WO2023174164A1 - 一种充电装置、电子设备、通信方法及充电系统 - Google Patents

一种充电装置、电子设备、通信方法及充电系统 Download PDF

Info

Publication number
WO2023174164A1
WO2023174164A1 PCT/CN2023/080675 CN2023080675W WO2023174164A1 WO 2023174164 A1 WO2023174164 A1 WO 2023174164A1 CN 2023080675 W CN2023080675 W CN 2023080675W WO 2023174164 A1 WO2023174164 A1 WO 2023174164A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
electronic device
circuit
voltage
signal
Prior art date
Application number
PCT/CN2023/080675
Other languages
English (en)
French (fr)
Inventor
叶刚
侯庆慧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210600786.5A external-priority patent/CN116799891A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023174164A1 publication Critical patent/WO2023174164A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • TWS True Wireless Stereo
  • smart watches smart bracelets
  • metal terminals After the metal terminals are connected to the corresponding metal terminals on the charging device, the electronic devices can communicate with the charging device. communication, and the charging device can charge electronic devices.
  • the charging device can be a charging box or a charging stand. The following uses TWS earphones and earphone charging boxes as examples for explanation.
  • FIG. 1 is a schematic diagram of a TWS earphone and charging box.
  • a current solution is to set a switch between the charging box and the electronic device.
  • the charging box communicates with the electronic device, it switches the switch to the communication path.
  • the communication between the charging box is completed, the charging box switches the switch back to the communication path. return to the charging path.
  • electronic equipment can support direct charging mode and/or double voltage charging mode, and the communication mode between electronic equipment and charging devices also needs to support direct charging mode and/or double voltage charging mode.
  • Send a second modulated signal receive a second modulated response signal sent by the electronic device, and demodulate the second modulated response signal.
  • the second modulated signal includes a first voltage, and the first voltage is used to charge the electronic device for the second time.
  • the circuit is disconnected from the second battery.
  • the charging device can realize two-way communication between the charging device and the electronic device when performing direct charging or double-voltage charging of the electronic device. That is, the communication can be initiated by the charging device. At this time, the charging device charges the electronic device to the electronic device. Send a second modulation signal, the second modulation signal carries the first voltage and communication content; or it can be initiated by the electronic device, at which time the electronic device sends the first modulation signal to the charging device, the first modulation signal carries the first current and the content of communications.
  • the above communication process is simple and highly practical.
  • the first voltage is less than the first trigger voltage of the first protection circuit of the electronic device; the first protection circuit is used when the charging voltage output by the second charging circuit to the second battery is less than the first trigger voltage. when, the second charging circuit is controlled to be disconnected from the second battery.
  • the first voltage is greater than or equal to the second trigger voltage of the second protection circuit of the electronic device; the second protection circuit is used when the charging voltage output by the second charging circuit to the second battery is greater than or equal to At the second trigger voltage, the second charging circuit is controlled to be disconnected from the second battery.
  • the first modulation and demodulation circuit is specifically configured to modulate the output voltage of the first charging circuit so that the first voltage is zero.
  • the demodulation result also includes a first characteristic string.
  • the first charging circuit is specifically configured to determine the electronic device when the first characteristic string is a first preset characteristic string.
  • the presence identification result is presence, and a first modulation response signal carrying the presence identification result is sent to the electronic device.
  • the demodulation result of the first modulation response signal includes the second characteristic string.
  • the electronic device After the electronic device receives the first modulated response signal, it demodulates the first modulated response signal.
  • the demodulation result includes the second characteristic string. At this time, the electronic device can determine that the on-site identification of the charging device has passed.
  • the first state machine when the first modulation and demodulation circuit fails to demodulate, or performs identity recognition on the electronic device according to the demodulation result corresponding to the first modulation signal, when the identity recognition result
  • the first modulation and demodulation circuit is controlled to modulate the output voltage of the first charging circuit to form a first modulation response signal; when the result of the identity recognition is that the electronic equipment and the charging device do not match, The first modulation and demodulation circuit is controlled to stop modulating the output voltage of the first charging circuit.
  • the first state machine is also used to control the first modulation and demodulation circuit to modulate the output voltage of the first charging circuit to form a second modulation signal when communication with the electronic device needs to be initiated.
  • the charging device further includes a first controller.
  • the first communication interface of the first controller is connected to the first state machine; the first state machine is also used to send a first interrupt signal to the first communication interface of the first controller when it is determined that the electronic device is in place. Interrupt signals are used to indicate the presence of electronic equipment.
  • the charging device further includes a first comparator.
  • the first comparator is used to compare the output current of the charging device with the preset current, and send the obtained first comparison result to the first state machine.
  • the first state machine is also configured to send a second interrupt signal to the first controller when it is determined according to the first comparison result that the output current of the charging device is less than the preset current, and the second interrupt signal is used to instruct the first controller electronic device Disconnect from the charging device.
  • the first charging circuit further includes: a second DC/DC circuit and a first switch module.
  • the input end of the second DC/DC circuit is the input end of the first charging circuit; the output end of the second DC/DC circuit is connected to the first end of the first switch module, and the second end of the first switch module is connected to the first controller
  • the second communication interface, the third end of the first switch module is connected to the output end of the first charging circuit; the first state machine is also used to control the second end of the first switch module when the first controller communicates with the electronic device.
  • the first end of the first switch module is connected to the third end of the first switch module; when the communication between the first controller and the electronic device ends, the first end of the first switch module is controlled to be connected to the third end of the first switch module.
  • the first controller is also configured to receive a first charging parameter sent by the electronic device, and send the first charging parameter to the first state machine; the first charging parameter includes the corresponding data of the second battery. charging voltage and charging current; the first state machine is also used to control the second DC/DC circuit according to the first charging parameter.
  • the first controller is further configured to receive the voltage information of the second battery sent by the electronic device, determine the first charging parameter corresponding to the second battery according to the voltage information of the second battery, and set the first charging parameter to the second battery.
  • a charging parameter is sent to the first state machine.
  • the first charging parameter includes the charging voltage and charging current corresponding to the second battery.
  • the first state machine is also used to control the second DC/DC circuit according to the first charging parameter.
  • the first state machine is also used to determine that the electronic device and the charging device are connected normally when it is determined that the electronic device sends a preset pulse signal to the charging device according to the demodulation result.
  • the first state machine is also used to maintain the current working state of the second DC/DC circuit when it is determined that the electronic device sends a preset pulse signal to the charging device, and sends a signal to the first controller.
  • the fifth interrupt signal is used to indicate that the current electronic device is in a fully charged state or a trickle charging state.
  • the second modulation signal and the first modulation response signal also include output parameters of the charging device.
  • Output parameters include at least one of the following: output current or output voltage.
  • the charging terminal includes a first charging terminal and a second charging terminal.
  • the charging terminal is any one of a USB interface, a pogo pin, or a metal spring.
  • the present application provides an electronic device.
  • the electronic device includes: a second charging circuit, a second battery, and a power receiving terminal.
  • the power receiving terminal is used to connect the charging terminal of the charging device and receive the DC output from the charging terminal.
  • the first end of the second charging circuit is connected to the power receiving terminal, the second end of the second charging circuit is connected to the second battery, and the voltage output by the charging terminal is consistent with the charging voltage output by the second charging circuit to the second battery or has a predetermined Assume a multiple relationship;
  • the second charging circuit is used to control the second charging circuit to disconnect from the second battery, send the first modulation signal to the charging device, receive the first modulation response signal sent by the charging device, and demodulate the first modulation
  • the response signal, the first modulated signal includes the first current, and the first current is used to identify that the electronic device has initiated communication to the charging device; or, when receiving the second modulated signal sent by the charging device, and demodulating the second modulated signal,
  • the demodulation result includes the first voltage
  • the second charging circuit is controlled to be disconnected from the second battery, and a second modulation response signal is sent to the charging device.
  • the charging device can realize two-way communication between the charging device and the electronic device when performing direct charging or double-voltage charging of the electronic device. That is, the communication can be initiated by the charging device or the electronic device.
  • the communication process is simple and practical. Through this communication method, mutual identity authentication and on-site detection between electronic devices and charging devices can be achieved without the need to set up other detection sensors, thus also reducing hardware costs.
  • the first modulation signal and the second modulation response signal are current modulation signals
  • the first modulation response signal and the second modulation signal are voltage modulation signals
  • the electronic device further includes: a first protection circuit, the first protection circuit is used to control the second charging circuit when the charging voltage output by the second charging circuit to the second battery is less than the first trigger voltage. Disconnected from the second battery; the first voltage is less than the first trigger voltage.
  • the electronic device further includes: a second protection circuit; the second protection circuit is configured to control the second protection circuit when the charging voltage output by the second charging circuit to the second battery is greater than or equal to the second trigger voltage.
  • the charging circuit is disconnected from the second battery; the first voltage is greater than or equal to the second trigger voltage.
  • the second charging circuit specifically includes: a second state machine and a second modulation and demodulation circuit; the second state machine is connected to the second modulation and demodulation circuit; and the second modulation and demodulation circuit is used to Demodulate the acquired modulation signal and send the demodulation result to the second state machine; the second state machine is used to control the second modulation and demodulation circuit to modulate the input current of the second charging circuit to form the first Modulation signal, the first modulation signal carries a first characteristic string, and determining whether the electronic device is connected to the charging device according to the demodulation result corresponding to the first modulation response signal.
  • the demodulation result corresponding to the first modulated response signal includes a second characteristic string; a second charging circuit, specifically used when the second characteristic string is a second preset characteristic string, Make sure the electronic device is connected to the charging device.
  • the second charging circuit is configured to determine that the electronic device does not match the charging device when the first modulated response signal is not received.
  • the second state machine is also used to control the second modulation and demodulation circuit to modulate the input current of the second charging circuit when obtaining the demodulation result corresponding to the second modulation signal to form a The second modulated response signal.
  • the electronic device further includes a second controller; the first communication interface of the second controller is connected to the second state machine; the second state machine is also used to determine if the electronic device is connected to the charging device , to the first The first communication interface of the two controllers sends a third interrupt signal, and the third interrupt signal is used to instruct the electronic device to connect to the charging device.
  • the electronic device further includes a second comparator; the second comparator is used to compare the input voltage of the second charging circuit with the preset voltage, and send the obtained second comparison result to a second state machine; a second state machine, also configured to send a fourth interrupt signal to the second controller when the input voltage is determined to be less than the preset voltage according to the second comparison result, and the fourth interrupt signal is used to instruct the second controller
  • the electronic device is disconnected from the charging unit.
  • the electronic device further includes a second comparator.
  • the second comparator is used to compare the input voltage of the second charging circuit with the preset voltage, and send the obtained second comparison result to the second state machine; the second state machine is also used to when the input voltage of the second charging circuit is determined according to the second comparison result.
  • the second modulation and demodulation circuit is controlled to send a current detection signal to the power receiving terminal.
  • a current detection signal is sent to the second controller.
  • the fourth interrupt signal is used to instruct the second controller electronic device to disconnect from the charging device. This implementation method can prevent the electronic device from misjudging that it is out of the box when the charging device stops outputting voltage.
  • the second charging circuit further includes: a second switch module and a third switch module; the first end of the second switch module is connected to the input end of the second charging circuit, and the second end of the second switch module
  • the second terminal is connected to the second communication interface of the second controller, the third terminal of the second switch module is connected to the first terminal of the third switch module; the second terminal of the third switch module is connected to the second battery; the second state machine is also used
  • the second controller communicates with the charging device, the first end of the second switch module is controlled to be connected to the second end of the second switch module; when the communication between the second controller and the charging device ends, the second switch is controlled
  • the first terminal of the module is connected to the third terminal of the second switch module.
  • the third switch module includes: a first MOS tube and a second MOS tube; the first MOS tube and the second MOS tube are connected in series, and the anti-parallel diode of the first MOS tube and the second MOS tube are The antiparallel diode has the opposite direction.
  • the second controller is also configured to send first charging parameters to the charging device, where the first charging parameters include the charging voltage and charging current corresponding to the second battery.
  • the second controller is also configured to send the voltage information of the second battery to the charging device.
  • the second state machine is also used to control the second modulation and demodulation circuit to modulate the input current of the second charging circuit when the electronic device is in a fully charged state or a trickle charging state, so as to A preset pulse signal is formed and sent to the charging device.
  • the first modulation signal and the second modulation response signal also include charging parameters of the electronic device; the charging parameters include at least one of the following: charging current corresponding to the second battery, charging current corresponding to the second battery the charging voltage or the voltage of the second battery.
  • the charging terminal includes a first charging terminal and a second charging terminal.
  • this application also provides a communication method applied to a charging device.
  • the method includes:
  • the first charging circuit receives the first modulated signal sent by the electronic device and demodulates the first modulated signal; When the demodulation result includes a first current, a first modulation response signal is sent to the electronic device, and the first current is used to identify the electronic device initiating communication to the charging device; or, the first charging device
  • the circuit sends a second modulation signal to the electronic device, the second modulation signal includes a first voltage, the first voltage is used to disconnect the second charging circuit of the electronic device from the second battery;
  • the first charging circuit receives the second modulated response signal sent by the electronic device and demodulates the second modulated response signal.
  • this application also provides a communication method, applied to the electronic device provided in the above aspect, the method includes:
  • the second charging circuit sends a first modulated signal to the charging device, the first modulated signal includes a first current, and the first current is used to identify that the electronic device has initiated communication with the charging device;
  • the second charging circuit receives the first modulated response signal sent by the charging device and demodulates the first modulated response signal; or,
  • the second charging circuit receives the second modulated signal sent by the charging device and demodulates the second modulated signal.
  • the demodulation result includes the first voltage
  • the application also provides a charging system.
  • the charging system includes a charging device and electronic equipment.
  • the charging device is used to charge the electronic equipment.
  • the charging device includes a first DC/DC circuit, a first charging circuit, and a first battery. and a charging terminal; a first DC/DC circuit for charging the first battery using the input direct current and outputting direct current to the input end of the first charging circuit; the output end of the first charging circuit is connected to the charging terminal;
  • the electronic device includes: The second charging circuit, the second battery and the power receiving terminal; the power receiving terminal is used to connect the charging terminal of the charging device and receive the direct current output from the charging terminal; the first end of the second charging circuit is connected to the power receiving terminal, and the second charging circuit
  • the second terminal is connected to the second battery, and the voltage output by the charging terminal is consistent with or has a preset multiple relationship with the charging voltage output by the second charging circuit to the second battery;
  • the second charging circuit is used to disconnect the second battery, send a first modulation signal to the charging device, receive the first modulation response signal sent by the charging device, and demodulate the first modulation response signal.
  • the first modulation The signal includes a first current, and the first current is used to identify that the electronic device initiates communication to the charging device; or, receives the second modulation signal sent by the charging device, and demodulates the second modulation signal.
