WO2023175977A1 - Learning device - Google Patents

Learning device Download PDF

Info

Publication number
WO2023175977A1
WO2023175977A1 PCT/JP2022/012882 JP2022012882W WO2023175977A1 WO 2023175977 A1 WO2023175977 A1 WO 2023175977A1 JP 2022012882 W JP2022012882 W JP 2022012882W WO 2023175977 A1 WO2023175977 A1 WO 2023175977A1
Authority
WO
WIPO (PCT)
Prior art keywords
learning
learning device
data
unit
decision tree
Prior art date
Application number
PCT/JP2022/012882
Other languages
French (fr)
Japanese (ja)
Inventor
バトニヤマ エンケタイワン
勇 寺西
邦大 伊東
諒 古川
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2022/012882 priority Critical patent/WO2023175977A1/en
Publication of WO2023175977A1 publication Critical patent/WO2023175977A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present invention relates to a learning device, a learning method, a recording medium, and an inference device.
  • the learning devices learned by each participant may be combined.
  • Non-Patent Document 1 there is a technique called Gradient Boosting Forest (GBF) in which participants create a decision tree in each step and combine the created decision trees to create a model with better performance.
  • GBF Gradient Boosting Forest
  • Patent Document 1 describes GBDT (Gradient Boosting Decision Tree) and the like.
  • Non-Patent Document 1 In the case of the technique described in Non-Patent Document 1, learning devices learned by each participant are combined. Therefore, the learning device that is finally created will be, for example, in accordance with the learning data that each participant has. On the other hand, for example, in cases where there is a bias in the distribution of learning data held by each participant, it may be desirable to prepare a learning device that is more suitable for a specific individual while improving performance. However, it is difficult to deal with the above-mentioned cases simply by combining as described in Non-Patent Document 1.
  • an object of the present invention is to provide a learning device, a learning method, and a recording medium that can solve the above-mentioned problems.
  • a learning device that is one form of the present disclosure includes: a receiving unit that receives the learning device from another learning device; a generation unit that uses the learning device received by the receiving unit and the data possessed by the device itself to generate an appropriate learning device so as to make a prediction suitable for the data possessed by the device itself; It has the following structure.
  • a learning method that is another form of the present disclosure includes: The information processing device Receive learning devices from other learning devices, Using the received learning device and data possessed by the device itself, an appropriate learning device is generated so as to make predictions suitable for the data possessed by the device itself.
  • a recording medium includes: In the information processing device, Receive learning devices from other learning devices, Using the received learning device and the data held by the own device, a computer records a program for realizing the process of generating an appropriate learning device so as to make predictions suitable for the data held by the own device. It is a readable recording medium.
  • an inference device includes: An inference device that infers a label based on an input of a feature amount, the inference device comprising: a storage device that stores a learning device received from another learning device and a coupling coefficient calculated to perform a prediction suitable for the data of the own device using the data of the own device; an inference unit that performs inference using the learning device and the coupling coefficient stored in the storage device according to the input of the feature amount; It has the following structure.
  • FIG. 1 is a diagram for explaining an overview of the present disclosure.
  • FIG. 1 is a diagram illustrating a configuration example of a learning system according to a first embodiment of the present disclosure.
  • FIG. 2 is a block diagram showing a configuration example of a learning device. It is a figure showing an example of learning data. It is a figure showing an example of validation data. It is a figure showing an example of an algorithm. It is a figure which shows another example of an algorithm. It is a flow chart which shows an example of operation of a learning device.
  • FIG. 3 is a diagram illustrating an example hardware configuration of a learning device according to a second embodiment of the present disclosure. It is a block diagram showing an example of the configuration of a learning device.
  • FIG. 2 is a block diagram showing a configuration example of an inference device.
  • FIG. 1 is a diagram for explaining an overview of the present disclosure.
  • FIG. 2 is a diagram showing a configuration example of the learning system 100.
  • FIG. 3 is a block diagram showing a configuration example of the learning device 300.
  • FIG. 4 is a diagram showing an example of the learning data information 341.
  • FIG. 5 is a diagram showing an example of the validation data information 342.
  • 6 and 7 are diagrams showing an example of an algorithm performed by the learning system 100.
  • FIG. 8 is a flowchart showing an example of the operation of the learning device 300.
  • a learning system 100 including a learning device 300 that generates a combined learning device to make more appropriate predictions for data such as learning data and validation data will be described.
  • the learning device 300 described in this embodiment receives a decision tree, which is a learning device, from another participant in the learning system 100, it inputs the learning data it owns into the received decision tree. By doing so, new feature quantities are calculated. Then, the learning device 300 generates a decision tree, which is a new learning device of the own device, based on the learning data and the calculated feature amount.
  • the learning device 300 uses the generated decision trees, decision trees received from other participants, and pre-stored validation data to calculate a coupling coefficient corresponding to each decision tree. For example, the learning device 300 calculates a coupling coefficient for each decision tree based on the decision tree and validation data so that the prediction performance for its own validation data is optimal. Thereafter, the learning device 300 creates a new combined decision tree by combining the decision tree received from another learning device 200 or the generated decision tree with the past combined decision tree using the calculated combination coefficient. generate. That is, the learning device 300 generates a combined decision tree, which is an appropriate learning device, by performing combination using the combination coefficient.
  • the above-described process can be repeated.
  • the other learning device 200 generates a decision tree
  • the learning device 300 generates a decision tree using the decision tree generated by the other learning device 200
  • the learning device 300 calculates a coupling coefficient, and each decision tree.
  • a series of steps of combining can be repeated multiple times, for example, until a predetermined condition is satisfied.
  • the learning data includes, for example, a plurality of feature amounts such as gender, age, height, weight, etc., and a label indicating whether the person is sick or not.
  • the feature amount may also be called an explanatory variable, an attribute, or the like.
  • a label can also be called an objective variable. Specific examples of feature amounts and labels may be other than those exemplified above.
  • validation data refers to data for verification that can be used when evaluating a learning device. Similar to the learning data, the validation data includes a plurality of feature amounts and labels.
  • a decision tree is a model that is trained by performing the task of sorting input data multiple times using a binary tree based on conditional branching of its feature values until the label explanatory performance becomes sufficiently good. Decision trees include regression trees that handle regression tasks, classification trees that handle classification tasks, and the like.
  • each participant in the learning system 100 may generate a shallow neural network, a support vector machine, or the like as a learning device. Even if each participant in the learning system 100 generates a neural network, support vector machine, or the like as a learning device, the present invention can be applied without problems.
  • FIG. 2 shows an example of the overall configuration of the learning system 100.
  • the learning system 100 includes one or more other learning devices 200 and a learning device 300.
  • the other learning device 200 and the learning device 300 are connected via a network or the like so that they can communicate with each other.
  • the other learning device 200 is an information processing device that generates a decision tree, which is a learning device, by performing learning based on training data that the other learning device 200 has. Further, the other learning device 200 can transmit the generated decision tree to other learning devices 200 and learning devices 300.
  • the other learning device 200 may be configured to combine decision trees that are learning devices received from other learning devices 200, learning devices 300, etc. using predetermined coefficients or the like.
  • the predetermined coefficient can be predetermined, for example, based on the number of data held by each participant such as the other learning devices 200 and the learning device 300 in the learning system 100.
  • the predetermined coefficient may be calculated by dividing the number of training data that the own device has by the sum of the number of training data that other learning devices 200 and 300 in the learning system 100 have.
  • the other learning device 200 generates a decision tree, which is a learning device, based on the training data of the own device, and transmits the generated decision tree to another information processing device in the learning system 100. or send it. Further, the other learning device 200 can receive decision trees from other information processing devices in the learning system 100, and combine the received decision trees using a predetermined coefficient or the like. For example, the other learning device 200 may implement each of the above processes using the method described in Non-Patent Document 1.
  • the learning device 300 is an information processing device that generates a joint decision tree, which is a joint learning device, to make more appropriate predictions for data such as learning data and validation data that the learning device 300 has.
  • FIG. 3 shows a configuration example of the learning device 300.
  • the learning device 300 includes, as main components, an operation input section 310, a screen display section 320, a communication I/F section 330, a storage section 340, an arithmetic processing section 350, have.
  • FIG. 3 illustrates a case where the function of the learning device 300 is realized using one information processing device.
  • the learning device 300 may be realized using a plurality of information processing devices, such as being realized on a cloud, for example.
  • the learning device 300 may not include some of the configurations exemplified above, such as not having the operation input unit 310 or the screen display unit 320, or may have a configuration other than those exemplified above.
  • the operation input unit 310 consists of an operation input device such as a keyboard and a mouse.
  • the operation input section 310 detects the operation of the operator who operates the learning device 300 and outputs the detected operation to the arithmetic processing section 350 .
  • the screen display unit 320 is composed of a screen display device such as an LCD (Liquid Crystal Display).
  • the screen display unit 320 can display various information stored in the storage unit 340 on the screen in response to instructions from the arithmetic processing unit 350.
  • the communication I/F section 330 consists of a data communication circuit and the like.
  • the communication I/F section 330 performs data communication with an external device connected via a communication line.
  • the storage unit 340 is a storage device such as a hard disk or memory.
  • the storage unit 340 stores processing information and programs 345 necessary for various processes in the arithmetic processing unit 350.
  • the program 345 implements various processing units by being read and executed by the arithmetic processing unit 350.
  • the program 345 is read in advance from an external device or a recording medium via a data input/output function such as the communication I/F section 330, and is stored in the storage section 340.
  • the main information stored in the storage unit 340 includes, for example, learning data information 341, validation data information 342, learning device information 343, coefficient information 344, and the like.
  • the learning data information 341 includes learning data used when learning a decision tree, which is a learning device.
  • the learning data information 341 is acquired in advance using a method such as acquiring from an external device via the communication I/F unit 330 or inputting using the operation input unit 310, and is stored in the storage unit 340. has been done.
  • FIG. 4 shows an example of the learning data information 341.
  • a plurality of feature amounts and labels are associated with each other.
  • the feature amounts (x 1 , x 2 , . . . , x d ) are associated with the label y 1 .
  • the learning data information 341 may include a plurality of learning data.
  • the validation data information 342 includes validation data that is data used when verifying the performance of a decision tree.
  • the validation data information 342 is obtained in advance using a method such as obtaining it from an external device via the communication I/F section 330 or inputting it using the operation input section 310, and is stored in the storage section 340. has been done.
  • FIG. 5 shows an example of the validation data information 342.
  • the validation data information 342 like the learning data information 341, a plurality of feature amounts and labels are associated.
  • the feature amounts (x 11 , x 12 , . . . , x 1d ) are associated with the label y 10 .
  • the validation data information 342 may include a plurality of pieces of validation data.
  • the learning device information 343 includes information indicating a decision tree received from another learning device 200, a combined decision tree combined by a combining unit 355, which will be described later, and the like.
  • the decision tree is associated with identification information indicating the source of the decision tree.
  • the learning device information 343 may include a decision tree or a combined decision tree for each step.
  • the learning device information 343 is updated in response to a receiving unit 351 (described later) receiving a decision tree from another learning device 200, a combining unit 355 generating a combined decision tree, and the like.
  • the coefficient information 344 includes coupling coefficients corresponding to each decision tree, such as a decision tree received from another learning device 200 or a decision tree generated by a learning unit 353, which will be described later.
  • decision tree identification information and coupling coefficients are associated in the coefficient information 344.
  • the coefficient information 344 may include a coupling coefficient for each step and each decision tree.
  • the coefficient information 344 is updated in response to calculation of a coupling coefficient by a coefficient calculation unit 354, which will be described later.
  • the arithmetic processing unit 350 includes an arithmetic unit such as a CPU (Central Processing Unit) and its peripheral circuits.
  • the arithmetic processing unit 350 reads the program 345 from the storage unit 340 and executes it, thereby causing the hardware and the program 345 to work together to implement various processing units.
  • the main processing units realized by the arithmetic processing unit 350 include, for example, a receiving unit 351, a feature value addition calculation unit 352, a learning unit 353, a coefficient calculation unit 354, a combining unit 355, an inference unit 356, an output unit 357, etc. be.
  • the receiving unit 351 receives a decision tree, which is a learning device, from the other learning device 200.
  • the receiving unit 351 can receive a learning device from each other learning device 200 included in the learning system 100 in each step. Further, the receiving unit 351 stores the received decision tree in the storage unit 340 as learning device information 343.
  • the receiving unit 351 may receive, for example, information indicating the difference between the decision tree in the previous step and the like from the other learning device 200.
  • the receiving unit 351 may be configured to update the corresponding decision tree based on the received information indicating the difference.
  • the feature value addition calculation unit 352 calculates additional learning data based on the decision tree received by the receiving unit 351 and the learning data included in the learning data information 341. For example, the feature quantity addition calculation unit 352 obtains an output from the learning device by inputting each learning data included in the learning data information 341 to the decision tree received by the receiving unit 351. The feature quantity addition calculation unit 352 can acquire the above output as an additional feature quantity.
  • the learning data information 341 includes learning data (x i , y i ) including feature quantity x i and label y i (i may be arbitrary).
  • decision trees f 1 (), f 2 (), . . . are received from other learning devices 200.
  • the feature amount additional calculation unit 352 calculates additional feature amounts f 1 (x i ), f 2 (x i ), . . . by inputting the feature amount xi into each decision tree.
  • the feature value addition calculation unit 352 can perform the above-described processing for each decision tree and each learning data.
  • the feature amount addition calculation unit 352 may perform the above process for each decision tree extracted by an arbitrary method.
  • the learning unit 353 generates a decision tree, which is a learning device, by performing learning based on the feature quantities calculated by the feature quantity addition calculation unit 352 and the learning data indicated by the learning data information 341. Further, the learning unit 353 stores the generated decision tree in the storage unit 340 as learning device information 343.
  • the additional feature amount is calculated by the feature amount addition calculation unit 352. Therefore, the learning unit 353 performs machine learning using learning data including additional feature quantities, such as (x i , f 1 (x i ), f 2 (x i ), ..., y i ). This will generate a decision tree.
  • the learning unit 353 may perform machine learning by directly adding the additional feature calculated by the feature addition calculation unit 352 to the learning data as described above;
  • the configuration may be such that machine learning is performed by adding the results of linearly combining the additional feature quantities calculated by the above to the learning data.
  • the learning unit 353 may perform machine learning by adding the additional feature calculated by the feature addition calculation unit 352 and the result of linearly combining the additional feature to the learning data.
  • the coefficient calculating unit 354 calculates a coupling coefficient for each decision tree using the validation data indicated by the validation data information 342. For example, the coefficient calculating unit 354 calculates a coupling coefficient so that the prediction performance for the validation data indicated by the validation data information 342 is optimal. The coefficient calculating unit 354 can calculate a coupling coefficient for each decision tree received by the receiving unit 351 or for each decision tree generated by the learning unit 353. Further, the coefficient calculation unit 354 stores the calculated coupling coefficient in the storage unit 340 as coefficient information 344.
  • the validation data information 342 includes validation data (x 1i ,y 1i ) including a feature amount x 1i and a label y 1i .
