WO2023174452A2 - 一种微型风力蓄电直流电源系统及装置 - Google Patents

一种微型风力蓄电直流电源系统及装置 Download PDF

Info

Publication number
WO2023174452A2
WO2023174452A2 PCT/CN2023/103128 CN2023103128W WO2023174452A2 WO 2023174452 A2 WO2023174452 A2 WO 2023174452A2 CN 2023103128 W CN2023103128 W CN 2023103128W WO 2023174452 A2 WO2023174452 A2 WO 2023174452A2
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
energy storage
micro
power supply
Prior art date
Application number
PCT/CN2023/103128
Other languages
English (en)
French (fr)
Other versions
WO2023174452A3 (zh
Inventor
袁潇湘
褚存浩
靳立新
袁与乐
向俊杰
Original Assignee
河北探秘科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河北探秘科技有限公司 filed Critical 河北探秘科技有限公司
Publication of WO2023174452A2 publication Critical patent/WO2023174452A2/zh
Priority to ZA2023/09409A priority Critical patent/ZA202309409B/en
Publication of WO2023174452A3 publication Critical patent/WO2023174452A3/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/12Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/14Balancing the load in a network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Definitions

  • This application belongs to the field of wind power generation and electricity storage technology, specifically a micro wind power storage power supply system and device.
  • micro-wind power generation solutions available on the market have large fluctuations in power generation voltage due to the influence of wind speed and volume, and are unable to provide stable DC power to the load.
  • this application proposes a micro wind power storage DC power supply system and device, which uses the cooling airflow of the motor cooling fan to generate electricity, and performs filtering, smoothing, voltage stabilization, energy storage, voltage boosting, and regulation. voltage, etc., thereby providing stable and reliable power to loads such as sensors.
  • This application provides a micro wind power storage DC power supply system, including: a micro wind turbine generator, a filtering and smoothing circuit, a voltage stabilizing energy storage circuit, a DCDC boost circuit, a voltage regulating energy storage circuit and a control circuit;
  • the micro wind turbine consists of fan blades and a micro DC generator.
  • the output end of the micro DC generator is connected to the input end of the filter smoothing circuit, and the output end of the filter smoothing circuit is connected to the voltage regulator.
  • the input end of the energy storage circuit and the output end of the voltage stabilizing energy storage circuit are connected to the input end of the DCDC boost circuit.
  • the output end of the DCDC boost circuit is connected to the input end of the voltage regulating energy storage circuit.
  • the output of the voltage regulating energy storage circuit The terminal serves as a power source to supply power to the load;
  • the control circuit is equipped with a micro-voltage detection unit and is connected to the voltage stabilizing energy storage circuit and the voltage regulating energy storage circuit for controlling energy storage discharge and output voltage.
  • the voltage stabilizing and energy storage circuit includes a voltage stabilizing unit and an energy storage unit;
  • the voltage stabilizing unit includes capacitors, linear regulators, resistors and unidirectional diodes; the energy storage unit includes two anti-parallel transistors and supercapacitors;
  • the voltage stabilizing unit is used to provide a stable voltage to the control circuit and the DCDC boost circuit; the unidirectional diode is used to prevent the consumption of the electric energy stored in the supercapacitor when the power generation voltage of the micro wind turbine is low; the two are connected in reverse parallel
  • the triode is used to enable the control circuit to control the charging and discharging process of the supercapacitor.
  • the voltage regulating energy storage circuit includes a linear regulator, three groups of triodes and resistors with different resistance values; the control circuit controls the on-off of the three groups of triodes to connect the corresponding resistors, so that the circuit path can achieve the purpose of adjusting the output voltage.
  • the voltage regulating energy storage circuit is also used to connect corresponding external supercapacitors according to the output voltage.
  • control circuit is composed of a micro-voltage detection unit, a DIP switch, a single-chip microcomputer and its operating accessories;
  • the micro-voltage detection unit is used to monitor the input voltage of the voltage-stabilizing energy storage circuit and output the signal to the microcontroller, so that the microcontroller can control the input of the energy storage unit;
  • the microcontroller contains the necessary I/O circuits for monitoring the signal of the micro-voltage detection unit and controlling the charging and discharging of the supercapacitor by controlling two anti-parallel transistors of the voltage stabilizing energy storage circuit.
  • the microcontroller is also used to receive the configuration information of the DIP switch and control the on and off of the three groups of transistors according to the configuration information, thereby controlling the voltage regulation and energy storage circuit to output different voltages to adapt to the voltage level of the load;
  • Operation accessories are used to assist in the operation of control circuits.
  • This application also provides a micro wind power storage DC power supply device, including the above micro wind power storage DC power supply system and installation parts.
  • the installation piece includes a circuit board, a base plate, and a casing.