  • the second modulation signal is demodulated
  • the result includes the first voltage, disconnect the second battery and send a second modulated response signal to the charging device;
  • the first charging circuit is used to receive the first modulated signal sent by the electronic device and demodulate the first modulated signal, When the demodulation result includes the first current, send a first modulation response signal to the electronic device; or send a second modulation signal to the electronic device, receive the second modulation response signal sent by the electronic device, and respond to the second modulation response signal. Demodulation is performed, and the second modulated signal includes a first voltage, and the first voltage is used to disconnect the second charging circuit of the electronic device from the second battery.
  • the charging system can be a charging system for earphones
  • the charging system includes two electronic devices, each corresponding to one earphone. At this time, the charging device can charge two connected earphones at the same time, or when only one earphone is connected, the earphone can be charged.
  • the electronic device of the charging system can also be a smart bracelet or smart watch.
  • the charging device can directly charge or double the voltage of electronic equipment, and realize two-way communication between the electronic equipment and the charging device. Through the two-way communication, two-way presence detection and identity recognition can be achieved, and The on-site detection has high reliability and accuracy.
  • the above implementation method can be realized based on two metal terminals, that is, the charging device only needs to include two charging terminals, and the electronic device includes two power receiving terminals. It has a high degree of integration and does not need to rely on Hall effects. Sensors, infrared light sensors and other early-stage devices can achieve on-site detection effects and reduce hardware costs.
  • this application also provides a chip, which is used in a charging device.
  • the chip integrates a first charging circuit, and the chip includes: an input port and an output port.
  • the input port is the input end of the first charging circuit, used to connect the output end of the first DC/DC circuit of the charging device;
  • the output port is the output end of the first charging circuit, used to connect the charging terminal;
  • the first charging circuit is used Receive the first modulation signal sent by the electronic device and demodulate the first modulation signal.
  • the demodulation result includes the first current
  • the first current is used to identify the electronic device to charge.
  • the device initiates communication; or, sends a second modulated signal to the electronic device, receives the second modulated response signal sent by the electronic device, and demodulates the second modulated response signal, the second modulated signal includes a first voltage, and the first voltage is used to Disconnect the second charging circuit of the electronic device from the second battery.
  • this application also provides another chip.
  • the chip is used in electronic equipment.
  • the chip integrates a second charging circuit.
  • the chip includes: an input port and an output port.
  • the input port is the first end of the second charging circuit, used to connect the power receiving terminal;
  • the output port is the second end of the second charging circuit, used to connect the second battery of the electronic device;
  • the second charging circuit is used to disconnect connection with the second battery, sending a first modulated signal to the charging device, receiving the first modulated response signal sent by the charging device, and demodulating the first modulated response signal, the first modulated signal including the first current
  • a current is used to identify that the electronic device initiates communication to the charging device; or, receive the second modulation signal sent by the charging device, and demodulate the second modulation signal.
  • the demodulation result includes the first voltage, disconnect the second modulation signal from the charging device. connections between batteries and sends a second modulated response signal to the charging device.
  • FIG. 1 is a schematic diagram of a TWS headset and charging box
  • FIG. 2 is a schematic diagram of another TWS headset and charging box
  • FIG. 3 is a schematic diagram of a charging device and electronic equipment
  • FIG. 4 is a schematic diagram of a charging system
  • FIG. 5 is a schematic diagram of a charging device and electronic equipment provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another charging device and electronic equipment provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram 1 of the waveform of the modulation signal provided by the embodiment of the present application.
  • Figure 8 is a schematic diagram 2 of the waveform of the modulation signal provided by the embodiment of the present application.
  • Figure 9 is a schematic diagram 3 of the waveform of the modulation signal provided by the embodiment of the present application.
  • FIG. 10A is a schematic diagram of another charging device and electronic equipment provided by an embodiment of the present application.
  • Figure 10B is a schematic circuit diagram of the switched capacitor converter 2023 provided by the embodiment of the present application.
  • Figure 10C is a schematic diagram of a charging stage provided by an embodiment of the present application.
  • FIG 11 is a schematic diagram of yet another charging device and electronic equipment provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of a characteristic string provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another charging device and electronic equipment provided by an embodiment of the present application.
  • Figure 14 is a schematic diagram 4 of the waveform of the modulation signal provided by the embodiment of the present application.
  • FIG. 15 is a schematic diagram of another charging device and electronic equipment provided by an embodiment of the present application.
  • FIG 16 is a schematic diagram of another charging device and electronic equipment provided by the embodiment of the present application.
  • Figure 17 is a flow chart of a communication method provided by an embodiment of the present application.
  • Figure 18 is a flow chart of another communication method provided by an embodiment of the present application.
  • Figure 19 is a flow chart of yet another communication method provided by an embodiment of the present application.
  • Figure 20 is a flow chart of yet another communication method provided by an embodiment of the present application.
  • Figure 21 is a flow chart of another communication method provided by an embodiment of the present application.
  • Figure 22 is a flow chart of yet another communication method provided by an embodiment of the present application.
  • Figure 23 is a schematic diagram of a chip provided by an embodiment of the present application.
  • Figure 24 is a schematic diagram of another chip provided by an embodiment of the present application.
  • the solution of this application can realize two-way communication between the charging device and the electronic device.
  • This application does not specifically limit the type of electronic device.
  • the electronic device can be a TWS earphone, a smart watch or a smart bracelet, etc., and the charging device is a charging device corresponding to the electronic device.
  • the device that is, when the electronic device is a TWS earphone, the charging device is a charging box; when the electronic device is a smart watch or smart bracelet, the charging device is a charging base.
  • the electronic device is a TWS headset as an example for illustration. See Figure 1 and Figure 2 together. Among them, Figure 2 is a schematic diagram of another TWS headset and charging box.
  • the charging device 10 is provided with a charging interface (not shown in the figure).
  • the charging device 10 is connected to the adapter 30 through a cable plugged into the charging interface. After the adapter 30 is connected to the power source, the charging device 10 can be charged. Let the battery of the charging device 10 have a certain amount of power. At this time, when the charging device 10 is connected to the electronic device 20, the charging device 10 can also provide power to the electronic device 20. Therefore, when the charging device 10 is disconnected from the adapter 30 , the charging device 10 can transfer the power provided by its own battery to the electronic device 20 .
  • the charging device 10 can also be charged wirelessly through wireless charging, that is, the adapter 30 does not need to be directly connected to the charging device 10.
  • the adapter 30 can be connected to a wireless device that matches the charging device 10.
  • a wireless charging device for example, a wireless charging base
  • the electronic device is a smart watch or smart bracelet
  • the charging device 10 shown in FIG. 3 is a charging base, and the charging base includes a first charging terminal 111 and a second charging terminal 112; the electronic device 20 includes a first power receiving terminal 211 and a second power receiving terminal 212.
  • the charging device 10 charges the electronic device 20
  • the electronic device 20 is placed on the charging device 10 so that the first power receiving terminal 211 and the first charging terminal 111 are connected, and the second power receiving terminal 212 and the second charging terminal 112 are connected.
  • the charging device 11 can transfer electric energy to the electronic device 20 to charge the battery included in the electronic device 20 .
  • the charging device 10 may not include a battery.
  • the charging terminal can be a USB interface, a pogo pin (also known as a spring connector or a spring pin connector), a metal spring, or made of other conductive materials.
  • the types of power receiving terminals and charging terminals are generally the same, that is, the power receiving terminals are correspondingly USB interfaces, pogo pins, metal shrapnel, or made of other conductive materials.
  • FIG. 4 is a schematic diagram of a charging system.
  • the charging system includes a charging device 10 and an electronic device 20 .
  • the charging device 10 includes a first controller 101, a first DC/DC circuit 102, a first battery 103, a first charging circuit 104 and a first switch 105.
  • the electronic device 20 includes a second controller 201, a second charging circuit 202, a second battery 203, and a second switch 205.
  • the charging device 10 is connected to an external power source through an adapter 30 .
  • the first DC/DC circuit 102 is used to charge the first battery 103 and also to provide power to the first charging circuit 104 .
  • the input end of the first charging circuit 104 is used to receive the direct current output from the first DC/DC circuit 102.
  • the output end of the first charging circuit 104 is connected to the first charging terminal 111 through the first switch 105.
  • the first charging terminal 111 is used to The first power receiving terminal 211 of the electronic device 20 is connected.
  • the second charging circuit 202 is connected to the first power receiving terminal 211 through the second switch 205 , and the UART interface of the second charging circuit 202 is connected to the first power receiving terminal 211 through the second switch 205 .
  • the Vsys interface of the first DC/DC circuit 102 in FIG. 4 is the port through which the first DC/DC circuit 102 supplies power to the first controller 101 and the first charging circuit 104 .
  • Vsys of the first DC/DC circuit 102 in the following figures of this application has the same meaning and will not be described again.
  • Vsys of the second charging circuit 202 in Figure 4 represents the port in the electronic device that supplies power to the second controller 201 through the second battery 203.
  • Vsys of the second charging circuit 202 in the following figures has the same meaning and will not be described again.
  • the first switch 105 and the second switch 205 are switched to the communication path.
  • the first controller 101 The UART interface is connected to the UART interface of the second controller 201 through the first switch 105, the first charging terminal 111, the first power receiving terminal 211, and the second switch 205 in sequence, so that the first controller 101 and the second Communication is implemented between controllers 201.
  • the above communication process is actively initiated by the charging device 10, and the electronic device 20 cannot actively initiate communication.
  • electronic devices can support direct charging mode and/or double voltage charging mode.
  • the voltage of the power receiving terminal of the electronic device is equal to the charging voltage of the second battery; in the double voltage charging mode, the voltage of the power receiving terminal of the electronic device is equal to the voltage of the second battery.
  • the charging voltage is in a multiple relationship, for example, the voltage of the power receiving terminal is twice the charging voltage of the second battery, or a higher rate.
  • the communication mode between the electronic device and the charging device also needs to support direct charging mode and/or voltage doubling charging mode, which requires the realization of communication between the electronic device and the charging box.
  • Two-way communication means that not only does the charging device actively initiate communication, but the electronic device also needs to be able to actively initiate communication to achieve functions such as determining whether it is currently in place, whether the charging device matches itself, and sending/obtaining charging information.
  • the solution corresponding to Figure 4 above can only initiate communication by the charging device, and the electronic device cannot actively initiate communication, that is, it does not support two-way communication between the electronic device and the charging box. Therefore, the above communication method cannot satisfy the direct charging mode and/or Requirements for voltage doubling charging mode.
  • embodiments of the present application provide a charging device, electronic equipment, communication method and charging system, which can realize communication between the electronic equipment and the charging device when the charging device performs direct charging or double voltage charging of the electronic equipment.
  • Two-way communication can achieve two-way presence detection and identity recognition with high reliability and accuracy.
  • the above solution is based on the charging device including two charging terminals, and the electronic device can be implemented by including two power receiving terminals. There is no need to set additional charging terminals, and it has a high degree of integration.
  • Words such as “first” and “second” in the following description are for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Thus, features defined by “first,” “second,” etc. may explicitly or implicitly include one or more of such features. In the description of this application, unless otherwise stated, “plurality” means two or more.
  • directional terms such as “upper” and “lower” may include, but are not limited to, defined relative to the schematically placed orientation of the components in the drawings. It should be understood that these directional terms may be relative concepts. They are used for relative description and clarification, which may vary accordingly depending on the orientation in which components are placed in the drawings.
  • connection shall be understood broadly, for example, “connection” "Connection” can be a fixed connection, a detachable connection, or an integrated connection; it can be a direct connection or an indirect connection through an intermediary.
  • connection can be a fixed connection, a detachable connection, or an integrated connection; it can be a direct connection or an indirect connection through an intermediary.
  • coupling can refer to the electrical connection method for signal transmission. “Coupling” can be a direct electrical connection or an indirect electrical connection through an intermediate medium.
  • FIG. 5 is a schematic diagram of a charging device and electronic equipment provided by an embodiment of the present application.
  • the electronic device 20 includes a second charging circuit 202, a second battery 203, and a power receiving terminal.
  • the power receiving terminals include a first power receiving terminal 211 and a second power receiving terminal 212 .
  • the first charging terminal 111 is connected to the first power receiving terminal 211
  • the second charging terminal 112 is connected to the second power receiving terminal 212 .
  • the power receiving terminal is used to receive the direct current output from the charging terminal.
  • the first DC/DC circuit 102 obtains DC power from the adapter 30 , performs DC/DC conversion on the obtained DC power to charge the first battery 103 , and supplies the obtained DC power to the first charging circuit 104 after performing DC/DC conversion. input terminal.
  • the first DC/DC circuit 102 is also used to perform DC conversion on the DC power obtained from the first battery 103 and then transmit it to the input end of the first charging circuit 104 when the charging device 10 is not connected to the adapter 30 .
  • the charging device 10 includes a charging interface, and is connected to the adapter 30 through a cable plugged into the charging interface.
  • the adapter 30 does not need to be directly connected to the charging device 10.
  • the adapter 30 can be connected to a wireless charging device (for example, a wireless charging base) that matches the charging device 10 through a cable, and then the adapter 30 is wirelessly charged.
  • the device performs wireless charging for the charging device 10.
  • the input end of the first DC/DC circuit 102 also includes a cascade power receiving coil and a rectifier circuit. Among them, the power receiving coil is used to convert the energy sent by the wireless charging device into alternating current and transmit it to the rectifier circuit.
  • the rectifier circuit is used to convert alternating current into direct current and then transmit it to the first DC/DC circuit 102 .
  • the output terminal of the first charging circuit 104 is connected to the first charging terminal 111 .
  • the first terminal of the second charging circuit 202 is connected to the first power receiving terminal 211 , and the second terminal of the second charging circuit 202 is connected to the second battery 203 .
  • the voltage output by the first charging terminal 111 is not completely equal to the charging voltage of the second battery. This is because there is impedance on the line, which will cause a voltage drop. The voltage drop caused by the line impedance is negligible compared to the charging voltage. Therefore, it can be considered that the voltage output by the first charging terminal 111 is different from the voltage output by the second charging circuit 202 to the second battery.
  • the charging voltage output by 203 is consistent.
  • a switched capacitor converter is used to establish a preset multiple relationship between the voltage output by the first charging terminal 111 and the charging voltage output by the second charging circuit 202 to the second battery 203 .
  • the preset multiple relationship may be 2:1, 3:1, 4:1, etc., which is not specifically limited in the embodiment of the present application.
  • the preset multiple depends on the switched capacitor converter.
  • the second charging circuit 202 may include an overvoltage/overcurrent protection circuit or an undervoltage protection circuit.
  • the charging device 10 directly charges or doubles the voltage of the electronic device 20, the voltage and current on the charging line are clamped by the second battery 203. Therefore, when the charging device communicates with the electronic device 20, it is necessary to cut off the communication.
  • the charging path of the second battery 203 that is, the connection between the second charging circuit 202 and the second battery 203 is disconnected to prevent the second battery 203 from affecting the signal on the charging line.
