent manner in the 50×10 4 and 100×10 4 cells/mL categories, and the GSH content significantly increased in a concentration-dependent manner. In cattle, the ROS content showed significantly lower values in a concentration-dependent manner in the 100×10 4 cells/mL and 200×10 4 cells/mL categories. Furthermore, the GSH content showed higher values in the categories of 100×10 4 cells/mL, 200×10 4 cells/mL, and 400×10 4 cells/mL compared to the control. Therefore, it can be seen that the oocyte maturation promoter of the present invention suppressed oxidative stress and improved the degree of oocyte cytoplasmic maturation. In particular, the decrease in ROS content indicates that the decline in oocyte quality caused by oxidative stress was suppressed and improved.
<Distribution status of mitochondria in mature oocytes>
 先述したSha Wei et al. (2010)に記載の方法を参考にした。ブタの卵子の選抜は、先述した方法により行った。
 Mito Tracker(登録商標) Red CMXRos (Invitrogen)のキットを使い、指示書に従いStock Aを調製した。Stock A 1 μLに対してアミカマイシン(100 mg 力価) (Meiji Seikaファルマ) 添加 Medium 199 (Gibco) 149 μLを入れて混和した。さらに、Medium 199 (Gibco) 1850 μLを混和し、150 μLの微小滴を複数作製した。
 各添加区から選抜したブタの卵子は、0.3% (w/v) PVA-PBSで洗浄後、約10個を1群として前記微小滴に移した。その後、CO2インキュベーターにて30分間静置し、ミトコンドリアを染色した。成熟卵を0.3% (w/v) PVA-PBSで洗浄後、共焦点レーザースキャン顕微鏡 (Carl Zeiss, Oberkochen) で、Rhodamineフィルターを用いて撮影し、画像解析ソフトウェア (Carl Zeiss; ZEN) を用いて解析した(n=4)。一元配置分散分析検定法を行い、各添加区間の比較には、Tukey-Kramer法を用いて、多重比較検定を行った。
 その結果を図2及び表3A及び表3Bに示す。
ミトコンドリアが細胞質全体に均一に分布しているものをI型 (図2A)、
ミトコンドリアが細胞膜周辺に分布し、内側にも不均一であるが分布しているものをII型 (図2B)、 
ミトコンドリアが細胞膜周辺にのみ分布しているものをIII型 (図2C) とし、それぞれの割合を算出することでミトコンドリアの分布を評価した。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
The method described in Sha Wei et al. (2010) mentioned above was used as reference. Pig oocytes were selected by the method described above.
Stock A was prepared using the Mito Tracker® Red CMXRos (Invitrogen) kit according to the instructions. To 1 μL of Stock A, 149 μL of Amikamycin (100 mg titer) (Meiji Seika Pharma) supplemented Medium 199 (Gibco) was added and mixed. Furthermore, 1850 μL of Medium 199 (Gibco) was mixed to create multiple 150 μL microdroplets.
Pig eggs selected from each addition group were washed with 0.3% (w/v) PVA-PBS and then transferred into the microdroplets in groups of about 10 eggs. Thereafter, the cells were allowed to stand for 30 minutes in a CO 2 incubator, and the mitochondria were stained. After washing the mature eggs with 0.3% (w/v) PVA-PBS, they were photographed using a confocal laser scanning microscope (Carl Zeiss, Oberkochen) using a Rhodamine filter and image analysis software (Carl Zeiss; ZEN). analyzed (n=4). A one-way analysis of variance test was performed, and multiple comparison tests were performed using the Tukey-Kramer method to compare each addition interval.
The results are shown in FIG. 2 and Tables 3A and 3B.
Type I has mitochondria distributed uniformly throughout the cytoplasm (Figure 2A);
Type II is the type in which mitochondria are distributed around the cell membrane and is also unevenly distributed inside the cell membrane (Figure 2B).
Type III cells were defined as those in which mitochondria were distributed only around the cell membrane (Fig. 2C), and the distribution of mitochondria was evaluated by calculating the respective proportions.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表3Aより、特に50×104及び100×10cells/mLの区分において、コントロールと比較してI型の割合が増加したことが分かった。表3Bより、特に50×104及び100×10cells/mLの区分において、供試卵数に対するI型の割合がコントロールより大きいため、卵子は成熟したといえる。
 未成熟卵のブタ卵母細胞において、ミトコンドリアは細胞膜付近に主に分布し、その後、核成熟や細胞質成熟が進行するにしたがって、細胞質全体に均一に分布及び拡散するとされる。また、均一なミトコンドリアの分布は、卵母細胞の受精と初期胚の発生能を向上させるとの報告がある。したがって、本発明の卵子成熟促進剤の添加により、各成熟や細胞質成熟が進行したことによって、ミトコンドリアの分布が改善したと思われる。
<ミトコンドリアの活性評価>
From Table 3A, it was found that the proportion of type I increased compared to the control, especially in the 50×10 4 and 100×10 4 cells/mL categories. From Table 3B, especially in the 50×10 4 and 100×10 4 cells/mL categories, the ratio of type I to the number of test eggs is greater than that of the control, so it can be said that the eggs have matured.
In pig oocytes, which are immature eggs, mitochondria are mainly distributed near the cell membrane, and then, as nuclear maturation and cytoplasmic maturation proceed, they are said to be uniformly distributed and diffused throughout the cytoplasm. It has also been reported that uniform mitochondrial distribution improves oocyte fertilization and early embryonic development. Therefore, it seems that the addition of the oocyte maturation promoter of the present invention promoted each maturation and cytoplasmic maturation, thereby improving the distribution of mitochondria.
