WO2023175926A1 - 空気調和装置の室外機および空気調和装置 - Google Patents

空気調和装置の室外機および空気調和装置 Download PDF

Info

Publication number
WO2023175926A1
WO2023175926A1 PCT/JP2022/012683 JP2022012683W WO2023175926A1 WO 2023175926 A1 WO2023175926 A1 WO 2023175926A1 JP 2022012683 W JP2022012683 W JP 2022012683W WO 2023175926 A1 WO2023175926 A1 WO 2023175926A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
header
refrigerant
outdoor unit
air conditioner
Prior art date
Application number
PCT/JP2022/012683
Other languages
English (en)
French (fr)
Inventor
隆直 木村
洋次 尾中
哲二 七種
祐基 中尾
理人 足立
暁 八柳
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/012683 priority Critical patent/WO2023175926A1/ja
Publication of WO2023175926A1 publication Critical patent/WO2023175926A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/18Heat exchangers specially adapted for separate outdoor units characterised by their shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/02Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/04Compression machines, plants or systems, with several condenser circuits arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Definitions

  • the present disclosure relates to an outdoor unit of an air conditioner and an air conditioner in which a heat exchanger is configured by providing a plurality of heat exchange bodies each having a plurality of flat tubes.
  • Heat exchangers using flat tubes as heat exchanger tubes are known. Since flat tubes have a smaller diameter than circular tubes, when used as heat exchanger tubes in a heat exchanger, the number of refrigerant branches increases compared to when circular tubes are used as heat exchanger tubes. In order for the performance of the heat exchanger to be demonstrated efficiently, the gas-liquid two-phase refrigerant flowing in the collecting pipes such as headers must be appropriately distributed to each flat pipe according to the amount of heat exchanged in the heat exchanger. It is necessary to
  • Patent Document 1 describes an outdoor unit of an air conditioner equipped with a heat exchanger that uses flattened heat transfer tubes.
  • This outdoor unit includes a heat exchanger including a heat exchanger having a plurality of flat tubes extending in the vertical direction and arranged at intervals in the horizontal direction.
  • a heat exchanger has a plurality of heat exchangers arranged in the direction of air flow, and a header into which hot gas refrigerant flows from the refrigerant circuit is located at the bottom of the heat exchanger on the windward side among the plurality of heat exchangers. It is provided.
  • a plurality of heat exchangers are sometimes connected in series.
  • a partition may be provided inside the header of one heat exchanger, and one heat exchanger may be used like two heat exchangers connected in series.
  • the present disclosure has been made in view of the above problems in the conventional technology, and improves refrigerant distribution and improves heat exchange performance when a plurality of heat exchangers connected in series function as a condenser. It is an object of the present invention to provide an outdoor unit of an air conditioner and an air conditioner that can be used.
  • An outdoor unit of an air conditioner is an outdoor unit of an air conditioner including a heat exchanger having a first heat exchanger and a second heat exchanger connected in series, the outdoor unit of the air conditioner including a first heat exchanger and a second heat exchanger connected in series,
  • the exchanger is connected to the second heat exchanger on the downstream side of the refrigerant flow when the heat exchanger functions as a condenser, and the vertical direction is the pipe extending direction, and the horizontal direction is the pipe extending direction.
  • the heat exchanger has a plurality of flat tubes arranged at intervals and is arranged in the direction of air flow, and the heat exchanger among the plurality of heat exchangers functions as a condenser.
  • the first header includes an inner pipe formed with a plurality of spaced apart orifices through which the refrigerant flows and an outer tube into which the inner tube is inserted.
  • an air conditioner according to the present disclosure includes the above outdoor unit.
  • the first header is provided at the lower part of the heat exchanger on the inlet side into which the refrigerant flows. It is provided. Further, the first header has a double pipe structure, and a plurality of orifices through which a refrigerant flows are formed in the inner pipe at intervals.
  • FIG. 1 is a circuit diagram showing an example of the configuration of an air conditioner according to Embodiment 1.
  • FIG. FIG. 2 is a perspective view showing an example of the external appearance of the outdoor unit in FIG. 1.
  • FIG. FIG. 2 is a perspective view showing an example of the appearance of the first outdoor heat exchanger according to the first embodiment.
  • FIG. 2 is a perspective view showing an example of the appearance of the second outdoor heat exchanger or the third outdoor heat exchanger according to the first embodiment.
  • FIG. 4 is a perspective view showing an example of the appearance of the first header in FIG. 3.
  • FIG. FIG. 3 is a schematic sectional view schematically showing a cross section of the first header taken along a plane perpendicular to the stretching direction. It is a schematic diagram for explaining the angle of an orifice.
  • FIG. 7 is a schematic diagram for explaining angles of orifices of a first header and a second header according to a second embodiment.
  • Embodiment 1 An air conditioner according to the first embodiment will be described.
  • the air conditioner according to the first embodiment performs air conditioning in a space to be conditioned by circulating a refrigerant in a refrigerant circuit and transferring heat between outdoor air and indoor air via the refrigerant. be.
  • FIG. 1 is a circuit diagram showing an example of the configuration of an air conditioner according to the first embodiment.
  • the air conditioner 100 includes an outdoor unit 10 and one or more indoor units 20.
  • the outdoor unit 10 and the indoor unit 20 are connected by refrigerant piping through which refrigerant flows.
  • a refrigerant circuit in which refrigerant circulates is formed by connecting the outdoor unit 10 and the indoor unit 20 through refrigerant piping.
  • three indoor units 20 are connected in this example, the number of indoor units 20 is not limited to this, and the number of indoor units 20 may be one or two, or four or more.
  • the outdoor unit 10 includes a compressor 11 , a refrigerant flow switching device 12 , an outdoor heat exchanger 13 , an accumulator 14 , and a fan 15 .
  • the compressor 11 sucks in low-temperature, low-pressure refrigerant, compresses the sucked refrigerant, and discharges high-temperature, high-pressure refrigerant.
  • the compressor 11 is, for example, an inverter compressor or the like whose capacity, which is the amount of refrigerant delivered per unit time, is controlled by changing the operating frequency.
  • the refrigerant flow switching device 12 is, for example, a four-way valve, and switches between cooling operation and heating operation by switching the direction in which the refrigerant flows.
  • the refrigerant flow switching device 12 is not limited to the above-mentioned four-way valve, and for example, other valves may be used in combination.
  • the outdoor heat exchanger 13 exchanges heat between the outdoor air supplied by a fan 15, which is a blower provided nearby, and a refrigerant.
  • the outdoor heat exchanger 13 functions as a condenser that radiates heat from the refrigerant to outdoor air to condense and liquefy the refrigerant during cooling operation.
  • the outdoor heat exchanger 13 functions as an evaporator that evaporates and gasifies the refrigerant during heating operation and absorbs heat from the outdoor air as heat of vaporization.
  • the outdoor heat exchanger 13 includes a second outdoor heat exchanger 13b and a third outdoor heat exchanger 13c connected in parallel, and a second outdoor heat exchanger 13b and a third outdoor heat exchanger 13c connected in parallel.
  • a first outdoor heat exchanger 13a is connected in series to the heat exchanger 13c.
  • the outdoor heat exchanger 13 functions as a condenser
  • the first outdoor heat exchanger 13a is located downstream of the refrigerant flow with respect to the second outdoor heat exchanger 13b and the third outdoor heat exchanger 13c. It is connected.
  • first outdoor heat exchanger 13a", “second outdoor heat exchanger 13b", and “third outdoor heat exchanger 13c" refer to "first heat exchanger 13a" and "second heat exchanger 13c", respectively. 13b" and "third heat exchanger 13c.”
  • the configuration of the outdoor heat exchanger 13 is not limited to this example, and in the air conditioner 100 according to the first embodiment, at least two outdoor heat exchangers 13 may be connected in series.
  • the outdoor heat exchanger 13 may include, for example, a first outdoor heat exchanger 13a and a second outdoor heat exchanger 13b connected in series.
  • the first outdoor heat exchanger 13a is connected to the downstream side of the refrigerant flow with respect to the second outdoor heat exchanger 13b.
  • the fan 15 is a blower for supplying outdoor air to the outdoor heat exchanger 13.
  • the rotation speed of the fan 15 is controlled by a control device (not shown). Thereby, the condensing capacity or evaporation capacity of the outdoor heat exchanger 13 is controlled.
  • the accumulator 14 is provided on the suction side of the compressor 11.
  • the accumulator 14 stores surplus refrigerant generated due to differences in operating conditions between cooling operation and heating operation, surplus refrigerant for transient changes in operation, and the like. Note that the accumulator 14 does not necessarily need to be provided.
  • Each indoor unit 20 has a throttle device 21 and an indoor heat exchanger 22.
  • the expansion device 21 is, for example, an expansion valve, and reduces the pressure of the refrigerant to expand it.
  • the throttle device 21 is configured with a valve that can control the opening degree, such as an electronic expansion valve, for example.
  • the indoor heat exchanger 22 exchanges heat between indoor air supplied by a blower (not shown) such as a fan and a refrigerant. Thereby, heating air or cooling air that is conditioned air supplied to the air-conditioned space is generated.
  • the indoor heat exchanger 22 functions as an evaporator during cooling operation. Furthermore, the indoor heat exchanger 22 functions as a condenser during heating operation.
  • FIG. 2 is a perspective view showing an example of the external appearance of the outdoor unit shown in FIG. 1.
  • FIG. 2 is illustrated so that the arrangement of the outdoor heat exchanger 13 inside the outdoor unit 10 can be seen.
  • the outdoor unit 10 according to the first embodiment is formed in a rectangular parallelepiped shape that is rectangular in top view.
  • a first outdoor heat exchanger 13a, a second outdoor heat exchanger 13b, and a third outdoor heat exchanger 13c are provided in a C-shape along three of the four side surfaces.
  • a fan 15 is provided at the top of the outdoor unit 10 so as to blow air upward.
  • the outdoor unit 10 according to the first embodiment is a top flow type in which the fan 15 that blows air upward is arranged above the outdoor heat exchanger 13 that is composed of a plurality of heat exchangers. .
  • FIG. 3 is a perspective view showing an example of the appearance of the first outdoor heat exchanger according to the first embodiment.
  • the white arrows in FIG. 3 indicate the flow of air generated by the fan 15.
  • dotted arrows indicate the flow of refrigerant when the outdoor heat exchanger 13 functions as a condenser.
  • the first outdoor heat exchanger 13a has a plurality of heat exchange bodies 50 arranged in line in the air flow direction.
  • two heat exchangers 50 have the same size and are arranged in sequence in the air flow direction.