  • the circuit board is used to install a filter smoothing circuit, a voltage stabilizing energy storage circuit, a DCDC boost circuit, a voltage regulating energy storage circuit, and a control circuit;
  • the base plate is used to install Fixed circuit boards, micro wind turbines, and casings;
  • the bottom plate is used to install and fix to the motor cooling air vents.
  • the bottom plate can be magnetically or adhesively fixed to the motor air inlet according to the motor type.
  • an aviation connector is fixed on the circuit board; the aviation connector is led out through the opening of the shell to facilitate the connection of the load and the external supercapacitor.
  • This application provides a micro wind power storage DC power supply system and device that uses the wind flow generated by the cooling fan of the motor at the industrial site to generate electricity. It can make full use of nearby green energy to generate energy, store energy, and supply power to loads such as sensors, reducing travel time. Lines and operating costs caused by battery replacement; this application includes a micro-voltage detection unit and a voltage stabilizing energy storage circuit to adapt to scenarios where the power generation voltage is unstable; after the DCDC boost circuit boosts the voltage, the linear regulator and controller Controls the on and off of three paths composed of transistors and resistors of different resistances to adapt to different voltage levels of the load; the device involved in this application is magnetically or adhesively fixed to the motor air outlet, and can be easily installed without modifying the motor.
  • Figure 1 is a schematic diagram of a wind power storage DC power supply system
  • FIG. 2 is a schematic diagram of the control circuit
  • Figure 3 is a schematic diagram of the voltage stabilization and energy storage circuit.
  • Figure 4 is a schematic diagram of the voltage regulation and energy storage circuit
  • Figure 5 is an overall schematic diagram of a wind power storage DC power supply device
  • Figure 6 is an overall rear view of a wind power storage DC power supply device
  • Figure 7 is a side view of a wind power storage DC power supply device
  • Figure 8 is a top view of the bottom plate of a wind power storage DC power supply device
  • Figure 9 is a schematic diagram of a circuit board of a wind power storage DC power supply device.
  • the micro-wind power storage DC power supply system uses the cooling air flow of the motor cooling fan to generate electricity, realize filtering, smoothing, voltage stabilization, energy storage, voltage boosting, voltage regulation and other functions, and is used to provide sensors and other loads. Stable power supply.
  • the power supply system can also be used in other suitable scenarios.
  • the micro wind power storage DC power supply system may not include a DCDC boost circuit, a voltage regulating energy storage circuit and a control circuit, and is a simplified version suitable for some application scenarios.
  • the following introduces a miniature wind power storage DC power supply system including a DCDC boost circuit, a voltage regulating energy storage circuit and a control circuit with reference to the accompanying drawings.
  • Figure 1 is a schematic diagram of a micro wind power storage DC power supply system.
  • the micro wind power storage DC power supply system includes: a micro wind power generator 100, a filtering and smoothing circuit 200, a voltage stabilizing and energy storage circuit 300, a DCDC boost circuit 400, a voltage regulating and energy storage circuit 500 and a control circuit 600.
  • the micro wind turbine 100 is composed of a fan blade and a micro DC generator.
  • the output end of the micro DC generator is connected to the input end of the filtering and smoothing circuit 200.
  • the output end of the filtering and smoothing circuit 200 is connected to the voltage stabilizing energy storage circuit.
  • the input terminal of 300 and the output terminal of the voltage stabilizing and energy storage circuit 300 are connected to the input terminal of the DCDC boost circuit 400.
  • the output terminal of the DCDC boost circuit 400 is connected to the input terminal of the voltage regulating and energy storage circuit 500.
  • the voltage regulating and energy storage circuit The output of the 500 serves as an external power supply to power the load.
  • the control circuit 600 is configured with a micro-voltage detection unit 601 and is connected to the voltage stabilizing energy storage circuit 300 and the voltage regulating energy storage circuit 500.
  • the control circuit 600 is used to control energy storage discharge and control the output voltage; specifically:
  • the control circuit 600 is used to control the energy storage and discharge of the voltage stabilizing and energy storage circuit 300 and to control the output voltage of the voltage regulating and energy storage circuit 500.
  • the micro wind turbine 100 is the cooling air flow wind energy input terminal, and the voltage regulating energy storage circuit 500 is the DC power output terminal.
  • the micro wind turbine 100 is used to convert the green energy from the motor cooling fan into electrical energy; the filtering and smoothing circuit 200 is used to filter and smooth the electrical energy output by the micro wind turbine 100 and supply it to the voltage stabilizing and energy storage circuit 300 for voltage stabilization and Energy storage; the stable DC voltage or stored electric energy is increased by the DCDC boost circuit 400 and then outputs a voltage of the required voltage level on site through the voltage regulating energy storage circuit 500.
