WO2023175755A1 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
WO2023175755A1
WO2023175755A1 PCT/JP2022/011807 JP2022011807W WO2023175755A1 WO 2023175755 A1 WO2023175755 A1 WO 2023175755A1 JP 2022011807 W JP2022011807 W JP 2022011807W WO 2023175755 A1 WO2023175755 A1 WO 2023175755A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioning
sensor
target area
concentration information
information
Prior art date
Application number
PCT/JP2022/011807
Other languages
French (fr)
Japanese (ja)
Inventor
敏基 吉田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/011807 priority Critical patent/WO2023175755A1/en
Priority to JP2024507281A priority patent/JPWO2023175755A1/ja
Publication of WO2023175755A1 publication Critical patent/WO2023175755A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present disclosure relates to an air conditioning system that air-conditions a target area.
  • the present disclosure has been made in view of the above circumstances, and aims to provide an air conditioning system that can perform ventilation control that matches the characteristics of each target area.
  • An air conditioning system includes an air conditioning device that is indoor air conditioning equipment, an air conditioning controller that controls the air conditioning device, a CO2 sensor that is provided in each of a plurality of target areas and that acquires CO2 concentration information, and the CO2 and a BLE beacon that transmits position information indicating the position of the sensor, and the air conditioning controller includes a learning model that infers the future CO2 concentration information for each target area from the CO2 concentration information acquired by the CO2 sensor. If the future CO2 concentration information of the target area inferred by the learning model exceeds a threshold, the target area corresponds to the position indicated by the position information of the CO2 sensor transmitted from the BLE beacon.
  • the air conditioner is operated to perform air conditioning.
  • the target area corresponds to the position indicated by the position information of the CO2 sensor transmitted from the BLE beacon.
  • the air conditioner is operated to perform air conditioning. Thereby, it is possible to maintain an appropriate ventilation state for each area so that the CO2 concentration state in the target area is less than the reference value.
  • FIG. 1 is a diagram showing the configuration of an air conditioning system in Embodiment 1.
  • FIG. 1 is a diagram showing functional blocks of an air conditioning system according to Embodiment 1.
  • FIG. 3 is a diagram illustrating control of the air conditioning controller according to the first embodiment.
  • FIG. 3 is a diagram illustrating compulsory operation time calculation in the data processing unit according to the first embodiment. This is a learning and inference model used in both inference processing and learning processing in the data processing unit according to the first embodiment.
  • 3 is a flowchart of acquiring CO2 concentration information in the air conditioning system according to the first embodiment.
  • 3 is a flowchart of accumulation of CO2 concentration information of the air conditioning controller according to the first embodiment.
  • 2 is a flowchart of CO2 concentration excess detection processing of the air conditioning controller according to the first embodiment.
  • 7 is a flowchart of inference processing of the air conditioning controller according to the first embodiment.
  • 5 is a flowchart of learning processing of the air conditioning controller according to the first embodiment.
  • FIG. 1 is a diagram showing the configuration of an air conditioning system 100 in the first embodiment.
  • an air conditioning system 100 includes an outdoor unit 110, a ventilation device 120, an indoor unit 130, an IoT gateway 140, a human sensor 150, an air conditioning controller 160, an external memory 170, a cloud 180, a CO2 sensor 190, and a BLE (Bluetooth) Trademark) Low Energy) beacon 200.
  • the outdoor unit 110 is installed outdoors and connected to a ventilation system 120 and an indoor unit 130.
  • the outdoor unit 110 is connected to the indoor unit 130 through refrigerant piping, and supplies the indoor unit 130 with a refrigerant that has undergone heat exchange with the outside air.
  • the outdoor unit 110 is connected to the ventilation device 120 through air piping, takes in outside air and supplies it to the ventilation device 120, and exhausts indoor air sent from the ventilation device 120 to the outdoors.
  • the ventilation system 120 and the indoor unit 130 are air conditioners that are indoor air conditioning equipment.
  • the ventilation device 120 performs ventilation by exhausting indoor air to the outdoors and introducing outdoor air indoors.
  • the indoor unit 130 generates conditioned air whose temperature or humidity is adjusted by exchanging heat between the refrigerant sent from the outdoor unit 110 and indoor air, and supplies this conditioned air indoors.
  • the operation of the ventilation system 120 and the indoor unit 130 is controlled by an air conditioning controller 160.
  • An IoT gateway 140 is provided in the ventilation system 120 and exchanges data with the air conditioning controller 160. Furthermore, the IoT gateway 140 is provided in the indoor unit 130 and exchanges data with the air conditioning controller 160.
  • the human sensor 150 is provided in the ventilation system 120 and detects human information indicating the number of people and their positions in the target area. Further, the human sensor 150 is provided in the indoor unit 130 and detects human information indicating the number of people and positions in the target area. As this human sensor 150, for example, an image type human sensor is used. The increase in CO2 concentration is caused by the number and location of people, and this information is used in AI control described later.
  • the air conditioning controller 160 is a device for monitoring and controlling the plurality of ventilation devices 120, the outdoor unit 110, and the indoor unit 130. Additionally, the air conditioning controller 160 transmits and receives data to and from the IoT gateway 140 installed in the indoor unit 130 and the ventilation device 120.
  • the external memory 170 is a storage medium that stores data of the air conditioning controller 160.
  • the external memory 170 referred to here is a medium such as a USB memory or an SD card. This medium may be exchangeable by the user for one with a larger data capacity.
  • the cloud 180 is a data storage area that can be accessed over the Internet. This storage area is utilized to hold various data of the air conditioning controller 160.
  • the CO2 sensor 190 transmits CO2 concentration information in the target area via wireless communication.
  • the wireless communication here is assumed to be Wi-Fi, but wireless communication using BLE communication, ZigBee (registered trademark), and EnOcean may also be used.
  • the BLE beacon 200 transmits position information of the CO2 sensor 190 via BLE communication.
  • the BLE beacon 200 is used to grasp the position of the CO2 sensor 190.
  • the BLE beacon 200 is attached with a UUID (Universally Unique Identifier) and a unique identifier.
  • UUID Universally Unique Identifier
  • FIG. 2 is a diagram showing functional blocks of the air conditioning system 100 according to the first embodiment.
  • the IoT gateway 140 includes a BLE sensor information acquisition section 300, a CO2 data measurement section 310, and a data transmission/reception section 320. Although the IoT gateway 140 is described here, the function of the IoT gateway 140 may be added to the indoor unit 130 or the ventilation device 120.
  • the BLE sensor information acquisition unit 300 receives position information from the BLE beacon 200. At this time, the BLE sensor information acquisition unit 300 also receives the UUID and unique identifier attached to the BLE beacon 200.
  • the CO2 data measurement unit 310 acquires CO2 concentration information of the target area transmitted from the CO2 sensor 190.
  • the data transmission/reception unit 320 transmits the UUID and position information received by the BLE sensor information acquisition unit 300 and the CO2 concentration information of the target area acquired by the CO2 data measurement unit 310 to the air conditioning controller 160.
  • the air conditioning controller 160 periodically acquires the UUID, location information, and CO2 concentration information from the IoT gateway 140.
  • the air conditioning controller 160 includes a CO2 information acquisition section 210, a data processing section 220, a data non-volatile section 230, and an internal non-volatile area 240.
  • the CO2 information acquisition unit 210 acquires data from the IoT gateway 140. Data from the BLE sensor information acquisition unit 300 and CO2 data measurement unit 310 installed in the IoT gateway 140 is acquired via the data transmission/reception unit 320.
  • the data processing unit 220 performs data processing based on the information stored in the data non-volatile unit 230.
  • the data processing includes a process of making a judgment by comparing the obtained CO2 concentration and a CO2 concentration information threshold, and a process of calculating forced time using AI control (inference and learning).
  • the data processing unit 220 determines whether the CO2 concentration information exceeds a reference value.
  • the reference value is, for example, 1000 ppm. This reference value can be set in advance in the system.
  • the setting may be a common value for the entire system, or the reference value of the CO2 concentration information may be set individually for each CO2 sensor 190.
  • the ventilation device 120 is forced to operate in the target area of the CO2 sensor 190.
  • the forced operation refers to turning on the ventilation device 120 if it is in the OFF state, and refers to increasing the air volume if the ventilation device 120 is in the ON state.
  • the data non-volatile section 230 stores the data processed by the data processing section 220 in an internal non-volatile area 240 in a non-volatile manner.
  • the internal non-volatile area 240 stores CO2 concentration information and person information indicating the number of people and positions for each target area.
  • the nonvolatile storage destination for data may be the external nonvolatile area 250 or the cloud nonvolatile area 260.
  • the external non-volatile area 250 corresponds to external media such as an SD card and a USB memory.
  • the cloud non-volatile area 260 may be a drive on a network such as a LAN disk, in addition to a cloud service such as AWS (Amazon Web Services).
  • FIG. 3 is a diagram illustrating control of the air conditioning controller 160 according to the first embodiment.
  • the air conditioning controller 160 determines that forced operation of the ventilation system 120 and the indoor unit 130 is necessary, the ventilation system 120 and the indoor unit 130 adjacent to the target area where the CO2 concentration information has increased are , issue an operation command to ventilate the target area.
  • Figure 3 shows an example in which "strong wind” operation is performed only in the direction of the target area, which is the area with increased CO2 concentration, in order to ventilate only the area with increased CO2 concentration. ” control may also be used.
  • FIG. 4 is a diagram illustrating compulsory operation time calculation in the data processing unit 220 according to the first embodiment.