  • the two-way communication between the charging device 10 and the electronic device 20 includes: communication initiated by the electronic device 20 to the charging device 10 , and communication initiated by the charging device 10 to the electronic device 20 .
  • the communication process initiated by the electronic device 20 to the charging device 10 is first described below.
  • the electronic device 20 when the electronic device 20 detects the input current from the power receiving terminal connection, it needs to confirm whether it is currently connected to the charging device 10 and whether the currently connected charging device 10 matches itself, that is, it needs to confirm whether the charging device 10 is currently connected. 10 for identity authentication; when the electronic device 20 detects that there is no input from the power receiving terminal, it needs to confirm whether it is currently disconnected from the charging device 10 .
  • the electronic device 20 may be configured to initiate communication to the charging device 10 according to a certain period to determine that the connection status is normal, or to interact with charging parameters, such as voltage parameters, current parameters, etc. In the above situation, the conditions for the electronic device 20 to initiate communication with the charging device 10 are met.
  • the second charging circuit 202 first controls the disconnection between the second charging circuit 202 and the second battery 203 to prevent the second battery 203 from affecting the voltage and voltage on the line. The current is clamped. At this time, the second charging circuit 202 temporarily stops charging the second battery 203 .
  • the second charging circuit 202 sends a first modulated signal to the charging device 10 through the first power receiving terminal 211.
  • the first modulated signal includes a first current.
  • the first current is used to identify that the electronic device 20 has initiated communication with the charging device 10 at this time. .
  • the first current representation means that the electronic device 20 initiates communication at this time.
  • the first charging circuit 104 of the charging device 10 When the first charging circuit 104 of the charging device 10 receives the first modulated signal, it obtains the first current, that is, it is determined that the electronic device 20 has initiated communication with itself at this time. The first charging circuit 104 returns a first modulated response signal to the electronic device 20 through the first charging terminal 111 according to a predetermined communication protocol.
  • the first current is located at the head position of the first modulation signal.
  • a charging circuit 104 receives the second modulated signal, it first receives the first current, and the first charging circuit 104 can determine that the electronic device 20 has initiated communication.
  • the communication process to the electronic device initiated by the charging device 10 is described below.
  • the charging device 10 when the charging device 10 detects the charging terminal connection output current, it needs to confirm whether it is currently connected to the electronic device 20 and whether the currently connected electronic device 20 matches itself, that is, the electronic device 20 Perform identity authentication; when the charging device 10 detects that the charging terminal has no output current, it needs to confirm whether it is currently disconnected from the electronic device 20 .
  • the charging device 10 may be configured to initiate communication to the electronic device 20 according to a certain period to determine that the connection status is normal, or to interact with charging parameters, such as voltage parameters, current parameters, etc. In the above situation, the conditions for the charging device 10 to initiate communication with the electronic device 20 are met.
  • the second charging circuit 202 replies a second modulation response signal to the charging device 10 through the power receiving terminal according to the second modulation signal and the predetermined communication protocol.
  • the first voltage included in the second modulated signal may be used as part of the communication protocol between the charging device 10 and the electronic device 20 , that is, because the charging device 10 initiates communication with the electronic device 20 .
  • the interruption in the charging of the second battery 203 can be considered as a normal communication process, and there is no need to report the interruption, thereby simplifying the communication process.
  • the charging device can realize two-way communication between the charging device and the electronic device when performing direct charging or double-voltage charging of the electronic device, and the communication process is simple and highly practical.
  • this communication method mutual identity authentication and on-site detection between electronic devices and charging devices can be achieved without the need to set up other detection sensors, thus also reducing hardware costs.
  • the electronic device can support direct charging, or can support both direct charging and double-voltage charging. The following will first explain the implementation method when the electronic device only supports direct charging.
  • the charging device 10 shown in the figure is used for charging the electronic device 20 .
  • the charging device 10 includes: a first controller 101, a first DC/DC circuit 102, a first charging circuit 104 and a charging terminal.
  • the charging terminals include a first charging terminal 111 and a second charging terminal 112 .
  • the first charging circuit 104 includes a second DC/DC circuit 1041 and a first modulation and demodulation circuit 1042.
  • the input terminal of the second DC/DC circuit 1041 is connected to the input terminal of the first charging circuit 104, and the output terminal of the second DC/DC circuit 1041 is connected to the first terminal of the first modulation and demodulation circuit 1042.
  • the first modulation and demodulation circuit 1042 The second end is connected to the first charging terminal 111.
  • the first protection circuit is used to control the second charging circuit and the second triggering voltage when the current of the second charging circuit 202 is less than the first trigger current, or the charging voltage output by the second charging circuit to the second battery is less than the first trigger voltage.
  • Q1 in the diagram is also controlled to be disconnected, or both Q1 and Q2 can be controlled to be disconnected.
  • the first charging terminal 111 is connected to the first power receiving terminal 211
  • the second charging terminal 112 is connected to the second power receiving terminal 212 .
  • FIG. 7 is a schematic diagram 1 of the waveform of a modulated signal provided by an embodiment of the present application.
  • FIG. 7 shows a schematic diagram when the electronic device 20 initiates communication with the charging device 10 .
  • the load C in the figure corresponds to the input current of the electronic device 20.
  • the charging terminal When the charging terminal is connected to the power receiving terminal, it is the output current of the charging device 10.
  • Initial V in the figure corresponds to the input voltage of the electronic device 20.
  • the charging terminal When the charging terminal is connected to the power receiving terminal, it is the output voltage of the charging device 10.
  • the second charging circuit 202 first controls the disconnection between the second charging circuit 202 and the second battery 203 to prevent the second battery 203 from clamping the voltage and current. Bit. That is, Q1 is controlled to be turned off, or both Q1 and Q2 can be controlled to be turned off.
  • the second modulation and demodulation circuit 2022 modulates the input current of the second charging circuit 202 to form a first modulation signal, and the first modulation signal is a current modulation signal.
  • the second modulation and demodulation circuit 2022 first modulates the input current of the second charging circuit 202 during the time period from t0 to t1, so that the input current is as low as IL, corresponding to the Ti_pre stage of the first modulation signal in Figure 7 , that is, through modulation, the first modulation signal carries the first current.
  • the Ti_pre stage represents a brief switching between the charging mode and the communication modulation mode of the electronic device, that is, the electronic device 20 initiates communication to the charging device 10 .
  • the embodiment of this application does not limit the specific value of IL. In one possible implementation, the value of IL is 0.
  • the meaning of the first current can be clarified, that is, it is clear that the first current is the charge of the electronic device 20.
  • the second modulation and demodulation circuit 2022 begins to modulate to form a communication waveform.
  • the communication waveform corresponds to the Ti_data segment of the first modulation signal in FIG. 7 .
  • the second charging circuit 202 sends the first modulated signal to the charging device 10 through the power receiving terminal.
  • the first modulation and demodulation circuit 1042 of the first charging circuit 104 demodulates the first modulated signal. If the demodulation fails, it indicates that at this time The first modulated signal sent by the electronic device 20 does not meet the predetermined communication protocol, that is, the electronic device 20 does not match the charging device 10 .
  • the specific waveform of the first modulated response signal is related to the predetermined communication protocol between the charging device 10 and the electronic device 20, and is not specifically limited in the embodiment of the present application.
  • the communication process initiated by the charging device 10 to the electronic device 20 is described below.
  • FIG 8 is a schematic diagram 2 of the waveform of a modulated signal provided by an embodiment of the present application.
  • the load C in Figure 8 corresponds to the input current of the electronic device 20.
  • the charging terminal When the charging terminal is connected to the power receiving terminal, it is the output current of the charging device 10.
  • Initial V in Figure 8 corresponds to the input voltage of the electronic device 20. When the charging terminal is connected to the power receiving terminal, it is the output voltage of the charging device 10.
  • the first charging circuit 104 sends a second modulation signal to the electronic device 20, and the second modulation signal is a voltage modulation signal.
  • the first voltage is used to cause the electronic device 20 connected at the subsequent stage to generate a weak backwash current or undervoltage.
  • the first protection circuit in the second charging circuit 202 controls the second charging circuit 202 to disconnect from the second battery 203.
  • Q1 in Figure 6 is also controlled to be turned off, or both Q1 and Q2 can be controlled to be turned off to achieve undervoltage protection.
  • the first voltage carried in the second modulation signal is less than the first trigger voltage of the first protection circuit.
  • the embodiment of the present application does not limit the specific value of the first voltage.
  • the first voltage may be set to 0.
  • UVLO in Figure 8 represents the first Trigger voltage
  • the first voltage is located in the time period from t0 to t1 in Figure 8, that is, the Tv_pre stage of the second modulation signal.
  • the first voltage is located at the head position of the second modulation signal, so that when the second charging circuit 202 of the electronic device 20 receives the second modulation signal, it first receives the first voltage and then controls the second charging circuit 202 in time. Disconnected from the second battery 203,
  • the first modulation and demodulation circuit 1042 modulates the standard communication waveform during the time period from t1 to t2 in FIG. 8 , that is, by modulating the output voltage of the first charging circuit 104 to form the Tv_data segment of the second modulation signal.
  • the specific waveform of the Tv_data stage of the second modulation signal is related to the predetermined communication protocol between the charging device 10 and the electronic device 20, and is not specifically limited in the embodiment of the present application.
  • the first charging circuit 104 sends the second modulated signal to the electronic device 20 through the charging terminal.
  • the second charging circuit 202 controls the second modulation and demodulation circuit 2022 to generate a second modulation response signal according to the demodulation result and the predetermined communication protocol.
  • the second modulation response signal is a current modulation signal, corresponding to t3 to t4 in Figure 8 Time period, Ti_dack phase of load C.
  • the first modulation and demodulation circuit 1042 modulates the output waveform of the first charging circuit 104 to cause backfeed current or undervoltage in the second charging circuit 202 to trigger the protection of the first protection circuit. action to disconnect the charging link of the second battery 203, thereby realizing time-sharing multiplexing of charging and communication.
  • the first modulation and demodulation circuit 1042 modulates the output waveform of the first charging circuit 104 to overvoltage the second charging circuit 202 to trigger the protection action of the second protection circuit and disconnect the charging line of the second battery 203, which will be described in detail below. .
  • FIG. 9 is a schematic diagram 3 of the waveform of the modulation signal provided by the embodiment of the present application.
  • Initial V in Figure 9 corresponds to the input voltage of the electronic device 20.
  • the charging terminal When the charging terminal is connected to the power receiving terminal, it is the output voltage of the charging device 10.
  • the first charging circuit 104 sends a second modulation signal to the electronic device 20, and the second modulation signal is a voltage modulation signal.
  • the first modulation and demodulation circuit 1042 of the first charging circuit 104 first performs the charging operation during the time period from t0 to t1.
  • the output voltage of the first charging circuit is modulated so that the output voltage waveform is briefly pulled up to the first voltage.
  • the first voltage is greater than the second trigger voltage.
  • the second trigger voltage in Figure 9 is OVP. That is, the second modulated signal carries the first voltage.
  • the embodiments of the present application do not limit the specific value of the first voltage. In practical applications, the first voltage can be slightly larger than the second trigger voltage.
  • the electronic device 20 first receives the first voltage. Since the first voltage is slightly greater than the second trigger voltage, a weak overvoltage or overcurrent occurs. At this time, the second protection circuit in the second charging circuit 202 controls the second charging circuit 202 To disconnect from the second battery 203, Q1 in Figure 6 is also controlled to be disconnected, or both Q1 and Q2 can be controlled to be disconnected.
  • the second charging circuit 202 of the electronic device 20 Since the second charging circuit 202 of the electronic device 20 is disconnected from the second battery 203, the second battery 203 is prevented from clamping the voltage and current output by the charging terminal.
  • the first voltage is located in the time period from t0 to t1 in Figure 9, which is the Tv_pre stage of the second modulation signal.
  • the first voltage is located at the head position of the second modulation signal, so that when the second charging circuit 202 of the electronic device 20 receives the second modulation signal, it first receives the first voltage and then controls the second charging circuit 202 in time. Disconnect from the second battery 203 .
  • the Tv_pre stage and Ti_pre stage in the above waveform diagrams can be used as part of the communication protocol waveform and are located at the head of the modulated signal to represent the preparation process before communication. This can achieve two-way communication during direct charging and can reduce The number of interruptions reported by the first charging circuit to the first controller and the reduction of the number of interruptions reported by the second charging circuit to the second controller, that is, interruptions caused by the electronic device switching between charging mode and communication modulation mode, can be considered It is part of the communication protocol, which simplifies the communication process and improves practicality.
  • the earphone will be connected to other electronic devices during use, such as a mobile phone, and currently after the earphone is connected to the mobile phone for the first time, the earphone will be connected again.
  • the earphone When turned on, it can automatically connect to the mobile phone to wait for the mobile phone to send data and enter the playback state. After the earphones are placed in the charging box, they will disconnect from the phone and stop playing during the charging process. If the charging process of the headset is interrupted, it may automatically connect to the phone again.
  • the switched capacitor converter 2023 can boost the voltage input to the switched capacitor converter 2023 and then output it, which can adjust the voltage and increase the charging voltage for the second battery 203. , thereby improving the efficiency of charging the second battery 203 .
  • the switched capacitor converter 2023 shown in FIG. 10B is only one possible implementation, and does not constitute a limitation on the technical solution of the present application.
  • the switched capacitor converter 2023 can also adopt other implementations.
  • FIG. 10C is a schematic diagram of a charging stage provided by an embodiment of the present application.
  • the charging stage of the electronic device 20 by the charging device 10 can be divided into a trickle charging stage, a constant current charging stage, a constant voltage charging stage and a charging termination stage.
  • the electronic equipment uses the LDO (Low Dropout Regulator, low voltage dropout linear regulator) charging mode, which corresponds to the area between INT0 and INT1 in the figure; while during the constant current charging stage and the constant voltage charging stage, the electronic equipment uses the pass-through charging mode.
  • LDO Low Dropout Regulator, low voltage dropout linear regulator
  • the constant current charging stage can be divided into multiple stages, for example: CC1 stage (corresponding to INT1-INT2 in the figure), CC2 stage (corresponding to INT2-INT2 in the figure). Between INT3) and CC3 stage (corresponding to between INT3-INT4 in the figure).
  • CV in the figure represents the constant voltage charging stage, corresponding to the period between INT4-INT5 in the figure.
  • CV1, CV2 and CV3 represent the voltage thresholds that distinguish the CC1 stage, CC2 stage and CC3 stage during the constant current charging stage.
  • the LDO charging mode shown in the figure is used to charge the second battery 203.
  • the second charging circuit in the electronic device 20 actively passes I/
  • the O interface generates an interrupt so that the electronic device 20 and the charging device 10 communicate and transfer the first charging parameter of the second battery 203 so that the charging device 10 charges the electronic device 20 according to the first charging parameter of the second battery 203 .