  • the heat exchanger 50 has a plurality of flat tubes 51 arranged at intervals in the horizontal direction, with the tube extending direction in the vertical direction.
  • the plurality of flat tubes 51 are arranged horizontally in parallel at intervals so that the air generated by the fan 15 flows, and the refrigerant flows vertically in the tubes extending in the vertical direction.
  • fins 52 joined to the flat tubes 51 for transferring heat to the flat tubes 51 are provided between the flat tubes 51 that are adjacent to each other.
  • the fins 52 improve heat exchange efficiency between air and refrigerant.
  • the fins 52 for example, corrugated fins are used. Note that, if heat exchange between the air and the refrigerant can be sufficiently performed on the surface of the flat tube 51, the fins 52 may not be provided.
  • a first header 53 is provided at the bottom of the heat exchanger 50 on the most leeward side among the plurality of heat exchangers 50.
  • the first header 53 extends in the direction in which the plurality of flat tubes 51 are arranged, and the lower end portion of the flat tube 51 of the heat exchanger 50 disposed on the most leeward side is directly inserted into the first header 53.
  • the first header 53 is connected to the refrigerant circuit of the air conditioner 100 via a refrigerant pipe 56.
  • the first header 53 contains the second outdoor heat exchanger 13b and the third outdoor heat exchanger 13c.
  • a phase refrigerant flows in via refrigerant piping 56 .
  • the first header 53 transfers the two-phase refrigerant that has been heat exchanged with the heat exchanger 50 on the most leeward side. , the refrigerant is discharged through the refrigerant pipe 56.
  • a second header 54 is provided at the bottom of the heat exchanger 50 on the windward side among the plurality of heat exchangers 50.
  • the second header 54 extends in the arrangement direction of the plurality of flat tubes 51 and is arranged in parallel to the first header 53.
  • the lower end portion of the flat tube 51 of the heat exchanger 50 disposed furthest upwind is directly inserted into the second header 54 .
  • the second header 54 is connected to the refrigerant circuit of the air conditioner 100 via a refrigerant pipe 57.
  • the second header 54 causes the liquid refrigerant that has undergone heat exchange with the heat exchanger 50 on the windward side to flow out through the refrigerant pipe 57. Further, when the outdoor heat exchanger 13 functions as an evaporator, the two-phase refrigerant flowing out from the expansion device 21 of the indoor unit 20 flows into the second header 54 via the refrigerant pipe 57.
  • a third header 55 is provided above the plurality of heat exchangers 50, into which the upper ends of the plurality of flat tubes 51 inserted into the first header 53 and the second header 54 are inserted.
  • the third header 55 causes the refrigerant flowing from the flat tube 51 on the leeward side to flow back into the flat tube 51 on the windward side.
  • the outdoor heat exchanger 13 functions as an evaporator
  • the third header 55 causes the refrigerant flowing from the flat tube 51 on the windward side to flow back into the flat tube 51 on the leeward side.
  • the plurality of flat tubes 51, fins 52, first header 53, second header 54, third header 55, and refrigerant pipes 56 and 57 are each made of, for example, aluminum, and are joined by brazing.
  • FIG. 4 is a perspective view showing an example of the appearance of the second outdoor heat exchanger or the third outdoor heat exchanger according to the first embodiment.
  • the white arrows in FIG. 4 indicate the flow of air generated by the fan 15. Note that since the second outdoor heat exchanger 13b and the third outdoor heat exchanger 13c have the same configuration, the second outdoor heat exchanger 13b will be explained here as an example.
  • the second outdoor heat exchanger 13b has a plurality of heat exchange bodies 50 similarly to the first outdoor heat exchanger 13a.
  • two heat exchangers 50 have the same size and are arranged in sequence in the air flow direction.
  • the heat exchange body 50 is provided with a plurality of flat tubes 51 and fins 52, similar to the first outdoor heat exchanger 13a. Note that the fins 52 may not be provided.
  • a fourth header 63 is provided at the lower part of the heat exchanger 50 on the most leeward side among the plurality of heat exchangers 50.
  • the fourth header 63 extends in the direction in which the plurality of flat tubes 51 are arranged, and the lower end portion of the flat tube 51 of the heat exchanger 50 disposed on the most leeward side is directly inserted into the fourth header 63.
  • the fourth header 63 is connected to the refrigerant circuit of the air conditioner 100 via a refrigerant pipe 66, and allows hot gas refrigerant to flow from the refrigerant circuit.
  • the outdoor heat exchanger 13 When the outdoor heat exchanger 13 functions as a condenser when the air conditioner 100 performs cooling operation, high-temperature, high-pressure gas refrigerant from the compressor 1 flows into the fourth header 63 via the refrigerant pipe 66. . Furthermore, when the outdoor heat exchanger 13 functions as an evaporator when the air conditioner 100 performs heating operation, the fourth header 63 transfers the gas refrigerant heat-exchanged with the heat exchanger 50 on the most leeward side. The refrigerant is discharged through the refrigerant pipe 66.
  • a fifth header 64 is provided at the bottom of the heat exchanger 50 on the windward side among the plurality of heat exchangers 50.
  • the fifth header 64 extends in the arrangement direction of the plurality of flat tubes 51 and is arranged in parallel to the fourth header 63.
  • the lower end portion of the flat tube 51 of the heat exchanger 50 disposed furthest upwind is directly inserted into the fifth header 64 .
  • the fifth header 64 is connected to the refrigerant circuit of the air conditioner 100 via a refrigerant pipe 67.
  • the fifth header 64 causes the two-phase refrigerant that has been heat exchanged in the windward side heat exchanger 50 to flow out through the refrigerant pipe 67. Further, when the outdoor heat exchanger 13 functions as an evaporator, the two-phase refrigerant flowing out from the first outdoor heat exchanger 13a flows into the fifth header 64 via the refrigerant pipe 67.
  • a sixth header 65 is provided above the plurality of heat exchangers 50, into which the upper ends of the plurality of flat tubes 51 inserted into the fourth header 63 and the fifth header 64 are inserted.
  • the sixth header 65 causes the refrigerant flowing from the flat tube 51 on the leeward side to flow back into the flat tube 51 on the windward side.
  • the outdoor heat exchanger 13 functions as an evaporator
  • the sixth header 65 causes the refrigerant flowing from the flat tube 51 on the windward side to flow back into the flat tube 51 on the leeward side.
  • the plurality of flat tubes 51, fins 52, fourth header 63, fifth header 64, sixth header 65, and refrigerant pipes 66 and 67 are each made of, for example, aluminum, and are joined by brazing.
  • first header 53, second header 54, and fifth header 64 The structure of the first header 53 and second header 54 provided in the first outdoor heat exchanger 13a, and the fifth header 64 provided in the second outdoor heat exchanger 13b and third outdoor heat exchanger 13c will be explained. do. Note that since the first header 53, the second header 54, and the fifth header 64 have similar structures, the first header 53 will be explained here as an example. Further, the "first header 53,”"second header 54,” and “fifth header 64" in the first embodiment are respectively the “first header,””secondheader,” and "fifth header 64" in the present disclosure. "Third header".
  • FIG. 5 is a perspective view showing an example of the appearance of the first header in FIG. 3.
  • FIG. 6 is a schematic sectional view schematically showing a cross section of the first header taken along a plane perpendicular to the stretching direction.
  • the internal structure of the first header 53 is shown by dotted lines so that the internal structure of the first header 53 can be easily understood.
  • the first header 53 has a double pipe structure including an inner pipe 71 and an outer pipe 72.
  • the inner tube 71 and the outer tube 72 extend linearly in the tube extending direction.
  • the inner tube 71 is inserted into the outer tube 72.
  • the inner tube 71 and the outer tube 72 are joined by brazing.
  • the inner pipe 71 is, for example, a circular pipe, and is connected to the refrigerant pipe 56.
  • a plurality of orifices 73 through which a refrigerant flows are formed in the inner tube 71 at intervals in the extending direction. In this way, by forming the plurality of orifices 73 in the inner pipe 71, when the outdoor heat exchanger 13 functions as a condenser, the refrigerant flows into the inner pipe 71 of the first header 53 via the refrigerant pipe 56. Refrigerant flows into the outer tube 72 through the plurality of orifices 73 .
  • the outer tube 72 is a tube with a U-shaped cross section and an arcuate lower portion.
  • the outer tube 72 having a U-shaped cross section causes the refrigerant flowing out from the inner tube 71 through the orifice 73 to smoothly change along an arc.
  • the plurality of orifices 73 are formed to open at a predetermined angle ⁇ opt from the lower end of the inner tube 71 on a vertical line passing through the center of the inner tube 71 in the circumferential direction. In this way, by forming the orifice 73 to be inclined by the set angle ⁇ opt , the liquid refrigerant and the gas refrigerant in the two-phase refrigerant flowing into the inner pipe 71 are arranged at a distance from the refrigerant inlet side of the first header 53. It is distributed uniformly regardless.
  • FIG. 7 is a schematic diagram for explaining the angle of the orifice.
  • the refrigerant in the inner tube 71 exists in two states, a liquid phase and a gas phase
  • the refrigerant in both the liquid phase and the gas phase existing in the inner tube 71 passes through appropriately.
  • An orifice 73 is provided at a location where it is possible.
  • the slip ratio of the refrigerant gas and liquid is 1, and the liquid level angle, which is the angle when assuming that the gas-liquid interface is flat and horizontal, is defined as ⁇ 0 .
  • the wetting boundary angle which is the angle in the circumferential direction of the tube in consideration of the slip ratio and inertial force, is " ⁇ S "
  • the angle ⁇ opt is expressed by equation (1). ⁇ 0 ⁇ ⁇ opt ⁇ ⁇ S ...(1)
  • the liquid level angle ⁇ 0 is, more specifically, the angle from the lower end of the inner tube 71 on the vertical line passing through the center of the inner tube 71 to the liquid level AL in contact with the inner tube 71 as seen from the center of the inner tube 71. It is. Further, more specifically, the wetting boundary angle ⁇ S is defined as the distance between the lower end of the inner tube 71 on the vertical line passing through the center of the inner tube 71 and the position where the inner tube 71 reaches while touching the inner tube 71 due to inertia force or the like. It is the angle seen from the center of
  • the orifices 73 are provided at equal intervals at positions that satisfy equations (1) to (3). Thereby, the two-phase refrigerant that has flowed into the first header 53 is uniformly distributed to the plurality of flat tubes 51 regardless of the position inside the header.
  • the refrigerant flow switching device 12 is first switched to the state shown by the solid line in FIG. 1 . That is, the refrigerant flow switching device 12 is switched so that the discharge side of the compressor 11 and the outdoor heat exchanger 13 are connected, and the suction side of the compressor 11 and the indoor heat exchanger 22 are connected.
  • the low temperature and high pressure liquid refrigerant flowing out from the outdoor unit 10 flows into each indoor unit 20.
  • the low-temperature, high-pressure liquid refrigerant is expanded by the expansion device 21, and becomes a two-phase refrigerant in which a low-temperature, low-pressure gas refrigerant and a liquid refrigerant are mixed.