  • the CO2 concentration information of the target area, the CO2 concentration information threshold, and the number of people in the room are input as input parameters. Then, inference is made based on these input parameters to calculate the forced operation time.
  • the input parameter may include person information indicating the location of a person, which is room occupancy information in the target area.
  • the CO2 concentration information threshold value may be the same value as the above-mentioned reference value used for determining whether to forcefully operate the ventilation device 120 and the indoor unit 130, or may be a different value.
  • the CO2 concentration information threshold is set by the data processing unit 220.
  • the learning model md is used in the inference process.
  • the learning model md is provided for each target area, and infers future CO2 concentration information of the target area from the CO2 concentration information measured by the CO2 sensor 190. Specifically, inference processing is performed using accumulated data of past CO2 concentration information measured by the CO2 sensor 190, the number of people in the room, the CO2 concentration information threshold, and the learning model md, and , calculates the time until the CO2 concentration information reaches the threshold value. Then, based on the arrival time until the CO2 concentration reaches the threshold value, the time at which one or both of the ventilation device 120 and the indoor unit 130 will be forced to operate is calculated in order to prevent the CO2 concentration from exceeding the threshold value. The calculated time is output as the forced operation time.
  • Learning of the learning model md for each target area starts at a fixed time every day and is performed from past accumulated data of input data and arrival times.
  • FIG. 5 shows a learning and inference model used in both inference processing and learning processing in the data processing unit 220 according to the first embodiment.
  • the learning and inference model consists of an input layer I to which input parameters are input, an output layer O to which output parameters are output, a middle layer M_1, a middle layer M_2, and a middle layer M_3. Network.
  • the arrival time is calculated at the output layer O.
  • parameters, weights, and bias values in the intermediate layer M are updated from past accumulated data of input data and arrival times.
  • FIG. 6 is a flowchart of acquiring CO2 concentration information in the air conditioning system 100 according to the first embodiment.
  • the UUID and location information are periodically acquired from the BLE beacon 200 (step S101).
  • the UUID is an identifier of the BLE beacon 200 and is used for linking with the CO2 sensor 190.
  • CO2 concentration information at the location of the BLE beacon 200 is acquired by the CO2 sensor 190. Furthermore, the human sensor 150 acquires human information including the number of people and their positions (step S102).
  • the CO2 concentration information and person information are transmitted to the air conditioning controller 160 (step S103).
  • FIG. 7 is a flowchart of accumulation of CO2 concentration information in the air conditioning controller 160 according to the first embodiment.
  • the air conditioning controller 160 acquires BLE position information, UUID, CO2 concentration information, and person information indicating the number of people and their positions (step S201). Note that the acquisition is performed at regular intervals.
  • the air conditioning controller 160 compares the acquired UUID with a database that associates pre-stored UUIDs with the CO2 sensor 190, and performs individual identification of the CO2 sensor 190 (step S202).
  • One CO2 sensor 190 can be specified by the UUID.
  • the air conditioning controller 160 stores the obtained CO2 concentration information along with the time for each identified CO2 sensor 190 (step S203).
  • the air conditioning controller 160 determines whether the CO2 concentration information received in step S201 exceeds a reference value (step S204).
  • step S204 If it is determined in step S204 that the CO2 concentration information exceeds the reference value (YES in step S204), the process moves to the CO2 concentration excess process in FIG. 8 (step S205).
  • step S204 if it is determined in step S204 that the received CO2 concentration information does not exceed the reference value (NO in step S204), the CO2 concentration information accumulation process of FIG. 7 is ended.
  • FIG. 8 is a flowchart of the CO2 concentration excess processing of the air conditioning controller 160 according to the first embodiment.
  • the air conditioning controller 160 identifies the ventilation device 120 and indoor unit 130 near the target area using the BLE position information (step S301).
  • the air conditioning controller 160 determines whether the ventilation device 120 and the indoor unit 130 near the target area are in the operating state (step S302).
  • step S302 if it is determined that the operating state of the ventilation device 120 and the indoor unit 130 is not in the operating state (NO in step S302), the operation of the ventilation device 120 and the indoor unit 130 is turned on and forced ventilation operation is performed ( Step S303).
  • step S302 if it is determined that the operating state of the ventilation device 120 and the indoor unit 130 is in the operating state (YES in step S302), the air volume of the ventilation device 120 and the indoor unit 130 in the target area direction is increased (step S304).
  • FIG. 9 is a flowchart of the inference process of the air conditioning controller 160 according to the first embodiment.
  • the air conditioning controller 160 determines whether or not it is necessary to start inference (step S401). Specifically, the air conditioning controller 160 determines that it is necessary to start inference when the CO2 concentration information exceeds an internal lower limit of 500 ppm, for example. This is because in a low concentration state, there is no need for ventilation, so a certain lower limit value is set and the inference process is started at the timing when the CO2 concentration information has increased to a certain extent.
  • the internal lower limit value is a value lower than the reference value and the CO2 concentration information threshold value. As input parameters, CO2 concentration information, CO2 concentration information threshold, and the number of people in the room are input.
  • step S401 If it is determined in step S401 that it is not necessary to start inferring CO2 concentration information (NO in step S401), the process in FIG. 9 ends.
  • step S401 If it is determined in step S401 that it is necessary to start inference of CO2 concentration information (YES in step S401), inference processing of CO2 concentration information is performed (step S402). In step S402, inference processing from the input layer I to the output layer O shown in FIG. 5 is performed. Then, the time until the CO2 concentration information exceeds the CO2 concentration information threshold, that is, the arrival time shown in FIG. 4 is calculated.
  • step S403 it is determined whether the inference result is expected to exceed the CO2 concentration information threshold.
  • the arrival time obtained in step S402 is shorter than the time until the next step S401 is executed, it is determined that the scheduled time has been exceeded. That is, it is determined whether the CO2 concentration exceeds the CO2 concentration information threshold earlier than the next timing of the periodically performed inference process.
  • step S403 if the inference result is not expected to exceed the CO2 concentration information threshold (NO in step S403), the process of the inference process flowchart in FIG. 9 ends.
  • step S403 if the inference result is scheduled to exceed the CO2 concentration information threshold (YES in step S403), at the forced operation time explained in FIG. (Step S404), the process ends. Specifically, in step S404, if the CO2 concentration information of the target area inferred by the learning model md exceeds the CO2 concentration information threshold, the air conditioning controller 160 uses the position information of the CO2 sensor 190 transmitted from the BLE beacon. Ventilate the air conditioner in the target area corresponding to the location indicated by. Note that when the ventilation device 120 and the indoor unit 130 are already in operation, the air volume of the ventilation device 120 and the indoor unit 130 is increased.
  • FIG. 10 is a flowchart of the learning process of the air conditioning controller 160 according to the first embodiment.
  • the air conditioning controller 160 periodically determines whether it is learning start time (step S501). Since learning increases the CPU load, the air conditioning controller 160 starts learning at a predetermined time once or twice a day.
  • the air conditioning controller 160 performs the learning process from the output layer O to the input layer I described in FIG. 5 for each area (step S502).
  • the air conditioning controller 160 updates the parameters, weights, and bias values in the intermediate layer M_1, intermediate layer M_2, and intermediate layer M_3 according to the learning results (step S503).
  • the air conditioning controller 160 performs learning of the learning model md based on the person information and CO2 concentration information stored in the internal nonvolatile area 240, which is a storage unit.
  • the air conditioning system 100 of the first embodiment when the CO2 concentration information inferred in the target area exceeds the CO2 concentration information threshold using the learning model md, the CO2 sensor 190 transmitted from the BLE beacon The air conditioner is operated to perform air conditioning in the target area corresponding to the position indicated by the position information. Thereby, it is possible to maintain an appropriate air conditioning state for each area so that the CO2 concentration state in the target area is less than the reference value.
  • Air conditioning system 110 Outdoor unit, 120 Ventilation system, 130 Indoor unit, 140 IoT gateway, 150 Human sensor, 160 Air conditioning controller, 170 External memory, 180 Cloud, 190 CO2 sensor, 200 BLE beacon, 210 CO2 information acquisition unit , 220 data processing unit, 230 data nonvolatile unit, 240 internal nonvolatile area, 250 external nonvolatile area, 260 cloud nonvolatile area, 300 BLE sensor information acquisition unit, 310 CO2 data measurement unit, 320 data transmission/reception unit, I input phase, O output layer , M_1, M_2, M_3 middle layer, md learning model.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This air conditioning system comprises: an air conditioner that is indoor air conditioning equipment; an air conditioning controller that controls the air conditioner; a CO2 sensor provided in each of a plurality of target areas and acquiring CO2 concentration information; and a BLE beacon that transmits location information indicating the location of the CO2 sensor. The air conditioning controller has a learning model that infers future CO2 concentration information for each target area from the CO2 concentration information acquired by the CO2 sensor, and when the future CO2 concentration information of the target area inferred by the learning model exceeds a threshold, the air conditioning controller operates the air conditioner to perform air-conditioning of the target area corresponding to the location indicated by the location information of the CO2 sensor transmitted from the BLE beacon.