  • the corresponding charging stage of the second battery is the trickle charging stage. Therefore, only a small amount of communication is required between the electronic device and the charging device to complete the entire charging process.
  • curve A represents the voltage of the second battery
  • curve B represents the charging current of the second battery
  • the second batteries are in different charging stages, so the charging stage of the second battery can be determined according to the voltage information of the second battery 203 .
  • the second controller 201 in the electronic device 20 can obtain the voltage information of the second battery and determine the charging stage of the second battery based on the voltage information of the second battery.
  • the trickle charging stage, constant current charging stage, constant voltage charging stage and charging termination stage are introduced in detail below.
  • the charging device can determine that the charging stage of the second battery is the trickle charging stage when charging the electronic device.
  • the second controller 201 can detect the voltage of the second battery 203 in real time or according to a preset period. When the second controller 201 detects that the voltage of the second battery 203 is greater than or equal to the precharge charging threshold, the charging stage changes from the trickle charging stage. It is the constant current charging stage.
  • the second controller 201 can transmit information to the second charging circuit 202 through the IIC interface, so that the second charging circuit 202 controls the second modulation and demodulation circuit 2022 to the charging device 10
  • the modulation signal is sent, and the first charging circuit 104 controls the first modulation and demodulation circuit 1042 to demodulate the received modulation signal, sends the generated demodulation result to the first controller 101, and informs the first controller 101 to prepare to communicate with the first controller 101.
  • the two controllers 201 communicate, and this process corresponds to the description of Figures 6 to 9 above.
  • the charging device 10 When the charging device 10 only supports direct charging of the electronic device 20 , that is, it only includes the direct charging circuit 2021 and does not include the switched capacitor converter 2023 . That is, the charging device 10 directly charges the second battery 203 through the charging voltage and charging current output by the first charging terminal 111 .
  • the charging device 10 supports direct charging of the electronic device 20 and double-voltage charging of the electronic device 20 , that is, when the charging device 10 includes the switched capacitor converter 2023 , Q1 is turned off during the constant voltage charging stage or the constant current charging stage. , so that the electric energy directly charges the second battery 203 through the switched capacitor converter 2023.
  • the second battery 203 can power the second controller 201 through Q2.
  • Q1 is turned on, and the current passes through Q1 and Q2 to charge the second battery 6024.
  • the impedance of the direct charging circuit 2021 is adjustable, thereby enabling the control of the charging path impedance at different charging stages.
  • the second controller 201 can obtain the corresponding charging stage according to the voltage information of the second battery 203.
  • the charging stage is a constant current charging stage or a constant voltage charging stage, it controls Q1 to open, Q2 to close, and controls the switched capacitor converter 807 to work.
  • the charging stage is the trickle charging stage
  • Q1 and Q2 are controlled to be closed, that is, the second controller 201 controls the switched capacitor converter 2023 and the direct charging circuit 2021 to work in different states at different charging stages. Therefore, while the charging efficiency of the second battery 203 in the constant voltage charging stage and the constant current charging stage can be improved, the charging efficiency of the second battery 203 in the charging stage can also be improved.
  • the switched capacitor converter 2023 can make the voltage output by the first charging terminal 111 and the charging voltage output by the second charging circuit 202 to the second battery 203 have a preset multiple relationship.
  • the preset multiple relationship may be 2:1, 3:1, 4:1, etc., which is not specifically limited in the embodiment of the present application.
  • the preset multiple depends on the parameters of the switched capacitor converter 2023.
  • the ratio of the voltage output by the first charging terminal 111 to the charging voltage of the second battery 203 is 1:1.
  • the voltage output by the first charging terminal 111 is increased. , the power loss in the line can be reduced, thereby improving the charging efficiency of the second battery 203 .
  • the charging device 10 When the charging device 10 charges the electronic device 20 at double voltage, the current and voltage on the charging line will also be clamped by the second battery 203, thereby affecting communication. Therefore, when the charging device 10 communicates with the electronic device 20 , it is also necessary to control the switched capacitor converter 2023 to stop charging the second battery 203 .
  • the solution provided by the embodiments of the present application can realize two-way communication between the charging device and the electronic device when the charging device supports both direct charging of electronic devices and double-voltage charging of electronic devices, and It can reduce the number of interruptions reported by the first charging circuit to the first controller, and reduce the number of interruptions reported by the second charging circuit to the second controller, that is, interruptions caused by the electronic device switching between charging mode and communication modulation mode. It can be considered as part of the communication protocol, and there is no need to report a protected terminal, thus simplifying the communication process and improving practicality.
  • the following continues to take the electronic device as a headset and the charging device as a charging box for the headset as an example to illustrate the specific process of realizing the entry and exit box detection and identity recognition of the headset through modulated signals.
  • FIG 11 is a schematic diagram of yet another charging device and electronic equipment provided by an embodiment of the present application.
  • the charging device 10 shown in the figure is an earphone charging box, and the electronic device 20 is an earphone.
  • the charging device 10 includes: a first controller 101, a first DC/DC circuit 102, a first charging circuit 104 and a charging terminal.
  • the charging terminals include a first charging terminal 111 and a second charging terminal 112 .
  • the first charging circuit 104 includes a second DC/DC circuit 1041, a first switch module S1, a first modulation and demodulation circuit 1042, a first state machine 1043 and a control loop 1044.
  • the second charging circuit 202 includes a second modulation and demodulation circuit 2022, a second switch module S2, a third switch module S3, and a modulated current source 2024.
  • the first modulation and demodulation circuit 1042 is connected to the first state machine 1043.
  • the second state machine 2023 is connected to the second modulation and demodulation circuit, that is, the second state machine 2023 is connected to the modulation current source 2023 .
  • the charging device 10 is configured to output when the box is opened, that is, after the charging box is opened, the second DC/DC circuit 1041 outputs a preset voltage, or outputs a preset voltage according to a preset period to reduce power consumption.
  • the embodiment of the present application does not specifically limit the preset voltage. For example, it can be set to 5V. After the charging device 10 is opened, the voltage is output to wait for the electronic device 20 to be connected.
  • the power receiving terminal When the electronic device 20 is put into the box, the power receiving terminal is connected to the charging electronics. After the electronic device comes into contact with the appropriate input voltage, it actively sends a handshake signal, that is, the first modulation signal. At this time, the modulated current source (modem current source) 2024 in the electronic device 20 generates a current pulse signal to form a characteristic string.
  • the modulated current source (modem current source) 2024 in the electronic device 20 generates a current pulse signal to form a characteristic string.
  • FIG. 12 is a schematic diagram of a characteristic string provided by an embodiment of the present application.
  • the characteristic string includes preamble (Preamble), start code (Start), data code (b0 to b3), checksum (checksum) and stop code (Stop)
  • the preamble shown in the figure includes 6 bits “1”, the start code includes 1 bit “1”, and the data code carries specific communication information, which is related to the predetermined communication protocol between the electronic device 20 and the charging device 10 .
  • Checksum is used to verify the sum of data codes and is usually used to ensure the integrity and accuracy of data in communications.
  • the termination code represents the end bit of the characteristic string.
  • the above modulated current source 2024 forms the Ti_data segment in the first modulated signal shown in FIG. 7 .
  • the second state machine 2023 controls the modulation current source 2024 to modulate the input current of the second charging circuit 202, and then carries the generated characteristic string in the first modulation signal and sends it to the charging device. Specifically, using a predetermined communication protocol between the electronic device and the charging device, the characteristic string carried in the first modulated signal is the first characteristic string.
  • the first modulation and demodulation circuit 1042 of the charging device is used to demodulate the acquired modulation signal and send the demodulation result to the first state machine 1043.
  • the first state machine 1043 obtains the demodulation result corresponding to the first modulation signal, and the demodulation result carries the first characteristic string.
  • the specific implementation manner of the above first preset characteristic string and the second preset characteristic string is determined by the communication protocol between the electronic device 20 and the charging device 10 , and is not specifically limited in the embodiment of this application.
  • the first state machine 1043 determines whether the first characteristic string is the first preset characteristic string. If so, it indicates that a string that meets the communication protocol has been received at this time, determines that the electronic device 20 is connected at this time, and determines to send the The electronic device 20 of the first modulated signal is matched to the charging device. Then the first state machine 1043 controls the first modulation and demodulation circuit 1042 to modulate the output voltage of the first charging circuit 104 to form the first modulation response signal.
  • the identity recognition between the electronic device 20 and the charging device 10 is achieved.
  • both the electronic device 20 and the charging device 10 can complete the identity recognition and box entry detection. Then the charging device 10 charges the electronic device 20. During charging, there will be continuous voltage and current on the power transmission line between the two. In actual applications, as the charging process proceeds, the power of the second battery 203 of the electronic device 20 As the voltage gradually rises, the electronic device 20 and the charging device 10 also need to communicate to adjust the charging current and charging voltage of the second battery 203. This implementation process will be described in detail below.
  • the first communication interface of the first controller 101 that is, the IIC interface of the first controller 101 in FIG. 11, is connected to the first charging circuit 104, and is connected to the first state machine 1043 in the first charging circuit 104.
  • the electronic device 20 also includes a second controller 201.
  • the second communication interface of the second controller 201 is connected to the second end of the second switch module S2, and the first end of the second switch module S2 is connected to the second charging
  • the input terminal of the circuit 202, the third terminal of the second switch module S2, is connected to the first terminal of the third switch module S3, and the second terminal of the third switch module S3 is connected to the second battery 203.
  • the first state machine 1043 is also used to control the second end of the first switch module S1 and the third end of the first switch module S1 to connect when the first controller 101 needs to communicate with the second controller 201 of the electronic device 20 , so that the UART interface of the first controller 101 is connected to the circuit. At this time, the output end of the second DC/DC circuit 1041 is not connected to the charging terminal, that is, the charging device 10 temporarily stops charging the electronic device 20 .
  • the second state machine 2023 of the first controller 101 determines that the electronic device 20 is connected to the charging device 10 through the handshake mechanism in the above embodiment, it sends a third interrupt signal to the UART interface of the second controller 201.
  • the interrupt signal is used to indicate that the electronic device is connected to the charging device.
  • the second state machine 2023 controls the first end of the second switch module S2 and the second end of the second switch module S2 to be connected.
  • the first controller 101 and the second controller 201 are connected to realize data exchange during the charging process.
  • the second controller 201 sends the voltage information of the second battery 203 to the first controller 101 .
  • the first controller 101 receives the voltage information of the second battery 203 sent by the second controller 201, according to the voltage information of the second battery 203 Determine the first charging parameter corresponding to the second battery 203, the first charging parameter includes the charging voltage and charging current corresponding to the second battery, and send the first charging parameter to the first state machine, so that the first state machine 1043 according to the first A charging parameter controls the second DC/DC circuit 1041.
  • the corresponding relationship between the voltage information of the second battery 203 and the first charging parameter can be calibrated in advance and stored, for example, in the form of a data table, and can be called when the first controller 101 is used.
  • the first state machine 1043 controls the first end of the first switch module S1 and the third end of the first switch module to connect, so that the second DC/DC circuit 1041 is connected to the charging terminal.
  • the second state machine 2023 controls the first terminal of the second switch module S2 and the third terminal of the second switch module S2 to be connected, so that the second charging circuit 202 charges the second battery 203 .
  • a control loop 1044 is provided in the first charging circuit 104.
  • the control loop 1044 includes a voltage loop and a current loop.
  • the input quantities of the control loop 1044 include Iou and Vout. .
  • Iout is the detected output current of the charging terminal
  • Vout is the detected output voltage of the charging terminal, compare Vout with the charging voltage in the first charging parameter, and control the output voltage of the charging terminal to be consistent with the charging voltage according to the voltage comparison result. , thereby realizing closed-loop control of the voltage loop; comparing Iout with the charging current in the first charging parameter, and controlling the output current to be consistent with the charging current according to the current comparison result, thereby realizing closed-loop control of the current loop.
  • the above description mainly introduces the communication method during the charging process.
  • the following is a detailed description of the method for detecting the separation of the charging device and the electronic equipment.
  • the first controller 101 determines that the electronic device 20 is disconnected, and then controls the first DC/DC circuit 102 and/or the second DC/DC circuit 1041 to stop working. .
  • the second comparator 2025 in Figure 11 is integrated with the second charging circuit 202. In other embodiments, the second comparator 2025 can also be set independently.
  • the second comparator 2025 is used to compare the input voltage Vin of the electronic device with the preset voltage V1, and send the obtained second comparison result to the second state machine 2023.
  • Scenario 2 Before the electronic device 20 is charged, the second battery 203 is over-discharged. In order to protect the second battery 203, the second battery 203 needs to be trickle charged for a period of time. During the trickle charge, the input of the electronic device 20 The voltage is low and the output current of the charging device 10 is low.
  • the first comparator 1045 may not be able to detect the output current Iout, so it may misjudge that the electronic device 20 is out of the box, and then stop charging the electronic device 20 .
  • the modulated current source of the second charging circuit 202 can be used to send the heartbeat pulse signal, which will be described in detail below.
  • FIG 14 is a schematic diagram 4 of the waveform of the modulation signal provided by the embodiment of the present application.
  • the first modulation and demodulation circuit 1042 of the charging device 10 demodulates the received modulation signal and sends the demodulation result to the first state machine 1043 .
  • the first state machine 1043 determines that the electronic device 20 sends the preset pulse signal to the charging device 10, it determines that the electronic device 20 and the charging device are connected normally.
  • the first state machine 1043 determines that the electronic device 20 sends the preset pulse signal to the charging device 10, it maintains the current working state of the second DC/DC circuit and sends a fifth interrupt signal to the first controller 101.
  • the fifth interrupt signal is used to indicate to the first controller 101 that the electronic device 20 is currently in a trickle charging state.
  • the modulated current source 2024 of the second charging circuit 202 is used to supply power to the charging device.
  • the charging device 10 is prevented from misjudging that the electronic device is disconnected.
  • the charging device 10 suddenly loses power due to overcurrent, overtemperature, or other reasons, causing the input voltage of the electronic device 20 to be zero. Therefore, the electronic device 20 may misjudge Take the electronic device as a headset as an example. After the headset mistakenly determines that it comes out of the box, it may automatically initiate a connection with the mobile device. If the mobile device is successfully connected, it will continue to be in a state of waiting for the mobile phone to transmit data or start playback, and may consume electricity again. Use up the battery.
  • the electronic device 20 misjudges that the box is out
  • the charging device 10 returns to normal from abnormal conditions such as overcurrent and overtemperature
  • the electronic device 20 misjudges that the box is out and does not send a handshake signal to the charging device, which may result in charging
  • the device 10 does not continue to charge the electronic device 20, so that the electronic device 20 is not fully charged, which reduces the user's experience.
  • the modulation current source of the second charging circuit 202 can still be used to implement detection, which will be described in detail below.
  • FIG 15 is a schematic diagram of another charging device and electronic equipment provided by an embodiment of the present application.
