WO2023175847A1 - 制御装置、電力供給システム、制御方法、およびプログラム - Google Patents

制御装置、電力供給システム、制御方法、およびプログラム Download PDF

Info

Publication number
WO2023175847A1
WO2023175847A1 PCT/JP2022/012348 JP2022012348W WO2023175847A1 WO 2023175847 A1 WO2023175847 A1 WO 2023175847A1 JP 2022012348 W JP2022012348 W JP 2022012348W WO 2023175847 A1 WO2023175847 A1 WO 2023175847A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
supplied
distributed power
power source
Prior art date
Application number
PCT/JP2022/012348
Other languages
English (en)
French (fr)
Inventor
泰弘 中田
貴行 榎本
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to PCT/JP2022/012348 priority Critical patent/WO2023175847A1/ja
Publication of WO2023175847A1 publication Critical patent/WO2023175847A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers

Definitions

  • the present invention relates to a control device, a power supply system, a control method, and a program for controlling the power supply of distributed power supply devices.
  • Patent Document 1 discloses a power supply system in which a plurality of power supply devices cooperate to supply power. Patent Document 1 discloses acquiring power specification information regarding power supplied to a plurality of power devices and controlling the output state of power supplied to a load device based on the acquired power specification information.
  • An object of the present invention is to provide a technique for controlling the power supply of a power supply device according to the load of the power supply device.
  • the control device includes: A control device capable of communicating with multiple distributed power sources in a power supply system that supplies power to consumers, From a first distributed power source of the plurality of distributed power sources, capacity information regarding the power supply capacity of the first distributed power source and power supply regarding the amount of power supplied by the first distributed power source.
  • FIG. 1 is a configuration diagram of a power supply system according to the present embodiment.
  • FIG. 3 is a flow diagram showing an example of processing executed by the control device.
  • FIG. 3 is a diagram showing the correspondence relationship between a conventional load and an output voltage.
  • FIG. 3 is a diagram showing the correspondence between load and output voltage. The figure which shows the information of the power supply device managed by the control device.
  • FIG. 1 is a diagram showing a power supply system according to this embodiment.
  • the power supply system 1 includes a control device 10, power supply devices 20A to 20C[YN] (hereinafter sometimes referred to as the power supply device 20 without distinction), an inverter 30, and a load device 40.
  • the control device 10, the power supply device 20, and the inverter 30 are connected to each other via a power line 2 so as to be able to transmit and receive power.Also, at least the control device 10, the power supply device 20, and the inverter 30 are connected to each other via a network 3 so that they can communicate.
  • Network 3 is a network that includes at least one of a local network and a wide area network. In one example, network 3 may include the Internet.
  • the power line 2 will be described as a power grid that supplies power independently of a wide-area power supply network, such as a microgrid.
  • the power line 2 may also be part of an on-grid power network that connects to a wide area power supply network.
  • the power line 2 may be connected to a converter that provides a connection to a wide area power supply network.
  • the control device 10 controls the power supplied by the power supply device 20 connected to the power line 2.
  • the control device 10 includes a control section 101, a communication section 102, and a storage section 103.
  • the control unit 101 controls the power supplied by the power supply device 20 according to the power supply status received from the power supply device 20 via the communication unit 102.
  • the control unit 101 includes a processor such as a CPU (central processing unit) and a memory, and executes a control method for controlling power supply, which will be described later, by executing a program stored in the memory.
  • the communication unit 102 includes a communication circuit that includes a wired or wireless communication interface and communicates with the power supply device 20 via the network 3 .
  • the storage unit 103 is a storage device that stores profile information and power supply information transmitted from the power supply device 20, which will be described later.
  • control device 10 is a computer with a communication interface.
  • the power supply device 20 is an example of a distributed power source that can communicate with the control device 10 and supply power when connected to the power line 2.
  • the power supply device 20A includes, for example, an internal combustion engine 201 that is driven using fuel such as diesel oil, gasoline, or hydrogen gas, an alternator 202 that converts the power of the internal combustion engine 201 into electric power, and a predetermined amount of electric power output from the alternator 202.
  • a rectifying step-down unit 203 is provided for supplying power at a voltage of .
  • the rectification step-down unit 203 includes a control section 2031, a communication section 2032, a rectification step-down circuit 2033, a drive circuit 2034, a voltage detection section 2035, and a current detection section 2036.
  • the alternator 202 outputs three-phase alternating current. Therefore, in the example of FIG. 1, the rectifying step-down unit 203 is illustrated as having a function as a converter that rectifies the power output from the three-phase line with a diode.
  • the control unit 2031 controls the drive circuit 2034 based on the control signal received from the control device 10 via the communication unit 2032 to control the output voltage.
  • the communication unit 2032 is a communication circuit that performs wired or wireless communication with the control device 10.
  • the rectifier step-down unit 203 may include an interface with the power line 2 for connection to the network 3 that can communicate with the control device 10 .
  • the power line 2 is illustrated as being separate from the network 3 in the example of FIG. Well, in this case the power line 2 may function as a network 3.
  • the rectifier step-down circuit 2033 is a three-phase AC to DC conversion circuit, and in the example of FIG. 1, includes a reverse blocking diode, and converts AC to DC by outputting a high voltage input among the three-phase AC input.
  • a circuit with a different structure may be applied to the rectifier step-down circuit 2033.
  • the structure may be similar to rectifier step-down circuits 2123 and 2223 described later.
  • the drive circuit 2034 is a circuit for controlling the output of the rectifier and step-down circuit 2033.
  • the drive circuit 2034 includes a variable resistor and controls the voltage of the output of the rectifier step-down circuit 2033.
  • the drive circuit 2034 controls the resistance value of the variable resistor based on the control signal received from the control unit 2031.
  • the voltage detection unit 2035 measures the output voltage and notifies the control unit 2031 of the measured value indicating the output voltage.
  • the current detection unit 2036 measures the output current and notifies the control unit 2031 of the measured value indicating the output current.
  • the control unit 2031 transmits the notified output voltage value and output current value to the control device 10 via the communication unit 2032.
  • the power supply device 20B includes a solar power generation device 211 such as a solar panel, and a DC-DC converter (DC-DC converter) 212 that converts the DC power output from the solar power generation device 211 into a predetermined voltage.
  • the DC-DC converter 212 includes a control section 2121, a communication section 2122, a rectifier step-down circuit 2123, and a drive circuit 2124.
  • the control unit 2121 controls the drive circuit 2124 to control the output voltage based on the control signal received from the control device 10 via the communication unit 2122.
  • the control unit 2121 includes a processor such as a CPU (central processing unit) and a memory, and controls the drive circuit 2124 by executing a program stored in the memory.
  • the communication unit 2122 is similar to the communication unit 2032, so a description thereof will be omitted.
  • the rectifier step-down circuit 2123 shown in FIG. 1 will be described as a full-bridge isolated DC-DC converter, other DC-DC converter circuits can be applied.
  • the drive circuit 2124 controls the on-off pattern of the signal applied to the gate of the MOSFET transistor of the rectifier step-down circuit 2123.
  • the power supply device 20C[YN (Tai 2) includes a battery 221 and a DC-DC converter (DC-DC converter) 222 that converts the DC power output from the battery 221 into a predetermined voltage.
  • a DC-DC converter DC-DC converter
  • the battery 221 includes any type of battery such as a lead acid battery, a lithium ion battery, a nickel metal hydride battery, a nickel cadmium battery, and an all-solid battery. In this embodiment, the battery 221 will be described as a secondary battery that can be charged and discharged, but it may also include a primary battery.
  • the DC-DC converter 222 is similar to the DC-DC converter 212, so a description thereof will be omitted.
  • the DC-DC converters 212 and 222 may include a voltage detection section that detects the voltage of the supplied power and a current detection section that detects the current value.
  • the inverter 30 includes a control section 301, a communication section 302, a conversion circuit 303, a drive circuit 304, a voltage detection section 305, and a current detection section 306.
  • the control unit 301 converts DC power supplied from the power supply device 20 into AC power based on a control signal received from the control device 10 via the communication unit 302.
  • the control unit 301 includes a processor such as a CPU (central processing unit) and a memory, and controls the operation of the inverter 30 by executing a program stored in the memory.
  • the communication unit 302 is similar to the communication unit 2032, so the description thereof will be omitted.
  • the conversion circuit 303 converts DC power supplied via the power line 2 into AC power. In this embodiment, the conversion circuit 303 will be described as a full-bridge inverter, but a conversion circuit with another structure may be applied.
  • the voltage detection section 305 and the current detection section 306 are the same as the voltage detection section 2035 and the current detection section 2036, so a description thereof will be omitted.
  • the load device 40 is a consumer device that operates with power supplied from the inverter 30.
  • the description will be given assuming that three power supply devices 20 and one load device 40 are connected to the power system, but the number of power supply devices 20 and load devices 40 is not limited to this. Further, a plurality of inverters 30 may be connected to the power line 2, and one or more load devices 40 may be connected to each inverter 30.
  • each power supply device performs voltage control autonomously for the purpose of supplying power at a rated load.
  • the power supply device sets a reduced supply voltage when the load is larger than the rated load L3.
  • the relative supply voltage is lowered compared to other power supply devices, so it can be expected that the load will be reduced.
  • an increased supply voltage is set.