Description

空調システムair conditioning system
 本開示は、対象エリアの空調を行う空調システムに関する。 The present disclosure relates to an air conditioning system that air-conditions a target area.
 従来、汚染物質濃度が第1濃度以上第2濃度未満であれば、空調機を制御するという技術が知られている(特許文献1参照)。 Conventionally, a technique is known in which an air conditioner is controlled when the pollutant concentration is at least a first concentration and less than a second concentration (see Patent Document 1).
国際公開第2020/255875号International Publication No. 2020/255875
 しかし、汚染物質濃度の測定は、その時点の値でのみ判断しているものであり、エリア毎の特性に見合った換気制御でない。このような手法は、「基準値を超えたら」というその条件発生後の事後的な対応となっていて、その基準値を超えないように屋内を換気するという手法ではない。 However, measurement of pollutant concentration is based only on the value at that point in time, and ventilation control is not appropriate to the characteristics of each area. Such a method is a reactive response after the condition occurs "if the standard value is exceeded," and is not a method of ventilating the room to prevent the standard value from being exceeded.
 本開示は、上記実情に鑑みてなされたものであり、対象エリア毎の特性に合った換気制御を行うことができる空調システムを提供することを目的とする。 The present disclosure has been made in view of the above circumstances, and aims to provide an air conditioning system that can perform ventilation control that matches the characteristics of each target area.
 本開示に係る空調システムは、屋内の空調設備である空調装置と、前記空調装置を制御する空調コントローラと、複数の対象エリアのそれぞれに設けられ、CO2濃度情報を取得するCO2センサと、前記CO2センサの位置を示す位置情報を発信するBLEビーコンとを具備し、前記空調コントローラは、前記CO2センサにより取得された前記CO2濃度情報から前記対象エリア毎の将来の前記CO2濃度情報を推論する学習モデルを具備し、前記学習モデルにより推論された前記対象エリアの前記将来のCO2濃度情報が閾値を超える場合、前記BLEビーコンから発信された前記CO2センサの位置情報によって示される位置に対応する前記対象エリアの空気調和を行うように前記空調装置を動作させる。 An air conditioning system according to the present disclosure includes an air conditioning device that is indoor air conditioning equipment, an air conditioning controller that controls the air conditioning device, a CO2 sensor that is provided in each of a plurality of target areas and that acquires CO2 concentration information, and the CO2 and a BLE beacon that transmits position information indicating the position of the sensor, and the air conditioning controller includes a learning model that infers the future CO2 concentration information for each target area from the CO2 concentration information acquired by the CO2 sensor. If the future CO2 concentration information of the target area inferred by the learning model exceeds a threshold, the target area corresponds to the position indicated by the position information of the CO2 sensor transmitted from the BLE beacon. The air conditioner is operated to perform air conditioning.
 本開示によれば、学習モデルを使用して、推論された対象エリアのCO2濃度情報が閾値を超えている場合、BLEビーコンから発信されたCO2センサの位置情報によって示される位置に対応する対象エリアの空気調和を行うように空調装置を動作させる。これにより、対象エリアのCO2濃度状態が基準値未満となるように、エリア毎に沿った適切な換気状態を維持することができる。 According to the present disclosure, if the CO2 concentration information of the target area inferred using the learning model exceeds the threshold, the target area corresponds to the position indicated by the position information of the CO2 sensor transmitted from the BLE beacon. The air conditioner is operated to perform air conditioning. Thereby, it is possible to maintain an appropriate ventilation state for each area so that the CO2 concentration state in the target area is less than the reference value.
実施形態1における空調システムの構成を示す図である。1 is a diagram showing the configuration of an air conditioning system in Embodiment 1. FIG. 実施形態1に係る空調システムの機能ブロックを示す図である。1 is a diagram showing functional blocks of an air conditioning system according to Embodiment 1. FIG. 実施形態1に係る空調コントローラの制御を説明する図である。FIG. 3 is a diagram illustrating control of the air conditioning controller according to the first embodiment. 実施形態1に係るデータ処理部における強制動作時刻算出を説明する図である。FIG. 3 is a diagram illustrating compulsory operation time calculation in the data processing unit according to the first embodiment. 実施形態1に係るデータ処理部における推論処理と学習処理の両方で使用する学習及び推論モデルである。This is a learning and inference model used in both inference processing and learning processing in the data processing unit according to the first embodiment. 実施形態1に係る空調システムでのCO2濃度情報取得のフローチャートである。3 is a flowchart of acquiring CO2 concentration information in the air conditioning system according to the first embodiment. 実施形態1に係る空調コントローラのCO2濃度情報の蓄積のフローチャートである。3 is a flowchart of accumulation of CO2 concentration information of the air conditioning controller according to the first embodiment. 実施形態1に係る空調コントローラのCO2濃度超過検知処理のフローチャートである。2 is a flowchart of CO2 concentration excess detection processing of the air conditioning controller according to the first embodiment. 実施形態1に係る空調コントローラの推論処理のフローチャートである。7 is a flowchart of inference processing of the air conditioning controller according to the first embodiment. 実施形態1に係る空調コントローラの学習処理のフローチャートである。5 is a flowchart of learning processing of the air conditioning controller according to the first embodiment.
 以下、図面を参照して、実施形態に係る空調システム100について説明する。なお、図面において、同一の構成要素には同一符号を付して説明し、重複説明は必要な場合にのみ行う。 Hereinafter, an air conditioning system 100 according to an embodiment will be described with reference to the drawings. In addition, in the drawings, the same components will be described with the same reference numerals, and repeated description will be given only when necessary.
実施形態1.
 図1は、実施形態1における空調システム100の構成を示す図である。図1において、空調システム100は、室外機110、換気装置120、室内機130、IoTゲートウェイ140、人感センサ150、空調コントローラ160、外部メモリ170、クラウド180、CO2センサ190及びBLE(Bluetooth(登録商標) Low Energy)ビーコン200を備える。
Embodiment 1.
FIG. 1 is a diagram showing the configuration of an air conditioning system 100 in the first embodiment. In FIG. 1, an air conditioning system 100 includes an outdoor unit 110, a ventilation device 120, an indoor unit 130, an IoT gateway 140, a human sensor 150, an air conditioning controller 160, an external memory 170, a cloud 180, a CO2 sensor 190, and a BLE (Bluetooth) Trademark) Low Energy) beacon 200.
 室外機110は、屋外に設置され、換気装置120と、室内機130とに接続されている。室外機110は、室内機130と冷媒配管で接続されており、外気と熱交換した冷媒を室内機130に供給する。室外機110は、換気装置120と空気配管で接続されており、外気を吸気して換気装置120に供給するとともに、換気装置120から送られた屋内の空気を屋外に排気する。 The outdoor unit 110 is installed outdoors and connected to a ventilation system 120 and an indoor unit 130. The outdoor unit 110 is connected to the indoor unit 130 through refrigerant piping, and supplies the indoor unit 130 with a refrigerant that has undergone heat exchange with the outside air. The outdoor unit 110 is connected to the ventilation device 120 through air piping, takes in outside air and supplies it to the ventilation device 120, and exhausts indoor air sent from the ventilation device 120 to the outdoors.
 換気装置120及び室内機130は、屋内の空調設備である空調装置である。換気装置120は、屋内の空気を屋外に排出するとともに、屋外の空気を屋内に導入して換気を行う。室内機130は、室外機110から送られた冷媒と屋内の空気とを熱交換させることで温度又は湿度が調節された調和空気を生成し、この調和空気を屋内に供給する。換気装置120及び室内機130は、空調コントローラ160によって動作制御される。 The ventilation system 120 and the indoor unit 130 are air conditioners that are indoor air conditioning equipment. The ventilation device 120 performs ventilation by exhausting indoor air to the outdoors and introducing outdoor air indoors. The indoor unit 130 generates conditioned air whose temperature or humidity is adjusted by exchanging heat between the refrigerant sent from the outdoor unit 110 and indoor air, and supplies this conditioned air indoors. The operation of the ventilation system 120 and the indoor unit 130 is controlled by an air conditioning controller 160.
 IoT(Internet of things)ゲートウェイ140は、換気装置120に備えられ、空調コントローラ160とデータの受け渡しをする。また、IoTゲートウェイ140は、室内機130に備えられ、空調コントローラ160とデータの受け渡しをする。 An IoT (Internet of things) gateway 140 is provided in the ventilation system 120 and exchanges data with the air conditioning controller 160. Furthermore, the IoT gateway 140 is provided in the indoor unit 130 and exchanges data with the air conditioning controller 160.
 人感センサ150は、換気装置120に備えられ、対象エリアの人数と位置と示す人情報を検出する。また、人感センサ150は、室内機130に備えられ、対象エリアの人数と位置と示す人情報を検出する。この人感センサ150として、例えば、画像型人感センサが用いられる。CO2濃度の上昇要因は、人の人数と位置とに起因するものであり、この情報は、後述のAI制御で用いる。 The human sensor 150 is provided in the ventilation system 120 and detects human information indicating the number of people and their positions in the target area. Further, the human sensor 150 is provided in the indoor unit 130 and detects human information indicating the number of people and positions in the target area. As this human sensor 150, for example, an image type human sensor is used. The increase in CO2 concentration is caused by the number and location of people, and this information is used in AI control described later.