  • FIG. 15 The difference between FIG. 15 and FIG. 14 is that the modulated current source 2024 in FIG. 15 reversely outputs current to the power receiving terminal 211 of the electronic device 20 , that is, the electronic device 20 sinks current back into the charging device 10 .
  • the second comparator 2025 is used to compare the input voltage Vin of the electronic device with the preset voltage V1, and send the obtained second comparison result to the second state machine 2023.
  • the second comparator 2025 determines that the input voltage Vin is less than the preset voltage V1 according to the second comparison result, it controls the second modulation and demodulation circuit to send a detection signal to the power receiving terminal 211 , and the detection signal includes the modulation current source 2024 to the electronic device 20
  • the power receiving terminal 211 outputs a current in the reverse direction.
  • the detection signal may be a constant current signal.
  • the output end of the second DC/DC circuit 1041 of the charging device 10 includes a capacitor, utilizing the characteristics of charging the capacitor, if the electronic device 20 is still connected to the charging device 10 at this time, the current signal sent by the current source 2024 to the electronic device 20 is modulated.
  • the capacitor will be charged first, so the voltage of the power receiving terminal will not rise quickly. If the connection is actually disconnected at this time, the voltage of the power receiving terminal will quickly rise to the voltage of the modulated current source 2024.
  • the detection signal is a constant current signal and the charging box 10 and the electronic device 20 are disconnected, the voltage at the first power receiving terminal 211 will rise quickly.
  • the second state machine 2023 sends a fourth interrupt signal to the IIC interface of the second controller 201.
  • the fourth interrupt signal is used to instruct the second controller 201
  • the electronic device 20 is disconnected from the charging device 10 .
  • the preset time and the preset threshold voltage can be calibrated through testing to determine appropriate values, which are not specifically limited in the embodiments of the present application.
  • bidirectional presence detection can be achieved, and the charging device can be prevented from misjudgment of being disconnected from the electronic device, and the electronic device can be prevented from being misjudged to be disconnected from the charging device, thus improving the It improves the reliability and accuracy of in-position detection, and the above implementation method has a high degree of integration, does not need to rely on Hall sensors, infrared light sensors and other devices, and also reduces hardware costs.
  • the first modulated signal or the second modulated response signal sent by the electronic device to the charging device may also carry the charging parameters of the electronic device, and the charging parameters may include the charging parameters corresponding to the second battery.
  • the charging parameters may include the charging parameters corresponding to the second battery.
  • the second modulated signal and the first modulated response signal sent by the charging device 10 to the electronic device 20 may also include output parameters of the charging device 10, such as output current or output voltage.
  • the charging box charging the earphones is used as an example.
  • both the charging terminal and the power receiving terminal include two PINs to achieve electrical connection.
  • the charging terminal and the power receiving terminal can be pogo pins or metal shrapnel.
  • the charging terminal and the power receiving terminal may also be connected through a Universal Serial Bus (USB) interface, which will not be described again here.
  • USB Universal Serial Bus
  • the solution of this application can also be applied to other scenarios, such as charging smart bracelets or smart watches, that is, the electronic device can also be smart bracelets or smart watches.
  • embodiments of the present application also provide a charging system, including the charging device and electronic equipment described in the above embodiments, which will be described in detail below with reference to the accompanying drawings.
  • FIG 16 is a schematic diagram of another charging device and electronic equipment provided by an embodiment of the present application.
  • the second charging circuit is used to disconnect the second battery, send a first modulation signal to the charging device, receive the first modulation response signal sent by the charging device, and demodulate the first modulation response signal.
  • the first modulation The signal includes a first current, and the first current is used to identify that the electronic device initiates communication to the charging device; or, receives the second modulation signal sent by the charging device, and demodulates the second modulation signal.
  • the second modulation signal is demodulated
  • the result includes the first voltage, disconnect the second battery and send a second modulated response signal to the charging device;
  • the first charging circuit is used to receive the first modulation signal sent by the electronic device, demodulate the first modulation signal, and when the demodulation result includes the first current, send the first modulation response signal to the electronic device; or, to the electronic device;
  • the device sends a second modulated signal, receives a second modulated response signal sent by the electronic device, and demodulates the second modulated response signal.
  • the second modulated signal includes a first voltage, and the first voltage is used to cause the second modulated signal of the electronic device to The charging circuit is disconnected from the second battery.
  • both the charging terminal and the power receiving terminal include two PINs to achieve electrical connection.
  • the charging box charging a headset as an example.
  • the charging device can charge two earphones at the same time, that is, the electronic device 20 and the electronic device 30 . That is to say, the charging system includes the charging device 10, the electronic device 20 and the electronic device 30. The internal circuits of the electronic device 20 and the electronic device 30 are implemented in the same manner, which will not be described again here.
  • the electronic device 20 is one earphone
  • the electronic device 30 is the other earphone.
  • the charging device may include two identical first charging circuits 104 inside, and the two first charging circuits 104 are commonly connected to the output end of the first DC/DC circuit 102 .
  • Each first charging circuit 104 corresponds to a first controller 101 .
  • the two first controllers 101 are provided separately. In other embodiments, the two first controllers 101 can also be integrated together.
  • the two first charging circuits 104 can also be directly connected to the same first controller 101, that is, Only one first controller is provided in the charging device 10; alternatively, two first DC/DC circuits 102 can be provided in the charging device 10 at the same time, and each first charging circuit 104 is connected to a corresponding DC/DC circuit 102. At this time, the two first DC/DC circuits 102 can be connected to one first battery 103 together, or to different first batteries 103 respectively.
  • an earphone charging system is used as an example for explanation.
  • the electronic device 20 can also be used for charging a smart bracelet or a smart watch.
  • the charging device 10 generally only has one first charging circuit 104 at this time.
  • the charging system provided by the embodiments of the present application can realize direct charging or double voltage charging of electronic equipment, and realize two-way communication between the electronic equipment and the charging device.
  • two-way on-site charging can be achieved Detection and identification, and avoids the misjudgment of the charging device being disconnected from the electronic device, and the misjudgment of the electronic device being disconnected from the charging device, improving the reliability and accuracy of on-site detection.
  • the above implementation method can be realized based on two metal terminals, that is, the charging device only needs to include two charging terminals, and the electronic device includes two power receiving terminals. It has a high degree of integration and does not need to rely on the RF circuit. Er sensors, infrared light sensors and other early-stage devices can achieve detection results and reduce hardware costs.
  • embodiments of the present application also provide a communication method, which will be described in detail below with reference to the accompanying drawings.
  • FIG 17 is a flow chart of a communication method provided by an embodiment of the present application.
  • the method is applied to the charging device and includes the following steps:
  • S1701 Receive the first modulation signal sent by the electronic device, and send the first modulation response signal to the electronic device.
  • S1702 When communication with the electronic device needs to be initiated, send a second modulated signal to the electronic device.
  • the second modulated signal includes a first voltage.
  • the first voltage is used to disconnect the second charging circuit of the electronic device from the second battery. , and receive the second modulated response signal sent by the electronic device.
  • the method is applied to electronic equipment and includes the following steps:
  • S1801 When it is necessary to initiate communication with the charging device, control the second charging circuit to disconnect from the second battery, send the first modulation signal to the charging device, and receive the first modulation response signal sent by the charging device.
  • S1802 When receiving the second modulation signal sent by the charging device, control the second charging circuit to disconnect from the second battery according to the first voltage in the second modulation signal, and send a second modulation response signal to the charging device.
  • the second charging circuit first controls the disconnection between the second charging circuit and the second battery to prevent the second battery from clamping the voltage and current on the line. At this time, the second charging circuit temporarily stops charging the second battery.
  • the second charging circuit sends a first modulated signal to the charging device through the first power receiving terminal.
  • the first current value is included, and the first current value is used to indicate to the charging device that the electronic device initiates communication at this time.
  • the first current value indicates that the electronic device initiates communication at this time.
  • the first charging circuit of the charging device After the first charging circuit of the charging device receives the first modulation signal, it obtains the first current, that is, it is determined that the electronic device initiates communication. The first charging circuit returns a first modulated response signal to the electronic device through the first charging terminal according to a predetermined communication protocol.
  • the first current is located at the head position of the first modulation signal.
  • the first charging circuit of the charging device receives the second modulation signal, it first receives the first current, and the first charging circuit can Determine that the electronic device initiated the communication.
  • the first charging circuit sends a second modulated signal to the electronic device through the first charging terminal.
  • the second modulated signal includes a first voltage, and the first voltage is used to cause the electronic device to
  • the second charging circuit is disconnected from the second battery to prevent the second battery from clamping the voltage and current.
  • the first voltage is located at the head position of the second modulation signal.
  • the second charging circuit of the electronic device receives the second modulation signal, the first voltage is first received, so that the second charging circuit 202 is promptly disconnected from the second battery.
  • the second charging circuit then returns a second modulation response signal to the charging device through the power receiving terminal according to the second modulation signal and the predetermined communication protocol.
  • the second charging circuit of the electronic device receives the second modulated response signal.
  • the charging system can be configured so that the electronic device actively initiates communication to the charging device. , or the charging device actively initiates communication to the electronic device, which is not specifically limited in the embodiments of this application.
  • the charging device can realize two-way communication between the charging device and the electronic device when performing direct charging or double-voltage charging of the electronic device, and the communication process is simple and highly practical.
  • this communication method mutual identity authentication and on-site detection between electronic devices and charging devices can be achieved without the need to set up other detection sensors, thus also reducing hardware costs.
  • the following takes a charging box in which the electronic device is an earphone and the charging device is an earphone as an example to specifically describe the charging box's method of detecting the earphones entering the box.
  • the specific circuit implementation of the charging device and electronic equipment please refer to the description in the above embodiments, and will not be described again one by one.
  • This method is applied to the charging device, that is, to the earphone charging box, and includes the following steps:
  • S1902 Notify the first controller to open the box.
  • S1903 Determine the output state of the first charging circuit.
  • the first controller determines the working state of the first charging circuit.
  • S1904 When it is in the communication state, that is, when the first charging circuit communicates with the electronic device using the modulated signal, S1904 is executed; when it is detected that the output of the first charging circuit is currently in a high-impedance state, that is, when the electronic device has not been connected, S1906 is executed. ; When it is detected that the current working state of the first charging circuit is to charge the electronic device, execute S1905.
  • the first charging circuit of the charging device controls the first modulation and demodulation circuit to modulate the output voltage of the first charging circuit according to a predetermined communication protocol with the electronic device to generate a first modulation response signal or a third 2 modulates the signal and sends it to the electronic device.
  • S1905 Control the second communication interface of the first controller to connect to the charging terminal.
  • the first controller needs to communicate with the second controller of the electronic device.
  • the second end of the first switch module and the third end of the first switch module in the first charging circuit are connected to enable the first control
  • the second communication interface of the device that is, the UART interface of the first controller is connected to the circuit.
  • the output end of the second DC/DC circuit is not connected to the charging terminal, that is, the charging device temporarily stops charging the electronic device.
  • the first controller receives the first charging parameter sent by the second controller, and sends the first charging parameter to the first state machine, so that the first state machine controls the second DC according to the first charging parameter. /DC circuit.
  • the first parameter information includes the charging current and charging voltage of the second battery.
  • the first controller receives the voltage information of the second battery sent by the second controller, and determines the first charging parameter corresponding to the second battery based on the voltage information of the second battery, where the first charging parameter includes The charging voltage and charging current corresponding to the second battery are sent to the first charging parameter to the first state machine, so that the first state machine controls the second DC/DC circuit according to the first charging parameter.
  • the first controller can also send the output parameters of the current charging device, such as output voltage and output current, to the second controller.
  • the charging device is configured such that when the box is opened and no electronic device is connected, the output terminal is in a high-impedance state and outputs a preset voltage at this time, or outputs a preset voltage according to a preset period to reduce power consumption.
  • the charging device After the charging device is opened from the box, it outputs a preset voltage to trigger the earphones to send a handshake signal after receiving the output of the charging device.
  • the power receiving terminal When the electronic device is put into the box, the power receiving terminal is connected to the charging electronics of the charging device. After the electronic device comes into contact with the appropriate input voltage, it actively sends a handshake signal, that is, the first modulation signal. At this time, the modulated current source in the electronic device generates a current pulse signal to form a characteristic string.
  • the first modulation and demodulation circuit of the charging device demodulates the acquired modulation signal and sends the demodulation result to the first state machine.
  • the first state machine determines whether the first characteristic string is the first preset characteristic string. If so, it indicates that a string satisfying the communication protocol has been received at this time. It is determined that the electronic device has been connected at this time, and then S1909 is executed.
  • the first state machine determines that the first characteristic string is not the first preset characteristic string, or the first modulation and demodulation circuit fails to demodulate the first modulation signal, it is determined that the result of the identity authentication is that the electronic equipment and the charging device do not match each other. matching, at this time, the first state machine controls the first modulation and demodulation circuit not to modulate the output voltage of the first charging circuit, that is, The first modulated response signal is not sent.
  • the second battery If the second battery is over-discharged before charging the electronic device, in order to protect the second battery, the second battery needs to be trickle charged for a period of time.
  • the second state machine of the electronic device controls the second modulation and demodulation circuit to modulate the input current of the second charging circuit so that the modulated current includes the preset pulse signal, and sends the preset pulse signal. to the charging device.
  • the preset pulse signal can be seen in Figure 14 and will not be described again here.
  • the first modulation and demodulation circuit of the charging device demodulates the received modulation signal and sends the demodulation result to the first state machine.
  • the first state machine determines that the electronic device sends a preset pulse signal to the charging device and determines that the electronic device and the charging device are connected normally, and the preset pulse signal is the trickle charging handshake signal, S1908 is executed.
  • S1908 Maintain the output, report the interrupt, and refresh the headphone presence register.
  • the charging device is configured to automatically output a preset voltage after opening the box, the input voltage can be connected to the second charging circuit after the earphones are put into the box.
  • the second controller of the electronic device determines whether the voltage of the second battery is sufficient. If so, it indicates that the second battery can be charged directly or at double voltage at this time, and S2005 is executed; otherwise, it indicates that the second battery is charged before being put into the box. Overdischarge occurs. In order to protect the second battery, it is necessary to trickle charge the second battery for a period of time and then execute S2004.
  • the handshake signal is also the first modulation signal.
  • the electronic device may also respond to the second modulated signal sent by the charging device, that is, send the second modulated response signal to the charging device.
  • the response signal sent by the charging device received at this time is related to the predetermined protocol, which is not specifically limited in this application, and then S2006 is executed.
  • the first state machine After receiving the response signal from the charging device, the first state machine determines that a matching charging device is currently connected, and sends a third interrupt signal to the first controller of the electronic device.
  • the third interrupt signal is used to indicate that the electronic device is currently connected to the charging device. Charging device connected.
  • S2010 Receive a request to connect to the second communication interface of the second controller.
