WO2023174286A1 - 一种卫星通信方法、装置、芯片和电子设备 - Google Patents

一种卫星通信方法、装置、芯片和电子设备 Download PDF

Info

Publication number
WO2023174286A1
WO2023174286A1 PCT/CN2023/081380 CN2023081380W WO2023174286A1 WO 2023174286 A1 WO2023174286 A1 WO 2023174286A1 CN 2023081380 W CN2023081380 W CN 2023081380W WO 2023174286 A1 WO2023174286 A1 WO 2023174286A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
satellite
time
computer program
duration
Prior art date
Application number
PCT/CN2023/081380
Other languages
English (en)
French (fr)
Inventor
刘旭
Original Assignee
展讯通信(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(上海)有限公司 filed Critical 展讯通信(上海)有限公司
Publication of WO2023174286A1 publication Critical patent/WO2023174286A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present application relates to the field of communication technology, and in particular to a satellite communication method, device, chip and electronic equipment.
  • ground terminal B enters the signal coverage of satellite A (satellite A enters the service cell of ground terminal B); ground terminal B is within the signal coverage of satellite A (satellite A is in the service cell of ground terminal B); ground terminal B breaks away from the signal of satellite A Coverage (Satellite A moves out of the serving cell of ground terminal B).
  • ground terminal B leaves the signal coverage of satellite A, communication between ground terminal B and satellite A cannot be achieved.
  • ground terminal B when ground terminal B leaves the signal coverage of satellite A, ground terminal B has entered the signal coverage of other satellites (for example, satellite C). At this time, ground terminal B can connect to satellite C to continue satellite communication, achieving uninterrupted satellite communication.
  • satellites for example, satellite C
  • ground terminal B when ground terminal B leaves the signal coverage of satellite A, ground terminal B does not enter the signal coverage of other satellites that can communicate. At this time, ground terminal B does not enter the signal coverage of any communicable satellite, and ground terminal B cannot achieve satellite communication. However, when ground terminal B does not enter the signal coverage of any communicable satellite, ground terminal B may still try to establish a communication connection with the satellite, which will result in meaningless power consumption. Therefore, a satellite communication method is needed to reduce the power consumption of ground terminals.
  • this application provides a satellite communication method, device, chip and electronic equipment. This application also provides a computer-readable storage medium.
  • this application provides a satellite communication method, the method is applied to a terminal, and the method includes:
  • the terminal detects a failure of the wireless link with the first satellite at the first moment
  • the terminal enters the energy-saving mode, wherein the second time is the time when the first satellite moves out of the terminal's serving cell.
  • the terminal receives first indication information, including:
  • the terminal receives system information, and the system information includes the first indication information.
  • the terminal receives dedicated signaling, where the dedicated signaling includes the first indication information.
  • the method further includes:
  • the terminal sends device capability information, and the device capability information is used to indicate that the terminal supports enhanced wireless link failure capability.
  • the method further includes:
  • the terminal device receives a device capability reporting request, where the device capability reporting request is used to request reporting of the enhanced wireless link failure capability of the terminal.
  • the method further includes:
  • the terminal starts a first timer, and when the first timer ends, the terminal enters energy saving. model.
  • the method further includes:
  • the terminal re-establishes a wireless link with the first satellite.
  • the method further includes:
  • the terminal device continues to maintain the energy-saving mode, and the first time period is the time when the first satellite is located in the terminal's serving cell. part.
  • the terminal detects that the second satellite enters the service cell, exits the energy-saving mode, and enters the idle state.
  • the terminal enters the energy-saving mode when the interval between the first moment and the second moment is less than the first duration, and the first moment is when the terminal detects that the wireless link with the first satellite fails. time, and the second time is the time when the first satellite moves out of the serving cell of the terminal.
  • the method further includes:
  • a detection module configured to detect a failure of the wireless link with the first satellite at the first moment
  • Output module which is used for:
  • this application provides an electronic chip, which is applied to a terminal and includes:
  • a processor configured to execute computer program instructions stored on the memory, wherein when the computer program instructions are executed by the processor, the electronic chip is triggered to perform the method described in the first aspect.
  • this application provides an electronic chip, which is applied to a terminal and includes:
  • a processor configured to execute computer program instructions stored on the memory, wherein when the computer program instructions are executed by the processor, the electronic chip is triggered to perform the method described in the second aspect.
  • the present application provides an electronic device, the electronic device including a memory for storing computer program instructions, a processor for executing the computer program instructions, and a communication device, wherein when the computer program instructions are processed by the When the electronic device is executed, the electronic device is triggered to execute the method described in the first aspect.
  • the terminal can effectively prevent the terminal from trying to establish a communication connection with the satellite when it is not within the signal coverage of any communicable satellite, thereby reducing the power consumption of the terminal.
  • Figure 1 shows a schematic diagram of satellite signal continuous coverage application scenarios
  • Figure 2 shows a schematic diagram of the application scenario of satellite signal discontinuous coverage
  • Figure 5 shows a structural block diagram of a satellite communication device according to an embodiment of the present application
  • Figure 6 shows a structural block diagram of an electronic device according to an embodiment of the present application.
  • the terminal when the terminal ends the current wireless communication and releases the Radio Resource Control (RRC) connection normally, the first timer (T3324 timer) will be started. When the T3324 timer times out, the terminal will Enter power saving mode (PSM) to reduce power consumption. After the terminal enters PSM, the terminal will start the second timer (T3412 timer). Under PSM, when the T3412 timer times out, the terminal will exit PSM and enter idle mode. After the terminal enters the Idle mode, if there is a wireless communication requirement, the terminal performs cell selection. After completing the cell selection, the RRC connection is re-established in the target cell.
  • PSM power saving mode
  • the terminal When communication is abnormal and a radio link failure (RLF) occurs, the terminal will directly enter the Idle mode (the T3324 timer will not be started and the PSM will not be entered). The terminal performs cell selection after entering the Idle mode. After completing the cell selection, the RRC connection is re-established in the target cell.
  • RLF radio link failure
  • Figure 1 shows a schematic diagram of a communication application scenario with continuous satellite signal coverage.
  • the current position of the satellite 110 is position A.
  • the terminal 100 (ground terminal) is currently located within the signal coverage of the satellite 110 (the satellite 110 is within the service cell of the ground terminal 100).
  • the terminal 100 and the satellite 110 implement satellite communication.
  • the terminal 100 leaves the signal coverage of the satellite 110 (the satellite 110 moves out of the service area of the ground terminal 100), and the terminal 100 cannot realize satellite communication through the satellite 110 . But at this time, the satellite 120 that was previously located at position C has moved to position A, and the terminal 100 enters the signal coverage of the satellite 120 (the satellite 120 is within the service cell of the ground terminal 100). The terminal 100 can continue to implement satellite based on the satellite 120 communication.
  • the terminal 100 when the terminal 100 is within the signal coverage of the satellite 110, the terminal 100 establishes satellite communication with the satellite 110. Before the terminal 100 leaves the signal coverage of the satellite 110, the satellite communication between the terminal 100 and the satellite 110 ends. The terminal 100 releases the RRC connection normally and starts the T3324 timer. When the timer times out, the terminal 100 enters PSM to reduce power consumption. After the terminal 100 enters the PSM, the terminal 100 starts the T3412 timer. Under PSM, when the T3412 timer times out, the terminal 100 exits PSM and enters Idle mode.
  • the terminal can complete wireless communication in accordance with existing communication standards, without additional consideration of the impact of entering/leaving the satellite signal coverage.
  • Figure 2 shows a schematic diagram of a communication application scenario with discontinuous coverage of satellite signals.
  • the current position of satellite 210 is position A, and terminal 200 (ground terminal) is currently located within the signal coverage of satellite 210 (satellite 210 is within the service cell of ground terminal 200).
  • Terminal 200 and satellite 210 implement satellite communication.
  • the terminal 200 leaves the signal coverage of the satellite 210 (the satellite 210 moves out of the service area of the ground terminal 200), and the terminal 200 cannot realize the satellite signal through the satellite 210. communication. At this time, the terminal 200 is not located within the signal coverage of other satellites that can enable communication. In this case, the terminal 200 cannot realize satellite communication.
  • the terminal 200 establishes satellite communication with the satellite 210 while the terminal 200 is within the signal coverage of the satellite 210 .
  • RLF occurs between the terminal 200 and the satellite 210 before the terminal 200 leaves the signal coverage of the satellite 210 .
  • the movement of the satellite 210 causes the terminal 200 to leave the signal coverage of the satellite 210, causing an RLF between the terminal 200 and the satellite 210.
  • the terminal 200 After the RLF, the terminal 200 directly enters the Idle mode (the T3324 timer will not be started and the PSM will not be entered). After entering the Idle mode, the terminal 200 performs cell selection and attempts to establish an RRC connection.
  • the terminal 200 During the execution of cell selection, the terminal 200 is out of the signal coverage of the satellite 210 and cannot perform cell selection for the satellite 210 . At this time, the terminal 200 is not located within the signal coverage of any other satellite that can enable communication. However, because the terminal 200 previously entered the Idle mode directly after the RLF, the terminal 200 will immediately attempt to perform cell selection and establish an RRC connection. If the terminal 200 attempts to perform cell selection and establish an RRC connection without being able to connect to the satellite, unnecessary power loss will occur.
  • an embodiment of the present application proposes a satellite communication method.
  • enhanced RLF is used.
