WO2023174269A1 - 发动机变工况下离心压气机性能测试台架装置 - Google Patents

发动机变工况下离心压气机性能测试台架装置 Download PDF

Info

Publication number
WO2023174269A1
WO2023174269A1 PCT/CN2023/081341 CN2023081341W WO2023174269A1 WO 2023174269 A1 WO2023174269 A1 WO 2023174269A1 CN 2023081341 W CN2023081341 W CN 2023081341W WO 2023174269 A1 WO2023174269 A1 WO 2023174269A1
Authority
WO
WIPO (PCT)
Prior art keywords
centrifugal compressor
back plate
test bench
outlet
speed
Prior art date
Application number
PCT/CN2023/081341
Other languages
English (en)
French (fr)
Inventor
王天友
施磊
鲁祯
孙凯
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2023174269A1 publication Critical patent/WO2023174269A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/001Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/004Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids by varying driving speed

Definitions

  • the invention belongs to engine turbocharger detection technology, and specifically relates to a centrifugal compressor performance detection device.
  • turbocharged engines commonly suffer from turbo lag. This is mainly because the turbocharger is not coaxial with the engine. When the engine speed or load changes, the speed response of the turbocharger is relatively lagging, resulting in delayed power changes.
  • a series of new technologies have been adopted, such as lightweight impellers, compact intercoolers, high-efficiency bearing systems and electrically assisted supercharging. With the use of these new technologies, the supercharger has a tendency to respond quickly when the engine changes operating conditions. In the context of developing this technology, there is an urgent need to construct a centrifugal compressor test device for when the supercharger is in a speed switching transition state.
  • Patent CN106499651B discloses a centrifugal compressor unsteady-state characteristic test device and experimental method under outlet pulsating flow conditions, which can obtain the unsteady-state performance of the centrifugal compressor under pulsating conditions and solve the general problem.
  • Centrifugal compressor performance testing can only provide a single technical perspective on steady-state performance.
  • Patent CN104533816B proposes a test device for a centrifugal compressor radial diffuser and its experimental method. The beneficial effect is that it is suitable for radial diffuser testing and has the ability to simulate the flow within the centrifugal compressor and the influence of geometric factors. , upstream flow conditions affect simulation capabilities.
  • the present invention proposes a test bench that displays the performance of the centrifugal compressor under changing engine operating conditions in real time, which can realize the aerodynamic characteristics and internal flow field of the centrifugal compressor when the supercharger speed is switched. test.
  • the centrifugal compressor performance test bench device under variable engine operating conditions includes: inlet pipe, flow meter, intake rectification system, centrifugal compressor, outlet pipe, exhaust valve, gearbox, shaft encoder, speed feedback control system, Frequency converters, speed regulators, heat exchangers, thermocouples, drives, and AC motors, etc. Its components are: centrifugal compressor and vortex in sequence
  • the wheel back plate temperature simulator, speed regulator and driver are installed coaxially.
  • the front end of the turbine back plate temperature simulator is equipped with a back plate and a heat exchanger; a thermocouple array is composed of multiple pairs of thermocouples, and a thermocouple is provided on the surface of the back plate. Couple array; a total average temperature measurement probe is provided at the inlet and outlet of the centrifugal compressor; a thermocouple array is also provided on the surface of the rotating blades of the centrifugal compressor.
  • test bench In order to test the performance of the centrifugal compressor, the test bench is equipped with multiple test points: a first set of total pressure, static pressure, and average temperature measurement points are set in the inlet pipeline; a second set is set at the outlet of the centrifugal compressor. Total pressure, static pressure, and average temperature parameter measurement points; a wall temperature measurement point is provided at the axial outlet of the centrifugal compressor; a rotational speed measurement point is provided at the inlet of the governor spindle; a thermocouple array measurement point is provided on the surface of the back plate .
  • the invention changes the current power method of using an exhaust gas turbine to drive a centrifugal compressor. It adopts a speed control system composed of a frequency converter and an AC motor, and a drive system composed of a gearbox and a rotational speed feedback control system connected with a shaft encoder. Control the centrifugal compressor speed and its changes.