  • the other learning device 200 or the learning unit 353 receives or generates decision trees f 11 (), f 12 (), . . . .
  • the coefficient calculation unit 354 obtains an output by inputting validation data to each decision tree.
  • the coefficient calculation unit 354 obtains the output u i by inputting the validation data (x 1i , y 1i ) into the decision tree f 11 ( ).
  • the coefficient calculation unit 354 obtains the output v i by inputting the validation data (x 1i , y 1i ) to the decision tree f 12 (). Then, the coefficient calculating unit 354 calculates a coupling coefficient for each decision tree by using (u i , v i , y 1i ). For example, the coefficient calculation unit 354 may calculate the coupling coefficient by performing linear regression. For example, the coefficient calculating unit 354 may determine the coupling coefficient corresponding to the decision tree f11( ) by performing linear regression using the validation data (x 1i , y 1i ) and the output u i .
  • the coefficient calculating unit 354 calculates the coefficient a corresponding to each decision tree by performing linear regression on Equation 1 using the validation data (x 1i , y 1i ) and u i , v i i can be determined.
  • the coefficient calculation unit 354 may calculate the coupling coefficient using the entire validation data, or may calculate the coupling coefficient using a part of the validation data. For example, by referring to the model information about the decision tree generated by the learning unit 353, such as the model structure and branching conditions, it is possible to specify the leaf node where each validation data falls. Therefore, the coefficient calculation unit 354 may calculate a coupling coefficient for each leaf node, for example, by performing linear regression using validation data for each leaf node. Even when calculating a coupling coefficient for each leaf node, by coupling each leaf node, a coupling decision tree can be generated in the same way as in the case described above. Note that when the coefficient calculating unit 354 calculates a coupling coefficient using the entire validation data, it can also be said that the coupling coefficient for the entire decision tree is calculated.
  • the coefficient calculation unit 354 may calculate the coupling coefficient using a method other than the one exemplified above.
  • the coefficient calculating unit 354 may calculate the coupling coefficient using the learning data indicated by the learning data information 341 instead of the validation data.
  • the coefficient calculation unit 354 may calculate the coupling coefficient using any other method.
  • the combination unit 355 uses the combination coefficients calculated by the coefficient calculation unit 354 to combine the decision tree received by the reception unit 351 or the decision tree generated by the learning unit 353 with the previous combination decision included in the learning device information 343. By combining the trees, a new combined decision tree is generated. Furthermore, the combining unit 355 stores the newly generated combined decision tree in the storage unit 340 as learning device information 343.
  • the coupling unit 355 performs coupling using coupling coefficients by solving Equation 2 below.
  • f (t-1) indicates the joint decision tree one step before
  • f (t) indicates the newly generated joint decision tree.
  • a k indicates a coupling coefficient
  • f k indicates a decision tree received by the receiving section 351 or a decision tree generated by the learning section 353.
  • k has a value corresponding to the number of other learning devices 200 and learning devices 300 included in the learning system 100.
  • the inference unit 356 performs inference using a joint decision tree.
  • the inference unit 356 can perform inference using the latest joint decision tree.
  • Equation 3 the latest joint decision tree f final ( ) includes decision trees, joint coefficients, etc. that were received or generated in past steps. Therefore, the inference unit 356 can also perform inference using decision trees, coupling coefficients, etc. generated in past steps.
  • ft() is a term added to the model at the t-th step, and is a linear sum of the decision trees f k () created by each participant.
  • Equation 5 shows the coefficients of the decision tree created by the k-th participant at the t-th step.
  • the output unit 357 outputs a decision tree or a combined decision tree, or outputs an inference result by the inference unit 356.
  • the output unit 357 transmits the decision tree generated by the learning unit 353 or the combined decision tree generated by the combining unit 355 to an external device such as another learning device 200 via the communication I/F unit 330. be able to.
  • the output unit 357 may output at any timing, such as after processing by the learning unit 353 or the combining unit 355.
  • the output unit 357 can display the result of the inference by the inference unit 356 on the screen display unit 320 or transmit it to an external device via the communication I/F unit 330.
  • FIG. 6 shows an example of an algorithm of the learning system 100 when handling a regression task, which is described in Non-Patent Document 1.
  • FIG. 6 shows an example of an algorithm of the learning system 100 when handling a regression task, which is described in Non-Patent Document 1.
  • participants such as the other learning device 200 and the learning device 300 are included in the group K learning system 100.
  • decision trees f k ( ) generated by each participant are combined using a connection coefficient a.
  • the coupling coefficient a is calculated so that the prediction performance for the validation data is optimized. Therefore, by performing a combination using the combination coefficient a, it is possible to improve performance and generate a combination decision tree in a form more suitable for the learning device 300 having validation data.
  • Non-Patent Document 1 describes an example of an algorithm for handling a classification task as shown in FIG. Referring to FIG. 7, it can be seen that even when dealing with a classification task, the combination is performed using the combination coefficient a, as in the case of the regression task.
  • FIG. 8 is a flowchart showing an example of the operation of the learning device 300.
  • the receiving unit 351 receives a decision tree, which is a learning device, from the other learning device 200 (step S101).
  • the feature value addition calculation unit 352 calculates additional learning data based on the decision tree received by the receiving unit 351 and the learning data included in the learning data information 341 (step S102). For example, the feature quantity addition calculation unit 352 obtains an output from the learning device by inputting each learning data included in the learning data information 341 to the decision tree received by the receiving unit 351. The feature quantity addition calculation unit 352 can acquire the above output as an additional feature quantity.
  • the learning unit 353 generates a decision tree, which is a learning device, by performing learning based on the feature quantity calculated by the feature quantity addition calculation unit 352 and the learning data indicated by the learning data information 341 (step S103). That is, the learning unit 353 generates a decision tree by performing learning by adding the feature amount calculated by the feature amount addition calculation unit 352 to the learning data indicated by the learning data information 341.
  • the coefficient calculating unit 354 calculates a coupling coefficient for each decision tree using the validation data indicated by the validation data information 342 (step S104). For example, the coefficient calculating unit 354 calculates a coupling coefficient so that the prediction performance for the validation data indicated by the validation data information 342 is optimal. The coefficient calculating unit 354 can calculate a coupling coefficient for each decision tree received by the receiving unit 351 or for each decision tree generated by the learning unit 353.
  • the combination unit 355 uses the combination coefficients calculated by the coefficient calculation unit 354 to combine the decision tree received by the reception unit 351 or the decision tree generated by the learning unit 353 with the previous combination decision included in the learning device information 343. By combining the trees, a new combined decision tree is generated (step S105).
  • the above is an example of the operation of the learning device 300.
  • the learning device 300 includes the feature quantity addition calculation section 352 and the learning section 353.
  • the learning unit 353 can generate a decision tree, which is a learning device, by performing learning using the learning data to which the feature quantity calculated by the feature quantity addition calculation unit 352 is added.
  • a decision tree can be generated that also incorporates the results of learning by other learning devices 200.
  • the learning device 300 includes a coefficient calculating section 354 and a combining section 355.
  • the combination unit 355 can calculate each decision tree using the combination coefficients calculated by the coefficient calculation unit 354.
  • the coupling coefficient is calculated so that the prediction performance for the validation data is optimal. Therefore, by combining each decision tree using the above-mentioned connection coefficient, it is possible to improve performance and generate a decision tree that is a learning device more suitable for the learning device 300 having validation data.
  • the learning device 300 includes both the feature value addition calculation unit 352 and the coefficient calculation unit 354 is illustrated.
  • the learning device 300 may include only one of the feature amount addition calculation section 352 and the coefficient calculation section 354.
  • the learning unit 353 performs learning based on learning data included in the learning data information 341 to generate a decision tree. Even in such a case, as mentioned above, in order to calculate the coupling coefficient so that the prediction performance for the validation data is optimal, by combining each decision tree using the coupling coefficient, it is possible to improve the performance while , a decision tree that is a learning device more suitable for the learning device 300 having validation data can be generated.
  • the combining unit 355 combines a decision tree generated by incorporating the results of learning by other learning devices 200, and a combined decision tree one step before. Combine with. As a result, it is possible to generate a decision tree, which is a learning device more suitable for the data held by the device itself, while improving performance. Note that if the learning device 300 does not include the coefficient calculating unit 354, the combining unit 355 may combine the decision tree generated without using a combining coefficient and the combined decision tree one step before.
  • the learning device to which the present invention is applied is not limited to decision trees.
  • the learning device may be a shallow neural network, a support vector machine, or the like.
  • the finally generated learning device may also correspond to each of the learning devices described above.
  • the finally generated combined decision tree becomes a GBDT (Gradient Boosting Decision Tree) model.
  • the finally generated model will be a gradient boosting neural network.
  • FIG. 9 is a diagram showing an example of the hardware configuration of the learning device 400.
  • FIG. 10 is a block diagram showing a configuration example of the learning device 400.
  • FIG. 11 is a block diagram showing a configuration example of the inference device 500.
  • FIG. 9 shows an example of the hardware configuration of the learning device 400.
  • the learning device 400 has the following hardware configuration, as an example.
  • ⁇ CPU Central Processing Unit
  • ⁇ ROM Read Only Memory
  • RAM Random Access Memory
  • Program group 404 loaded into RAM 403 - Storage device 405 that stores program group 404 -
  • a drive device 406 that reads and writes from a recording medium 410 external to the information processing device -
  • a communication interface 407 that connects to a communication network 411 outside the information processing device ⁇ I/O interface 408 that inputs and outputs data ⁇ Bus 409 connecting each component
  • the learning device 400 can realize the functions of the receiving section 421 and the generating section 422 shown in FIG. 10 by the CPU 401 acquiring the program group 404 and executing the program group 404.
  • the program group 404 is stored in the storage device 405 or ROM 402 in advance, for example, and is loaded into the RAM 403 or the like by the CPU 401 and executed as necessary.
  • the program group 404 may be supplied to the CPU 401 via the communication network 411, or may be stored in the recording medium 410 in advance, and the drive device 406 may read the program and supply it to the CPU 401.
  • FIG. 9 shows an example of the hardware configuration of the learning device 400.
  • the hardware configuration of learning device 400 is not limited to the above case.
  • the learning device 400 may be configured from part of the configuration described above, such as not having the drive device 406.
  • the receiving unit 421 receives learning devices from other learning devices.
  • the generation unit 422 uses the learning device received by the receiving unit 421 and the data possessed by the own device to generate an appropriate learning device so as to make a prediction suitable for the data possessed by the own device. For example, the generation unit 422 combines the learning device received by the reception unit 421 using a coupling coefficient calculated using data possessed by the own device, so as to make an appropriate prediction suitable for the data possessed by the own device. Generate a learning machine. Alternatively, the generation unit 422 generates an appropriate learning device by generating a learning device using learning data to which additional feature amounts calculated using the learning device received by the receiving unit are added. For example, the generation unit 422 can generate the appropriate learning device by performing any of the methods exemplified above or a combination thereof.
  • the learning device 400 includes a receiving section 421 and a generating section 422.
  • the generation unit 422 uses the learning device received by the receiving unit 421 and the data possessed by the own device to generate an appropriate learning device so as to perform a prediction suitable for the data possessed by the own device. can be generated. As a result, it is possible to generate a learning device that is more suitable for the data held by the device itself while improving performance.
  • the learning device 400 described above can be realized by incorporating a predetermined program into an information processing device such as the learning device 400.
  • a program according to another embodiment of the present invention causes an information processing device such as the learning device 400 to receive a learning device from another learning device, and uses the received learning device and data possessed by the own device.
  • This is a program for realizing processing that generates an appropriate learning machine so as to make predictions suitable for the data possessed by the own device.
  • the information processing device such as the learning device 400 receives a learning device from another learning device, and the received learning device and the own device are connected to each other.
  • an appropriate learning machine is generated using the data that the device has, so as to make a prediction suitable for the data that the device has.
  • the purpose of the present disclosure can be achieved in the same way even with the inference device 500 or the like that performs inference using the appropriate learning device generated by the above-mentioned learning device 400 or the like.
  • the inference device 500 uses a learning device received from another learning device and the data it owns to perform a combination calculated to make a prediction suitable for the data it owns. It has a storage device 521 that stores coefficients, and an inference unit 522 that performs inference using the learning device and the coupling coefficients stored in the storage device according to the input of the feature amount.
  • the hardware configuration of the inference device 500 may be the same as that of the learning device 400.
  • a receiving unit that receives the learning device from another learning device; a generation unit that uses the learning device received by the receiving unit and data possessed by the device itself to generate an appropriate learning device so as to make a prediction suitable for the data possessed by the device; A learning device.
  • the learning device according to Supplementary Note 1, It has a calculation unit that calculates a coupling coefficient to make a prediction suitable for the data using data possessed by the own device, The generation unit generates the appropriate learning machine so as to perform prediction suitable for data possessed by the own device by combining the learning machines received by the reception unit using the coupling coefficient calculated by the calculation unit.
  • a learning device a receiving unit that receives the learning device from another learning device; a generation unit that uses the learning device received by the receiving unit and data possessed by the device itself to generate an appropriate learning device so as to make a prediction suitable for the data possessed by the device; A learning device.
  • the learning device according to any one of Supplementary Notes 1 to 5, a feature amount calculation unit that calculates an additional feature amount using the learning device and the learning data received by the receiving unit; a learning unit that generates a learning device by adding the feature calculated by the feature calculation unit to the learning data and learning; has The generation unit generates the appropriate learning device using the learning device generated by the learning unit.
  • the learning device (Appendix 7) The learning device according to appendix 6, a calculation unit that calculates a coupling coefficient corresponding to the learning device received by the reception unit using data possessed by the own device; The generation unit generates the appropriate learning device by combining the learning device received by the receiving unit and the learning device generated by the learning unit using the coupling coefficient calculated by the calculation unit.Learning device .
  • the information processing device Receive learning devices from other learning devices, A learning method that uses a received learning device and data possessed by the device itself to generate an appropriate learning device so as to make a prediction suitable for the data possessed by the device itself.
  • the information processing device Receive learning devices from other learning devices, Using the received learning device and the data held by the own device, a computer records a program for realizing the process of generating an appropriate learning device so as to make predictions suitable for the data held by the own device.
  • a readable recording medium A readable recording medium.
  • An inference device that infers a label based on an input of a feature amount, the inference device comprising: a storage device that stores a learning device received from another learning device and a coupling coefficient calculated to perform a prediction suitable for the data of the own device using the data of the own device; an inference unit that performs inference using a learning device and a coupling coefficient stored in the storage device according to input of a feature amount; has a reasoning device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Artificial Intelligence (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A learning device 400 comprises a reception unit 421 that receives a learner from another learning device, and a generation unit 422 that generates an adapted learner so as to execute appropriate prediction for data in the learning device 400 by using the learner received by the reception unit 421 and the data in the learning device 400.