  • the terminal when RLF occurs between the terminal and the satellite, the terminal does not directly try to re-establish a connection with the satellite, but first determines whether the current satellite has moved out of the terminal. Before serving the cell, whether there is enough time to establish connection with the current satellite again.
  • the terminal If the time is not long enough to establish a connection with the current satellite, the terminal does not attempt to reconnect, but directly enters the energy-saving mode to effectively prevent the terminal from trying to connect to the satellite when it is not within the signal coverage of any communicable satellite. Establish a communication connection to reduce the power consumption of the terminal.
  • Figure 3 shows a method flow chart according to an embodiment of the present application.
  • the terminal 200 performs the following process as shown in Figure 3 to reduce power consumption.
  • the first time is the time when the terminal 200 leaves the signal coverage of the first satellite, and the first satellite is the communication object (satellite 210) with which the terminal 200 currently performs satellite communication.
  • S300 may be executed when the terminal 200 establishes communication with the satellite 210 for the first time, or may be executed when the terminal 200 enters the signal coverage of the satellite 210 .
  • the terminal 200 can obtain the first moment in a variety of ways, and this application does not impose specific limitations on this.
  • the satellite 210 publishes its own movement trajectory (for example, movement direction, movement speed) to terminals within the signal coverage area through broadcasting.
  • the movement trajectory of the satellite 210 is obtained.
  • the terminal 200 confirms the time when it leaves the signal coverage of the satellite 210 based on its own position and the movement trajectory of the satellite 210.
  • the satellite 210 releases a broadcast signal to terminals within the signal coverage area.
  • the terminal 200 can confirm that it has entered the signal coverage area of the satellite 210.
  • the terminal 200 initiates a request to the satellite 210 to obtain the movement trajectory of the satellite 210.
  • the satellite 210 feeds back its own movement trajectory to the terminal 200, and the terminal 200 confirms the time when it leaves the signal coverage of the satellite 210 based on its own position and the movement trajectory of the satellite 210.
  • the satellite 210 releases a broadcast signal to terminals within the signal coverage area.
  • the terminal 200 can confirm that it has entered the signal coverage area of the satellite 210.
  • the terminal 200 actively reports its position to the satellite 210.
  • the satellite 210 confirms the moment when the terminal 200 leaves the signal coverage of the terminal 200 based on the position of the terminal 200 and its own movement trajectory, and This time is sent to terminal 200.
  • the ground is divided into multiple cells in advance, and the time when each cell leaves the signal coverage of the satellite 210 is confirmed based on the movement trajectory of the satellite 210 .
  • the satellite 210 broadcasts the time when each cell leaves its own signal coverage to the terminals within the signal coverage.
  • the terminal 200 enters the signal coverage of the satellite 210, it obtains the broadcast information of the satellite 210.
  • the terminal 200 confirms the time when it leaves the signal coverage of the satellite 210 according to the cell where it is located.
  • the terminal 200 can be connected to the network side through other means other than the satellite 210, and the network side broadcasts the movement trajectory of the satellite 210 to the terminals accessing the network, or the network side broadcasts the departure information of each cell to the terminals accessing the network.
  • the moment of signal coverage of satellite 210 can be connected to the network side through other means other than the satellite 210, and the network side broadcasts the movement trajectory of the satellite 210 to the terminals accessing the network, or the network side broadcasts the departure information of each cell to the terminals accessing the network. The moment of signal coverage of satellite 210.
  • Broadcast in each cell is the time when the cell enters the signal coverage of a different satellite after the current time (or the time when the cell enters the signal coverage of the next satellite after the current time).
  • the new terminal is sent to the new terminal the time when the cell enters the signal coverage of a different satellite after the current time (or the time when the cell enters the signal coverage of the next satellite after the current time). moment).
  • the first duration is used to determine whether there is enough time after the RLF to implement communication between the terminal 200 and the satellite 210 .
  • the interval between the current time and the first time is greater than or equal to the first time length, it means that there is enough time after the RLF to implement communication between the terminal 200 and the satellite 210 .
  • the first duration is a preset duration.
  • the first duration may be any one of 2ms, 4ms, 6ms, and 8ms.
  • the average duration of a communication between the terminal and the satellite can be determined based on the communication history record, and the average duration can be set as the first duration.
  • the interval between the current time and the first time is less than the first time period, even if the terminal 200 reconnects to the satellite 210 after RLF, there is a high probability that it will not be able to complete this communication (it will be separated from the satellite 210 before the communication is completed). communication range resulting in communication interruption).
  • the average duration for establishing a communication connection between the terminal and the satellite and for a round of data interaction after establishing the communication connection can be determined based on the communication history record, and the average duration can be set as the first duration.
  • the terminal 200 does not have enough time to reconnect to the satellite 210 after the RLF, or even if it reconnects to the satellite 210, it cannot complete a data interaction (reconnection). It doesn't even make sense).
  • the terminal 200 obtains the specific value of the first duration.
  • the method for the terminal can set the method for the terminal to obtain the specific value of the first duration according to actual application requirements.
  • the first duration can be configured in a system message or configured through RRC signaling.
  • the first duration is broadcast in the system message by the network side or the satellite 210, and the terminal 200 can be connected to the satellite 210 (only connected to the satellite 210 or connected to the network through the satellite 210) or based on the satellite 210. Get the first duration through system messages when accessing the network through other methods.
  • the satellite 210 or the network side Configure a first duration to the terminal 200.
  • the first duration may be universal (different terminals are configured with the same first duration), or the first duration may match the terminal 200 (configurations for different terminals are related to the terminal). the first duration of the match).
  • the terminal 200 gives up reconnecting to the satellite 210 after the RLF and directly enters the PSM to avoid signal coverage of any communicable satellite after the communication is interrupted. It still attempts to establish a communication connection with the satellite when within range, thus avoiding unnecessary power loss.
  • the purpose of the terminal 200 entering PSM in S330 is to reduce power consumption when the terminal 200 is in a state unable to connect to the satellite.
  • the terminal 200 needs to disconnect from the PSM, connect to the satellite again, and continue satellite communication.
  • the terminal 200 when the terminal 200 enters the signal coverage of the second satellite, the terminal 200 is triggered to perform S340. After the second satellite is the first satellite (satellite 210), the terminal 200 enters the next satellite within the satellite signal coverage range.
  • the terminal 200 after S340, after the terminal 200 enters the Idle mode, the terminal 200 performs cell selection for the second satellite and establishes an RRC connection.
  • FIG. 4 shows a timing diagram according to an embodiment of the present application.
  • the terminal 400 is within the signal coverage of the satellite 410 during the time period t1-t2, enters the signal coverage of the satellite 410 at time t1, and leaves the signal coverage of the satellite 410 at time t2.
  • the terminal 400 performs satellite communication with the satellite 410.
  • RLF occurs between the terminal 400 and the satellite 410.
  • the time interval T1 from time t11 to time t2 is less than the first duration. Therefore, after time t11, the terminal 400 enters PSM.
  • the terminal 400 leaves the PSM and establishes a communication connection with the satellite 420.
  • the second satellite releases a broadcast signal to terminals within the signal coverage area.
  • the terminal 200 can confirm that it has entered the signal coverage area of the second satellite.
  • the terminal 200 enters the PSM at S330, the terminal 200 monitors satellite broadcast signals.
  • the terminal 200 receives the broadcast signals of the two satellites, the terminal 200 is triggered to execute S340.
  • the network side or the satellite before the second satellite sends to the terminal 200 the movement trajectory of the second satellite or the moment when the cell where the terminal 200 is located enters the signal coverage of the second satellite (the second moment, the second moment).
  • the time can be obtained by referring to the method of obtaining the first time).
  • the terminal 200 triggers execution of S340 at the second moment.
  • the terminal 200 After entering the PSM, the terminal 200 detects whether it is within the signal coverage of the satellite at a predetermined time node or according to a predetermined frequency. When the terminal 200 detects that it is within the signal coverage of a satellite, execution of S340 is triggered. When the terminal 200 detects that it is not within the signal coverage of any satellite, the terminal 200 maintains PSM.
  • the terminal 200 triggers the terminal 200 to execute S340 after a second period of time after entering the PSM in S330.
  • the second duration is a preset duration
  • the acquisition method of the second duration may refer to the acquisition method of the first duration.
  • T3412 timer For example, set the timing of the second timer (T3412 timer) to the second duration.
  • the second duration is determined based on the second time, and the interval between the time when the terminal 200 enters the PSM and the second time is the second duration.
  • the second time period is the time period from when the terminal 200 enters the signal coverage of the second satellite to when the terminal 200 leaves the signal coverage of the second satellite minus the first time period. In this way, even after the terminal 200 enters the PSM, the terminal 200 immediately enters the signal coverage of the second satellite. After the terminal 200 leaves the PSM, the terminal 200 still has enough time to complete a satellite communication with the second satellite.
  • the interval between the current time and the first time is greater than or equal to the first time period, it means that there is enough time after the RLF to implement communication between the terminal 200 and the satellite 210 .
  • the terminal 200 after S310, when the interval between the current time and the first time is greater than or equal to the first time length, the terminal 200 will start the T3324 timer, and enter the PSM mode after the timer times out.
  • the terminal 200 will start the T3412 timer. If the terminal 200 is in the PSM state when the T3412 timer times out, the terminal 200 will exit the PSM state. In order to reduce power consumption, in an embodiment of the present application, for the running T3412 timer, if the timeout time of the T3412 timer is in the time period of the satellite coverage gap, then the terminal still maintains the PSM mode until the next satellite enters the coverage. When in a cell, the terminal will be triggered to exit PSM mode and enter idle mode. If the T3412 timer has not expired when the next satellite arrives, the terminal will also be triggered to exit the PSM mode and enter the idle mode when the next satellite enters the coverage cell. After entering the idle mode, cell selection is performed according to existing standards. After completing the cell selection, the RRC connection reestablishment process is initiated in the target cell.