  • the turbine back plate temperature simulation device composed of a heat exchanger and a back plate is used to accurately simulate the temperature distribution of the turbine back plate and reproduce the typical characteristics of internal flow heat transfer under variable speed of a centrifugal compressor.
  • the test bench has a simple structure, controllable parameters, and easy operation. It provides a test platform and test method that is closer to the real transition state of the supercharger, and provides a basis for performance evaluation of the centrifugal compressor and refined testing of the internal flow field under varying engine operating conditions.
  • the experimental setup is provided.
  • Figure 1 is a schematic diagram of the connection structure of each component of the centrifugal compressor performance test bench under variable engine operating conditions.
  • Figure 2 is a schematic structural diagram of the turbine back plate temperature simulation device on the test bench.
  • composition and test steps of the device of the present invention will be described in detail below with reference to the drawings and examples.
  • the intentional effects produced by the present invention are illustrated through the measurement process of the dynamic characteristics of the centrifugal compressor of the engine under variable operating conditions.
  • the components of the centrifugal compressor performance test bench device under variable engine operating conditions are: the centrifugal compressor 4 is installed coaxially with the turbine back plate temperature simulator 5, governor 6 and driver 7 in sequence.
  • the front end of the turbine back plate temperature simulator is provided with a back plate 51 and a heat exchanger 52; a thermocouple array is composed of multiple pairs of thermocouples, and a thermocouple array is provided on the surface of the back plate; a total assembly is provided at the inlet and outlet of the centrifugal compressor. Average temperature measurement probe; there is also a thermocouple array on the surface of the centrifugal compressor rotating blades.
  • the airflow passes through the inlet pipe 2, the flow meter 1, and the air intake rectification system 3 in sequence. After being pressurized by the centrifugal compressor, it is discharged from the outlet pipe 8. The outlet of the exhaust valve 9 is connected to the air outflow end.
  • the speed regulator is composed of a gear transmission, an encoder, and a speed feedback control system; the encoder and speed feedback control system are connected to the main shaft of the gear transmission in turn; the driver is coaxially connected to the frequency converter and AC motor in turn. ;
  • the heat exchanger is internally connected with high-temperature circulating water; a through hole 53 is opened in the center of the turbine back plate temperature simulator, and the main shaft of the centrifugal compressor passes through the through hole.
  • Measuring point arrangement of the test bench There is a first set of total pressure, static pressure, and average temperature measurement points 21 in the inlet pipeline; a second set of total pressure, static pressure, and average temperature parameter measurement points are set at the outlet of the centrifugal compressor. 81; A wall temperature measuring point 41 is provided at the axial outlet of the centrifugal compressor; a rotational speed measuring point 61 is provided at the inlet of the governor main shaft.
  • test bench device Use the test method corresponding to the test bench device:
  • Step 1 Open the exhaust valve, make the exhaust of the centrifugal compressor fully open, and adjust the temperature of the circulating water in the heat exchanger. After the surface temperature of the back plate reaches the working condition set value, collect the total pressure, static pressure, and average temperature measurement points of the inlet pipeline on the test bench; the measurement points of the outlet total pressure, static pressure, and average temperature parameters; and the axial direction of the centrifugal compressor.
  • the outlet wall temperature measurement point; the (zero position) output of each sensor such as the speed measurement point at the inlet position of the governor spindle, the blade surface temperature measurement point and (the front end of the turbine back plate temperature simulator) back plate measurement point, confirm the test bench device All signals are normal.