Description

学習装置learning device
 本発明は、学習装置、学習方法、記録媒体、推論装置に関する。 The present invention relates to a learning device, a learning method, a recording medium, and an inference device.
 よりよい性能を得ることなどを目的として、各参加者において学習した学習器を組み合わせることがある。 In order to obtain better performance, the learning devices learned by each participant may be combined.
 例えば、非特許文献1には、各ステップにおいて参加者がそれぞれ決定木を作成し、作成した決定木を組み合わせることでよりよい性能のモデルを作成する勾配ブースティングフォーレスト(GBF:Gradient Boosting Forest)という技術が記載されている。 For example, in Non-Patent Document 1, there is a technique called Gradient Boosting Forest (GBF) in which participants create a decision tree in each step and combine the created decision trees to create a model with better performance. The technology is described.
 また、関連する文献として、例えば、特許文献1がある。特許文献1には、GBDT(Gradient Boosting Decision Tree)などについて記載されている。 Additionally, as a related document, for example, there is Patent Document 1. Patent Document 1 describes GBDT (Gradient Boosting Decision Tree) and the like.
特開2021-140296号公報JP 2021-140296 Publication
 非特許文献1に記載のような技術の場合、各参加者が学習した学習器を組み合わせる。そのため、最終的に作成される学習器は、例えば、各参加者が有する学習データに応じたものとなる。一方で、例えば、各参加者が持つ学習データに分布の偏りがある場合などにおいては、性能を高めつつ、かつ、より特定の個人に適した学習器を用意したい場合がある。しかしながら、非特許文献1に記載のように組み合わせるだけでは、上記のような場合に対応することは難しかった。 In the case of the technique described in Non-Patent Document 1, learning devices learned by each participant are combined. Therefore, the learning device that is finally created will be, for example, in accordance with the learning data that each participant has. On the other hand, for example, in cases where there is a bias in the distribution of learning data held by each participant, it may be desirable to prepare a learning device that is more suitable for a specific individual while improving performance. However, it is difficult to deal with the above-mentioned cases simply by combining as described in Non-Patent Document 1.
 そこで、本発明の目的は、上述した課題を解決することが可能な学習装置、学習方法、記録媒体を提供することにある。 Therefore, an object of the present invention is to provide a learning device, a learning method, and a recording medium that can solve the above-mentioned problems.
 かかる目的を達成するため本開示の一形態である学習装置は、
 他の学習装置から学習器を受信する受信部と、
 受信部が受信した学習器と、自装置が有するデータと、を用いて、自装置が有するデータに適した予測を行うように適切化学習器を生成する生成部と、
 を有する
 という構成をとる。
In order to achieve this purpose, a learning device that is one form of the present disclosure includes:
a receiving unit that receives the learning device from another learning device;
a generation unit that uses the learning device received by the receiving unit and the data possessed by the device itself to generate an appropriate learning device so as to make a prediction suitable for the data possessed by the device itself;
It has the following structure.
 また、本開示の他の形態である学習方法は、
 情報処理装置が、
 他の学習装置から学習器を受信し、
 受信した学習器と、自装置が有するデータと、を用いて、自装置が有するデータに適した予測を行うように適切化学習器を生成する
 という構成をとる。
In addition, a learning method that is another form of the present disclosure includes:
The information processing device
Receive learning devices from other learning devices,
Using the received learning device and data possessed by the device itself, an appropriate learning device is generated so as to make predictions suitable for the data possessed by the device itself.
 また、本開示の他の形態である記録媒体は、
 情報処理装置に、
 他の学習装置から学習器を受信し、
 受信した学習器と、自装置が有するデータと、を用いて、自装置が有するデータに適した予測を行うように適切化学習器を生成する
 処理を実現するためのプログラムを記録した、コンピュータが読み取り可能な記録媒体である。
Furthermore, a recording medium according to another embodiment of the present disclosure includes:
In the information processing device,
Receive learning devices from other learning devices,
Using the received learning device and the data held by the own device, a computer records a program for realizing the process of generating an appropriate learning device so as to make predictions suitable for the data held by the own device. It is a readable recording medium.
 また、本開示の他の形態である推論装置は、
 特徴量の入力に対してラベルを推論する推論装置であって、
 他の学習装置から受信した学習器と、自装置が有するデータを用いて自装置が有するデータに適した予測を行うように算出された結合係数と、を記憶する記憶装置と、
 特徴量の入力に応じて、記憶装置が記憶する学習器と結合係数とを用いた推論を行う推論部と、
 を有する
 という構成をとる。
Further, an inference device according to another embodiment of the present disclosure includes:
An inference device that infers a label based on an input of a feature amount, the inference device comprising:
a storage device that stores a learning device received from another learning device and a coupling coefficient calculated to perform a prediction suitable for the data of the own device using the data of the own device;
an inference unit that performs inference using the learning device and the coupling coefficient stored in the storage device according to the input of the feature amount;
It has the following structure.
 上述したような各構成によると、性能を高めつつ、かつ、より特定の個人に適した学習器を用意することができる。 According to each of the configurations described above, it is possible to prepare a learning device that is more suitable for a specific individual while improving its performance.
本開示の概要を説明するための図である。FIG. 1 is a diagram for explaining an overview of the present disclosure. 本開示の第1の実施形態における学習システムの構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of a learning system according to a first embodiment of the present disclosure. 学習装置の構成例を示すブロック図である。FIG. 2 is a block diagram showing a configuration example of a learning device. 学習データの一例を示す図である。It is a figure showing an example of learning data. バリデーションデータの一例を示す図である。It is a figure showing an example of validation data. アルゴリズムの一例を示す図である。It is a figure showing an example of an algorithm. アルゴリズムの他の一例を示す図である。It is a figure which shows another example of an algorithm. 学習装置の動作例を示すフローチャートである。It is a flow chart which shows an example of operation of a learning device. 本開示の第2の実施形態における学習装置のハードウェア構成例を示す図である。FIG. 3 is a diagram illustrating an example hardware configuration of a learning device according to a second embodiment of the present disclosure. 学習装置の構成例を示すブロック図であるIt is a block diagram showing an example of the configuration of a learning device. 推論装置の構成例を示すブロック図である。FIG. 2 is a block diagram showing a configuration example of an inference device.
[第1の実施形態]
 本開示の第1の実施形態について、図1から図8までを参照して説明する。図1は、本開示の概要を説明するための図である。図2は、学習システム100の構成例を示す図である。図3は、学習装置300の構成例を示すブロック図である。図4は、学習データ情報341の一例を示す図である。図5は、バリデーションデータ情報342の一例を示す図である。図6、図7は、学習システム100で行われるアルゴリズムの一例を示す図である。図8は、学習装置300の動作例を示すフローチャートである。
[First embodiment]
A first embodiment of the present disclosure will be described with reference to FIGS. 1 to 8. FIG. 1 is a diagram for explaining an overview of the present disclosure. FIG. 2 is a diagram showing a configuration example of the learning system 100. FIG. 3 is a block diagram showing a configuration example of the learning device 300. FIG. 4 is a diagram showing an example of the learning data information 341. FIG. 5 is a diagram showing an example of the validation data information 342. 6 and 7 are diagrams showing an example of an algorithm performed by the learning system 100. FIG. 8 is a flowchart showing an example of the operation of the learning device 300.
 本開示の第1の実施形態では、図1で示すように、学習システム100内の他の参加者から受信した学習器と、自装置で学習した学習器などとに基づいて、自装置が有する学習データやバリデーションデータなどのデータに対してより適切な予測を行うように結合学習器を生成する学習装置300を有する学習システム100について説明する。後述するように、本実施形態において説明する学習装置300は、学習システム100内の他の参加者から学習器である決定木を受信すると、受信した決定木に自装置が有する学習データを入力することで、新たな特徴量を算出する。そして、学習装置300は、学習データと算出した特徴量とに基づいて、自装置の新たな学習器である決定木を生成する。 In the first embodiment of the present disclosure, as shown in FIG. 1, based on learning devices received from other participants in the learning system 100 and learning devices learned by the own device, A learning system 100 including a learning device 300 that generates a combined learning device to make more appropriate predictions for data such as learning data and validation data will be described. As will be described later, when the learning device 300 described in this embodiment receives a decision tree, which is a learning device, from another participant in the learning system 100, it inputs the learning data it owns into the received decision tree. By doing so, new feature quantities are calculated. Then, the learning device 300 generates a decision tree, which is a new learning device of the own device, based on the learning data and the calculated feature amount.
 また、学習装置300は、生成した決定木や他の参加者から受信した決定木と、予め記憶するバリデーションデータなどと、を用いて、各決定木に対応する結合係数を算出する。例えば、学習装置300は、決定木とバリデーションデータとに基づいて、自身のバリデーションデータに対する予測性能が最適になるように、決定木ごとの結合係数を算出する。その後、学習装置300は、算出した結合係数を用いて、他学習装置200から受信した決定木や生成した決定木と、過去の結合決定木と、を結合することで、新たな結合決定木を生成する。つまり、学習装置300は、結合係数を用いた結合を行うことで、適切化学習器である結合決定木を生成する。 Furthermore, the learning device 300 uses the generated decision trees, decision trees received from other participants, and pre-stored validation data to calculate a coupling coefficient corresponding to each decision tree. For example, the learning device 300 calculates a coupling coefficient for each decision tree based on the decision tree and validation data so that the prediction performance for its own validation data is optimal. Thereafter, the learning device 300 creates a new combined decision tree by combining the decision tree received from another learning device 200 or the generated decision tree with the past combined decision tree using the calculated combination coefficient. generate. That is, the learning device 300 generates a combined decision tree, which is an appropriate learning device, by performing combination using the combination coefficient.
 例えば、図1で示すように、本実施形態において説明する学習システム100では、上記のような処理を繰り返すことができる。つまり、学習システム100は、他学習装置200が決定木を生成する、他学習装置200が生成した決定木を用いて学習装置300が決定木を生成する、結合係数を算出する、各決定木を結合する、という1連のステップを例えば予め定められた条件を満たすまで複数回繰り返すことができる。 For example, as shown in FIG. 1, in the learning system 100 described in this embodiment, the above-described process can be repeated. In other words, in the learning system 100, the other learning device 200 generates a decision tree, the learning device 300 generates a decision tree using the decision tree generated by the other learning device 200, the learning device 300 calculates a coupling coefficient, and each decision tree. A series of steps of combining can be repeated multiple times, for example, until a predetermined condition is satisfied.
 なお、学習データには、例えば、性別、年齢、身長、体重、…、などの複数の特徴量と、病気か否かなどを示すラベルと、が含まれている。特徴量は、説明変数、または、属性などとも呼ばれうる。また、ラベルは、目的変数などとも呼ばれうる。特徴量やラベルの具体例は、上記例示した以外であってよい。また、バリデーションデータとは、学習器を評価する際などに用いることができる検証用のデータのことをいう。バリデーションデータには、学習データと同様に、複数の特徴量とラベルとが含まれている。また、決定木とは、入力データに対して、その特徴量の条件分岐によりラベルの説明性能が十分によくなるまで二分木で振り分ける作業を複数回行い、訓練するモデルのことをいう。決定木には、回帰タスクを扱う回帰木や、分類タスクを扱う分類木などが含まれる。 Note that the learning data includes, for example, a plurality of feature amounts such as gender, age, height, weight, etc., and a label indicating whether the person is sick or not. The feature amount may also be called an explanatory variable, an attribute, or the like. Further, a label can also be called an objective variable. Specific examples of feature amounts and labels may be other than those exemplified above. Furthermore, validation data refers to data for verification that can be used when evaluating a learning device. Similar to the learning data, the validation data includes a plurality of feature amounts and labels. Furthermore, a decision tree is a model that is trained by performing the task of sorting input data multiple times using a binary tree based on conditional branching of its feature values until the label explanatory performance becomes sufficiently good. Decision trees include regression trees that handle regression tasks, classification trees that handle classification tasks, and the like.
 また、本実施形態においては、学習器として決定木を用いる場合について説明する。しかしながら、本発明の対象となる学習器は、決定木に限定されない。例えば、学習システム100内の各参加者は、学習器として、浅いニューラルネットやサポートベクターマシンなどを生成してもよい。学習システム100内の各参加者が学習器としてニューラルネットやサポートベクターマシンなどを生成する場合であっても、問題なく本発明を適用することができる。 Additionally, in this embodiment, a case will be described in which a decision tree is used as a learning device. However, the learning device to which the present invention is applied is not limited to decision trees. For example, each participant in the learning system 100 may generate a shallow neural network, a support vector machine, or the like as a learning device. Even if each participant in the learning system 100 generates a neural network, support vector machine, or the like as a learning device, the present invention can be applied without problems.
 図2は、学習システム100の全体的な構成例を示している。図2を参照すると、学習システム100は、1つまたは複数の他学習装置200と、学習装置300と、を有している。図2で示すように、他学習装置200と学習装置300とは、互いに通信可能なようネットワークなどを介して接続されている。 FIG. 2 shows an example of the overall configuration of the learning system 100. Referring to FIG. 2, the learning system 100 includes one or more other learning devices 200 and a learning device 300. As shown in FIG. 2, the other learning device 200 and the learning device 300 are connected via a network or the like so that they can communicate with each other.