  • the terminal side for example, terminal 200
  • the network side for example, the base station or server to which the terminal 200 is currently connected, or, before RLF, the terminal 200 is connected to through the satellite 210
  • the base station or server has inconsistent understanding of the terminal's PSM mechanism, which can easily lead to communication errors.
  • the network side (for example, the base station or server) understands the PSM mechanism of the terminal 200 and the mechanism adopted by the terminal 200, in the definition of the network side, the terminal 200 will not enter PSM after RLF occurs, but will continue to try to retry. Even satellite 210.
  • the network side will regard the terminal 200 as always being in a non-PSM state (continuously reconnecting to the satellite 210).
  • the network side may send unnecessary paging to the terminal 200 for the non-PSM state.
  • the terminal 200 reports its own PSM mechanism to the network side, informing the network side that after RLF occurs between the terminal 200 and the satellite 210, the interval between the current time and the first time is less than During the first period of time, terminal 200 will enter PSM.
  • the PSM mechanism of the terminal 200 includes that the terminal 200 supports the enhanced RLF mechanism proposed in the embodiment of this application, that is, when RLF occurs, the terminal enters the energy-saving mode when the interval between the first moment and the second moment is less than the first duration;
  • the PSM mechanism of 200 also includes that the terminal 200 does not support the enhanced RLF mechanism proposed in the embodiment of this application, that is, when RLF occurs, the terminal 200 directly attempts to reconnect to the satellite 210 .
  • the terminal 200 can report its own PSM mechanism in a variety of different ways, and this application does not impose specific restrictions on this.
  • the terminal 200 is connected to the network through a satellite (satellite 210 or other satellites), or the terminal 200 is connected to the network through other means other than satellites (for example, terrestrial wireless hotspots).
  • the description information of the PSM mechanism is carried through capability signaling.
  • capability signaling configure the following items: enhanced_rlf_capability enumerated value ⁇ 0,1 ⁇ . Among them, a value of 0 indicates that enhanced RLF is not supported; a value of 1 indicates that enhanced RLF is supported.
  • the terminal 200 is establishing an RRC connection with a satellite (satellite 210 or other satellites), or the terminal 200 is establishing an RRC connection with the network through other means other than satellites (for example, terrestrial wireless hotspots).
  • the PSM mechanism is reported to the network side. For example, extend the existing message 3 or message 5 signaling and add signaling: enhanced_rlf_capability enumerated value ⁇ 0,1 ⁇ . Among them, a value of 0 indicates that enhanced RLF is not supported; a value of 1 indicates that enhanced RLF is supported.
  • the terminal 200 actively reports its own PSM mechanism after connecting to the network (or when connecting to the network).
  • the network side sends a request to the terminal 200, and the terminal 200 can also feedback its own PSM mechanism to the network side after receiving the PSM mechanism query request from the network side.
  • the network side can use a variety of different methods to send the PSM mechanism query request to the terminal 200.
  • the RRC message carries the PSM mechanism query request, or the DCI is used to instruct the terminal to report the PSM mechanism.
  • the network side configures the first duration to the terminal.
  • an embodiment of the present application also proposes a satellite communication device.
  • the satellite communication device is constructed in a terminal.
  • Each module in the satellite communication device can be controlled by the processing module of the terminal. Perform the corresponding action below.
  • FIG. 5 shows a structural block diagram of a satellite communication device according to an embodiment of the present application.
  • the satellite communication device 500 includes:
  • Duration confirmation module 520 which is used to confirm whether the interval between the current time and the first time is greater than or equal to the first time length when a wireless link failure occurs between the terminal and the first satellite;
  • the mode confirmation module 530 is configured to control the terminal to enter the energy-saving mode when the interval between the current time and the first time is less than a first time length.
  • each module is only a division of logical functions.
  • each module can be divided into The functionality of a module is implemented in the same or more software and/or hardware.
  • the device proposed in the embodiment of the present application may be fully or partially integrated into a physical entity, or may be physically separated.
  • these modules can all be implemented in the form of software calling through processing elements; they can also all be implemented in the form of hardware; some modules can also be implemented in the form of software calling through processing elements, and some modules can be implemented in the form of hardware.
  • the determination module can be a separately established processing element, or it can be a collection of It is implemented in a chip of an electronic device.
  • the implementation of other modules is similar.
  • all or part of these modules can be integrated together or implemented independently.
  • each step of the above method or each of the above modules can be completed by instructions in the form of hardware integrated logic circuits or software in the processor element.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as: one or more specific integrated circuits (Application Specific Integrated Circuit, ASIC), or one or more digital signal processors ( Digital Singnal Processor, DSP), or one or more Field Programmable Gate Array (Field Programmable Gate Array, FPGA), etc.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Singnal Processor
  • FPGA Field Programmable Gate Array
  • these modules can be integrated together and implemented in the form of a System-On-a-Chip (SOC).
  • SOC System-On-a-Chip
  • an embodiment of this application also proposes an electronic device (terminal).
  • the electronic device includes a memory for storing computer program instructions and a processor for executing the program instructions. And a communication device, wherein when the computer program instructions are executed by the processor, the processor controls the electronic device to perform the action of determining the transmission beam performed by the terminal in the method shown in the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • the electronic device (terminal) in the embodiment of the present application may adopt a component structure as shown in Figure 6.
  • the electronic device 600 includes a processor 610 , a memory 620 and a communication device 630 .
  • the memory 620 can be used to store computer program instructions for executing the methods shown in the above embodiments.
  • the processor 610 controls the communication device 630 to execute the methods shown in the above embodiments. method.
  • the processor 610 may include, for example, a CPU, a DSP, a microcontroller or a digital signal processor, and may also include a GPU, an embedded neural network processor (Neural-network Process Units, NPU) and an image signal processor (Image Signal Processor). Processing (ISP), the processor 610 may also include necessary hardware accelerators or logical processing hardware circuits, such as ASIC, or one or more integrated circuits used to control the execution of the program of the technical solution of the present application, etc. In addition, the processor 610 may have the functionality to operate one or more software programs, which may be stored in a storage medium.
  • a CPU central processing unit
  • NPU embedded neural network processor
  • image signal processor Image Signal Processor
  • ISP image signal processor
  • the processor 610 may also include necessary hardware accelerators or logical processing hardware circuits, such as ASIC, or one or more integrated circuits used to control the execution of the program of the technical solution of the present application, etc.
  • the processor 610 may have the functionality to operate one or more software programs,
  • the processor 610 and the memory 620 can be combined into one processing device, and more Common are components that are independent of each other.
  • the memory 620 may also be integrated in the processor 610, or be independent of the processor 610.
  • the communication device 630 of the electronic device 600 is used to implement wireless communication functions.
  • the communication device 630 includes one or more of an antenna 631, a communication module 632, a modem processor 633 and a baseband processor 634.
  • the antenna 631 is used to transmit and receive electromagnetic wave signals.
  • Antenna 631 may include one or more independent antennas, each antenna may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the communication module 632 can provide wireless communication solutions including 2G/3G/4G/5G applied to the electronic device 600 .
  • the communication module 632 may include at least one filter, switch, power amplifier, low noise amplifier (LNA), etc.
  • the communication module 632 can receive electromagnetic waves through the antenna 631, perform filtering, amplification and other processing on the received electromagnetic waves, and transmit them to the modulation and demodulation processor 633 for demodulation.
  • the mobile communication module 632 can also amplify the signal modulated by the modem processor 633 and convert it into electromagnetic waves through the antenna 631 for radiation.
  • at least part of the functional modules of the mobile communication module 632 may be disposed in the processor 610 .
  • Modem processor 633 may include a modulator and a demodulator. Among them, the modulator is used to modulate the low-frequency baseband signal to be sent into a medium-high frequency signal. The demodulator is used to demodulate the received electromagnetic wave signal into a low-frequency baseband signal. The demodulator then transmits the demodulated low-frequency baseband signal to the baseband processor 734 for processing. After the low-frequency baseband signal is processed by the baseband processor 734, it is passed to the processor 610.
  • modem processor 633 may be a stand-alone device. In other embodiments, the modem processor 633 may be independent of the processor 610 and may be provided in the same device as the mobile communication module 732 or other functional modules.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi) -zenith satellite system (QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • equipment, devices, and modules described in the embodiments of this application may be implemented by computer chips or entities, or by products with certain functions.
  • embodiments of the present application may be provided as methods, devices, or computer program products.
  • the invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects.
  • the invention may take the form of a computer program product embodied on one or more computer-usable storage media embodying computer-usable program code therein.
  • any function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • an embodiment of the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program that, when run on a computer, causes the computer to execute the method provided by the embodiment of the present application.
  • These computer program instructions may also be stored in a computer-readable memory that causes a computer or other programmable data processing apparatus to operate in a particular manner, such that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction means, the instructions
  • the device implements the functions specified in a process or processes of the flowchart and/or a block or blocks of the block diagram.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.
  • At least one of a, b and c can mean: a, b, c, a and b, a and c, b and c or a and b and c, where a, b, c can be single, also Can be multiple.