  • the first controller of the charging device initiates active communication with the second controller.
  • S2011 Reply a response signal to the charging device.
  • the response signal indicates that the electronic device allows access to the second communication interface of the second controller, and the first controller can prepare for communication.
  • the first controller communicates with the second controller.
  • the first controller determines the first charging parameter corresponding to the second battery, that is, the charging current and charging voltage of the second battery through information exchange with the second controller.
  • the first controller sends the first charging parameter to the first state machine, so that the first state machine controls the second DC/DC circuit according to the first charging parameter.
  • the first state machine sends a second interrupt signal to the first controller, where the second interrupt signal is used to instruct the first controller to disconnect the electronic device from the charging device.
  • the headset presence register Refresh the headphone presence register.
  • the headset presence flag is 1, indicating that the headset is in place, and the headset presence flag is 0, indicating that the headset is not in place, then the headset presence flag is refreshed and set to 0; or the headset is in place. If the indicator is 0, it indicates that the headset is in place. If the indicator of earphone is 1, it indicates that the earphone is not in place. At this time, the earphone in-position indicator is refreshed and set to 1.
  • S1924 The first controller reads the status of the headphone presence register.
  • the first controller reads the headphone presence flag of the headphone presence register and determines that the current headphone is not in position.
  • the output current of the charging device is small.
  • the earphones are configured to send a preset to the charging device. Pulse signal, at this time the method also includes:
  • the first state machine determines that the electronic device sends a preset pulse signal to the charging device, it maintains the current working state of the second DC/DC circuit and sends a fifth interrupt signal to the first controller.
  • the fifth interrupt signal is used to indicate the current Electronic devices are in a fully charged state or a trickle charge state.
  • the charging terminal and the power receiving terminal are disconnected. At this time, communication is interrupted, and the input voltage of the second charging circuit of the earphones is reduced to zero.
  • the headphone side includes a second comparator, the second comparator is used to compare the input voltage of the electronic device with the preset voltage, and send the obtained second comparison result to the second state machine.
  • Refresh the charging device presence register when the charging device presence flag is 1, indicating that the charging device is in place, and the charging device presence flag is 0, indicating that the charging device is not in place, then the charging device presence flag is set to after refreshing. 0; or the charging device presence flag is 0, indicating that the charging device is in place, and the charging device presence flag is 1, indicating that the charging device is not in place, then the charging device presence flag is set to 1 after refreshing.
  • the method also includes:
  • the charging device can realize two-way communication between the charging device and the electronic device when supporting direct charging or double-voltage charging of the electronic device.
  • This two-way communication can be used to achieve two-way on-site identification and identity authentication, and avoids the misjudgment of the charging device to be disconnected from the electronic device, and avoids the misjudgment of the electronic device to be disconnected from the charging device, improving the accuracy of on-site detection.
  • Reliability and accuracy, and the above implementation method has a high degree of integration, does not need to rely on Hall sensors, infrared light sensors and other devices, and also reduces hardware costs.
  • the embodiment of the present application also provides a chip, which is applied to the charging device provided in the above embodiment, which will be described in detail below with reference to the accompanying drawings.
  • the input port Input1 is an input terminal of the first charging circuit and is used for connecting to the first DC/DC circuit.
  • the chip 2300 also includes an interface for communicating with the I/O interface of the first controller 101, an interface for communicating with the IIC interface of the first controller 101, and an interface for communicating with the I/O interface of the first controller 101.
  • UART interface for communication for communication
  • the second charging circuit is integrated into a chip, and the chip includes: an input port Input2 and an output port Output2.
  • the input port Input2 is connected to the power receiving terminal of the first end of the second charging circuit.
  • the output port Input2 is a second terminal of the second charging circuit connected to the second battery, and is used for charging the second battery.
  • the chip 2400 also includes an interface for communicating with the I/O interface of the second controller 201, an interface for communicating with the IIC interface of the second controller 201, and an interface for communicating with the I/O interface of the second controller 201.
  • UART interface for communication and an interface for powering the second controller.
  • At least one (item) refers to one or more, and “plurality” refers to two or more.
  • “And/or” is used to describe the relationship between associated objects, indicating that there can be three relationships. For example, “A and/or B” can mean: only A exists, only B exists, and A and B exist simultaneously. , where A and B can be singular or plural. The character “/” generally indicates that the related objects are in an "or” relationship. “At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种充电装置、电子设备、通信方法及充电系统,充电装置(10)包括第一DC/DC电路(102)、第一充电电路(104)、第一电池(103)和第一充电端子(111)。第一DC/DC电路(102)利用输入的直流电为第一电池(103)充电,及向第一充电电路(104)的输入端输出直流电;第一充电电路(104)用于接收电子设备(20)发送的第一调制信号,并向电子设备(20)发送第一调制应答信号,第一调制信号中包括第一电流,第一电流用于标识电子设备(20)向充电装置(10)发起通信;第一充电电路(104)也用于向电子设备(20)发送第二调制信号,接收电子设备(20)发送的第二调制应答信号,第二调制信号中包括第一电压,第一电压用于使电子设备(20)的第二充电电路(202)与第二电池(203)断开。因此,充电装置(10)和电子设备(20)间能够实现双向通信。

Description

一种充电装置、电子设备、通信方法及充电系统
本申请要求于2022年03月15日提交中国国家知识产权局、申请号为202210253929.X、发明名称为“一种充电装置、电子设备、通信方法及充电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请要求于2022年05月30日提交中国国家知识产权局、申请号为202210600786.5、发明名称为“一种充电装置、电子设备、通信方法及充电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端设备技术领域,尤其涉及一种充电装置、电子设备、通信方法及充电系统。
背景技术
当前的真正无线立体声(True Wireless Stereo,TWS)耳机、智能手表、智能手环等电子设备上设置有金属端子,该金属端子与充电装置上对应的金属端子连接后,电子设备能够与充电装置进行通信,并且充电装置能够对电子设备进行充电。充电装置可以为充电盒或者充电座。下面以TWS耳机和耳机充电盒为例进行说明。
参见图1,该图为一种TWS耳机及充电盒的示意图一。
充电装置10为充电盒,充电盒设置有外露的第一组端子11,电子设备20为TWS耳机,TWS耳机设置有外露的第二组端子21,当TWS耳机放入充电盒中时,第二组端子21与第一组端子11接触,进而使TWS耳机与充电盒实现连接,第一组端子11与第二组端子21均为金属端子。
外置裸露的金属端子会影响充电盒和电子设备的防水性能,并且还存在被腐蚀、损坏的可能,因此金属端子进行了充电功能和通信功能的复用,以使外置裸露的金属触点的数量尽可能减少。目前的一种方案为,在充电盒与电子设备中设置切换开关,充电盒当与电子设备进行通信时,将切换开关切换到通信通路,当充电盒通信完成后,充电盒再将切换开关切换回充电通路。但是,随着快充技术发展,电子设备可以支持直充模式和/或倍压充电模式,电子设备与充电装置之间的通信模式也需要支持直充模式和/或倍压充电模式,因此需要实现电子设备与充电盒之间的双向通信,但是以上的方案,仅能由充电盒发起通信,由充电盒控制切换开关的动作,电子设备无法发起通信,也即不支持电子设备与充电盒之间的双向通信。
发明内容
第一方面,本申请提供了一种充电装置,充电装置用于对电子设备进行充电,充电装置包括:第一DC/DC电路、第一充电电路、第一电池和充电端子。第一DC/DC电路的输入端输入直流电,第一DC/DC电路的输出端输出直流电以为第一电池充电,以及向第一充电电路的输入端输出直流电;第一充电电路的输出端连接充电端子;第一充电电路,用于接收到电子设备发送的第一调制信号,并解调第一调制信号,当解调结果中包括第一电流时,向电子设备发送第一调制应答信号,第一调制信号中包括第一电流,第一电流用于标识电子设备向充电装置发起了通信;或者,向电子设备发 送第二调制信号,接收电子设备发送的第二调制应答信号,并对第二调制应答信号进行解调,第二调制信号中包括第一电压,第一电压用于使电子设备的第二充电电路与第二电池断开。