 他学習装置200は、当該他学習装置200が有する訓練データに基づいた学習を行うことで、学習器である決定木を生成する情報処理装置である。また、他学習装置200は、生成した決定木を他の他学習装置200や学習装置300に対して送信することができる。 The other learning device 200 is an information processing device that generates a decision tree, which is a learning device, by performing learning based on training data that the other learning device 200 has. Further, the other learning device 200 can transmit the generated decision tree to other learning devices 200 and learning devices 300.
 また、他学習装置200は、予め定められた所定係数などを用いて、他の他学習装置200や学習装置300などから受信した学習器である決定木を結合するよう構成してもよい。ここで、上記所定係数は、例えば、学習システム100内の他学習装置200や学習装置300などの各参加者が持つデータの数によって予め定めることができる。例えば、上記所定係数は、自装置が有する訓練データの数を、学習システム100内の他学習装置200や学習装置300が有する訓練データの数の和で割ることなどにより算出してもよい。 Further, the other learning device 200 may be configured to combine decision trees that are learning devices received from other learning devices 200, learning devices 300, etc. using predetermined coefficients or the like. Here, the predetermined coefficient can be predetermined, for example, based on the number of data held by each participant such as the other learning devices 200 and the learning device 300 in the learning system 100. For example, the predetermined coefficient may be calculated by dividing the number of training data that the own device has by the sum of the number of training data that other learning devices 200 and 300 in the learning system 100 have.
 例えば、以上のように、他学習装置200は、自装置が有する訓練データに基づいて学習器である決定木を生成したり、生成した決定木を学習システム100内の他の情報処理装置などに送信したりする。また、他学習装置200は、学習システム100内の他の情報処理装置などから決定木を受信して、受信した決定木を予め定められた所定係数などを用いて結合することができる。例えば、他学習装置200は、非特許文献1に記載の方法などで、上記各処理を実現してよい。 For example, as described above, the other learning device 200 generates a decision tree, which is a learning device, based on the training data of the own device, and transmits the generated decision tree to another information processing device in the learning system 100. or send it. Further, the other learning device 200 can receive decision trees from other information processing devices in the learning system 100, and combine the received decision trees using a predetermined coefficient or the like. For example, the other learning device 200 may implement each of the above processes using the method described in Non-Patent Document 1.
 学習装置300は、自装置が有する学習データやバリデーションデータなどのデータに対してより適切な予測を行うように結合学習器である結合決定木を生成する情報処理装置である。図3は、学習装置300の構成例を示している。図3を参照すると、学習装置300は、主な構成要素として、例えば、操作入力部310と、画面表示部320と、通信I/F部330と、記憶部340と、演算処理部350と、を有している。 The learning device 300 is an information processing device that generates a joint decision tree, which is a joint learning device, to make more appropriate predictions for data such as learning data and validation data that the learning device 300 has. FIG. 3 shows a configuration example of the learning device 300. Referring to FIG. 3, the learning device 300 includes, as main components, an operation input section 310, a screen display section 320, a communication I/F section 330, a storage section 340, an arithmetic processing section 350, have.
 なお、図3では、1台の情報処理装置を用いて学習装置300としての機能を実現する場合について例示している。しかしながら、学習装置300は、例えば、クラウド上に実現されるなど、複数台の情報処理装置を用いて実現されてもよい。また、学習装置300は、操作入力部310や画面表示部320を有さないなど上記例示した構成の一部を含まなくてもよいし、上記例示した以外の構成を有してもよい。 Note that FIG. 3 illustrates a case where the function of the learning device 300 is realized using one information processing device. However, the learning device 300 may be realized using a plurality of information processing devices, such as being realized on a cloud, for example. Furthermore, the learning device 300 may not include some of the configurations exemplified above, such as not having the operation input unit 310 or the screen display unit 320, or may have a configuration other than those exemplified above.
 操作入力部310は、キーボード、マウスなどの操作入力装置からなる。操作入力部310は、学習装置300を操作する操作者の操作を検出して演算処理部350に出力する。 The operation input unit 310 consists of an operation input device such as a keyboard and a mouse. The operation input section 310 detects the operation of the operator who operates the learning device 300 and outputs the detected operation to the arithmetic processing section 350 .
 画面表示部320は、LCD(Liquid Crystal Display、液晶ディスプレイ)などの画面表示装置からなる。画面表示部320は、演算処理部350からの指示に応じて、記憶部340に格納されている各種情報などを画面表示することができる。 The screen display unit 320 is composed of a screen display device such as an LCD (Liquid Crystal Display). The screen display unit 320 can display various information stored in the storage unit 340 on the screen in response to instructions from the arithmetic processing unit 350.
 通信I/F部330は、データ通信回路などからなる。通信I/F部330は、通信回線を介して接続された外部装置との間でデータ通信を行う。 The communication I/F section 330 consists of a data communication circuit and the like. The communication I/F section 330 performs data communication with an external device connected via a communication line.
 記憶部340は、ハードディスクやメモリなどの記憶装置である。記憶部340は、演算処理部350における各種処理に必要な処理情報やプログラム345を記憶する。プログラム345は、演算処理部350に読み込まれて実行されることにより各種処理部を実現する。プログラム345は、通信I/F部330などのデータ入出力機能を介して外部装置や記録媒体から予め読み込まれ、記憶部340に保存されている。記憶部340で記憶される主な情報としては、例えば、学習データ情報341、バリデーションデータ情報342、学習器情報343、係数情報344などがある。 The storage unit 340 is a storage device such as a hard disk or memory. The storage unit 340 stores processing information and programs 345 necessary for various processes in the arithmetic processing unit 350. The program 345 implements various processing units by being read and executed by the arithmetic processing unit 350. The program 345 is read in advance from an external device or a recording medium via a data input/output function such as the communication I/F section 330, and is stored in the storage section 340. The main information stored in the storage unit 340 includes, for example, learning data information 341, validation data information 342, learning device information 343, coefficient information 344, and the like.
 学習データ情報341は、学習器である決定木を学習する際に用いる学習データを含んでいる。例えば、学習データ情報341は、通信I/F部330を介して外部装置から取得する、操作入力部310を用いて入力する、などの方法を用いて予め取得されており、記憶部340に格納されている。 The learning data information 341 includes learning data used when learning a decision tree, which is a learning device. For example, the learning data information 341 is acquired in advance using a method such as acquiring from an external device via the communication I/F unit 330 or inputting using the operation input unit 310, and is stored in the storage unit 340. has been done.
 図4は、学習データ情報341の一例を示している。図4を参照すると、学習データ情報341では、複数の特徴量と、ラベルと、が関連付けられている。例えば、図4で示す例では、特徴量(x、x、…、x)と、ラベルyと、が関連付けられている。図4で示すように、学習データ情報341には複数の学習データが含まれてよい。 FIG. 4 shows an example of the learning data information 341. Referring to FIG. 4, in the learning data information 341, a plurality of feature amounts and labels are associated with each other. For example, in the example shown in FIG. 4, the feature amounts (x 1 , x 2 , . . . , x d ) are associated with the label y 1 . As shown in FIG. 4, the learning data information 341 may include a plurality of learning data.
 バリデーションデータ情報342は、決定木の性能などを検証する際に用いるデータであるバリデーションデータを含んでいる。例えば、バリデーションデータ情報342は、通信I/F部330を介して外部装置から取得する、操作入力部310を用いて入力する、などの方法を用いて予め取得されており、記憶部340に格納されている。 The validation data information 342 includes validation data that is data used when verifying the performance of a decision tree. For example, the validation data information 342 is obtained in advance using a method such as obtaining it from an external device via the communication I/F section 330 or inputting it using the operation input section 310, and is stored in the storage section 340. has been done.
 図5は、バリデーションデータ情報342の一例を示している。図5を参照すると、バリデーションデータ情報342では、学習データ情報341と同様に、複数の特徴量と、ラベルと、が関連付けられている。例えば、図5で示す例では、特徴量(x11、x12、…、x1d)と、ラベルy10と、が関連付けられている。図5で示すように、バリデーションデータ情報342には複数のバリデーションデータが含まれてよい。 FIG. 5 shows an example of the validation data information 342. Referring to FIG. 5, in the validation data information 342, like the learning data information 341, a plurality of feature amounts and labels are associated. For example, in the example shown in FIG. 5, the feature amounts (x 11 , x 12 , . . . , x 1d ) are associated with the label y 10 . As shown in FIG. 5, the validation data information 342 may include a plurality of pieces of validation data.
 学習器情報343は、他学習装置200から受信した決定木や後述する結合部355が結合した結合決定木などを示す情報を含んでいる。例えば、学習器情報343では、決定木の送信元を示す識別情報などと決定木とが関連付けられている。学習器情報343には、ステップごとの、決定木や結合決定木が含まれてよい。例えば、学習器情報343は、後述する受信部351が他学習装置200から決定木を受信すること、結合部355が結合決定木を生成すること、などに応じて更新される。 The learning device information 343 includes information indicating a decision tree received from another learning device 200, a combined decision tree combined by a combining unit 355, which will be described later, and the like. For example, in the learning device information 343, the decision tree is associated with identification information indicating the source of the decision tree. The learning device information 343 may include a decision tree or a combined decision tree for each step. For example, the learning device information 343 is updated in response to a receiving unit 351 (described later) receiving a decision tree from another learning device 200, a combining unit 355 generating a combined decision tree, and the like.
 係数情報344は、他学習装置200から受信した決定木や後述する学習部353が生成した決定木などの各決定木に対応する結合係数を含んでいる。例えば、係数情報344では、決定木の識別情報と結合係数とが関連付けられている。係数情報344には、ステップごと、決定木ごとの結合係数が含まれてよい。例えば、係数情報344は、後述する係数算出部354が結合係数を算出することなどに応じて更新される。 The coefficient information 344 includes coupling coefficients corresponding to each decision tree, such as a decision tree received from another learning device 200 or a decision tree generated by a learning unit 353, which will be described later. For example, in the coefficient information 344, decision tree identification information and coupling coefficients are associated. The coefficient information 344 may include a coupling coefficient for each step and each decision tree. For example, the coefficient information 344 is updated in response to calculation of a coupling coefficient by a coefficient calculation unit 354, which will be described later.
 演算処理部350は、CPU(Central Processing Unit)などの演算装置とその周辺回路を有する。演算処理部350は、記憶部340からプログラム345を読み込んで実行することにより、上記ハードウェアとプログラム345とを協働させて各種処理部を実現する。演算処理部350で実現される主な処理部としては、例えば、受信部351、特徴量追加算出部352、学習部353、係数算出部354、結合部355、推論部356、出力部357などがある。 The arithmetic processing unit 350 includes an arithmetic unit such as a CPU (Central Processing Unit) and its peripheral circuits. The arithmetic processing unit 350 reads the program 345 from the storage unit 340 and executes it, thereby causing the hardware and the program 345 to work together to implement various processing units. The main processing units realized by the arithmetic processing unit 350 include, for example, a receiving unit 351, a feature value addition calculation unit 352, a learning unit 353, a coefficient calculation unit 354, a combining unit 355, an inference unit 356, an output unit 357, etc. be.
 受信部351は、他学習装置200から学習器である決定木を受信する。例えば、受信部351は、各ステップにおいて、学習システム100に含まれる各他学習装置200から学習器を受信することができる。また、受信部351は、受信した決定木を学習器情報343として記憶部340に格納する。 The receiving unit 351 receives a decision tree, which is a learning device, from the other learning device 200. For example, the receiving unit 351 can receive a learning device from each other learning device 200 included in the learning system 100 in each step. Further, the receiving unit 351 stores the received decision tree in the storage unit 340 as learning device information 343.
 なお、受信部351は、例えば、前ステップにおける決定木との間の差分を示す情報などを他学習装置200から受信してもよい。この場合、受信部351は、受信した差分を示す情報に基づいて対応する決定木を更新するよう構成してもよい。 Note that the receiving unit 351 may receive, for example, information indicating the difference between the decision tree in the previous step and the like from the other learning device 200. In this case, the receiving unit 351 may be configured to update the corresponding decision tree based on the received information indicating the difference.
 特徴量追加算出部352は、受信部351が受信した決定木と、学習データ情報341に含まれる学習データと、に基づいて、追加の学習データを算出する。例えば、特徴量追加算出部352は、受信部351が受信した決定木に対して学習データ情報341に含まれる各学習データを入力することで、学習器から出力を得る。特徴量追加算出部352は、上記出力を、追加の特徴量として取得することができる。 The feature value addition calculation unit 352 calculates additional learning data based on the decision tree received by the receiving unit 351 and the learning data included in the learning data information 341. For example, the feature quantity addition calculation unit 352 obtains an output from the learning device by inputting each learning data included in the learning data information 341 to the decision tree received by the receiving unit 351. The feature quantity addition calculation unit 352 can acquire the above output as an additional feature quantity.