 空調コントローラ160は、複数の換気装置120、室外機110及び室内機130の監視及び制御を行うための装置である。また、空調コントローラ160は、室内機130及び換気装置120に搭載されたIoTゲートウェイ140との間でデータを送受信する。 The air conditioning controller 160 is a device for monitoring and controlling the plurality of ventilation devices 120, the outdoor unit 110, and the indoor unit 130. Additionally, the air conditioning controller 160 transmits and receives data to and from the IoT gateway 140 installed in the indoor unit 130 and the ventilation device 120.
 外部メモリ170は、空調コントローラ160のデータを蓄積する記憶媒体である。ここで言う外部メモリ170は、USBメモリ及びSDカードといった媒体である。この媒体はユーザによりデータ容量のより大きいものへの交換を可能としてもよい。 The external memory 170 is a storage medium that stores data of the air conditioning controller 160. The external memory 170 referred to here is a medium such as a USB memory or an SD card. This medium may be exchangeable by the user for one with a larger data capacity.
 クラウド180は、インターネットにてアクセス可能なデータ保存領域である。この保存領域は、空調コントローラ160の各種データを保持するために活用される。 The cloud 180 is a data storage area that can be accessed over the Internet. This storage area is utilized to hold various data of the air conditioning controller 160.
 CO2センサ190は、対象エリアのCO2濃度情報を無線通信にて発信するものである。ここでの無線通信は、Wi-Fiを想定しているが、BLE通信、ZigBee(登録商標)及びEnOceanによる無線通信としてもよい。 The CO2 sensor 190 transmits CO2 concentration information in the target area via wireless communication. The wireless communication here is assumed to be Wi-Fi, but wireless communication using BLE communication, ZigBee (registered trademark), and EnOcean may also be used.
 BLEビーコン200は、CO2センサ190の位置情報をBLE通信にて発信するものである。ここでは、BLEビーコン200をCO2センサ190と一体に配置することで、CO2センサ190の位置を把握するのに用いられる。BLEビーコン200には、UUID(Universally Unique Identifier)とユニークな識別子が付帯している。 The BLE beacon 200 transmits position information of the CO2 sensor 190 via BLE communication. Here, by disposing the BLE beacon 200 integrally with the CO2 sensor 190, it is used to grasp the position of the CO2 sensor 190. The BLE beacon 200 is attached with a UUID (Universally Unique Identifier) and a unique identifier.
 図2は、実施形態1に係る空調システム100の機能ブロックを示す図である。 FIG. 2 is a diagram showing functional blocks of the air conditioning system 100 according to the first embodiment.
 IoTゲートウェイ140は、BLEセンサ情報取得部300、CO2データ測定部310及びデータ送受信部320を有している。ここでは、IoTゲートウェイ140と記載しているが、室内機130又は換気装置120にIoTゲートウェイ140の機能を付加してもよい。 The IoT gateway 140 includes a BLE sensor information acquisition section 300, a CO2 data measurement section 310, and a data transmission/reception section 320. Although the IoT gateway 140 is described here, the function of the IoT gateway 140 may be added to the indoor unit 130 or the ventilation device 120.
 BLEセンサ情報取得部300は、BLEビーコン200からの位置情報を受信する。この時、BLEセンサ情報取得部300は、併せてBLEビーコン200に付帯されるUUIDとユニークな識別子も受信する。 The BLE sensor information acquisition unit 300 receives position information from the BLE beacon 200. At this time, the BLE sensor information acquisition unit 300 also receives the UUID and unique identifier attached to the BLE beacon 200.
 CO2データ測定部310は、CO2センサ190から発信された対象エリアのCO2濃度情報を取得する。 The CO2 data measurement unit 310 acquires CO2 concentration information of the target area transmitted from the CO2 sensor 190.
 データ送受信部320は、BLEセンサ情報取得部300で受信されたUUID及び位置情報、CO2データ測定部310で取得された対象エリアのCO2濃度情報を空調コントローラ160に送信する。 The data transmission/reception unit 320 transmits the UUID and position information received by the BLE sensor information acquisition unit 300 and the CO2 concentration information of the target area acquired by the CO2 data measurement unit 310 to the air conditioning controller 160.
 空調コントローラ160は、IoTゲートウェイ140より定期的に、UUID及び位置情報とCO2濃度情報とを取得する。空調コントローラ160は、CO2情報取得部210、データ処理部220、データ不揮発部230及び内部不揮発領域240を有する。 The air conditioning controller 160 periodically acquires the UUID, location information, and CO2 concentration information from the IoT gateway 140. The air conditioning controller 160 includes a CO2 information acquisition section 210, a data processing section 220, a data non-volatile section 230, and an internal non-volatile area 240.
 CO2情報取得部210は、IoTゲートウェイ140からデータ取得を行う。IoTゲートウェイ140に搭載されているBLEセンサ情報取得部300及びCO2データ測定部310からのデータを、データ送受信部320を介して取得する。 The CO2 information acquisition unit 210 acquires data from the IoT gateway 140. Data from the BLE sensor information acquisition unit 300 and CO2 data measurement unit 310 installed in the IoT gateway 140 is acquired via the data transmission/reception unit 320.
 データ処理部220は、データ不揮発部230に記憶された情報を元に、データ処理を行う。データ処理として、取得したCO2濃度とCO2濃度情報閾値とを比較して判断を行う処理と、AI制御(推論及び学習)により強制時時刻算出を行う処理とがある。 The data processing unit 220 performs data processing based on the information stored in the data non-volatile unit 230. The data processing includes a process of making a judgment by comparing the obtained CO2 concentration and a CO2 concentration information threshold, and a process of calculating forced time using AI control (inference and learning).
 データ処理部220は、データを保存する際、CO2濃度情報が基準値を超過していないか判断する。基準値は、例えば、1000ppmである。この基準値については、システムで予め設定できるようにしておく。設定は、システム全体での共通値としてもよいし、CO2センサ190毎に個別にCO2濃度情報の基準値を設定できるようにしてもよい。 When saving data, the data processing unit 220 determines whether the CO2 concentration information exceeds a reference value. The reference value is, for example, 1000 ppm. This reference value can be set in advance in the system. The setting may be a common value for the entire system, or the reference value of the CO2 concentration information may be set individually for each CO2 sensor 190.
 データ処理部220がCO2濃度の基準値超過を検出した場合は、そのCO2センサ190の対象エリアに対して、換気装置120を強制動作させる。強制動作とは、換気装置120がOFF状態であれば運転ONとすることを指し、換気装置120が運転ON状態であれば風量の増加を指す。 If the data processing unit 220 detects that the CO2 concentration exceeds the reference value, the ventilation device 120 is forced to operate in the target area of the CO2 sensor 190. The forced operation refers to turning on the ventilation device 120 if it is in the OFF state, and refers to increasing the air volume if the ventilation device 120 is in the ON state.
 AI制御(推論及び学習)により強制時時刻算出を行う処理については、後に図4を参照して説明する。 The process of calculating forced time using AI control (inference and learning) will be described later with reference to FIG. 4.
 データ不揮発部230は、データ処理部220が処理したデータを、内部不揮発領域240へ不揮発保存する。内部不揮発領域240は、対象エリア毎にCO2濃度情報、人数と位置とを示す人情報を蓄積する。 The data non-volatile section 230 stores the data processed by the data processing section 220 in an internal non-volatile area 240 in a non-volatile manner. The internal non-volatile area 240 stores CO2 concentration information and person information indicating the number of people and positions for each target area.
 データの不揮発保存先は、内部不揮発領域240以外にも、外部不揮発領域250としてもよいし、クラウド不揮発領域260としてもよい。外部不揮発領域250は、SDカード及びUSBメモリといった外部メディアが該当する。クラウド不揮発領域260は、AWS(アマゾンウェブサービス)などのクラウドサービスの他に、LAN DISKのようなネットワーク上のドライブとしてもよい。 In addition to the internal nonvolatile area 240, the nonvolatile storage destination for data may be the external nonvolatile area 250 or the cloud nonvolatile area 260. The external non-volatile area 250 corresponds to external media such as an SD card and a USB memory. The cloud non-volatile area 260 may be a drive on a network such as a LAN disk, in addition to a cloud service such as AWS (Amazon Web Services).
 図3は、実施形態1に係る空調コントローラ160の制御を説明する図である。 FIG. 3 is a diagram illustrating control of the air conditioning controller 160 according to the first embodiment.
 図3に示すように、空調コントローラ160が、換気装置120及び室内機130の強制動作が必要と判断した場合、CO2濃度情報が上昇した対象エリアに隣接する換気装置120及び室内機130に対して、対象エリアの換気を行う動作命令を行う。 As shown in FIG. 3, when the air conditioning controller 160 determines that forced operation of the ventilation system 120 and the indoor unit 130 is necessary, the ventilation system 120 and the indoor unit 130 adjacent to the target area where the CO2 concentration information has increased are , issue an operation command to ventilate the target area.