  • the terms “comprising”, “comprises” or any other variation thereof are intended to cover a non-exclusive inclusion, such that a process, method, article or device that includes a series of elements not only includes those elements, but also Includes other elements not expressly listed or elements inherent to the process, method, good or equipment.
  • an element defined by the statement “comprises a" does not exclude the presence of additional identical elements in a process, method, article, or device that includes the stated element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供一种卫星通信方法、装置、芯片和电子设备。所述方法应用于终端,包括:所述终端在第一时刻检测到与第一卫星之间的无线链路失败;若所述第一时刻与第二时刻之间的间隔小于第一时长,所述终端进入节能模式,其中,所述第二时刻为所述第一卫星移出所述终端的服务小区的时刻。根据本申请实施例的方法,可以有效避免当终端释放连接时刻与卫星移出终端所在的服务小区时小于一个预设的阈值时,仍然维持在空闲态,从而降低终端的功耗。

Description

一种卫星通信方法、装置、芯片和电子设备 技术领域
本申请涉及通信技术领域,特别涉及一种卫星通信方法、装置、芯片和电子设备。
背景技术
在地面终端(例如,手机)与卫星实现通信的应用场景中,由于卫星是处于移动状态的,因此,针对某一卫星A以及地面终端B,地面终端B与卫星A之间的关系通常是:地面终端B进入卫星A信号覆盖范围(卫星A进入地面终端B的服务小区);地面终端B处于卫星A信号覆盖范围(卫星A在地面终端B的服务小区内);地面终端B脱离卫星A信号覆盖范围(卫星A移出地面终端B的服务小区)。当地面终端B脱离卫星A信号覆盖范围时,地面终端B和卫星A之间就无法实现通信。
一般的,在卫星信号连续覆盖的应用场景中,当地面终端B脱离卫星A信号覆盖范围时,地面终端B已进入其他卫星(例如,卫星C)的信号覆盖范围。此时,地面终端B可以连接到卫星C继续卫星通信,实现无中断的卫星通信。
但是,在卫星信号非连续覆盖的应用场景中,当地面终端B脱离卫星A信号覆盖范围时,地面终端B并未进入其他可通信的卫星的信号覆盖范围。此时,地面终端B未进入任何可通信的卫星的信号覆盖范围,地面终端B无法实现卫星通信。然而,在地面终端B未进入任何可通信的卫星的信号覆盖范围时,地面终端B可能仍会尝试与卫星建立通信连接,这就会导致无意义的功耗。因此,需要一种卫星通信方法,以降低地面终端的功耗。
发明内容
针对现有技术下如何降低地面终端的功耗的问题,本申请提供了一种卫星通信方法、装置、芯片和电子设备,本申请还提供一种计算机可读存储介质。
本申请实施例采用下述技术方案:
第一方面,本申请提供一种卫星通信方法,所述方法应用于终端,所述方法包括:
所述终端在第一时刻检测到与第一卫星之间的无线链路失败;
若所述第一时刻与第二时刻之间的间隔小于第一时长,所述终端进入节能模式,其中,所述第二时刻为所述第一卫星移出所述终端的服务小区的时刻。
在第一方面的一种实现方式中,所述方法还包括:
所述终端接收第一指示信息,所述第一指示信息用于指示所述第一时长。
在第一方面的一种实现方式中,所述终端接收第一指示信息,包括:
所述终端接收系统信息,所述系统信息包括所述第一指示信息。
在第一方面的一种实现方式中,所述终端接收第一指示信息,包括:
所述终端接收专有信令,所述专有信令包括所述第一指示信息。
在第一方面的一种实现方式中,所述方法还包括:
所述终端发送设备能力信息,所述设备能力信息用于指示所述终端支持增强的无线链路失败能力。
在第一方面的一种实现方式中,所述方法还包括:
所述终端设备接收设备能力上报请求,所述设备能力上报请求用于请求上报所述终端的增强的无线链路失败能力。
在第一方面的一种实现方式中,所述方法还包括:
若所述第一时刻与所述第二时刻之间的间隔大于或等于所述第一时长,所述终端启动第一定时器,并当所述第一定时器计时结束,所述终端进入节能模式。
在第一方面的一种实现方式中,所述方法还包括:
若所述第一时刻与所述第二时刻之间的间隔大于或等于所述第一时长,所述终端重新建立与所述第一卫星之间的无线链路。
在第一方面的一种实现方式中,所述终端进入节能模式之后,所述方法还包括:
若第二定时器计时结束的时刻位于所述第一时间段内,所述终端设备继续保持所述节能模式,所述第一时间段为所述第一卫星位于所述终端的服务小区的时间段。
在第一方面的一种实现方式中,所述终端进入节能模式之后,所述方法还包括:
所述终端检测到第二卫星进入所述服务小区内,退出节能模式,进入空闲态。
第二方面,本申请提供一种卫星通信方法,所述方法应用于服务器,所述方法包括:
发送第一指示信息到终端,所述第一指示信息用于指示第一时长;
或者,
发送系统消息到所述终端,所述系统消息包括第一时长;
其中,所述终端第一时刻与第二时刻之间的间隔小于所述第一时长时进入节能模式,所述第一时刻为所述终端检测到与第一卫星之间的无线链路失败的时刻,所述第二时刻为所述第一卫星移出所述终端的服务小区的时刻。
在第二方面的一种实现方式中,所述发送第一指示信息,包括:
发送专有信令,所述专有信令包括所述第一指示信息。
在第二方面的一种实现方式中,所述方法还包括:
接收来自终端的设备能力信息,所述设备能力信息用于指示所述终端支持增强的无线链路失败能力。
在第二方面的一种实现方式中,所述方法还包括:
发送设备能力上报请求,所述设备能力上报请求用于请求上报所述终端的增强的无线链路失败能力。
第三方面,本申请提供一种卫星通信装置,所述装置应用于终端,包括:
检测模块,其用于在第一时刻检测到与第一卫星之间的无线链路失败;
节能控制模块,其用于若所述第一时刻与第二时刻之间的间隔小于第一时长,控制所述终端进入节能模式,其中,所述第二时刻为所述第一卫星移出所述终端的服务小区的时刻。
第四方面,本申请提供一种卫星通信装置,所述装置应用于服务器,包括:
输出模块,其用于:
发送第一指示信息到终端,所述第一指示信息用于指示第一时长;
或者,
发送系统消息到所述终端,所述系统消息包括第一时长;
其中,所述终端第一时刻与第二时刻之间的间隔小于所述第一时长时进入节能模式,所述第一时刻为所述终端检测到与第一卫星之间的无线链路失败的时刻,所述第二时刻为所述第一卫星移出所述终端的服务小区的时刻。
第五方面,本申请提供一种电子芯片,所述电子芯片应用于终端,包括:
处理器,其用于执行存储在存储器上的计算机程序指令,其中,当所述计算机程序指令被所述处理器执行时,触发所述电子芯片执行第一方面所述的方法。
第六方面,本申请提供一种电子芯片,所述电子芯片应用于终端,包括:
处理器,其用于执行存储在存储器上的计算机程序指令,其中,当所述计算机程序指令被所述处理器执行时,触发所述电子芯片执行第二方面所述的方法。
第七方面,本申请提供一种电子设备,所述电子设备包括用于存储计算机程序指令的存储器、用于执行计算机程序指令的处理器和通信装置,其中,当所述计算机程序指令被该处理器执行时,触发所述电子设备执行如第一方面所述的方法。
第八方面,本申请提供一种电子设备,所述电子设备包括用于存储计算机程序指令的存储器、用于执行计算机程序指令的处理器和通信装置,其中,当所述计算机程序指令被该处理器执行时,触发所述电子设备执行如第二方面所述的方法。
第九方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行如第一方面或第二方面所述的方法。
第十方面,本申请提供一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如第一方面或第二方面所述的方法。
根据本申请实施例所提出的上述技术方案,至少可以实现下述技术效果:
根据本申请实施例的方法,可以有效避免终端在并不位于任何可通信的卫星的信号覆盖范围内时试图与卫星建立通信连接,从而降低终端的功耗。
附图说明
图1所示为卫星信号连续覆盖应用场景示意图;
图2所示为卫星信号非连续覆盖应用场景示意图;
图3所示为根据本申请一实施例的卫星通信方法流程图;
图4所示为根据本申请一实施例时序示意图;
图5所示为根据本申请一实施例的卫星通信装置结构框图;
图6所示为本申请一实施例的电子设备结构框图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在 没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
在现有的通信标准中,当终端结束当前无线通信,正常释放无线资源控制(Radio Resource Control,RRC)连接后,将启动第一定时器(T3324定时器),当T3324定时器超时后终端将进入节能模式(power saving mode,PSM)以降低功耗。在终端进入PSM后,终端会启动第二定时器(T3412定时器)。在PSM下,当T3412定时器超时时,终端将退出PSM,进入空闲(Idle)模式。终端进入Idle模式后,如果存在无线通信需求,终端执行小区选择,完成小区选择后,在目标小区重新建立RRC连接。
在通信异常,出现无线链路失败(radio link failure,RLF)时,终端将直接进入Idle模式(不会启动T3324定时器,也不会进入PSM)。终端进入Idle模式后执行小区选择,完成小区选择后,在目标小区重新建立RRC连接。
图1所示为一卫星信号连续覆盖的通信应用场景的示意图。卫星110当前的位置是位置A,终端100(地面终端)当前位于卫星110的信号覆盖范围内(卫星110在地面终端100的服务小区内),终端100与卫星110实现卫星通信。
