WO2023175735A1 - Water vapor observation method - Google Patents

Water vapor observation method Download PDF

Info

Publication number
WO2023175735A1
WO2023175735A1 PCT/JP2022/011696 JP2022011696W WO2023175735A1 WO 2023175735 A1 WO2023175735 A1 WO 2023175735A1 JP 2022011696 W JP2022011696 W JP 2022011696W WO 2023175735 A1 WO2023175735 A1 WO 2023175735A1
Authority
WO
WIPO (PCT)
Prior art keywords
water vapor
value
points
height position
distance
Prior art date
Application number
PCT/JP2022/011696
Other languages
French (fr)
Japanese (ja)
Inventor
道彦 遊佐
雅介 神山
敏之 大石
Original Assignee
日本電気株式会社
Necプラットフォームズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社, Necプラットフォームズ株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2022/011696 priority Critical patent/WO2023175735A1/en
Priority to JP2022539086A priority patent/JP7127928B1/en
Publication of WO2023175735A1 publication Critical patent/WO2023175735A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/08Adaptations of balloons, missiles, or aircraft for meteorological purposes; Radiosondes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/10Devices for predicting weather conditions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present invention relates to a water vapor observation method, a water vapor observation device, and a program.
  • Estimating the amount of water vapor in the atmosphere is used as a method of meteorological observation.
  • GNSS Global Navigation Satellite System
  • Patent Document 1 when receiving a GNSS signal transmitted from a GNSS (Global Navigation Satellite System) satellite on the ground, by measuring the delay time of the GNSS signal due to water vapor in the atmosphere, Techniques for estimating the amount of water vapor in the atmosphere at a receiving point are known. As a result, it is possible to predict rainfall at each location, especially to predict torrential rain caused by the sudden occurrence of cumulonimbus clouds.
  • the installation locations for receiving devices that receive GNSS signals are limited, and there are some locations where the distance between them is 30 km. Then, the amount of water vapor at a point located between the receiving devices must be estimated from the value at the point where the receiving device is installed, but it is not possible to accurately estimate the amount of water vapor at a point where it is not actually measured. It is difficult. Furthermore, even at a location where a receiving device is installed, if the amount of water vapor is estimated only from the GNSS signal, further improvement in accuracy cannot be achieved. As a result, a problem arises in that it is difficult to accurately observe the amount of water vapor at every point.
  • an object of the present invention is to provide a water vapor observation method that can solve the above-mentioned problem that it is difficult to accurately observe the amount of water vapor at every point.
  • a water vapor observation method that is one form of the present invention is as follows: Obtain the water vapor value at each predetermined height position at each of the two points as the measured water vapor value, the measured water vapor value, a first distance that is the distance between the two points, and a second distance that is the distance from at least one of the two points to a target point located between the two points; Calculating the water vapor value at a predetermined height position of the target point based on The structure is as follows.
  • a water vapor observation device that is one form of the present invention is an acquisition unit that acquires a water vapor value at each predetermined height position at each of the two points as a measured water vapor value; the measured water vapor value, a first distance that is the distance between the two points, and a second distance that is the distance from at least one of the two points to a target point located between the two points; a calculation unit that calculates a water vapor value at a predetermined height position of the target point based on; Equipped with The structure is as follows.
  • a program that is one form of the present invention is In the information processing device, Obtain the water vapor value at each predetermined height position at each of the two points as the measured water vapor value, the measured water vapor value, a first distance that is the distance between the two points, and a second distance that is the distance from at least one of the two points to a target point located between the two points; Calculating the water vapor value at a predetermined height position of the target point based on execute the process,
  • the structure is as follows.
  • the present invention can more accurately observe the amount of water vapor at any point.
  • FIG. 1 is a diagram showing the overall configuration of a water vapor observation system in Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the water vapor observation device disclosed in FIG. 1.
  • FIG. 2 is a diagram showing an example of water vapor correspondence information stored in the water vapor observation device disclosed in FIG. 1.
  • FIG. 2 is a diagram showing how satellite images are processed by the water vapor observation device disclosed in FIG. 1.
  • FIG. FIG. 2 is a diagram showing how water vapor value calculation processing is performed by the water vapor observation device disclosed in FIG. 1;
  • FIG. 2 is a diagram showing how water vapor value calculation processing is performed by the water vapor observation device disclosed in FIG. 1;
  • 2 is a flowchart showing the operation of the water vapor observation device disclosed in FIG. 1.
  • FIG. 1 is a diagram showing the overall configuration of a water vapor observation system in Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing the configuration of the water vapor observation
  • FIGS. 1 to 7 are diagrams for explaining the configuration of the water vapor observation system
  • FIGS. 4 to 7 are diagrams for explaining the processing operation of the water vapor observation device.
  • the water vapor observation system in the present invention is a system for performing weather observation for weather prediction, and in particular, for observing water vapor values representing the amount of water vapor at each point in order to predict rainfall and localized heavy rain. belongs to.
  • the water vapor observation system includes a water vapor observation device 10, and a weather information providing device 20 and a satellite image providing device 30, which are connected to the water vapor observation device 10 via a network.
  • a weather information providing device 20 and a satellite image providing device 30 which are connected to the water vapor observation device 10 via a network.
  • the configuration of each device will be described in detail below.
  • the weather information providing device 20 is connected to a GNSS (Global Navigation Satellite System) signal receiving device 21 installed on the ground.
  • the GNSS signal receiving device 21 receives a GNSS signal, which is a radio signal transmitted from a GNSS satellite 22 located above the earth, and provides the GNSS signal to the weather information providing device 20.
  • GNSS signal receiving device 21 is installed at multiple locations on the ground, and may be, for example, about 30 km away from other GNSS signal receiving devices.
  • the GNSS signal receiving device 21 is not necessarily limited to being fixedly installed on the ground, and may be configured as a mobile body such as being mounted on a vehicle.
  • the weather information providing device 20 is an information processing device equipped with a calculation device and a storage device, and by analyzing the acquired GNSS signals, the weather information providing device 20 detects water vapor in the air above the measurement point corresponding to the installation position of the GNSS signal receiving device 21. It has a function to measure the precipitable amount D. Specifically, the weather information providing device 20 measures the delay time due to water vapor in the atmosphere of the GNSS signal received from the GNSS satellite 22 located vertically at the measurement point where the GNSS receiving device 21 is installed. By doing so, the precipitable amount D, which is the total amount of water vapor contained in the vertical sky above the predetermined area of the measurement point, is measured.
  • the precipitable amount D represents the total amount of water vapor from the ground of the measurement point to 12 km above the ground.
  • the weather information providing device 20 has a function of providing the water vapor observation device 10 with the position information representing the position of each measurement point, the precipitable amount D at the measurement point, and the measurement time in association with each other.
  • the function of measuring water vapor values by the weather information providing device 20 described above can be realized by the arithmetic unit of the weather information providing device 20 executing a program for realizing the function.
  • the measurement of the water vapor value by the weather information providing device 20 may be performed by any device or may be performed by other methods.
  • the satellite image providing device 30 is connected to a satellite image receiving device 31 installed on the ground.
  • the satellite image receiving device 31 receives a meteorological satellite image P (photographed image) taken and transmitted by a photographing device mounted on a meteorological satellite 32 located above the earth, and provides the satellite image P as a satellite image.
  • the information is provided to the device 30.
  • the satellite image providing device 30 has a function of providing the acquired satellite image P to the water vapor observation device 10.
  • the satellite image P is an image taken of an area including each measurement point where the amount of water vapor mentioned above was measured.
  • the satellite image P is provided to the water vapor observation device 10 together with information representing the type.
  • the types of satellite images P include visible images, infrared images, water vapor images, cloud top-enhanced images, color composite images, true color reproduction images, and the like.
  • FIG. 4 shows an example of the above-mentioned satellite image P.
  • the weather conditions that can be observed in each type of image such as the presence or absence of clouds, cloud thickness, cloud height, cloud temperature, and water vapor content, are It will be highlighted and displayed.
  • FIG. 4 is shown in gray scale, the weather conditions are shown in gray areas, but in reality, they are displayed in colors set for each type of satellite image P.
  • the satellite image P is not necessarily limited to the types described above.
  • the satellite image providing device 30 when acquiring the satellite image P from the meteorological satellite 32, the satellite image providing device 30 also acquires satellite position information that specifies the position of the meteorological satellite 32 in the sky. Further, when acquiring satellite images P from a plurality of meteorological satellites 32, the satellite image providing device 30 also acquires satellite identification information that identifies the meteorological satellites 32. Then, the satellite image providing device 30 stores the satellite image P, the type of the image, the satellite position information and satellite identification information of the meteorological satellite 32 that took the satellite image, and the time information when the satellite image was taken. It is also provided to the water vapor observation device 10.
  • the function of acquiring and providing the satellite image P by the satellite image providing device 30 described above can be realized by the arithmetic unit of the satellite image providing device 30 executing a program for realizing the function. can.
  • the acquisition and provision of satellite images by the satellite image providing device 30 may be performed by any device or may be performed by other methods.
  • the water vapor observation device 10 is composed of one or more information processing devices equipped with an arithmetic device and a storage device.
  • the water vapor observation device 10 includes an acquisition section 11, an extraction section 12, and a calculation section 13, as shown in FIG.
  • the functions of the acquisition unit 11, the extraction unit 12, and the calculation unit 13 can be realized by the arithmetic unit executing a program stored in the storage device for realizing each function.
  • the water vapor observation device 10 also includes a water vapor value storage section 16, a satellite image storage section 17, and a water vapor correspondence information storage section 18.
  • the water vapor value storage unit 16, the satellite image storage unit 17, and the water vapor corresponding information storage unit 18 are configured by storage devices. Each configuration will be explained in detail below.
  • the water vapor correspondence information storage unit 18 stores water vapor correspondence information generated in advance.
  • the water vapor correspondence information is information based on the water vapor value measured in advance at each predetermined height position at a predetermined point, and is associated with the image feature amount of a predetermined point in a photographed image taken from above. It is information. Specifically, water vapor correspondence information will be explained with reference to FIG. 3.
  • the amount of water vapor at each height position at a specific measurement point has been observed in advance. For example, it is assumed that water vapor values are measured at a height of 1 km from the ground at a specific measurement point to a height of 12 km above the ground using a radiosonde or a lidar sensor. In addition, it is assumed that a satellite image of a specific measurement point is taken at the time of measuring the water vapor value. Then, water vapor correspondence information is generated by extracting the image feature amount at a specific measurement point in the satellite image and associating the image feature amount with the water vapor value for each height position at the specific measurement point. . As a result, the water vapor value for each height position is set corresponding to each image feature amount.
  • brightness values and RGB values are set as image feature amounts, and as an example, brightness value distribution and RGB value distribution of the image area corresponding to the measurement point are set.
  • any feature amount may be set as the image feature amount.
  • Each image feature is associated with a water vapor value for each height position of 1 km from the ground to a height of 12 km above the ground.
  • the water vapor value is represented by the degree of shading of a predetermined color as shown in FIG. 3, but it may also be represented by a numerical value.
  • the water vapor value associated with a certain image feature amount may be set as "1 km: 1.1 g, 2 km: 1.4 g, . . .”.
  • the water vapor value is not limited to the amount of water vapor itself being set; for example, a ratio for each height position to the precipitable amount in the entire sky corresponding to the image feature amount may be set.
  • the water vapor value associated with a certain image feature amount may be set as "1 km: 10%, 2 km: 20%, . . . ".
  • the water vapor correspondence information may be generated for each type of captured image.
  • water vapor correspondence information as shown in FIG. 3 is generated for each type of satellite image P, and the water vapor correspondence information is stored. It may be stored in the section 18.
  • time information based on the time when the satellite image P which is a photographed image was photographed may be associated with the water vapor correspondence information.
  • water vapor corresponding information as shown in Figure 3 is generated for each time information, and the water vapor value is It may be stored in the correspondence information storage section 18.
  • the acquisition unit 11 acquires the precipitable amount D at each measurement point provided by the weather information providing device 20 described above, and stores it in the water vapor value storage unit 16. At this time, the acquisition unit 11 associates and stores the position information specifying each measurement point, the precipitable amount D of the measurement point, and time information such as date and time. Further, the acquisition unit 11 acquires a satellite image P provided from the satellite image providing device 30 described above and stores it in the satellite image storage unit 17. At this time, the acquisition unit 11 associates and stores the satellite image P, the type of the image, the satellite position information and satellite identification information of the meteorological satellite 32 that photographed the satellite image, and time information such as the date and time of photographing. do.
  • the extraction unit 12 reads the satellite image P from the satellite image storage unit 17, and first performs a process of identifying the position of each measurement point where the precipitable amount D was measured on the satellite image P. For example, the extraction unit 12 extracts the meteorological satellite 32 that captured the satellite image P based on the satellite position information associated with the satellite image P and the GNSS reception position information indicating the position of the GNSS receiving device 21 described above. The angle with respect to the GNSS receiving device 21 is calculated. It is assumed that the GNSS reception position information of the GNSS reception device 21 is stored in the water vapor observation device 10 in advance.
  • the extraction unit 12 identifies the position of each measurement point on the satellite image P based on the satellite position information, the GNSS position information, and the calculated angle between the meteorological satellite 32 and the GNSS receiving device 21. For example, the extraction unit 12 identifies each measurement point from the satellite image P, as shown by the ⁇ marks in FIG.
  • the extraction unit 12 extracts the image feature amount Q at each measurement point on the satellite image P from the satellite image P. Specifically, the extraction unit 12 extracts, depending on the type of the satellite image P, image feature amounts representing the state of clouds and water vapor that can be extracted from the characteristics of the image. In particular, the extraction unit 12 extracts the same type of image feature amount in accordance with the image feature amount set in the water vapor correspondence information described above. Therefore, in this embodiment, the brightness value and RGB value in the image area where the measurement point in the photographed image P is located are extracted as the image feature amount of the measurement point. Note that the extraction unit 12 associates time information based on the time when the original satellite image P was taken and the type of the satellite image P with the extracted image feature amount.
  • the calculation unit 13 uses the water vapor correspondence information to calculate the water vapor value for each height position at each measurement point based on the precipitable amount D at each measurement point and the image feature amount of the measurement point. Specifically, the calculation unit 13 first identifies the image feature amount corresponding to the image feature amount Q of the measurement point extracted from the photographed image P from the water vapor correspondence information as shown in FIG. Obtain the water vapor information in the water vapor correspondence information associated with the . Then, the calculation unit 13 calculates a water vapor value for each height position from the precipitable amount D at the measurement point, based on the water vapor value for each height position included in the acquired water vapor information.
  • the calculation unit 13 divides the precipitable amount D at the measurement point for each height position, and divides the precipitable amount D at each height position to correspond to the ratio of water vapor values for each height position included in the acquired water vapor information. Calculate the water vapor value.
  • the calculation of the water vapor value by the calculation unit 13 will be further explained with reference to FIG. 5.
  • the precipitable amount D and the image feature amount Q are acquired.
  • the water vapor value for each height position corresponding to the image feature amount can be found. Therefore, by dividing the precipitable amount D, which is the total amount of water vapor in the sky at the measurement point, according to the ratio of the water vapor value for each height position corresponding to the image feature amount Q, It is possible to calculate the water vapor value for each height position shown in .