  • Step 2 Start the governor, regulate the speed of the centrifugal compressor, and simultaneously collect the engine speed changes, the first set of total pressure, static pressure, average temperature measurement points, centrifugal compressor wall temperature measurement points, and governor spindle speed measurements point, as well as the data of the second set of total pressure, static pressure, and average temperature parameter measurement points, to obtain the transient aerodynamic characteristics and internal flow field of the centrifugal compressor under variable engine conditions.
  • Step 3 Adjust the exhaust valve to the position corresponding to the set working condition to adjust the flow rate of the centrifugal compressor. Repeat steps 1 and 2 to obtain the aerodynamic characteristics and internal flow field of the centrifugal compressor under different flow rates and rotational speeds.
  • the centrifugal compressor is the core component of the test bench.
  • a flow meter and air intake rectification system are arranged in front of the centrifugal compressor.
  • the flow meter is located at the front end of the inlet pipe.
  • the inlet pipeline, air intake rectification system, and centrifugal compressor are connected through flanges in sequence.
  • An outlet pipe and an exhaust valve are installed behind the centrifugal compressor; the speed regulator is connected to the impeller shaft end of the centrifugal compressor through a coupling, and the driver provides power for the test bench.
  • the speed regulator and driver are composed of a gearbox and a variable frequency motor, and can control changes in the speed of the centrifugal compressor according to set parameters or rules.
  • the motor of the driver is controlled by a frequency converter, and the speed is fed back through the shaft encoder.
  • the initial speed control accuracy of the driver is better than 0.01%.
  • the transmission ratio of the gear transmission in the speed regulator is selected according to the required rotation speed of the centrifugal compressor.
  • the transmission ratio of this embodiment is 30:1.
  • a turbine back plate temperature simulation device (Fig. 2) is arranged between the centrifugal compressor and the governor. There is a through hole in the center of the device. It is used to install the drive shaft and also blocks heat from being transmitted to the centrifugal compressor through the drive shaft. High-temperature circulating water is introduced from the inlet end 54 of the heat exchanger and led out from the outlet end 55 to the external pipe. During the experiment, the temperature and flow rate of the circulating water were controlled, and the internal flow channel layout of the heat exchanger was changed to control the temperature distribution of the back plate.
  • the back plate is made of materials with the same emissivity as the turbine back plate to achieve precise control of the back plate temperature and radiation heat transfer, reproducing the internal flow and heat exchange process of the turbine back plate in the compressor at high temperatures when the engine is actually running.
  • the present invention is provided with multiple parameter testing positions, such as: parameter measurement points are arranged in the inlet pipeline to quickly respond. Temperature measuring probes and high-frequency porous probes are used to measure dynamic total temperature, total pressure and static pressure. Calculate the intake Mach number and obtain the airflow static temperature. A thermocouple array is evenly arranged on the back of the cover to capture the internal heat transfer process. Total temperature is a proper term in gas dynamics. It refers to the temperature reflected when a fluid is completely stationary in an adiabatic process and its kinetic energy is converted into internal energy.
  • the transient values of all the above parameters during the speed change process are simultaneously collected to capture the internal dynamic flow and heat transfer process.
  • test platform and test method provided by the present invention for studying the aerodynamic characteristics of a centrifugal compressor under variable operating conditions of an engine can accurately control the rotational speed changes of the centrifugal compressor with specific rules, and can control the back plate temperature with specific temperature distribution characteristics to simulate supercharging.
  • the impact of turbine backplate radiation heat transfer on the compressor's transient performance and internal flow field when the supercharger is running is finally reproduced to reproduce the typical characteristics of the internal flow heat transfer of a centrifugal compressor when the supercharger changes speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Testing Of Engines (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