<Evaluation of mitochondrial activity>
 先述したLee SK et al. (2014) に記載の方法を参考にした。ブタの卵子の選抜は、先述した方法により行った。
 MitoProbe(登録商標) JC-1 Assay Kit (Invitrogen)のキットを使い、指示書に従いStock Aを調製した。Stock A 57.5 μLに対してアミカマイシン(100 mg 力価) (Meiji Seika ファルマ)添加Medium 199 (Gibco)を1092.5 μL入れて混和し、80 μLの微小滴を複数作製した。
 各添加区から選抜したブタの卵子は、0.3% (w/v) PVA-PBSで洗浄後、約10個を1群として前記微小滴に移した。その後、CO2インキュベーターにて50分間静置し、ミトコンドリアを染色した。染色後、成熟卵子を速やかに0.3% (w/v) PVA-PBSで洗浄後、共焦点レーザースキャン顕微鏡 (Carl Zeiss) で、Rhodamineフィルター及びFITCフィルターを用いて撮影し、画像解析ソフトウェア (Carl Zeiss; ZEN) を用いて解析した。
 画像の蛍光強度は、image Jソフトウェアを用いて計測し、高い活性を示すredの蛍光強度 を低い活性を示すgreenの蛍光強度で割ることで膜電位差を算出し、ミトコンドリア活性を評価した(n=3)。一元配置分散分析検定法を用いて解析し、各添加区間の比較にはTukey-Kramer法を用いた。
 その結果を表4に示す。表4は、コントロールを対照にし、相対的に各添加区の膜電位差を記載した。
Figure JPOXMLDOC01-appb-T000008
The method described in Lee SK et al. (2014) mentioned above was used as reference. Pig oocytes were selected by the method described above.
Stock A was prepared using MitoProbe (registered trademark) JC-1 Assay Kit (Invitrogen) according to the instructions. 1092.5 μL of Medium 199 (Gibco) supplemented with amikamycin (100 mg titer) (Meiji Seika Pharma) was added to 57.5 μL of Stock A and mixed to produce multiple 80 μL microdroplets.
Pig eggs selected from each addition group were washed with 0.3% (w/v) PVA-PBS and then transferred into the microdroplets in groups of about 10 eggs. Thereafter, the cells were allowed to stand for 50 minutes in a CO 2 incubator, and the mitochondria were stained. After staining, mature oocytes were immediately washed with 0.3% (w/v) PVA-PBS, photographed using a confocal laser scanning microscope (Carl Zeiss) using Rhodamine filters and FITC filters, and image analysis software (Carl Zeiss). ;ZEN).
The fluorescence intensity of the image was measured using image J software, and the membrane potential difference was calculated by dividing the fluorescence intensity of red, which shows high activity, by the fluorescence intensity of green, which shows low activity, and mitochondrial activity was evaluated (n = 3). Analysis was performed using a one-way analysis of variance test method, and the Tukey-Kramer method was used to compare each addition interval.
The results are shown in Table 4. Table 4 shows the relative membrane potential difference of each addition group using the control as a control.
Figure JPOXMLDOC01-appb-T000008
 表4の結果から、本発明の卵子成熟促進剤の添加により、特に100×104cells/mLの区分において、コントロールと比較してミトコンドリア活性が有意に高くなった。ミトコンドリア活性は、ブタの卵母細胞の成熟や品質及びその後の胚発生に重要であることが知られており、表4の結果より、本発明の卵子成熟促進剤が、ミトコンドリア機能を向上させることが分かった。また、ミトコンドリア活性が低いとアポトーシスを引き起こすことが知られているため、本発明の卵子成熟促進剤によるミトコンドリア活性向上は、早期アポトーシスの抑制にもつながる。このように、本発明の卵子成熟促進剤により、卵子の細胞質が成熟することで、その後の胚発生能を十分に維持し、ひいては受精率の改善、着床率、妊娠率の改善に寄与すると推測された。
<体外受精>
From the results in Table 4, the addition of the oocyte maturation promoter of the present invention significantly increased mitochondrial activity compared to the control, especially in the 100×10 4 cells/mL category. Mitochondrial activity is known to be important for the maturation and quality of pig oocytes and subsequent embryonic development, and the results in Table 4 demonstrate that the oocyte maturation promoter of the present invention improves mitochondrial function. I understand. Furthermore, since it is known that low mitochondrial activity causes apoptosis, improvement of mitochondrial activity by the oocyte maturation promoter of the present invention also leads to suppression of early apoptosis. As described above, the oocyte maturation promoter of the present invention matures the cytoplasm of the oocyte, thereby sufficiently maintaining the subsequent embryonic development potential, which in turn contributes to improving the fertilization rate, implantation rate, and pregnancy rate. Guessed.
<In vitro fertilization>
 本発明の卵子成熟促進剤を用いた卵子が、正常に体外受精するか否かについて確認すべく、種々の濃度の本発明の卵子成熟促進剤を添加した体外成熟培地でCOCsを体外成熟培養後、体外受精を行った。
 具体的には、種々の濃度の本発明の卵子成熟促進剤20μLを添加した体外成熟培地200μLに、未成熟卵子数十個(ブタ:30~40個、ウシ:20~35個)を1群として添加し、CO2インキュベーター (38.5℃、5%CO2)下で培養した(ブタ:42時間、ウシ:22時間)。その後0.1% (w/v) ヒアルロニダーゼ (Sigma-Aldrich)添加Hepes-TLP-PVAをCOCsにふりかけ、ガラスピペットを用いて卵丘細胞を2、3層程度残してそれ以外は剥離させた。その後、80 μLの体外受精用培地(PFM, Research Institute for the Functional Peptides, Co., Ltd.)の微小滴で複数回洗浄し、20~40個の卵を1群として90~180μLの体外受精用培地の微小滴へ移した。そこに精子懸濁液10~20μLを加えて媒精した。最終精子濃度は、ブタは1.0×106匹/mL、ウシは2.0×107匹/mLに調整した。その後、CO2インキュベーター (38.5℃、5 %CO2)下にて媒精後6時間共培養し、その後卵子を発生培地に移し、6時間培養した。その後、下記方法に従って体外受精状況、成熟率及び正常受精率を評価し、各添加区間で比較検討した。一元配置分散分析検定法を用いて解析し、各添加区間の比較にはTukey-Kramer法を用いて、多重比較検定を行った。
(1)体外受精状況の確認
In order to confirm whether or not eggs using the oocyte maturation promoter of the present invention are successfully fertilized in vitro, COCs were cultured for in vitro maturation in an in vitro maturation medium supplemented with various concentrations of the oocyte maturation promoter of the present invention. , performed in vitro fertilization.