 図3は、CO2濃度上昇エリアのみの換気目的のため、対象エリアであるCO2濃度上昇エリアの方向のみを「強風」動作にした例であるが、部屋全体の換気のために、全方向「強風」とする制御としても良い。 Figure 3 shows an example in which "strong wind" operation is performed only in the direction of the target area, which is the area with increased CO2 concentration, in order to ventilate only the area with increased CO2 concentration. ” control may also be used.
 図4は、実施形態1に係るデータ処理部220における強制動作時刻算出を説明する図である。 FIG. 4 is a diagram illustrating compulsory operation time calculation in the data processing unit 220 according to the first embodiment.
 図4に示すように、強制動作時刻算出は、入力パラメータとして、対象エリアのCO2濃度情報、CO2濃度情報閾値及び在室人数が入力される。そして、これら入力パラメータを元に推論を行い、強制動作時刻を算出する。なお、入力パラメータとして、対象エリアの在室情報である人の位置を示す人情報を含んでいてもよい。 As shown in FIG. 4, for forced operation time calculation, the CO2 concentration information of the target area, the CO2 concentration information threshold, and the number of people in the room are input as input parameters. Then, inference is made based on these input parameters to calculate the forced operation time. Note that the input parameter may include person information indicating the location of a person, which is room occupancy information in the target area.
 CO2濃度情報は、内部不揮発領域240に保存されている時系列のデータを用いる。CO2濃度情報閾値は、換気装置120及び室内機130を強制動作させるか否かの判断に使用される上述の基準値と同じ値であってもよいし、異なる値であってもよい。CO2濃度情報閾値は、データ処理部220で設定される。推論処理では、学習モデルmdを利用する。 For the CO2 concentration information, time-series data stored in the internal non-volatile area 240 is used. The CO2 concentration information threshold value may be the same value as the above-mentioned reference value used for determining whether to forcefully operate the ventilation device 120 and the indoor unit 130, or may be a different value. The CO2 concentration information threshold is set by the data processing unit 220. The learning model md is used in the inference process.
 学習モデルmdは、対象エリア毎に設けられ、CO2センサ190により測定されたCO2濃度情報から対象エリアの将来のCO2濃度情報を推論する。具体的には、CO2センサ190により測定された過去のCO2濃度情報の蓄積データと、在室人数と、CO2濃度情報閾値と、学習モデルmdとを用いた推論処理を行って、当該対象エリアにおいて、今後CO2濃度情報が閾値に到達までの時間を算出する。そして、CO2濃度が閾値に到達するまでの到達時間から、CO2濃度が閾値を超えないようにするために換気装置120及び室内機130のいずれか又は両方を強制的に動作させる時刻を計算する。計算された時刻が、強制動作時刻として出力される。 The learning model md is provided for each target area, and infers future CO2 concentration information of the target area from the CO2 concentration information measured by the CO2 sensor 190. Specifically, inference processing is performed using accumulated data of past CO2 concentration information measured by the CO2 sensor 190, the number of people in the room, the CO2 concentration information threshold, and the learning model md, and , calculates the time until the CO2 concentration information reaches the threshold value. Then, based on the arrival time until the CO2 concentration reaches the threshold value, the time at which one or both of the ventilation device 120 and the indoor unit 130 will be forced to operate is calculated in order to prevent the CO2 concentration from exceeding the threshold value. The calculated time is output as the forced operation time.
 各対象エリアの学習モデルmdの学習は、毎日決まった時間に開始し、入力データと到達時間との過去の蓄積データから行う。 Learning of the learning model md for each target area starts at a fixed time every day and is performed from past accumulated data of input data and arrival times.
 図5は、実施形態1に係るデータ処理部220における推論処理と学習処理の両方で使用する学習及び推論モデルである。 FIG. 5 shows a learning and inference model used in both inference processing and learning processing in the data processing unit 220 according to the first embodiment.
 図5に示すように、学習及び推論モデルは、入力パラメータが入力される入力層I、出力パラメータが出力される出力層O、中間層M_1、中間層M_2及び中間層M_3から構成されるDeep Neural Networkである。 As shown in FIG. 5, the learning and inference model consists of an input layer I to which input parameters are input, an output layer O to which output parameters are output, a middle layer M_1, a middle layer M_2, and a middle layer M_3. Network.
 推論処理では、入力層Iからスタートし、出力層Oで到達時間を算出する。学習処理では、入力データと到達時間との過去の蓄積データから、中間層Mでのパラメータ、重み及びバイアス値を更新する。 In the inference process, starting from the input layer I, the arrival time is calculated at the output layer O. In the learning process, parameters, weights, and bias values in the intermediate layer M are updated from past accumulated data of input data and arrival times.
 次に、空調システム100の動作の詳細をフローチャートにて説明する。図6は、実施形態1に係る空調システム100でのCO2濃度情報取得のフローチャートである。 Next, details of the operation of the air conditioning system 100 will be explained using a flowchart. FIG. 6 is a flowchart of acquiring CO2 concentration information in the air conditioning system 100 according to the first embodiment.
 図6において、定期的にBLEビーコン200より、UUID、及び位置情報を取得する(ステップS101)。UUIDは、BLEビーコン200の識別子であり、CO2センサ190との紐付けに利用する。 In FIG. 6, the UUID and location information are periodically acquired from the BLE beacon 200 (step S101). The UUID is an identifier of the BLE beacon 200 and is used for linking with the CO2 sensor 190.
 次に、BLEビーコン200の場所のCO2濃度情報をCO2センサ190により、取得する。また、人感センサ150により、人数と位置との人情報を取得する(ステップS102)。 Next, CO2 concentration information at the location of the BLE beacon 200 is acquired by the CO2 sensor 190. Furthermore, the human sensor 150 acquires human information including the number of people and their positions (step S102).
 次に、CO2濃度情報及び人情報を空調コントローラ160へ送信する(ステップS103)。 Next, the CO2 concentration information and person information are transmitted to the air conditioning controller 160 (step S103).
 図7は、実施形態1に係る空調コントローラ160のCO2濃度情報の蓄積のフローチャートである。 FIG. 7 is a flowchart of accumulation of CO2 concentration information in the air conditioning controller 160 according to the first embodiment.
 空調コントローラ160は、よりBLE位置情報、UUID、CO2濃度情報及び人数と位置を示す人情報を取得する(ステップS201)。なお、取得は一定時間毎に実施する。 The air conditioning controller 160 acquires BLE position information, UUID, CO2 concentration information, and person information indicating the number of people and their positions (step S201). Note that the acquisition is performed at regular intervals.
 空調コントローラ160は、取得したUUIDを予め記憶されたUUIDとCO2センサ190とを対応づけたデータベースと照合し、CO2センサ190の個体識別を行う(ステップS202)。UUIDにより、一つのCO2センサ190が特定できる。 The air conditioning controller 160 compares the acquired UUID with a database that associates pre-stored UUIDs with the CO2 sensor 190, and performs individual identification of the CO2 sensor 190 (step S202). One CO2 sensor 190 can be specified by the UUID.
 空調コントローラ160は、特定したCO2センサ190単位で、得られたCO2濃度情報を時刻とともに保存する(ステップS203)。 The air conditioning controller 160 stores the obtained CO2 concentration information along with the time for each identified CO2 sensor 190 (step S203).
 次に、空調コントローラ160は、ステップS201で受信したCO2濃度情報が基準値を超えているかを判定する(ステップS204)。 Next, the air conditioning controller 160 determines whether the CO2 concentration information received in step S201 exceeds a reference value (step S204).
 ステップS204において、CO2濃度情報が基準値を超えていると判定された場合(ステップS204のYES)、図8のCO2濃度超過処理に移る(ステップS205)。 If it is determined in step S204 that the CO2 concentration information exceeds the reference value (YES in step S204), the process moves to the CO2 concentration excess process in FIG. 8 (step S205).
 一方、ステップS204において、受信したCO2濃度情報が基準値を超えていないと判定された場合(ステップS204のNO)、図7のCO2濃度情報の蓄積処理を終了する。 On the other hand, if it is determined in step S204 that the received CO2 concentration information does not exceed the reference value (NO in step S204), the CO2 concentration information accumulation process of FIG. 7 is ended.
 図8は、実施形態1に係る空調コントローラ160のCO2濃度超過処理のフローチャートである。 FIG. 8 is a flowchart of the CO2 concentration excess processing of the air conditioning controller 160 according to the first embodiment.
 図8に示すように、空調コントローラ160は、CO2濃度超過処理では、対象エリアの近くの換気装置120及び室内機130をBLE位置情報により特定する(ステップS301)。 As shown in FIG. 8, in the CO2 concentration excess process, the air conditioning controller 160 identifies the ventilation device 120 and indoor unit 130 near the target area using the BLE position information (step S301).
 次に、空調コントローラ160は、対象エリアの近くの換気装置120及び室内機130の稼働状態が、運転状態なのかを判断する(ステップS302)。 Next, the air conditioning controller 160 determines whether the ventilation device 120 and the indoor unit 130 near the target area are in the operating state (step S302).
 ステップS302において、換気装置120及び室内機130の稼働状態が、運転状態でないと判断された場合(ステップS302のNO)、換気装置120及び室内機130の運転をONにし、強制換気運転を行う(ステップS303)。 In step S302, if it is determined that the operating state of the ventilation device 120 and the indoor unit 130 is not in the operating state (NO in step S302), the operation of the ventilation device 120 and the indoor unit 130 is turned on and forced ventilation operation is performed ( Step S303).