一种发动机变工况下离心压气机性能测试台架装置,包括:进口管道(2)、流量计(1)、进气整流系统(3)、离心压气机(4)、出口管道(8)、排气阀门(9)、齿轮变速箱、轴编码器、转速反馈控制系统、变频器、涡轮背盘温度模拟器(5)、调速器(6)、热电偶、驱动器(7)、交流电机,离心压气机(4)依次与涡轮背盘温度模拟器(5)、调速器(6)以及驱动器(7)同轴安装,涡轮背盘温度模拟器(5)前端设有背板(51)和换热器(52),测试台架装置工作时,气流依次通过进口管道(2)、流量计(1)、进气整流系统(3),经离心压气机(4)增压后由出口管道(8)排出,排气阀门(9)出口与气流出气端相接,再现增压器变转速时离心压气机(4)内部流动传热典型特征,获取过渡状态下的离心压气机(4)瞬态特性及内部流场。

Description

发动机变工况下离心压气机性能测试台架装置 技术领域
本发明属于发动机涡轮增压器检测技术,具体涉及一种离心压气机性能检测装置。
背景技术
与自然吸气发动机相比,涡轮增压发动机普遍存在涡轮迟滞问题。这主要是由于涡轮增压器与发动机不同轴,当发动机转速或负荷发生变化时,涡轮增压器的转速响应相对滞后,导致动力变化迟滞。为了解决涡轮迟滞问题,已采用了一系列新的技术,如轻量化叶轮、紧凑型中冷器、高效轴承系统及电辅助增压等。随着这些新技术的使用,使得发动机变工况时增压器具有快速响应的趋势。在研发此技术的背景下,亟需构建一种针对增压器处于转速切换过渡状态时的离心压气机试验装置。通过试验台模拟(速度切换过渡态下)离心压气机内部流动时空演化,获得该状态下离心压气机气动特性及内部流场的试验数据,为设计高性能增压器提供理论依据以及试验数据库。
目前离心压气机试验台技术中,专利CN106499651B公开了一种出口脉动流动条件下,离心压气机非稳态特性试验装置及实验方法,能够获得脉动条件下离心压气机非稳态性能,解决了一般离心压气机性能试验仅能提供稳态性能的单一技术问题。专利CN104533816B提出了一种离心压气机径向扩压器的试验装置及其实验方法,其有益效果是适合进行径向扩压器试验,并且具有离心压气机内流动模拟能力、几何因素影响模拟能力、上游来流条件影响模拟能力。然而,上述技术均是在定转速下开展性能或内部流场测试,无法再现发动机变工况下离心压气机处于过渡态时内部流动与传热基本特征。因为传统离心压气机气动特性试验台仅关注内部流动及气动特性(压比、效率及流量),忽视了变转速下压气机与气流之间的热量传递过程,导致测量的瞬态特性与真实过渡态存在较大差异,不具备增压器转速切换时态离心压气机的气动特性及内部流场的测试能力。
发明内容
针对上述实验装置所存在的技术缺陷,本发明提出了一种实时展现发动机变工况下离心压气机性能的测试台架,能够实现增压器转速切换时离心压气机的气动特性及内部流场的测试。
本发明装置的技术方案如下:
发动机变工况下离心压气机性能测试台架装置包括:进口管道、流量计、进气整流系统、离心压气机、出口管道、排气阀门、齿轮变速箱、轴编码器、转速反馈控制系统、变频器、调速器、换热器、热电偶、驱动器、以及交流电机等。其部件组成为:离心压气机依次与涡 轮背盘温度模拟器、调速器以及驱动器同轴安装,涡轮背盘温度模拟器前端设有背板和换热器;由多对热电偶组成热电偶阵列,在背板的表面设有热电偶阵列;在离心压气机的进口与出口设有总平均测温探针;离心压气机旋转叶片表面亦设有热电偶阵列。
为了进行离心压气机的性能测试,测试台架设置了多个测试点:在进口管道中设有第一组总压、静压、平均温度测量点;在离心压气机的出口设有第二组总压、静压、平均温度参数测量点;离心压气机轴向出口设有壁面温度测量点;在调速器主轴进口位置设有转速测量点;在背板的表面设有热电偶阵列测量点。
本发明改变了目前利用废气涡轮驱动离心压气机的动力方式,采用由变频器与交流电机构成的调速系统,以及由齿轮变速箱和接有轴编码器的转速反馈控制系统构成驱动系统,精确控制离心压气机转速及其变化。
作为一种新的结构,采用由换热器与背板构成的涡轮背盘温度模拟装置精确模拟涡轮背板温度分布,再现离心压气机变转速下内部流动传热典型特征。
本发明的特点以及取得的有益效果是:
提供了一种用于研究发动机变工况下离心压气机气动特性试验平台及实验方法,能够以设定的参数精确控制离心压气机转速变化;能够以设定的不同温度分布特征控制背板温度,来模拟增压器运转时涡轮背板辐射传热对压气机瞬态性能及内部流场的影响。最终再现增压器变转速时离心压气机内部流动传热典型特征,获取过渡状态下的离心压气机动态性能及内部流场。测试台架结构简单、参数可控、操作方便,提供了更趋近于增压器真实过渡状态的试验平台及试验方法,为发动机变工况下离心压气机性能评估以及内部流场精细化测试提供了实验装置。