Specifically, several dozen immature eggs (pigs: 30 to 40, cows: 20 to 35) are added to 200 μL of in vitro maturation medium supplemented with 20 μL of the oocyte maturation promoter of the present invention at various concentrations. and cultured in a CO 2 incubator (38.5°C, 5% CO 2 ) (pig: 42 hours, cow: 22 hours). Thereafter, Hepes-TLP-PVA supplemented with 0.1% (w/v) hyaluronidase (Sigma-Aldrich) was sprinkled onto the COCs, and the remaining cumulus cells were peeled off using a glass pipette, leaving about 2 or 3 layers of cumulus cells. Then, wash multiple times with 80 μL of microdroplets of IVF medium (PFM, Research Institute for the Functional Peptides, Co., Ltd.), and add 90 to 180 μL of IVF for each group of 20 to 40 eggs. microdroplets of medium for use. 10 to 20 μL of sperm suspension was added thereto for insemination. The final sperm concentration was adjusted to 1.0×10 6 animals/mL for pigs and 2.0×10 7 animals/mL for cows. Thereafter, the eggs were co-cultured in a CO 2 incubator (38.5° C., 5% CO 2 ) for 6 hours after insemination, and then the eggs were transferred to a development medium and cultured for 6 hours. Thereafter, the in vitro fertilization status, maturation rate, and normal fertilization rate were evaluated according to the following method, and a comparative study was performed in each addition period. Analysis was performed using a one-way analysis of variance test method, and a multiple comparison test was performed using the Tukey-Kramer method for comparison between each addition interval.
(1) Confirmation of IVF status
 媒精12時間後に各添加区の一部の卵を無作為に発生培地から取り出して、実体顕微鏡下にてカルノア液(エタノール:酢酸=3:1)で固定した。固定後48時間以降1% (w/v) 酢酸オルセイン液で核を染色し、正立顕微鏡(OLYMPUS)下で受精状況を観察し、判定を以下の通り行った(n=5)。
(i)成熟率:供試卵に対して、第一極体及び第二減数分裂中期の染色体が観察された卵子の割合
(ii)精子侵入率:成熟卵に対して、精子頭部もしくは1個ないし複数個の雄性前核が観察された卵子の割合
(iii)正常受精率:精子が侵入した卵子に対して、第一及び第二極体を放出し雌雄両前核が観察された卵子の割合
(iv)多精子受精率(ブタに多い):精子が侵入した卵子に対して、第一及び第二極体を放出し前核が3つ以上観察された卵子の割合
(v)受精効率:成熟卵子に対して、正常受精した卵の割合
ブタにおける上記結果を表5Aに示す。ウシにおける成熟率の結果を表5Bに、正常受精率の結果は表5Cに示す。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
After 12 hours of insemination, some eggs from each addition group were randomly removed from the development medium and fixed with Carnoy's solution (ethanol:acetic acid=3:1) under a stereomicroscope. After 48 hours of fixation, the nuclei were stained with 1% (w/v) orcein acetate solution, and the fertilization status was observed under an upright microscope (OLYMPUS), and judgments were made as follows (n = 5).
(i) Maturation rate: Percentage of eggs in which the first polar body and second meiotic metaphase chromosomes were observed among the test eggs.
(ii) Sperm penetration rate: Percentage of eggs in which a sperm head or one or more male pronuclei are observed relative to mature eggs.
(iii) Normal fertilization rate: Percentage of eggs in which the first and second polar bodies have been released and both male and female pronuclei have been observed, compared to the eggs that have been penetrated by sperm.
(iv) Polyspermic fertilization rate (common in pigs): Percentage of eggs in which the first and second polar bodies have been released and three or more pronuclei have been observed for the eggs that have been penetrated by sperm (v) Fertilization efficiency: The ratio of normally fertilized eggs to mature eggs The above results for pigs are shown in Table 5A. The results for maturation rate in cattle are shown in Table 5B, and the results for normal fertilization rate are shown in Table 5C.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 表5Aから明らかなように、ブタでは、成熟率、精子侵入率、正常受精率、受精効率において、特に50×104及び100×104 cells/mLの区分で増加した。一方、多精子受精率は、特に50×104及び100×10cells/mLの区分において減少した。表5B及び表5Cから明らかなように、ウシにおいては成熟率及び正常受精率が特に100×104 cells/mL及び200×104 cells/mLの区分で増加し、中でも200×104 cells/mL が最も高い値となった。
 卵丘細胞分泌因子には卵母細胞における減数分裂を誘発する重要な因子が含まれており、体外成熟培養過程において、卵母細胞の核成熟の進行に関与すると言われている。表1から明らかなように、本発明の卵子成熟促進剤を添加すると卵丘細胞の膨化が顕著なことから、おそらく本発明の卵子成熟促進剤により、卵丘細胞から多くの成熟関連因子が分泌され、卵母細胞の核成熟を促進させたと推測される。同様に、卵丘細胞が膨化したことが、精子侵入率の増加に寄与したと推測される。また、精子核の脱凝縮及び雄性前核形成は卵子の成熟状態に依存すると言われているため、卵子の成熟を促進する本発明の卵子成熟促進剤を添加した卵子を用いると、受精効率が高まることは当然であるとも言える。
As is clear from Table 5A, in pigs, the maturation rate, sperm penetration rate, normal fertilization rate, and fertilization efficiency increased particularly in the 50×10 4 and 100×10 4 cells/mL categories. On the other hand, the polyspermic fertilization rate decreased particularly in the 50×10 4 and 100×10 4 cells/mL categories. As is clear from Tables 5B and 5C, in cattle, the maturation rate and normal fertilization rate particularly increase in the 100×10 4 cells/mL and 200×10 4 cells/mL, especially in the 200×10 4 cells/mL category. mL had the highest value.