在卫星信号连续覆盖的应用场景中,当卫星110移动到位置B处时,终端100脱离卫星110的信号覆盖范围(卫星110移出地面终端100的服务小区),终端100无法通过卫星110实现卫星通信。但此时,之前位于位置C处的卫星120已移动到位置A,终端100进入到卫星120的信号覆盖范围(卫星120在地面终端100的服务小区内),终端100可以基于卫星120继续实现卫星通信。
具体的,针对正常释放RRC连接的应用场景,终端100处于卫星110的信号覆盖范围期间,终端100与卫星110建立卫星通信。在终端100脱离卫星110的信号覆盖范围之前,终端100与卫星110之间的卫星通信结束。终端100正常释放RRC连接,启动T3324定时器,当定时器超时后终端100进入PSM以降低功耗。在终端100进入PSM后,终端100启动T3412定时器。在PSM下,当T3412定时器超时时,终端100退出PSM,进入Idle模式。
在终端100进入PSM后,终端100脱离卫星110的信号覆盖范围。当终端100退出PSM,进入Idle模式后,由于终端100已脱离卫星110的信号覆盖范围,因此,终端100无法通过卫星110实现卫星通信。此时,终端100位于卫星120的信号覆盖范围,终端100可以针对卫星120执行小区选择,完成小区选择后,在目标小区与卫星120建立RRC连接。
针对出现RLF的应用场景,终端100处于卫星110的信号覆盖范围期间,终端100与卫星110建立卫星通信。终端100脱离卫星110的信号覆盖范围之前终端100与卫星110间出现RLF,在RLF之后终端100直接进入Idle模式(不会启动T3324定时器,也不会进入PSM)。终端100进入Idle模式后执行小区选择。在执行小区选择期间,终端100脱离卫星110的信号覆盖范围,无法针对卫星110进行小区选择。此时,终端100位于卫星120的信号覆盖范围,终端100可以针对卫星120执行小区选择,完成小区选择后,在目标小区与卫星120重新建立RRC连接。
或者,在终端100与卫星110建立卫星通信的期间,由于卫星110的移动导致终端100 脱离卫星110的信号覆盖范围从而使得终端100与卫星110间出现RLF。在RLF之后终端100直接进入Idle模式(不会启动T3324定时器,也不会进入PSM)。终端100进入Idle模式后执行小区选择。此时,终端100位于卫星120的信号覆盖范围,终端100可以针对卫星120执行小区选择,完成小区选择后,在目标小区与卫星120重新建立RRC连接。
基于图1所示实施例的应用场景,在卫星信号连续覆盖的应用场景中,终端可以依照现有通信标准完成无线通信,不需要额外考虑进入/脱离卫星信号覆盖范围产生的影响。
图2所示为一卫星信号非连续覆盖的通信应用场景的示意图。卫星210当前的位置是位置A,终端200(地面终端)当前位于卫星210的信号覆盖范围内(卫星210在地面终端200的服务小区内),终端200与卫星210实现卫星通信。
在卫星信号非连续覆盖的应用场景中,当卫星210移动到位置B处时,终端200脱离卫星210的信号覆盖范围(卫星210移出地面终端200的服务小区),终端200无法通过卫星210实现卫星通信。此时,终端200也并不位于其他可实现通信的卫星的信号覆盖范围内。这种情况下,终端200无法实现卫星通信。
具体的,针对正常释放RRC连接的应用场景,终端200处于卫星210的信号覆盖范围期间,终端200与卫星210建立卫星通信。在终端200脱离卫星210的信号覆盖范围之前,终端200与卫星210之间的卫星通信结束。终端200正常释放RRC连接,启动T3324定时器,当定时器超时后终端200进入PSM以降低功耗。在终端200进入PSM后,终端200启动T3412定时器。在PSM下,当T3412定时器超时时,终端200退出PSM,进入Idle模式。
在终端200进入PSM后,终端200脱离卫星210的信号覆盖范围。当终端200退出PSM,进入Idle模式后,由于终端200已脱离卫星210的信号覆盖范围,并且,终端200也并不位于其他可实现通信的卫星的信号覆盖范围内。因此,终端200无法实现卫星通信。但此时,由于终端200是从PSM进入Idle模式,通过对PSM时长的设定,可以有效控制终端200的功耗。
针对出现RLF的应用场景,终端200处于卫星210的信号覆盖范围期间,终端200与卫星210建立卫星通信。终端200脱离卫星210的信号覆盖范围之前终端200与卫星210间出现RLF。
或者,在终端200与卫星210建立卫星通信的期间,由于卫星210的移动导致终端200脱离卫星210的信号覆盖范围从而使得终端200与卫星210间出现RLF。
在RLF之后终端200直接进入Idle模式(不会启动T3324定时器,也不会进入PSM)。终端200进入Idle模式后执行小区选择,试图建立RRC连接。
在执行小区选择期间,终端200脱离卫星210的信号覆盖范围,无法针对卫星210进行小区选择。此时,终端200并不位于任何其他可实现通信的卫星的信号覆盖范围内,但由于之前终端200是在RLF之后直接进入Idle模式,因此终端200会立即试图执行小区选择,试图建立RRC连接。终端200在无法连接到卫星的前提下试图执行小区选择、试图建立RRC连接,就会导致没有必要的功率损耗。
基于图2所示实施例的应用场景,在卫星信号非连续覆盖的应用场景中,当终端脱离卫星信号覆盖范围后,在终端并不位于任何可通信的卫星的信号覆盖范围内时,终端仍然可能会试图与卫星建立通信连接,从而产生了没有必要的功率损耗。针对上述问题,为降低终端的功耗,本申请一实施例提出了一种卫星通信方法。根据本申请实施例的方法,采用增强的RLF,在增强的RLF中,当终端与卫星间出现RLF时,终端并不是直接尝试与卫星重新建立连接,而是首先判断在当前的卫星移出终端的服务小区前,是否有足够的时长与当前的卫星再次建立连接。如果时长不足以与当前的卫星在此建立连接,则终端不尝试进行重连,而是直接进入节能模式,以有效避免终端在并不位于任何可通信的卫星的信号覆盖范围内时试图与卫星建立通信连接,从而降低终端的功耗。
图3所示为根据本申请一实施例的方法流程图。在卫星信号非连续覆盖的应用场景中,终端200执行如图3所示的下述流程以降低功耗。
S300,获取第一时刻,其中,第一时刻为终端200脱离第一卫星的信号覆盖范围的时刻,第一卫星为终端200当前进行卫星通信的通信对象(卫星210)。
S300的执行可以在终端200第一次与卫星210建立通信时执行,也可以在终端200进入卫星210的信号覆盖范围内时执行。
具体的,终端200可以基于多种方式获取第一时刻,本申请对此不做具体限制。
例如,卫星210通过广播向信号覆盖范围内的终端发布自身的移动轨迹(例如,移动方向、移动速度)。当终端200进入到卫星210的信号覆盖范围内后,获取卫星210的移动轨迹,终端200根据自身位置以及卫星210的移动轨迹确认自身脱离卫星210的信号覆盖范围的时刻。
又例如,卫星210向信号覆盖范围内的终端发布广播信号,终端200接收到卫星210的广播信号后即可确认自身已进入到卫星210的信号覆盖范围。当终端200确认自身进入到卫星210的信号覆盖范围内后,终端200向卫星210发起请求,请求获取卫星210的移动轨迹。卫星210向终端200反馈自身的移动轨迹,终端200根据自身位置以及卫星210的移动轨迹确认自身脱离卫星210的信号覆盖范围的时刻。
又例如,卫星210向信号覆盖范围内的终端发布广播信号,终端200接收到卫星210的广播信号后即可确认自身已进入到卫星210的信号覆盖范围。当终端200确认自身进入到卫星210的信号覆盖范围内后,终端200向卫星210主动通报自身位置,卫星210根据终端200的位置、自身的移动轨迹确认终端200脱离自身信号覆盖范围的时刻,并将该时刻发送给终端200。
又例如,预先将地面划分为多个小区,根据卫星210的移动轨迹确认每一个小区脱离卫星210的信号覆盖范围的时刻。卫星210向信号覆盖范围内的终端广播各个小区脱离自身信号覆盖范围的时刻。当终端200进入到卫星210的信号覆盖范围内后,获取卫星210的广播信息,终端200根据自身所处的小区确认自身脱离卫星210的信号覆盖范围的时刻。
又例如,预先将地面划分为多个小区,根据卫星210的移动轨迹确认每一个小区脱离卫星210的信号覆盖范围的时刻。卫星210向信号覆盖范围内的终端发布广播信号,终端200接收到卫星210的广播信号后即可确认自身已进入到卫星210的信号覆盖范围。当终 端200确认自身进入到卫星210的信号覆盖范围内后,终端200向卫星210发起请求,上报自身所处的小区。卫星210根据终端200上报的小区确认该小区脱离信号覆盖范围的时刻,并将该时刻反馈给终端200。
又例如,终端200可以通过卫星210以外的其他方式连接到网络侧,由网络侧向接入网络的终端广播卫星210的移动轨迹,或者,由网络侧向接入网络的终端广播每一个小区脱离卫星210的信号覆盖范围的时刻。
又例如,终端200可以通过卫星210以外的其他方式连接到网络侧。终端200向网络侧请求获取卫星210的移动轨迹,网络侧响应请求将卫星210的移动轨迹发送给终端200。或者,终端200向网络侧请求获取第一时刻(请求包含终端200所在的小区),网络侧根据终端200上报的小区确认该小区脱离信号覆盖范围的时刻,并将该时刻反馈给终端200。
又例如,小区内存在卫星通信以外的其他通信方式。在每个小区内广播,当前时刻之后的,该小区进入不同的卫星的信号覆盖范围的时刻(或者,当前时刻之后,该小区进入下一个卫星的信号覆盖范围的时刻)。或者,当新终端进入小区时,向新进入小区的终端发送当前时刻之后的,该小区进入不同的卫星的信号覆盖范围的时刻(或者,当前时刻之后,该小区进入下一个卫星的信号覆盖范围的时刻)。
S310,当终端200与卫星210之间的通信出现RLF时,确认当前时刻与第一时刻之间的间隔是否大于等于第一时长。
第一时长用于判断RLF后是否有足够的时间用于实现终端200与卫星210之间的通信。在当前时刻与第一时刻之间的间隔大于等于第一时长时,说明RLF后有足够的时间用于实现终端200与卫星210之间的通信。
在本申请实施例中,第一时长为预设的时长。本领域的技术人员可以根据实际应用需求设定第一时长的具体值,本申请对此不做具体限制。例如,在一实现方式中,第一时长可以为2ms、4ms、6ms、8ms中的任意一个。