  • the low-temperature, low-pressure two-phase refrigerant flows into the indoor heat exchanger 22, which functions as an evaporator.
  • heat exchange is performed between the low-temperature, low-pressure two-phase refrigerant that has flowed in and the indoor air supplied by a blower (not shown).
  • the liquid refrigerant of the two-phase refrigerant evaporates and becomes a high-temperature, low-pressure gas refrigerant, which flows out of the indoor heat exchanger 22.
  • the high-temperature, low-pressure gas refrigerant flowing out of each indoor heat exchanger 22 flows out of the indoor unit 20, joins together, and flows into the outdoor unit 10.
  • the high-temperature, low-pressure gas refrigerant that has flowed into the outdoor unit 10 flows into the compressor 11 via the refrigerant flow switching device 12 and the accumulator 14 . Thereafter, by repeating this cycle, the refrigerant circulates through the refrigerant circuit.
  • FIG. 8 is a schematic diagram for explaining the flow of refrigerant in the outdoor heat exchanger when the outdoor heat exchanger functions as a condenser.
  • solid arrows indicate the flow of refrigerant in the first to third outdoor heat exchangers 13a to 13c that constitute the outdoor heat exchanger 13.
  • dotted lines indicate the connection states of the first to third outdoor heat exchangers 13a to 13c.
  • the outdoor heat exchanger 13 functions as a condenser, such as during cooling operation, the gas refrigerant discharged from the compressor 11 flows into the second outdoor heat exchanger 13b and the third outdoor heat exchanger 13c, respectively. At this time, the gas refrigerant flows through the refrigerant piping 66 into the fourth header 63 on the most leeward side of the air flow in the second outdoor heat exchanger 13b and the third outdoor heat exchanger 13c, respectively.
  • the gas refrigerant flowing into the fourth header 63 condenses while passing through the connected flat tube 51 and the sixth header 65, becomes a two-phase refrigerant, and flows into the outer tube 72 of the fifth header 64. Then, the two-phase refrigerant that has flowed into the outer pipe 72 of the fifth header 64 flows out from the second outdoor heat exchanger 13b and the third outdoor heat exchanger 13c via the inner pipe 71 and the refrigerant pipe 66.
  • the two-phase refrigerant that has flowed into the inner pipe 71 of the first header 53 flows into the outer pipe 72 via the plurality of orifices 73 .
  • the two-phase refrigerant that has flowed into the outer tube 72 of the first header 53 condenses while passing through the connected flat tube 51 and the third header 55, becomes liquid refrigerant, and flows into the outer tube 72 of the second header 54. . Then, the liquid refrigerant that has flowed into the outer pipe 72 of the second header 54 flows out from the first outdoor heat exchanger 13a via the inner pipe 71 and the refrigerant pipe 57.
  • Heating operation The description will return to FIG. 1, and when the air conditioner 100 performs heating operation, the refrigerant flow switching device 12 is first switched to the state shown by the broken line in FIG. 1. That is, the refrigerant flow switching device 12 is switched so that the discharge side of the compressor 11 and the indoor heat exchanger 22 are connected, and the suction side of the compressor 11 and the outdoor heat exchanger 13 are connected.
  • the compressor 11 When the compressor 11 is driven, high temperature and high pressure gas refrigerant is discharged from the compressor 11.
  • the high-temperature, high-pressure gas refrigerant discharged from the compressor 11 flows out from the outdoor unit 10 via the refrigerant flow switching device 12 .
  • the high-temperature, high-pressure gas refrigerant flowing out from the outdoor unit 10 branches and flows into each indoor unit 20 .
  • the high-temperature, high-pressure gas refrigerant flows into an indoor heat exchanger 22 that functions as a condenser.
  • heat exchange is performed between the high-temperature, high-pressure gas refrigerant that has flowed in and the indoor air supplied by a blower (not shown).
  • the high-temperature, high-pressure gas refrigerant condenses into a low-temperature, high-pressure liquid refrigerant.
  • the low-temperature, high-pressure liquid refrigerant flowing out from the indoor heat exchanger 22 is expanded in the expansion device 21, and becomes a two-phase refrigerant in which a low-temperature, low-pressure gas refrigerant and a liquid refrigerant are mixed.
  • the low-temperature, low-pressure two-phase refrigerant flows out from each indoor unit 20, joins together, and flows into the outdoor unit 10.
  • the low-temperature, low-pressure two-phase refrigerant that has flowed into the outdoor unit 10 flows into the outdoor heat exchanger 13 that functions as an evaporator.
  • the outdoor heat exchanger 13 heat exchange is performed between the low-temperature, low-pressure two-phase refrigerant that has flowed in and the outdoor air supplied by the fan 15 .
  • the liquid refrigerant of the two-phase refrigerant evaporates and becomes a high-temperature, low-pressure gas refrigerant.
  • the high temperature and low pressure gas refrigerant then flows out from the outdoor heat exchanger 13.
  • the high-temperature, low-pressure gas refrigerant flowing out of the outdoor heat exchanger 13 flows into the compressor 11 via the refrigerant flow switching device 12 and the accumulator 14. Thereafter, by repeating this cycle, the refrigerant circulates through the refrigerant circuit.
  • FIG. 9 is a schematic diagram for explaining the flow of refrigerant in the outdoor heat exchanger when the outdoor heat exchanger functions as an evaporator.
  • solid arrows indicate the flow of refrigerant in the first to third outdoor heat exchangers 13a to 13c that constitute the outdoor heat exchanger 13.
  • dotted lines indicate the connection states of the first to third outdoor heat exchangers 13a to 13c.
  • the outdoor heat exchanger 13 When the outdoor heat exchanger 13 functions as an evaporator, such as during heating operation, the two-phase refrigerant flowing out from the expansion device 21 of the indoor unit 20 flows into the first outdoor heat exchanger 13a.
  • the two-phase refrigerant that has flowed into the first outdoor heat exchanger 13a flows through the refrigerant pipe 57 into the inner pipe 71 of the second header 54 on the windward side of the air flow.
  • the two-phase refrigerant that has flowed into the inner pipe 71 of the second header 54 flows into the outer pipe 72 via the plurality of orifices 73.
  • the two-phase refrigerant that has flowed into the outer tube 72 of the second header 54 evaporates while passing through the connected flat tube 51 and the third header 55, and then flows into the outer tube 72 of the first header 53. Then, the two-phase refrigerant that has flowed into the outer pipe 72 of the first header 53 flows out from the first outdoor heat exchanger 13a via the inner pipe 71 and the refrigerant pipe 56.
  • the two-phase refrigerant flowing out of the first outdoor heat exchanger 13a branches and flows into the second outdoor heat exchanger 13b and the third outdoor heat exchanger 13c, respectively.
  • the two-phase refrigerant flows through the refrigerant pipe 67 into the inner pipe 71 of the fifth header 64 on the windward side of the air flow in the second outdoor heat exchanger 13b and the third outdoor heat exchanger 13c, respectively.
  • the two-phase refrigerant that has flowed into the inner pipe 71 of the fifth header 64 flows into the outer pipe 72 via the plurality of orifices 73.
  • the two-phase refrigerant that has flowed into the outer pipe 72 of the fifth header 64 evaporates while passing through the connected flat pipe 51 and the sixth header 65, becomes a gas refrigerant, and flows into the fourth header 63.
  • the gas refrigerant that has flowed into the fourth header 63 flows out from the second outdoor heat exchanger 13b and the third outdoor heat exchanger 13c via the refrigerant piping 66, respectively.
  • the outdoor unit 10 of the air conditioner 100 has a second outdoor heat exchanger on the downstream side of the refrigerant flow when the first outdoor heat exchanger 13a functions as a condenser.
  • the heat exchanger 13b and the third outdoor heat exchanger 13c are connected in series.
  • a first header 53 is provided at the lower part of the heat exchange body on the inlet side into which the refrigerant flows when functioning as a condenser.
  • the first header 53 has a double tube structure including an inner tube 71 and an outer tube 72, and a plurality of orifices 73 are formed in the inner tube 71 at intervals.
  • the outdoor unit 10 has such a configuration, so that when the outdoor heat exchanger 13 functions as a condenser, the two-phase refrigerant flowing into the first outdoor heat exchanger 13a can It is distributed uniformly to the flat tube 51 of. Therefore, the heat exchange performance of the outdoor heat exchanger 13 can be improved.
  • the orifice 73 formed in the first header 53 opens at a tilt angle in the circumferential direction from the lower end of the inner pipe 71 on a vertical line passing through the center of the inner pipe 71. , are formed in the inner tube 71.
  • the angle ⁇ opt at this time is set to be larger than the liquid level angle ⁇ 0 and smaller than the wetting boundary angle ⁇ S. Thereby, the two-phase refrigerant flowing in can be more appropriately distributed to the flat tubes 51.
  • Embodiment 2 differs from the first embodiment in that the orifices 73 provided in the inner tubes 71 of the first header 53 and the second header 54 have different angles.
  • parts common to those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the outdoor heat exchanger 13 When the outdoor heat exchanger 13 functions as an evaporator, the two-phase refrigerant flowing out from the expansion device 21 of the indoor unit 20 flows into the second header 54 of the first outdoor heat exchanger 13a. On the other hand, when the outdoor heat exchanger 13 functions as a condenser, the two-phase refrigerant flowing out from the second outdoor heat exchanger 13b and the third outdoor heat exchanger 13c flows into the first header of the first outdoor heat exchanger 13a. 53.
  • the dryness at the inlet of the second header 54 when functioning as an evaporator is about less than 0.2
  • the dryness at the inlet of the first header 53 when functioning as a condenser is 0.2. It is about ⁇ 0.6. That is, the proportion of liquid refrigerant is different between the two-phase refrigerant flowing into the second header 54 when functioning as an evaporator and the two-phase refrigerant flowing into the first header 53 when functioning as a condenser. Therefore, if the angles of the orifices 73 in the respective headers are made the same, depending on the operating state of the outdoor heat exchanger 13, there is a possibility that the refrigerant cannot be distributed appropriately.
  • the positions of the orifices 73 in the first header 53 and the second header 54 are different, and the orifices 73 are arranged at positions suitable for the operating conditions.
  • FIG. 10 is a schematic diagram for explaining the orifice angles of the first header and the second header according to the second embodiment.
  • the degree of dryness at the inlet of the first header 53 when the outdoor heat exchanger 13 functions as a condenser is higher than the degree of dryness at the inlet of the second header 54 when the outdoor heat exchanger 13 functions as an evaporator. Therefore, in the second embodiment, when the angle of the orifice 73b of the second header 54 is " ⁇ opt2 " and the angle of the orifice 73a of the first header 53 is " ⁇ opt1 ", the angle of each orifice 73 is The relationship is expressed by equation (4). ⁇ opt2 ⁇ opt1 ...(4)
  • the angles of the orifice 73a of the first header 53 and the orifice 73b of the second header 54 are made different.
  • the outdoor heat exchanger 13 functions as a condenser or an evaporator, the refrigerant flowing into the first outdoor heat exchanger 13a can be appropriately distributed. I can do it.