本申请提供的方案,充电装置在对电子设备进行直充或者倍压充电时,能够实现充电装置与电子设备之间的双向通信,也即通信可以由充电装置发起,此时充电装置向电子设备发送第二调制信号,第二调制信号中携带有第一电压和通信内容;或者可以由电子设备发起,此时电子设备向充电装置发送第一调制信号,第一调制信号中携带有第一电流以及通信内容。以上的通信过程简单,实用性强。通过该通信方式,在电子设备与充电装置相互传输的调制信号中,调制特定的通信内容,可以实现电子设备以及充电装置之间相互的身份认证,以及在位检测等功能,而无需额外设置其他的检测传感器,因此还降低了硬件成本。
在一种可能的实现方式中,第一调制信号和第二调制应答信号为电流调制信号,第一调制应答信号和第二调制信号为电压调制信号。
在一种可能的实现方式中,第一电压小于电子设备的第一保护电路的第一触发电压;第一保护电路用于当第二充电电路向第二电池输出的充电电压小于第一触发电压时,控制第二充电电路与第二电池断开。
在一种可能的实现方式中,第一电压大于或等于电子设备的第二保护电路的第二触发电压;第二保护电路用于当第二充电电路向第二电池输出的充电电压大于或等于第二触发电压时,控制第二充电电路与第二电池断开。
在一种可能的实现方式中,第一充电电路具体包括:第一状态机和第一调制解调电路。第一调制解调电路与第一状态机连接;第一调制解调电路,用于对获取的调制信号进行解调,并将解调结果发送至第一状态机。第一状态机用于当根据第一调制信号对应的解调结果确定电子设备连接时,控制第一调制解调电路对第一充电电路的输出电压进行调制,以形成第一调制应答信号。
在一种可能的实现方式中,第一调制解调电路,具体用于通过对第一充电电路的输出电压进行调制,以使第一电压为零。
在一种可能的实现方式中,解调结果中还包括第一特征字符串,此时第一充电电路具体用于当第一特征字符串为第一预设特征字符串时,确定电子设备的在位识别结果为在位,向电子设备发送携带有在位识别结果的第一调制应答信号,第一调制应答信号的解调结果中包括第二特征字符串。当电子设备接收到该第一调制应答信号后,对该第一调制应答信号进行解调,解调结果中包括第二特征字符串,此时电子设备即可确定充电装置的在位识别通过。
在一种可能的实现方式中,第一状态机,当第一调制解调电路解调失败,或者,根据第一调制信号对应的解调结果对电子设备的进行身份识别,当身份识别的结果为电子设备与充电装置匹配时,控制第一调制解调电路对第一充电电路的输出电压进行调制,以形成第一调制应答信号;当身份识别的结果为电子设备与充电装置不匹配时,控制第一调制解调电路停止对第一充电电路的输出电压进行调制。
在一种可能的实现方式中,第一状态机,还用于当需要发起与电子设备通信时,控制第一调制解调电路对第一充电电路的输出电压进行调制,以形成第二调制信号。
在一种可能的实现方式中,充电装置还包括第一控制器。第一控制器的第一通信接口与第一状态机连接;第一状态机,还用于当确定电子设备在位时,向第一控制器的第一通信接口发送第一中断信号,第一中断信号用于指示电子设备在位。
在一种可能的实现方式中,充电装置还包括第一比较器。第一比较器,用于将充电装置的输出电流和预设电流进行比较,并将获取的第一比较结果发送至第一状态机。第一状态机,还用于当根据第一比较结果确定充电装置的输出电流小于预设电流时,向第一控制器发送第二中断信号,第二中断信号用于指示第一控制器电子设备与充电装置断开连接。
在一种可能的实现方式中,第一充电电路,还包括:第二DC/DC电路和第一开关模块。第二DC/DC电路的输入端为第一充电电路的输入端;第二DC/DC电路的输出端连接第一开关模块的第一端,第一开关模块的第二端连接第一控制器的第二通信接口,第一开关模块的第三端连接第一充电电路的输出端;第一状态机,还用于当第一控制器与电子设备通信时,控制第一开关模块的第二端和第一开关模块的第三端接通;当第一控制器与电子设备的通信结束时,控制第一开关模块的第一端和第一开关模块的第三端接通。
在一种可能的实现方式中,第一控制器,还用于接收电子设备发送的第一充电参数,并将第一充电参数发送至第一状态机;第一充电参数包括第二电池对应的充电电压和充电电流;第一状态机,还用于根据第一充电参数控制第二DC/DC电路。
在一种可能的实现方式中,第一控制器,还用于接收电子设备发送的第二电池的电压信息,根据第二电池的电压信息确定第二电池对应的第一充电参数,并将第一充电参数发送至第一状态机。第一充电参数包括第二电池对应的充电电压和充电电流。第一状态机,还用于根据第一充电参数控制第二DC/DC电路。
在一种可能的实现方式中,第一状态机,还用于当根据解调结果,确定电子设备向充电装置发送预设脉冲信号时,确定电子设备与充电装置连接正常。
在一种可能的实现方式中,第一状态机,还用于当确定电子设备向充电装置发送预设脉冲信号时,维持当前第二DC/DC电路的工作状态,并向第一控制器发送第五中断信号,第五中断信号用于指示当前电子设备处于满电状态或涓流充电状态。
在一种可能的实现方式中,充电装置为充电盒。第二DC/DC电路,还用于当充电盒开盒时,输出预设电压,或者按照预设周期输出预设电压。
在一种可能的实现方式中,第二调制信号和第一调制应答信号中还包括充电装置的输出参数。输出参数包括以下中的至少一项:输出电流或输出电压。
在一种可能的实现方式中,充电端子包括第一充电端子和第二充电端子。
在一种可能的实现方式中,充电端子为USB接口、pogo pin或金属弹片中的任一种。第二方面,本申请提供了一种电子设备,电子设备包括:第二充电电路、第二电池和受电端子。受电端子,用于连接充电装置的充电端子并接受充电端子输出的直流 电;第二充电电路的第一端连接受电端子,第二充电电路的第二端连接第二电池,充电端子输出的电压与第二充电电路向第二电池输出的充电电压一致或者具有预设倍数关系;第二充电电路,用于控制第二充电电路与第二电池断开,向充电装置发送第一调制信号,并接收充电装置发送的第一调制应答信号,并解调第一调制应答信号,第一调制信号中包括第一电流,第一电流用于标识电子设备向充电装置发起了通信;或者,接收到充电装置发送的第二调制信号时,并解调第二调制信号,当解调结果中包括第一电压时,控制第二充电电路与第二电池断开,并向充电装置发送第二调制应答信号。
本申请提供的方案,充电装置在对电子设备进行直充或者倍压充电时,能够实现充电装置与电子设备之间的双向通信,也即通信可以由充电装置发起,也可以由电子设备发起,且通信过程简单,实用性强。通过该通信方式,可以实现电子设备以及充电装置之间相互的身份认证,以及在位检测,而无需额外设置其他的检测传感器,因此还降低了硬件成本。
在一种可能的实现方式中,第一调制信号和第二调制应答信号为电流调制信号,第一调制应答信号和第二调制信号为电压调制信号。
在一种可能的实现方式中,电子设备还包括:第一保护电路,第一保护电路用于当第二充电电路向第二电池输出的充电电压小于第一触发电压时,控制第二充电电路与第二电池断开;第一电压小于第一触发电压。
在一种可能的实现方式中,电子设备还包括:第二保护电路;第二保护电路用于当第二充电电路向第二电池输出的充电电压大于或等于第二触发电压时,控制第二充电电路与第二电池断开;第一电压大于或等于第二触发电压。
在一种可能的实现方式中,第二充电电路具体包括:第二状态机和第二调制解调电路;第二状态机与第二调制解调电路连接;第二调制解调电路,用于对获取的调制信号进行解调,并将解调结果发送至第二状态机;第二状态机,用于控制第二调制解调电路对第二充电电路的输入电流进行调制,以形成第一调制信号,第一调制信号中携带第一特征字符串,以及根据第一调制应答信号对应的解调结果确定电子设备与充电装置是否连接。
在一种可能的实现方式中,第一调制应答信号对应的解调结果包括第二特征字符串;第二充电电路,具体用于当第二特征字符串为第二预设特征字符串时,确定电子设备与充电装置连接。
在一种可能的实现方式中,第二充电电路,用于当未接收到第一调制应答信号时,确定电子设备与充电装置不匹配。
在一种可能的实现方式中,第二状态机,还用于当获取第二调制信号对应的解调结果时,控制第二调制解调电路对第二充电电路的输入电流进行调制,以形成第二调制应答信号。
在一种可能的实现方式中,电子设备还包括第二控制器;第二控制器的第一通信接口与第二状态机连接;第二状态机,还用于若确定电子设备与充电装置连接,向第 二控制器的第一通信接口发送第三中断信号,第三中断信号用于指示电子设备与充电装置连接。
在一种可能的实现方式中,电子设备还包括第二比较器;第二比较器,用于将第二充电电路的输入电压和预设电压进行比较,并将获取的第二比较结果发送至第二状态机;第二状态机,还用于当根据第二比较结果确定输入电压小于预设电压时,向第二控制器发送第四中断信号,第四中断信号用于指示第二控制器电子设备与充电装置断开连接。
在一种可能的实现方式中,电子设备还包括第二比较器。第二比较器,用于将第二充电电路的输入电压和预设电压进行比较,并将获取的第二比较结果发送至第二状态机;第二状态机,还用于当根据第二比较结果确定输入电压小于预设电压时,控制第二调制解调电路向受电端子发送电流检测信号,当受电端子的电压在预设时间内超过预设阈值电压时,向第二控制器发送第四中断信号,第四中断信号用于指示第二控制器电子设备与充电装置断开连接。利用该实现方式,能够避免当充电装置停止输出电压时,电子设备误判自身出盒。
在一种可能的实现方式中,第二充电电路还包括:第二开关模块和第三开关模块;第二开关模块的第一端连接第二充电电路的输入端,第二开关模块的第二端连接第二控制器的第二通信接口,第二开关模块的第三端连接第三开关模块的第一端;第三开关模块的第二端连接第二电池;第二状态机,还用于当第二控制器与充电装置通信时,控制第二开关模块的第一端和第二开关模块的第二端接通;当第二控制器与充电装置的通信结束时,控制第二开关模块的第一端和第二开关模块的第三端接通。
在一种可能的实现方式中,第三开关模块包括:第一MOS管和第二MOS管;第一MOS管和第二MOS管串联,且第一MOS管的反并联二极管和第二MOS管的反并联二极管方向相反。
在一种可能的实现方式中,第二控制器,还用于向充电装置发送第一充电参数,第一充电参数包括第二电池对应的充电电压和充电电流。
在一种可能的实现方式中,第二控制器,还用于向充电装置发送第二电池的电压信息。
在一种可能的实现方式中,第二状态机,还用于当电子设备处于满电状态或涓流充电状态时,控制第二调制解调电路对第二充电电路的输入电流进行调制,以形成预设脉冲信号,并将预设脉冲信号发送至充电装置。
在一种可能的实现方式中,第一调制信号和第二调制应答信号中还包括电子设备的充电参数;充电参数包括以下中的至少一项:第二电池对应的充电电流、第二电池对应的充电电压或第二电池的电压。
在一种可能的实现方式中,充电端子包括第一充电端子和第二充电端子。
在一种可能的实现方式中,充电端子为USB接口、pogo pin或金属弹片中的一种。
第三方面,本申请还提供了一种通信方法,应用于充电装置,该方法包括:
所述第一充电电路接收电子设备发送的第一调制信号,并解调所述第一调制信号; 当解调结果中包括第一电流时,向所述电子设备发送第一调制应答信号,所述第一电流用于标识所述电子设备向所述充电装置发起通信;或者,所述第一充电电路向所述电子设备发送第二调制信号,所述第二调制信号中包括第一电压,所述第一电压用于使所述电子设备的第二充电电路与第二电池断开;所述第一充电电路接收所述电子设备发送的第二调制应答信号,并对所述第二调制应答信号进行解调。
利用该方法,当充电装置在对电子设备进行直充或者倍压充电时,能够实现充电装置与电子设备之间的双向通信,且通信过程简单,实用性强。通过该通信方式,可以实现电子设备以及充电装置之间相互的身份认证,以及在位检测,而无需额外设置其他的检测传感器,因此还降低了硬件成本。
第四方面,本申请还提供了一种通信方法,应用于以上方面中提供的电子设备,该方法包括:
断开所述第二充电电路与所述第二电池之间的连接;
所述第二充电电路向所述充电装置发送第一调制信号,所述第一调制信号中包括第一电流,所述第一电流用于标识所述电子设备向所述充电装置发起了通信;所述第二充电电路接收所述充电装置发送的第一调制应答信号,并对所述第一调制应答信号进行解调;或者,
所述第二充电电路接收充电装置发送的第二调制信号,并对所述第二调制信号进行解调,当解调结果中包括第一电压时,断开所述第二充电电路与所述第二电池之间的连接,并向所述充电装置发送第二调制应答信号。
利用该方法,当充电装置在对电子设备进行直充或者倍压充电时,能够实现充电装置与电子设备之间的双向通信,且通信过程简单,实用性强。通过该通信方式,可以实现电子设备以及充电装置之间相互的身份认证,以及在位检测,而无需额外设置其他的检测传感器,因此还降低了硬件成本。
第五方面,本申请还提供了一种充电系统,充电系统包括充电装置和电子设备,充电装置用于为电子设备充电;充电装置包括第一DC/DC电路、第一充电电路、第一电池和充电端子;第一DC/DC电路,用于利用输入的直流电为第一电池充电,以及向第一充电电路的输入端输出直流电;第一充电电路的输出端连接充电端子;电子设备包括:第二充电电路、第二电池和受电端子;受电端子,用于连接充电装置的充电端子并接受充电端子输出的直流电;第二充电电路的第一端连接受电端子,第二充电电路的第二端连接第二电池,充电端子输出的电压与第二充电电路向第二电池输出的充电电压一致或者具有预设倍数关系;
第二充电电路,用于断开与第二电池之间的连接,向充电装置发送第一调制信号,接收充电装置发送的第一调制应答信号,并解调第一调制应答信号,第一调制信号中包括第一电流,第一电流用于标识电子设备向充电装置发起了通信;或者,接收充电装置发送的第二调制信号,并解调第二调制信号,当第二调制信号的解调结果中包括第一电压时,断开与第二电池之间的连接,并向充电装置发送第二调制应答信号;
第一充电电路,用于接收电子设备发送的第一调制信号,并解调第一调制信号, 当解调结果中包括第一电流时,向电子设备发送第一调制应答信号;或者,向电子设备发送第二调制信号,接收电子设备发送的第二调制应答信号,并对第二调制应答信号进行解调,第二调制信号中包括第一电压,第一电压用于使电子设备的第二充电电路与第二电池断开。
当以上充电系统可以为耳机的充电系统时,充电系统中包括两个电子设备,分别对应于一个耳机。此时充电装置可以对连接的两个耳机同时进行充电,或者当仅连接一个耳机时,对该耳机进行充电。充电系统的电子设备还可以为智能手环或智能手表。
利用本申请提供的充电系统,充电装置能够对电子设备进行直充或倍压充电,并且实现了电子设备与充电装置之间的双向通信,通过双向通信能够实现双向在位检测与身份识别,并且在位检测的可靠性与准确度高。以上的实现方式,基于两个金属端子即可实现,也即仅需充电装置上包括两个充电端子,电子设备上包括两个受电端子,具有较高的集成度,不需要依赖于霍尔传感器、红外光传感器等期器件就能够实现在位检测效果,还降低了硬件成本。
第六方面,本申请还提供了一种芯片,芯片应用于充电装置,芯片集成有第一充电电路,芯片包括:输入端口和输出端口。输入端口为第一充电电路的输入端,用于连接充电装置的第一DC/DC电路的输出端;输出端口为第一充电电路的输出端,用于连接充电端子;第一充电电路,用于接收电子设备发送的第一调制信号,并解调第一调制信号,当解调结果中包括第一电流时,向电子设备发送第一调制应答信号,第一电流用于标识电子设备向充电装置发起通信;或者,向电子设备发送第二调制信号,接收电子设备发送的第二调制应答信号,并解调第二调制应答信号,第二调制信号中包括第一电压,第一电压用于使电子设备的第二充电电路与第二电池断开。
第七方面,本申请还提供了另一种芯片,芯片应用于电子设备,芯片集成有第二充电电路,芯片包括:输入端口和输出端口。输入端口为第二充电电路的第一端,用于连接受电端子;输出端口为第二充电电路的第二端,用于连接电子设备的第二电池;第二充电电路,用于断开与第二电池之间的连接,并向充电装置发送第一调制信号,接收充电装置发送的第一调制应答信号,并解调第一调制应答信号,第一调制信号中包括第一电流,第一电流用于标识电子设备向充电装置发起了通信;或者,接收充电装置发送的第二调制信号,并解调第二调制信号,当解调结果中包括第一电压时,断开与第二电池之间的连接,并向充电装置发送第二调制应答信号。
附图说明
图1为一种TWS耳机及充电盒的示意图一;
图2为另一种TWS耳机及充电盒的示意图;
图3为一种充电装置与电子设备的示意图;
图4为一种充电系统的示意图;
图5为本申请实施例提供的一种充电装置及电子设备的示意图;
图6为本申请实施例提供的另一种充电装置及电子设备的示意图;
图7为本申请实施例提供的调制信号的波形示意图一;
图8为本申请实施例提供的调制信号的波形示意图二;
图9为本申请实施例提供的调制信号的波形示意图三;
图10A为本申请实施例提供的又一种充电装置及电子设备的示意图;
图10B为本申请实施例提供的开关电容变换器2023的电路示意图;
图10C为本申请实施例提供的一种充电阶段的示意图;
图11为本申请实施例提供的再一种充电装置及电子设备的示意图;
图12为本申请实施例提供的一种特征字符串的示意图;
图13为本申请实施例提供的另一种充电装置及电子设备的示意图;
图14为本申请实施例提供的调制信号的波形示意图四;
图15为本申请实施例提供的另一种充电装置及电子设备的示意图;
图16为本申请实施例提供的又一种充电装置及电子设备的示意图;
图17为本申请实施例提供的一种通信方法的流程图;
图18为本申请实施例提供的另一种通信方法的流程图;
图19为本申请实施例提供的又一种通信方法的流程图;
图20为本申请实施例提供的再一种通信方法的流程图;
图21为本申请实施例提供的另一种通信方法的流程图;
图22为本申请实施例提供的又一种通信方法的流程图;
图23为本申请实施例提供的一种芯片的示意图;
图24为本申请实施例提供的另一种芯片的示意图。
具体实施方式
为了使本技术领域的人员能够更清楚地理解本申请方案,下面首先说明本申请技术方案的应用场景。
本申请方案能够实现充电装置与电子设备之间的双向通信,本申请不具体限定电子设备的类型,电子设备可以为TWS耳机、智能手表或者智能手环等,充电装置为与电子设备对应的充电装置,也即电子设备为TWS耳机时,充电装置为充电盒,当电子设备为智能手表或者智能手环,充电装置为充电底座。