附图说明
图1是发动机变工况下离心压气机性能测试台架各部件连接结构示意图。
图2是测试台架上涡轮背盘温度模拟装置的结构示意图。
具体实施方式
以下结合附图以及实施例对本发明装置的组成以及试验步骤进行详细的说明。通过发动机变工况下其离心压气机动态特性的测量过程,来说明本发明的所产生的有意效果。
发动机变工况下离心压气机性能测试台架装置的部件组成是:离心压气机4依次与涡轮背盘温度模拟器5、调速器6以及驱动器7同轴安装。涡轮背盘温度模拟器前端设有背板51和换热器52;由多对热电偶组成热电偶阵列,在背板的表面设有热电偶阵列;在离心压气机的进口与出口设有总平均测温探针;离心压气机旋转叶片表面亦设有热电偶阵列。
测试台架工作时,气流依次通过进口管道2、流量计1、进气整流系统3,经离心压气机增压后由出口管道8排出,排气阀门9出口与气流出气端相接。
各部件的连接方式:调速器由齿轮变速箱、编码器、以及转速反馈控制系统构成;编码器、转速反馈控制系统依次与齿轮变速箱主轴连接;驱动器依次与变频器和交流电机同轴连接;换热器内接有高温循环水;涡轮背盘温度模拟器的中心开有通孔53,离心压气机主轴穿过通孔。
测试台架的测点布置:进口管道中设有第一组总压、静压、平均温度测量点21;在离心压气机的出口设有第二组总压、静压、平均温度参数测量点81;离心压气机轴向出口设有壁面温度测量点41;在调速器主轴进口位置设有转速测量点61。
利用测试台架装置所对应的试验方法:
步骤一:开启排气阀门,使离心压气机排气处于全开状态,调整换热器循环水温度。待背板表面温度达到工况设定值后,采集测试台架上的进口管道总压、静压、平均温度测量点;出口总压、静压、平均温度参数测量点;离心压气机轴向出口壁面温度测量点;调速器主轴进口位置转速测量点、叶片表面温度测量点及(涡轮背盘温度模拟器前端)背板测量点等各传感器的(零位)输出,确认测试台架装置所有信号正常。
步骤二:启动调速器,调控离心压气机转速,同步采集发动机的转速变化、及第一组总压、静压、平均温度测量点、离心压气机壁面温度测量点、调速器主轴转速测量点、以及第二组总压、静压、平均温度参数测量点的数据,获取发动机变工况下离心压气机的瞬态气动特性及内部流场。
步骤三:调整排气阀门至设定工况对应的位置,用以调整离心压气机的流量,重复步骤一、二,获得不同流量及转速下离心压气机气动特性及内部流场。
离心压气机是测试台架的核心部件,在离心压气机前面布置流量计、进气整流系统,流量计位于进口管道的最前端。进口管道、进气整流系统、离心压气机依次通过法兰连接。在离心压气机的后面设置出口管道及排气阀门;调速器通过联轴器与离心压气机的叶轮轴端连接,驱动器为试验台提供动力。
本实施例中调速器与驱动器由齿轮变速箱与变频电机组成,能够以设定的参数或规律控制离心压气机转速变化。驱动器的电机由变频器控制,通过轴编码器反馈转速,驱动器初始转速控制精度优于0.01%。根据离心压气机所需的转速选定构成调速器中齿轮变速箱的传动比,本实施例的传动比为30:1。
在离心压气机与调速器之间布置涡轮背盘温度模拟装置(图2),该装置的中心设有通孔 用于安装传动轴,同时也阻隔热量通过传动轴传至离心压气机。高温循环水从换热器入口端54引入,从出口端55引出至外部管道,实验时通过控制循环水温度及流速,改变换热器内部流道布置控制背板温度分布。选用与涡轮背盘发射率相同的材料加工背板,实现背板温度及辐射换热量的精确控制,再现发动机真实运转时涡轮背盘在高温下压气机内部流动及换热过程。
为了获得发动机变转速工况下增压器过渡状态压气机内部瞬态流场及换热特性,本发明设有多个参数测试位置,如:在进口管道中设有参数测量点布置快速响应的测温探针、高频多孔探针以测量动态总温、总压及静压。计算进气马赫数,得到气流静温。在盖板背面均匀布置热电偶阵列,用以捕捉内部热量传递过程。总温是气体动力学专业一个专有名词,指一流体以绝热过程完全静止时,它的动能将转化为内能时反映出来的温度。
发动机变转速过程中,同步采集上述所有参数在转速变化过程中的瞬态值,以捕捉内部动态流动传热过程。
本发明所提供的用于研究发动机变工况下离心压气机气动特性试验平台及试验方法,能够以特定规律精确控制离心压气机转速变化、能够以特定温度分布特征控制背板温度进而模拟增压器运转时涡轮背板辐射传热对压气机瞬态性能及内部流场的影响,最终再现增压器变转速时离心压气机内部流动传热典型特征。