 ステップS302において、換気装置120及び室内機130の稼働状態が、運転状態であると判断された場合(ステップS302のYES)、換気装置120及び室内機130の対象エリア方向の風量を増加させる(ステップS304)。 In step S302, if it is determined that the operating state of the ventilation device 120 and the indoor unit 130 is in the operating state (YES in step S302), the air volume of the ventilation device 120 and the indoor unit 130 in the target area direction is increased (step S304).
 図9は、実施形態1に係る空調コントローラ160の推論処理のフローチャートである。 FIG. 9 is a flowchart of the inference process of the air conditioning controller 160 according to the first embodiment.
 空調コントローラ160は、推論開始が必要であるか否かを判断する(ステップS401)。具体的には、空調コントローラ160は、CO2濃度情報が、例えば、500ppmの内部下限値を超えている場合に、推論開始が必要であると判断する。これは、低濃度状態では、換気の必要がないので、一定の下限値を設けて、ある程度CO2濃度情報が上昇したタイミングで、推論処理を開始する。内部下限値は、基準値及びCO2濃度情報閾値よりも低い値である。入力パラメータとしては、CO2濃度情報、CO2濃度情報閾値及び在室人数が入力される。 The air conditioning controller 160 determines whether or not it is necessary to start inference (step S401). Specifically, the air conditioning controller 160 determines that it is necessary to start inference when the CO2 concentration information exceeds an internal lower limit of 500 ppm, for example. This is because in a low concentration state, there is no need for ventilation, so a certain lower limit value is set and the inference process is started at the timing when the CO2 concentration information has increased to a certain extent. The internal lower limit value is a value lower than the reference value and the CO2 concentration information threshold value. As input parameters, CO2 concentration information, CO2 concentration information threshold, and the number of people in the room are input.
 ステップS401において、CO2濃度情報の推論開始が必要でないと判断された場合(ステップS401のNO)、図9の処理は終了する。 If it is determined in step S401 that it is not necessary to start inferring CO2 concentration information (NO in step S401), the process in FIG. 9 ends.
 ステップS401において、CO2濃度情報の推論開始が必要であると判断された場合(ステップS401のYES)、CO2濃度情報の推論処理が行われる(ステップS402)。ステップS402では、図5に記載の入力層Iから出力層Oまでの推論処理が行われる。そして、CO2濃度情報がCO2濃度情報閾値を超過するまでの時間、すなわち図4に示した到達時間が算出される。 If it is determined in step S401 that it is necessary to start inference of CO2 concentration information (YES in step S401), inference processing of CO2 concentration information is performed (step S402). In step S402, inference processing from the input layer I to the output layer O shown in FIG. 5 is performed. Then, the time until the CO2 concentration information exceeds the CO2 concentration information threshold, that is, the arrival time shown in FIG. 4 is calculated.
 次に、推論結果がCO2濃度情報閾値を超過予定か否かが判断される(ステップS403)。ここでは、次にステップS401の処理が実施されるまでの時間よりも、ステップS402で得た到達時間の方が短い場合に、超過予定であると判断される。すなわち、周期的に実施される推論処理の次回のタイミングよりも早くに、CO2濃度がCO2濃度情報閾値を超えるか否かを判断するのである。  Next, it is determined whether the inference result is expected to exceed the CO2 concentration information threshold (step S403). Here, if the arrival time obtained in step S402 is shorter than the time until the next step S401 is executed, it is determined that the scheduled time has been exceeded. That is, it is determined whether the CO2 concentration exceeds the CO2 concentration information threshold earlier than the next timing of the periodically performed inference process. 
 ステップS403において、推論結果がCO2濃度情報閾値を超過予定ではない場合(ステップS403のNO)、図9の推論処理のフローチャートの処理は終了する。 In step S403, if the inference result is not expected to exceed the CO2 concentration information threshold (NO in step S403), the process of the inference process flowchart in FIG. 9 ends.
 ステップS403において、推論結果がCO2濃度情報閾値を超過予定である場合(ステップS403のYES)、図4で説明した強制動作時刻になると、対象エリアの換気装置120及び室内機130の強制稼働を行い(ステップS404)、処理を終了する。具体的には、ステップS404では、空調コントローラ160は、学習モデルmdにより推論された対象エリアのCO2濃度情報がCO2濃度情報閾値を超えている場合、BLEビーコンから発信されたCO2センサ190の位置情報によって示される位置に対応する対象エリアの空調装置の換気を実施する。なお、換気装置120及び室内機130が既に稼働状態の場合は、換気装置120及び室内機130の風量を増加させる。 In step S403, if the inference result is scheduled to exceed the CO2 concentration information threshold (YES in step S403), at the forced operation time explained in FIG. (Step S404), the process ends. Specifically, in step S404, if the CO2 concentration information of the target area inferred by the learning model md exceeds the CO2 concentration information threshold, the air conditioning controller 160 uses the position information of the CO2 sensor 190 transmitted from the BLE beacon. Ventilate the air conditioner in the target area corresponding to the location indicated by. Note that when the ventilation device 120 and the indoor unit 130 are already in operation, the air volume of the ventilation device 120 and the indoor unit 130 is increased.
 図10は、実施形態1に係る空調コントローラ160の学習処理のフローチャートである。 FIG. 10 is a flowchart of the learning process of the air conditioning controller 160 according to the first embodiment.
 図10に示すように、空調コントローラ160は、学習開始時間であるか否かの判断を定期的に行う(ステップS501)。空調コントローラ160は、学習にはCPU負荷が増大するため、1日に一回、又は二回と予め決められた時刻に開始するようにする。 As shown in FIG. 10, the air conditioning controller 160 periodically determines whether it is learning start time (step S501). Since learning increases the CPU load, the air conditioning controller 160 starts learning at a predetermined time once or twice a day.
 次に、空調コントローラ160は、図5に記載の出力層Oから入力層Iへの学習処理をエリア単位で、実施する(ステップS502)。 Next, the air conditioning controller 160 performs the learning process from the output layer O to the input layer I described in FIG. 5 for each area (step S502).
 次に、空調コントローラ160は、学習結果に応じて、中間層M_1、中間層M_2及び中間層M_3でのパラメータ、重み及びバイアス値を更新する(ステップS503)。空調コントローラ160は、記憶部である内部不揮発領域240に記憶された人情報及びCO2濃度情報を基に、学習モデルmdの学習を行う。 Next, the air conditioning controller 160 updates the parameters, weights, and bias values in the intermediate layer M_1, intermediate layer M_2, and intermediate layer M_3 according to the learning results (step S503). The air conditioning controller 160 performs learning of the learning model md based on the person information and CO2 concentration information stored in the internal nonvolatile area 240, which is a storage unit.
 従って、実施形態1の空調システム100によれば、学習モデルmdを使用して、対象エリアの推論されたCO2濃度情報がCO2濃度情報閾値を超えている場合、BLEビーコンから発信されたCO2センサ190の位置情報によって示される位置に対応する対象エリアの空気調和を行うように空調装置を動作させる。これにより、対象エリアのCO2濃度状態が基準値未満となるように、エリア毎に沿った適切な空気調和状態を維持することができる。 Therefore, according to the air conditioning system 100 of the first embodiment, when the CO2 concentration information inferred in the target area exceeds the CO2 concentration information threshold using the learning model md, the CO2 sensor 190 transmitted from the BLE beacon The air conditioner is operated to perform air conditioning in the target area corresponding to the position indicated by the position information. Thereby, it is possible to maintain an appropriate air conditioning state for each area so that the CO2 concentration state in the target area is less than the reference value.
 実施形態は、例として提示したものであり、請求の範囲を限定することは意図していない。実施形態は、その他の様々な形態で実施されることが可能であり、実施形態の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態及びその変形は、実施形態の範囲及び要旨に含まれる。 The embodiments are presented as examples and are not intended to limit the scope of the claims. The embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the gist of the embodiments. These embodiments and variations thereof are included within the scope and spirit of the embodiments.
 100 空調システム、110 室外機、120 換気装置、130 室内機、140 IoTゲートウェイ、150 人感センサ、160 空調コントローラ、170 外部メモリ、180 クラウド、190 CO2センサ、200 BLEビーコン、210 CO2情報取得部、220 データ処理部、230 データ不揮発部、240 内部不揮発領域、250 外部不揮発領域、260 クラウド不揮発領域、300 BLEセンサ情報取得部、310 CO2データ測定部、320 データ送受信部、I 入力相、O 出力層、M_1、M_2、M_3 中間層、md 学習モデル。 100 Air conditioning system, 110 Outdoor unit, 120 Ventilation system, 130 Indoor unit, 140 IoT gateway, 150 Human sensor, 160 Air conditioning controller, 170 External memory, 180 Cloud, 190 CO2 sensor, 200 BLE beacon, 210 CO2 information acquisition unit , 220 data processing unit, 230 data nonvolatile unit, 240 internal nonvolatile area, 250 external nonvolatile area, 260 cloud nonvolatile area, 300 BLE sensor information acquisition unit, 310 CO2 data measurement unit, 320 data transmission/reception unit, I input phase, O output layer , M_1, M_2, M_3 middle layer, md learning model.