  • the power supply 602 of the control circuit 600 is connected to the output end of the voltage stabilizing energy storage circuit 300; the control circuit 600 is composed of a micro-voltage detection unit 601, a DIP switch 605, a microcontroller 604 and its operating accessories 603.
  • the micro-voltage detection unit 601 is used to monitor the input voltage of the voltage stabilizing energy storage circuit 300 and output the signal to the single-chip computer 604, so that the single-chip computer 604 controls the charging and discharging of the supercapacitor C2 by controlling the on and off of the transistor T1 and the transistor T2.
  • the signal is an input voltage signal.
  • the micro-voltage detection unit 601 is also used to monitor the operating status of the motor cooling fan.
  • the microcontroller contains the necessary I/O circuits; the microcontroller is used to monitor the signal of the micro-voltage detection unit and control the charging and discharging of the supercapacitor by controlling two anti-parallel transistors of the voltage stabilizing energy storage circuit.
  • the microcontroller 604 is also used to receive the configuration information of the DIP switch 605, and adjust the parallel resistance values of the resistors R3, R4, and R5 according to the on/off configuration information of the transistor T3, the transistor T4, and the transistor T5, thereby controlling the voltage regulation and energy storage circuit 500 Output different voltages to adjust the output voltage to adapt to the voltage level of the load.
  • the load includes a sensor.
  • the operation accessory 603 is used to assist the operation of the control circuit.
  • the voltage stabilizing and energy storage circuit 300 includes a voltage stabilizing unit 301 and an energy storage unit 302 .
  • the voltage stabilizing unit 301 includes a capacitor C1, a linear regulator L1, a resistor R1, a resistor R2 and a unidirectional diode D1; the voltage stabilizing unit 301 is used to provide a stable voltage to the control circuit 600 and the DCDC boost circuit 400; the unidirectional diode D1 is used for This is to prevent consumption of the electric energy stored in the supercapacitor when the power generation voltage of the micro wind turbine 100 is low.
  • the energy storage unit includes two anti-parallel transistors T1 and T2 and a supercapacitor C2; the two anti-parallel transistors T1 and T2 are used to enable the control circuit to control the charging and discharging process of the supercapacitor.
  • the voltage regulating and energy storage circuit 500 includes a linear regulator L2, transistors T3, T4, T5, and resistors R3, R4, R5, R6; the control circuit 600 controls the Turn on and off the corresponding resistors R3, R4, R5, and R6 so that the circuit path can achieve the purpose of adjusting the output voltage.
  • the voltage regulating energy storage circuit 500 is also used to connect the corresponding external supercapacitor C5 according to the output voltage.
  • This application also provides a micro wind power storage DC power supply device, including the above micro wind power storage DC power supply system and installation parts.
  • This application also provides a micro wind power storage DC power supply device 1000, including the above micro wind power storage DC power supply system 700, a circuit board 801, a base plate 802, and a shell 803.
  • the circuit board 801 is used to install the filtering and smoothing circuit 200, the voltage stabilizing and energy storage circuit 300, the DCDC boost circuit 400, the voltage regulating and energy storage circuit 500 and the control circuit 600; the base plate 802 is used to fix the circuit board 801 and the micro wind turbine 100 , shell 803; bottom plate 802 is used to install and fix to the motor cooling air outlet; the output end of the micro wind turbine generator 100 is connected to the circuit board 801 with a cable 805.
  • the base plate 802 can be magnetically or adhesively fixed to the motor air outlet according to the motor type.
  • An aviation connector 804 is fixed on the circuit board; the aviation connector 804 is led out through the opening of the shell 803 to facilitate connection of the load and external supercapacitor.
  • This application provides a micro wind power storage DC power supply system and device that uses the wind flow generated by the cooling fan of the motor at the industrial site to generate electricity. It can make full use of nearby green energy to generate energy, store energy, and supply power to loads such as sensors, reducing travel time. Lines and operating costs caused by battery replacement; this application includes a micro-voltage detection unit and a voltage stabilizing energy storage circuit to adapt to scenarios where the power generation voltage is unstable; after the DCDC boost circuit boosts the voltage, the linear regulator and controller Controls the on and off of three paths composed of transistors and resistors of different values, adapting to different voltage levels of loads such as sensors; the device involved in this application is magnetically or adhesively fixed to the motor air outlet, and can be completed without modifying the motor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)
  • Wind Motors (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提供的一种微型风力蓄电直流电源系统及装置,利用工业现场电机的散热风扇所产生的风流进行发电,可以充分利用就近的绿色能源进行发电储能并为传感器等负载供电,减少走线及因更换电池造成的运营成本;本申请包含的微电压检测单元和稳压储能电路,以适应发电电压不稳定的场景;DCDC升压电路实现升压后,由线性调节器及控制器控制三个由三极管和不同阻值的电阻组成的通路的通断,适应传感器等负载不同的电压等级;本申请所涉及装置采用磁吸或胶粘方式固定在电机风口,无需改造电机即可完成简单安装,以改善公开号为CN114499098A的中国发明《基于电动机外壳取磁能的微发电方法》所提出的技术方案中在预制取磁能的通孔中安装导磁金属存在安装过程复杂的弊端;同时该申请方案为绿色能源消耗,为减少碳排放有积极作用。