 例えば、学習データ情報341に特徴量x、ラベルyを含む(x、y)という学習データが含まれるとする(iは任意でよい)。また、他学習装置200からf()、f()、…という決定木を受信したとする。この場合、特徴量追加算出部352は、各決定木に特徴量xiを入力することで、f(x)、f(x)、…という追加の特徴量を算出する。その結果、後述する学習部353による学習対象となる学習データは、(x、f(x)、f(x)、…、y)となる。 For example, it is assumed that the learning data information 341 includes learning data (x i , y i ) including feature quantity x i and label y i (i may be arbitrary). Further, assume that decision trees f 1 (), f 2 (), . . . are received from other learning devices 200. In this case, the feature amount additional calculation unit 352 calculates additional feature amounts f 1 (x i ), f 2 (x i ), . . . by inputting the feature amount xi into each decision tree. As a result, the learning data to be learned by the learning unit 353, which will be described later, becomes (x i , f 1 (x i ), f 2 (x i ), . . . , y i ).
 例えば、特徴量追加算出部352は、上述したような処理を、決定木ごと、学習データごとに行うことができる。例えば、特徴量追加算出部352は、任意の方法で抽出した決定木ごとに、上記のような処理を行ってもよい。 For example, the feature value addition calculation unit 352 can perform the above-described processing for each decision tree and each learning data. For example, the feature amount addition calculation unit 352 may perform the above process for each decision tree extracted by an arbitrary method.
 学習部353は、特徴量追加算出部352が算出した特徴量と、学習データ情報341が示す学習データと、に基づく学習を行うことで、学習器である決定木を生成する。また、学習部353は、生成した決定木を学習器情報343として記憶部340に格納する。 The learning unit 353 generates a decision tree, which is a learning device, by performing learning based on the feature quantities calculated by the feature quantity addition calculation unit 352 and the learning data indicated by the learning data information 341. Further, the learning unit 353 stores the generated decision tree in the storage unit 340 as learning device information 343.
 例えば、上述したように、特徴量追加算出部352により追加の特徴量が算出されている。そこで、学習部353は、(x、f(x)、f(x)、…、y)などのように、追加の特徴量を含む学習データを用いて機械学習を行うことで、決定木を生成する。 For example, as described above, the additional feature amount is calculated by the feature amount addition calculation unit 352. Therefore, the learning unit 353 performs machine learning using learning data including additional feature quantities, such as (x i , f 1 (x i ), f 2 (x i ), ..., y i ). This will generate a decision tree.
 なお、学習部353は、上述したように特徴量追加算出部352により算出された追加の特徴量をそのまま学習データに追加して機械学習を行ってもよいし、例えば、特徴量追加算出部352により算出された追加の特徴量を線形結合した結果などを学習データに追加して機械学習を行うよう構成してもよい。学習部353は、特徴量追加算出部352により算出された追加の特徴量と、追加の特徴量を線形結合した結果と、を共に学習データに追加して機械学習を行ってもよい。 Note that the learning unit 353 may perform machine learning by directly adding the additional feature calculated by the feature addition calculation unit 352 to the learning data as described above; The configuration may be such that machine learning is performed by adding the results of linearly combining the additional feature quantities calculated by the above to the learning data. The learning unit 353 may perform machine learning by adding the additional feature calculated by the feature addition calculation unit 352 and the result of linearly combining the additional feature to the learning data.
 係数算出部354は、バリデーションデータ情報342が示すバリデーションデータを用いて、結合係数を決定木ごとに算出する。例えば、係数算出部354は、バリデーションデータ情報342が示すバリデーションデータに対する予測性能が最適になるように、結合係数を算出する。係数算出部354は、受信部351が受信した決定木や学習部353が生成した決定木ごとに結合係数を算出することができる。また、係数算出部354は、算出した結合係数を係数情報344として記憶部340に格納する。 The coefficient calculating unit 354 calculates a coupling coefficient for each decision tree using the validation data indicated by the validation data information 342. For example, the coefficient calculating unit 354 calculates a coupling coefficient so that the prediction performance for the validation data indicated by the validation data information 342 is optimal. The coefficient calculating unit 354 can calculate a coupling coefficient for each decision tree received by the receiving unit 351 or for each decision tree generated by the learning unit 353. Further, the coefficient calculation unit 354 stores the calculated coupling coefficient in the storage unit 340 as coefficient information 344.
 例えば、バリデーションデータ情報342に特徴量x1i 、ラベルy1iを含む(x1i ,y1i)というバリデーションデータが含まれるとする。また、他学習装置200や学習部353によりf11()、f12()、…という決定木を受信したり生成したりしたとする。この場合、まず、係数算出部354は、各決定木にバリデーションデータを入力することで出力を得る。例えば、係数算出部354は、バリデーションデータ(x1i ,y1i)を決定木f11()に入力することで出力uを得る。また、係数算出部354は、バリデーションデータ(x1i ,y1i)を決定木f12()に入力することで出力vを得る。そして、係数算出部354は、(u、v、y1i)を使うことで、決定木ごとの結合係数を算出する。例えば、係数算出部354は、線形回帰を行うことなどにより、結合係数を算出してよい。例えば、係数算出部354は、バリデーションデータ(x1i ,y1i)と出力uとを用いた線形回帰を行うことで決定木f11()に対応する結合係数を決定してよい。 For example, it is assumed that the validation data information 342 includes validation data (x 1i ,y 1i ) including a feature amount x 1i and a label y 1i . Further, assume that the other learning device 200 or the learning unit 353 receives or generates decision trees f 11 (), f 12 (), . . . . In this case, first, the coefficient calculation unit 354 obtains an output by inputting validation data to each decision tree. For example, the coefficient calculation unit 354 obtains the output u i by inputting the validation data (x 1i , y 1i ) into the decision tree f 11 ( ). Further, the coefficient calculation unit 354 obtains the output v i by inputting the validation data (x 1i , y 1i ) to the decision tree f 12 (). Then, the coefficient calculating unit 354 calculates a coupling coefficient for each decision tree by using (u i , v i , y 1i ). For example, the coefficient calculation unit 354 may calculate the coupling coefficient by performing linear regression. For example, the coefficient calculating unit 354 may determine the coupling coefficient corresponding to the decision tree f11( ) by performing linear regression using the validation data (x 1i , y 1i ) and the output u i .
 具体的には、例えば、係数算出部354は、バリデーションデータ(x1i ,y1i)とu、vを用いて、数1に対する線形回帰を行うことで、各決定木に対応する係数aを決定することができる。
Specifically, for example, the coefficient calculating unit 354 calculates the coefficient a corresponding to each decision tree by performing linear regression on Equation 1 using the validation data (x 1i , y 1i ) and u i , v i i can be determined.
 なお、係数算出部354は、バリデーションデータ全体を用いて結合係数を算出してもよいし、バリデーションデータのうちの一部を用いて結合係数を算出してもよい。例えば、モデルの構造や分岐条件などの学習部353が生成した決定木についてのモデル情報を参照すると、各バリデーションデータが落ちる葉ノードを特定することができる。そこで、係数算出部354は、例えば、葉ノードごとのバリデーションデータを用いて線形回帰を行うことなどにより、葉ノードごとに結合係数を算出してもよい。葉ノードごとに結合係数を算出する場合も、葉ノードごとに結合させることで、上述した場合と同様に結合決定木を生成することができる。なお、係数算出部354がバリデーションデータ全体を用いて結合係数を算出する場合、決定木全体に対する結合係数を算出している、ということもできる。 Note that the coefficient calculation unit 354 may calculate the coupling coefficient using the entire validation data, or may calculate the coupling coefficient using a part of the validation data. For example, by referring to the model information about the decision tree generated by the learning unit 353, such as the model structure and branching conditions, it is possible to specify the leaf node where each validation data falls. Therefore, the coefficient calculation unit 354 may calculate a coupling coefficient for each leaf node, for example, by performing linear regression using validation data for each leaf node. Even when calculating a coupling coefficient for each leaf node, by coupling each leaf node, a coupling decision tree can be generated in the same way as in the case described above. Note that when the coefficient calculating unit 354 calculates a coupling coefficient using the entire validation data, it can also be said that the coupling coefficient for the entire decision tree is calculated.
 また、係数算出部354は、上記例示した以外の方法を用いて結合係数を算出してもよい。例えば、係数算出部354は、バリデーションデータの代わりに学習データ情報341が示す学習データを用いて結合係数を算出してもよい。ただし、過度な偏りを抑制する、という観点からすると、学習データを用いるよりもバリデーションデータを用いて結合係数を算出する方が望ましい。係数算出部354は、その他任意の方法で結合係数を算出してもよい。 Furthermore, the coefficient calculation unit 354 may calculate the coupling coefficient using a method other than the one exemplified above. For example, the coefficient calculating unit 354 may calculate the coupling coefficient using the learning data indicated by the learning data information 341 instead of the validation data. However, from the viewpoint of suppressing excessive bias, it is preferable to calculate the coupling coefficient using validation data rather than using learning data. The coefficient calculation unit 354 may calculate the coupling coefficient using any other method.
 結合部355は、係数算出部354が算出した結合係数を用いて、受信部351が受信した決定木や学習部353が生成した決定木と、学習器情報343に含まれる1ステップ前の結合決定木とを結合することで、新たな結合決定木を生成する。また、結合部355は新たに生成した結合決定木を学習器情報343として記憶部340に格納する。 The combination unit 355 uses the combination coefficients calculated by the coefficient calculation unit 354 to combine the decision tree received by the reception unit 351 or the decision tree generated by the learning unit 353 with the previous combination decision included in the learning device information 343. By combining the trees, a new combined decision tree is generated. Furthermore, the combining unit 355 stores the newly generated combined decision tree in the storage unit 340 as learning device information 343.
 例えば、結合部355は、下記数2を解くことにより結合係数を用いた結合を行う。
 ここで、f(t-1)が1ステップ前の結合決定木を示しており、f(t)が新たに生成される結合決定木を示している。また、aが結合係数を示しており、fは受信部351が受信した決定木や学習部353が生成した決定木を示す。kは、例えば、学習システム100に含まれる他学習装置200や学習装置300の数に応じた値となる。
For example, the coupling unit 355 performs coupling using coupling coefficients by solving Equation 2 below.
Here, f (t-1) indicates the joint decision tree one step before, and f (t) indicates the newly generated joint decision tree. Further, a k indicates a coupling coefficient, and f k indicates a decision tree received by the receiving section 351 or a decision tree generated by the learning section 353. For example, k has a value corresponding to the number of other learning devices 200 and learning devices 300 included in the learning system 100.
 推論部356は、結合決定木を用いた推論を行う。例えば、推論部356は、最新の結合決定木を用いて推論を行うことができる。 The inference unit 356 performs inference using a joint decision tree. For example, the inference unit 356 can perform inference using the latest joint decision tree.
 なお、数3で示すように、最新の結合決定木ffinal()には、過去のステップで受信したり生成したりした決定木や結合係数などが含まれる。そのため、推論部356は、過去のステップで生成した決定木や結合係数なども用いて推論を行う、ということもできる。
 なお、ft()は数4で示すように、tステップ目にモデルに追加される項であり、それぞれの参加者の作った決定木f()の線形和となる。
 なお、数5は、tステップ目にk番目の参加者の作った決定木の係数を示す。
Note that, as shown in Equation 3, the latest joint decision tree f final ( ) includes decision trees, joint coefficients, etc. that were received or generated in past steps. Therefore, the inference unit 356 can also perform inference using decision trees, coupling coefficients, etc. generated in past steps.
Note that, as shown in Equation 4, ft() is a term added to the model at the t-th step, and is a linear sum of the decision trees f k () created by each participant.
Note that Equation 5 shows the coefficients of the decision tree created by the k-th participant at the t-th step.
 出力部357は、決定木や結合決定木の出力を行ったり、推論部356による推論結果の出力を行ったりする。 The output unit 357 outputs a decision tree or a combined decision tree, or outputs an inference result by the inference unit 356.
 例えば、出力部357は、学習部353が生成した決定木や結合部355が生成した結合決定木などを、通信I/F部330を介して他学習装置200などの外部装置に対して送信することができる。出力部357は、学習部353や結合部355による処理の後など、任意のタイミングで出力を行ってよい。 For example, the output unit 357 transmits the decision tree generated by the learning unit 353 or the combined decision tree generated by the combining unit 355 to an external device such as another learning device 200 via the communication I/F unit 330. be able to. The output unit 357 may output at any timing, such as after processing by the learning unit 353 or the combining unit 355.
 また、出力部357は、推論部356による推論の結果を画面表示部320上に表示させたり、通信I/F部330を介して外部装置へと送信したりすることができる。 Further, the output unit 357 can display the result of the inference by the inference unit 356 on the screen display unit 320 or transmit it to an external device via the communication I/F unit 330.
 以上が、学習装置300の構成例である。なお、図6は、非特許文献1に記載されている、回帰タスクを扱う場合における学習システム100のアルゴリズム例を示している。図6で示す例では、他学習装置200や学習装置300などの参加者がK組学習システム100に含まれる場合について例示している。図6で例示するように、学習システム100では、各参加者が生成した決定木f()などを、結合係数aを用いて結合している。ここで、上述したように、結合係数aは、バリデーションデータに対する予測性能が最適になるように算出されている。そのため、結合係数aを用いた結合を行うことで、性能を高めつつ、かつ、バリデーションデータを有する学習装置300により適した形で結合決定木を生成することができる。 The above is an example of the configuration of the learning device 300. Note that FIG. 6 shows an example of an algorithm of the learning system 100 when handling a regression task, which is described in Non-Patent Document 1. In the example shown in FIG. 6, a case is illustrated in which participants such as the other learning device 200 and the learning device 300 are included in the group K learning system 100. As illustrated in FIG. 6, in the learning system 100, decision trees f k ( ) generated by each participant are combined using a connection coefficient a. Here, as described above, the coupling coefficient a is calculated so that the prediction performance for the validation data is optimized. Therefore, by performing a combination using the combination coefficient a, it is possible to improve performance and generate a combination decision tree in a form more suitable for the learning device 300 having validation data.