Cumulus cell secreted factors include important factors that induce meiosis in oocytes, and are said to be involved in the progression of nuclear maturation of oocytes during the in vitro maturation culture process. As is clear from Table 1, when the oocyte maturation promoting agent of the present invention is added, the swelling of cumulus cells is remarkable, so it is likely that many maturation-related factors are secreted from the cumulus cells by the oocyte maturation promoting agent of the present invention. It is presumed that this stimulated the nuclear maturation of oocytes. Similarly, it is speculated that the swelling of cumulus cells contributed to the increased sperm penetration rate. Furthermore, since decondensation of sperm nuclei and formation of male pronuclei are said to depend on the state of egg maturation, fertilization efficiency can be improved by using eggs to which the oocyte maturation promoter of the present invention has been added. It can be said that it is natural that it will increase.
 一方、細胞質成熟が不完全であると、多精子受精拒否機構の遅延を招くことで多精子受精率が増加すると言われている。特にブタは、他の動物種に比べて多精子受精が多い。多精子受精した卵は正常に発生しないため、このことがブタの体外受精胚生産効率向上の阻害要因の一つとなっている。しかしながら、表5Aの結果から明らかなように、本発明の卵子成熟促進剤により、おそらく細胞質成熟状況が改善され、その結果、多精子受精拒否機構が正常に機能し、正常受精率の向上及び多精子受精率が減少したと考えられる。
(2)卵割率及び胚盤胞形成状況の確認
On the other hand, incomplete cytoplasmic maturation is said to delay the polyspermic fertilization rejection mechanism, thereby increasing the polyspermic fertilization rate. Pigs in particular have a higher incidence of polyspermic fertilization than other animal species. Eggs fertilized by polysperm do not develop normally, and this is one of the factors hindering the efficiency of IVF embryo production in pigs. However, as is clear from the results in Table 5A, the oocyte maturation promoter of the present invention probably improves the cytoplasmic maturation situation, and as a result, the multisperm fertilization rejection mechanism functions normally, improving the normal fertilization rate and increasing the multisperm fertilization rate. It is thought that the sperm fertilization rate has decreased.
(2) Confirmation of cleavage rate and blastocyst formation status
 仮に正常受精しても、その後の体細胞分裂(卵割)が適切に行わなければ、良好な胚盤胞へと成長しない。また、卵割が適切に行われても、その後、正常に発生分化しなければ子宮へ戻しても着床率が向上しない。そこで、本発明の卵子成熟促進剤を用いて体外受精を行った場合の、卵割率やその後の胚盤胞形成状況について以下の方法により測定した。
 具体的には、ブタ及びウシにおいて先の方法により体外受精を行い、媒精2日後に倒立顕微鏡(OLYMPUS)下で卵割状況を観察し、細胞分裂が確認された卵子の割合である卵割率を算出した。また媒精7日後には、胚盤胞形成状況を観察し、胚盤胞腔が確認された胚の割合である胚盤胞形成率を算出した。さらに得られた胚盤胞をHoechst 33342染色により胚盤胞総細胞数を、TUNEL染色により胚盤胞総細胞数に対するアポトーシス細胞割合をそれぞれ計測し、各添加区間で比較検討した(n=3)。一元配置分散分析検定法を用いて解析し、各添加区間の比較にはTukey-Kramer法を用いて、多重比較検定を行った。
 ブタにおける卵割率及び4細胞期までの卵割状況の結果を表6Aに、それ以降胚盤胞までの形成状況を表6Bに、アポトーシス細胞割合の結果を表6Cに示す。ウシにおける2細胞期までの卵割状況及び胚盤胞形成率ついては表7Aに、胚盤胞の総細胞数とアポトーシス細胞割合の結果を表7Bに示す。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Even if fertilization occurs normally, if the subsequent somatic cell division (cleavage) does not occur properly, the embryo will not develop into a good blastocyst. Furthermore, even if cleavage is performed appropriately, if the egg does not develop and differentiate normally thereafter, the implantation rate will not improve even if the egg is returned to the uterus. Therefore, when in vitro fertilization was performed using the oocyte maturation promoter of the present invention, the cleavage rate and subsequent blastocyst formation status were measured by the following method.
Specifically, in vitro fertilization was performed on pigs and cows using the above method, and two days after insemination, the cleavage status was observed under an inverted microscope (OLYMPUS). The rate was calculated. Seven days after insemination, the blastocyst formation status was observed, and the blastocyst formation rate, which is the percentage of embryos in which the blastocyst cavity was confirmed, was calculated. Furthermore, the total number of blastocyst cells was measured using Hoechst 33342 staining of the obtained blastocysts, and the percentage of apoptotic cells relative to the total number of blastocyst cells was measured using TUNEL staining, and the results were compared for each addition interval (n=3). . Analysis was performed using a one-way analysis of variance test method, and a multiple comparison test was performed using the Tukey-Kramer method for comparison between each addition interval.