  • This increases the relative supply voltage compared to other power supply devices, so it can be expected that the load will increase.
  • Even if power supply devices are designed to supply power at the same rated voltage there may be differences in the voltage supplied from device to device. This can lead to a decrease in power supply efficiency and heat generation. Therefore, by autonomously adjusting the supplied power from the rated voltage, it is possible to adjust the voltage between the power supply devices.
  • the conventional power supply device controls the voltage so as to supply power at the rated load L3.
  • the power supply device may supply power with a small amount of current at a high voltage because the load is small. will be carried out.
  • control device 10 distributes the load according to the capacity of each of the power supply devices 20, and when there is a difference between the distributed load and the amount of power being supplied, the control device 10 is configured to reduce the difference. control the amount of electricity supplied to the As a result, each power supply device 20 can supply power at a lower voltage under a lower load, so that problems such as heat generation in the switching circuit of the inverter 30 can be solved.
  • FIG. 2 describes the flow of processing executed by the control device 10 according to this embodiment.
  • the processing shown in FIG. 2 is realized by the processor of the control unit 101 of the control device 10 executing a program stored in the memory at a predetermined timing such as when the control device 10 is started.
  • the control device 10 transmits an operation start instruction to each power supply device 20 connected to the network 3.
  • the power supply device 20A starts the generator based on the received operation instruction.
  • the power supply device 20 that has received the operation start instruction operates the drive unit until the voltage reaches a predetermined voltage value that is predetermined by the power supply system 1.
  • the power supply device 20 instructs the inverter 30 to start supplying power from the power supply system 1.
  • inverter 30 controls drive circuit 304 to start supplying power to load device 40 .
  • the control device 10 receives the profile information of the power supply device 20 from the power supply device 20.
  • the profile information includes the identifier of the power supply device 20, the type of the power supply device 20 (device type), and the supplyable power capacity (rated capacity) [kW].
  • the power supply device 20A has a rated capacity of 5 kW
  • the power supply device 20B has a rated capacity of 4 kW
  • the power supply device 20C has a rated capacity of 1 kW.
  • the control device 10 acquires the power capacity that the power supply device 20 can supply, that is, the capability information indicating the power supply capability of the power supply device 20, from the profile information transmitted from the power supply device 20. I will explain it as a thing.
  • the control device 10 may store the supplyable power capacity in the storage unit 103 in advance for each type of power supply device 20. In this case, the control device 10 may receive information indicating the type of the power supply device 20 from the power supply device 20, and retrieve the supplyable power capacity stored in the storage unit 103 based on the received type.
  • the control device 10 acquires, from the power supply device 20, power supply information regarding the power that the power supply device 20 is supplying.
  • the power supply information includes the identifier of the power supply device 20 and information indicating the amount of power (kW) that the power supply device 20 is supplying. Further, the supplied power information includes the voltage value of the power supplied by each power supply device 20.
  • the control device 10 stores the acquired power supply information. Immediately after starting power supply, each power supply device 20 supplies power at a common initial voltage within the power supply system 1, for example, 164V. Thereafter, if the supply voltage is controlled by the process described later, the voltage at which power is supplied is reported.
  • the power supply information received from each power supply device 20 indicates that the power supply device 20A supplies 2kW of power, and the power supply device 20B supplies 2kW of power at the initial voltage.
  • the supplied power information that the control device 10 receives from the power supply device 20A in S204 includes information indicating that 2 kW of power is being supplied.
  • the power supply information in S204 is transmitted by the power supply device 20 to the control device 10 at a predetermined time period, for example, at a 30 second period. This allows the control device 10 to follow changes in the amount of power supplied by the power supply device 20.
  • an identifier 501 of the power supply device 20 In the storage unit 103, an identifier 501 of the power supply device 20, a type of power supply 502, a supplyable power amount 503, a supplied power amount 504, and a supplied voltage value (supply voltage) 505 are associated with each other. is memorized.
  • the control device 10 transmits profile information indicating that the identifier 501 is “20A”, the power supply type 502 is “internal combustion engine”, and the amount of power that can be supplied 503 is “5kW”.
  • the information is received in S203, the information is stored in the storage unit 103.
  • the control device 10 receives in S204 the power supply information indicating that the power amount 504 supplied by the power supply device with the identifier 501 of “20A” is 2 kW and the supply voltage 505 is 164V, the control device 10 The information is stored in the storage unit 103.
  • control device 10 totals the power capacity that can be supplied by the power supply devices 20 that are supplying power.
  • the amount of power that each power supply device 20 can supply is 10 kW.
  • the control device 10 determines the amount of power to be supplied to the load device 40 or the load distribution ratio (target distribution ratio) based on the ratio of the supplyable power capacity of each power supply device 20.
  • the load distribution ratio target distribution ratio
  • the determined target distribution ratio may be stored in the storage unit 103 in association with the identifier of the power supply device 20.
  • control device 10 specifies the voltage of the power supplied by each power supply device 20. Immediately after starting the power supply, the control device 10 specifies the voltage of the power supplied by each power supply device 20 as an initial value of 164V.
  • the control device 10 determines the total amount of power supplied by the power supply device 20 from the power supply information received in S205. In this processing example, it is specified that at the above-mentioned initial voltage, the power supply device 20A is supplying 2 kW, the power supply device 20B is 2 kW, and the power supply device 20C is 1 kW, for a total of 5 kW. In one example, in S208, the control device 10 may acquire the amount of power being supplied to the load device 40 from the inverter 30, and may use the acquired amount of power as the total amount of supplied power.
  • the control device 10 determines the ratio (distribution ratio) of the power supplied by each power supply device 20 to the total amount of power supplied by the power supply device 20 identified in S208, based on the power supply information received in S204. Identify. In the initial voltage settings, power is supplied at a ratio of 2:2:1, so the power supply device 20A supplies power at a rate of 40%, the power supply device 20B at a rate of 40%, and the power supply device 20C at a rate of 20%. be identified as doing so.
  • the distribution ratio specified in S209 is stored in the storage unit 103.
  • the control device 10 selects one power supply device 20, and acquires the target value (target distribution ratio) of the power supplied by the power supply device 20 and the current distribution ratio from the storage unit 103.
  • the control device 10 has a target distribution ratio of 50% and a load distribution ratio of 40% for the power supply device 20A.
  • the control device 10 compares the target distribution ratio of the power supply device 20 selected in S211 with the current distribution ratio, and determines the target distribution ratio to be supplied by the power supply device 20 whose distribution ratio includes the target distribution ratio. Determine whether it is within the range (target load range). For example, the target load range is ⁇ 1% of the target distribution ratio. For the power supply device 20 whose target distribution ratio is 50%, the target range is 49 to 51%. In this case, if the distribution ratio is 49% or more and 51% or less, it is determined that it is within the target range. If the distribution ratio is less than 49%, it is determined that the distribution ratio is lower than the target load range. If the distribution ratio is higher than 51%, it is determined that the distribution ratio is higher than the target load range.
  • target load range is ⁇ 1% of the target distribution ratio.
  • the target range is 49 to 51%. In this case, if the distribution ratio is 49% or more and 51% or less, it is determined that it is within the target range. If the distribution ratio is less than 49%, it is
  • the control device 10 advances the process to S212, and controls the power supply device 20 selected in S210 to supply power at a lower voltage. Send a signal.
  • the power supply device 20 supplies power at a lower voltage, so the power supplied by the power supply device 20 decreases, and the distribution ratio of the amount of power supplied to the load device 40 can be lowered.
  • the control device 10 advances the process to S213, and controls the power supply device 20 selected in S211 to supply power at a higher voltage. Send a signal.
  • the power supply device 20 supplies power at a higher voltage, so the power supplied by the power supply device 20 increases and the distribution ratio can be increased. If the difference between the current distribution ratio and the target distribution ratio is within a predetermined range (“within target range” in S211), the control device 10 advances the process to S214.
  • the control signal transmitted to the power supply device 20 in S212 and S213 includes information indicating the difference from the voltage to which the power supply device 20 is supplying power.
  • S212 includes information indicating -0.5V to decrease the supply voltage by 0.5V
  • S213 includes information indicating +0.5V to increase the supply voltage by 0.5V.
  • information indicating a value indicating the absolute value of the voltage supplied by the power supply device 20 may be included.
  • information indicating an instruction to increase or decrease the supply voltage by one level may be included, for example.
  • control device 10 may determine the voltage value or the voltage value difference to be instructed to the power supply device 20 in S212 and S213 based on the difference between the distribution ratio and the target distribution ratio. For example, if the difference between the distribution ratio of the amount of power supplied by the power supply device 20 and the target distribution ratio is +10% or more, the difference in the voltage value instructed to the power supply device 20 is set to -0.5V, and the If the difference between the distribution ratio of the amount of power supplied by the supply device 20 and the target distribution ratio is +5% or more and less than +10%, the difference in voltage value instructed to the power supply device 20 is set to -0.25V. . Thereby, the distribution ratio of the amount of power supplied by the power supply device 20 having a large difference between the distribution ratio of the amount of power being supplied and the target distribution ratio can be brought closer to the target distribution ratio more quickly.