Abstract

直列に接続された第1熱交換器および第2熱交換器を有する熱交換器を備えた空気調和装置の室外機であって、第1熱交換器は、第2熱交換器に対して、熱交換器が凝縮器として機能する場合の冷媒流れの下流側に接続されるものであり、鉛直方向を管延伸方向とし、水平方向に間隔を空けて配列された複数の扁平管を有し、空気の流れ方向に配列された複数の熱交換体と、複数の熱交換体のうち、熱交換器が凝縮器として機能する場合に冷媒が流入する入口側の熱交換体の下部に設けられた第1のヘッダとを備え、第1のヘッダは、冷媒が流通する複数のオリフィスが間隔を空けて形成された内管と、内管が内部に挿入された外管とを有する2重管構造となっている。

Description

空気調和装置の室外機および空気調和装置
 本開示は、複数の扁平管を有する熱交換体を複数設けて熱交換器を構成した空気調和装置の室外機および空気調和装置に関するものである。
 伝熱管として扁平管を用いた熱交換器が知られている。扁平管は、円管と比較して細径であるため、熱交換器の伝熱管として使用された場合には、伝熱管として円管を使用する場合よりも冷媒の分岐数が増大する。熱交換器の性能が効率良く発揮されるためには、ヘッダ等の集合管内を流れる気液二相冷媒が、各扁平管に対して熱交換器での熱交換量に合わせて適切に分配される必要がある。
 例えば、特許文献1には、伝熱管として扁平化を用いた熱交換器を備えた空気調和装置の室外機が記載されている。この室外機は、管が鉛直方向に延伸し、水平方向に間隔を空けて配列された複数の扁平管を有する熱交換体を備えた熱交換器を含んで構成されている。熱交換器は、熱交換体が空気の流れ方向に複数設けられており、複数の熱交換体のうち最も風上側の熱交換体の下部には、冷媒回路からホットガス冷媒が流入するヘッダが設けられている。また、複数の熱交換体のうち最も風下側の熱交換体の下部には、熱交換器が蒸発器として機能する際に、気液二相状態の冷媒を分配する二重管式の分配器が設けられている。このような分配器が設けられることにより、熱交換器の暖房能力を向上させることができる。
国際公開第2019/239446号
 ところで、空気調和装置の室外機では、複数の熱交換器が直列に接続されて用いられることがある。また、1つの熱交換器のヘッダ内部に仕切りを設け、1つの熱交換器が、直列に接続された2つの熱交換器のように用いられることもある。
 直列に接続された複数の熱交換器として特許文献1に記載の熱交換器が用いられ、これらの熱交換器が凝縮器として機能する場合、冷媒流れの下流側に配置される熱交換器には、気液二相状態の冷媒が流入することになる。このとき、気液二相状態の冷媒が流入する熱交換器におけるヘッダ内では、流入口に近い手前側にガス冷媒が多く存在し、奥側に液冷媒が多く存在するように、冷媒が分布する。
 このように、特許文献1に記載の熱交換器が凝縮器として機能する場合、下流側の熱交換器に流入する気液二相状態の冷媒は、その分布状態によって各扁平管に適切に分配されないため、熱交換器の凝縮器性能が悪化してしまうという課題があった。
 本開示は、上記従来の技術における課題に鑑みてなされたものであって、直列に接続された複数の熱交換器が凝縮器として機能する場合の冷媒の分配を改善し、熱交換性能を向上させることができる空気調和装置の室外機および空気調和装置を提供することを目的とする。
 本開示に係る空気調和装置の室外機は、直列に接続された第1熱交換器および第2熱交換器を有する熱交換器を備えた空気調和装置の室外機であって、前記第1熱交換器は、前記第2熱交換器に対して、前記熱交換器が凝縮器として機能する場合の冷媒流れの下流側に接続されるものであり、鉛直方向を管延伸方向とし、水平方向に間隔を空けて配列された複数の扁平管を有し、空気の流れ方向に配列された複数の熱交換体と、前記複数の熱交換体のうち、前記熱交換器が凝縮器として機能する場合に冷媒が流入する入口側の熱交換体の下部に設けられた第1のヘッダとを備え、前記第1のヘッダは、前記冷媒が流通する複数のオリフィスが間隔を空けて形成された内管と、前記内管が内部に挿入された外管とを有する2重管構造となっているものである。
 また、本開示に係る空気調和装置は、上記の室外機を備えるものである。
 本開示によれば、熱交換器が凝縮器として機能する場合の冷媒流れの下流側に接続された第1熱交換器において、冷媒が流入する入口側の熱交換体の下部に第1ヘッダが設けられている。また、第1ヘッダが2重管構造となっており、内管には冷媒が流通する複数のオリフィスが間隔を空けて形成されている。これにより、熱交換器が凝縮器として機能する場合に、第1熱交換器に流入する冷媒が一様に分配されるため、熱交換器の熱交換性能を向上させることができる。
実施の形態1に係る空気調和装置の構成の一例を示す回路図である。 図1の室外機の外観の一例を示す斜視図である。 実施の形態1に係る第1室外熱交換器の外観の一例を示す斜視図である。 実施の形態1に係る第2室外熱交換器または第3室外熱交換器の外観の一例を示す斜視図である。 図3の第1ヘッダの外観の一例を示す斜視図である。 第1ヘッダを延伸方向に垂直な面で切断した断面を模式的に示す模式断面図である。 オリフィスの角度について説明するための概略図である。 室外熱交換器が凝縮器として機能する場合の、室外熱交換器における冷媒の流れについて説明するための概略図である。 室外熱交換器が蒸発器として機能する場合の、室外熱交換器における冷媒の流れについて説明するための概略図である。 実施の形態2に係る第1ヘッダおよび第2ヘッダのオリフィスの角度について説明するための概略図である。
 以下、本開示の実施の形態について、図面を参照して説明する。本開示は、以下の実施の形態に限定されるものではなく、本開示の主旨を逸脱しない範囲で種々に変形することが可能である。また、本開示は、以下の各実施の形態に示す構成のうち、組合せ可能な構成のあらゆる組合せを含むものである。また、各図において、同一の符号を付したものは、同一のまたはこれに相当するものであり、これは明細書の全文において共通している。さらに、以下の説明において、図1における上方を「上側」とし、下方を「下側」として説明する。さらにまた、圧力および温度の高低については、特に絶対的な値との関係で高低が定まっているものではなく、装置などにおける状態および動作などにおいて相対的に定まるものとする。なお、断面図の図面においては、視認性に鑑みて適宜ハッチングを省略している。
実施の形態1.
 本実施の形態1に係る空気調和装置について説明する。本実施の形態1に係る空気調和装置は、冷媒回路に冷媒を循環させ、冷媒を介して室外空気と室内空気との間で熱を移動させることにより、空調対象空間の空気調和を行うものである。
[空気調和装置100の構成]
 図1は、本実施の形態1に係る空気調和装置の構成の一例を示す回路図である。図1に示すように、空気調和装置100は、室外機10と、1または複数の室内機20とを備えている。室外機10および室内機20は、冷媒が流れる冷媒配管で接続されている。室外機10および室内機20が冷媒配管で接続されることにより、冷媒が循環する冷媒回路が形成されている。なお、この例では、3台の室内機20が接続されているが、これに限られず、室内機20は1台または2台であってもよいし、4台以上であってもよい。
(室外機10)
 室外機10は、圧縮機11と、冷媒流路切替装置12と、室外熱交換器13と、アキュムレータ14と、ファン15とを有している。
 圧縮機11は、低温低圧の冷媒を吸入し、吸入した冷媒を圧縮し、高温高圧の冷媒を吐出する。圧縮機11は、例えば、運転周波数を変化させることにより、単位時間あたりの冷媒の送出量である容量が制御されるインバータ圧縮機等からなる。
 冷媒流路切替装置12は、例えば四方弁であり、冷媒の流れる方向を切り替えることにより、冷房運転および暖房運転の切り替えを行う。冷媒流路切替装置12としては、上述した四方弁に限らず、例えば他の弁を組み合わせて使用してもよい。
 室外熱交換器13は、近傍に設けられた送風機であるファン15によって供給される室外空気と冷媒との間で熱交換を行う。具体的には、室外熱交換器13は、冷房運転の際に冷媒の熱を室外空気に放熱して冷媒を凝縮させて液化する凝縮器として機能する。また、室外熱交換器13は、暖房運転の際に冷媒を蒸発させてガス化し、気化熱として室外空気から熱を吸収する蒸発器として機能する。