例如,可以根据通信历史记录确定终端与卫星进行一次通信的平均时长,将该平均时长设定为第一时长。在当前时刻与第一时刻之间的间隔小于第一时长时,终端200在RLF后即使重连到卫星210,也有很大的几率无法完成本次通信(在通信完成前就会因为脱离卫星210的通信范围而导致通信中断)。
又例如,可以根据通信历史记录确定终端与卫星建立通信连接以及建立通信连接后进行一轮数据交互的平均时长,将该平均时长设定为第一时长。在当前时刻与第一时刻之间的间隔小于第一时长时,终端200在RLF后并没有足够的时间重连到卫星210,或者,即使重连到卫星210,也无法完成一次数据交互(重连没有意义)。
进一步的,在本申请实施例中,对终端200获取第一时长的具体值的方式不做具体限定。本领域的技术人员可以根据实际应用需求设定终端获取第一时长的具体值的方式。例如,第一时长可以在系统消息里配置,或者通过RRC信令配置。
例如,在一实现方式中,由网络侧或卫星210在系统消息中广播第一时长,终端200可以在连接到卫星210(仅连接到卫星210或通过卫星210连接到网络)或基于卫星210以外的其他方式接入网络时通过系统消息获取第一时长。
又例如,在另一实现方式中,当终端200连接到卫星210(仅连接到卫星210或通过卫星210连接到网络)或基于卫星210以外的其他方式接入网络时,由卫星210或网络侧向终端200配置第一时长,该第一时长可以是通用的(不同的终端均被配置同一个第一时长),该第一时长也可以是匹配终端200的(针对不同的终端配置与终端相匹配的第一时长)。
具体的,卫星210或网络侧可以在终端200首次连接到卫星210(仅连接到卫星210或通过卫星210连接到网络)或基于卫星210以外的其他方式接入网络时向终端200配置第一时长,并且,在第一时长被更新后,在第一时长更新后终端200首次接入时向终端200配置更新后的第一时长。卫星210或网络侧也可以在终端200每次接入时向终端200配置最新的第一时长。
在当前时刻与第一时刻之间的间隔小于第一时长时,说明RLF后并没有足够的时间用于实现终端200与卫星210之间的通信。在RLF后,终端200无法完成重连到卫星210的操作(在重连到卫星210之前,终端200就脱离了卫星210的信号覆盖范围),或者,终端200即使重连到卫星210,也无法顺利完成当前的卫星通信(在完成卫星通信之前,终端200就脱离了卫星210的信号覆盖范围)。在RLF后,终端200试图重新连接到卫星210是不会产生有效结果的。
因此,在S310之后,在当前时刻与第一时刻之间的间隔小于第一时长时,终端200执行S330。
S330,在当前时刻与第一时刻之间的间隔小于第一时长时,终端200进入PSM。
在当前时刻与第一时刻之间的间隔大于等于第一时长时,终端200在RLF后放弃重连到卫星210,直接进入PSM,避免通信中断后在并不位于任何可通信的卫星的信号覆盖范围内时仍然试图与卫星建立通信连接,从而避免了没有必要的功率损耗。
进一步的,终端200在S330中进入PSM的目的是在终端200处于无法连接到卫星的状态时降低功耗。为了完成由之前RLF中断的卫星通信任务,在S330之后,当终端200可以再次连接到卫星时,终端200需要脱离PSM,再次连接到卫星,继续卫星通信。
如图3所示,在S330之后,终端200执行S340。
S340,脱离PSM,进入Idle模式。
在本申请实施例中,对触发终端200执行S340(脱离PSM,进入Idle模式)的方式不做具体限制。本领域的技术人员可以根据实际需求设定S340的触发方式。
例如,在一种实现方式中,当终端200进入到第二卫星的信号覆盖范围内时,触发终端200执行S340。第二卫星为第一卫星(卫星210)之后,终端200进入卫星信号覆盖范围的下一颗卫星。
在本实现方式中,在S340之后,在终端200进入Idle模式后,终端200针对第二卫星执行小区选择,建立RRC连接。
图4所示为根据本申请一实施例的时序示意图。
如图4所示,在t1-t2时间段内终端400在卫星410的信号覆盖范围内,在t1时刻终端400进入卫星410的信号覆盖范围,在t2时刻终端400脱离卫星410的信号覆盖范围。
在t1-t2时间段内终端400与卫星410进行卫星通信。在t2时刻之前的t11时刻,终端400与卫星410间出现RLF。t11时刻到t2时刻的时间间隔T1小于第一时长,因此,在t11时刻后,终端400进入PSM.
在t3-t4时间段内终端400在卫星420的信号覆盖范围内,在t3时刻终端400进入卫星420的信号覆盖范围,在t4时刻终端400脱离卫星420的信号覆盖范围。
在t3时刻终端400脱离PSM,和卫星420建立通信连接。
进一步的,本申请实施例中,对确认终端200何时进入到第二卫星的信号覆盖范围内的具体方式不做具体限制,本领域的技术人人员可以根据实际应用场景,设计确认终端200何时进入到第二卫星的信号覆盖范围内的具体方式。
例如,第二卫星向信号覆盖范围内的终端发布广播信号,终端200接收到第二卫星的广播信号后即可确认自身已进入到第二卫星的信号覆盖范围。在S330终端200进入PSM后,终端200监控卫星广播信号。当终端200接收到二卫星的广播信号后即触发终端200执行S340。
又例如,由网络侧或第二卫星之前的卫星(例如,卫星210)向终端200发送第二卫星的移动轨迹或终端200所在小区进入第二卫星信号覆盖范围的时刻(第二时刻,第二时刻的获取可以参照第一时刻的获取方式)。在S330终端200进入PSM后,终端200在第二时刻触发执行S340。
又例如,终端200在进入PSM之后,在预定的时间节点或者按照预定的频率检测自身是否处于卫星的信号覆盖范围内。当终端200检测到自身处于卫星的信号覆盖范围内时触发执行S340,当终端200检测到自身不处于任何卫星的信号覆盖范围内时,终端200维持PSM。
又例如,在另一种实现方式中,终端200在S330进入PSM后在第二时长后触发终端200执行S340。
在本申请实施例中,第二时长为预设的时长,第二时长的获取方式可以参照第一时长的获取方式。本领域的技术人员可以根据实际应用需求设定第一时长的具体值,本申请对此不做具体限制。
例如,将第二定时器(T3412定时器)的定时设置为第二时长。
又例如,根据第二时刻确定第二时长,以终端200进入PSM的时刻与第二时刻之间的间隔为第二时长。
又例如,以终端200进入第二卫星的信号覆盖范围到终端200脱出第二卫星的信号覆盖范围的时长减去第一时长为第二时长。这样,即使在终端200进入PSM后,终端200立刻进入第二卫星的信号覆盖范围,在终端200脱离PSM后,终端200仍然有足够的时间与第二卫星完成一次卫星通信。
进一步的,在当前时刻与第一时刻之间的间隔大于等于第一时长时,说明RLF后有足够的时间用于实现终端200与卫星210之间的通信。
因此,在S310之后,在当前时刻与第一时刻之间的间隔大于等于第一时长时,终端200执行S320。
S320,在当前时刻与第一时刻之间的间隔大于等于第一时长时,进入Idle模式。
在S320之后,在终端200进入Idle模式后,终端200针对卫星210执行小区选择,建立RRC连接。
进一步的,在另一实现方式中,在S310之后,在当前时刻与第一时刻之间的间隔大于等于第一时长时,终端200将启动T3324定时器,在定时器超时后,进入PSM模式。
进一步的,在某些应用场景中,终端200会启动T3412定时器,如果T3412定时器超时时终端200处于PSM状态,终端200会退出PSM状态。为了降低功耗,在本申请一实施例中,对于正在运行的T3412定时器,如果T3412定时器超时时刻位于卫星覆盖间隙的时间段,那么终端依然保持PSM的模式,待下一个卫星进入该覆盖小区时,将触发终端退出PSM模式,进入空闲态模式。如果T3412定时器在下一个卫星到达时刻还未超时,那么终端也将在下一个卫星进入该覆盖小区时,将触发终端退出PSM模式,进入空闲态模式。进入空闲态模式后,按照现有的标准,执行小区选择,完成小区选择后,在目标小区发起RRC连接重建流程。
进一步的,在实际应用场景中,如果终端侧(例如,终端200)与网络侧(例如,终端200当前所连接到的基站或者服务器,或者,在RLF之前,终端200通过卫星210所连接到的基站或者服务器)对终端的PSM机制的理解不一致,很容易导致通信错误。
例如,根据本申请实施例的方法,在终端200与卫星210间出现RLF后,在当前时刻与第一时刻之间的间隔小于第一时长时,终端200进入PSM。
如果网络侧(例如,基站或者服务器)对终端200的PSM机制的理解与终端200所采用的机制不一致,在网络侧的定义中,终端200在出现RLF后不会进入PSM,而是不断尝试重连卫星210。
那么,在终端200与卫星210间出现RLF后,网络侧会将终端200视为始终处于非PSM状态(不断重连卫星210)。网络侧就有可能针对非PSM状态向终端200发送不必要的寻呼。
针对上述问题,在本申请一实施例中,终端200向网络侧上报自身的PSM机制,告知网络侧,在终端200与卫星210间出现RLF后,在当前时刻与第一时刻之间的间隔小于第一时长时,终端200会进入PSM。具体的,终端200的PSM机制包括终端200支持本申请实施例提出的增强的RLF机制,即,在出现RLF时,在第一时刻与第二时刻的间隔小于第一时长时进入节能模式;终端200的PSM机制还包括终端200不支持本申请实施例提出的增强的RLF机制,即,在出现RLF时,终端200直接尝试重连卫星210。
具体的,终端200可以采用多种不同的方式上报自身的PSM机制,本申请对此不做具体限制。
例如,在一种实现方式中,终端200在通过卫星(卫星210或其他卫星)与网络侧处于连接状态,或者,终端200在通过卫星以外的其他方式(例如,地面无线热点)与网络 侧处于连接状态时,通过能力信令携带PSM机制的描述信息。例如,在能力信令中,配置以下项:enhanced_rlf_capability enumerated value{0,1}。其中,该项值为0表示不支持增强的RLF;该项值为1表示支持增强的RLF。
又例如,在一种实现方式中,终端200在与卫星(卫星210或其他卫星)建立RRC连接,或者,终端200在通过卫星以外的其他方式(例如,地面无线热点)与网络侧建立RRC连接时,随着RRC连接建立进程的消息3或者消息5,将PSM机制上报到网络侧。例如,扩展现有的消息3或者消息5信令,增加信令:enhanced_rlf_capability enumerated value{0,1}。其中,该项值为0表示不支持增强的RLF;该项值为1表示支持增强的RLF.