  • the calculation unit 13 calculates the The water vapor value for each height position in the same manner as described above using the water vapor correspondence information. Thereby, the water vapor value can be calculated with higher accuracy by using the water vapor correspondence information according to the time zone, month, day, season, etc. in which the satellite image P was taken.
  • the calculation unit 13 calculates Using the correspondence information, the water vapor value for each height position is calculated in the same manner as described above.
  • the calculation unit 13 calculates the water vapor value for each height position at other points other than the measurement points where the GNSS receiving device 21 is not installed, as described below.
  • the water vapor value is calculated for each height position of the two measurement points A and B using the method described above, and the point C between them is the target for calculating the water vapor value. It is assumed to be a point.
  • the distance Dab between measurement points A and B is 1000 m
  • the distance Dac between measurement points A and C is 600 m
  • the distance Dbc between measurement points B and C is 400 m.
  • the calculation unit 13 calculates the water vapor value A12 at the same height position such as 12 km above the ground at measurement points A and B, B12 is used.
  • the difference between the water vapor values A12 and B12 is 5 g, and this 5 g is assigned to point C in accordance with the ratio of the distance Dab from measurement point A to measurement point B and the distance Dac to point C.
  • 5 g will be allocated to point C at a ratio of 600/1000, and by adding the allocated amount of 3 g to 10 g, which is the water vapor value A12 at measurement point A, the water vapor at a height of 12 km from the ground at point C will be
  • the value C12 can be calculated as 13g.
  • the calculation unit 13 can calculate the water vapor value for each height position of the point C indicated by the circle in FIG. Note that the water vapor values at the two known points A and B used at this time may be calculated as described above, for example, measured using a radiosonde or lidar sensor, and acquired by the acquisition unit 11. It may be something that has been done.
  • the calculation unit 13 stores the water vapor value for each height position of each point calculated as described above in the water vapor value storage unit 16. Then, the calculation unit 13 outputs the water vapor value stored in the water vapor value storage unit 16 together with position information representing the measurement point, as necessary, such as when used for weather prediction.
  • the water vapor observation device 10 stores water vapor correspondence information generated in advance (step S1).
  • the water vapor correspondence information is information based on the image feature amount of a predetermined point in a photographed image P taken from above in advance, and the water vapor value measured in advance for each predetermined height position at a predetermined point. This is information associated with certain water vapor information.
  • the water vapor observation device 10 acquires the precipitable amount D at each measurement point from the weather information providing device 20.
  • the water vapor observation device 10 also acquires a satellite image P from the satellite image providing device 30 (step S2).
  • the water vapor observation device 10 performs a process of identifying the position of each measurement point where the precipitable amount D was measured on each satellite image P (step S3). Then, as shown in FIG. 4, the water vapor observation device 10 extracts an image feature Q at each measurement point on the satellite image P from the satellite image P (step S4).
  • the water vapor observation device 10 uses the stored water vapor correspondence information to determine the height at each measurement point based on the precipitable amount D at each measurement point and the image feature Q at the measurement point.
  • a water vapor value for each position is calculated (step S5). Specifically, the water vapor observation device 10 identifies an image feature amount corresponding to the image feature amount Q of the measurement point from the water vapor correspondence information as shown in FIG. Get the water vapor information in the correspondence information. Then, the water vapor observation device 10 calculates the water vapor value for each height position from the precipitable amount D at the measurement point, based on the water vapor value for each height position included in the acquired water vapor information.
  • the water vapor observation device 10 divides the precipitable amount D at the measurement point for each height position according to the proportion of the water vapor value for each height position included in the acquired water vapor information, and divides the precipitable amount D at each height position. Calculate the water vapor value. In this way, the water vapor observation device 10 calculates the water vapor value for each height position at each measurement point, as shown by the ⁇ mark in FIG.
  • the water vapor observation device 10 also calculates water vapor values for each height position for other points other than measurement points where the GNSS receiving device 21 is not installed (step S6). At this time, as shown in FIG. 6, the water vapor observation device 10 calculates the water vapor value for each height position of the two known measurement points A and B, and the distance relationship between the measurement points A and B and the target point C between them. The water vapor value for each height position of the target point C is calculated using .
  • water vapor correspondence information created in advance without using methods such as radiosondes and lidar sensors that are costly, time-consuming, and limit measurement points.
  • water vapor values at each height position at a predetermined point can be measured.
  • the amount of water vapor can be observed with higher accuracy at any location.
  • weather predictions using the observed amount of water vapor rainfall and localized heavy rain can be predicted with high accuracy.
  • FIGS. 8 to 12 are block diagrams showing the configuration of a first example of the water vapor observation device in the second embodiment
  • FIG. 10 is a flowchart showing the operation of the first example of the water vapor observation method
  • FIG. 11 is a block diagram showing the configuration of a second example of the water vapor observation device in Embodiment 2
  • FIG. 12 is a flowchart showing the operation of the second example of the water vapor observation method.
  • the outline of the structure of the water vapor observation apparatus and the water vapor observation method explained in the embodiment mentioned above is shown.
  • the water vapor observation device 100 is constituted by a general information processing device, and is equipped with the following hardware configuration as an example.
  • ⁇ CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • Program group 104 loaded into RAM 103 - Storage device 105 that stores the program group 104 -
  • a drive device 106 that reads and writes from and to a storage medium 110 external to the information processing device -Communication interface 107 that connects to the communication network 111 outside the information processing device ⁇ I/O interface 108 that inputs and outputs data ⁇ Bus 109 connecting each component
  • the CPU 101 acquires the program group 104 and executes it, so that the storage section 121, the acquisition section 122, the extraction section 123, and the calculation section 124 shown in FIG. can be built and equipped.
  • the program group 104 is stored in advance in the storage device 105 or ROM 102, for example, and is loaded into the RAM 103 and executed by the CPU 101 as needed.
  • the program group 104 may be supplied to the CPU 101 via the communication network 111, or may be stored in the storage medium 110 in advance, and the drive device 106 may read the program and supply it to the CPU 101.
  • the storage section 121, the acquisition section 122, the extraction section 123, and the calculation section 124 described above may be constructed of dedicated electronic circuits for realizing such means.
  • FIG. 8 shows an example of the hardware configuration of the information processing device that is the water vapor observation device 100, and the hardware configuration of the information processing device is not limited to the above-mentioned case.
  • the information processing device may be configured from part of the configuration described above, such as not having the drive device 106.
  • the first example of the water vapor observation device 100 uses the functions of the storage section 121, the acquisition section 122, the extraction section 123, and the calculation section 124 constructed by the program as described above to generate water vapor as shown in the flowchart of FIG. Execute the observation method.
  • the water vapor observation device 100 includes: Water vapor correspondence information in which water vapor information, which is information based on water vapor values measured in advance at each predetermined height position at a predetermined point, is associated with the feature amount of a predetermined point in a photographed image taken from the sky in advance. memorize (step S101), Obtaining a new water vapor value at a predetermined point measured based on the received signal from the satellite (step S102), Extracting new features of a predetermined point from a new image taken from above (step S103); calculating a water vapor value for each predetermined height position at a predetermined point based on the new water vapor value, the new feature amount, and the water vapor correspondence information (step S104); Execute the process.
  • water vapor information which is information based on water vapor values measured in advance at each predetermined height position at a predetermined point
  • the water vapor observation device 100 can be equipped with an acquisition unit 131 and a calculation unit 132 shown in FIG. 11 by acquiring the program group 104 and executing it by the CPU 101. I can do it.
  • the program group 104 is stored in advance in the storage device 105 or ROM 102, for example, and is loaded into the RAM 103 and executed by the CPU 101 as needed.
  • the program group 104 may be supplied to the CPU 101 via the communication network 111, or may be stored in the storage medium 110 in advance, and the drive device 106 may read the program and supply it to the CPU 101.
  • the acquisition unit 131 and the calculation unit 132 described above may be constructed of a dedicated electronic circuit for realizing such means.
  • the second example of the water vapor observation device 100 executes the water vapor observation method shown in the flowchart of FIG. 12 by the functions of the acquisition unit 131 and calculation unit 132 constructed by the program as described above.
  • the water vapor observation device 100 includes: Acquire the water vapor value at each predetermined height position at each of the two points as the measured water vapor value (step S111), the measured water vapor value, a first distance that is the distance between the two points, and a second distance that is the distance from at least one of the two points to a target point located between the two points; Calculate the water vapor value at a predetermined height position of the target point based on (step S112); Execute the process.
  • the present invention measures water vapor values at each height position at a predetermined point based on GNSS signals and satellite images by using water vapor correspondence information prepared in advance. I can do it. Moreover, even at a point where a GNSS signal is not acquired, water vapor values can be measured at each height position. As a result, the amount of water vapor can be observed with higher accuracy at any location.
  • Non-transitory computer-readable media include various types of tangible storage media.
  • Examples of non-transitory computer-readable media include magnetic recording media (e.g., flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (e.g., magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, CD-R/W, semiconductor memory (eg, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)).
  • the program may also be supplied to the computer via various types of transitory computer readable media. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can provide the program to the computer via wired communication channels, such as electrical wires and fiber optics, or wireless communication channels.
  • the present invention has been described above with reference to the above-described embodiments, the present invention is not limited to the above-described embodiments.
  • the configuration and details of the present invention can be modified in various ways within the scope of the present invention by those skilled in the art.
  • at least one or more of the functions provided in the water vapor observation device 100 described above may be executed by an information processing device installed and connected to any location on the network, that is, executed by so-called cloud computing. may be done.
  • the water vapor observation method is such that the water vapor information is associated with time information based on the feature amount of a predetermined point and the time of photography of the captured image from which the feature amount is extracted; A water vapor value at each predetermined height position at each of the two points based on the new water vapor value, the new feature amount, information based on the shooting time of the new captured image, and the water vapor correspondence information. calculate, Water vapor observation method.
  • a water vapor observation device equipped with (Appendix 12) The water vapor observation device according to appendix 11, The calculation unit calculates a water vapor value at a predetermined height position of the target point based on a ratio between the first distance and the second distance. Water vapor observation device.
  • the water vapor observation device according to any one of Supplementary Notes 11 to 14, Water vapor correspondence information in which water vapor information, which is information based on water vapor values measured in advance at each predetermined height position at a predetermined point, is associated with the feature amount of a predetermined point in a photographed image taken from the sky in advance. Equipped with a storage unit for storing information, The acquisition unit acquires new water vapor values at the two points measured based on signals received from the satellite, and calculates new water vapor values at the two points from a new image taken from above.
  • Extract the feature amount calculate the water vapor value for each predetermined height position at each of the two points based on the new water vapor value, the new feature amount, and the water vapor correspondence information, and calculate the water vapor value at each predetermined height position at each of the two points. Get it as a value, Water vapor observation device.
  • Appendix A3 The water vapor observation method described in Appendix A1 or A2, obtaining all water vapor values within a predetermined range in the vertical direction at a predetermined point as the new water vapor value; Calculating the water vapor value for each predetermined height position in the vertical direction at the predetermined point based on the new water vapor value at the predetermined point; Water vapor observation method.
  • Appendix A4 The water vapor observation method described in Appendix A3, Based on the water vapor information in the water vapor correspondence information corresponding to the new feature amount at a predetermined point, the new water vapor value at a predetermined point is divided to calculate water vapor at each predetermined height position in the vertical direction. calculate the value, Water vapor observation method.
  • Appendix A5 The water vapor observation method described in Appendix A3 or A4, A predetermined value is calculated from the new water vapor value at a predetermined point in accordance with the ratio of the water vapor value for each predetermined height position according to the water vapor information in the water vapor correspondence information corresponding to the new feature amount at the predetermined point. Calculate the water vapor value at each predetermined height position in the vertical direction at a point, Water vapor observation method.
  • Water vapor correspondence information in which water vapor information, which is information based on water vapor values measured in advance at each predetermined height position at a predetermined point, is associated with the feature amount of a predetermined point in a photographed image taken from the sky in advance.
  • a memory unit that stores information, an acquisition unit that acquires a new water vapor value at a predetermined point measured based on a received signal from a satellite; an extraction unit that extracts a new feature amount of a predetermined point from a new image taken from above; a calculation unit that calculates a water vapor value for each predetermined height position at a predetermined point based on the new water vapor value, the new feature amount, and the water vapor correspondence information;
  • a water vapor observation device equipped with (Appendix A8) The water vapor observation device described in Appendix A7, The water vapor correspondence information is such that the feature amount of a predetermined point is associated with the water vapor information for each predetermined height position in the vertical direction at the predetermined point, The calculation unit calculates a water vapor value at each predetermined height position in the vertical direction at a predetermined point.
  • Water vapor observation device (Appendix A9) The water vapor observation device according to appendix A7 or A8, The acquisition unit acquires all water vapor values within a predetermined range in the vertical direction at a predetermined point as the new water vapor value, The calculation unit calculates a water vapor value at each predetermined height position in a vertical direction at a predetermined point based on the new water vapor value at the predetermined point. Water vapor observation device.
  • Appendix A10 The water vapor observation device described in Appendix A9, The calculation unit divides the new water vapor value at a predetermined point based on the water vapor information in the water vapor correspondence information corresponding to the new feature amount at the predetermined point, and calculates a predetermined vertical height by dividing the new water vapor value at the predetermined point. Calculate the water vapor value for each position, Water vapor observation device.
  • Appendix A11 The water vapor observation device according to appendix A9 or A10, The calculation unit calculates the new feature amount at the predetermined point in correspondence with a ratio of water vapor values for each predetermined height position according to the water vapor information in the water vapor correspondence information corresponding to the new feature amount at the predetermined point.
  • the water vapor observation device calculates the water vapor value at each predetermined height position in the vertical direction at a predetermined point from the water vapor value, Water vapor observation device.
  • the water vapor correspondence information is such that the water vapor information is associated with time information based on the feature amount of a predetermined point and the time of photography of the captured image from which the feature amount is extracted;
  • the calculation unit is configured to calculate a value for each predetermined height position at a predetermined point based on the new water vapor value, the new feature amount, information based on the shooting time at which the newly captured image was taken, and the water vapor correspondence information. Calculate the water vapor value of Water vapor observation device.
  • Water vapor correspondence information in which water vapor information, which is information based on water vapor values measured in advance at each predetermined height position at a predetermined point, is associated with the feature amount of a predetermined point in a photographed image taken from the sky in advance.