  • the voltage value or the difference in voltage values that the control device 10 instructs the power supply device 20 based on the difference between the power distribution ratio and the target distribution ratio is determined by PID (Proportional-Integral-Differential) control. Good too. Thereby, it is possible to prevent the power supply device 20 from repeatedly fluctuating the voltage value of the power supplied thereby to provide unstable power supply, and to improve the ability to follow changes in the amount of power supplied.
  • PID Proportional-Integral-Differential
  • the load on the predetermined power supply device 20 may become large.
  • the voltage is applied in a direction in which current flows in the opposite direction, which may place a load on the insulation circuit.
  • an upper limit value and a lower limit value may be set for the voltage value of the power supplied by the power supply device 20.
  • the control device 10 may correct the voltage value instructed to the power supply device 20 in S212 and S213 so as not to supply power at a voltage higher than the upper limit value or lower than the lower limit value. good.
  • the control device 10 acquires the voltage value (for example, 163V) of the power currently supplied by the power supply device 20 from the power supply information. However, if it is determined that the voltage of the supplied power falls below the lower limit (for example, 162.7 V) when the voltage decreases by 0.5 V, the voltage of the supplied power is changed to, for example, 162.7 V so as not to fall below the lower limit. You may instruct them to do so. Thereby, the control device 10 can control the power supplied by the power supply devices 20 so that the load on each power supply device 20 does not become large.
  • the lower limit for example, 162.7 V
  • the control device 10 determines whether to stop operation. For example, when it is detected that the operation of all the load devices 40 has stopped, or when it is detected that all the load devices 40 have been disconnected from the power line 2, there is no need to supply power by the power supply device 20. By determining this, it can be determined that the operation will be stopped. In another example, the control device 10 may determine to stop the operation when receiving an operation stop instruction from the operator of the power supply system 1. If it is determined that the operation is not to be stopped (NO in S214), the control device 10 returns the process to S204 and repeats the processes of S204 to S214 for another power supply device 20. Thereby, even if the number of load devices 40 connected to the power supply system 1 or the power consumption of the load devices 40 changes, it is possible to follow the changes.
  • control device 10 advances the process to S215 and transmits a request to stop the power supply to each power supply device 20.
  • the power supply device 20 that has received the power supply stop request stops boosting the voltage and ends the power supply to the power line 2.
  • the control device 10 acquires the amount of power that can be supplied by the plurality of power supply devices 20, and determines the amount of power that a predetermined power supply device 20 can supply. Based on this, the ratio of power to be supplied by the predetermined power supply device 20 is determined. Then, the supply voltage of the power supply device 20 is changed according to the determined power ratio and the amount of power being supplied. As shown in FIG. 4, if the initial supply voltage is kept constant regardless of the load, and the voltage is varied as necessary according to the amount of power being supplied, the power supply device 20 can The proportion of power can be met. Therefore, there is no need to make the supply voltage higher than necessary even when the load is low, so switching loss during the low load can be suppressed. As a result, power conversion efficiency can be improved, and costs can be reduced by improving the operating time of the power supply system and reducing cooling components due to a reduction in heat generation.
  • control device 10 controls the power supply of the plurality of power supply devices 20
  • the control delay is reduced compared to the case where each power supply device 20 autonomously controls the supply voltage. It is possible to reduce the possibility of parallel synchronization failure and provide stable power supply.
  • the control device of the above embodiment is A control device (10) capable of communicating with a plurality of distributed power sources (20) in a power supply system (1) that supplies power to a consumer (40), From a first distributed power source of the plurality of distributed power sources, capacity information regarding the power supply capacity of the first distributed power source and power supply regarding the amount of power supplied by the first distributed power source.
  • an acquisition means (S203, S204) for acquiring information; determining means for determining a target value of power supplied by the first distributed power source based on the capability information acquired by the acquiring means; (S206) a control means for controlling the power supplied by the first distributed power source based on the target value determined by the determination means and the supplied power information; (S212, S213); Equipped with
  • the power supply of the power supply device can be controlled according to the load of the power supply device.
  • control means transmits to the first distributed power source a control signal instructing the voltage to be supplied by the first distributed power source. control the power supplied by the
  • the load on the power supply device can be controlled by controlling the voltage of the power supply device.
  • control means instructing to lower the voltage supplied by the first distributed power source when the amount of power supplied by the first distributed power source is greater than the target value by a predetermined value; If the amount of power supplied by the first distributed power source is smaller than the target value by a predetermined value or more, an instruction is given to increase the voltage supplied by the first distributed power source.
  • control means determines the amount of change in the voltage supplied by the first distributed power source by PID (Proportional-Integral-Differential) control.
  • the determining means determines the amount of power that can be supplied by the first distributed power source based on the ratio of the amount of power that can be supplied by the first distributed power source to the total amount of power that can be supplied by each of the plurality of distributed power sources. The target value of the amount of power supplied by the first distributed power source is determined.
  • the supplied power information includes an amount of current and a voltage value measured by measuring means included in the plurality of distributed power sources
  • the acquisition means receives the power supply information transmitted from the plurality of distributed power sources at a predetermined time period.
  • the power supply system supplies power in a microgrid.
  • the power supply of the power supply device can be controlled in accordance with the load of the power supply device under off-grid conditions.
  • the power supply system of the above embodiment is A power supply system including a plurality of distributed power sources and a control device capable of communicating with the plurality of distributed power sources,
  • the control device includes: From a first distributed power source of the plurality of distributed power sources, capacity information regarding the power supply capacity of the first distributed power source and power supply regarding the amount of power supplied by the first distributed power source.
  • the power supply of the power supply device can be controlled according to the load of the power supply device.
  • the control method in the above embodiment is as follows: A control method executed by a control device capable of communicating with a plurality of distributed power sources in an electric power supply system that supplies electric power to consumers, the control method comprising: From a first distributed power source of the plurality of distributed power sources, capacity information regarding the power supply capacity of the first distributed power source and power supply regarding the amount of power supplied by the first distributed power source. obtaining information; and Determining a target value of power supplied by the first distributed power source based on the acquired capability information; controlling the power supplied by the first distributed power source based on the determined target value and the supplied power information; including.
  • the power supply of the power supply device can be controlled according to the load of the power supply device.
  • the program of the above embodiment is In the computer of the control device that can communicate with multiple distributed power sources in the power supply system that supplies power to consumers, From a first distributed power source of the plurality of distributed power sources, capacity information regarding the power supply capacity of the first distributed power source and power supply regarding the amount of power supplied by the first distributed power source. an acquisition step of acquiring information; a determining step of determining a target value of power supplied by the first distributed power source based on the capability information acquired in the acquiring step; a control step of controlling the power supplied by the first distributed power source based on the target value determined in the determining step and the supplied power information; Execute.
  • the power supply of the power supply device can be controlled according to the load of the power supply device.
  • the ratio of the amount of power that can be supplied by a predetermined power supply device to the total amount of power that can be supplied by a plurality of power supply devices is set as the target distribution ratio, and the amount of power supplied by the plurality of power supply devices is set as the target distribution ratio.
  • the distribution ratio is the ratio of the amount of power supplied by a predetermined power supply device to the total of , and that the supplied power is controlled so that the difference between the target distribution ratio and the distribution ratio becomes small. That is, an example has been described in which the load is evenly distributed among a plurality of power supply devices according to their supply capacities.
  • the control device 10 sets a goal (target load) of supplying 80% of the amount of power that can be supplied for the power supply device 20 of the specific type 502, and sets the goal (target load) to supply power of 80% of the amount of power that can be supplied by the power supply device 20 of the specific type 502.
  • the target load may be to supply 40% of the amount of power that can be supplied.
  • the control device 10 can meet the target load by controlling the supply voltage based on the difference between the target value of power supplied by one power supply device 20 and the amount of power being supplied. Can supply electricity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