Claims (3)

  1. 发动机变工况下离心压气机性能测试台架装置,包括:进口管道、流量计、进气整流系统、离心压气机、出口管道、排气阀门、齿轮变速箱、轴编码器、转速反馈控制系统、变频器、调速器、换热器、热电偶、驱动器、以及交流电机,其特征在于:离心压气机(4)依次与涡轮背盘温度模拟器(5)、调速器(6)以及驱动器(7)同轴安装,涡轮背盘温度模拟器前端设有背板(51)和换热器(52);由多对热电偶组成热电偶阵列,在背板的表面设有热电偶阵列;在离心压气机的进口与出口设有总平均测温探针;离心压气机旋转叶片表面亦设有热电偶阵列,测试台架工作时,气流依次通过进口管道(2)、流量计(1)、进气整流系统(3),经离心压气机增压后由出口管道(8)排出,排气阀门(9)出口与气流出气端相接。
  2. 按照权利要求1所述的发动机变工况下离心压气机性能测试台架装置,其特征是:所述调速器由齿轮变速箱、编码器、以及转速反馈控制系统构成;编码器、转速反馈控制系统依次与齿轮变速箱主轴连接;所述驱动器依次与变频器和交流电机同轴连接;所述换热器内接有高温循环水;所述涡轮背盘温度模拟器的中心开有通孔(53),离心压气机主轴穿过通孔。
  3. 按照权利要求1所述的发动机变工况下离心压气机性能测试台架装置,其特征是:在所述进口管道中设有第一组总压、静压、平均温度测量点(21);在所述离心压气机的出口设有第二组总压、静压、平均温度参数测量点(81);离心压气机轴向出口设有壁面温度测量点(41);在所述调速器的主轴进口设有转速测量点(61),在所述背板的表面设有热电偶阵列测量点。
PCT/CN2023/081341 2022-03-15 2023-03-14 发动机变工况下离心压气机性能测试台架装置 WO2023174269A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210266187.4A CN114645858A (zh) 2022-03-15 2022-03-15 发动机变工况下离心压气机性能测试台架装置
CN202210266187.4 2022-03-15

Publications (1)

Publication Number Publication Date
WO2023174269A1 true WO2023174269A1 (zh) 2023-09-21

Family

ID=81996263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081341 WO2023174269A1 (zh) 2022-03-15 2023-03-14 发动机变工况下离心压气机性能测试台架装置

Country Status (2)