Abstract

A water vapor observation device 100 according to the present invention comprises: an acquisition unit 131 that acquires, as a measured water vapor value, a water vapor value for each prescribed height position at each of two points; and a calculation unit 132 that calculates a water vapor value at a prescribed height position at a target point on the basis of the measured water vapor value, a first distance between the two points, and a second distance from at least one of the two points to the target point positioned between the two points.

Description

水蒸気観測方法Water vapor observation method
 本発明は、水蒸気観測方法、水蒸気観測装置、プログラムに関する。 The present invention relates to a water vapor observation method, a water vapor observation device, and a program.
 気象観測の方法として、大気中の水蒸気量を推定することが行われている。例えば、特許文献1に記載のように、GNSS(Global Navigation Satellite System)衛星から発信されるGNSS信号を地上にて受信する際に、大気中の水蒸気によるGNSS信号の遅延時間を計測することで、受信地点における大気中の水蒸気量を推定する技術が知られている。これにより、各地点における降雨予測、特に、突発的な積乱雲の発生による集中豪雨の予測を行うことができる。 Estimating the amount of water vapor in the atmosphere is used as a method of meteorological observation. For example, as described in Patent Document 1, when receiving a GNSS signal transmitted from a GNSS (Global Navigation Satellite System) satellite on the ground, by measuring the delay time of the GNSS signal due to water vapor in the atmosphere, Techniques for estimating the amount of water vapor in the atmosphere at a receiving point are known. As a result, it is possible to predict rainfall at each location, especially to predict torrential rain caused by the sudden occurrence of cumulonimbus clouds.
特開2012-198645号公報Japanese Patent Application Publication No. 2012-198645
 しかしながら、GNSS信号を受信する受信装置の設置場所は限られており、その間隔が30kmとなる場所も存在する。すると、受信装置の間に位置する地点の水蒸気量は、受信装置が設置されている地点の値から推測する必要があるが、実際に計測していない地点では、水蒸気量を精度よく推測することは困難である。また、受信装置が設置されている場所であっても、GNSS信号のみから水蒸気量を推測した場合には、さらなる精度の向上を図ることができない。その結果、あらゆる地点でより精度よく水蒸気量を観測することが困難である、という問題が生じる。 However, the installation locations for receiving devices that receive GNSS signals are limited, and there are some locations where the distance between them is 30 km. Then, the amount of water vapor at a point located between the receiving devices must be estimated from the value at the point where the receiving device is installed, but it is not possible to accurately estimate the amount of water vapor at a point where it is not actually measured. It is difficult. Furthermore, even at a location where a receiving device is installed, if the amount of water vapor is estimated only from the GNSS signal, further improvement in accuracy cannot be achieved. As a result, a problem arises in that it is difficult to accurately observe the amount of water vapor at every point.
 このため、本発明の目的は、上述した課題である、あらゆる地点でより精度よく水蒸気量を観測することが困難である、ことを解決することができる水蒸気観測方法を提供することにある。 Therefore, an object of the present invention is to provide a water vapor observation method that can solve the above-mentioned problem that it is difficult to accurately observe the amount of water vapor at every point.
 本発明の一形態である水蒸気観測方法は、
 2つの地点それぞれにおける所定の高さ位置毎の水蒸気値を計測水蒸気値として取得し、
 前記計測水蒸気値と、前記2つの地点の間の距離である第一距離と、前記2つの地点の少なくとも一方から当該2つの地点の間に位置する対象地点までの距離である第二距離と、に基づいて、前記対象地点の所定の高さ位置の水蒸気値を算出する、
という構成をとる。
A water vapor observation method that is one form of the present invention is as follows:
Obtain the water vapor value at each predetermined height position at each of the two points as the measured water vapor value,
the measured water vapor value, a first distance that is the distance between the two points, and a second distance that is the distance from at least one of the two points to a target point located between the two points; Calculating the water vapor value at a predetermined height position of the target point based on
The structure is as follows.
 また、本発明の一形態である水蒸気観測装置は、
 2つの地点それぞれにおける所定の高さ位置毎の水蒸気値を計測水蒸気値として取得する取得部と、
 前記計測水蒸気値と、前記2つの地点の間の距離である第一距離と、前記2つの地点の少なくとも一方から当該2つの地点の間に位置する対象地点までの距離である第二距離と、に基づいて、前記対象地点の所定の高さ位置の水蒸気値を算出する算出部と、
を備えた、
という構成をとる。
Further, a water vapor observation device that is one form of the present invention is
an acquisition unit that acquires a water vapor value at each predetermined height position at each of the two points as a measured water vapor value;
the measured water vapor value, a first distance that is the distance between the two points, and a second distance that is the distance from at least one of the two points to a target point located between the two points; a calculation unit that calculates a water vapor value at a predetermined height position of the target point based on;
Equipped with
The structure is as follows.
 また、本発明の一形態であるプログラムは、
 情報処理装置に、
 2つの地点それぞれにおける所定の高さ位置毎の水蒸気値を計測水蒸気値として取得し、
 前記計測水蒸気値と、前記2つの地点の間の距離である第一距離と、前記2つの地点の少なくとも一方から当該2つの地点の間に位置する対象地点までの距離である第二距離と、に基づいて、前記対象地点の所定の高さ位置の水蒸気値を算出する、
処理を実行させる、
という構成をとる。
Further, a program that is one form of the present invention is
In the information processing device,
Obtain the water vapor value at each predetermined height position at each of the two points as the measured water vapor value,
the measured water vapor value, a first distance that is the distance between the two points, and a second distance that is the distance from at least one of the two points to a target point located between the two points; Calculating the water vapor value at a predetermined height position of the target point based on
execute the process,
The structure is as follows.
 本発明は、以上のように構成されることにより、あらゆる地点でより精度よく水蒸気量を観測することができる。 By being configured as described above, the present invention can more accurately observe the amount of water vapor at any point.
本発明の実施形態1における水蒸気観測システムの全体構成を図である。1 is a diagram showing the overall configuration of a water vapor observation system in Embodiment 1 of the present invention. 図1に開示した水蒸気観測装置の構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of the water vapor observation device disclosed in FIG. 1. FIG. 図1に開示した水蒸気観測装置に記憶される水蒸気対応情報の一例を示す図である。2 is a diagram showing an example of water vapor correspondence information stored in the water vapor observation device disclosed in FIG. 1. FIG. 図1に開示した水蒸気観測装置による衛星画像の処理の様子を示す図である。2 is a diagram showing how satellite images are processed by the water vapor observation device disclosed in FIG. 1. FIG. 図1に開示した水蒸気観測装置による水蒸気値算出処理の様子を示す図である。FIG. 2 is a diagram showing how water vapor value calculation processing is performed by the water vapor observation device disclosed in FIG. 1; 図1に開示した水蒸気観測装置による水蒸気値算出処理の様子を示す図である。FIG. 2 is a diagram showing how water vapor value calculation processing is performed by the water vapor observation device disclosed in FIG. 1; 図1に開示した水蒸気観測装置の動作を示すフローチャートである。2 is a flowchart showing the operation of the water vapor observation device disclosed in FIG. 1. FIG. 本発明の実施形態2における水蒸気観測装置のハードウェア構成を示すブロック図である。It is a block diagram showing the hardware configuration of the water vapor observation device in Embodiment 2 of the present invention. 本発明の実施形態2における水蒸気観測装置の第一の例の構成を示すブロック図である。It is a block diagram showing the composition of the first example of the water vapor observation device in Embodiment 2 of the present invention. 本発明の実施形態2における水蒸気観測装置の第一の例の動作を示すフローチャートである。It is a flowchart which shows the operation|movement of the first example of the water vapor observation apparatus in Embodiment 2 of this invention. 本発明の実施形態2における水蒸気観測装置の第二の例の構成を示すブロック図である。It is a block diagram showing the composition of the second example of the water vapor observation device in Embodiment 2 of the present invention. 本発明の実施形態2における水蒸気観測装置の第二の例の動作を示すフローチャートである。It is a flowchart which shows the operation|movement of the second example of the water vapor observation apparatus in Embodiment 2 of this invention.
 <実施形態1>
 本発明の第1の実施形態を、図1乃至図7を参照して説明する。図1乃至図3は、水蒸気観測システムの構成を説明するための図であり、図4乃至図7は、水蒸気観測装置の処理動作を説明するための図である。
<Embodiment 1>
A first embodiment of the present invention will be described with reference to FIGS. 1 to 7. 1 to 3 are diagrams for explaining the configuration of the water vapor observation system, and FIGS. 4 to 7 are diagrams for explaining the processing operation of the water vapor observation device.
 [構成]
 本発明における水蒸気観測システムは、気象予測のために気象観測を行うためのシステムであり、特に、降雨や集中豪雨の予測を行うために、各地点における水蒸気の量を表す水蒸気値を観測するためのものである。
[composition]
The water vapor observation system in the present invention is a system for performing weather observation for weather prediction, and in particular, for observing water vapor values representing the amount of water vapor at each point in order to predict rainfall and localized heavy rain. belongs to.
 図1に示すように、水蒸気観測システムは、水蒸気観測装置10と、当該水蒸気観測装置10にネットワークを介して接続された、気象情報提供装置20及び衛星画像提供装置30と、を備えている。以下、各装置の構成について詳述する。 As shown in FIG. 1, the water vapor observation system includes a water vapor observation device 10, and a weather information providing device 20 and a satellite image providing device 30, which are connected to the water vapor observation device 10 via a network. The configuration of each device will be described in detail below.
 気象情報提供装置20は、地上に設置されたGNSS(Global Navigation Satellite System)信号受信装置21に接続されている。GNSS信号受信装置21は、地球の上空に存在するGNSS衛星22から発信された電波信号であるGNSS信号を受信し、当該GNSS信号を気象情報提供装置20に提供する。なお、GNSS信号受信装置21は、地上の複数の地点に設置されており、例えば、他のGNSS信号受信装置との距離が30kmほど離れている場合もある。但し、GNSS信号受信装置21は、必ずしも地上に固定されて設置されていることに限定されず、車両に搭載されるなど移動体で構成されていてもよい。 The weather information providing device 20 is connected to a GNSS (Global Navigation Satellite System) signal receiving device 21 installed on the ground. The GNSS signal receiving device 21 receives a GNSS signal, which is a radio signal transmitted from a GNSS satellite 22 located above the earth, and provides the GNSS signal to the weather information providing device 20. Note that the GNSS signal receiving device 21 is installed at multiple locations on the ground, and may be, for example, about 30 km away from other GNSS signal receiving devices. However, the GNSS signal receiving device 21 is not necessarily limited to being fixedly installed on the ground, and may be configured as a mobile body such as being mounted on a vehicle.
 そして、気象情報提供装置20は、演算装置及び記憶装置を備えた情報処理装置であり、取得したGNSS信号を解析することで、GNSS信号受信装置21の設置位置に対応する計測地点の上空の水蒸気量を表す可降水量Dを計測する機能を有する。具体的に、気象情報提供装置20は、GNSS受信装置21が設置されている計測地点において、その鉛直方向に位置しているGNSS衛星22から受信したGNSS信号の大気中の水蒸気による遅延時間を計測することで、その計測地点の所定領域の鉛直方向上空に含まれる総水蒸気量である可降水量Dを計測する。例えば、本実施形態では、可降水量Dは、計測地点の地上から上空12kmまでの総水蒸気量を表していることとする。そして、気象情報提供装置20は、各計測地点の位置を表す位置情報と、その計測地点の可降水量Dと、計測時刻と、を関連付けて、水蒸気観測装置10に提供する機能を有する。 The weather information providing device 20 is an information processing device equipped with a calculation device and a storage device, and by analyzing the acquired GNSS signals, the weather information providing device 20 detects water vapor in the air above the measurement point corresponding to the installation position of the GNSS signal receiving device 21. It has a function to measure the precipitable amount D. Specifically, the weather information providing device 20 measures the delay time due to water vapor in the atmosphere of the GNSS signal received from the GNSS satellite 22 located vertically at the measurement point where the GNSS receiving device 21 is installed. By doing so, the precipitable amount D, which is the total amount of water vapor contained in the vertical sky above the predetermined area of the measurement point, is measured. For example, in this embodiment, the precipitable amount D represents the total amount of water vapor from the ground of the measurement point to 12 km above the ground. The weather information providing device 20 has a function of providing the water vapor observation device 10 with the position information representing the position of each measurement point, the precipitable amount D at the measurement point, and the measurement time in association with each other.
 なお、上述した気象情報提供装置20による水蒸気値を計測する機能は、当該気象情報提供装置20の演算装置が当該機能を実現するためのプログラムを実行することにより、実現することができる。但し、気象情報提供装置20による水蒸気値の計測は、いかなる装置で行われてもよく、また、他の方法で行われてもよい。 Note that the function of measuring water vapor values by the weather information providing device 20 described above can be realized by the arithmetic unit of the weather information providing device 20 executing a program for realizing the function. However, the measurement of the water vapor value by the weather information providing device 20 may be performed by any device or may be performed by other methods.
 衛星画像提供装置30は、地上に設置された衛星画像受信装置31に接続されている。衛星画像受信装置31は、地球の上空に存在する気象衛星32に搭載された撮影装置にて撮影され発信された気象に関する衛星画像P(撮影画像)を受信し、当該衛星画像Pを衛星画像提供装置30に提供する。そして、衛星画像提供装置30は、取得した衛星画像Pを水蒸気観測装置10に提供する機能を有する。なお、衛星画像Pは、上述した水蒸気量が計測された各計測地点を含む領域を撮影した画像であり、例えば、日本国内の各計測地点の水蒸気量を計測する場合には、日本の本土及び日本の周囲に位置するの海や島、大陸などが映る領域の画像となるが、世界各国の各計測地点の水蒸気量を計測する場合には、世界各国の領域を撮影した画像となる。また、衛星画像Pは複数の種類があり、衛星画像Pをその種類を表す情報と併せて、水蒸気観測装置10に提供する。衛星画像Pの種類としては、例えば、可視画像、赤外画像、水蒸気画像、雲頂強調画像、カラー合成画像、トゥルーカラー再現画像、などがある。 The satellite image providing device 30 is connected to a satellite image receiving device 31 installed on the ground. The satellite image receiving device 31 receives a meteorological satellite image P (photographed image) taken and transmitted by a photographing device mounted on a meteorological satellite 32 located above the earth, and provides the satellite image P as a satellite image. The information is provided to the device 30. The satellite image providing device 30 has a function of providing the acquired satellite image P to the water vapor observation device 10. The satellite image P is an image taken of an area including each measurement point where the amount of water vapor mentioned above was measured. For example, when measuring the amount of water vapor at each measurement point in Japan, it is necessary to This will be an image of the area surrounding Japan, such as the ocean, islands, and continents, but when measuring the amount of water vapor at measurement points around the world, it will be an image of areas around the world. Further, there are a plurality of types of satellite images P, and the satellite image P is provided to the water vapor observation device 10 together with information representing the type. Examples of the types of satellite images P include visible images, infrared images, water vapor images, cloud top-enhanced images, color composite images, true color reproduction images, and the like.