Description

一种微型风力蓄电直流电源系统及装置
本申请要求于2022年09月26日提交中国专利局、申请号为202211174693.7、发明名称为“一种微型风力蓄电直流电源系统及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于风力发电及蓄电技术领域,具体为一种微型风力蓄电电源系统及装置。
背景技术
目前在工业现场使用的电机大多数在转轴上自带外风扇进行散热;在电机状态监测领域,用于监测电机轴承故障的振动传感器、温度传感器及边缘计算器等负载,需要安装电池或外部供电;其中,安装电池供电的方式面临着需定期更换电池的弊端,而外部供电面临着需要增加或改造配电箱和走线的弊端;因工业现场电机较多且分散,换电池和走线都会造成浪费及运维成本高的问题。
公开号为CN114499098A的中国发明《基于电动机外壳取磁能的微发电方法》所提出的技术方案中,在预制取磁能的通孔中安装导磁金属存在安装过程复杂的弊端。
市面上提供的微型风力发电方案,因风速及风量的影响,导致发电电压波动大,无法给负载提供稳定的直流电源。
发明内容
本申请基于解决上述问题及弊端,提出一种微型风力蓄电直流电源系统及装置,利用电机散热风扇的散热气流发电,并对其进行滤波、平波、稳压、储能、升压、调压等,从而给传感器等负载提供稳定可靠的电源。
本申请提供的一种微型风力蓄电直流电源系统,包括:微型风力发电机组、滤波平波电路、稳压储能电路、DCDC升压电路、调压储能电路及控制电路;
微型风力发电机组由扇叶及微型直流发电机组成,微型直流发电机的输出端连接至滤波平波电路的输入端,滤波平波电路的输出端连接至稳压 储能电路的输入端,稳压储能电路的输出端连接至DCDC升压电路的输入端,DCDC升压电路的输出端连接至调压储能电路的输入端,调压储能电路的输出端作为电源给负载供电;
控制电路配置有微电压检测单元,并连接至稳压储能电路、调压储能电路,用于控制储能放电及控制输出电压。
优选地,稳压储能电路包含稳压单元、储能单元;
稳压单元包含电容、线性调整器、电阻及单向二极管;储能单元包含两个反向并联的三极管、超级电容;
所述稳压单元用于提供稳定的电压给控制电路、DCDC升压电路;单向二极管用于防止在微型风力发电机组发电电压低的情况下消耗超级电容内储存的电能;两个反向并联的三极管用于使控制电路控制超级电容的充放电过程。
优选地,调压储能电路包含线性调整器、三组三极管和不同阻值的电阻;控制电路通过控制三组三极管的通断接通相应电阻,以使电路通路达到调节输出电压的目的。
优选地,调压储能电路还用于根据输出电压连接相应的外部超级电容。
优选地,所述的控制电路由微电压检测单元、拨码开关、单片机及其运行附件组成;
微电压检测单元用于监测稳压储能电路的输入电压、并将信号输出给单片机,以使单片机做储能单元投入控制;
单片机包含必要的I/O电路,用于监测微电压检测单元的信号,并通过控制稳压储能电路的两个反向并联的三极管控制超级电容充放电。
单片机还用于接收拨码开关的配置信息,并根据配置信息控制三组三极管的通断,从而控制调压储能电路输出不同的电压,适应负载的电压等级;
运行附件用于辅助控制电路的运行。
本申请还提供了一种微型风力蓄电直流电源装置,包括以上微型风力蓄电直流电源系统及安装件。
所述安装件包含电路板、底板、外壳,电路板用于安装滤波平波电路、稳压储能电路、DCDC升压电路、调压储能电路和控制电路;底板用于 固定电路板、微型风力发电机组、外壳;底板用于安装固定至电机散热风口。
优选地,底板可根据电机类型采用磁吸或胶粘方式固定在电机风口。
优选地,电路板上固定有航空接头;航空接头通过外壳开孔引出,方便连接负载及外部超级电容。