Claims (5)

  1.  屋内の空調設備である空調装置と、
     前記空調装置を制御する空調コントローラと、
     複数の対象エリアのそれぞれに設けられ、CO2濃度情報を取得するCO2センサと、
     前記CO2センサの位置を示す位置情報を発信するBLEビーコンと
    を具備し、
     前記空調コントローラは、
     前記CO2センサにより取得された前記CO2濃度情報から前記対象エリア毎の将来の前記CO2濃度情報を推論する学習モデルを具備し、
     前記学習モデルにより推論された前記対象エリアの前記将来のCO2濃度情報が閾値を超える場合、前記BLEビーコンから発信された前記CO2センサの位置情報によって示される位置に対応する前記対象エリアの空気調和を行うように前記空調装置を動作させる
    空調システム。
    Air conditioning equipment, which is indoor air conditioning equipment,
    an air conditioning controller that controls the air conditioning device;
    A CO2 sensor that is installed in each of the plurality of target areas and acquires CO2 concentration information;
    and a BLE beacon that transmits position information indicating the position of the CO2 sensor,
    The air conditioning controller includes:
    comprising a learning model that infers the future CO2 concentration information for each target area from the CO2 concentration information acquired by the CO2 sensor,
    If the future CO2 concentration information of the target area inferred by the learning model exceeds a threshold, air conditioning of the target area corresponding to the position indicated by the position information of the CO2 sensor transmitted from the BLE beacon is performed. An air conditioning system that operates said air conditioner to perform.
  2.  前記対象エリア毎に前記CO2センサにより取得された現在及び過去の前記CO2濃度情報を蓄積する記憶部を具備する
    請求項1記載の空調システム。
    The air conditioning system according to claim 1, further comprising a storage unit that stores the current and past CO2 concentration information acquired by the CO2 sensor for each target area.
  3.  前記対象エリア毎に設けられ、前記対象エリアの人数と位置とを示す人情報を検出する人感センサを具備し、
     前記記憶部は、前記対象エリア毎に、前記人感センサにより検出された人情報を記憶する
    請求項2記載の空調システム。
    A human sensor is provided in each target area and detects human information indicating the number of people and positions in the target area,
    The air conditioning system according to claim 2, wherein the storage unit stores human information detected by the human sensor for each target area.
  4.  前記空調コントローラは、前記記憶部に記憶された過去の前記人情報及び前記CO2濃度情報を基に、前記学習モデルの学習を行う
    請求項3記載の空調システム。
    The air conditioning system according to claim 3, wherein the air conditioning controller performs learning of the learning model based on the past human information and the CO2 concentration information stored in the storage unit.
  5.  前記空調装置は、換気を行う換気装置及び屋内に温度又は湿度が調節された調和空気の供給を行う室内機を含む
    請求項1~4のいずれか1項に記載の空調システム。
    The air conditioning system according to any one of claims 1 to 4, wherein the air conditioning device includes a ventilation device that performs ventilation and an indoor unit that supplies conditioned air indoors with controlled temperature or humidity.
PCT/JP2022/011807 2022-03-16 2022-03-16 Air conditioning system WO2023175755A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/011807 WO2023175755A1 (en) 2022-03-16 2022-03-16 Air conditioning system
JP2024507281A JPWO2023175755A1 (en) 2022-03-16 2022-03-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/011807 WO2023175755A1 (en) 2022-03-16 2022-03-16 Air conditioning system