 この例において、室外熱交換器13は、第2室外熱交換器13bおよび第3室外熱交換器13cが互いに並列に接続され、並列接続された第2室外熱交換器13bおよび第3室外熱交換器13cに対して、第1室外熱交換器13aが直列に接続されて構成されている。ここで、第1室外熱交換器13aは、室外熱交換器13が凝縮器として機能する場合に、第2室外熱交換器13bおよび第3室外熱交換器13cに対して冷媒流れの下流側に接続されている。なお、「第1室外熱交換器13a」、「第2室外熱交換器13b」および「第3室外熱交換器13c」は、それぞれ、「第1熱交換器13a」、「第2熱交換器13b」および「第3熱交換器13c」と称する場合がある。
 また、室外熱交換器13の構成は、この例に限られず、本実施の形態1に係る空気調和装置100では、少なくとも2台の室外熱交換器13が直列に接続されていればよい。
 具体的には、室外熱交換器13は、例えば、第1室外熱交換器13aと第2室外熱交換器13bとが直列に接続されていてもよい。そして、室外熱交換器13が凝縮器として機能する場合、第1室外熱交換器13aは、第2室外熱交換器13bに対して冷媒流れの下流側に接続される。
 ファン15は、室外空気を室外熱交換器13に供給するための送風機である。ファン15は、図示しない制御装置によって回転数が制御される。これにより、室外熱交換器13の凝縮能力または蒸発能力が制御される。
 アキュムレータ14は、圧縮機11の吸入側に設けられている。アキュムレータ14は、冷房運転と暖房運転との運転状態の違いによって生じる余剰冷媒、および過渡的な運転の変化に対する余剰冷媒等を貯留する。なお、アキュムレータ14は、必ずしも設けられてなくてもよい。
(室内機20)
 それぞれの室内機20は、絞り装置21および室内熱交換器22を有している。絞り装置21は、例えば膨張弁であり、冷媒を減圧して膨張させる。絞り装置21は、例えば、電子式膨張弁などの開度の制御を行うことができる弁で構成される。
 室内熱交換器22は、ファン等の図示しない送風機によって供給される室内空気と冷媒との間で熱交換を行う。これにより、空調対象空間に供給される調和空気である暖房用空気または冷房用空気が生成される。室内熱交換器22は、冷房運転の際に蒸発器として機能する。また、室内熱交換器22は、暖房運転の際に凝縮器として機能する。
[室外機10の構造]
 図2は、図1の室外機の外観の一例を示す斜視図である。なお、図2では、室外機10の内部の室外熱交換器13の配置状態がわかるように図示されている。
 図2に示すように、本実施の形態1に係る室外機10は、上面視矩形状となる直方体状に形成されている。室外機10では、4つの側面のうち3つの側面に沿うようにして、第1室外熱交換器13a、第2室外熱交換器13bおよび第3室外熱交換器13cがC字状に設けられている。また、室外機10の上部には、上向きに空気を吹き出すようにファン15が設けられている。このように、本実施の形態1に係る室外機10は、複数の熱交換器で構成される室外熱交換器13の上方に、上向きに空気を吹き出すファン15が配置されるトップフロー型である。
(第1室外熱交換器13a)
 図3は、本実施の形態1に係る第1室外熱交換器の外観の一例を示す斜視図である。図3における白抜き矢印は、ファン15によって発生する風の流れを示す。また、点線矢印は、室外熱交換器13が凝縮器として機能する場合の冷媒の流れを示す。
 図3に示すように、第1室外熱交換器13aは、空気の流れ方向に並んで設けられた複数の熱交換体50を有している。この例では、2つの熱交換体50が同じ大きさで空気の流れ方向に順に並んで配置されている。
 熱交換体50は、鉛直方向を管延伸方向とし、水平方向に間隔を空けて配列された複数の扁平管51を有している。複数の扁平管51は、ファン15によって発生した風が流れるように、間隔を空けて水平方向に並列して配置され、上下方向に延びる管内に上下方向に冷媒が流れる。
 また、互いに隣り合う扁平管51の間には、扁平管51に伝熱するための扁平管51に接合されたフィン52が設けられている。フィン52は、空気と冷媒との熱交換効率を向上させるものである。フィン52として、例えばコルゲートフィンが用いられる。なお、扁平管51の表面において、空気と冷媒との熱交換を十分に行うことができる場合には、フィン52が設けられていなくてもよい。
 複数の熱交換体50のうち最も風下側の熱交換体50の下部には、第1ヘッダ53が設けられている。第1ヘッダ53は、複数の扁平管51の配列方向に延伸し、この第1ヘッダ53には、最も風下側に配置される熱交換体50の扁平管51の下端部が直接挿入されている。第1ヘッダ53は、空気調和装置100の冷媒回路に冷媒配管56を介して接続されている。
 空気調和装置100が冷房運転を行うことによって室外熱交換器13が凝縮器として機能する場合、第1ヘッダ53には、第2室外熱交換器13bおよび第3室外熱交換器13cから流出した二相冷媒が冷媒配管56を介して流入する。また、空気調和装置100が暖房運転を行うことによって室外熱交換器13が蒸発器として機能する場合に、第1ヘッダ53は、最も風下側の熱交換体50で熱交換された二相冷媒を、冷媒配管56を介して流出させる。
 複数の熱交換体50のうち最も風上側の熱交換体50の下部には、第2ヘッダ54が設けられている。第2ヘッダ54は、複数の扁平管51の配列方向に延伸し、第1ヘッダ53に並列して配置されている。第2ヘッダ54には、最も風上側に配置される熱交換体50の扁平管51の下端部が直接挿入されている。第2ヘッダ54は、空気調和装置100の冷媒回路に冷媒配管57を介して接続されている。
 室外熱交換器13が凝縮器として機能する場合に、第2ヘッダ54は、最も風上側の熱交換体50で熱交換された液冷媒を、冷媒配管57を介して流出させる。また、室外熱交換器13が蒸発器として機能する場合、第2ヘッダ54には、室内機20の絞り装置21から流出した二相冷媒が冷媒配管57を介して流入する。
 複数の熱交換体50の上部には、第1ヘッダ53および第2ヘッダ54に挿入された複数の扁平管51の上端部が挿入される第3ヘッダ55が設けられている。第3ヘッダ55は、室外熱交換器13が凝縮器として機能する場合に、風下側の扁平管51から流入する冷媒を、風上側の扁平管51に折り返して流入させる。また、第3ヘッダ55は、室外熱交換器13が蒸発器として機能する場合に、風上側の扁平管51から流入する冷媒を、風下側の扁平管51に折り返して流入させる。
 複数の扁平管51、フィン52、第1ヘッダ53、第2ヘッダ54、第3ヘッダ55、ならびに、冷媒配管56および57は、それぞれ、例えばアルミニウム製であり、ロウ付けによって接合されている。
(第2室外熱交換器13bおよび第3室外熱交換器13c)
 図4は、本実施の形態1に係る第2室外熱交換器または第3室外熱交換器の外観の一例を示す斜視図である。図4における白抜き矢印は、ファン15によって発生する風の流れを示す。なお、第2室外熱交換器13bおよび第3室外熱交換器13cは、同一の構成であるため、ここでは、第2室外熱交換器13bを例にとって説明する。
 図4に示すように、第2室外熱交換器13bは、第1室外熱交換器13aと同様に、複数の熱交換体50を有している。この例では、2つの熱交換体50が同じ大きさで空気の流れ方向に順に並んで配置されている。
 熱交換体50には、第1室外熱交換器13aと同様に、複数の扁平管51と、フィン52とが設けられている。なお、フィン52は、設けられていなくてもよい。
 複数の熱交換体50のうち最も風下側の熱交換体50の下部には、第4ヘッダ63が設けられている。第4ヘッダ63は、複数の扁平管51の配列方向に延伸し、この第4ヘッダ63には、最も風下側に配置される熱交換体50の扁平管51の下端部が直接挿入されている。第4ヘッダ63は、空気調和装置100の冷媒回路に冷媒配管66を介して接続され、冷媒回路からホットガス冷媒を流入させる。
 空気調和装置100が冷房運転を行うことによって室外熱交換器13が凝縮器として機能する場合、第4ヘッダ63には、圧縮機1からの高温高圧のガス冷媒が冷媒配管66を介して流入する。また、空気調和装置100が暖房運転を行うことによって室外熱交換器13が蒸発器として機能する場合に、第4ヘッダ63は、最も風下側の熱交換体50で熱交換されたガス冷媒を、冷媒配管66を介して流出させる。
 複数の熱交換体50のうち最も風上側の熱交換体50の下部には、第5ヘッダ64が設けられている。第5ヘッダ64は、複数の扁平管51の配列方向に延伸し、第4ヘッダ63に並列して配置されている。第5ヘッダ64には、最も風上側に配置される熱交換体50の扁平管51の下端部が直接挿入されている。第5ヘッダ64は、空気調和装置100の冷媒回路に冷媒配管67を介して接続されている。
 室外熱交換器13が凝縮器として機能する場合に、第5ヘッダ64は、最も風上側の熱交換体50で熱交換された二相冷媒を、冷媒配管67を介して流出させる。また、室外熱交換器13が蒸発器として機能する場合、第5ヘッダ64には、第1室外熱交換器13aから流出した二相冷媒が冷媒配管67を介して流入する。