 なお、図6で示す例では、回帰タスクを扱う場合における学習システム100のアルゴリズム例を例示しているが、回帰タスクの代わりに分類タスクを扱う場合であっても、回帰タスクの場合と同様に、結合係数aを用いた結合を行う。そのため、分類タスクを扱う場合であっても、回帰タスクの場合と同様に、結合係数aを用いた結合を行うことで、性能を高めつつ、かつ、バリデーションデータを有する学習装置300により適した形で結合決定木を生成することができる。例えば、非特許文献1には、図7で示すような分類タスクを扱う場合におけるアルゴリズム例が記載されている。図7を参照すると、分類タスクを扱う場合であっても、回帰タスクの場合と同様に、結合係数aを用いた結合を行っていることが分かる。 Note that the example shown in FIG. 6 illustrates an example of the algorithm of the learning system 100 when dealing with a regression task, but even when dealing with a classification task instead of a regression task, the same algorithm as in the case of the regression task can be used. , performs the coupling using the coupling coefficient a. Therefore, even when handling a classification task, by performing a combination using the combination coefficient a, as in the case of a regression task, it is possible to improve the performance and create a form more suitable for the learning device 300 that has validation data. can generate a joint decision tree. For example, Non-Patent Document 1 describes an example of an algorithm for handling a classification task as shown in FIG. Referring to FIG. 7, it can be seen that even when dealing with a classification task, the combination is performed using the combination coefficient a, as in the case of the regression task.
 続いて、図8を参照して、学習装置300の動作例について説明する。図8は、学習装置300の動作例を示すフローチャートである。図8を参照すると、受信部351は、他学習装置200から学習器である決定木を受信する(ステップS101)。 Next, an example of the operation of the learning device 300 will be described with reference to FIG. 8. FIG. 8 is a flowchart showing an example of the operation of the learning device 300. Referring to FIG. 8, the receiving unit 351 receives a decision tree, which is a learning device, from the other learning device 200 (step S101).
 特徴量追加算出部352は、受信部351が受信した決定木と、学習データ情報341に含まれる学習データと、に基づいて、追加の学習データを算出する(ステップS102)。例えば、特徴量追加算出部352は、受信部351が受信した決定木に対して学習データ情報341に含まれる各学習データを入力することで、学習器から出力を得る。特徴量追加算出部352は、上記出力を、追加の特徴量として取得することができる。 The feature value addition calculation unit 352 calculates additional learning data based on the decision tree received by the receiving unit 351 and the learning data included in the learning data information 341 (step S102). For example, the feature quantity addition calculation unit 352 obtains an output from the learning device by inputting each learning data included in the learning data information 341 to the decision tree received by the receiving unit 351. The feature quantity addition calculation unit 352 can acquire the above output as an additional feature quantity.
 学習部353は、特徴量追加算出部352が算出した特徴量と、学習データ情報341が示す学習データと、に基づく学習を行うことで、学習器である決定木を生成する(ステップS103)。つまり、学習部353は、学習データ情報341が示す学習データに特徴量追加算出部352が算出した特徴量を加えて学習を行うことで、決定木を生成する。 The learning unit 353 generates a decision tree, which is a learning device, by performing learning based on the feature quantity calculated by the feature quantity addition calculation unit 352 and the learning data indicated by the learning data information 341 (step S103). That is, the learning unit 353 generates a decision tree by performing learning by adding the feature amount calculated by the feature amount addition calculation unit 352 to the learning data indicated by the learning data information 341.
 係数算出部354は、バリデーションデータ情報342が示すバリデーションデータを用いて、結合係数を決定木ごとに算出する(ステップS104)。例えば、係数算出部354は、バリデーションデータ情報342が示すバリデーションデータに対する予測性能が最適になるように、結合係数を算出する。係数算出部354は、受信部351が受信した決定木や学習部353が生成した決定木ごとに結合係数を算出することができる。 The coefficient calculating unit 354 calculates a coupling coefficient for each decision tree using the validation data indicated by the validation data information 342 (step S104). For example, the coefficient calculating unit 354 calculates a coupling coefficient so that the prediction performance for the validation data indicated by the validation data information 342 is optimal. The coefficient calculating unit 354 can calculate a coupling coefficient for each decision tree received by the receiving unit 351 or for each decision tree generated by the learning unit 353.
 結合部355は、係数算出部354が算出した結合係数を用いて、受信部351が受信した決定木や学習部353が生成した決定木と、学習器情報343に含まれる1ステップ前の結合決定木とを結合することで、新たな結合決定木を生成する(ステップS105)。 The combination unit 355 uses the combination coefficients calculated by the coefficient calculation unit 354 to combine the decision tree received by the reception unit 351 or the decision tree generated by the learning unit 353 with the previous combination decision included in the learning device information 343. By combining the trees, a new combined decision tree is generated (step S105).
 以上が、学習装置300の動作例である。 The above is an example of the operation of the learning device 300.
 このように、学習装置300は、特徴量追加算出部352と学習部353とを有している。このような構成によると、学習部353は、特徴量追加算出部352が算出した特徴量を加えた学習データを用いた学習を行うことにより学習器である決定木を生成することができる。その結果、他学習装置200による学習の成果も取り込んだ形で決定木を生成することができる。これにより、性能を高めつつ、自装置が有するデータにより適した学習器である決定木を生成することができる。 In this way, the learning device 300 includes the feature quantity addition calculation section 352 and the learning section 353. According to such a configuration, the learning unit 353 can generate a decision tree, which is a learning device, by performing learning using the learning data to which the feature quantity calculated by the feature quantity addition calculation unit 352 is added. As a result, a decision tree can be generated that also incorporates the results of learning by other learning devices 200. Thereby, it is possible to generate a decision tree, which is a learning device more suitable for the data held by the device itself, while improving performance.
 また、学習装置300は、係数算出部354と結合部355とを有している。このような構成によると、結合部355は、係数算出部354が算出し結合係数を用いて、各決定木を算出することができる。上述したように、結合係数は、バリデーションデータに対する予測性能が最適になるように、結合係数を算出する。そのため、上記結合係数を用いて各決定木を結合することで、性能を高めつつ、バリデーションデータを有する学習装置300により適した学習器である決定木を生成することができる。 Further, the learning device 300 includes a coefficient calculating section 354 and a combining section 355. According to such a configuration, the combination unit 355 can calculate each decision tree using the combination coefficients calculated by the coefficient calculation unit 354. As described above, the coupling coefficient is calculated so that the prediction performance for the validation data is optimal. Therefore, by combining each decision tree using the above-mentioned connection coefficient, it is possible to improve performance and generate a decision tree that is a learning device more suitable for the learning device 300 having validation data.
 なお、本実施形態においては、学習装置300が特徴量追加算出部352と係数算出部354とをともに有する場合について例示した。しかしながら、学習装置300は、特徴量追加算出部352と係数算出部354とのうちのいずれか一つのみを有してもよい。 Note that in this embodiment, the case where the learning device 300 includes both the feature value addition calculation unit 352 and the coefficient calculation unit 354 is illustrated. However, the learning device 300 may include only one of the feature amount addition calculation section 352 and the coefficient calculation section 354.
 例えば、学習装置300が特徴量追加算出部352を有さない場合、学習部353は、学習データ情報341に含まれる学習データに基づく学習を行って決定木を生成する。このような場合であっても、上述したように、バリデーションデータに対する予測性能が最適になるように結合係数を算出するため、結合係数を用いて各決定木を結合することで、性能を高めつつ、バリデーションデータを有する学習装置300により適した学習器である決定木を生成することができる。 For example, if the learning device 300 does not include the feature amount addition calculation unit 352, the learning unit 353 performs learning based on learning data included in the learning data information 341 to generate a decision tree. Even in such a case, as mentioned above, in order to calculate the coupling coefficient so that the prediction performance for the validation data is optimal, by combining each decision tree using the coupling coefficient, it is possible to improve the performance while , a decision tree that is a learning device more suitable for the learning device 300 having validation data can be generated.
 また、例えば、学習装置300が係数算出部354を有さない場合、結合部355は、他学習装置200による学習の成果も取り込んだ形で生成される決定木と、1ステップ前の結合決定木とを結合する。その結果、性能を高めつつ、自装置が有するデータにより適した学習器である決定木を生成することができる。なお、学習装置300が係数算出部354を有さない場合、結合部355は、結合係数を用いずに生成した決定木と1ステップ前の結合決定木とを結合してよい。 For example, if the learning device 300 does not have the coefficient calculating unit 354, the combining unit 355 combines a decision tree generated by incorporating the results of learning by other learning devices 200, and a combined decision tree one step before. Combine with. As a result, it is possible to generate a decision tree, which is a learning device more suitable for the data held by the device itself, while improving performance. Note that if the learning device 300 does not include the coefficient calculating unit 354, the combining unit 355 may combine the decision tree generated without using a combining coefficient and the combined decision tree one step before.
 また、上述したように、本実施形態においては、学習器として決定木を用いる場合について説明した。しかしながら、本発明の対象となる学習器は、決定木に限定されない。例えば、学習器は、浅いニューラルネットやサポートベクターマシンなどであってもよい。もちろん、最終的に生成される学習器も、上記各学習器に応じたものであってよい。例えば、学習器として決定木を用いた場合、最終的に生成される結合決定木はGBDT(Gradient Boosting Decision Tree)モデルになる。また、学習器としてニューラルネットを用いた場合、最終的に生成されるモデルは勾配ブースティングニューラルネットとなる。 Furthermore, as described above, in this embodiment, a case has been described in which a decision tree is used as a learning device. However, the learning device to which the present invention is applied is not limited to decision trees. For example, the learning device may be a shallow neural network, a support vector machine, or the like. Of course, the finally generated learning device may also correspond to each of the learning devices described above. For example, when a decision tree is used as a learning device, the finally generated combined decision tree becomes a GBDT (Gradient Boosting Decision Tree) model. Furthermore, when a neural network is used as a learning device, the finally generated model will be a gradient boosting neural network.
[第2の実施形態]
 次に、本開示の第2の実施形態について、図9から図11までを参照して説明する。図9は、学習装置400のハードウェア構成例を示す図である。図10は、学習装置400の構成例を示すブロック図である。図11は、推論装置500の構成例を示すブロック図である。
[Second embodiment]
Next, a second embodiment of the present disclosure will be described with reference to FIGS. 9 to 11. FIG. 9 is a diagram showing an example of the hardware configuration of the learning device 400. FIG. 10 is a block diagram showing a configuration example of the learning device 400. FIG. 11 is a block diagram showing a configuration example of the inference device 500.
 本開示の第2の実施形態においては、他装置から学習器を受け取って、自身のデータに対して最適な予測を行うように学習器を結合する情報処理装置である学習装置400の構成例について説明する。図9は、学習装置400のハードウェア構成例を示している。図9を参照すると、学習装置400は、一例として、以下のようなハードウェア構成を有している。
 ・CPU(Central Processing Unit)401(演算装置)
 ・ROM(Read Only Memory)402(記憶装置)
 ・RAM(Random Access Memory)403(記憶装置)
 ・RAM403にロードされるプログラム群404
 ・プログラム群404を格納する記憶装置405
 ・情報処理装置外部の記録媒体410の読み書きを行うドライブ装置406
 ・情報処理装置外部の通信ネットワーク411と接続する通信インタフェース407
 ・データの入出力を行う入出力インタフェース408
 ・各構成要素を接続するバス409
In the second embodiment of the present disclosure, a configuration example of a learning device 400, which is an information processing device that receives learning devices from other devices and combines the learning devices so as to perform optimal prediction for its own data, will be described. explain. FIG. 9 shows an example of the hardware configuration of the learning device 400. Referring to FIG. 9, the learning device 400 has the following hardware configuration, as an example.
・CPU (Central Processing Unit) 401 (arithmetic unit)
・ROM (Read Only Memory) 402 (storage device)
・RAM (Random Access Memory) 403 (storage device)
- Program group 404 loaded into RAM 403
- Storage device 405 that stores program group 404
- A drive device 406 that reads and writes from a recording medium 410 external to the information processing device
- A communication interface 407 that connects to a communication network 411 outside the information processing device
・I/O interface 408 that inputs and outputs data
・Bus 409 connecting each component