The results of the cleavage rate and cleavage status in pigs up to the 4-cell stage are shown in Table 6A, the formation status from then on to the blastocyst stage is shown in Table 6B, and the results of the apoptotic cell ratio are shown in Table 6C. Table 7A shows the cleavage status and blastocyst formation rate up to the 2-cell stage in cattle, and Table 7B shows the results of the total number of blastocyst cells and the percentage of apoptotic cells.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
 表6Aの結果から、本発明の卵子成熟促進剤の添加により、成熟した卵子を用いて体外受精すると、ブタにおいては特に50×104及び100×10cells/mLの区分において受精卵の卵割率が有意に増加しており、発生速度の向上が認められた。一般的に、発生初期段階の胚は成熟培養過程で卵細胞質内に蓄積された母性mRNA及びタンパク質等の因子によって制御されている。今回の結果は、成熟培養過程における本発明の卵子成熟促進剤の添加により細胞質成熟が改善し、細胞内に母性因子をより多く蓄積したため、初期胚発生能を改善したと考えられる。 From the results in Table 6A, it can be seen that when in vitro fertilization is performed using matured eggs by adding the oocyte maturation promoter of the present invention, fertilized eggs in the 50 x 10 4 and 100 x 10 4 cells/mL categories in pigs. The incidence rate increased significantly, indicating an improvement in the rate of occurrence. In general, embryos at the early stage of development are controlled by factors such as maternal mRNA and proteins accumulated in the oocyte cytoplasm during the maturation culture process. The present results are thought to be due to the addition of the oocyte maturation promoter of the present invention during the maturation culture process, which improved cytoplasmic maturation and accumulated more maternal factors within the cells, thereby improving early embryonic development ability.
 また、表6B及び表6Cの結果から、ブタにおいてはその後の発生においても、各発育段階における胚盤胞の有意な増加が見られた。これは卵割状況が良好であったことによるものと推測される。また、アポトーシス細胞指標も低下が認められた。
 ウシにおいては、表7Aから明らかなように、本発明の卵子成熟促進剤の添加により、全ての区分において卵割率が改善された。特に200×104 cells/mL区分が最も高い値となった。胚盤胞形成率も、200×104 cells/mL区分において、コントロールと比較して有意に高い値を示し、各添加区間の中でも最も高い値となった。また、いずれの実験区においても形態的に正常な胚盤胞が得られた。
 また、表7Bから明らかなように、コントロールと比較して有意に高い値を示し、胚盤胞総細胞数は、200×104 cells/mL区分において、各添加区間の中で最も高い値となった。アポトーシス細胞数及び胚盤胞総細胞数に対するアポトーシス細胞の割合は、全ての卵子成熟促進剤添加区において、コントロールと比較して減少する傾向を示し、特に200×104及び400×10cells/mLの区分において、顕著な効果が認められた。
<胚盤胞の品質評価>
Furthermore, from the results in Tables 6B and 6C, a significant increase in the number of blastocysts at each developmental stage was observed in pigs during subsequent development. This is presumed to be due to the favorable cleavage condition. Furthermore, a decrease in the apoptotic cell index was also observed.
In cattle, as is clear from Table 7A, the addition of the oocyte maturation promoter of the present invention improved the cleavage rate in all categories. In particular, the 200×10 4 cells/mL category had the highest value. The blastocyst formation rate also showed a significantly higher value in the 200×10 4 cells/mL section compared to the control, and was the highest value among each addition section. Furthermore, morphologically normal blastocysts were obtained in all experimental groups.
In addition, as is clear from Table 7B, the value was significantly higher than that of the control, and the total number of blastocyst cells was the highest value in each addition interval in the 200 × 10 4 cells/mL category. became. The number of apoptotic cells and the ratio of apoptotic cells to the total number of blastocyst cells showed a tendency to decrease compared to the control in all oocyte maturation promoter addition groups, especially at 200×10 4 and 400×10 4 cells/ A significant effect was observed in the mL category.
<Blastocyst quality evaluation>
 表6C及び表7Bより、本発明の卵子成熟促進剤を添加すると、胚盤胞総細胞数形成率が有意に向上することが分かった。しかし、胚盤胞にもグレードがあり、グレードの高い胚盤胞、つまり着床の可能性の高い胚盤胞を選択して移植する必要がある。胚盤胞のグレードは、胎児になる部分(内部細胞塊=ICM)と胎盤になる部分(栄養外胚葉=TE)の細胞数の多さ等により評価される(ガードナー分類)。 From Tables 6C and 7B, it was found that the addition of the oocyte maturation promoter of the present invention significantly improved the total blastocyst cell number formation rate. However, there are also grades of blastocysts, and it is necessary to select and transfer blastocysts of a high grade, that is, those with a high possibility of implantation. The grade of a blastocyst is evaluated based on the number of cells in the part that will become a fetus (inner cell mass = ICM) and the part that will become a placenta (trophectoderm = TE) (Gardner classification).