 ここで、図4に、上述した衛星画像Pの一例を示す。図4内の濃淡を施したグレー箇所に示すように、各種類の画像で観測できる気象状況、例えば、雲の有無、雲の厚さ、雲の高さ、雲の温度、水蒸気量など、が強調されて表示されることとなる。なお、図4はグレースケールで示しているため、気象状況をグレー箇所で図しているが、実際には、衛星画像Pの種類毎に設定された色で表示されることとなる。なお、衛星画像Pは、必ずしも上述した種類に限定されない。 Here, FIG. 4 shows an example of the above-mentioned satellite image P. As shown in the gray areas in Figure 4, the weather conditions that can be observed in each type of image, such as the presence or absence of clouds, cloud thickness, cloud height, cloud temperature, and water vapor content, are It will be highlighted and displayed. Note that since FIG. 4 is shown in gray scale, the weather conditions are shown in gray areas, but in reality, they are displayed in colors set for each type of satellite image P. Note that the satellite image P is not necessarily limited to the types described above.
 また、衛星画像提供装置30は、気象衛星32から衛星画像Pを取得する際に、気象衛星32の上空における位置を特定する衛星位置情報も取得する。さらに、衛星画像提供装置30は、複数の気象衛星32から衛星画像Pを取得する際には、かかる気象衛星32を特定する衛星識別情報も取得する。そして、衛星画像提供装置30は、衛星画像Pを、その画像の種類と、その衛星画像を撮影した気象衛星32の衛星位置情報及び衛星識別情報と、その衛星画像を撮影した時刻情報と、を併せて、水蒸気観測装置10に提供する。なお、上述した衛星画像提供装置30による衛星画像Pを取得して提供する機能は、当該衛星画像提供装置30の演算装置が当該機能を実現するためのプログラムを実行することにより、実現することができる。但し、衛星画像提供装置30による衛星画像の取得と提供は、いかなる装置で行われてもよく、また、他の方法で行われてもよい。 Furthermore, when acquiring the satellite image P from the meteorological satellite 32, the satellite image providing device 30 also acquires satellite position information that specifies the position of the meteorological satellite 32 in the sky. Further, when acquiring satellite images P from a plurality of meteorological satellites 32, the satellite image providing device 30 also acquires satellite identification information that identifies the meteorological satellites 32. Then, the satellite image providing device 30 stores the satellite image P, the type of the image, the satellite position information and satellite identification information of the meteorological satellite 32 that took the satellite image, and the time information when the satellite image was taken. It is also provided to the water vapor observation device 10. Note that the function of acquiring and providing the satellite image P by the satellite image providing device 30 described above can be realized by the arithmetic unit of the satellite image providing device 30 executing a program for realizing the function. can. However, the acquisition and provision of satellite images by the satellite image providing device 30 may be performed by any device or may be performed by other methods.
 水蒸気観測装置10は、演算装置と記憶装置とを備えた1台又は複数台の情報処理装置にて構成される。そして、水蒸気観測装置10は、図2に示すように、取得部11、抽出部12、算出部13、を備える。取得部11、抽出部12、算出部13の各機能は、演算装置が記憶装置に格納された各機能を実現するためのプログラムを実行することにより実現することができる。また、水蒸気観測装置10は、水蒸気値記憶部16、衛星画像記憶部17、水蒸気対応情報記憶部18、を備える。水蒸気値記憶部16、衛星画像記憶部17、水蒸気対応情報記憶部18は、記憶装置により構成される。以下、各構成について詳述する。 The water vapor observation device 10 is composed of one or more information processing devices equipped with an arithmetic device and a storage device. The water vapor observation device 10 includes an acquisition section 11, an extraction section 12, and a calculation section 13, as shown in FIG. The functions of the acquisition unit 11, the extraction unit 12, and the calculation unit 13 can be realized by the arithmetic unit executing a program stored in the storage device for realizing each function. The water vapor observation device 10 also includes a water vapor value storage section 16, a satellite image storage section 17, and a water vapor correspondence information storage section 18. The water vapor value storage unit 16, the satellite image storage unit 17, and the water vapor corresponding information storage unit 18 are configured by storage devices. Each configuration will be explained in detail below.
 水蒸気対応情報記憶部18は、予め生成された水蒸気対応情報を記憶する。水蒸気対応情報は、予め上空から撮影された撮影画像における所定地点の画像特徴量に、予め計測された所定地点における所定の高さ位置毎の水蒸気値に基づく情報である水蒸気情報が対応付けられた情報である。具体的に、水蒸気対応情報について、図3を参照して説明する。 The water vapor correspondence information storage unit 18 stores water vapor correspondence information generated in advance. The water vapor correspondence information is information based on the water vapor value measured in advance at each predetermined height position at a predetermined point, and is associated with the image feature amount of a predetermined point in a photographed image taken from above. It is information. Specifically, water vapor correspondence information will be explained with reference to FIG. 3.
 まず、事前に、特定の計測地点における高さ位置毎の水蒸気量が観測されていることとする。例えば、ラジオゾンデやライダーセンサーを用いて、特定の計測地点の地上から上空12kmの高さ位置まで1kmの高さ位置毎に、水蒸気値が計測されていることとする。併せて、かかる水蒸気値の計測時における、特定の計測地点の衛星画像が撮影されていることとする。そして、衛星画像内の特定の計測地点における画像特徴量を抽出し、かかる画像特徴量と、特定の計測地点における高さ位置毎の水蒸気値と、を関連付けることで、水蒸気対応情報が生成される。これにより、画像特徴量毎に対応して、高さ位置毎の水蒸気値が設定されていることとなる。 First, it is assumed that the amount of water vapor at each height position at a specific measurement point has been observed in advance. For example, it is assumed that water vapor values are measured at a height of 1 km from the ground at a specific measurement point to a height of 12 km above the ground using a radiosonde or a lidar sensor. In addition, it is assumed that a satellite image of a specific measurement point is taken at the time of measuring the water vapor value. Then, water vapor correspondence information is generated by extracting the image feature amount at a specific measurement point in the satellite image and associating the image feature amount with the water vapor value for each height position at the specific measurement point. . As a result, the water vapor value for each height position is set corresponding to each image feature amount.
 ここで、図3の例では、画像特徴量として、輝度値及びRGB値が設定されており、一例として、計測地点に対応する画像領域の輝度値分布やRGB値分布などが設定されている。但し、画像特徴量は、いかなる特徴量が設定されていてもよい。そして、各画像特徴量に対して、地上から上空12kmの高さ位置まで1kmの高さ位置毎の水蒸気値が対応付けられている。このとき、水蒸気値は、図3に示すように、所定の色の濃淡度合いによって表されているが、数値で表されていてもよい。一例として、ある画像特徴量に対応付けられる水蒸気値として、「1km:1.1g、2km:1.4g、・・・」などと設定されていてもよい。また、水蒸気値は、水蒸気量そのものが設定されていることに限定されず、例えば、画像特徴量に対応する上空全体における可降水量に対する高さ位置毎の割合が設定されていてもよい。一例として、ある画像特徴量に対応付けられる水蒸気値として、「1km:10%、2km:20%、・・・」などと設定されていてもよい。 Here, in the example of FIG. 3, brightness values and RGB values are set as image feature amounts, and as an example, brightness value distribution and RGB value distribution of the image area corresponding to the measurement point are set. However, any feature amount may be set as the image feature amount. Each image feature is associated with a water vapor value for each height position of 1 km from the ground to a height of 12 km above the ground. At this time, the water vapor value is represented by the degree of shading of a predetermined color as shown in FIG. 3, but it may also be represented by a numerical value. As an example, the water vapor value associated with a certain image feature amount may be set as "1 km: 1.1 g, 2 km: 1.4 g, . . .". Furthermore, the water vapor value is not limited to the amount of water vapor itself being set; for example, a ratio for each height position to the precipitable amount in the entire sky corresponding to the image feature amount may be set. As an example, the water vapor value associated with a certain image feature amount may be set as "1 km: 10%, 2 km: 20%, . . . ".
 なお、水蒸気対応情報は、撮影画像の種類ごとに生成されていてもよい。つまり、撮影画像である衛星画像Pの種類によっては、画像特徴量の特性が異なるため、衛星画像Pの種類ごとに、それぞれ図3に示すような水蒸気対応情報を生成して、水蒸気対応情報記憶部18に記憶されていてもよい。また、水蒸気対応情報には、撮影画像である衛星画像Pが撮影された時刻に基づく時間情報が関連付けられていてもよい。つまり、衛星画像Pの画像特徴量や水蒸気値は、時間帯や月日、季節などによっても変化しうるため、時間情報毎に、それぞれ図3に示すような水蒸気対応情報を生成して、水蒸気対応情報記憶部18に記憶しておいてもよい。 Note that the water vapor correspondence information may be generated for each type of captured image. In other words, since the characteristics of image features differ depending on the type of satellite image P that is a photographed image, water vapor correspondence information as shown in FIG. 3 is generated for each type of satellite image P, and the water vapor correspondence information is stored. It may be stored in the section 18. Moreover, time information based on the time when the satellite image P which is a photographed image was photographed may be associated with the water vapor correspondence information. In other words, since the image feature amount and water vapor value of the satellite image P can change depending on the time of day, month, day, season, etc., water vapor corresponding information as shown in Figure 3 is generated for each time information, and the water vapor value is It may be stored in the correspondence information storage section 18.
 取得部11は、上述した気象情報提供装置20から提供される各計測地点の可降水量Dを取得して、水蒸気値記憶部16に記憶する。このとき、取得部11は、各計測地点を特定する位置情報と、その計測地点の可降水量Dと、日時といった時間情報と、を関連付けて記憶する。また、取得部11は、上述した衛星画像提供装置30から提供される衛星画像Pを取得して、衛星画像記憶部17に記憶する。このとき、取得部11は、衛星画像Pと、その画像の種類と、その衛星画像を撮影した気象衛星32の衛星位置情報及び衛星識別情報と、撮影した日時といった時間情報と、を関連付けて記憶する。 The acquisition unit 11 acquires the precipitable amount D at each measurement point provided by the weather information providing device 20 described above, and stores it in the water vapor value storage unit 16. At this time, the acquisition unit 11 associates and stores the position information specifying each measurement point, the precipitable amount D of the measurement point, and time information such as date and time. Further, the acquisition unit 11 acquires a satellite image P provided from the satellite image providing device 30 described above and stores it in the satellite image storage unit 17. At this time, the acquisition unit 11 associates and stores the satellite image P, the type of the image, the satellite position information and satellite identification information of the meteorological satellite 32 that photographed the satellite image, and time information such as the date and time of photographing. do.
 抽出部12は、衛星画像記憶部17から衛星画像Pを読み出し、まず、かかる衛星画像P上において、可降水量Dを計測した各計測地点の位置を特定する処理を行う。例えば、抽出部12は、衛星画像Pに関連付けられている衛星位置情報と、上述したGNSS受信装置21の位置を表すGNSS受信位置情報と、に基づいて、衛星画像Pを撮影した気象衛星32とGNSS受信装置21との角度を算出する。なお、GNSS受信装置21のGNSS受信位置情報は、予め水蒸気観測装置10に記憶されていることとする。そして、抽出部12は、衛星位置情報、GNSS位置情報、さらには、算出した気象衛星32とGNSS受信装置21との角度に基づいて、衛星画像P上における各計測地点の位置を特定する。例えば、抽出部12は、図4の●印に示すように、衛星画像Pから各計測地点を特定する。 The extraction unit 12 reads the satellite image P from the satellite image storage unit 17, and first performs a process of identifying the position of each measurement point where the precipitable amount D was measured on the satellite image P. For example, the extraction unit 12 extracts the meteorological satellite 32 that captured the satellite image P based on the satellite position information associated with the satellite image P and the GNSS reception position information indicating the position of the GNSS receiving device 21 described above. The angle with respect to the GNSS receiving device 21 is calculated. It is assumed that the GNSS reception position information of the GNSS reception device 21 is stored in the water vapor observation device 10 in advance. Then, the extraction unit 12 identifies the position of each measurement point on the satellite image P based on the satellite position information, the GNSS position information, and the calculated angle between the meteorological satellite 32 and the GNSS receiving device 21. For example, the extraction unit 12 identifies each measurement point from the satellite image P, as shown by the ● marks in FIG.
 そして、抽出部12は、図4に示すように、衛星画像Pから、当該衛星画像P上における各計測地点における画像特徴量Qを抽出する。具体的に、抽出部12は、衛星画像Pの種類に応じて、画像の特性から抽出可能な雲や水蒸気の状況を表す画像特徴量を抽出する。特に、抽出部12は、上述した水蒸気対応情報に設定されている画像特徴量に合わせて、同一種類の画像特徴量を抽出する。このため、本実施形態では、撮影画像P内の計測地点が位置する画像領域における輝度値とRGB値とを、かかる計測地点の画像特徴量として抽出する。なお、抽出部12は、抽出した画像特徴量に、元となる衛星画像Pが撮影された時刻に基づく時間情報や、衛星画像Pの種類を関連付けておく。 Then, as shown in FIG. 4, the extraction unit 12 extracts the image feature amount Q at each measurement point on the satellite image P from the satellite image P. Specifically, the extraction unit 12 extracts, depending on the type of the satellite image P, image feature amounts representing the state of clouds and water vapor that can be extracted from the characteristics of the image. In particular, the extraction unit 12 extracts the same type of image feature amount in accordance with the image feature amount set in the water vapor correspondence information described above. Therefore, in this embodiment, the brightness value and RGB value in the image area where the measurement point in the photographed image P is located are extracted as the image feature amount of the measurement point. Note that the extraction unit 12 associates time information based on the time when the original satellite image P was taken and the type of the satellite image P with the extracted image feature amount.
 算出部13は、水蒸気対応情報を用いて、各計測地点の可降水量Dと、その計測地点の画像特徴量と、に基づいて、各計測地点における高さ位置毎の水蒸気値を算出する。具体的に、算出部13は、まず、図3に示すような水蒸気対応情報内から、撮影画像Pから抽出した計測地点の画像特徴量Qに対応する画像特徴量を特定し、かかる画像特徴量に対応付けられている水蒸気対応情報内の水蒸気情報を取得する。そして、算出部13は、取得した水蒸気情報に含まれる高さ位置毎の水蒸気値に基づいて、計測地点の可降水量Dから高さ位置毎の水蒸気値を算出する。例えば、算出部13は、取得した水蒸気情報に含まれる高さ位置毎の水蒸気値の割合に対応するよう、計測地点の可降水量Dを高さ位置毎に分割して、高さ位置毎の水蒸気値を算出する。 The calculation unit 13 uses the water vapor correspondence information to calculate the water vapor value for each height position at each measurement point based on the precipitable amount D at each measurement point and the image feature amount of the measurement point. Specifically, the calculation unit 13 first identifies the image feature amount corresponding to the image feature amount Q of the measurement point extracted from the photographed image P from the water vapor correspondence information as shown in FIG. Obtain the water vapor information in the water vapor correspondence information associated with the . Then, the calculation unit 13 calculates a water vapor value for each height position from the precipitable amount D at the measurement point, based on the water vapor value for each height position included in the acquired water vapor information. For example, the calculation unit 13 divides the precipitable amount D at the measurement point for each height position, and divides the precipitable amount D at each height position to correspond to the ratio of water vapor values for each height position included in the acquired water vapor information. Calculate the water vapor value.
 ここで、算出部13による水蒸気値の算出の様子を、さらに図5を参照して説明する。まず、各計測地点においては、図5に示すように、可降水量Dと画像特徴量Qが取得されている。そして、画像特徴量Qから、図3に示すような水蒸気対応情報を用いて、かかる画像特徴量に対応する高さ位置毎の水蒸気値がわかる。このため、計測地点における上空の総水蒸気量である可降水量Dを、画像特徴量Qに対応する高さ位置毎の水蒸気値の割合に応じて分割するなどすることで、図5の●印で示した高さ位置毎の水蒸気値を算出することができる。 Here, the calculation of the water vapor value by the calculation unit 13 will be further explained with reference to FIG. 5. First, at each measurement point, as shown in FIG. 5, the precipitable amount D and the image feature amount Q are acquired. Then, from the image feature amount Q, using water vapor correspondence information as shown in FIG. 3, the water vapor value for each height position corresponding to the image feature amount can be found. Therefore, by dividing the precipitable amount D, which is the total amount of water vapor in the sky at the measurement point, according to the ratio of the water vapor value for each height position corresponding to the image feature amount Q, It is possible to calculate the water vapor value for each height position shown in .