需要家に電力を供給する電力供給システムにおける複数の分散型電源と通信可能な制御装置は、複数の分散型電源のうちの第1の分散型電源から、第1の分散型電源の電力供給能力に関する能力情報と、第1の分散型電源が供給している電力量に関する供給電力情報とを取得し、取得した能力情報に基づいて、第1の分散型電源が供給する電力の目標値を決定し、決定した目標値と供給電力情報とに基づいて、第1の分散型電源が供給する電力を制御する。

Description

制御装置、電力供給システム、制御方法、およびプログラム
 本発明は分散配置される電力供給装置の供給電力を制御する制御装置、電力供給システム、制御方法、およびプログラムに関する。
 特許文献1には、複数の電力供給装置を連携させて電力を供給する電力供給システムが開示されている。特許文献1では、複数の電力機器の給電電力に関する電力仕様情報を取得し、取得した電力仕様情報に基づいて負荷装置に供給する電力の出力状態を制御することが開示されている。
特開2008-253002号公報
 このような電力供給システムでは、異なる電力供給能力を有する電力供給装置が接続されるため、電力供給能力の低い電力供給装置に高い負荷がかからないよう、電力供給装置の電力供給能力に応じて電力供給装置の負荷を適切に制御する必要がある。
 本発明は、電力供給装置の電力供給を電力供給装置の負荷に応じて制御する技術を提供することにある。
 本発明に係る制御装置は、
 需要家に電力を供給する電力供給システムにおける複数の分散型電源と通信可能な制御装置であって、
 前記複数の分散型電源のうちの第1の分散型電源から、前記第1の分散型電源の電力供給能力に関する能力情報と、前記第1の分散型電源が供給している電力量に関する供給電力情報とを取得する取得手段と、
 前記取得手段で取得した前記能力情報に基づいて、前記第1の分散型電源が供給する電力の目標値を決定する決定手段と、
 前記決定手段で決定した前記目標値と前記供給電力情報とに基づいて、前記第1の分散型電源が供給する電力を制御する制御手段と、
 を備えることを特徴とする。
 本発明によれば、電力供給装置の電力供給を電力供給装置の負荷に応じて制御する技術を提供することが可能となる。
本実施形態に係る電力供給システムの構成図。 制御装置が実行する処理の一例を示すフロー図。 従来の負荷と出力電圧との対応関係を示す図。 負荷と出力電圧との対応関係を示す図。 制御装置が管理する電力供給装置の情報を示す図。
 以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態で説明されている特徴の組み合わせの全てが発明に必須のものとは限らない。実施形態で説明されている複数の特徴のうち二つ以上の特徴が任意に組み合わされてもよい。また、同一若しくは同様の構成には同一の参照番号を付し、重複した説明は省略する。
 図1は本実施形態に係る電力供給システムを示す図である。電力供給システム1は、制御装置10、電力供給装置20A~20C[YN(泰1](以下、区別せずに電力供給装置20と呼ぶ場合がある)、インバータ30、および負荷装置40を含む。制御装置10、電力供給装置20、およびインバータ30は電力線2によって電力を送受可能に接続される。また、少なくとも制御装置10、電力供給装置20、およびインバータ30はネットワーク3によって通信可能に接続される。ネットワーク3は、ローカルネットワークおよび広域ネットワークの少なくともいずれかを含むネットワークである。一例では、ネットワーク3はインターネットを含んでもよい。
 電力線2は、本例ではマイクログリッドなどの、広域の電力供給網とは独立して電力を供給する電力網であるものとして説明を行う。しかしながら、電力線2は、広域の電力供給網と接続するオングリッドの電力網の一部であってもよい。この場合、電力線2は広域の電力供給網との接続を行うコンバータに接続されてもよい。
 制御装置10は、電力線2に接続された電力供給装置20の供給電力を制御する。制御装置10は、制御部101、通信部102、および記憶部103を備える。制御部101は、通信部102を介して電力供給装置20から受信した電力供給状況に応じて電力供給装置20の供給する電力を制御する。制御部101は、CPU(中央処理ユニット)などのプロセッサ、メモリを備え、メモリに格納されたプログラムを実行することで後述する供給電力を制御するための制御方法を実行する。通信部102は、有線または無線通信インタフェースを備え、電力供給装置20とネットワーク3を介して通信する通信回路を備える。記憶部103は、後述する電力供給装置20から送信されたプロファイル情報や、供給電力情報を格納する記憶装置である。一例では、制御装置10は通信インタフェースを備えるコンピュータである。
 電力供給装置20は、電力線2に接続された場合に制御装置10と通信して電力の供給が可能な分散型電源の一例である。
 電力供給装置20Aは、例えば、軽油、ガソリン、水素ガスなどの燃料を使用して駆動する内燃機関201と、内燃機関201の動力を電力に変換するオルタネータ202、オルタネータ202から出力された電力から所定の電圧の電力供給をおこなう整流降圧ユニット203を備える。整流降圧ユニット203は、制御部2031、通信部2032、整流降圧回路2033、駆動回路2034、電圧検出部2035、電流検出部2036を備える。
 本実施形態では、オルタネータ202は三相交流の出力を行う。このため、図1の例では整流降圧ユニット203は三相線から出力された電力をダイオード整流するコンバータとしての機能を有するものとして図示している。
 制御部2031は、通信部2032を介して制御装置10から受信した制御信号に基づいて、駆動回路2034を制御して、出力電圧を制御する。通信部2032は、制御装置10との有線通信または無線通信を行う通信回路である。一例では、整流降圧ユニット203は電力線2とのインタフェースに、制御装置10と通信可能なネットワーク3に接続するためのインタフェースを備えてもよい。また、図1の例では電力線2はネットワーク3とは別であるものとして図示しているが、通信部2032は、電力線2を介してPLC(Power Line Communication)によって制御装置10と通信してもよく、この場合、電力線2はネットワーク3として機能してもよい。
 整流降圧回路2033は、三相交流直流変換回路であり、図1の例では逆阻止ダイオードを備え、三相の交流入力のうち、高い電圧の入力を出力することで交流を直流に変換する。なお、整流降圧回路2033は異なる構造の回路を適用しても良い。例えば、オルタネータ202の出力が交流電力ではなく直流電力である場合には、後述する整流降圧回路2123、2223と類似の構造であってもよい。
 駆動回路2034は整流降圧回路2033の出力を制御するための回路である。例えば、駆動回路2034は可変抵抗を備え、整流降圧回路2033の出力の電圧を制御する。駆動回路2034は制御部2031から受信した制御信号に基づいて可変抵抗の抵抗値を制御する。
 電圧検出部2035は出力電圧を測定し、出力電圧を示す測定値を制御部2031に通知する。電流検出部2036は出力電流を測定し、出力電流を示す測定値を制御部2031に通知する。制御部2031は通知された出力電圧値および出力電流値を、通信部2032を介して制御装置10に送信する。
 電力供給装置20Bは、例えばソーラーパネルなどの太陽光発電装置211と、太陽光発電装置211から出力された直流電力を所定の電圧に変換する直流―直流変換器(DC-DCコンバータ)212を備える。DC-DCコンバータ212は、制御部2121、通信部2122、整流降圧回路2123、および駆動回路2124を備える。
 制御部2121は、通信部2122を介して制御装置10から受信した制御信号に基づいて、駆動回路2124を制御して出力電圧を制御する。制御部2121は、CPU(中央処理ユニット)などのプロセッサ、メモリを備え、メモリに格納されたプログラムを実行することで駆動回路2124を制御する。通信部2122は、通信部2032と同様のため説明を省略する。図1に示す整流降圧回路2123は、フルブリッジ型の絶縁型DC-DCコンバータであるものとして説明を行うが、その他のDC-DCコンバータ回路を適用することができる。駆動回路2124は、整流降圧回路2123のMOSFETトランジスタのゲートに印加する信号のオン-オフパターンを制御する。