 複数の熱交換体50の上部には、第4ヘッダ63および第5ヘッダ64に挿入された複数の扁平管51の上端部が挿入される第6ヘッダ65が設けられている。第6ヘッダ65は、室外熱交換器13が凝縮器として機能する場合に、風下側の扁平管51から流入する冷媒を、風上側の扁平管51に折り返して流入させる。また、第6ヘッダ65は、室外熱交換器13が蒸発器として機能する場合に、風上側の扁平管51から流入する冷媒を、風下側の扁平管51に折り返して流入させる。
 複数の扁平管51、フィン52、第4ヘッダ63、第5ヘッダ64、第6ヘッダ65、ならびに、冷媒配管66および67は、それぞれ、例えばアルミニウム製であり、ロウ付けによって接合されている。
[第1ヘッダ53、第2ヘッダ54および第5ヘッダ64の構造]
 第1室外熱交換器13aに設けられた第1ヘッダ53および第2ヘッダ54、ならびに、第2室外熱交換器13bおよび第3室外熱交換器13cに設けられた第5ヘッダ64の構造について説明する。なお、第1ヘッダ53、第2ヘッダ54および第5ヘッダ64は、同様の構造を有しているため、ここでは、第1ヘッダ53を例にとって説明する。また、本実施の形態1における「第1ヘッダ53」、「第2ヘッダ54」および「第5ヘッダ64」は、それぞれ、本開示における「第1のヘッダ」、「第2のヘッダ」および「第3のヘッダ」に対応する。
 図5は、図3の第1ヘッダの外観の一例を示す斜視図である。図6は、第1ヘッダを延伸方向に垂直な面で切断した断面を模式的に示す模式断面図である。なお、図5では、第1ヘッダ53の内部構成の理解が容易となるように、第1ヘッダ53の内部構成を点線で示している。
 第1ヘッダ53は、内管71および外管72を有する2重管構造となっている。内管71および外管72は、管延伸方向に直線的に延びている。内管71は、外管72の内部に挿入されている。内管71と外管72とは、ロウ付けによって接合されている。
 内管71は、例えば円管であり、冷媒配管56と接続されている。内管71には、冷媒が流通する複数のオリフィス73が延伸方向に間隔を空けて形成されている。このように、複数のオリフィス73が内管71に形成されることにより、室外熱交換器13が凝縮器として機能する場合に、冷媒配管56を介して第1ヘッダ53の内管71に流入した冷媒が、複数のオリフィス73を介して外管72に流入する。
 外管72は、下方を円弧状に形成された断面U字状の管である。断面U字状の外管72は、オリフィス73を介して内管71から流出した冷媒を円弧に沿って滑らかに変化させる。
(オリフィス73)
 複数のオリフィス73は、内管71の中心を通る鉛直線上の内管71の下端から予め設定された角度φoptだけ円周方向に傾いて開口するように形成されている。このように、オリフィス73が設定角度φoptだけ傾くように形成されることにより、内管71に流入する二相冷媒における液冷媒およびガス冷媒が、第1ヘッダ53の冷媒入口側からの距離によらず、一様に分配される。
 図7は、オリフィスの角度について説明するための概略図である。内管71内の冷媒は、液相および気相の2つの状態の冷媒が存在する本実施の形態1では、内管71に存在する液相および気相の両方の状態の冷媒が適切に通過できる位置に、オリフィス73が設けられる。
 具体的には、冷媒のガスおよび液のスリップ比が1であり、気液界面が平面かつ水平であると仮定した場合の角度である液面角度を「φ」とし、冷媒のガスおよび液のスリップ比および慣性力を考慮した管周方向の角度である濡れ境界角度を「φ」とした場合、角度φoptは、式(1)で表される。
  φ<φopt<φ ・・・(1)
 なお、液面角度φは、より具体的には、内管71の中心を通る鉛直線上の内管71の下端から、内管71に接する液面ALまでの内管71の中心からみた角度である。また、濡れ境界角度φは、より具体的には、内管71の中心を通る鉛直線上の内管71の下端から、慣性力等により内管71に接しながら到達する位置までの内管71の中心からみた角度である。
 また、内管71の流路断面積を「AS[mm]」と定義した場合、液面角度φは式(2)で表され、濡れ境界角度φは式(3)で表される。なお、式(2)および式(3)は、文献「国際公開第2021/235463号」において、発明者らによる検討により得られたものである。
  φ=(-0.0408×AS+74.124)×0.62
                          ・・・(2)
  φ=(-0.0408×AS+74.124)×1.2
                          ・・・(3)
したがって、オリフィス73は、式(1)~式(3)を満たす位置に、等間隔に設けられる。これにより、第1ヘッダ53に流入した二相冷媒は、ヘッダ内部の位置によらず、複数の扁平管51に対して一様に分配される。
[空気調和装置100の冷媒動作]
 次に、このように構成された空気調和装置100の動作について、図1を参照しながら説明する。ここでは、一例として、空気調和装置100が冷房運転および暖房運転を実行する場合の冷媒の流れについて説明する。なお、空気調和装置100は、この例に限られず、送風運転および除霜運転等の一般的な空気調和装置が可能な各種運転を行うこともできる。
(冷房運転)
 空気調和装置100が冷房運転を実行する場合には、まず、冷媒流路切替装置12が、図1の実線で示される状態に切り替えられる。すなわち、冷媒流路切替装置12は、圧縮機11の吐出側と室外熱交換器13とが接続され、圧縮機11の吸入側と室内熱交換器22とが接続されるように切り替えられる。
 圧縮機11が駆動すると、圧縮機11から高温高圧のガス冷媒が吐出される。圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12を介して、凝縮器として機能する室外熱交換器13に流入する。室外熱交換器13では、流入した高温高圧のガス冷媒と、ファン15によって供給される室外空気との間で熱交換が行われる。これにより、高温高圧のガス冷媒は、凝縮して低温高圧の液冷媒となり、室外熱交換器13から流出する。そして、室外熱交換器13から流出した低温高圧の液冷媒は、室外機10から流出する。
 室外機10から流出した低温高圧の液冷媒は、それぞれの室内機20に流入する。それぞれの室内機20において、低温高圧の液冷媒は、絞り装置21で膨張し、低温低圧のガス冷媒と液冷媒とが混合した二相冷媒になる。低温低圧の二相冷媒は、蒸発器として機能する室内熱交換器22に流入する。室内熱交換器22では、流入した低温低圧の二相冷媒と、図示しない送風機によって供給される室内空気との間で熱交換が行われる。これにより、二相冷媒のうちの液冷媒が蒸発して、高温低圧のガス冷媒になり、室内熱交換器22から流出する。そして、それぞれの室内熱交換器22から流出した高温低圧のガス冷媒は、室内機20から流出し、合流して室外機10に流入する。
 室外機10に流入した高温低圧のガス冷媒は、冷媒流路切替装置12およびアキュムレータ14を介して圧縮機11に流入する。以下、このサイクルが繰り返されることにより、冷媒が冷媒回路を循環する。
 図8は、室外熱交換器が凝縮器として機能する場合の、室外熱交換器における冷媒の流れについて説明するための概略図である。図8において、実線で示す矢印は、室外熱交換器13を構成する第1~第3室外熱交換器13a~13cにおける冷媒の流れを示す。また、点線は、第1~第3室外熱交換器13a~13cの接続状態を示す。
 冷房運転等のように、室外熱交換器13が凝縮器として機能する場合、圧縮機11から吐出されたガス冷媒が第2室外熱交換器13bおよび第3室外熱交換器13cにそれぞれ流入する。このとき、ガス冷媒は、冷媒配管66を介して第2室外熱交換器13bおよび第3室外熱交換器13cにおける空気流れの最も風下側の第4ヘッダ63にそれぞれ流入する。
 第4ヘッダ63に流入したガス冷媒は、接続された扁平管51および第6ヘッダ65を通過しながら凝縮し、二相冷媒となって第5ヘッダ64の外管72に流入する。そして、第5ヘッダ64の外管72に流入した二相冷媒は、内管71および冷媒配管66を介して第2室外熱交換器13bおよび第3室外熱交換器13cから流出する。
 第2室外熱交換器13bおよび第3室外熱交換器13cから流出した二相冷媒は、合流して第1室外熱交換器13aに流入する。第1室外熱交換器13aに流入した二相冷媒は、冷媒配管56を介して、空気流れの最も風下側の第1ヘッダ53の内管71に流入する。第1ヘッダ53の内管71に流入した二相冷媒は、複数のオリフィス73を介して外管72に流入する。