 このとき、算出部13は、可降水量Dや画像特徴量に時間情報が関連付けられており、かかる時間情報に対応する時間情報が関連付けられた水蒸気対応情報が記憶されている場合には、かかる水蒸気対応情報を用いて上述同様に高さ位置毎の水蒸気値を算出する。これにより、衛星画像Pが撮影された時間帯や月日、季節などに応じた水蒸気対応情報を利用して、より精度よく水蒸気値を算出することができる。また、算出部13は、画像特徴量に衛星画像Pの種類が関連付けられており、かかる衛星画像Pの種類に対応する種類が関連付けられた水蒸気対応情報が記憶されている場合には、かかる水蒸気対応情報を用いて上述同様に高さ位置毎の水蒸気値を算出する。 At this time, if time information is associated with the precipitable amount D or the image feature amount, and water vapor correspondence information associated with the time information corresponding to the time information is stored, the calculation unit 13 calculates the The water vapor value for each height position is calculated in the same manner as described above using the water vapor correspondence information. Thereby, the water vapor value can be calculated with higher accuracy by using the water vapor correspondence information according to the time zone, month, day, season, etc. in which the satellite image P was taken. In addition, when the type of satellite image P is associated with the image feature amount and water vapor correspondence information associated with the type corresponding to the type of satellite image P is stored, the calculation unit 13 calculates Using the correspondence information, the water vapor value for each height position is calculated in the same manner as described above.
 また、算出部13は、上述したようにGNSS受信装置21が設置されていない計測地点ではない他の地点についても、以下のようにして高さ位置毎の水蒸気値を算出する。ここでは、図6に●印に示すように、上述した方法で2つの計測地点A,Bの高さ位置毎の水蒸気値が算出されており、その間の地点Cを、水蒸気値を算出する対象地点とすることとする。このとき、2つの計測地点A,Bの間の距離Dab(第一距離)と、2つの計測地点A,Bの少なくとも一方から対象地点Cまでの距離Dac又はDbc(第二距離)と、がわかっている必要がある。一例として、計測地点A,B間の距離Dabが1000m、地点A,C間の距離Dacが600m、地点B,C間の距離Dbcが400mであることとする。 Furthermore, as described above, the calculation unit 13 calculates the water vapor value for each height position at other points other than the measurement points where the GNSS receiving device 21 is not installed, as described below. Here, as shown by the ● mark in Fig. 6, the water vapor value is calculated for each height position of the two measurement points A and B using the method described above, and the point C between them is the target for calculating the water vapor value. It is assumed to be a point. At this time, the distance Dab (first distance) between the two measurement points A and B, and the distance Dac or Dbc (second distance) from at least one of the two measurement points A and B to the target point C. You need to know. As an example, assume that the distance Dab between measurement points A and B is 1000 m, the distance Dac between measurement points A and C is 600 m, and the distance Dbc between measurement points B and C is 400 m.
 そして、算出部13は、地点Cにおける地上から高さ12kmの高さ位置の水蒸気値C12を算出するにあたって、計測地点A,Bにおける地上から高さ12kmといった同一の高さ位置の水蒸気値A12,B12を用いる。このとき、例えば、計測地点A,Bにおける地上から高さ12kmの高さ位置の水蒸気値A12,B12が、それぞれ10gと15gであったとする。この場合、水蒸気値A12,B12の差が5gとなり、この5gを、計測地点Aから、計測地点Bまでの距離Dabと地点Cまでの距離Dacとの割合に応じて、地点Cに割り当てる。すると、5gを600/1000で地点Cに割り当てることとなり、その割当量3gを計測地点Aの水蒸気値A12である10gに加算することで、地点Cの地上から高さ12kmの高さ位置の水蒸気値C12を13gとして算出することができる。 Then, in calculating the water vapor value C12 at a height position of 12 km above the ground at point C, the calculation unit 13 calculates the water vapor value A12 at the same height position such as 12 km above the ground at measurement points A and B, B12 is used. At this time, for example, assume that the water vapor values A12 and B12 at measurement points A and B at a height of 12 km from the ground are 10 g and 15 g, respectively. In this case, the difference between the water vapor values A12 and B12 is 5 g, and this 5 g is assigned to point C in accordance with the ratio of the distance Dab from measurement point A to measurement point B and the distance Dac to point C. Then, 5 g will be allocated to point C at a ratio of 600/1000, and by adding the allocated amount of 3 g to 10 g, which is the water vapor value A12 at measurement point A, the water vapor at a height of 12 km from the ground at point C will be The value C12 can be calculated as 13g.
 以上のようにして、算出部13は、図6の○印で示した地点Cの高さ位置毎の水蒸気値を算出することができる。なお、このとき使用する既知の2つの地点A,Bの水蒸気値は、上述したように算出したものであってもよく、例えば、ラジオゾンデやライダーセンサーを用いて計測され、取得部11によって取得されたものであってもよい。 As described above, the calculation unit 13 can calculate the water vapor value for each height position of the point C indicated by the circle in FIG. Note that the water vapor values at the two known points A and B used at this time may be calculated as described above, for example, measured using a radiosonde or lidar sensor, and acquired by the acquisition unit 11. It may be something that has been done.
 なお、算出部13は、上述したように算出した各地点の高さ位置毎の水蒸気値を、水蒸気値記憶部16に記憶する。そして、算出部13は、気象予測に用いられる際など必要に応じて、水蒸気値記憶部16に記憶されている水蒸気値を、計測地点を表す位置情報と共に出力する。 Note that the calculation unit 13 stores the water vapor value for each height position of each point calculated as described above in the water vapor value storage unit 16. Then, the calculation unit 13 outputs the water vapor value stored in the water vapor value storage unit 16 together with position information representing the measurement point, as necessary, such as when used for weather prediction.
 [動作]
 次に、上述した水蒸気観測装置10の動作を、主に図7のフローチャートを参照して説明する。まず、水蒸気観測装置10は、事前に生成された水蒸気対応情報を記憶しておく(ステップS1)。水蒸気対応情報は、図3に示すように、予め上空から撮影された撮影画像Pにおける所定地点の画像特徴量に、予め計測された所定地点における所定の高さ位置毎の水蒸気値に基づく情報である水蒸気情報が対応付けられた情報である。
[motion]
Next, the operation of the water vapor observation device 10 described above will be explained mainly with reference to the flowchart of FIG. 7. First, the water vapor observation device 10 stores water vapor correspondence information generated in advance (step S1). As shown in FIG. 3, the water vapor correspondence information is information based on the image feature amount of a predetermined point in a photographed image P taken from above in advance, and the water vapor value measured in advance for each predetermined height position at a predetermined point. This is information associated with certain water vapor information.
 その後、水蒸気観測装置10は、気象情報提供装置20から各計測地点の可降水量Dを取得する。また、水蒸気観測装置10は、衛星画像提供装置30から衛星画像Pを取得する(ステップS2)。 Thereafter, the water vapor observation device 10 acquires the precipitable amount D at each measurement point from the weather information providing device 20. The water vapor observation device 10 also acquires a satellite image P from the satellite image providing device 30 (step S2).
 続いて、水蒸気観測装置10は、各衛星画像P上において、可降水量Dを計測した各計測地点の位置を特定する処理を行う(ステップS3)。そして、水蒸気観測装置10は、図4に示すように、衛星画像Pから、当該衛星画像P上における各計測地点における画像特徴量Qを抽出する(ステップS4)。 Next, the water vapor observation device 10 performs a process of identifying the position of each measurement point where the precipitable amount D was measured on each satellite image P (step S3). Then, as shown in FIG. 4, the water vapor observation device 10 extracts an image feature Q at each measurement point on the satellite image P from the satellite image P (step S4).
 続いて、水蒸気観測装置10は、記憶している水蒸気対応情報を用いて、各計測地点の可降水量Dと、その計測地点の画像特徴量Qと、に基づいて、各計測地点における高さ位置毎の水蒸気値を算出する(ステップS5)。具体的に、水蒸気観測装置10は、図3に示すような水蒸気対応情報内から、計測地点の画像特徴量Qに対応する画像特徴量を特定し、かかる画像特徴量に対応付けられている水蒸気対応情報内の水蒸気情報を取得する。そして、水蒸気観測装置10は、取得した水蒸気情報に含まれる高さ位置毎の水蒸気値に基づいて、計測地点の可降水量Dから高さ位置毎の水蒸気値を算出する。例えば、水蒸気観測装置10は、取得した水蒸気情報に含まれる高さ位置毎の水蒸気値の割合に応じて、計測地点の可降水量Dを高さ位置毎に分割して、高さ位置毎の水蒸気値を算出する。このようにして、水蒸気観測装置10は、図5の●印に示すように、各計測地点において、高さ位置毎の水蒸気値を算出する。 Next, the water vapor observation device 10 uses the stored water vapor correspondence information to determine the height at each measurement point based on the precipitable amount D at each measurement point and the image feature Q at the measurement point. A water vapor value for each position is calculated (step S5). Specifically, the water vapor observation device 10 identifies an image feature amount corresponding to the image feature amount Q of the measurement point from the water vapor correspondence information as shown in FIG. Get the water vapor information in the correspondence information. Then, the water vapor observation device 10 calculates the water vapor value for each height position from the precipitable amount D at the measurement point, based on the water vapor value for each height position included in the acquired water vapor information. For example, the water vapor observation device 10 divides the precipitable amount D at the measurement point for each height position according to the proportion of the water vapor value for each height position included in the acquired water vapor information, and divides the precipitable amount D at each height position. Calculate the water vapor value. In this way, the water vapor observation device 10 calculates the water vapor value for each height position at each measurement point, as shown by the ● mark in FIG.
 また、水蒸気観測装置10は、GNSS受信装置21が設置されていない計測地点ではない他の地点についても、高さ位置毎の水蒸気値を算出する(ステップS6)。このとき、水蒸気観測装置10は、図6に示すように、既知である2つの計測地点A,Bの高さ位置毎の水蒸気値と、計測地点A,B及びその間の対象地点Cの距離関係を用いて、対象地点Cの高さ位置毎の水蒸気値を算出する。 The water vapor observation device 10 also calculates water vapor values for each height position for other points other than measurement points where the GNSS receiving device 21 is not installed (step S6). At this time, as shown in FIG. 6, the water vapor observation device 10 calculates the water vapor value for each height position of the two known measurement points A and B, and the distance relationship between the measurement points A and B and the target point C between them. The water vapor value for each height position of the target point C is calculated using .
 以上のように、本発明によると、ラジオゾンデやライダーセンサーなどコストや時間がかかり、計測地点が限られてしまうような方法を利用することなく、事前に作成した水蒸気対応情報を用いることで、GNSS信号と衛星画像とに基づいて、所定地点における高さ位置毎の水蒸気値を計測することができる。その結果、あらゆる地点でより精度よく水蒸気量を観測することができる。そして、観測した水蒸気量を用いて気象予測を行うことで、降雨や集中豪雨を精度よく予測することができる。 As described above, according to the present invention, by using water vapor correspondence information created in advance, without using methods such as radiosondes and lidar sensors that are costly, time-consuming, and limit measurement points, Based on GNSS signals and satellite images, water vapor values at each height position at a predetermined point can be measured. As a result, the amount of water vapor can be observed with higher accuracy at any location. By making weather predictions using the observed amount of water vapor, rainfall and localized heavy rain can be predicted with high accuracy.
 <実施形態2>
 次に、本発明の第2の実施形態を、図8乃至図12を参照して説明する。図8乃至図9は、実施形態2における水蒸気観測装置の第一の例の構成を示すブロック図であり、図10は、水蒸気観測方法の第一の例の動作を示すフローチャートである。図11は、実施形態2における水蒸気観測装置の第二の例の構成を示すブロック図であり、図12は、水蒸気観測方法の第二の例の動作を示すフローチャートである。なお、本実施形態では、上述した実施形態で説明した水蒸気観測装置及び水蒸気観測方法の構成の概略を示している。
<Embodiment 2>
Next, a second embodiment of the present invention will be described with reference to FIGS. 8 to 12. 8 to 9 are block diagrams showing the configuration of a first example of the water vapor observation device in the second embodiment, and FIG. 10 is a flowchart showing the operation of the first example of the water vapor observation method. FIG. 11 is a block diagram showing the configuration of a second example of the water vapor observation device in Embodiment 2, and FIG. 12 is a flowchart showing the operation of the second example of the water vapor observation method. In addition, in this embodiment, the outline of the structure of the water vapor observation apparatus and the water vapor observation method explained in the embodiment mentioned above is shown.
 まず、図8を参照して、本実施形態における水蒸気観測装置100のハードウェア構成を説明する。水蒸気観測装置100は、一般的な情報処理装置にて構成されており、一例として、以下のようなハードウェア構成を装備している。
 ・CPU(Central Processing Unit)101(演算装置)
 ・ROM(Read Only Memory)102(記憶装置)
 ・RAM(Random Access Memory)103(記憶装置)
 ・RAM103にロードされるプログラム群104
 ・プログラム群104を格納する記憶装置105
 ・情報処理装置外部の記憶媒体110の読み書きを行うドライブ装置106
 ・情報処理装置外部の通信ネットワーク111と接続する通信インタフェース107
 ・データの入出力を行う入出力インタフェース108
 ・各構成要素を接続するバス109
First, with reference to FIG. 8, the hardware configuration of the water vapor observation device 100 in this embodiment will be described. The water vapor observation device 100 is constituted by a general information processing device, and is equipped with the following hardware configuration as an example.
・CPU (Central Processing Unit) 101 (arithmetic unit)
・ROM (Read Only Memory) 102 (storage device)
・RAM (Random Access Memory) 103 (storage device)
- Program group 104 loaded into RAM 103
- Storage device 105 that stores the program group 104
- A drive device 106 that reads and writes from and to a storage medium 110 external to the information processing device
-Communication interface 107 that connects to the communication network 111 outside the information processing device
・I/O interface 108 that inputs and outputs data
・Bus 109 connecting each component
 そして、水蒸気観測装置100の第一の例では、プログラム群104をCPU101が取得して当該CPU101が実行することで、図9に示す記憶部121と取得部122と抽出部123と算出部124とを構築して装備することができる。なお、プログラム群104は、例えば、予め記憶装置105やROM102に格納されており、必要に応じてCPU101がRAM103にロードして実行する。また、プログラム群104は、通信ネットワーク111を介してCPU101に供給されてもよいし、予め記憶媒体110に格納されており、ドライブ装置106が該プログラムを読み出してCPU101に供給してもよい。但し、上述した記憶部121と取得部122と抽出部123と算出部124とは、かかる手段を実現させるための専用の電子回路で構築されるものであってもよい。 In the first example of the water vapor observation device 100, the CPU 101 acquires the program group 104 and executes it, so that the storage section 121, the acquisition section 122, the extraction section 123, and the calculation section 124 shown in FIG. can be built and equipped. Note that the program group 104 is stored in advance in the storage device 105 or ROM 102, for example, and is loaded into the RAM 103 and executed by the CPU 101 as needed. Further, the program group 104 may be supplied to the CPU 101 via the communication network 111, or may be stored in the storage medium 110 in advance, and the drive device 106 may read the program and supply it to the CPU 101. However, the storage section 121, the acquisition section 122, the extraction section 123, and the calculation section 124 described above may be constructed of dedicated electronic circuits for realizing such means.