 電力供給装置20C[YN(泰2]は、バッテリ221と、バッテリ221から出力された直流電力を所定の電圧に変換する直流―直流変換器(DC-DCコンバータ)222を備える。
 バッテリ221は、鉛蓄電池、リチウムイオン電池、ニッケル水素電池、ニッケルカドミウム電池、全固体電池など任意の種類のバッテリを含む。本実施形態では、バッテリ221は充放電が可能な二次電池であるものとして説明を行うが、一次電池を含んでもよい。DC-DCコンバータ222はDC-DCコンバータ212と同様のため説明を省略する。
 なお、DC-DCコンバータ212、222は供給電力の電圧を検出する電圧検出部と、電流値を検出する電流検出部を備えてもよい。
 インバータ30は、制御部301、通信部302、変換回路303、駆動回路304、電圧検出部305、および電流検出部306を備える。
 制御部301は、通信部302を介して制御装置10から受信した制御信号に基づいて、電力供給装置20から供給された直流電力を交流電力に変換する。制御部301は、CPU(中央処理ユニット)などのプロセッサ、メモリを備え、メモリに格納されたプログラムを実行することでインバータ30の動作を制御する。通信部302は、通信部2032と同様のため説明を省略する。変換回路303は、電力線2を介して供給された直流電力を交流電力に変換する。本実施形態では、変換回路303はフルブリッジ型のインバータであるものとして説明を行うが、他の構造の変換回路が適用されてもよい。電圧検出部305、電流検出部306は電圧検出部2035、電流検出部2036と同様のため説明を省略する。
 負荷装置40は、インバータ30から供給される電力によって動作する需要家装置である。
 なお、本実施形態では、3つの電力供給装置20と1つの負荷装置40が電力系統に接続するものとして説明を行うが、電力供給装置20および負荷装置40の数はこれに限定されない。また、電力線2に複数のインバータ30が接続され、それぞれのインバータ30に1つ以上の負荷装置40が接続されてもよい。
 <自立的な制御例>
 図3を参照して従来の電力供給装置の供給電力制御方法について説明する。
 従来、各電力供給装置は定格負荷で電力を供給することを目的として、自律的に電圧制御を行う。このような場合、電力供給装置は、図3に示すように、定格負荷L3に対して負荷が大きい場合には、低下させた供給電圧を設定する。これによって、他の電力供給装置と比較して、相対的な供給電圧が下がるため、負荷が低下することが期待できる。また、定格負荷L3に対して、現在提供している電力量が小さい場合、すなわち負荷が小さい場合には、増加した供給電圧を設定する。これによって、他の電力供給装置と比較して、相対的な供給電圧が上がるため、負荷を増加させることが期待できる。同じ定格電圧で電力供給を行うように決められている電力供給装置であっても、装置ごとに供給する電圧に差異が生じる場合があり、このような場合、1つの電力供給装置に偏って負荷がかかり、電力の供給効率の低下や発熱などが生じうる。このため、定格電圧から自律的に供給電力を調整することで、電力供給装置間の電圧の際を調整することができる。
 このような自律制御によって、従来の電力供給装置は、定格負荷L3での電力供給を行うよう電圧を制御する。しかしながら、負荷装置40の必要とする電力量の変動などにより、電力供給装置から供給される電力量が小さくなった場合、電力供給装置は、負荷が小さいため高い電圧において少ない電流量での電力供給を行うことになる。
 このように高い電圧で少ない電流量の電力供給を行うと、インバータ30のスイッチング損失が増加し、電力供給システムが供給できる電力量が低下したり、インバータ30のスイッチング電源での発熱が問題になりうる。
 <制御装置10の制御例>
 本実施形態にかかる制御装置10は、電力供給装置20のそれぞれの能力に応じて負荷の分配を行い、分配した負荷と供給している電力量に差異がある場合に、当該差異が小さくなるように供給する電力量を制御する。これによって、それぞれの電力供給装置20がより低い負荷においてより低い電圧で電力を供給することができるため、インバータ30のスイッチング回路での発熱などの問題を解消することができる。
 図2に、本実施形態にかかる制御装置10が実行する処理の流れについて説明する。図2に示す処理は、制御装置10の起動時など、所定のタイミングにおいて、制御装置10の制御部101のプロセッサがメモリに格納されたプログラムを実行することで実現される。
 S201で、制御装置10は、ネットワーク3に接続した各電力供給装置20に稼働開始指示を送信する。例えば電力供給装置20Aは、受信した稼働指示に基づいて発電機を始動する。稼働開始指示を受信した電力供給装置20は、電力供給システム1で予め決められた所定の電圧値になるまで駆動部を動作させる。
 S202で電力供給装置20はインバータ30に電力供給システム1から電力供給を開始するよう指示する。これによって、インバータ30は駆動回路304を制御して負荷装置40に電力の供給を開始する。
 S203で制御装置10は、電力供給装置20から電力供給装置20のプロファイル情報を受信する。プロファイル情報には、電力供給装置20の識別子、電力供給装置20の種類(デバイス種別)、および供給可能な電力容量(定格容量)[kW]を含む。本処理例では、電力供給装置20Aは定格容量が5kWであり、電力供給装置20Bは定格容量が4kWであり、電力供給装置20Cは定格容量が1kWであるものとして以下の説明を行う。
 なお、本実施形態では、制御装置10は電力供給装置20の供給可能な電力容量、すなわち電力供給装置20の電力供給能力を示す能力情報を、電力供給装置20から送信されたプロファイル情報から取得するものとして説明を行う。一例では、制御装置10は、電力供給装置20の種別ごとに、供給可能な電力容量を予め記憶部103に格納してもよい。この場合、制御装置10は電力供給装置20から電力供給装置20の種別を示す情報を受信し、受信した種別に基づいて記憶部103に格納された供給可能な電力容量を取り出してもよい。
 S204で制御装置10は、電力供給装置20から、電力供給装置20が供給している電力に関する供給電力情報を取得する。供給電力情報は電力供給装置20の識別子と、電力供給装置20が供給している電力量(kW)を示す情報を含む。また、供給電力情報は各電力供給装置20が供給している電力の電圧値を含む。制御装置10は、取得した供給電力情報を記憶する。各電力供給装置20は、電力供給を開始した直後は電力供給システム1内で共通の初期電圧、例えば164Vで電力供給を行う。その後、後述する処理によって供給電圧が制御された場合は、電力供給を行う電圧を報告する。本処理例では、初期電圧の設定において、それぞれの電力供給装置20から受信した供給電力情報が、電力供給装置20Aは2kWの電力供給を行い、電力供給装置20Bは初期電圧では2kWの電力供給を行い、電力供給装置20Cは初期電圧では1kWの電力供給を行うことを示すものとして説明を行う。このため、S204で制御装置10が電力供給装置20Aから受信する供給電力情報には、2kWの電力供給を行っていることを示す情報が含まれる。なお、S204の供給電力情報は、電力供給装置20が所定の時間周期、例えば30秒周期、で制御装置10に送信される。これによって、制御装置10は電力供給装置20の供給電力量の変化に追従することができる。
 ここで、図5を参照して、記憶部103に格納されるプロファイル情報および供給電力情報の例について説明する。
 記憶部103には、電力供給装置20の識別子501、電力供給の種別502、供給可能な電力量503、供給している電力量504、および供給している電圧値(供給電圧)505が対応付けて記憶される。
 例えば、電力供給装置20Aについては、識別子501が「20A」であり、電力供給の種別502が「内燃機関」、供給可能な電力量503が「5kW」であることを示すプロファイル情報を制御装置10がS203で受信することで、記憶部103に当該情報が格納される。また、識別子501が「20A」の電力供給装置が供給している電力量504が2kWであり、供給電圧505が164Vであることを示す供給電力情報をS204で受信することで、制御装置10は記憶部103に当該情報を格納する。