 そこで、本発明の卵子成熟促進剤を添加した場合の胚盤胞におけるICMとTEの分化率を以下の方法により評価した。
 ブタの場合、先の方法により体外受精を行い、媒精7日後に得られた、形態的に胚盤胞と認められたものは、6 μLの0.5% (w/v) プロナーゼ液に浸漬し、透明帯を溶解した。Hepes-TLP-PVAで洗浄し、反応液A(10 μLのAnti-Pig Serum antibody produced in rabbit (Sigma-Aldrich) と50 μLのPBS(-))を加え、COインキュベーター内で1時間染色した。その後Hepes-TLP-PVAで洗浄し、反応液B(5μLのComplement sera from guinea pig (Sigma-Aldrich) と50 μLのPI-Hoechst 33342-PBS stock)を加え、再度、COインキュベーター内で1時間染色した。染色後、Hepes-TLP-PVAで洗浄し、デジタルカメラを設置した蛍光顕微鏡 (Olympus) で、365 nmのUVフィルターを用いて蛍光画像を記録した。染色された核を計測し、細胞数が32以上あるものを胚盤胞とみなし、胚盤胞総細胞数を算出した。また、青色蛍光に染色されたICM細胞と赤色蛍光に染色されたTE細胞をそれぞれ計測し、胚盤胞総細胞数に対するICM細胞割合とTE細胞割合を算出した。
 ウシの場合、先の方法により体外受精を行い、媒精7日後に得られた、形態的に胚盤胞と認められたものは、500 μLの4 % (w/v) パラホルムアルデヒド中で、室温、遮光条件下で30分間浸漬し固定した。固定した胚は、0.3% PVA-PBSで数回洗浄し、1 % (w/v) Triton X-100 (Sigma-Aldrich) 添加PVA-PBS中で室温、遮光条件下で30分間浸漬し透過した。透過処理後、0.3% PVA-PBSで数回洗浄し、0.5% BSA及び10% Horse serum (16050-130、Gibco、Thermo Fisher Scientific) 添加PVA-PBS中で、4℃、遮光条件下で2時間浸漬することで抗体の非特異的結合をブロッキングした。ブロッキング後、0.3% PVA-PBSで1:50に希釈した一次抗体CDX2 (D11D10) Rabbit mAb (Cell Signaling Technology、Danvers、MA、USA) 液中に4℃、遮光条件下で24時間浸漬した。一次抗体反応後の胚は、0.3% PVA-PBSで数回洗浄し、0.3% PVA-PBSで1:500に希釈した二次抗体Anti-rabbit IgG (H+L), F (ab’)2 Fragment (Alexa Fluor(登録商標) 555 Conjugate;Cell Signaling Technology) 液中に4℃、遮光条件下で1時間浸漬し、TE細胞 (赤色蛍光) を染色した。次いで、10μg/mL Hoechst 33342添加0.3% PBS-PVA中で、4 ℃、遮光条件下で15分間浸漬することで核を染色し、スライドガラスにマウント後、カバーガラスをかぶせ周囲をトップコートで封入した。作成したホールマウント標本は、デジタルカメラ (Canon) を設置した蛍光顕微鏡 (OLYMPUS) で、Hoechst 33342は365 nm、Alexa Fluor(登録商標) 555は546 nmのUVフィルターを用いて蛍光画像を記録観察した。得られた蛍光画像から、画像解析ソフトImage J (National Institutes of Health) を用いて青色及び赤色蛍光に染色された核を計測し、総細胞数及びTE細胞数を計測した。また、ICM細胞数は総細胞数からTE細胞数を差し引くことで算出した。
 ブタにおける結果を表8Aに、ウシにおける結果を表8Bに示す。ICM細胞割合とTE細胞割合は、総細胞数に対するICM細胞数とTE細胞数の割合を示す。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Therefore, the differentiation rate of ICM and TE in blastocysts when the oocyte maturation promoting agent of the present invention was added was evaluated by the following method.
In the case of pigs, in vitro fertilization was performed using the above method, and the morphologically recognized blastocysts obtained after 7 days of insemination were immersed in 6 μL of 0.5% (w/v) pronase solution. , dissolved the zona pellucida. Washed with Hepes-TLP-PVA, added reaction solution A (10 μL of Anti-Pig Serum antibody produced in rabbit (Sigma-Aldrich) and 50 μL of PBS(-)), and stained in a CO 2 incubator for 1 hour. . After that, it was washed with Hepes-TLP-PVA, reaction solution B (5 μL of Complement sera from guinea pig (Sigma-Aldrich) and 50 μL of PI-Hoechst 33342-PBS stock) was added, and the mixture was incubated again in the CO 2 incubator for 1 hour. Stained. After staining, the cells were washed with Hepes-TLP-PVA, and fluorescence images were recorded using a 365 nm UV filter using a fluorescence microscope (Olympus) equipped with a digital camera. The stained nuclei were counted, and those with 32 or more cells were considered to be blastocysts, and the total number of blastocyst cells was calculated. In addition, ICM cells stained with blue fluorescence and TE cells stained with red fluorescence were each counted, and the proportion of ICM cells and TE cells relative to the total number of blastocyst cells was calculated.
In the case of cattle, in vitro fertilization was performed using the above method, and the morphologically recognized blastocysts obtained 7 days after insemination were incubated in 500 μL of 4% (w/v) paraformaldehyde. It was immersed and fixed for 30 minutes at room temperature and protected from light. Fixed embryos were washed several times with 0.3% PVA-PBS and permeabilized by immersion in PVA-PBS supplemented with 1% (w/v) Triton X-100 (Sigma-Aldrich) for 30 minutes at room temperature, protected from light. . After permeabilization, wash several times with 0.3% PVA-PBS and store in PVA-PBS supplemented with 0.5% BSA and 10% Horse serum (16050-130, Gibco, Thermo Fisher Scientific) for 2 hours at 4°C, protected from light. Nonspecific binding of antibodies was blocked by immersion. After blocking, the cells were immersed in primary antibody CDX2 (D11D10) Rabbit mAb (Cell Signaling Technology, Danvers, MA, USA) diluted 1:50 with 0.3% PVA-PBS at 4°C for 24 hours in the dark. After the primary antibody reaction, the embryos were washed several times with 0.3% PVA-PBS, and the secondary antibody Anti-rabbit IgG (H+L), F (ab')2 Fragment ( The cells were immersed in Alexa Fluor (registered trademark) 555 Conjugate; Cell Signaling Technology) solution at 4°C for 1 hour in the dark, to stain TE cells (red fluorescence). Next, the nuclei were stained by immersion in 0.3% PBS-PVA containing 10 μg/mL Hoechst 33342 at 4 °C in the dark for 15 minutes, mounted on a glass slide, covered with a cover glass, and covered with a top coat. did. Fluorescence images of the prepared whole-mount specimens were recorded and observed using a fluorescence microscope (OLYMPUS) equipped with a digital camera (Canon) using UV filters of 365 nm for Hoechst 33342 and 546 nm for Alexa Fluor (registered trademark) 555. . From the obtained fluorescence image, nuclei stained with blue and red fluorescence were counted using image analysis software Image J (National Institutes of Health), and the total cell number and TE cell number were counted. In addition, the number of ICM cells was calculated by subtracting the number of TE cells from the total number of cells.