 第1ヘッダ53の外管72に流入した二相冷媒は、接続された扁平管51および第3ヘッダ55を通過しながら凝縮し、液冷媒となって第2ヘッダ54の外管72に流入する。そして、第2ヘッダ54の外管72に流入した液冷媒は、内管71および冷媒配管57を介して第1室外熱交換器13aから流出する。
(暖房運転)
 説明は図1に戻り、空気調和装置100が暖房運転を実行する場合には、まず、冷媒流路切替装置12が、図1の破線で示される状態に切り替えられる。すなわち、冷媒流路切替装置12は、圧縮機11の吐出側と室内熱交換器22とが接続され、圧縮機11の吸入側と室外熱交換器13とが接続されるように切り替えられる。
 圧縮機11が駆動すると、圧縮機11から高温高圧のガス冷媒が吐出される。圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12を介して室外機10から流出する。室外機10から流出した高温高圧のガス冷媒は、分岐してそれぞれの室内機20に流入する。それぞれの室内機20において、高温高圧のガス冷媒は、凝縮器として機能する室内熱交換器22に流入する。室内熱交換器22では、流入した高温高圧のガス冷媒と、図示しない送風機によって供給される室内空気との間で熱交換が行われる。これにより、高温高圧のガス冷媒は、凝縮して低温高圧の液冷媒になる。
 室内熱交換器22から流出した低温高圧の液冷媒は、絞り装置21で膨張し、低温低圧のガス冷媒と液冷媒とが混合した二相冷媒になる。低温低圧の二相冷媒は、それぞれの室内機20から流出し、合流して室外機10に流入する。室外機10に流入した低温低圧の二相冷媒は、蒸発器として機能する室外熱交換器13に流入する。室外熱交換器13では、流入した低温低圧の二相冷媒と、ファン15によって供給される室外空気との間で熱交換が行われる。これにより、二相冷媒のうちの液冷媒が蒸発して、高温低圧のガス冷媒になる。そして、高温低圧のガス冷媒は、室外熱交換器13から流出する。
 室外熱交換器13から流出した高温低圧のガス冷媒は、冷媒流路切替装置12およびアキュムレータ14を介して圧縮機11に流入する。以下、このサイクルが繰り返されることにより、冷媒が冷媒回路を循環する。
 図9は、室外熱交換器が蒸発器として機能する場合の、室外熱交換器における冷媒の流れについて説明するための概略図である。図9において、実線で示す矢印は、室外熱交換器13を構成する第1~第3室外熱交換器13a~13cにおける冷媒の流れを示す。また、点線は、第1~第3室外熱交換器13a~13cの接続状態を示す。
 暖房運転等のように、室外熱交換器13が蒸発器として機能する場合、室内機20の絞り装置21から流出した二相冷媒が第1室外熱交換器13aに流入する。第1室外熱交換器13aに流入した二相冷媒は、冷媒配管57を介して、空気流れの最も風上側の第2ヘッダ54の内管71に流入する。
 第2ヘッダ54の内管71に流入した二相冷媒は、複数のオリフィス73を介して外管72に流入する。第2ヘッダ54の外管72に流入した二相冷媒は、接続された扁平管51および第3ヘッダ55を通過しながら蒸発し、第1ヘッダ53の外管72に流入する。そして、第1ヘッダ53の外管72に流入した二相冷媒は、内管71および冷媒配管56を介して第1室外熱交換器13aから流出する。
 第1室外熱交換器13aから流出した二相冷媒は、分岐して第2室外熱交換器13bおよび第3室外熱交換器13cにそれぞれ流入する。このとき、二相冷媒は、冷媒配管67を介して第2室外熱交換器13bおよび第3室外熱交換器13cにおける空気流れの最も風上側の第5ヘッダ64の内管71にそれぞれ流入する。
 第5ヘッダ64の内管71に流入した二相冷媒は、複数のオリフィス73を介して外管72に流入する。第5ヘッダ64の外管72に流入した二相冷媒は、接続された扁平管51および第6ヘッダ65を通過しながら蒸発し、ガス冷媒となって第4ヘッダ63に流入する。そして、第4ヘッダ63に流入したガス冷媒は、冷媒配管66を介して第2室外熱交換器13bおよび第3室外熱交換器13cからそれぞれ流出する。
 以上のように、本実施の形態1に係る空気調和装置100の室外機10は、第1室外熱交換器13aが、凝縮器として機能する場合の冷媒流れの下流側に、第2室外熱交換器13bおよび第3室外熱交換器13cと直列に接続されている。また、第1室外熱交換器13aの複数の熱交換体50のうち、凝縮器として機能する場合に冷媒が流入する入口側の熱交換体の下部に第1ヘッダ53が設けられている。第1ヘッダ53は、内管71および外管72を有する2重管構造となっており、内管71には、複数のオリフィス73が間隔を空けて形成されている。
 室外機10は、このような構成を有することにより、室外熱交換器13が凝縮器として機能する場合に、第1室外熱交換器13aに流入する二相冷媒が熱交換体50を構成する複数の扁平管51に対して一様に分配される。そのため、室外熱交換器13の熱交換性能を向上させることができる。
 また、室外機10において、第1ヘッダ53に形成されたオリフィス73は、内管71の中心を通る鉛直線上の内管71の下端から設定角度φoptだけ円周方向に傾いて開口するように、内管71に形成されている。このときの角度φoptは、液面角度φより大きく、濡れ境界角度φよりも小さくなるように設定される。これにより、流入する二相冷媒をより適切に扁平管51に分配することができる。
実施の形態2.
 次に、本実施の形態2について説明する。本実施の形態2は、第1ヘッダ53および第2ヘッダ54のそれぞれの内管71に設けられたオリフィス73の角度を異ならせる点で、実施の形態1と相違する。なお、本実施の形態2において、実施の形態1と共通する部分には同一の符号を付し、詳細な説明を省略する。
 室外熱交換器13が蒸発器として機能する場合には、室内機20の絞り装置21から流出した二相冷媒が第1室外熱交換器13aの第2ヘッダ54に流入する。一方、室外熱交換器13が凝縮器として機能する場合には、第2室外熱交換器13bおよび第3室外熱交換器13cから流出した二相冷媒が第1室外熱交換器13aの第1ヘッダ53に流入する。
 このとき、蒸発器として機能する場合の第2ヘッダ54の入口における乾き度は、0.2未満程度であり、凝縮器として機能する場合の第1ヘッダ53の入口における乾き度は、0.2~0.6程度である。すなわち、蒸発器として機能する場合の第2ヘッダ54に流入する二相冷媒と、凝縮器として機能する場合の第1ヘッダ53に流入する二相冷媒とでは、液冷媒の割合が異なる。そのため、それぞれのヘッダにおけるオリフィス73の角度を共通のものにすると、室外熱交換器13の運転状態によっては、冷媒を適切に分配できない可能性がある。
 そこで、本実施の形態2では、第1ヘッダ53および第2ヘッダ54のそれぞれにおけるオリフィス73の位置を異ならせ、運転状態に応じて適した位置にオリフィス73を配置する。
 図10は、本実施の形態2に係る第1ヘッダおよび第2ヘッダのオリフィスの角度について説明するための概略図である。室外熱交換器13が凝縮器として機能する場合の第1ヘッダ53の入口における乾き度は、室外熱交換器13が蒸発器として機能する場合の第2ヘッダ54の入口における乾き度よりも高い。そのため、本実施の形態2では、第2ヘッダ54のオリフィス73bの角度を「φopt2」とし、第1ヘッダ53のオリフィス73aの角度を「φopt1」とした場合、それぞれのオリフィス73の角度の関係は、式(4)で表される。
  φopt2≦φopt1 ・・・(4)
 このように、本実施の形態2では、第1ヘッダ53のオリフィス73aと第2ヘッダ54のオリフィス73bとの角度を異ならせる。これにより、室外熱交換器13が凝縮器として機能する場合と、蒸発器として機能する場合とのいずれの場合であっても、第1室外熱交換器13aに流入する冷媒を適切に分配することができる。
 以上、実施の形態1および2について説明したが、本開示は、上述した実施の形態1および2に限定されるものではなく、本開示の要旨を逸脱しない範囲内で様々な変形や応用が可能である。
 10 室外機、11 圧縮機、12 冷媒流路切替装置、13 室外熱交換器、13a 第1室外熱交換器、13b 第2室外熱交換器、13c 第3室外熱交換器、14 アキュムレータ、15 ファン、20 室内機、21 絞り装置、22 室内熱交換器、50 熱交換体、51 扁平管、52 フィン、53 第1ヘッダ、54 第2ヘッダ、55 第3ヘッダ、56、57 冷媒配管、63 第4ヘッダ、64 第5ヘッダ、65 第6ヘッダ、66、67 冷媒配管、71 内管、72 外管、73、73a、73b オリフィス、100 空気調和装置。