进一步的,在一种实现方式中,终端200在连接到网络后(或连接网络时)主动上报自身的PSM机制。
在另一种实现方式中,由网络侧向终端200发送请求,请求查询的PSM机制请求后终端200也可以在接收到网络侧的PSM机制查询请求后,向网络侧反馈自身的PSM机制。网络侧可以使用多种不同的方式向终端200发送PSM机制查询请求。例如,通过RRC消息携带PSM机制查询请求,或者,通过DCI指示终端上报PSM机制。
进一步的,在一种实现方式中,当终端200向网络侧上报PSM机制后,网络侧向终端配置第一时长。
进一步的,基于本申请的卫星通信方法,本申请一实施例还提出了一种卫星通信装置,该卫星通信装置被构造在终端中,卫星通信装置中的各个模块可以在终端的处理模块的控制下执行相应的动作。
图5所示为根据本申请一实施例的卫星通信装置结构框图。如图5所示,卫星通信装置500包括:
第一时刻获取模块510,其用于获取第一时刻,其中,所述第一时刻为所述终端脱离第一卫星的信号覆盖范围的时刻,所述第一卫星为所述终端当前进行卫星通信的通信对象;
时长确认模块520,其用于当所述终端与所述第一卫星间出现无线链路失败时,确认当前时刻与所述第一时刻之间的间隔是否大于等于第一时长;
模式确认模块530,其用于当所述当前时刻与所述第一时刻之间的间隔小于第一时长时,控制所述终端进入节能模式。
在本申请实施例的描述中,为了描述的方便,描述装置时以功能分为各种模块分别描述,各个模块的划分仅仅是一种逻辑功能的划分,在实施本申请实施例时可以把各模块的功能在同一个或多个软件和/或硬件中实现。
具体的,本申请实施例所提出的装置在实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块以软件通过处理元件调用的形式实现,部分模块通过硬件的形式实现。例如,确定模块可以为单独设立的处理元件,也可以集 成在电子设备的某一个芯片中实现。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个数字信号处理器(Digital Singnal Processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,这些模块可以集成在一起,以片上装置(System-On-a-Chip,SOC)的形式实现。
进一步的,基于本申请提出的获取PL-RS的方法,本申请一实施例还提出了一种电子设备(终端),电子设备包括用于存储计算机程序指令的存储器、用于执行程序指令的处理器以及通信装置,其中,当计算机程序指令被该处理器执行时,触发电子设备执行本申请实施例中所示的方法中终端执行的获取PL-RS动作。
进一步的,基于本申请提出的确定发送波束的方法,本申请一实施例还提出了一种电子设备(终端),电子设备包括用于存储计算机程序指令的存储器、用于执行程序指令的处理器以及通信装置,其中,当计算机程序指令被该处理器执行时,处理器控制电子设备执行本申请实施例中所示的方法中终端执行的确定发送波束的动作。
图6所示为本申请一实施例的电子设备结构示意图。本申请实施例的电子设备(终端)可以采用如图6所示的组件结构。如图6所示,电子设备600包括处理器610、存储器620以及通信装置630。
存储器620可以用于存储用于执行上述实施例所示的方法的计算机程序指令,当处理器610执行存储器620中存储的计算机程序指令时,处理器610控制通信装置630执行上述实施例所示的方法。
电子设备600的处理器610可以是片上装置SOC,该处理器中可以包括中央处理器(Central Processing Unit,CPU),还可以进一步包括其他类型的处理器。
具体的,处理器610可以例如包括CPU、DSP、微控制器或数字信号处理器,还可包括GPU、嵌入式神经网络处理器(Neural-network Process Units,NPU)和图像信号处理器(Image Signal Processing,ISP),处理器610还可包括必要的硬件加速器或逻辑处理硬件电路,如ASIC,或一个或多个用于控制本申请技术方案程序执行的集成电路等。此外,处理器610可以具有操作一个或多个软件程序的功能,软件程序可以存储在存储介质中。
电子设备600的存储器620可以是只读存储器(read-only memory,ROM)、可存储静态信息和指令的其它类型的静态存储设备、随机存取存储器(random access memory,RAM)或可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备,或者还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何计算机可读介质。
具体的,在本申请一实施例中,处理器610和存储器620可以合成一个处理装置,更 常见的是彼此独立的部件。具体实现时,存储器620也可以集成在处理器610中,或者,独立于处理器610。
电子设备600的通信装置630用于实现无线通信功能,通信装置630包括天线631、通信模块632,调制解调处理器633以及基带处理器634中的一个或多个。
天线631用于发射和接收电磁波信号。天线631可以包括一个或多个独立的天线,每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。
通信模块632可以提供应用在电子设备600上的包括2G/3G/4G/5G等无线通信的解决方案。通信模块632可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。通信模块632可以由天线631接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器633进行解调。移动通信模块632还可以对经调制解调处理器633调制后的信号放大,经天线631转为电磁波辐射出去。在一些实施例中,移动通信模块632的至少部分功能模块可以被设置于处理器610中。
调制解调处理器633可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器734处理。低频基带信号经基带处理器734处理后,被传递给处理器610。在一些实施例中,调制解调处理器633可以是独立的器件。在另一些实施例中,调制解调处理器633可以独立于处理器610,与移动通信模块732或其他功能模块设置在同一个器件中。
在一些实施例中,电子设备600的天线631和通信模块632耦合,使得电子设备600可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
进一步的,在实际应用场景中,本说明书所示实施例的方法流程可以由安装在电子设备上的电子芯片所实现。因此,基于本申请提出的方法,本申请一实施例还提出了一种电子芯片该电子芯片安装在基站中,电子芯片包括用于存储计算机程序指令的存储器和用于执行计算机程序指令的处理器,其中,当计算机程序指令被该处理器执行时,触发电子芯片执行本申请上述实施例所示的方法中的基站所执行的动作。
进一步的,基于本申请提供的方法,本申请一实施例还提出了一种电子芯片该电子芯片安装在终端中,电子芯片包括用于存储计算机程序指令的存储器和用于执行计算机程序指令的处理器,其中,当计算机程序指令被该处理器执行时,触发电子芯片执行本申请上述实施例所示的方法中的终端所执行的动作。
进一步的,本申请实施例阐明的设备、装置、模块,具体可以由计算机芯片或实体实现,或者由具有某种功能的产品来实现。
本领域内的技术人员应明白,本申请实施例可提供为方法、装置、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质上实施的计算机程序产品的形式。
在本申请所提供的几个实施例中,任一功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。
具体的,本申请一实施例中还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行本申请实施例提供的方法。
本申请一实施例还提供一种计算机程序产品,该计算机程序产品包括计算机程序,当其在计算机上运行时,使得计算机执行本申请实施例提供的方法。
本申请中的实施例描述是参照根据本申请实施例的方法、设备(装置)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
还需要说明的是,本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示单独存在A、同时存在A和B、单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项”及其类似表达,是指的这些项中的任意组合,包括单项或复数项的任意组合。例如,a,b和c中的至少一项可以表示:a,b,c,a和b,a和c,b和c或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还 包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本申请可以在由计算机执行的计算机可执行指令的一般上下文中描述,例如程序模块。一般地,程序模块包括执行特定任务或实现特定抽象数据类型的例程、程序、对象、组件、数据结构等等。也可以在分布式计算环境中实践本申请,在这些分布式计算环境中,由通过通信网络而被连接的远程处理设备来执行任务。在分布式计算环境中,程序模块可以位于包括存储设备在内的本地和远程计算机存储介质中。
本申请中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于装置实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本领域普通技术人员可以意识到,本申请实施例中描述的各单元及算法步骤,能够以电子硬件、计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,任何熟悉本技术领域的技术人员在本申请公开的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种卫星通信方法,其特征在于,所述方法应用于终端,所述方法包括:
    所述终端在第一时刻检测到与第一卫星之间的无线链路失败;
    若所述第一时刻与第二时刻之间的间隔小于第一时长,所述终端进入节能模式,其中,所述第二时刻为所述第一卫星移出所述终端的服务小区的时刻。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端接收第一指示信息,所述第一指示信息用于指示所述第一时长。
  3. 根据权利要求2所述的方法,其特征在于,所述终端接收第一指示信息,包括:
    所述终端接收系统信息,所述系统信息包括所述第一指示信息。
  4. 根据权利要求2所述的方法,其特征在于,所述终端接收第一指示信息,包括:
    所述终端接收专有信令,所述专有信令包括所述第一指示信息。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端发送设备能力信息,所述设备能力信息用于指示所述终端支持增强的无线链路失败能力。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收设备能力上报请求,所述设备能力上报请求用于请求上报所述终端的增强的无线链路失败能力。