 また、学習装置400は、プログラム群404をCPU401が取得して当該CPU401が実行することで、図10に示す受信部421、生成部422としての機能を実現することができる。なお、プログラム群404は、例えば、予め記憶装置405やROM402に格納されており、必要に応じてCPU401がRAM403などにロードして実行する。また、プログラム群404は、通信ネットワーク411を介してCPU401に供給されてもよいし、予め記録媒体410に格納されており、ドライブ装置406が該プログラムを読み出してCPU401に供給してもよい。 Further, the learning device 400 can realize the functions of the receiving section 421 and the generating section 422 shown in FIG. 10 by the CPU 401 acquiring the program group 404 and executing the program group 404. Note that the program group 404 is stored in the storage device 405 or ROM 402 in advance, for example, and is loaded into the RAM 403 or the like by the CPU 401 and executed as necessary. Further, the program group 404 may be supplied to the CPU 401 via the communication network 411, or may be stored in the recording medium 410 in advance, and the drive device 406 may read the program and supply it to the CPU 401.
 なお、図9は、学習装置400のハードウェア構成例を示している。学習装置400のハードウェア構成は上述した場合に限定されない。例えば、学習装置400は、ドライブ装置406を有さないなど、上述した構成の一部から構成されてもよい。 Note that FIG. 9 shows an example of the hardware configuration of the learning device 400. The hardware configuration of learning device 400 is not limited to the above case. For example, the learning device 400 may be configured from part of the configuration described above, such as not having the drive device 406.
 受信部421は、他の学習装置から学習器を受信する。 The receiving unit 421 receives learning devices from other learning devices.
 生成部422は、受信部421が受信した学習器と、自装置が有するデータと、を用いて、自装置が有するデータに適した予測を行うように適切化学習器を生成する。例えば、生成部422は、自装置が有するデータを用いて算出した結合係数を用いて受信部421が受信した学習器を結合することで、自装置が有するデータに適した予測を行うように適切化学習器を生成する。または、生成部422は、受信部が受信した学習器を用いて算出される追加の特徴量を追加した学習データを用いて学習器を生成することで、適切化学習器を生成する。例えば、生成部422は、上記例示した方法のいずれか、または、その組み合わせを行うことで、適切化学習器を生成することができる。 The generation unit 422 uses the learning device received by the receiving unit 421 and the data possessed by the own device to generate an appropriate learning device so as to make a prediction suitable for the data possessed by the own device. For example, the generation unit 422 combines the learning device received by the reception unit 421 using a coupling coefficient calculated using data possessed by the own device, so as to make an appropriate prediction suitable for the data possessed by the own device. Generate a learning machine. Alternatively, the generation unit 422 generates an appropriate learning device by generating a learning device using learning data to which additional feature amounts calculated using the learning device received by the receiving unit are added. For example, the generation unit 422 can generate the appropriate learning device by performing any of the methods exemplified above or a combination thereof.
 このように、学習装置400は、受信部421と生成部422とを有している。このような構成によると、生成部422は、受信部421が受信した学習器と、自装置が有するデータと、を用いて、自装置が有するデータに適した予測を行うように適切化学習器を生成することができる。その結果、性能を高めつつ、自装置が有するデータにより適した学習器を生成することができる。 In this way, the learning device 400 includes a receiving section 421 and a generating section 422. According to such a configuration, the generation unit 422 uses the learning device received by the receiving unit 421 and the data possessed by the own device to generate an appropriate learning device so as to perform a prediction suitable for the data possessed by the own device. can be generated. As a result, it is possible to generate a learning device that is more suitable for the data held by the device itself while improving performance.
 なお、上述した学習装置400は、当該学習装置400などの情報処理装置に所定のプログラムが組み込まれることで実現できる。具体的に、本発明の他の形態であるプログラムは、学習装置400などの情報処理装置に他の学習装置から学習器を受信し、受信した学習器と、自装置が有するデータと、を用いて、自装置が有するデータに適した予測を行うように適切化学習器を生成する、処理を実現するためのプログラムである。 Note that the learning device 400 described above can be realized by incorporating a predetermined program into an information processing device such as the learning device 400. Specifically, a program according to another embodiment of the present invention causes an information processing device such as the learning device 400 to receive a learning device from another learning device, and uses the received learning device and data possessed by the own device. This is a program for realizing processing that generates an appropriate learning machine so as to make predictions suitable for the data possessed by the own device.
 また、上述した学習装置400などの情報処理装置により実行される学習方法は、学習装置400などの情報処理装置が、他の学習装置から学習器を受信し、受信した学習器と、自装置が有するデータと、を用いて、自装置が有するデータに適した予測を行うように適切化学習器を生成する、という方法である。 Further, in a learning method executed by an information processing device such as the learning device 400 described above, the information processing device such as the learning device 400 receives a learning device from another learning device, and the received learning device and the own device are connected to each other. In this method, an appropriate learning machine is generated using the data that the device has, so as to make a prediction suitable for the data that the device has.
 上述した構成を有する、プログラム、又は、プログラムを記録したコンピュータが読み取り可能な記録媒体、又は、学習方法、の発明であっても、上述した学習装置400と同様の作用・効果を奏するために、上述した本開示の目的を達成することができる。 Even with the invention of a program, a computer-readable recording medium on which the program is recorded, or a learning method having the above-described configuration, in order to achieve the same operation and effect as the learning device 400 described above, The objectives of the present disclosure described above can be achieved.
 また、上述した学習装置400などが生成した適切化学習器を用いた推論を行う推論装置500などであっても、同様に本開示の目的を達成することが出来る。例えば、推論装置500は、図11で示すように、他の学習装置から受信した学習器と、自装置が有するデータを用いて自装置が有するデータに適した予測を行うように算出された結合係数と、を記憶する記憶装置521と、特徴量の入力に応じて、記憶装置が記憶する学習器と結合係数とを用いた推論を行う推論部522と、を有する。なお、推論装置500のハードウェア構成は学習装置400と同様であってよい。 Further, the purpose of the present disclosure can be achieved in the same way even with the inference device 500 or the like that performs inference using the appropriate learning device generated by the above-mentioned learning device 400 or the like. For example, as shown in FIG. 11, the inference device 500 uses a learning device received from another learning device and the data it owns to perform a combination calculated to make a prediction suitable for the data it owns. It has a storage device 521 that stores coefficients, and an inference unit 522 that performs inference using the learning device and the coupling coefficients stored in the storage device according to the input of the feature amount. Note that the hardware configuration of the inference device 500 may be the same as that of the learning device 400.
 <付記>
 上記実施形態の一部又は全部は、以下の付記のようにも記載されうる。以下、本発明における学習装置などの概略を説明する。但し、本発明は、以下の構成に限定されない。
<Additional notes>
Part or all of the above embodiments may also be described as in the following additional notes. Hereinafter, the outline of the learning device etc. in the present invention will be explained. However, the present invention is not limited to the following configuration.
(付記1)
 他の学習装置から学習器を受信する受信部と、
 前記受信部が受信した学習器と、自装置が有するデータと、を用いて、自装置が有するデータに適した予測を行うように適切化学習器を生成する生成部と、
 を有する
 学習装置。
(付記2)
 付記1に記載の学習装置であって、
 自装置が有するデータを用いて、データに適した予測を行うように結合係数を算出する算出部を有し、
 前記生成部は、前記算出部が算出した結合係数を用いて前記受信部が受信した学習器を結合することで、自装置が有するデータに適した予測を行うように前記適切化学習器を生成する
 学習装置。
(付記3)
 付記2に記載の学習装置であって、
 前記算出部は、自装置が有するデータを学習器に入力した結果を用いた線形回帰を行うことで、データに適した予測を行うように結合係数を算出する
 学習装置。
(付記4)
 付記2または付記3に記載の学習装置であって、
 前記算出部は、検証用のデータであるバリデーションデータを用いて前記結合係数を算出する
 学習装置。
(付記5)
 付記2から付記4までのうちのいずれか1項に記載の学習装置であって、
 前記算出部は、学習器である決定木において各葉ノードに落ちるデータを特定して、葉ノードごとのデータを用いて前記結合係数を算出する
 学習装置。
(付記6)
 付記1から付記5までのうちのいずれか1項に記載の学習装置であって、
 前記受信部が受信した学習器と、学習データと、を用いて追加の特徴量を算出する特徴量算出部と、
 前記特徴量算出部が算出した特徴量を前記学習データに加えて学習することで学習器を生成する学習部と、
 を有し、
 前記生成部は、前記学習部が生成した学習器を用いて、前記適切化学習器を生成する
 学習装置。
(付記7)
 付記6に記載の学習装置であって、
 自装置が有するデータを用いて前記受信部が受信した学習器に対応する結合係数を算出する算出部を有し、
 前記生成部は、前記算出部が算出した結合係数を用いて前記受信部が受信した学習器と前記学習部が生成した学習器とを結合することで、前記適切化学習器を生成する
 学習装置。
(付記8)
 情報処理装置が、
 他の学習装置から学習器を受信し、
 受信した学習器と、自装置が有するデータと、を用いて、自装置が有するデータに適した予測を行うように適切化学習器を生成する
 学習方法。
(付記9)
 情報処理装置に、
 他の学習装置から学習器を受信し、
 受信した学習器と、自装置が有するデータと、を用いて、自装置が有するデータに適した予測を行うように適切化学習器を生成する
 処理を実現するためのプログラムを記録した、コンピュータが読み取り可能な記録媒体。
(付記10)
 特徴量の入力に対してラベルを推論する推論装置であって、
 他の学習装置から受信した学習器と、自装置が有するデータを用いて自装置が有するデータに適した予測を行うように算出された結合係数と、を記憶する記憶装置と、
 特徴量の入力に応じて、前記記憶装置が記憶する学習器と結合係数とを用いた推論を行う推論部と、
 を有する
 推論装置。
(Additional note 1)
a receiving unit that receives the learning device from another learning device;
a generation unit that uses the learning device received by the receiving unit and data possessed by the device itself to generate an appropriate learning device so as to make a prediction suitable for the data possessed by the device;
A learning device.
(Additional note 2)
The learning device according to Supplementary Note 1,
It has a calculation unit that calculates a coupling coefficient to make a prediction suitable for the data using data possessed by the own device,
The generation unit generates the appropriate learning machine so as to perform prediction suitable for data possessed by the own device by combining the learning machines received by the reception unit using the coupling coefficient calculated by the calculation unit. A learning device.
(Additional note 3)
The learning device according to appendix 2,
A learning device, wherein the calculation unit calculates a coupling coefficient so as to perform a prediction suitable for the data by performing linear regression using a result of inputting data possessed by the learning device to the learning device.
(Additional note 4)
The learning device according to appendix 2 or appendix 3,
The learning device wherein the calculation unit calculates the coupling coefficient using validation data that is data for verification.
(Appendix 5)
The learning device according to any one of Supplementary Notes 2 to 4,
The calculation unit specifies data that falls on each leaf node in a decision tree that is a learning device, and calculates the coupling coefficient using data for each leaf node.
(Appendix 6)
The learning device according to any one of Supplementary Notes 1 to 5,
a feature amount calculation unit that calculates an additional feature amount using the learning device and the learning data received by the receiving unit;
a learning unit that generates a learning device by adding the feature calculated by the feature calculation unit to the learning data and learning;
has
The generation unit generates the appropriate learning device using the learning device generated by the learning unit. The learning device.
(Appendix 7)
The learning device according to appendix 6,
a calculation unit that calculates a coupling coefficient corresponding to the learning device received by the reception unit using data possessed by the own device;
The generation unit generates the appropriate learning device by combining the learning device received by the receiving unit and the learning device generated by the learning unit using the coupling coefficient calculated by the calculation unit.Learning device .
(Appendix 8)
The information processing device
Receive learning devices from other learning devices,
A learning method that uses a received learning device and data possessed by the device itself to generate an appropriate learning device so as to make a prediction suitable for the data possessed by the device itself.
(Appendix 9)
In the information processing device,
Receive learning devices from other learning devices,
Using the received learning device and the data held by the own device, a computer records a program for realizing the process of generating an appropriate learning device so as to make predictions suitable for the data held by the own device. A readable recording medium.
(Appendix 10)
An inference device that infers a label based on an input of a feature amount, the inference device comprising:
a storage device that stores a learning device received from another learning device and a coupling coefficient calculated to perform a prediction suitable for the data of the own device using the data of the own device;
an inference unit that performs inference using a learning device and a coupling coefficient stored in the storage device according to input of a feature amount;
has a reasoning device.
 以上、上記各実施形態を参照して本願発明を説明したが、本願発明は、上述した実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明の範囲内で当業者が理解しうる様々な変更をすることができる。 Although the present invention has been described above with reference to each of the embodiments described above, the present invention is not limited to the embodiments described above. The configuration and details of the present invention can be modified in various ways within the scope of the present invention by those skilled in the art.
100 学習システム
200 他学習装置
300 学習装置
310 操作入力部
320 画面表示部
330 通信I/F部
340 記憶部
341 学習データ情報
342 バリデーションデータ情報
343 学習器情報
344 係数情報
345 プログラム
350 演算処理部
351 受信部
352 特徴量追加算出部
353 学習部
354 係数算出部
355 結合部
356 推論部
357 出力部
400 学習装置
401 CPU
402 ROM
403 RAM
404 プログラム群
405 記憶装置
406 ドライブ装置
407 通信インタフェース
408 入出力インタフェース
409 バス
410 記録媒体
411 通信ネットワーク
421 受信部
422 生成部
500 推論装置
521 記憶装置
522 推論部