Publications (1)

Publication Number Publication Date
WO2023175755A1 true WO2023175755A1 (en) 2023-09-21

Family

ID=88022532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011807 WO2023175755A1 (en) 2022-03-16 2022-03-16 Air conditioning system

Country Status (2)

Country Link
JP (1) JPWO2023175755A1 (en)
WO (1) WO2023175755A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090906A (en) * 2007-10-11 2009-04-30 Denso Corp Co2 concentration detection system
JP2014134343A (en) * 2013-01-10 2014-07-24 Daikin Ind Ltd Air conditioning system
JP2018155461A (en) * 2017-03-21 2018-10-04 東芝キヤリア株式会社 Air conditioning management device
JP2020051723A (en) * 2018-09-28 2020-04-02 ダイキン工業株式会社 Abnormality determination device for transport refrigeration apparatus, transport refrigeration apparatus provided with abnormality determination device, and abnormality determination method for transportation refrigeration apparatus
JP2020094796A (en) * 2018-11-29 2020-06-18 ダイキン工業株式会社 Refrigerant leakage determination system and refrigeration cycle device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090906A (en) * 2007-10-11 2009-04-30 Denso Corp Co2 concentration detection system
JP2014134343A (en) * 2013-01-10 2014-07-24 Daikin Ind Ltd Air conditioning system
JP2018155461A (en) * 2017-03-21 2018-10-04 東芝キヤリア株式会社 Air conditioning management device
JP2020051723A (en) * 2018-09-28 2020-04-02 ダイキン工業株式会社 Abnormality determination device for transport refrigeration apparatus, transport refrigeration apparatus provided with abnormality determination device, and abnormality determination method for transportation refrigeration apparatus
JP2020094796A (en) * 2018-11-29 2020-06-18 ダイキン工業株式会社 Refrigerant leakage determination system and refrigeration cycle device

Also Published As

Publication number Publication date
JPWO2023175755A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
US10613555B2 (en) HVAC controller with wireless network based occupancy detection and control
US10837665B2 (en) Multi-function thermostat with intelligent ventilator control for frost/mold protection and air quality control
US10935270B2 (en) Electronic device and air-conditioning control method therefor
EP1698833B1 (en) Multi-air conditioner central control system
AU2017302766B2 (en) Multi air conditioner
CN101809514B (en) Application of microsystems for comfort control
JP4274163B2 (en) Air conditioning control system
EP1950505B1 (en) System for controlling demand of multi-air conditioner
JP2007107782A (en) Air conditioning control system and air conditioning control device
US20180320916A1 (en) Hvac management system and method
JP2007107871A (en) Facility control system and facility control device
WO2020075824A1 (en) Air conditioner, data transmission method, and air conditioning system
JP2006308280A (en) Air conditioning system and its control method
JP2002238081A (en) Control system and method for electrical appliance
US20200141597A1 (en) Determining window efficiency setting for use in humidity control of a building
US11333382B2 (en) System for heating, ventilation, air-conditioning
WO2023175755A1 (en) Air conditioning system
JP2020125868A (en) Air conditioning system
KR102085799B1 (en) Indoor air conditioning control system using environment measurement sensor connected to user terminal
JP7392394B2 (en) Air conditioning system and air conditioner
US10635067B2 (en) Intelligent building automation apparatus of autonomous control and control method thereof
KR102521766B1 (en) Air conditioning management system
US20230147059A1 (en) Air conditioning system, air-conditioning control program, and storage medium storing air-conditioning control program
US20230358424A1 (en) Operation of environmental control system during thermostat failure
JP2006329441A (en) Humidification air conditioning system and its program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932035

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024507281

Country of ref document: JP

Kind code of ref document: A