由此可见,本申请具有如下有益效果:
本申请提供的一种微型风力蓄电直流电源系统及装置,利用工业现场电机的散热风扇所产生的风流进行发电,可以充分利用就近的绿色能源进行发电储能并为传感器等负载供电,减少走线及因更换电池造成的运营成本;本申请包含的微电压检测单元和稳压储能电路,以适应发电电压不稳定的场景;DCDC升压电路升压实现后,由线性调节器及控制器控制三个由三极管和不同阻值的电阻组成的通路的通断,适应负载不同的电压等级;本申请所涉及装置采用磁吸或胶粘方式固定在电机风口,无需改造电机即可完成简单安装,以改善公开号为CN114499098A的中国发明《基于电动机外壳取磁能的微发电方法》所提出的技术方案中存在预制取磁能的通孔安装复杂的弊端;同时该申请方案为绿色能源消耗,为减少碳排放有积极作用。
说明书附图
图1为一种风力蓄电直流电源系统的示意图;
图2为控制电路示意图;
图3为稳压储能电路示意图
图4为调压储能电路示意图;
图5为一种风力蓄电直流电源装置的整体示意图;
图6为一种风力蓄电直流电源装置的整体后视图;
图7为一种风力蓄电直流电源装置的侧视图;
图8为一种风力蓄电直流电源装置的底板俯视图;
图9为一种风力蓄电直流电源装置的电路板示意图。
符号说明:
风力发电机组-100,滤波平波电路-200,稳压储能电路-300,稳压单
元-301,储能单元-302,DCDC升压电路-400,调压储能电路-500,控制电路-600,微电压检测单元-601,电源供电-602,运行附件603,单片机-604,拨码开关-605,微型风力蓄电直流电源装置-1000,微型风力蓄电直流电源系统-700,电路板-801,底板-802,外壳-803,航空接头-804,线缆-805。
具体实施方式
为使本申请的上述目的、特征及优点能够更加明显易懂,下面结合附图介绍本申请实施例提供的技术方案的应用场景。
本申请实施例提供的微型风力蓄电直流电源系统,利用电机散热风扇的散热气流发电,实现滤波、平波、稳压、储能、升压、调压等功能,用于给传感器等负载提供稳定的电源。另外该电源系统也可用于其他适宜场景。
本申请提供的微型风力蓄电直流电源系统可以不包括DCDC升压电路、调压储能电路及控制电路,作为简版的方案适应部分应用场景。下面结合附图介绍一种包括DCDC升压电路、调压储能电路及控制电路的一种微型风力蓄电直流电源系统。
参见图1,该图为一种微型风力蓄电直流电源系统的示意图。
所述微型风力蓄电直流电源系统包括:微型风力发电机组100、滤波平波电路200、稳压储能电路300、DCDC升压电路400、调压储能电路500及控制电路600。
所述微型风力发电机组100由扇叶及微型直流发电机组成,微型直流发电机的输出端连接至滤波平波电路200的输入端,滤波平波电路200的输出端连接至稳压储能电路300的输入端,稳压储能电路300的输出端连接至DCDC升压电路400的输入端,DCDC升压电路400的输出端连接至调压储能电路500的输入端,调压储能电路500的输出端作为外部电源给负载供电。
所述控制电路600配置有微电压检测单元601,并连接至稳压储能电路300、调压储能电路500,所述控制电路600用于控制储能放电及控制输出电压;具体为:所述控制电路600用于控制稳压储能电路300储能放电及控制调压储能电路500输出电压。
其中微型风力发电机组100为散热气流风能输入端、调压储能电路500为直流电源输出端。
微型风力发电机组100用于将电机散热风扇的绿色能源转换成电能;滤波平波电路200用于将微型风力发电机组100输出的电能进行滤波和平波处理供给稳压储能电路300进行稳压和储能;稳定的直流电压或储存的电能经过DCDC升压电路400升高后通过调压储能电路500输出现场所需电压等级的电压。