 
100 Learning system 200 Other learning devices 300 Learning device 310 Operation input section 320 Screen display section 330 Communication I/F section 340 Storage section 341 Learning data information 342 Validation data information 343 Learning device information 344 Coefficient information 345 Program 350 Arithmetic processing section 351 Reception Unit 352 Feature value addition calculation unit 353 Learning unit 354 Coefficient calculation unit 355 Combining unit 356 Inference unit 357 Output unit 400 Learning device 401 CPU
402 ROM
403 RAM
404 Program group 405 Storage device 406 Drive device 407 Communication interface 408 Input/output interface 409 Bus 410 Recording medium 411 Communication network 421 Receiving section 422 Generation section 500 Inference device 521 Storage device 522 Inference section

Claims (10)

  1.  他の学習装置から学習器を受信する受信部と、
     前記受信部が受信した学習器と、自装置が有するデータと、を用いて、自装置が有するデータに適した予測を行うように適切化学習器を生成する生成部と、
     を有する
     学習装置。
    a receiving unit that receives the learning device from another learning device;
    a generation unit that uses the learning device received by the receiving unit and data possessed by the device itself to generate an appropriate learning device so as to make a prediction suitable for the data possessed by the device;
    A learning device.
  2.  請求項1に記載の学習装置であって、
     自装置が有するデータを用いて、データに適した予測を行うように結合係数を算出する算出部を有し、
     前記生成部は、前記算出部が算出した結合係数を用いて前記受信部が受信した学習器を結合することで、自装置が有するデータに適した予測を行うように前記適切化学習器を生成する
     学習装置。
    The learning device according to claim 1,
    It has a calculation unit that calculates a coupling coefficient to make a prediction suitable for the data using data possessed by the own device,
    The generation unit generates the appropriate learning device so as to perform prediction suitable for data possessed by the own device by combining the learning devices received by the reception unit using the coupling coefficient calculated by the calculation unit. A learning device.
  3.  請求項2に記載の学習装置であって、
     前記算出部は、自装置が有するデータを学習器に入力した結果を用いた線形回帰を行うことで、データに適した予測を行うように結合係数を算出する
     学習装置。
    The learning device according to claim 2,
    A learning device, wherein the calculation unit calculates a coupling coefficient so as to perform a prediction suitable for the data by performing linear regression using a result of inputting data possessed by the learning device to the learning device.
  4.  請求項2または請求項3に記載の学習装置であって、
     前記算出部は、検証用のデータであるバリデーションデータを用いて前記結合係数を算出する
     学習装置。
    The learning device according to claim 2 or 3,
    The learning device wherein the calculation unit calculates the coupling coefficient using validation data that is data for verification.
  5.  請求項2から請求項4までのうちのいずれか1項に記載の学習装置であって、
     前記算出部は、学習器である決定木において各葉ノードに落ちるデータを特定して、葉ノードごとのデータを用いて前記結合係数を算出する
     学習装置。
    The learning device according to any one of claims 2 to 4,
    The calculation unit specifies data that falls on each leaf node in a decision tree that is a learning device, and calculates the coupling coefficient using data for each leaf node.
  6.  請求項1から請求項5までのうちのいずれか1項に記載の学習装置であって、
     前記受信部が受信した学習器と、学習データと、を用いて追加の特徴量を算出する特徴量算出部と、
     前記特徴量算出部が算出した特徴量を前記学習データに加えて学習することで学習器を生成する学習部と、
     を有し、
     前記生成部は、前記学習部が生成した学習器を用いて、前記適切化学習器を生成する
     学習装置。
    The learning device according to any one of claims 1 to 5,
    a feature amount calculation unit that calculates an additional feature amount using the learning device and the learning data received by the receiving unit;
    a learning unit that generates a learning device by adding the feature calculated by the feature calculation unit to the learning data and learning;
    has
    The generation unit generates the appropriate learning device using the learning device generated by the learning unit. The learning device.
  7.  請求項6に記載の学習装置であって、
     自装置が有するデータを用いて前記受信部が受信した学習器に対応する結合係数を算出する算出部を有し、
     前記生成部は、前記算出部が算出した結合係数を用いて前記受信部が受信した学習器と前記学習部が生成した学習器とを結合することで、前記適切化学習器を生成する
     学習装置。
    The learning device according to claim 6,
    a calculation unit that calculates a coupling coefficient corresponding to the learning device received by the reception unit using data possessed by the own device;
    The generation unit generates the appropriate learning device by combining the learning device received by the receiving unit and the learning device generated by the learning unit using the coupling coefficient calculated by the calculation unit.Learning device .
  8.  情報処理装置が、
     他の学習装置から学習器を受信し、
     受信した学習器と、自装置が有するデータと、を用いて、自装置が有するデータに適した予測を行うように適切化学習器を生成する
     学習方法。
    The information processing device
    Receive learning devices from other learning devices,
    A learning method that uses a received learning device and data possessed by the device itself to generate an appropriate learning device so as to make a prediction suitable for the data possessed by the device itself.
  9.  情報処理装置に、
     他の学習装置から学習器を受信し、
     受信した学習器と、自装置が有するデータと、を用いて、自装置が有するデータに適した予測を行うように適切化学習器を生成する
     処理を実現するためのプログラムを記録した、コンピュータが読み取り可能な記録媒体。
    In the information processing device,
    Receive learning devices from other learning devices,
    Using the received learning device and the data held by the own device, a computer records a program for realizing the process of generating an appropriate learning device so as to make predictions suitable for the data held by the own device. A readable recording medium.
  10.  特徴量の入力に対してラベルを推論する推論装置であって、
     他の学習装置から受信した学習器と、自装置が有するデータを用いて自装置が有するデータに適した予測を行うように算出された結合係数と、を記憶する記憶装置と、
     特徴量の入力に応じて、前記記憶装置が記憶する学習器と結合係数とを用いた推論を行う推論部と、
     を有する
     推論装置。
     

     
     
    An inference device that infers a label based on an input of a feature amount, the inference device comprising:
    a storage device that stores a learning device received from another learning device and a coupling coefficient calculated to perform a prediction suitable for the data of the own device using the data of the own device;
    an inference unit that performs inference using a learning device and a coupling coefficient stored in the storage device according to input of a feature amount;
    has a reasoning device.



PCT/JP2022/012882 2022-03-18 2022-03-18 Learning device WO2023175977A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/012882 WO2023175977A1 (en) 2022-03-18 2022-03-18 Learning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/012882 WO2023175977A1 (en) 2022-03-18 2022-03-18 Learning device

Publications (1)

Publication Number Publication Date
WO2023175977A1 true WO2023175977A1 (en) 2023-09-21

Family

ID=88023077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012882 WO2023175977A1 (en) 2022-03-18 2022-03-18 Learning device

Country Status (1)

Country Link
WO (1) WO2023175977A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020008919A1 (en) * 2018-07-04 2020-01-09 株式会社エイシング Machine learning device and method
JP2021022079A (en) * 2019-07-25 2021-02-18 オムロン株式会社 Inference device, inference method, and inference program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020008919A1 (en) * 2018-07-04 2020-01-09 株式会社エイシング Machine learning device and method
JP2021022079A (en) * 2019-07-25 2021-02-18 オムロン株式会社 Inference device, inference method, and inference program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MINAMI, KENTARO; ARAI, HIROMI; SATO, ISSEI; NAKAGAWA, HIROSHI: "Aggregating Differentially Private Weak Learners", IPSJ TRANSACTIONS ON MATHEMATICAL MODELING AND ITS APPLICATIONS (TOM), vol. 8, no. 2, 24 July 2015 (2015-07-24), pages 31 - 43, XP009549334 *

Similar Documents

Publication Publication Date Title
CN107169573A (en) Using composite machine learning model come the method and system of perform prediction
JP6708847B1 (en) Machine learning apparatus and method
JP6414363B2 (en) Prediction system, method and program
US11501201B2 (en) Systems, methods, and apparatuses for training, storage, and interaction with machine learning models
US11720788B2 (en) Calculation scheme decision system, calculation scheme decision device, calculation scheme decision method, and storage medium
JP5624562B2 (en) Method and system for calculating website visitor ratings
CN110188910A (en) The method and system of on-line prediction service are provided using machine learning model
JP6311851B2 (en) Co-clustering system, method and program
US20190354533A1 (en) Information processing device, information processing method, and non-transitory computer-readable recording medium
Liang et al. The generic genetic algorithm incorporates with rough set theory–An application of the web services composition
Janssens et al. Modeling and enacting enterprise decisions
Wu et al. MG-CNN: A deep CNN to predict saddle points of matrix games
WO2023175977A1 (en) Learning device
JP7196933B2 (en) Learning device and learning method
CN111160733A (en) Risk control method and device based on biased sample and electronic equipment
KR102105951B1 (en) Constructing method of classification restricted boltzmann machine and computer apparatus for classification restricted boltzmann machine
Tang et al. Multiple criteria group decision-making based on hesitant fuzzy linguistic consensus model for fashion sales forecasting
CN115713389A (en) Financial product recommendation method and device
JP2016115316A (en) Processor, processing method, presumption device, presumption method, and program
Amaral et al. A reformulation–linearization–convexification algorithm for optimal correction of an inconsistent system of linear constraints
JP2015114987A (en) Processing device, processing method, and program
JP2021002322A (en) Ising machine data input apparatus and method for inputting data in ising machine
Abdelbari et al. Optimising a constrained echo state network using evolutionary algorithms for learning mental models of complex dynamical systems
WO2023166565A1 (en) Estimation device
JP2015176328A (en) Generation device, selection device, generation method, selection method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932245

Country of ref document: EP

Kind code of ref document: A1