 なお、図8は、水蒸気観測装置100である情報処理装置のハードウェア構成の一例を示しており、情報処理装置のハードウェア構成は上述した場合に限定されない。例えば、情報処理装置は、ドライブ装置106を有さないなど、上述した構成の一部から構成されてもよい。 Note that FIG. 8 shows an example of the hardware configuration of the information processing device that is the water vapor observation device 100, and the hardware configuration of the information processing device is not limited to the above-mentioned case. For example, the information processing device may be configured from part of the configuration described above, such as not having the drive device 106.
 そして、水蒸気観測装置100の第一の例は、上述したようにプログラムによって構築された、記憶部121と取得部122と抽出部123と算出部124との機能により、図7のフローチャートに示す水蒸気観測方法を実行する。 The first example of the water vapor observation device 100 uses the functions of the storage section 121, the acquisition section 122, the extraction section 123, and the calculation section 124 constructed by the program as described above to generate water vapor as shown in the flowchart of FIG. Execute the observation method.
 図7に示すように、水蒸気観測装置100は、
 予め上空から撮影された撮影画像の所定の地点の特徴量に、予め計測された所定の地点における所定の高さ位置毎の水蒸気値に基づく情報である水蒸気情報が対応付けられた水蒸気対応情報を記憶し(ステップS101)、
 衛星からの受信信号に基づいて計測された、所定の地点における新たな水蒸気値を取得し(ステップS102)、
 新たに上空から撮影された新たな撮影画像から、所定の地点の新たな特徴量を抽出し(ステップS103)、
 前記新たな水蒸気値と前記新たな特徴量と前記水蒸気対応情報とに基づいて、所定の地点における所定の高さ位置毎の水蒸気値を算出する(ステップS104)、
という処理を実行する。
As shown in FIG. 7, the water vapor observation device 100 includes:
Water vapor correspondence information in which water vapor information, which is information based on water vapor values measured in advance at each predetermined height position at a predetermined point, is associated with the feature amount of a predetermined point in a photographed image taken from the sky in advance. memorize (step S101),
Obtaining a new water vapor value at a predetermined point measured based on the received signal from the satellite (step S102),
Extracting new features of a predetermined point from a new image taken from above (step S103);
calculating a water vapor value for each predetermined height position at a predetermined point based on the new water vapor value, the new feature amount, and the water vapor correspondence information (step S104);
Execute the process.
 また、水蒸気観測装置100は、第二の例として、プログラム群104をCPU101が取得して当該CPU101が実行することで、図11に示す取得部131と算出部132とを構築して装備することができる。なお、プログラム群104は、例えば、予め記憶装置105やROM102に格納されており、必要に応じてCPU101がRAM103にロードして実行する。また、プログラム群104は、通信ネットワーク111を介してCPU101に供給されてもよいし、予め記憶媒体110に格納されており、ドライブ装置106が該プログラムを読み出してCPU101に供給してもよい。但し、上述した取得部131と算出部132とは、かかる手段を実現させるための専用の電子回路で構築されるものであってもよい。 In addition, as a second example, the water vapor observation device 100 can be equipped with an acquisition unit 131 and a calculation unit 132 shown in FIG. 11 by acquiring the program group 104 and executing it by the CPU 101. I can do it. Note that the program group 104 is stored in advance in the storage device 105 or ROM 102, for example, and is loaded into the RAM 103 and executed by the CPU 101 as needed. Further, the program group 104 may be supplied to the CPU 101 via the communication network 111, or may be stored in the storage medium 110 in advance, and the drive device 106 may read the program and supply it to the CPU 101. However, the acquisition unit 131 and the calculation unit 132 described above may be constructed of a dedicated electronic circuit for realizing such means.
 そして、水蒸気観測装置100の第二の例は、上述したようにプログラムによって構築された取得部131と算出部132との機能により、図12のフローチャートに示す水蒸気観測方法を実行する。 The second example of the water vapor observation device 100 executes the water vapor observation method shown in the flowchart of FIG. 12 by the functions of the acquisition unit 131 and calculation unit 132 constructed by the program as described above.
 図12に示すように、水蒸気観測装置100は、
 2つの地点それぞれにおける所定の高さ位置毎の水蒸気値を計測水蒸気値として取得し(ステップS111)、
 前記計測水蒸気値と、前記2つの地点の間の距離である第一距離と、前記2つの地点の少なくとも一方から当該2つの地点の間に位置する対象地点までの距離である第二距離と、に基づいて、前記対象地点の所定の高さ位置の水蒸気値を算出する(ステップS112)、
という処理を実行する。
As shown in FIG. 12, the water vapor observation device 100 includes:
Acquire the water vapor value at each predetermined height position at each of the two points as the measured water vapor value (step S111),
the measured water vapor value, a first distance that is the distance between the two points, and a second distance that is the distance from at least one of the two points to a target point located between the two points; Calculate the water vapor value at a predetermined height position of the target point based on (step S112);
Execute the process.
 本発明は、以上のように構成されることにより、事前に用意した水蒸気対応情報を用いることで、GNSS信号と衛星画像とに基づいて、所定地点における高さ位置毎の水蒸気値を計測することができる。また、GNSS信号を取得していない地点であっても、高さ位置毎の水蒸気値を計測することができる。その結果、あらゆる地点でより精度よく水蒸気量を観測することができる。 With the above configuration, the present invention measures water vapor values at each height position at a predetermined point based on GNSS signals and satellite images by using water vapor correspondence information prepared in advance. I can do it. Moreover, even at a point where a GNSS signal is not acquired, water vapor values can be measured at each height position. As a result, the amount of water vapor can be observed with higher accuracy at any location.
 なお、上述したプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 Note that the above-mentioned programs can be stored and supplied to a computer using various types of non-transitory computer readable media. Non-transitory computer-readable media include various types of tangible storage media. Examples of non-transitory computer-readable media include magnetic recording media (e.g., flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (e.g., magneto-optical disks), CD-ROMs (Read Only Memory), CD-Rs, CD-R/W, semiconductor memory (eg, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)). The program may also be supplied to the computer via various types of transitory computer readable media. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves. The temporary computer-readable medium can provide the program to the computer via wired communication channels, such as electrical wires and fiber optics, or wireless communication channels.
 以上、上記実施形態等を参照して本願発明を説明したが、本願発明は、上述した実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明の範囲内で当業者が理解しうる様々な変更をすることができる。また、上述した水蒸気観測装置100が備える機能のうちの少なくとも一以上の機能は、ネットワーク上のいかなる場所に設置され接続された情報処理装置で実行されてもよく、つまり、いわゆるクラウドコンピューティングで実行されてもよい。 Although the present invention has been described above with reference to the above-described embodiments, the present invention is not limited to the above-described embodiments. The configuration and details of the present invention can be modified in various ways within the scope of the present invention by those skilled in the art. Further, at least one or more of the functions provided in the water vapor observation device 100 described above may be executed by an information processing device installed and connected to any location on the network, that is, executed by so-called cloud computing. may be done.
 <付記>
 上記実施形態の一部又は全部は、以下の付記のようにも記載されうる。以下、本発明における水蒸気観測方法、水蒸気観測装置、プログラムの構成の概略を説明する。但し、本発明は、以下の構成に限定されない。
(付記1)
 2つの地点それぞれにおける所定の高さ位置毎の水蒸気値を計測水蒸気値として取得し、
 前記計測水蒸気値と、前記2つの地点の間の距離である第一距離と、前記2つの地点の少なくとも一方から当該2つの地点の間に位置する対象地点までの距離である第二距離と、に基づいて、前記対象地点の所定の高さ位置の水蒸気値を算出する、
水蒸気観測方法。
(付記2)
 付記1に記載の水蒸気観測方法であって、
 前記第一距離と前記第二距離との割合に基づいて、前記対象地点の所定の高さ位置の水蒸気値を算出する、
水蒸気観測方法。
(付記3)
 付記1又は2に記載の水蒸気観測方法であって、
 前記2つの地点それぞれにおける同一の高さ位置の水蒸気値と、前記第一距離と、前記第二距離と、に基づいて、前記対象地点の所定の高さ位置の水蒸気値を算出する、
水蒸気観測方法。
(付記4)
 付記3に記載の水蒸気観測方法であって、
 前記2つの地点それぞれにおける同一の高さ位置の水蒸気値の差と、前記第一距離と、前記第二距離と、に基づいて、前記対象地点の所定の高さ位置の水蒸気値を算出する、
水蒸気観測方法。
(付記5)
 付記1乃至4のいずれかに記載の水蒸気観測方法であって、
 予め上空から撮影された撮影画像の所定の地点の特徴量に、予め計測された所定の地点における所定の高さ位置毎の水蒸気値に基づく情報である水蒸気情報が対応付けられた水蒸気対応情報を記憶し、
 衛星からの受信信号に基づいて計測された、前記2つの地点における新たな水蒸気値を取得し、
 新たに上空から撮影された新たな撮影画像から、前記2つの地点の新たな特徴量を抽出し、
 前記新たな水蒸気値と前記新たな特徴量と前記水蒸気対応情報とに基づいて、前記2つの地点それぞれにおける所定の高さ位置毎の水蒸気値を算出し、前記計測水蒸気値として取得する、
水蒸気観測方法。
(付記6)
 付記5に記載の水蒸気観測方法であって、
 前記水蒸気対応情報は、所定の地点の前記特徴量に、当該所定の地点における鉛直方向の所定の高さ位置毎の前記水蒸気情報が対応付けられており、
 前記2つの地点それぞれにおける鉛直方向の所定の高さ位置毎の水蒸気値を算出する、
水蒸気観測方法。
(付記7)
 付記5又は6に記載の水蒸気観測方法であって、
 前記2つの地点それぞれにおける鉛直方向の所定範囲内の全ての水蒸気値を前記新たな水蒸気値として取得し、
 前記2つの地点それぞれにおける前記新たな水蒸気値に基づいて、当該2つの地点それぞれにおける鉛直方向の所定の高さ位置毎の水蒸気値を算出する、
水蒸気観測方法。
(付記8)
 付記7に記載の水蒸気観測方法であって、
 前記2つの地点それぞれにおける前記新たな特徴量に対応する前記水蒸気対応情報内の前記水蒸気情報に基づいて、前記2つの地点それぞれにおける前記新たな水蒸気値を分割して、鉛直方向の所定の高さ位置毎の水蒸気値を算出する、
水蒸気観測方法。
(付記9)
 付記7又は8に記載の水蒸気観測方法であって、
 前記2つの地点それぞれにおける前記新たな特徴量に対応する前記水蒸気対応情報内の前記水蒸気情報による所定の高さ位置毎の水蒸気値の割合に対応させて、前記2つの地点それぞれにおける前記新たな水蒸気値から当該2つの地点それぞれにおける鉛直方向の所定の高さ位置毎の水蒸気値を算出する、
水蒸気観測方法。
(付記10)
 付記5乃至9のいずれかに記載の水蒸気観測方法であって、
 前記水蒸気対応情報は、所定の地点の前記特徴量及び当該特徴量が抽出された前記撮影画像の撮影時刻に基づく時間情報に、前記水蒸気情報が対応付けられており、
 前記新たな水蒸気値と前記新たな特徴量と前記新たな撮影画像を撮影した撮影時刻に基づく情報と前記水蒸気対応情報とに基づいて、前記2つの地点それぞれにおける所定の高さ位置毎の水蒸気値を算出する、
水蒸気観測方法。
(付記11)
 2つの地点それぞれにおける所定の高さ位置毎の水蒸気値を計測水蒸気値として取得する取得部と、
 前記計測水蒸気値と、前記2つの地点の間の距離である第一距離と、前記2つの地点の少なくとも一方から当該2つの地点の間に位置する対象地点までの距離である第二距離と、に基づいて、前記対象地点の所定の高さ位置の水蒸気値を算出する算出部と、
を備えた水蒸気観測装置。
(付記12)
 付記11に記載の水蒸気観測装置であって、
 前記算出部は、前記第一距離と前記第二距離との割合に基づいて、前記対象地点の所定の高さ位置の水蒸気値を算出する、
水蒸気観測装置。
(付記13)
 付記11又は12に記載の水蒸気観測装置であって、
 前記算出部は、前記2つの地点それぞれにおける同一の高さ位置の水蒸気値と、前記第一距離と、前記第二距離と、に基づいて、前記対象地点の所定の高さ位置の水蒸気値を算出する、
水蒸気観測装置。
(付記14)
 付記13に記載の水蒸気観測装置であって、
 前記算出部は、前記2つの地点それぞれにおける同一の高さ位置の水蒸気値の差と、前記第一距離と、前記第二距離と、に基づいて、前記対象地点の所定の高さ位置の水蒸気値を算出する、
水蒸気観測装置。
(付記15)
 付記11乃至14のいずれかに記載の水蒸気観測装置であって、
 予め上空から撮影された撮影画像の所定の地点の特徴量に、予め計測された所定の地点における所定の高さ位置毎の水蒸気値に基づく情報である水蒸気情報が対応付けられた水蒸気対応情報を記憶する記憶部を備え、
 前記取得部は、衛星からの受信信号に基づいて計測された、前記2つの地点における新たな水蒸気値を取得し、新たに上空から撮影された新たな撮影画像から、前記2つの地点の新たな特徴量を抽出し、前記新たな水蒸気値と前記新たな特徴量と前記水蒸気対応情報とに基づいて、前記2つの地点それぞれにおける所定の高さ位置毎の水蒸気値を算出して、前記計測水蒸気値として取得する、
水蒸気観測装置。
(付記16)
 情報処理装置に、
 2つの地点それぞれにおける所定の高さ位置毎の水蒸気値を計測水蒸気値として取得し、
 前記計測水蒸気値と、前記2つの地点の間の距離である第一距離と、前記2つの地点の少なくとも一方から当該2つの地点の間に位置する対象地点までの距離である第二距離と、に基づいて、前記対象地点の所定の高さ位置の水蒸気値を算出する、
処理を実行させるためのプログラムを記憶したコンピュータにて読み取り可能な記憶媒体。
(付記A1)
 予め上空から撮影された撮影画像の所定の地点の特徴量に、予め計測された所定の地点における所定の高さ位置毎の水蒸気値に基づく情報である水蒸気情報が対応付けられた水蒸気対応情報を記憶し、
 衛星からの受信信号に基づいて計測された、所定の地点における新たな水蒸気値を取得し、
 新たに上空から撮影された新たな撮影画像から、所定の地点の新たな特徴量を抽出し、
 前記新たな水蒸気値と前記新たな特徴量と前記水蒸気対応情報とに基づいて、所定の地点における所定の高さ位置毎の水蒸気値を算出する、
水蒸気観測方法。
(付記A2)
 付記A1に記載の水蒸気観測方法であって、
 前記水蒸気対応情報は、所定の地点の前記特徴量に、当該所定の地点における鉛直方向の所定の高さ位置毎の前記水蒸気情報が対応付けられており、
 所定の地点における鉛直方向の所定の高さ位置毎の水蒸気値を算出する、
水蒸気観測方法。
(付記A3)
 付記A1又はA2に記載の水蒸気観測方法であって、
 所定の地点における鉛直方向の所定範囲内の全ての水蒸気値を前記新たな水蒸気値として取得し、
 所定の地点における前記新たな水蒸気値に基づいて、所定の地点における鉛直方向の所定の高さ位置毎の水蒸気値を算出する、
水蒸気観測方法。
(付記A4)
 付記A3に記載の水蒸気観測方法であって、
 所定の地点における前記新たな特徴量に対応する前記水蒸気対応情報内の前記水蒸気情報に基づいて、所定の地点における前記新たな水蒸気値を分割して、鉛直方向の所定の高さ位置毎の水蒸気値を算出する、
水蒸気観測方法。
(付記A5)
 付記A3又はA4に記載の水蒸気観測方法であって、
 所定の地点における前記新たな特徴量に対応する前記水蒸気対応情報内の前記水蒸気情報による所定の高さ位置毎の水蒸気値の割合に対応させて、所定の地点における前記新たな水蒸気値から所定の地点における鉛直方向の所定の高さ位置毎の水蒸気値を算出する、
水蒸気観測方法。
(付記A6)
 付記A1乃至A5のいずれかに記載の水蒸気観測方法であって、
 前記水蒸気対応情報は、所定の地点の前記特徴量及び当該特徴量が抽出された前記撮影画像の撮影時刻に基づく時間情報に、前記水蒸気情報が対応付けられており、
 前記新たな水蒸気値と前記新たな特徴量と前記新たな撮影画像を撮影した撮影時刻に基づく情報と前記水蒸気対応情報とに基づいて、所定の地点における所定の高さ位置毎の水蒸気値を算出する、
水蒸気観測方法。
(付記A7)
 予め上空から撮影された撮影画像の所定の地点の特徴量に、予め計測された所定の地点における所定の高さ位置毎の水蒸気値に基づく情報である水蒸気情報が対応付けられた水蒸気対応情報を記憶する記憶部と、
 衛星からの受信信号に基づいて計測された、所定の地点における新たな水蒸気値を取得する取得部と、
 新たに上空から撮影された新たな撮影画像から、所定の地点の新たな特徴量を抽出する抽出部と、
 前記新たな水蒸気値と前記新たな特徴量と前記水蒸気対応情報とに基づいて、所定の地点における所定の高さ位置毎の水蒸気値を算出する算出部と、
を備えた水蒸気観測装置。
(付記A8)
 付記A7に記載の水蒸気観測装置であって、
 前記水蒸気対応情報は、所定の地点の前記特徴量に、当該所定の地点における鉛直方向の所定の高さ位置毎の前記水蒸気情報が対応付けられており、
 前記算出部は、所定の地点における鉛直方向の所定の高さ位置毎の水蒸気値を算出する、
水蒸気観測装置。
(付記A9)
 付記A7又はA8に記載の水蒸気観測装置であって、
 前記取得部は、所定の地点における鉛直方向の所定範囲内の全ての水蒸気値を前記新たな水蒸気値として取得し、
 前記算出部は、所定の地点における前記新たな水蒸気値に基づいて、所定の地点における鉛直方向の所定の高さ位置毎の水蒸気値を算出する、
水蒸気観測装置。
(付記A10)
 付記A9に記載の水蒸気観測装置であって、
 前記算出部は、所定の地点における前記新たな特徴量に対応する前記水蒸気対応情報内の前記水蒸気情報に基づいて、所定の地点における前記新たな水蒸気値を分割して、鉛直方向の所定の高さ位置毎の水蒸気値を算出する、
水蒸気観測装置。
(付記A11)
 付記A9又はA10に記載の水蒸気観測装置であって、
 前記算出部は、所定の地点における前記新たな特徴量に対応する前記水蒸気対応情報内の前記水蒸気情報による所定の高さ位置毎の水蒸気値の割合に対応させて、所定の地点における前記新たな水蒸気値から所定の地点における鉛直方向の所定の高さ位置毎の水蒸気値を算出する、
水蒸気観測装置。
(付記A12)
 付記A7乃至A11のいずれかに記載の水蒸気観測装置であって、
 前記水蒸気対応情報は、所定の地点の前記特徴量及び当該特徴量が抽出された前記撮影画像の撮影時刻に基づく時間情報に、前記水蒸気情報が対応付けられており、
 前記算出部は、前記新たな水蒸気値と前記新たな特徴量と前記新たな撮影画像を撮影した撮影時刻に基づく情報と前記水蒸気対応情報とに基づいて、所定の地点における所定の高さ位置毎の水蒸気値を算出する、
水蒸気観測装置。
(付記A13)
 情報処理装置に、
 予め上空から撮影された撮影画像の所定の地点の特徴量に、予め計測された所定の地点における所定の高さ位置毎の水蒸気値に基づく情報である水蒸気情報が対応付けられた水蒸気対応情報を記憶し、
 衛星からの受信信号に基づいて計測された、所定の地点における新たな水蒸気値を取得し、
 新たに上空から撮影された新たな撮影画像から、所定の地点の新たな特徴量を抽出し、
 前記新たな水蒸気値と前記新たな特徴量と前記水蒸気対応情報とに基づいて、所定の地点における所定の高さ位置毎の水蒸気値を算出する、
処理を実行させるためのプログラムを記憶したコンピュータにて読み取り可能な記憶媒体。
<Additional notes>
Part or all of the above embodiments may also be described as in the following additional notes. Hereinafter, the outline of the structure of the water vapor observation method, water vapor observation device, and program according to the present invention will be explained. However, the present invention is not limited to the following configuration.
(Additional note 1)
Obtain the water vapor value at each predetermined height position at each of the two points as the measured water vapor value,
the measured water vapor value, a first distance that is the distance between the two points, and a second distance that is the distance from at least one of the two points to a target point located between the two points; Calculating the water vapor value at a predetermined height position of the target point based on
Water vapor observation method.
(Additional note 2)
The water vapor observation method described in Supplementary Note 1,
calculating a water vapor value at a predetermined height position of the target point based on a ratio of the first distance and the second distance;
Water vapor observation method.
(Additional note 3)
The water vapor observation method according to Supplementary note 1 or 2,
Calculating a water vapor value at a predetermined height position at the target point based on the water vapor value at the same height position at each of the two points, the first distance, and the second distance;
Water vapor observation method.
(Additional note 4)
The water vapor observation method described in Appendix 3,
Calculating a water vapor value at a predetermined height position at the target point based on the difference in water vapor value at the same height position at each of the two points, the first distance, and the second distance;
Water vapor observation method.
(Appendix 5)
The water vapor observation method according to any one of Supplementary Notes 1 to 4,
Water vapor correspondence information in which water vapor information, which is information based on water vapor values measured in advance at each predetermined height position at a predetermined point, is associated with the feature amount of a predetermined point in a photographed image taken from the sky in advance. remember,
obtaining new water vapor values at the two points measured based on signals received from the satellite;