参见图2,该图为控制电路示意图。
控制电路600的电源供电602连接稳压储能电路300的输出端;所述的控制电路600由微电压检测单元601、拨码开关605、单片机604及其运行附件603组成。
微电压检测单元601用于监测稳压储能电路300的输入电压、并将信号输出给单片机604,用于单片机604通过控制三极管T1和三极管T2的通断,来控制超级电容C2的充放电。其中,所述信号为输入电压信号。
所述微电压检测单元601还用于监测电机散热风扇的运行状态。
单片机包含必要的I/O电路;单片机用于监测微电压检测单元的信号,并通过控制稳压储能电路的两个反向并联的三极管控制超级电容充放电.
单片机604还用于接收拨码开关605的配置信息,并根据配置信息三极管T3、三极管T4、三极管T5的通断,调整电阻R3、R4、R5的并联阻值,从而控制调压储能电路500输出不同的电压,达到调节输出电压的目的,以适应负载的电压等级。所述负载包括传感器。
运行附件603用于辅助控制电路的运行。
参见图3、图2及图1稳压储能电路300包含稳压单元301、储能单元302。
稳压单元301包含电容C1、线性调整器L1、电阻R1、电阻R2及单向二极管D1;稳压单元301用于提供稳定的电压给控制电路600、DCDC升压电路400;单向二极管D1用于防止在微型风力发电机组100发电电压低的情况下消耗超级电容内储存的电能。
储能单元包含两个反向并联的三极管T1和T2、超级电容C2;两个反向并联的三极管T1和T2用于使控制电路控制超级电容的充放电过程。
参见图4、图2及图1,调压储能电路500包含线性调整器L2、三极管T3、T4、T5、电阻R3、R4、R5、R6;控制电路600通过控制三极管T3、T4、T5的通断接通相应电阻R3、R4、R5、R6,以使电路通路达到调节输出电压的目的。
优选地,调压储能电路500还用于根据输出电压连接相应的外部超级电容C5。
本申请还提供了一种微型风力蓄电直流电源装置,包括以上微型风力蓄电直流电源系统及安装件。
参见图5、图6、图7、图8、图9。
本申请还提供了一种微型风力蓄电直流电源装置1000,包括以上微型风力蓄电直流电源系统700、电路板801、底板802、外壳803。
电路板801用于安装滤波平波电路200、稳压储能电路300、DCDC升压电路400、调压储能电路500和控制电路600;底板802用于固定电路板801、微型风力发电机组100、外壳803;底板802用于安装固定至电机散热风口;微型风力发电机组100输出端与电路板801用线缆805进行连接。
底板802可根据电机类型采用磁吸或胶粘方式固定在电机风口。
电路板上固定有航空接头804;航空接头804通过外壳803开孔引出,方便连接负载及外部超级电容。
本申请提供的一种微型风力蓄电直流电源系统及装置,利用工业现场电机的散热风扇所产生的风流进行发电,可以充分利用就近的绿色能源进行发电储能并为传感器等负载供电,减少走线及因更换电池造成的运营成本;本申请包含的微电压检测单元和稳压储能电路,以适应发电电压不稳定的场景;DCDC升压电路升压实现后,由线性调节器及控制器控制三个由三极管和不同阻值的电阻组成的通路的通断,适应传感器等负载不同的电压等级;本申请所涉及装置采用磁吸或胶粘方式固定在电机风口,无需改造电机即可完成简单安装,以改善公开号为CN114499098A的中国发明《基于电动机外壳取磁能的微发电方法》所提出的技术方案中在预制取磁能的通孔中安装导磁金属存在安装过程复杂的弊端;同时该申请方案为绿色能源消耗,为减少碳排放有积极作用。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (7)