The results for pigs are shown in Table 8A and the results for cattle are shown in Table 8B. ICM cell percentage and TE cell percentage indicate the ratio of the number of ICM cells and the number of TE cells to the total number of cells.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 表8Aの結果から、本発明の卵子成熟促進剤を添加すると、いずれも細胞数が増加することが分かる。ブタにおいては特に50×10cells/mLと100×10cells/mLの濃度において、総細胞数、ICM細胞数、ICM細胞割合が有意に増加した。
 ウシにおいては、特に200×104 cells/mL区分において、総細胞数はコントロールと比較して有意に高い値を示し、ICM細胞数及びTE細胞数もすべての実験区分でコントロールに比較して高い値となった。また、胚盤胞総細胞数に対するICM細胞数の割合の結果より、すべての実験区分において、ICMへ分化する割合が増加する傾向を示した。
 胚盤胞期胚におけるこれら細胞数の評価は、胚の品質を測る指標となり、特にICM細胞は胚移植後の着床と胎児の正常な発生に関わることが明らかになっていることから本発明の卵子成熟促進剤の添加により高品質な胚盤胞ができたことが分かる。移植後の着床率向上、妊娠率向上効果を奏すると推測される。
From the results in Table 8A, it can be seen that the addition of the oocyte maturation promoter of the present invention increases the cell number in all cases. In pigs, the total cell number, ICM cell number, and ICM cell percentage significantly increased, especially at concentrations of 50×10 4 cells/mL and 100×10 4 cells/mL.
In cattle, the total cell number was significantly higher than the control, especially in the 200 × 10 4 cells/mL category, and the ICM and TE cell counts were also higher than the control in all experimental categories. It became the value. Furthermore, the results of the ratio of the number of ICM cells to the total number of blastocyst cells showed a tendency for the rate of differentiation into ICM to increase in all experimental categories.
Evaluation of the number of these cells in a blastocyst-stage embryo is an indicator for measuring the quality of the embryo, and it has been shown that ICM cells in particular are involved in implantation after embryo transfer and normal development of the fetus, so the present invention It can be seen that high quality blastocysts were produced by adding the oocyte maturation promoter. It is presumed that it has the effect of improving the implantation rate and pregnancy rate after transplantation.
 本発明の卵子成熟促進剤によれば、卵子の成熟を促進させることができ、それにより受精率が向上する。本発明は、家畜の交配・繁殖(胚移植の成功率や効率の向上)、育種・種の維持(例えば絶滅危惧種の維持、ペットの系統の維持又は交雑)等への利用へ有効である。また、卵子成熟不良等の機能低下に起因する不妊症の治療にも有効である。また、老化した卵子の質を改善することができる。 According to the oocyte maturation promoter of the present invention, oocyte maturation can be promoted, thereby improving the fertilization rate. The present invention is effective for use in crossbreeding and breeding of livestock (improving the success rate and efficiency of embryo transfer), breeding and maintenance of species (for example, maintenance of endangered species, maintenance of pet lines, or crossbreeding), etc. . It is also effective in treating infertility caused by functional decline such as poor egg maturation. It can also improve the quality of aged eggs.

Claims (12)

  1. 脂肪組織由来幹細胞破砕液の濾液を有効成分として含有する、卵子成熟促進剤。 An oocyte maturation promoter containing as an active ingredient the filtrate of adipose tissue-derived stem cell disruption solution.
  2. 体外受精に使用される、請求項1に記載の卵子成熟促進剤。 The oocyte maturation promoter according to claim 1, which is used for in vitro fertilization.
  3. 前記脂肪組織由来幹細胞の生物種と、卵子の生物種が同一である、請求項1又は2に記載の卵子成熟促進剤。 The egg maturation promoter according to claim 1 or 2, wherein the biological species of the adipose tissue-derived stem cells and the biological species of the egg are the same.
  4. 前記脂肪組織由来幹細胞の生物種が非ヒト哺乳動物である、請求項1に記載の卵子成熟促進剤。 The oocyte maturation promoter according to claim 1, wherein the biological species of the adipose tissue-derived stem cells is a non-human mammal.
  5. 前記脂肪組織由来幹細胞の生物種がヒトである、請求項1に記載の卵子成熟促進剤。 The oocyte maturation promoter according to claim 1, wherein the biological species of the adipose tissue-derived stem cells is human.
  6.  コントロールを1としたときに、ROS値が1未満である、請求項1に記載の卵子成熟促進剤。 The oocyte maturation promoter according to claim 1, which has a ROS value of less than 1 when the control value is 1.
  7. 以下の工程を含む、卵子成熟促進剤の製造方法。
    (1)脂肪組織由来幹細胞を破砕する工程。
    (2)工程(1)で得られた破砕液又は前記破砕液を遠心処理して得られた上清を、フィルター処理し、濾液を得る工程。
    (3)工程(2)で得られた濾液を製剤化する工程。
    A method for producing an oocyte maturation promoter, including the following steps.
    (1) A step of disrupting adipose tissue-derived stem cells.