Extract new features of the two points from a new image taken from above,
Based on the new water vapor value, the new feature amount, and the water vapor correspondence information, calculate a water vapor value for each predetermined height position at each of the two points, and obtain it as the measured water vapor value.
Water vapor observation method.
(Appendix 6)
The water vapor observation method described in Appendix 5,
The water vapor correspondence information is such that the feature amount of a predetermined point is associated with the water vapor information for each predetermined height position in the vertical direction at the predetermined point,
Calculating the water vapor value for each predetermined height position in the vertical direction at each of the two points,
Water vapor observation method.
(Appendix 7)
The water vapor observation method according to appendix 5 or 6,
obtaining all water vapor values within a predetermined range in the vertical direction at each of the two points as the new water vapor value;
Calculating a water vapor value for each predetermined height position in the vertical direction at each of the two points based on the new water vapor value at each of the two points,
Water vapor observation method.
(Appendix 8)
The water vapor observation method described in Appendix 7,
Based on the water vapor information in the water vapor correspondence information corresponding to the new feature amount at each of the two points, the new water vapor value at each of the two points is divided to a predetermined height in the vertical direction. Calculate the water vapor value for each location,
Water vapor observation method.
(Appendix 9)
The water vapor observation method according to appendix 7 or 8,
The new water vapor at each of the two points corresponds to the ratio of the water vapor value for each predetermined height position according to the water vapor information in the water vapor correspondence information corresponding to the new feature amount at each of the two points. Calculating the water vapor value at each predetermined height position in the vertical direction at each of the two points from the value,
Water vapor observation method.
(Appendix 10)
The water vapor observation method according to any one of Supplementary Notes 5 to 9,
The water vapor correspondence information is such that the water vapor information is associated with time information based on the feature amount of a predetermined point and the time of photography of the captured image from which the feature amount is extracted;
A water vapor value at each predetermined height position at each of the two points based on the new water vapor value, the new feature amount, information based on the shooting time of the new captured image, and the water vapor correspondence information. calculate,
Water vapor observation method.
(Appendix 11)
an acquisition unit that acquires a water vapor value at each predetermined height position at each of the two points as a measured water vapor value;
the measured water vapor value, a first distance that is the distance between the two points, and a second distance that is the distance from at least one of the two points to a target point located between the two points; a calculation unit that calculates a water vapor value at a predetermined height position of the target point based on;
A water vapor observation device equipped with
(Appendix 12)
The water vapor observation device according to appendix 11,
The calculation unit calculates a water vapor value at a predetermined height position of the target point based on a ratio between the first distance and the second distance.
Water vapor observation device.
(Appendix 13)
The water vapor observation device according to appendix 11 or 12,
The calculation unit calculates the water vapor value at a predetermined height position of the target point based on the water vapor value at the same height position at each of the two points, the first distance, and the second distance. calculate,
Water vapor observation device.
(Appendix 14)
The water vapor observation device according to appendix 13,
The calculation unit calculates water vapor at a predetermined height position of the target point based on the difference in water vapor values at the same height position at each of the two points, the first distance, and the second distance. calculate the value,
Water vapor observation device.
(Appendix 15)
The water vapor observation device according to any one of Supplementary Notes 11 to 14,
Water vapor correspondence information in which water vapor information, which is information based on water vapor values measured in advance at each predetermined height position at a predetermined point, is associated with the feature amount of a predetermined point in a photographed image taken from the sky in advance. Equipped with a storage unit for storing information,
The acquisition unit acquires new water vapor values at the two points measured based on signals received from the satellite, and calculates new water vapor values at the two points from a new image taken from above. Extract the feature amount, calculate the water vapor value for each predetermined height position at each of the two points based on the new water vapor value, the new feature amount, and the water vapor correspondence information, and calculate the water vapor value at each predetermined height position at each of the two points. Get it as a value,
Water vapor observation device.
(Appendix 16)
In the information processing device,
Obtain the water vapor value at each predetermined height position at each of the two points as the measured water vapor value,
the measured water vapor value, a first distance that is the distance between the two points, and a second distance that is the distance from at least one of the two points to a target point located between the two points; Calculating the water vapor value at a predetermined height position of the target point based on
A computer-readable storage medium that stores a program for executing processing.
(Appendix A1)
Water vapor correspondence information in which water vapor information, which is information based on water vapor values measured in advance at each predetermined height position at a predetermined point, is associated with the feature amount of a predetermined point in a photographed image taken from the sky in advance. remember,
Obtain a new water vapor value at a predetermined point measured based on the signal received from the satellite,
Extract new features of a predetermined point from a new image taken from above,
calculating a water vapor value for each predetermined height position at a predetermined point based on the new water vapor value, the new feature amount, and the water vapor correspondence information;
Water vapor observation method.
(Appendix A2)
The water vapor observation method described in Appendix A1,
The water vapor correspondence information is such that the feature amount of a predetermined point is associated with the water vapor information for each predetermined height position in the vertical direction at the predetermined point,
Calculate the water vapor value at each predetermined height position in the vertical direction at a predetermined point.
Water vapor observation method.
(Appendix A3)
The water vapor observation method described in Appendix A1 or A2,
obtaining all water vapor values within a predetermined range in the vertical direction at a predetermined point as the new water vapor value;
Calculating the water vapor value for each predetermined height position in the vertical direction at the predetermined point based on the new water vapor value at the predetermined point;
Water vapor observation method.
(Appendix A4)
The water vapor observation method described in Appendix A3,
Based on the water vapor information in the water vapor correspondence information corresponding to the new feature amount at a predetermined point, the new water vapor value at a predetermined point is divided to calculate water vapor at each predetermined height position in the vertical direction. calculate the value,
Water vapor observation method.
(Appendix A5)
The water vapor observation method described in Appendix A3 or A4,
A predetermined value is calculated from the new water vapor value at a predetermined point in accordance with the ratio of the water vapor value for each predetermined height position according to the water vapor information in the water vapor correspondence information corresponding to the new feature amount at the predetermined point. Calculate the water vapor value at each predetermined height position in the vertical direction at a point,
Water vapor observation method.
(Appendix A6)
The water vapor observation method according to any one of appendices A1 to A5,
The water vapor correspondence information is such that the water vapor information is associated with time information based on the feature amount of a predetermined point and the time of photography of the captured image from which the feature amount is extracted;
Calculate a water vapor value for each predetermined height position at a predetermined point based on the new water vapor value, the new feature amount, information based on the time at which the newly captured image was taken, and the water vapor correspondence information. do,
Water vapor observation method.
(Appendix A7)
Water vapor correspondence information in which water vapor information, which is information based on water vapor values measured in advance at each predetermined height position at a predetermined point, is associated with the feature amount of a predetermined point in a photographed image taken from the sky in advance. A memory unit that stores information,
an acquisition unit that acquires a new water vapor value at a predetermined point measured based on a received signal from a satellite;
an extraction unit that extracts a new feature amount of a predetermined point from a new image taken from above;
a calculation unit that calculates a water vapor value for each predetermined height position at a predetermined point based on the new water vapor value, the new feature amount, and the water vapor correspondence information;
A water vapor observation device equipped with
(Appendix A8)
The water vapor observation device described in Appendix A7,
The water vapor correspondence information is such that the feature amount of a predetermined point is associated with the water vapor information for each predetermined height position in the vertical direction at the predetermined point,
The calculation unit calculates a water vapor value at each predetermined height position in the vertical direction at a predetermined point.
Water vapor observation device.
(Appendix A9)
The water vapor observation device according to appendix A7 or A8,
The acquisition unit acquires all water vapor values within a predetermined range in the vertical direction at a predetermined point as the new water vapor value,
The calculation unit calculates a water vapor value at each predetermined height position in a vertical direction at a predetermined point based on the new water vapor value at the predetermined point.
Water vapor observation device.
(Appendix A10)
The water vapor observation device described in Appendix A9,
The calculation unit divides the new water vapor value at a predetermined point based on the water vapor information in the water vapor correspondence information corresponding to the new feature amount at the predetermined point, and calculates a predetermined vertical height by dividing the new water vapor value at the predetermined point. Calculate the water vapor value for each position,
Water vapor observation device.
(Appendix A11)
The water vapor observation device according to appendix A9 or A10,
The calculation unit calculates the new feature amount at the predetermined point in correspondence with a ratio of water vapor values for each predetermined height position according to the water vapor information in the water vapor correspondence information corresponding to the new feature amount at the predetermined point. Calculating the water vapor value at each predetermined height position in the vertical direction at a predetermined point from the water vapor value,
Water vapor observation device.
(Appendix A12)
The water vapor observation device according to any one of appendices A7 to A11,
The water vapor correspondence information is such that the water vapor information is associated with time information based on the feature amount of a predetermined point and the time of photography of the captured image from which the feature amount is extracted;
The calculation unit is configured to calculate a value for each predetermined height position at a predetermined point based on the new water vapor value, the new feature amount, information based on the shooting time at which the newly captured image was taken, and the water vapor correspondence information. Calculate the water vapor value of
Water vapor observation device.
(Appendix A13)
In the information processing device,
Water vapor correspondence information in which water vapor information, which is information based on water vapor values measured in advance at each predetermined height position at a predetermined point, is associated with the feature amount of a predetermined point in a photographed image taken from the sky in advance. remember,
Obtain a new water vapor value at a predetermined point measured based on the signal received from the satellite,
Extract new features of a predetermined point from a new image taken from above,
calculating a water vapor value for each predetermined height position at a predetermined point based on the new water vapor value, the new feature amount, and the water vapor correspondence information;
A computer-readable storage medium that stores a program for executing processing.
10 水蒸気観測装置
11 取得部
12 抽出部
13 算出部
16 水蒸気値記憶部
17 衛星画像記憶部
18 水蒸気対応情報記憶部
20 気象情報提供装置
21 GNSS信号受信装置
22 GNSS衛星
30 衛星画像提供装置
31 衛星画像受信装置
32 気象衛星
100 水蒸気観測装置
101 CPU
102 ROM
103 RAM
104 プログラム群
105 記憶装置
106 ドライブ装置
107 通信インタフェース
108 入出力インタフェース
109 バス
110 記憶媒体
111 通信ネットワーク
121 記憶部
122 取得部
123 抽出部
124 算出部
131 取得部
132 算出部
 