 S205で制御装置10は、電力を供給している電力供給装置20の供給可能な電力容量を合計する。本処理例では、各電力供給装置20の供給可能な電力量は10kWである。
 S206で制御装置10は、各電力供給装置20の供給可能な電力容量の比率に基づいて、負荷装置40に供給する電力量または負荷の分配比(目標分配比)を決定する。本処理例では、電力供給装置20A、20B、20Cの供給可能な電力容量に応じて、5:4:1の分配比で供給すると決定する。すなわち、電力供給装置20Aは電力供給システム1全体の供給電力の50%を供給し、電力供給装置20Bは全体の供給電力の40%を供給し、電力供給装置20Cは全体の供給電力の10%を供給することが目標であると決定する。一例では、決定された目標分配比は、電力供給装置20の識別子と対応付けて記憶部103に記憶されてもよい。
 S207で制御装置10はそれぞれの電力供給装置20の供給電力の電圧を特定する。電力供給を開始した直後では、制御装置10は各電力供給装置20の供給電力の電圧は初期値である164Vとして特定する。
 S208で制御装置10は、S205で受信した供給電力情報から、電力供給装置20による供給電力の総量を判定する。本処理例では、上述した初期電圧では電力供給装置20Aは2kW、電力供給装置20Bは2kW、および電力供給装置20Cは1kWで合計5kWの電力を供給していると特定する。一例では、S208で制御装置10はインバータ30から、負荷装置40に供給している電力量を取得し、取得した電力量を供給電力の総量としてもよい。
 S209で制御装置10は、S204で受信した供給電力情報に基づいて、S208で特定した電力供給装置20の供給電力の総量に対するそれぞれの電力供給装置20が供給している電力の比率(分配比)を特定する。初期電圧の設定では、2:2:1の割合で電力供給を行っているため、電力供給装置20Aは40%、電力供給装置20Bは40%、電力供給装置20Cは20%の割合で電力供給を行っていると特定する。S209で特定した分配比は記憶部103に記憶される。
 S210で制御装置10は、1つの電力供給装置20を選択し、当該電力供給装置20の供給電力の目標値(目標分配比)と、現在の分配比とを記憶部103から取得する。例えば、制御装置10は、電力供給装置20Aについて、目標分配比が50%であり、負荷分配比が40%である。
 S211で制御装置10は、S211で選択した電力供給装置20の目標分配比と現時点での分配比とを比較し、分配比が目標分配比を含む電力供給装置20が供給すべき分配比の目標範囲(目標負荷範囲)内にあるか判断する。例えば、目標分配比の±1%が目標負荷範囲である。目標分配比が50%である電力供給装置20については、49~51%が目標範囲である。この場合、分配比が49%以上かつ51%以下である場合には、目標範囲内であると判定する。分配比が49%未満である場合には、分配比が目標負荷範囲より低いと判定する。分配比が51%より高い場合には、分配比が目標負荷範囲より高いと判定する。分配比が目標負荷範囲より高い場合(S211で「目標負荷範囲より高い」)、制御装置10は処理をS212に進め、S210で選択した電力供給装置20により低い電圧で電力供給をするように制御信号を送信する。これによって、電力供給装置20がより低い電圧で電力供給を行うため、電力供給装置20が供給する電力が減少し、負荷装置40に供給する電力量の分配比を下げることができる。分配比が目標負荷範囲より低い場合(S211で「目標負荷範囲より低い」)、制御装置10は処理をS213に進め、S211で選択した電力供給装置20により高い電圧で電力供給をするように制御信号を送信する。これによって、電力供給装置20がより高い電圧で電力供給を行うため、電力供給装置20が供給する電力が増加し、分配比を上げることができる。現在の分配比と目標分配比との差が所定の範囲内にある場合(S211で「目標範囲内」)、制御装置10は処理をS214に進める。
 S212、S213において電力供給装置20に送信される制御信号には、電力供給装置20が電力を供給している電圧との差分を示す情報が含まれる。例えば、S212では供給電圧を0.5V低下するよう、例えば-0.5Vを示す情報が含まれ、S213では供給電圧を0.5V増加するように、例えば+0.5Vを示す情報が含まれる。一例では、電力供給装置20が供給する電圧の絶対値を指示する値(例えば164.5V)を示す情報が含まれうる。また別の例では、電力供給装置20が供給する電圧が複数の段階に対応付けられている場合は、例えば供給電圧を1段階上げる、1段階下げる指示を示す情報が含まれうる。
 別の例では、制御装置10は、分配比と目標分配比との差分に基づいてS212およびS213で電力供給装置20に指示する電圧の値、または電圧値の差分を決定してもよい。例えば、電力供給装置20が供給している電力量の分配比と目標分配比との差分が+10%以上である場合、電力供給装置20に指示する電圧値の差分を-0.5Vとし、電力供給装置20が供給している電力量の分配比と目標分配比との差分が+5%以上かつ+10%未満である場合、電力供給装置20に指示する電圧値の差分を-0.25Vとする。これによって、供給している電力量の分配比と目標分配比との差分が大きな電力供給装置20が供給する電力量の分配比をより早く目標分配比に近づけることができる。
 また、電力量の分配比と目標分配比との差分に基づいて制御装置10が電力供給装置20に指示する電圧値または電圧値の差分は、PID(Proportional-Integral-Differential)制御によって決定されてもよい。これによって、電力供給装置20が供給する電力の電圧値の変動を繰り返して不安定な電力供給を行うことを防ぎながら、供給電力量の変化に対する追従性を向上することができる。
 また、所定の電力供給装置20が供給する電力の電圧が他の電力供給装置20が供給する電力の電圧と大きく異なると、当該所定の電力供給装置20にかかる負荷が大きくなる場合がある。例えば、他の電力供給装置20が供給する電力の電圧より著しく低い電力供給装置20は、電流が逆流する方向に電圧がかかるため、絶縁回路に負荷がかかりうる。このため、電力供給装置20が供給する電力の電圧の値には上限値および下限値が設定されてもよい。このような場合、制御装置10は、上限値より高い電圧、または下限値より低い電圧での電力供給を行わないよう、S212およびS213で電力供給装置20に指示する電圧の値を補正してもよい。例えば、S212で制御装置10は電力供給装置20の供給電圧を0.5V低下させると判定した後、電力供給装置20が現在供給している電力の電圧値(例えば163V)を供給電力情報より取得し、0.5V低下した場合に供給電力の電圧値の下限(例えば162.7V)を下回ると判定した場合には、下限値を下回らないように、例えば162.7Vに供給電力の電圧を変更するよう指示してもよい。これによって、制御装置10は各電力供給装置20にかかる負荷が大きくならないように電力供給装置20が供給する電力を制御することができる。
 S211~S213の処理を各電力供給装置20に対して行うことで、各電力供給装置20から供給される電力量を制御装置10によって制御することが可能になる。
 S214では、制御装置10は稼働を停止するか否かを判定する。例えば、すべての負荷装置40の稼働が停止することを検出した場合や、すべての負荷装置40が電力線2から切断されたことを検出した場合など、電力供給装置20によって電力を供給する必要がないと判定することで稼働停止すると判定することができる。別の例では、制御装置10は、電力供給システム1の運用者から稼働停止指示を受け付けた場合に稼働を停止すると判定してもよい。稼働を停止しないと判定した場合(S214でNO)、制御装置10は処理をS204に戻し、別の電力供給装置20についてS204~S214の処理を繰り返す。これによって、電力供給システム1に接続する負荷装置40の数や、負荷装置40の消費電力が変化した場合であっても、変化に追従することができる。
 稼働を停止すると判定した場合(S214でYES)、制御装置10は処理をS215に進め、各電力供給装置20に電力供給の停止要求を送信する。電力供給停止要求を受信した電力供給装置20は、昇圧を停止し、電力線2への電力供給を終了する。