  7. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若所述第一时刻与所述第二时刻之间的间隔大于或等于所述第一时长,所述终端启动第一定时器,并当所述第一定时器计时结束,所述终端进入节能模式。
  8. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    若所述第一时刻与所述第二时刻之间的间隔大于或等于所述第一时长,所述终端重新建立与所述第一卫星之间的无线链路。
  9. 根据权利要求1-8任一所述的方法,其特征在于,所述终端进入节能模式之后,所述方法还包括:
    若第二定时器计时结束的时刻位于所述第一时间段内,所述终端设备继续保持所述节能模式,所述第一时间段为所述第一卫星位于所述终端的服务小区的时间段。
  10. 根据权利要求1-8任一所述的方法,其特征在于,所述终端进入节能模式之后,所述方法还包括:
    所述终端检测到第二卫星进入所述服务小区内,退出节能模式,进入空闲态。
  11. 一种卫星通信方法,其特征在于,所述方法应用于服务器,所述方法包括:
    发送第一指示信息到终端,所述第一指示信息用于指示第一时长;
    或者,
    发送系统消息到所述终端,所述系统消息包括第一时长;
    其中,所述终端第一时刻与第二时刻之间的间隔小于所述第一时长时进入节能模式,所述第一时刻为所述终端检测到与第一卫星之间的无线链路失败的时刻,所述第二时刻为所述第一卫星移出所述终端的服务小区的时刻。
  12. 根据权利要求11所述的方法,其特征在于,所述发送第一指示信息,包括:
    发送专有信令,所述专有信令包括所述第一指示信息。
  13. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    接收来自终端的设备能力信息,所述设备能力信息用于指示所述终端支持增强的无线链路失败能力。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    发送设备能力上报请求,所述设备能力上报请求用于请求上报所述终端的增强的无线链路失败能力。
  15. 一种卫星通信装置,其特征在于,所述装置应用于终端,包括:
    检测模块,其用于在第一时刻检测到与第一卫星之间的无线链路失败;
    节能控制模块,其用于若所述第一时刻与第二时刻之间的间隔小于第一时长,控制所述终端进入节能模式,其中,所述第二时刻为所述第一卫星移出所述终端的服务小区的时刻。
  16. 一种卫星通信装置,其特征在于,所述装置应用于服务器,包括:
    输出模块,其用于:
    发送第一指示信息到终端,所述第一指示信息用于指示第一时长;
    或者,
    发送系统消息到所述终端,所述系统消息包括第一时长;
    其中,所述终端第一时刻与第二时刻之间的间隔小于所述第一时长时进入节能模式,所述第一时刻为所述终端检测到与第一卫星之间的无线链路失败的时刻,所述第二时刻为所述第一卫星移出所述终端的服务小区的时刻。
  17. 一种电子芯片,其特征在于,所述电子芯片应用于终端,包括:
    处理器,其用于执行存储在存储器上的计算机程序指令,其中,当所述计算机程序指令被所述处理器执行时,触发所述电子芯片执行权利要求1-10中任一项所述的方法。
  18. 一种电子芯片,其特征在于,所述电子芯片应用于终端,包括:
    处理器,其用于执行存储在存储器上的计算机程序指令,其中,当所述计算机程序指令被所述处理器执行时,触发所述电子芯片执行权利要求11-14中任一项所述的方法。
  19. 一种电子设备,其特征在于,所述电子设备包括用于存储计算机程序指令的存储器、用于执行计算机程序指令的处理器和通信装置,其中,当所述计算机程序指令被该处理器执行时,触发所述电子设备执行如权利要求1-10中任一项所述的方法。
  20. 一种电子设备,其特征在于,所述电子设备包括用于存储计算机程序指令的存储器、用于执行计算机程序指令的处理器和通信装置,其中,当所述计算机程序指令被该处理器执行时,触发所述电子设备执行如权利要求11-14中任一项所述的方法。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行如权利要求1-14中任一项所述的方法。
  22. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1-14中任一项所述的方法。
PCT/CN2023/081380 2022-03-14 2023-03-14 一种卫星通信方法、装置、芯片和电子设备 WO2023174286A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210248590.4A CN116801295A (zh) 2022-03-14 2022-03-14 一种卫星通信方法、装置、芯片和电子设备
CN202210248590.4 2022-03-14

Publications (1)

Publication Number Publication Date
WO2023174286A1 true WO2023174286A1 (zh) 2023-09-21

Family

ID=88022315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081380 WO2023174286A1 (zh) 2022-03-14 2023-03-14 一种卫星通信方法、装置、芯片和电子设备

Country Status (2)

Country Link
CN (1) CN116801295A (zh)
WO (1) WO2023174286A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112202484A (zh) * 2019-07-08 2021-01-08 华为技术有限公司 卫星通信方法、装置、终端设备、卫星及可读存储介质
WO2021147004A1 (zh) * 2020-01-22 2021-07-29 Oppo广东移动通信有限公司 一种小区搜索方法及终端
WO2021196100A1 (zh) * 2020-04-01 2021-10-07 Oppo广东移动通信有限公司 一种小区切换方法、电子设备及存储介质
CN114039641A (zh) * 2021-10-08 2022-02-11 中国联合网络通信集团有限公司 一种卫星确定方法、装置、设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112202484A (zh) * 2019-07-08 2021-01-08 华为技术有限公司 卫星通信方法、装置、终端设备、卫星及可读存储介质
WO2021147004A1 (zh) * 2020-01-22 2021-07-29 Oppo广东移动通信有限公司 一种小区搜索方法及终端
WO2021196100A1 (zh) * 2020-04-01 2021-10-07 Oppo广东移动通信有限公司 一种小区切换方法、电子设备及存储介质
CN114039641A (zh) * 2021-10-08 2022-02-11 中国联合网络通信集团有限公司 一种卫星确定方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN116801295A (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
US20220022281A1 (en) Method and apparatus for controlling terminal to receive information, and terminal
US11570647B2 (en) Communication method and communications apparatus
WO2018018622A1 (zh) 发送和接收寻呼消息的方法、接入网设备和终端设备
US9226203B2 (en) Method for implementing autonomous management of radio resources across dual networks
WO2017118179A1 (zh) 一种寻呼处理方法、装置和寻呼系统
WO2022001573A1 (zh) 报告传输方法、装置及系统
WO2018090340A1 (zh) 通信的处理方法及装置
WO2022206891A1 (zh) 一种卫星通信方法、装置及系统
TW202110222A (zh) 使用者設備、通訊系統及其換手失敗的處理方法
KR20210115001A (ko) 정보 보고 방법, 수신 방법, 단말 장치 및 네트워크 장치
US20220124839A1 (en) Data transmission method and apparatus, and terminal
EP4017120A1 (en) Access control method and apparatus, and terminal device
WO2023174286A1 (zh) 一种卫星通信方法、装置、芯片和电子设备
US11212824B2 (en) Method for transmitting data with terminal device in inactive state and terminal device
WO2020057395A1 (zh) 通信方法与设备
WO2019154026A1 (zh) 一种唤醒区域确定方法、网络设备及用户终端
WO2021258262A1 (zh) 无线通信方法、终端设备和网络设备
WO2023125960A1 (zh) 操作确定方法、信息发送方法、终端设备及网络设备
WO2023092526A1 (zh) 寻呼方法、终端设备和网络设备
WO2024051391A1 (zh) 一种通信的方法和通信装置
CN114365581B (zh) 一种确定直连链路非连续接收配置的方法及其装置
US20220132618A1 (en) Information feedback method, device, and storage medium
US20240147371A1 (en) Method for determining energy-saving signal monitoring occasion, terminal device and chip
WO2024001792A1 (zh) 无线中继通信方法和通信装置
WO2022193177A1 (zh) QoE测量结果的获取方法、终端设备及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769788

Country of ref document: EP

Kind code of ref document: A1