10 Water vapor observation device 11 Acquisition unit 12 Extraction unit 13 Calculation unit 16 Water vapor value storage unit 17 Satellite image storage unit 18 Water vapor corresponding information storage unit 20 Weather information providing device 21 GNSS signal receiving device 22 GNSS satellite 30 Satellite image providing device 31 Satellite image Receiving device 32 Meteorological satellite 100 Water vapor observation device 101 CPU
102 ROM
103 RAM
104 Program group 105 Storage device 106 Drive device 107 Communication interface 108 Input/output interface 109 Bus 110 Storage medium 111 Communication network 121 Storage unit 122 Acquisition unit 123 Extraction unit 124 Calculation unit 131 Acquisition unit 132 Calculation unit

Claims (16)

  1.  2つの地点それぞれにおける所定の高さ位置毎の水蒸気値を計測水蒸気値として取得し、
     前記計測水蒸気値と、前記2つの地点の間の距離である第一距離と、前記2つの地点の少なくとも一方から当該2つの地点の間に位置する対象地点までの距離である第二距離と、に基づいて、前記対象地点の所定の高さ位置の水蒸気値を算出する、
    水蒸気観測方法。
    Obtain the water vapor value at each predetermined height position at each of the two points as the measured water vapor value,
    the measured water vapor value, a first distance that is the distance between the two points, and a second distance that is the distance from at least one of the two points to a target point located between the two points; Calculating the water vapor value at a predetermined height position of the target point based on
    Water vapor observation method.
  2.  請求項1に記載の水蒸気観測方法であって、
     前記第一距離と前記第二距離との割合に基づいて、前記対象地点の所定の高さ位置の水蒸気値を算出する、
    水蒸気観測方法。
    The water vapor observation method according to claim 1,
    calculating a water vapor value at a predetermined height position of the target point based on a ratio of the first distance and the second distance;
    Water vapor observation method.
  3.  請求項1又は2に記載の水蒸気観測方法であって、
     前記2つの地点それぞれにおける同一の高さ位置の水蒸気値と、前記第一距離と、前記第二距離と、に基づいて、前記対象地点の所定の高さ位置の水蒸気値を算出する、
    水蒸気観測方法。
    The water vapor observation method according to claim 1 or 2,
    Calculating a water vapor value at a predetermined height position at the target point based on the water vapor value at the same height position at each of the two points, the first distance, and the second distance;
    Water vapor observation method.
  4.  請求項3に記載の水蒸気観測方法であって、
     前記2つの地点それぞれにおける同一の高さ位置の水蒸気値の差と、前記第一距離と、前記第二距離と、に基づいて、前記対象地点の所定の高さ位置の水蒸気値を算出する、
    水蒸気観測方法。
    The water vapor observation method according to claim 3,
    Calculating a water vapor value at a predetermined height position at the target point based on the difference in water vapor value at the same height position at each of the two points, the first distance, and the second distance;
    Water vapor observation method.
  5.  請求項1乃至4のいずれかに記載の水蒸気観測方法であって、
     予め上空から撮影された撮影画像の所定の地点の特徴量に、予め計測された所定の地点における所定の高さ位置毎の水蒸気値に基づく情報である水蒸気情報が対応付けられた水蒸気対応情報を記憶し、
     衛星からの受信信号に基づいて計測された、前記2つの地点における新たな水蒸気値を取得し、
     新たに上空から撮影された新たな撮影画像から、前記2つの地点の新たな特徴量を抽出し、
     前記新たな水蒸気値と前記新たな特徴量と前記水蒸気対応情報とに基づいて、前記2つの地点それぞれにおける所定の高さ位置毎の水蒸気値を算出し、前記計測水蒸気値として取得する、
    水蒸気観測方法。
    The water vapor observation method according to any one of claims 1 to 4,
    Water vapor correspondence information in which water vapor information, which is information based on water vapor values measured in advance at each predetermined height position at a predetermined point, is associated with the feature amount of a predetermined point in a photographed image taken from the sky in advance. remember,
    obtaining new water vapor values at the two points measured based on signals received from the satellite;
    Extract new features of the two points from a new image taken from above,
    Based on the new water vapor value, the new feature amount, and the water vapor correspondence information, calculate a water vapor value for each predetermined height position at each of the two points, and obtain it as the measured water vapor value.
    Water vapor observation method.
  6.  請求項5に記載の水蒸気観測方法であって、
     前記水蒸気対応情報は、所定の地点の前記特徴量に、当該所定の地点における鉛直方向の所定の高さ位置毎の前記水蒸気情報が対応付けられており、
     前記2つの地点それぞれにおける鉛直方向の所定の高さ位置毎の水蒸気値を算出する、
    水蒸気観測方法。
    The water vapor observation method according to claim 5,
    The water vapor correspondence information is such that the feature amount of a predetermined point is associated with the water vapor information for each predetermined height position in the vertical direction at the predetermined point,
    Calculating the water vapor value for each predetermined height position in the vertical direction at each of the two points,
    Water vapor observation method.
  7.  請求項5又は6に記載の水蒸気観測方法であって、
     前記2つの地点それぞれにおける鉛直方向の所定範囲内の全ての水蒸気値を前記新たな水蒸気値として取得し、
     前記2つの地点それぞれにおける前記新たな水蒸気値に基づいて、当該2つの地点それぞれにおける鉛直方向の所定の高さ位置毎の水蒸気値を算出する、
    水蒸気観測方法。
    The water vapor observation method according to claim 5 or 6,
    obtaining all water vapor values within a predetermined range in the vertical direction at each of the two points as the new water vapor value;
    Calculating a water vapor value for each predetermined height position in the vertical direction at each of the two points based on the new water vapor value at each of the two points,
    Water vapor observation method.
  8.  請求項7に記載の水蒸気観測方法であって、
     前記2つの地点それぞれにおける前記新たな特徴量に対応する前記水蒸気対応情報内の前記水蒸気情報に基づいて、前記2つの地点それぞれにおける前記新たな水蒸気値を分割して、鉛直方向の所定の高さ位置毎の水蒸気値を算出する、
    水蒸気観測方法。
    The water vapor observation method according to claim 7,
    Based on the water vapor information in the water vapor correspondence information corresponding to the new feature amount at each of the two points, the new water vapor value at each of the two points is divided to a predetermined height in the vertical direction. Calculate the water vapor value for each location,
    Water vapor observation method.
  9.  請求項7又は8に記載の水蒸気観測方法であって、
     前記2つの地点それぞれにおける前記新たな特徴量に対応する前記水蒸気対応情報内の前記水蒸気情報による所定の高さ位置毎の水蒸気値の割合に対応させて、前記2つの地点それぞれにおける前記新たな水蒸気値から当該2つの地点それぞれにおける鉛直方向の所定の高さ位置毎の水蒸気値を算出する、
    水蒸気観測方法。
    The water vapor observation method according to claim 7 or 8,
    The new water vapor at each of the two points corresponds to the ratio of the water vapor value for each predetermined height position according to the water vapor information in the water vapor correspondence information corresponding to the new feature amount at each of the two points. Calculating the water vapor value at each predetermined height position in the vertical direction at each of the two points from the value,
    Water vapor observation method.
  10.  請求項5乃至9のいずれかに記載の水蒸気観測方法であって、
     前記水蒸気対応情報は、所定の地点の前記特徴量及び当該特徴量が抽出された前記撮影画像の撮影時刻に基づく時間情報に、前記水蒸気情報が対応付けられており、
     前記新たな水蒸気値と前記新たな特徴量と前記新たな撮影画像を撮影した撮影時刻に基づく情報と前記水蒸気対応情報とに基づいて、前記2つの地点それぞれにおける所定の高さ位置毎の水蒸気値を算出する、
    水蒸気観測方法。
    The water vapor observation method according to any one of claims 5 to 9,
    The water vapor correspondence information is such that the water vapor information is associated with time information based on the feature amount of a predetermined point and the time of photography of the captured image from which the feature amount is extracted;
    A water vapor value at each predetermined height position at each of the two points based on the new water vapor value, the new feature amount, information based on the shooting time of the new captured image, and the water vapor correspondence information. calculate,
    Water vapor observation method.
  11.  2つの地点それぞれにおける所定の高さ位置毎の水蒸気値を計測水蒸気値として取得する取得部と、
     前記計測水蒸気値と、前記2つの地点の間の距離である第一距離と、前記2つの地点の少なくとも一方から当該2つの地点の間に位置する対象地点までの距離である第二距離と、に基づいて、前記対象地点の所定の高さ位置の水蒸気値を算出する算出部と、
    を備えた水蒸気観測装置。
    an acquisition unit that acquires a water vapor value at each predetermined height position at each of the two points as a measured water vapor value;
    the measured water vapor value, a first distance that is the distance between the two points, and a second distance that is the distance from at least one of the two points to a target point located between the two points; a calculation unit that calculates a water vapor value at a predetermined height position of the target point based on;
    A water vapor observation device equipped with
  12.  請求項11に記載の水蒸気観測装置であって、
     前記算出部は、前記第一距離と前記第二距離との割合に基づいて、前記対象地点の所定の高さ位置の水蒸気値を算出する、
    水蒸気観測装置。
    The water vapor observation device according to claim 11,
    The calculation unit calculates a water vapor value at a predetermined height position of the target point based on a ratio between the first distance and the second distance.
    Water vapor observation device.
  13.  請求項11又は12に記載の水蒸気観測装置であって、
     前記算出部は、前記2つの地点それぞれにおける同一の高さ位置の水蒸気値と、前記第一距離と、前記第二距離と、に基づいて、前記対象地点の所定の高さ位置の水蒸気値を算出する、
    水蒸気観測装置。
    The water vapor observation device according to claim 11 or 12,
    The calculation unit calculates the water vapor value at a predetermined height position of the target point based on the water vapor value at the same height position at each of the two points, the first distance, and the second distance. calculate,
    Water vapor observation device.
  14.  請求項13に記載の水蒸気観測装置であって、
     前記算出部は、前記2つの地点それぞれにおける同一の高さ位置の水蒸気値の差と、前記第一距離と、前記第二距離と、に基づいて、前記対象地点の所定の高さ位置の水蒸気値を算出する、
    水蒸気観測装置。
    The water vapor observation device according to claim 13,
    The calculation unit calculates water vapor at a predetermined height position of the target point based on the difference in water vapor values at the same height position at each of the two points, the first distance, and the second distance. calculate the value,
    Water vapor observation device.
  15.  請求項11乃至14のいずれかに記載の水蒸気観測装置であって、
     予め上空から撮影された撮影画像の所定の地点の特徴量に、予め計測された所定の地点における所定の高さ位置毎の水蒸気値に基づく情報である水蒸気情報が対応付けられた水蒸気対応情報を記憶する記憶部を備え、
     前記取得部は、衛星からの受信信号に基づいて計測された、前記2つの地点における新たな水蒸気値を取得し、新たに上空から撮影された新たな撮影画像から、前記2つの地点の新たな特徴量を抽出し、前記新たな水蒸気値と前記新たな特徴量と前記水蒸気対応情報とに基づいて、前記2つの地点それぞれにおける所定の高さ位置毎の水蒸気値を算出して、前記計測水蒸気値として取得する、
    水蒸気観測装置。
    The water vapor observation device according to any one of claims 11 to 14,
    Water vapor correspondence information in which water vapor information, which is information based on water vapor values measured in advance at each predetermined height position at a predetermined point, is associated with the feature amount of a predetermined point in a photographed image taken from the sky in advance. Equipped with a storage unit for storing information,
    The acquisition unit acquires new water vapor values at the two points measured based on signals received from the satellite, and calculates new water vapor values at the two points from a new image taken from above. Extract the feature amount, calculate the water vapor value for each predetermined height position at each of the two points based on the new water vapor value, the new feature amount, and the water vapor correspondence information, and calculate the water vapor value at each predetermined height position at each of the two points. Get it as a value,
    Water vapor observation device.
  16.  情報処理装置に、
     2つの地点それぞれにおける所定の高さ位置毎の水蒸気値を計測水蒸気値として取得し、
     前記計測水蒸気値と、前記2つの地点の間の距離である第一距離と、前記2つの地点の少なくとも一方から当該2つの地点の間に位置する対象地点までの距離である第二距離と、に基づいて、前記対象地点の所定の高さ位置の水蒸気値を算出する、
    処理を実行させるためのプログラムを記憶したコンピュータにて読み取り可能な記憶媒体。
    In the information processing device,
    Obtain the water vapor value at each predetermined height position at each of the two points as the measured water vapor value,
    the measured water vapor value, a first distance that is the distance between the two points, and a second distance that is the distance from at least one of the two points to a target point located between the two points; Calculating the water vapor value at a predetermined height position of the target point based on
    A computer-readable storage medium that stores a program for executing processing.
PCT/JP2022/011696 2022-03-15 2022-03-15 Water vapor observation method WO2023175735A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/011696 WO2023175735A1 (en) 2022-03-15 2022-03-15 Water vapor observation method
JP2022539086A JP7127928B1 (en) 2022-03-15 2022-03-15 Water vapor observation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/011696 WO2023175735A1 (en) 2022-03-15 2022-03-15 Water vapor observation method

Publications (1)

Publication Number Publication Date
WO2023175735A1 true WO2023175735A1 (en) 2023-09-21

Family

ID=83103208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011696 WO2023175735A1 (en) 2022-03-15 2022-03-15 Water vapor observation method

Country Status (2)

Country Link
JP (1) JP7127928B1 (en)
WO (1) WO2023175735A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5675081A (en) * 1995-12-04 1997-10-07 University Corporation For Atmospheric Research Atmospheric water vapor sensing system using global positioning satellites
JP2006078552A (en) * 2004-09-07 2006-03-23 Fujitsu Ten Ltd Image magnification device
JP2011133265A (en) * 2009-12-22 2011-07-07 Chugoku Electric Power Co Inc:The Environmental data interpolation method, environmental data interpolating device, program, and photovoltaic power generated amount calculating system
US20200257020A1 (en) * 2017-09-13 2020-08-13 UBIMET GmbH Method for determining at least one meteorological variable for describing a state of atmospheric water
CN112083453A (en) * 2020-09-15 2020-12-15 中南大学 Troposphere chromatography method related to water vapor space-time parameters

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9429680B2 (en) * 2014-08-07 2016-08-30 The Boeing Company Ice crystal icing engine event probability estimation apparatus, system, and method
JP7232610B2 (en) * 2018-10-16 2023-03-03 千代田化工建設株式会社 Fluid leak detection system, fluid leak detection device, design support system, design support device, and learning device
CA3114956A1 (en) * 2018-10-19 2020-04-23 The Climate Corporation Machine learning techniques for identifying clouds and cloud shadows in satellite imagery
JP7386136B2 (en) * 2020-07-03 2023-11-24 株式会社日立製作所 Cloud height measurement device, measurement point determination method, and cloud type determination method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5675081A (en) * 1995-12-04 1997-10-07 University Corporation For Atmospheric Research Atmospheric water vapor sensing system using global positioning satellites
JP2006078552A (en) * 2004-09-07 2006-03-23 Fujitsu Ten Ltd Image magnification device
JP2011133265A (en) * 2009-12-22 2011-07-07 Chugoku Electric Power Co Inc:The Environmental data interpolation method, environmental data interpolating device, program, and photovoltaic power generated amount calculating system
US20200257020A1 (en) * 2017-09-13 2020-08-13 UBIMET GmbH Method for determining at least one meteorological variable for describing a state of atmospheric water
CN112083453A (en) * 2020-09-15 2020-12-15 中南大学 Troposphere chromatography method related to water vapor space-time parameters

Also Published As

Publication number Publication date
JP7127928B1 (en) 2022-08-30
JPWO2023175735A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
Bhattacharya et al. High Mountain Asian glacier response to climate revealed by multi-temporal satellite observations since the 1960s
Kršák et al. Use of low-cost UAV photogrammetry to analyze the accuracy of a digital elevation model in a case study
Zhang et al. Capturing the signature of severe weather events in Australia using GPS measurements
Pieczonka et al. Heterogeneous mass loss of glaciers in the Aksu-Tarim Catchment (Central Tien Shan) revealed by 1976 KH-9 Hexagon and 2009 SPOT-5 stereo imagery
US7733342B2 (en) Method of extracting 3D building information using shadow analysis
Chen et al. Challenges to quantitative applications of Landsat observations for the urban thermal environment
Girod et al. Terrain changes from images acquired on opportunistic flights by SfM photogrammetry
CN102262092A (en) Visibility measurement system and method
CN113284171B (en) Vegetation height analysis method and system based on satellite remote sensing stereo imaging
CN111750838B (en) Method, device and equipment for generating agricultural land planning map and storage medium
CN112601928A (en) Position coordinate estimation device, position coordinate estimation method, and program
KR101895231B1 (en) The method for calculating the maximum daily temperature using satellite
Mirko et al. Assessing the Impact of the Number of GCPS on the Accuracy of Photogrammetric Mapping from UAV Imagery
Falaschi et al. Increased mass loss of glaciers in Volcán Domuyo (Argentinian Andes) between 1962 and 2020, revealed by aerial photos and satellite stereo imagery
WO2023175735A1 (en) Water vapor observation method
WO2023175734A1 (en) Water vapor observation method
CN114117913A (en) Dam post-dam open-air seepage monitoring system and measured value attribution analysis method
CN113358040A (en) Method and device for acquiring icing thickness of power transmission line and computer equipment
CN113408111A (en) Atmospheric degradable water yield inversion method and system, electronic equipment and storage medium
Kumar et al. Accuracy validation and bias assessment for various multi-sensor open-source DEMs in part of the Karakoram region
Susetyo et al. Prototype of national digital elevation model in Indonesia
US20200209386A1 (en) Weather radar apparatus and severe rain prediction method
JP2004317173A (en) Thunder observation system
CN113593026A (en) Lane line marking auxiliary map generation method and device and computer equipment
WO2022196168A1 (en) Water vapor observation method

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022539086

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932017

Country of ref document: EP

Kind code of ref document: A1