 以上説明したように、本実施形態にかかる電力供給システムによれば、制御装置10は、複数の電力供給装置20の供給可能な電力量を取得し、所定の電力供給装置20が供給する電力量に基づいて当該所定の電力供給装置20が供給すべき電力の割合を決定する。そして決定した電力の割合と、供給している電力量とに応じて電力供給装置20の供給電圧を変更する。これによって、図4に示すように、負荷に関わらず初期の供給電圧を一定にし、供給している電力量に応じて必要な分だけ電圧を変動させれば、電力供給装置20が供給すべき電力の割合を満たすことができる。したがって、低負荷時においても供給電圧を必要以上に高くする必要がなくなるため、低負荷時のスイッチング損失を抑えることができる。これによって、電力変換効率を向上することができ、電力供給システムの稼働時間の向上や発熱量低減に伴う冷却部品削減によるコストダウンが可能となる。
 また、本実施形態によれば、制御装置10が複数の電力供給装置20の電力供給を制御するため、各電力供給装置20が自律的に供給電圧を制御する場合と比較して、制御遅延に伴う並列同期はずれが起きる可能性を低減し、安定した電力の供給を行うことができる。
 <実施形態のまとめ>
 1.上記実施形態の制御装置は、
 需要家(40)に電力を供給する電力供給システム(1)における複数の分散型電源(20)と通信可能な制御装置(10)であって、
 前記複数の分散型電源のうちの第1の分散型電源から、前記第1の分散型電源の電力供給能力に関する能力情報と、前記第1の分散型電源が供給している電力量に関する供給電力情報とを取得する取得手段(S203、S204)と、
 前記取得手段で取得した前記能力情報に基づいて、前記第1の分散型電源が供給する電力の目標値を決定する決定手段と、(S206)
 前記決定手段で決定した前記目標値と前記供給電力情報とに基づいて、前記第1の分散型電源が供給する電力を制御する制御手段と、(S212、S213)
 を備える。
 これによって、電力供給装置の電力供給を電力供給装置の負荷に応じて制御することができる。
 2.上記実施形態の制御装置において、前記制御手段は、前記第1の分散型電源に、前記第1の分散型電源の供給する電圧を指示する制御信号を送信することで前記第1の分散型電源が供給する電力を制御する。
 これによって、電力供給装置の電圧を制御することで電力供給装置の負荷を制御することができる。
 3.上記実施形態の制御装置において、前記制御手段は、
 前記第1の分散型電源の供給する電力量が前記目標値より所定値以上大きい場合に、前記第1の分散型電源が供給する電圧を下げるように指示し、
 前記第1の分散型電源の供給する電力量が前記目標値より所定値以上小さい場合に、前記第1の分散型電源が供給する電圧を上げるように指示する。
 これによって、目標負荷に近づくように分散型電源が供給する電圧を制御することができる。
 4.上記実施形態の制御装置において、前記制御手段は、PID(Proportional-Integral-Differential)制御によって前記第1の分散型電源が供給する電圧の変化量を決定する。
 これによって、供給電圧の共振を防ぎつつ供給電力量の変化に対する追従性をよくすることができる。
 5.上記実施形態の制御装置において、前記決定手段は、前記複数の分散型電源のそれぞれの供給可能な電力量の合計値に対する前記第1の分散型電源の供給可能な電力量の比率に基づいて前記第1の分散型電源が供給する電力量の前記目標値を決定する。
 これによって、複数の分散型電源で供給可能な電力量に対する供給電力量を均等にすることができる。
 6.上記実施形態の制御装置において、前記供給電力情報は、前記複数の分散型電源が備える測定手段で測定された電流量と電圧値とを含み、
 前記取得手段は、所定の時間周期で前記複数の分散型電源から送信された前記供給電力情報を受信する。
 これによって、分散型電源の供給する電力量の変化に追従して電力供給の制御を行うことができる。
 7.上記実施形態の制御装置において、前記電力供給システムはマイクログリッドにおける電力供給を行う。
 これによって、オフグリッド下で電力供給装置の電力供給を電力供給装置の負荷に応じて制御することができる。
 8.上記実施形態の電力供給システムは、
 複数の分散型電源と、前記複数の分散型電源と通信可能な制御装置とを含む電力供給システムであって、
 前記制御装置は、
  前記複数の分散型電源のうちの第1の分散型電源から、前記第1の分散型電源の電力供給能力に関する能力情報と、前記第1の分散型電源が供給している電力量に関する供給電力情報とを取得する取得手段と、
  前記取得手段で取得した前記能力情報に基づいて、前記第1の分散型電源が供給する電力の目標値を決定する決定手段と、
  前記決定手段で決定した前記目標値と前記供給電力情報とに基づいて、前記第1の分散型電源が供給する電力を制御する制御信号を前記第1の分散型電源に送信する送信手段と、
 を備え、
 前記第1の分散型電源は、前記制御装置から受信した前記制御信号に基づいて出力電圧を制御する。
 これによって、電力供給システムにおいて電力供給装置の電力供給を電力供給装置の負荷に応じて制御することができる。
 9.上記実施形態における制御方法は、
 需要家に電力を供給する電力供給システムにおける複数の分散型電源と通信可能な制御装置が実行する制御方法であって、
 前記複数の分散型電源のうちの第1の分散型電源から、前記第1の分散型電源の電力供給能力に関する能力情報と、前記第1の分散型電源が供給している電力量に関する供給電力情報とを取得することと、
 取得した前記能力情報に基づいて、前記第1の分散型電源が供給する電力の目標値を決定することと、
 決定した前記目標値と前記供給電力情報とに基づいて、前記第1の分散型電源が供給する電力を制御することと、
 を含む。
 これによって、電力供給装置の電力供給を電力供給装置の負荷に応じて制御することができる。
 10.上記実施形態のプログラムは、
 需要家に電力を供給する電力供給システムにおける複数の分散型電源と通信可能な制御装置のコンピュータに、
 前記複数の分散型電源のうちの第1の分散型電源から、前記第1の分散型電源の電力供給能力に関する能力情報と、前記第1の分散型電源が供給している電力量に関する供給電力情報とを取得する取得工程と、
 前記取得工程において取得した前記能力情報に基づいて、前記第1の分散型電源が供給する電力の目標値を決定する決定工程と、
 前記決定工程において決定した前記目標値と前記供給電力情報とに基づいて、前記第1の分散型電源が供給する電力を制御する制御工程と、
 を実行させる。
 これによって、電力供給装置の電力供給を電力供給装置の負荷に応じて制御することができる。
 <その他の実施形態>
 発明は上記の実施形態に制限されるものではなく、発明の要旨の範囲内で、種々の変形・変更が可能である。
 本実施形態では、複数の電力供給装置の供給可能な電力量の合計に対する所定の電力供給装置の供給可能な電力量の割合を目標分配比とし、複数の電力供給装置の供給している電力量の合計に対する所定の電力供給装置の供給している電力量の割合を分配比として、目標分配比と分配比との差が小さくなるよう供給電力を制御するものとして説明を行った。すなわち、複数の電力供給装置で、供給能力に応じて均等に負荷を分配する例について説明を行った。しかしながら、例えば電力供給システムの運用ポリシーによって、特定の電力供給装置については供給する電力量をできるだけ大きくし、別の電力供給装置については供給する電力量をできるだけ小さくするよう設定される場合がある。このような場合、例えば、制御装置10は特定の種別502の電力供給装置20については供給可能な電力量の80%の電力を供給することを目標(目標負荷)にし、別の種別の電力供給装置20については供給可能な電力量の40%の電力を供給することを目標負荷にしてもよい。このような場合であっても、制御装置10は1つの電力供給装置20の供給する電力の目標値と、供給している電力量との差異に基づいて供給電圧を制御することで目標負荷で電力を供給することができる。
 1:電力供給システム、 10:制御装置、 20:電力供給装置、 30:インバータ、  40:負荷装置