  1. 所述一种微型风力蓄电直流电源系统,其特征在于:微型风力发电机组、滤波平波电路、稳压储能电路、DCDC升压电路、调压储能电路及控制电路;
    所述微型风力发电机组由扇叶及微型直流发电机组成,微型直流发电机的输出端连接至滤波平波电路的输入端,滤波平波电路的输出端连接至稳压储能电路的输入端,稳压储能电路的输出端连接至DCDC升压电路的输入端,DCDC升压电路的输出端连接至调压储能电路的输入端,调压储能电路的输出端作为外部电源给负载供电;
    控制电路配置有微电压检测单元,并连接至稳压储能电路、调压储能电路,用于控制储能放电及控制输出电压。
  2. 根据权利要求1所述的微型风力蓄电直流电源系统,其特征在于:稳压储能电路包含稳压单元、储能单元;
    所述稳压单元包含电容、线性调整器、电阻及单向二极管;所述储能单元包含两个反向并联的三极管、超级电容;
    所述稳压单元用于提供稳定的电压给控制电路、DCDC升压电路;单向二极管用于防止在微型风力发电机组发电电压低的情况下消耗超级电容内储存的电能;两个反向并联的三极管用于使控制电路控制超级电容的充放电过程。
  3. 根据权利要求2所述的微型风力蓄电直流电源系统,其特征在于:调压储能电路包含线性调整器、三组三极管和不同阻值的电阻;控制电路通过控制三组三极管的通断接通相应电阻,以使电路通路达到调节输出电压的目的;
    所述的调压储能电路还用于根据输出电压连接相应的外部超级电容。
  4. 根据权利要求3所述的微型风力蓄电直流电源系统,其特征在于:所述的控制电路由微电压检测单元、拨码开关、单片机及其运行附件组成;
    微电压检测单元用于监测稳压储能电路的输入电压、并将信号输出给单片机,以使单片机做储能单元投入控制;
    单片机包含必要的I/O电路,用于监测微电压检测单元的信号,并通过控制稳压储能电路的两个反向并联的三极管控制超级电容充放电;
    单片机还用于接收拨码开关的配置信息,并根据配置信息控制三组三 极管的通断,从而控制调压储能电路输出不同的电压,适应负载的电压等级。
  5. 一种微型风力蓄电直流电源装置,其特征在于:包括权利要求1-4任一项所述的微型风力蓄电直流电源系统及安装件。
  6. 根据权利要求5所述的所述微型风力蓄电直流电源装置,其特征在于:安装件包含电路板、底板、外壳,电路板用于安装滤波平波电路、稳压储能电路、DCDC升压电路、调压储能电路和控制电路;底板用于固定电路板、微型风力发电机组、外壳;底板用于安装固定至电机散热风口。
  7. 根据权利要求6所述的微型风力蓄电直流电源装置,其特征在于:电路板上固定有航空接头;航空接头通过外壳开孔引出,用于连接负载及外部超级电容。
PCT/CN2023/103128 2022-09-26 2023-06-28 一种微型风力蓄电直流电源系统及装置 WO2023174452A2 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2023/09409A ZA202309409B (en) 2022-09-26 2023-10-09 Miniature wind power storage direct-current power supply system and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211174693.7 2022-09-26
CN202211174693.7A CN115714375A (zh) 2022-09-26 2022-09-26 一种微型风力蓄电直流电源系统及装置