    (2) A step of filtering the crushed liquid obtained in step (1) or the supernatant obtained by centrifuging the crushed liquid to obtain a filtrate.
    (3) A step of formulating the filtrate obtained in step (2).
  8. 請求項1に記載の卵子成熟促進剤存在下で、卵子を培養する、成熟卵子の製造方法。 A method for producing mature eggs, which comprises culturing eggs in the presence of the egg maturation promoter according to claim 1.
  9. 請求項1に記載の卵子成熟促進剤で処理した卵子を、精子と生体外で共存させる、体外受精方法。 An in vitro fertilization method, which comprises causing an egg treated with the egg maturation promoter according to claim 1 to coexist with sperm in vitro.
  10. 請求項1に記載の卵子成熟促進剤存在下で、卵子と精子を生体外で共存させる、体外受精方法。 An in vitro fertilization method, which comprises causing eggs and sperm to coexist in vitro in the presence of the egg maturation promoter according to claim 1.
  11. 請求項8又は9に記載の体外受精方法により生成した受精卵を培養し、成育した胚盤胞を哺乳動物の子宮に注入する、胚移植方法。 An embryo transfer method, which comprises culturing a fertilized egg produced by the in vitro fertilization method according to claim 8 or 9, and injecting the grown blastocyst into the uterus of a mammal.
  12. 請求項1に記載の卵子成熟促進剤の卵子の質の改善剤としての使用。 Use of the oocyte maturation promoter according to claim 1 as an oocyte quality improving agent.
PCT/JP2022/033031 2022-03-18 2022-09-01 Oocyte maturation promoter and uses thereof WO2023176017A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022574386A JP7257012B1 (en) 2022-03-18 2022-09-01 Egg maturation promoter and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/012703 WO2023175930A1 (en) 2022-03-18 2022-03-18 Oocyte maturation promoter and uses thereof
JPPCT/JP2022/012703 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023176017A1 true WO2023176017A1 (en) 2023-09-21

Family

ID=88023008

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/012703 WO2023175930A1 (en) 2022-03-18 2022-03-18 Oocyte maturation promoter and uses thereof
PCT/JP2022/033031 WO2023176017A1 (en) 2022-03-18 2022-09-01 Oocyte maturation promoter and uses thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012703 WO2023175930A1 (en) 2022-03-18 2022-03-18 Oocyte maturation promoter and uses thereof

Country Status (1)

Country Link
WO (2) WO2023175930A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018038180A1 (en) * 2016-08-24 2018-03-01 国立大学法人名古屋大学 Sperm activator and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018038180A1 (en) * 2016-08-24 2018-03-01 国立大学法人名古屋大学 Sperm activator and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE SEOK HEE: "Human Adipose-Derived Stem Cells’ Paracrine Factors in Conditioned Medium Can Enhance Porcine Oocyte Maturation and Subsequent Embryo Development", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, vol. 22, no. 2, 8 January 2021 (2021-01-08), pages 579, XP093091754, DOI: 10.3390/ijms22020579 *

Also Published As

Publication number Publication date
WO2023175930A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
US11883438B2 (en) Sperm activator and uses thereof
JP4330995B2 (en) Methods for isolating, proliferating, and differentiating fetal stem cells from chorionic villi, amniotic fluid, and placenta, and methods for their therapeutic use
JP4950660B2 (en) Repair and regeneration of ocular tissue using postpartum cells
JP6241819B2 (en) Sperm activation method and use thereof
JP2013514760A (en) Germline stem cell maturation in vitro
JP2006525006A (en) Cryopreservation method of stem cells derived from human blastocysts using the closed straw vitrification method
WO2007008377A1 (en) Oocytes derived from ovarian culture initially containing no oocytes
JP6436284B2 (en) Ovum activation method and use thereof
WO2023176017A1 (en) Oocyte maturation promoter and uses thereof
US20030157710A1 (en) Monkey-origin embryonic stem cells
JP7257012B1 (en) Egg maturation promoter and use thereof
Nejat-Dehkordi et al. Embryo co-culture with bovine amniotic membrane stem cells can enhance the cryo-survival of IVF-derived bovine blastocysts comparable with co-culture with bovine oviduct epithelial cells
El-Shahat et al. Effect of oviduct and follicular fluids on ram sperm capacitation and acrosome reaction in vitro
JP4689175B2 (en) Composition, method for regenerating hair follicle and animal carrying regenerated hair follicle
de Avila Rodrigues et al. Effect of maturation medium on in vitro cleavage of canine oocytes fertilized with fresh and cooled homologous semen
Dashti et al. Differential influence of ovine oviduct ampullary and isthmic derived epithelial cells on in vitro early embryo development and kinetic
JP2010507373A (en) Method for isolating pluripotent cells from preimplantation embryos in medium without animal serum
EP3598895A1 (en) An in vitro method for freezing mammalian embryos
JP4264322B2 (en) Preparation method of dermal papilla cell preparation
WO2023140348A1 (en) Composition for spermatozoa treatment, spermatozoa motility enhancement agent, spermatozoa fertility retention agent, spermatozoa motility enhancement method, and spermatozoa fertility retention method
JP2002176973A (en) Mammalian embryonic stem cell and method for establishing the same and subculture method for the same
WO2023140347A1 (en) Composition for sperm treatment, sperm motility improving agent, sperm fertilizing capability retaining agent, sperm motility improving method, and sperm fertilizing capability retaining method
JP2002159289A (en) Embryonic stem cell derived from monkey
WO2005040361A1 (en) Method of simply preparing stem cell and feeder cell to be used therein
KR101533073B1 (en) Composition for Co-culture on Embryo Containing Endometrium-Derived Mechenchymal Stem Cells

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022574386

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932280

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)