Country Link
CN (1) CN114645858A (zh)
WO (1) WO2023174269A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114645858A (zh) * 2022-03-15 2022-06-21 天津大学 发动机变工况下离心压气机性能测试台架装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082296A (ja) * 2006-09-28 2008-04-10 Toyota Motor Corp ターボチャージャの試験装置
KR20160121939A (ko) * 2015-04-13 2016-10-21 한국기계연구원 터보차저 성능 평가 장치
CN106499651A (zh) * 2016-10-20 2017-03-15 北京理工大学 一种离心压气机非稳态特性试验台及试验方法
RU187841U1 (ru) * 2018-06-08 2019-03-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный университет путей сообщения" (СамГУПС) Стенд для испытания турбокомпрессора двигателя внутреннего сгорания
CN109813553A (zh) * 2019-03-18 2019-05-28 中国船舶电站设备有限公司 一种大功率中速柴油机的调速器检测装置及方法
CN112392756A (zh) * 2020-11-20 2021-02-23 北京理工大学 一种用于电驱动离心压气机增压系统试验测控装置
CN112610520A (zh) * 2020-12-14 2021-04-06 北京动力机械研究所 一种惰性气体闭式循环径流式叶轮机械性能试验方法
CN113530666A (zh) * 2021-07-12 2021-10-22 安徽江淮汽车集团股份有限公司 涡轮增压器转速调控方法
CN114645858A (zh) * 2022-03-15 2022-06-21 天津大学 发动机变工况下离心压气机性能测试台架装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589894B (zh) * 2012-03-01 2014-01-15 南京航空航天大学 微型压气机/涡轮联合试验台及试验方法
US9886018B2 (en) * 2014-09-12 2018-02-06 Smith & Loveless Inc. Pump control for operation on a variable pressure force main
US20170122328A1 (en) * 2015-11-04 2017-05-04 Hamilton Sundstrand Corporation Hydraulic pump systems
CN207516036U (zh) * 2017-06-14 2018-06-19 华电电力科学研究院 一种燃气轮机压气机振动模拟试验台
CN111894882A (zh) * 2020-06-24 2020-11-06 中国人民解放军陆军军事交通学院 变海拔二级离心压气机特性试验系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082296A (ja) * 2006-09-28 2008-04-10 Toyota Motor Corp ターボチャージャの試験装置
KR20160121939A (ko) * 2015-04-13 2016-10-21 한국기계연구원 터보차저 성능 평가 장치
CN106499651A (zh) * 2016-10-20 2017-03-15 北京理工大学 一种离心压气机非稳态特性试验台及试验方法
RU187841U1 (ru) * 2018-06-08 2019-03-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Самарский государственный университет путей сообщения" (СамГУПС) Стенд для испытания турбокомпрессора двигателя внутреннего сгорания
CN109813553A (zh) * 2019-03-18 2019-05-28 中国船舶电站设备有限公司 一种大功率中速柴油机的调速器检测装置及方法
CN112392756A (zh) * 2020-11-20 2021-02-23 北京理工大学 一种用于电驱动离心压气机增压系统试验测控装置
CN112610520A (zh) * 2020-12-14 2021-04-06 北京动力机械研究所 一种惰性气体闭式循环径流式叶轮机械性能试验方法
CN113530666A (zh) * 2021-07-12 2021-10-22 安徽江淮汽车集团股份有限公司 涡轮增压器转速调控方法
CN114645858A (zh) * 2022-03-15 2022-06-21 天津大学 发动机变工况下离心压气机性能测试台架装置

Also Published As

Publication number Publication date
CN114645858A (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
CN102589894B (zh) 微型压气机/涡轮联合试验台及试验方法
CN101726378B (zh) 一种涡轮增压器机械损失功率的测量装置及方法
Karamanis et al. Mixed-flow turbines for automotive turbochargers: steady and unsteady performance
CN201034833Y (zh) 气-气换热器传热性能试验系统
CN106248278B (zh) 一种涡轮增压器轴向力测量系统及其测试方法
CN101701546B (zh) 相继增压系统防喘振控制装置和控制方法
CN101375293A (zh) 用于压缩机和涡轮机性能模拟的装置和方法
WO2023174269A1 (zh) 发动机变工况下离心压气机性能测试台架装置
CN104234820B (zh) 一种两级涡轮增压系统测试装置及其测试方法
CN114323667B (zh) 一种压气机高空环境试验系统及调节方法
CN202582906U (zh) 微型压气机/涡轮联合试验台
CN112485013B (zh) 一种带涡轮动力模拟的单独涡扇发动机短舱表面测压试验装置及测压试验方法
CN112485014A (zh) 一种分体式带动力模拟的涡扇发动机短舱测力试验装置及测力试验方法
CN111379728A (zh) 一种闭式循环离心压气机特性试验装置
CN212621466U (zh) 一种航空发动机燃烧室试验台试验件安装系统
De Bellis et al. Advanced numerical and experimental techniques for the extension of a turbine mapping
CN111337254A (zh) 一种轴流涡轮增压器浮动推力轴承的测试系统及方法
RU187841U1 (ru) Стенд для испытания турбокомпрессора двигателя внутреннего сгорания
CN112577755B (zh) 一种计及上游非定常效应的涡轮轮毂封严实验装置
CN101349283B (zh) 汽轮发电机轴流风扇模型试验装置
CN116625700A (zh) 一种变循环核心机外涵排气收集测量系统
Gamache et al. Reverse flow in multistage axial compressors
Salameh et al. Experimental study of automotive turbocharger turbine performance maps extrapolation
CN211477612U (zh) 一种轴流涡轮增压器浮动推力轴承的测试系统
Winkler et al. Instantaneous on-engine twin-entry turbine efficiency calculations on a diesel engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769771

Country of ref document: EP

Kind code of ref document: A1