Publications (2)

Publication Number Publication Date
WO2023174452A2 true WO2023174452A2 (zh) 2023-09-21
WO2023174452A3 WO2023174452A3 (zh) 2023-11-09

Family

ID=85230796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103128 WO2023174452A2 (zh) 2022-09-26 2023-06-28 一种微型风力蓄电直流电源系统及装置

Country Status (3)

Country Link
CN (1) CN115714375A (zh)
WO (1) WO2023174452A2 (zh)
ZA (1) ZA202309409B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115714375A (zh) * 2022-09-26 2023-02-24 河北探秘科技有限公司 一种微型风力蓄电直流电源系统及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8957655B2 (en) * 2012-03-16 2015-02-17 Micrel, Inc. Last gasp hold-up circuit using adaptive constant on time control
CN108279728A (zh) * 2018-04-08 2018-07-13 深圳市必易微电子有限公司 交流转直流线性稳压电路
CN113890390A (zh) * 2021-09-14 2022-01-04 三峡大学 一种波浪能发电装置的直流转换系统及运行方法
CN115714375A (zh) * 2022-09-26 2023-02-24 河北探秘科技有限公司 一种微型风力蓄电直流电源系统及装置

Also Published As

Publication number Publication date
CN115714375A (zh) 2023-02-24
WO2023174452A3 (zh) 2023-11-09
ZA202309409B (en) 2023-11-29

Similar Documents

Publication Publication Date Title
WO2023174452A2 (zh) 一种微型风力蓄电直流电源系统及装置
CN205158264U (zh) 一种服务器机箱的散热机构
CN103048572B (zh) 一种增程器测试系统
CN201716662U (zh) 静音节能电脑电源
CN205841285U (zh) 一种风机调速控制电路
CN108667290A (zh) 一种具有电门锁功能的电动车专用的dc-dc12v25a转换器
CN218386810U (zh) 一种微型风力蓄电直流电源系统及装置
CN103899561A (zh) 风扇控制电路
CN107425724B (zh) 反激电源预负载装置
CN208638252U (zh) 一种具有电门锁功能的电动车专用的dc-dc12v25a转换器
CN211116745U (zh) 一种风机调速电路
CN114094886A (zh) 一种无刷直流电机的电源控制电路
CN102324844B (zh) 车身电子控制器中由微控制器自控的稳压装置
CN202268804U (zh) 车身电子控制器中由微控制器自控的稳压装置
CN206017227U (zh) 一种风扇停转智能控制电路及其计算机电源
CN201540494U (zh) 抽油机控制柜智能风冷控制系统
CN110778520A (zh) 风扇调速装置及调速方法
CN203399036U (zh) 风扇自动控制电路
CN203312427U (zh) 一种散热性能好的车用锂电池
CN215860921U (zh) 直流风扇的控制电路和空气净化装置
CN220273517U (zh) 一种拓扑结构的开路保护电路及灯具
CN211357302U (zh) 一种呼吸机管路加热装置
CN219960423U (zh) 一种电机控制电路
CN202679290U (zh) 一种车载直流无刷风机转速自调整系统
CN214304481U (zh) 一种便携触摸式多档调速小风扇控制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769954

Country of ref document: EP

Kind code of ref document: A2