Claims (10)

  1.  需要家に電力を供給する電力供給システムにおける複数の分散型電源と通信可能な制御装置であって、
     前記複数の分散型電源のうちの第1の分散型電源から、前記第1の分散型電源の電力供給能力に関する能力情報と、前記第1の分散型電源が供給している電力量に関する供給電力情報とを取得する取得手段と、
     前記取得手段で取得した前記能力情報に基づいて、前記第1の分散型電源が供給する電力の目標値を決定する決定手段と、
     前記決定手段で決定した前記目標値と前記供給電力情報とに基づいて、前記第1の分散型電源が供給する電力を制御する制御手段と、
     を備えることを特徴とする制御装置。
  2.  前記制御手段は、前記第1の分散型電源に、前記第1の分散型電源の供給する電圧を指示する制御信号を送信することで前記第1の分散型電源が供給する電力を制御することを特徴とする請求項1に記載の制御装置。
  3.  前記制御手段は、
     前記第1の分散型電源の供給する電力量が前記目標値より所定値以上大きい場合に、前記第1の分散型電源が供給する電圧を下げるように指示し、
     前記第1の分散型電源の供給する電力量が前記目標値より所定値以上小さい場合に、前記第1の分散型電源が供給する電圧を上げるように指示する
    ことを特徴とする請求項2に記載の制御装置。
  4.  前記制御手段は、PID(Proportional-Integral-Differential)制御によって前記第1の分散型電源が供給する電圧の変化量を決定することを特徴とする請求項2または3に記載の制御装置。
  5.  前記決定手段は、前記複数の分散型電源のそれぞれの供給可能な電力量の合計値に対する前記第1の分散型電源の供給可能な電力量の比率に基づいて前記第1の分散型電源が供給する電力量の前記目標値を決定することを特徴とする請求項1から4のいずれか1項に記載の制御装置。
  6.  前記供給電力情報は、前記複数の分散型電源が備える測定手段で測定された電流量と電圧値とを含み、
     前記取得手段は、前記複数の分散型電源から送信された前記供給電力情報を受信することを特徴とする請求項1から5のいずれか1項に記載の制御装置。
  7.  前記電力供給システムはマイクログリッドにおける電力供給を行うことを特徴とする請求項1から6のいずれか1項に記載の制御装置。
  8.  複数の分散型電源と、前記複数の分散型電源と通信可能な制御装置とを含む電力供給システムであって、
     前記制御装置は、
      前記複数の分散型電源のうちの第1の分散型電源から、前記第1の分散型電源の電力供給能力に関する能力情報と、前記第1の分散型電源が供給している電力量に関する供給電力情報とを取得する取得手段と、
      前記取得手段で取得した前記能力情報に基づいて、前記第1の分散型電源が供給する電力の目標値を決定する決定手段と、
      前記決定手段で決定した前記目標値と前記供給電力情報とに基づいて、前記第1の分散型電源が供給する電力を制御する制御信号を前記第1の分散型電源に送信する送信手段と、
     を備え、
     前記第1の分散型電源は、前記制御装置から受信した前記制御信号に基づいて出力電圧を制御する
    ことを特徴とする電力供給システム。
  9.  需要家に電力を供給する電力供給システムにおける複数の分散型電源と通信可能な制御装置が実行する制御方法であって、
     前記複数の分散型電源のうちの第1の分散型電源から、前記第1の分散型電源の電力供給能力に関する能力情報と、前記第1の分散型電源が供給している電力量に関する供給電力情報とを取得することと、
     取得した前記能力情報に基づいて、前記第1の分散型電源が供給する電力の目標値を決定することと、
     決定した前記目標値と前記供給電力情報とに基づいて、前記第1の分散型電源が供給する電力を制御することと、
     を含むことを特徴とする制御方法。
  10.  需要家に電力を供給する電力供給システムにおける複数の分散型電源と通信可能な制御装置のコンピュータに、
     前記複数の分散型電源のうちの第1の分散型電源から、前記第1の分散型電源の電力供給能力に関する能力情報と、前記第1の分散型電源が供給している電力量に関する供給電力情報とを取得する取得工程と、
     前記取得工程において取得した前記能力情報に基づいて、前記第1の分散型電源が供給する電力の目標値を決定する決定工程と、
     前記決定工程において決定した前記目標値と前記供給電力情報とに基づいて、前記第1の分散型電源が供給する電力を制御する制御工程と、
     を実行させることを特徴とするプログラム。
PCT/JP2022/012348 2022-03-17 2022-03-17 制御装置、電力供給システム、制御方法、およびプログラム WO2023175847A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/012348 WO2023175847A1 (ja) 2022-03-17 2022-03-17 制御装置、電力供給システム、制御方法、およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/012348 WO2023175847A1 (ja) 2022-03-17 2022-03-17 制御装置、電力供給システム、制御方法、およびプログラム

Publications (1)

Publication Number Publication Date
WO2023175847A1 true WO2023175847A1 (ja) 2023-09-21

Family

ID=88022568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012348 WO2023175847A1 (ja) 2022-03-17 2022-03-17 制御装置、電力供給システム、制御方法、およびプログラム

Country Status (1)

Country Link
WO (1) WO2023175847A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012080736A (ja) * 2010-10-06 2012-04-19 Sadao Iguchi 分散直流電源制御回路
JP2012253933A (ja) * 2011-06-03 2012-12-20 Fdk Twicell Co Ltd 直流給電装置
CN111654019A (zh) * 2020-05-11 2020-09-11 浙江工业大学 一种含母线电压补偿和功率分配的直流微电网一致性滑模控制方法
JP2021513315A (ja) * 2018-02-02 2021-05-20 グリー エレクトリック アプライアンシーズ インク オブ ズーハイGree Electric Appliances, Inc. Of Zhuhai エネルギインターネットシステム、エネルギルーティング変換機器及びエネルギ制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012080736A (ja) * 2010-10-06 2012-04-19 Sadao Iguchi 分散直流電源制御回路
JP2012253933A (ja) * 2011-06-03 2012-12-20 Fdk Twicell Co Ltd 直流給電装置
JP2021513315A (ja) * 2018-02-02 2021-05-20 グリー エレクトリック アプライアンシーズ インク オブ ズーハイGree Electric Appliances, Inc. Of Zhuhai エネルギインターネットシステム、エネルギルーティング変換機器及びエネルギ制御方法
CN111654019A (zh) * 2020-05-11 2020-09-11 浙江工业大学 一种含母线电压补偿和功率分配的直流微电网一致性滑模控制方法

Similar Documents

Publication Publication Date Title
US10637283B2 (en) Power supply system and method
US11196265B2 (en) Energy storage system
US9735619B2 (en) Power conversion device
US10291026B2 (en) Energy storage system
US5929538A (en) Multimode power processor
EP2777118B1 (en) Line balancing ups
US9190915B2 (en) Electric-power conversion device
CN110034589B (zh) 感应取能式交直流联合供电系统与控制方法
EP3664246A1 (en) Method and apparatus for control of intelligent loads in microgrids
JP2013102573A (ja) 充放電制御装置および充放電制御システム
JP2002034162A (ja) 分散電源システムとその制御方法
US11601006B2 (en) Control of DC voltage distribution system
WO2023175847A1 (ja) 制御装置、電力供給システム、制御方法、およびプログラム
EP4379992A1 (en) Off-grid power supply system and control method thereof
US10790670B1 (en) Hybrid generator system and method with multi tasked power inverter
KR102324325B1 (ko) 에너지저장시스템 계층형 관리시스템
EP3487034B1 (en) Power conversion system, power supply system, and power conversion apparatus
CN115441495A (zh) 联合供电系统
JPH1080061A (ja) 自家発電設備の発電電力制御装置
EP3876377A1 (en) Energy consumption system
JP2018121468A (ja) 直流給電システム
CN114865614B (zh) 一种直流微电网系统
CN116885802B (zh) 一种双向逆变器充电功率协调控制方法、系统及存储介质
JP7257311B2 (ja) 車両用充電装置
JP2021175253A (ja) 電力供給システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932121

Country of ref document: EP

Kind code of ref document: A1