Claims (11)

  1.  直列に接続された第1熱交換器および第2熱交換器を有する熱交換器を備えた空気調和装置の室外機であって、
     前記第1熱交換器は、
     前記第2熱交換器に対して、前記熱交換器が凝縮器として機能する場合の冷媒流れの下流側に接続されるものであり、
     鉛直方向を管延伸方向とし、水平方向に間隔を空けて配列された複数の扁平管を有し、空気の流れ方向に配列された複数の熱交換体と、
     前記複数の熱交換体のうち、前記熱交換器が凝縮器として機能する場合に冷媒が流入する入口側の熱交換体の下部に設けられた第1のヘッダと
    を備え、
     前記第1のヘッダは、
     前記冷媒が流通する複数のオリフィスが間隔を空けて形成された内管と、前記内管が内部に挿入された外管とを有する2重管構造となっている
    空気調和装置の室外機。
  2.  前記第1のヘッダに形成された前記オリフィスは、
     前記内管の中心を通る鉛直線上の前記内管の下端から予め設定された第1の角度だけ円周方向に傾いて開口するように、前記内管に形成されている
    請求項1に記載の空気調和装置の室外機。
  3.  前記第1の角度は、
     前記内管に存在する冷媒の液面角度より大きく、前記冷媒の濡れ境界角度よりも小さい
    請求項2に記載の空気調和装置の室外機。
  4.  前記第1熱交換器は、
     前記複数の熱交換体のうち、前記熱交換器が蒸発器として機能する場合に冷媒が流入する入口側の熱交換体の下部に設けられた第2のヘッダをさらに備え、
     前記第2のヘッダは、
     前記冷媒が流通する複数のオリフィスが間隔を空けて形成された内管と、前記内管が内部に挿入された外管とを有する2重管構造となっている
    請求項1~3のいずれか一項に記載の空気調和装置の室外機。
  5.  前記第2のヘッダに形成された前記オリフィスは、
     前記第2ヘッダの前記内管の中心を通る鉛直線上の前記内管の下端から予め設定された第2の角度だけ円周方向に傾いて開口するように、前記内管に形成され、
     前記第2の角度が前記第1の角度と異なるように形成されている
    請求項2または3に従属する請求項4に記載の空気調和装置の室外機。
  6.  前記第2の角度は、
     前記第1の角度以下である
    請求項5に記載の空気調和装置の室外機。
  7.  前記第2のヘッダを備える前記熱交換体は、
     熱交換を行う空気の流れ方向における最も風上側に配置されている
    請求項4~6のいずれか一項に記載の空気調和装置の室外機。
  8.  前記第1のヘッダを備える前記熱交換体は、
     熱交換を行う空気の流れ方向における最も風下側に配置されている
    請求項1~7のいずれか一項に記載の空気調和装置の室外機。
  9.  前記第2熱交換器は、
     鉛直方向を管延伸方向とし、水平方向に間隔を空けて配列された複数の扁平管を有し、空気の流れ方向に配列された複数の熱交換体と、
     前記複数の熱交換体のうち、前記熱交換器が蒸発器として機能する場合に冷媒が流入する入口側の熱交換体の下部に設けられた第3のヘッダと
    を備え、
     前記第3のヘッダは、
     前記冷媒が流通する複数のオリフィスが間隔を空けて形成された内管と、前記内管が内部に挿入された外管とを有する2重管構造となっている
    請求項1~8のいずれか一項に記載の空気調和装置の室外機。
  10.  前記第3のヘッダを備える前記熱交換体は、
     熱交換を行う空気の流れ方向における最も風上側に配置されている
    請求項9に記載の空気調和装置の室外機。
  11.  請求項1~10のいずれか一項に記載の室外機を備える空気調和装置。
PCT/JP2022/012683 2022-03-18 2022-03-18 空気調和装置の室外機および空気調和装置 WO2023175926A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/012683 WO2023175926A1 (ja) 2022-03-18 2022-03-18 空気調和装置の室外機および空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/012683 WO2023175926A1 (ja) 2022-03-18 2022-03-18 空気調和装置の室外機および空気調和装置

Publications (1)

Publication Number Publication Date
WO2023175926A1 true WO2023175926A1 (ja) 2023-09-21

Family

ID=88023022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012683 WO2023175926A1 (ja) 2022-03-18 2022-03-18 空気調和装置の室外機および空気調和装置

Country Status (1)

Country Link
WO (1) WO2023175926A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100089559A1 (en) * 2006-10-13 2010-04-15 Carrier Corporation Method and apparatus for improving distribution of fluid in a heat exchanger
US20110203308A1 (en) * 2008-01-17 2011-08-25 Robert Hong-Leung Chiang Heat exchanger including multiple tube distributor
WO2012147336A1 (ja) * 2011-04-25 2012-11-01 パナソニック株式会社 冷凍サイクル装置
WO2013191056A1 (ja) * 2012-06-18 2013-12-27 三菱電機株式会社 熱交換器
WO2015162689A1 (ja) * 2014-04-22 2015-10-29 三菱電機株式会社 空気調和装置
WO2018047416A1 (ja) * 2016-09-12 2018-03-15 三菱電機株式会社 空気調和装置
WO2019008664A1 (ja) * 2017-07-04 2019-01-10 三菱電機株式会社 冷凍サイクル装置
WO2019239446A1 (ja) * 2018-06-11 2019-12-19 三菱電機株式会社 空気調和装置の室外機及び空気調和装置
WO2021235463A1 (ja) * 2020-05-22 2021-11-25 三菱電機株式会社 冷媒分配器、熱交換器及び空気調和装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100089559A1 (en) * 2006-10-13 2010-04-15 Carrier Corporation Method and apparatus for improving distribution of fluid in a heat exchanger
US20110203308A1 (en) * 2008-01-17 2011-08-25 Robert Hong-Leung Chiang Heat exchanger including multiple tube distributor
WO2012147336A1 (ja) * 2011-04-25 2012-11-01 パナソニック株式会社 冷凍サイクル装置
WO2013191056A1 (ja) * 2012-06-18 2013-12-27 三菱電機株式会社 熱交換器
WO2015162689A1 (ja) * 2014-04-22 2015-10-29 三菱電機株式会社 空気調和装置
WO2018047416A1 (ja) * 2016-09-12 2018-03-15 三菱電機株式会社 空気調和装置
WO2019008664A1 (ja) * 2017-07-04 2019-01-10 三菱電機株式会社 冷凍サイクル装置
WO2019239446A1 (ja) * 2018-06-11 2019-12-19 三菱電機株式会社 空気調和装置の室外機及び空気調和装置
WO2021235463A1 (ja) * 2020-05-22 2021-11-25 三菱電機株式会社 冷媒分配器、熱交換器及び空気調和装置

Similar Documents

Publication Publication Date Title
US10386081B2 (en) Air-conditioning device
CN112204312B (zh) 空气调节装置的室外机及空气调节装置
US10591192B2 (en) Heat exchange apparatus and air conditioner using same
CN101031754B (zh) 空调机及空调机的制造方法
US10422566B2 (en) Air-Conditioning apparatus
WO2017159726A1 (ja) フィンレス型の熱交換器、そのフィンレス型の熱交換器を備えた空気調和機の室外機、及びそのフィンレス型の熱交換器を備えた空気調和機の室内機
CN102072528A (zh) 空调及其室外单元
AU2018245788B2 (en) Heat exchanger unit
WO2015133626A1 (ja) 熱交換器及び空気調和機
WO2018138770A1 (ja) 熱源側ユニット、及び、冷凍サイクル装置
CN110418931B (zh) 热交换器或冷冻装置
US20230128871A1 (en) Heat exchanger, outdoor unit, and refrigeration cycle device
JP2011112315A (ja) フィンチューブ型熱交換器及びこれを用いた空気調和機
WO2023175926A1 (ja) 空気調和装置の室外機および空気調和装置
WO2021234961A1 (ja) 熱交換器、空気調和装置の室外機及び空気調和装置
JP2017203620A (ja) 空気調和機
WO2019155571A1 (ja) 熱交換器および冷凍サイクル装置
WO2020178966A1 (ja) ガスヘッダ、熱交換器及び冷凍サイクル装置
WO2021131038A1 (ja) 熱交換器および冷凍サイクル装置
WO2023188421A1 (ja) 室外機およびそれを備えた空気調和装置
JP6698196B2 (ja) 空気調和機
WO2023281655A1 (ja) 熱交換器および冷凍サイクル装置
JP7418551B2 (ja) 熱交換器、室外機、および空気調和装置
WO2021245877A1 (ja) 熱交換器および冷凍サイクル装置
US11460228B2 (en) Heat exchanger, outdoor unit and refrigeration cycle apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932198

Country of ref document: EP

Kind code of ref document: A1