以电子设备为TWS耳机为例进行说明,一并参见图1和图2。其中,图2为另一种TWS耳机及充电盒的示意图。
充电装置10上设置充电接口(图中未示出),充电装置10通过插接在该充电接口的线缆与适配器30连接,适配器30与电源接通后,即可为充电装置10充电,从而使充电装置10的电池有一定的电量,此时当充电装置10与电子设备20连接时,充电装置10还可以为电子设备20进行供电。因此,在充电装置10与适配器30断开连接时,充电装置10可以将自身的电池提供的电能传递给电子设备20。
此外,还可以通过无线充电的方式给充电装置10进行无线充电,也即适配器30无需与充电装置10直接进行连接,此时适配器30可以连接与充电装置10相匹配的无 线充电设备(例如,无线充电底座),通过无线充电设备为充电装置10进行无线充电。
当电子设备为智能手表或智能手环时,可以参见下面图3所示的充电装置与电子设备的示意图。
图3所示的充电装置10为充电底座,充电底座包括第一充电端子111和第二充电端子112;电子设备20包括第一受电端子211和第二受电端子212。
在充电装置10对电子设备20进行充电时,将电子设备20放置于充电装置10上,使得第一受电端子211和第一充电端子111连接,第二受电端子212和第二充电端子112连接,进而充电装置11可以将电能传递给电子设备20,为电子设备20内包括电池进行充电。此时,在一些实施例中,充电装置10内可以不包括电池。
本申请中不限定充电端子与受电端子的类型,例如充电端子可以为USB接口、pogo pin(又称为弹簧连接器或者弹簧针连接器)、金属弹片或由其他能够导电的材料制成。当然,受电端子与充电端子类型一般相同,也即受电端子相应的为USB接口、pogo pin、金属弹片或由其他能够导电的材料制成。
下面以耳机的充电系统为例,结合具体的电路进行说明。
参见图4,该图为一种充电系统的示意图。
该充电系统包括充电装置10和电子设备20。
充电装置10包括第一控制器101、第一DC/DC电路102、第一电池103、第一充电电路104以及第一切换开关105。
电子设备20包括第二控制器201、第二充电电路202、第二电池203以及第二切换开关205。
图示充电装置10通过适配器30连接外部电源。第一DC/DC电路102用于为第一电池103充电,还用于为第一充电电路104供电。
第一充电电路104的输入端用于接收第一DC/DC电路102输出的直流电,第一充电电路104的输出端通过第一切换开关105连接第一充电端子111,第一充电端子111用于连接电子设备20的第一受电端子211。
第一控制器101的集成电路总线(Inter-Integrated Circuit,IIC)接口连接第一DC/DC电路102的IIC接口,以使第一控制器101与第一DC/DC电路102之间能够进行通信。第一控制器101的通用异步收发传输器(Universal Asynchronous Receiver/Transmitter,UART)接口通过第一切换开关105连接第一充电端子111。
在电子设备中,第二充电电路202通过第二切换开关205与第一受电端子211连接,第二充电电路202的UART接口通过第二切换开关205连接第一受电端子211。
图4中第一DC/DC电路102的Vsys接口为第一DC/DC电路102为第一控制器101和第一充电电路104供电的端口。本申请以下附图中的第一DC/DC电路102的Vsys含义相同,不再赘述。
图4中的第一DC/DC电路102的Vbat接口表示第一DC/DC电路102与第一电池103接通的端口;第二充电电路202中的Vbat接口表示第二充电电路202与第二电池203接通的端口。以下附图充电装置与电子设备中的各Vbat含义相同,不再赘述。
图4中第二充电电路202的Vsys表示电子设备中通过第二电池203给第二控制器201供电的端口,以下各附图中第二充电电路202的Vsys含义相同,不再赘述。
该实现方式下,当充电装置10和电子设备20之间进行通信时,在充电装置10的发起下,第一切换开关105和第二切换开关205切换到通信通路,此时第一控制器101的UART接口依次通过第一切换开关105、第一充电端子111、第一受电端子211、第二切换开关205后连接第二控制器201的UART接口,以使第一控制器101与第二控制器201之间实现通信。
当完成通信后,在充电装置10的发起下,第一切换开关105和第二切换开关205再切换到充电通路。
以上的通信过程由充电装置10主动发起,电子设备20不能主动发起通信。
但是,随着快充技术发展,电子设备可以支持直充模式和/或倍压充电模式。其中,在忽略功率传输线路损耗的前提下,直充模式时,电子设备的受电端子的电压等于第二电池的充电电压;倍压充电模式,电子设备的受电端子的电压与第二电池的充电电压呈倍数关系,例如受电端子的电压为第二电池的充电电压的两倍,或者更高倍率。
电子设备为了支持直充模式和/或倍压充电模式,电子设备与充电装置之间的通信模式也需要支持直充模式和/或倍压充电模式,这需要实现电子设备与充电盒之间的双向通信,也即不仅支持由充电装置主动发起通信,电子设备也需要能够主动发起通信,以实现确定当前自身是否在位、充电装置与自身是否匹配、发送/获取充电信息等功能。
但是以上图4对应的方案,仅能由充电装置发起通信,电子设备无法主动发起通信,也即不支持电子设备与充电盒之间的双向通信,因此以上通信方式无法满足直充模式和/或倍压充电模式的需求。
为了解决以上问题,本申请实施例提供了一种充电装置、电子设备、通信方法及充电系统,能够在充电装置对电子设备进行直充或倍压充电时,实现电子设备与充电装置之间的双向通信,通过双向通信能够实现双向在位检测与身份识别,并且具备较高的可靠性与准确度。此外,以上方案基于充电装置上包括两个充电端子,电子设备上包括两个受电端子即可实现,不需要额外设置充电端子,具有较高的集成度。
为了使本技术领域的人员更清楚地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
以下说明中的“第一”、“第二”等用词仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
此外,本申请中,“上”、“下”等方位术语可以包括但不限于相对附图中的部件示意置放的方位来定义的,应当理解到,这些方向性术语可以是相对的概念,它们用于相对于的描述和澄清,其可以根据附图中部件附图所放置的方位的变化而相应地发生变化。
在本申请中,除非另有明确的规定和限定,术语“连接”应做广义理解,例如,“连 接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。此外,术语“耦接”可以是实现信号传输的电性连接的方式。“耦接”可以是直接的电性连接,也可以通过中间媒介间接电性连接。
本申请实施例提供了一种充电装置以及电子设备,下面结合附图具体说明。
参见图5,该图为本申请实施例提供的一种充电装置及电子设备的示意图。
其中,充电装置10包括:第一DC/DC电路102、第一电池103第一充电电路104以及充电端子。充电端子包括第一充电端子111和第二充电端子112。
电子设备20包括:第二充电电路202、第二电池203以及受电端子。受电端子包括第一受电端子211和第二受电端子212。
当电子设备20与充电装置10进行连接时,第一充电端子111与第一受电端子211连接,第二充电端子112与第二受电端子212连接。受电端子用于接受所述充电端子输出的直流电。
第一DC/DC电路102从适配器30获取直流电,并将获取的直流电进行直流/直流变换后为第一电池103充电,以及将获取的直流电进行直流/直流变换后提供给第一充电电路104的输入端。此外,第一DC/DC电路102还用于当充电装置10未连接适配器30时,对从第一电池103获取的直流电进行直流变换后传输至第一充电电路104的输入端。
在一种可能的实现方式中,充电装置10上包括充电接口,通过插接在充电接口的线缆与适配器30连接。在另一种可能的实现方式中,适配器30无需与充电装置10直接进行连接,适配器30可以通过线缆连接与充电装置10相匹配的无线充电设备(例如,无线充电底座),再由无线充电设备为充电装置10进行无线充电,需要注意的是,此实现方式下,第一DC/DC电路102的输入端还包括级联功率接收线圈和整流电路。其中,功率接收线圈用于将无线充电设备发送的能量转换为交流电,并传输至整流电路。整流电路用于将交流电转换为直流电后传输至第一DC/DC电路102。
第一充电电路104的输出端连接第一充电端子111。
第二充电电路202的第一端连接第一受电端子211,第二充电电路202的第二端连接第二电池203。
本申请实施例提供的充电装置10和电子设备20支持直充模式,或者同时支持直充模式和倍压充电模式。
当处于直充模式时,电子设备20的受电端子与第二电池203之间未连接额外的功率转换电路。也即此时第一充电端子111输出的电压与第二充电电路202向第二电池203输出的充电电压一致。
可以理解的是,实际应用中,第一充电端子111输出的电压与第二电池的充电电压并不完全相等。这是因为线路上存在阻抗,所以会导致压降,在线路阻抗导致的压降相较于充电电压可以忽略,因此可以认为第一充电端子111输出的电压与第二充电电路202向第二电池203输出的充电电压一致。
当处于倍压充电模式时,电子设备20的受电端子211与第二电池203之间设置有 开关电容变换器(switched capacitor converter),开关电容变换器用于使第一充电端子111输出的电压与第二充电电路202向第二电池203输出的充电电压之间具有预设倍数关系。该预设倍数关系可以为2:1,3:1,4:1等,本申请实施例不作具体限定,该预设倍数取决于开关电容变换器。
本申请实施例对第一充电电路104的具体实现方式不作限定,在一些实施例中,第一充电电路104可以包括具备升压和/或降压调节能力,以及电流调节能力的DC/DC变换器,例如可以包括低压差线性稳压器(Low Dropout Regulator,LDO)、升压(Boost)电路、降压(Buck)电路或升降压(Buck-Boost)电路。
本申请实施例对第二充电电路202的具体实现方式不作限定,在一些实施例中,第二充电电路202可以包括具有过压/过流保护电路,或者包括具有欠压保护电路。
下面具体说明充电装置与电子设备之间进行双向通信的实现方式。
当充电装置10对电子设备20进行直充或则倍压充电时,充电线路上的电压与电流均被第二电池203箝位,因此在实现充电装置与电子设备20进行通信时,需要切断对第二电池203的充电路径,也即使第二充电电路202与第二电池203之间的连接断开,以避免第二电池203对充电线路上的信号造成影响。
充电装置10与电子设备20之间的双向通信包括:由电子设备20发起的对充电装置10的通信,以及由充电装置10发起的对电子设备20的通信。
下面首先说明由电子设备20发起的对充电装置10的通信过程。
在一些实施例中,当电子设备20检测到受电端子连接输入电流时,需要确认当前是否与充电装置10进行了连接,以及确认当前连接的充电装置10是否与自身匹配,也即对充电装置10进行身份认证;当电子设备20检测到受电端子无输入时,需要确认当前是否与充电装置10断开了连接。或者电子设备20可以被配置为按照一定的周期发起对充电装置10的通信,以确定连接状态正常,或者进行充电参数,例如电压参数、电流参数等的交互。以上情况下,满足电子设备20向充电装置10发起通信的条件。
当电子设备20需要发起对充电装置10的通信时,第二充电电路202首先控制第二充电电路202与第二电池203之间的连接断开,以避免第二电池203对线路上的电压和电流进行箝位。此时第二充电电路202暂时停止对第二电池203进行充电。
第二充电电路202通过第一受电端子211向充电装置10发送第一调制信号,第一调制信号中包括第一电流,第一电流用于标识此时电子设备20向充电装置10发起了通信。
在充电装置10和电子设备20预先确定的通信协议中,预先明确该第一电流表征的含义为此时电子设备20发起了通信。
当充电装置10的第一充电电路104接收到该第一调制信号后,获取到该第一电流,也即确定此时电子设备20发起了对自身的通信。第一充电电路104根据预先确定的通信协议,通过第一充电端子111向电子设备20回复第一调制应答信号。
在一些实施例中,该第一电流位于第一调制信号的头部位置,当充电装置10的第 一充电电路104接收到该第二调制信号时,首先接收到第一电流,第一充电电路104即可确定电子设备20发起了通信。
也即实现了由电子设备20发起的与对充电装置10的通信。
下面说明由充电装置10发起的对电子设备的通信过程。
在一些实施例中,当充电装置10检测到充电端子连接输出电流时,需要确认当前是否与电子设备20进行了连接,以及确认当前连接的电子设备20是否与自身匹配,也即对电子设备20进行身份认证;当充电装置10检测到充电端子无输出电流时,需要确认当前是否与电子设备20断开了连接。或者充电装置10可以被配置为按照一定的周期发起对电子设备20的通信,以确定连接状态正常,或者进行充电参数,例如电压参数、电流参数等的交互。以上情况下,满足充电装置10向电子设备20发起通信的条件。
当满足充电装置10向电子设备20发起通信的条件时,第一充电电路104通过第一充电端子111向电子设备20发送第二调制信号,该第二调制信号中包括第一电压,第一电压用于使电子设备20的第二充电电路202与第二电池203断开,以避免第二电池203对电压和电流进行箝位。
在一些实施例中,该第一电压位于第二调制信号的头部位置,当电子设备20的第二充电电路202接收到该第二调制信号时,首先接收到第一电压,以使第二充电电路202及时与第二电池203及时断开连接。
然后第二充电电路202,根据第二调制信号,以及预先确定的通信协议,通过受电端子向充电装置10回复第二调制应答信号。
电子设备20的第二充电电路202接收该第二调制应答信号。
也即实现了由充电装置10发起的与对电子设备20的通信。
在一些实施例中,第二调制信号中包括的第一电压可以作为充电装置10和电子设备20之间的通信协议的一部分,也即由于充电装置10发起了与对电子设备20的通信,而引起的第二电池203的充电中断,可以认为是正常的通信过程,无需上报中断,进而简化了通信的过程。
综上所述,本申请实施例提供的方案,充电装置在对电子设备进行直充或者倍压充电时,能够实现充电装置与电子设备之间的双向通信,且通信过程简单,实用性强。通过该通信方式,可以实现电子设备以及充电装置之间相互的身份认证,以及在位检测,而无需额外设置其他的检测传感器,因此还降低了硬件成本。
电子设备可以支持进行直充,还可以既支持进行直充,也支持进行倍压充电,下面首先说明电子设备仅支持进行直充时的实现方式。
参见图6,该图为本申请实施例提供的另一种充电装置及电子设备的示意图。
图示充电装置10用于为电子设备20进行充电。
其中,充电装置10包括:第一控制器101、第一DC/DC电路102、第一充电电路104以及充电端子。充电端子包括第一充电端子111和第二充电端子112。
第一充电电路104包括第二DC/DC电路1041和第一调制解调电路1042。
第二DC/DC电路1041的输入端连接第一充电电路104的输入端,第二DC/DC电路1041的输出端连接第一调制解调电路1042的第一端,第一调制解调电路1042的第二端连接第一充电端子111。
电子设备20包括:第二控制器201、第二充电电路202、第二电池203以及受电端子。受电端子包括第一受电端子211和第二受电端子212。
第二充电电路202包括第二调制解调电路2022、第一保护电路、开关Q1和开关Q2。
第二控制器201在确定当前的充电阶段为恒流充电阶段时,通过控制Q1和Q1均闭合,以使第二充电电路202的阻抗最小,此时充电装置10对电子设备20的第二电池203进行直充。
第一保护电路用于当第二充电电路202的电流小于第一触发电流,或者第二充电电路向第二电池输出的充电电压小于所述第一触发电压时,控制第二充电电路与第二电池断开,也控制图中的Q1断开,或者可以控制Q1和Q2均断开。
此时第一保护电路能够在第二充电电路202出现欠压或者反灌电流时,切断连接第二电池203的线路,也即此时的第一保护电路相当于欠压锁定(under voltage lock out,UVLO)电路。
当电子设备20与充电装置10进行连接时,第一充电端子111与第一受电端子211连接,第二充电端子112与第二受电端子212连接。
参见图7,该图为本申请实施例提供的调制信号的波形示意图一。
图7示出了由电子设备20对充电装置10发起通信时的示意图。
图中的load C对应于电子设备20的输入电流,当充电端子与受电端子连接后,也即充电装置10的输出电流。
图中的Initial V对应于电子设备20的输入电压,当充电端子与受电端子连接后,也即充电装置10的输出电压。
当电子设备20需要发起对充电装置10的通信时,第二充电电路202首先控制第二充电电路202与第二电池203之间的连接断开,以避免第二电池203对电压和电流进行箝位。也即控制Q1断开,或者可以控制Q1和Q2均断开。
然后第二调制解调电路2022对第二充电电路202的输入电流进行调制,以形成第一调制信号,该第一调制信号为电流调制信号。
具体的,第二调制解调电路2022先在t0至t1时间段内,对第二充电电路202的输入电流进行调制,以使输入电流低至IL,对应图7中第一调制信号的Ti_pre阶段,也即通过调制,使得第一调制信号中携带了第一电流。
该Ti_pre阶段表征电子设备进行短暂的充电模式和通信调制模式的切换,也即电子设备20向充电装置10发起了通信。本申请实施例对IL的具体取值不作限定,在一种可能的实现方式中,IL的取值为0。充电装置10与电子设备20预先确定的通信协议中,可以对该第一电流的含义进行明确,也即明确该第一电流为电子设备20向充电 装置发起通信的标识。
电子设备20经过短暂的充电模式和通信调制模式的切换后,第二调制解调电路2022开始调制形成通信波形,通信波形对应于图7中第一调制信号的Ti_data段。
第一调制信号中的Ti_data段,与充电装置10和电子设备20预先确定的通信协议相关,本申请实施例不作具体限定。
第二充电电路202通过受电端子向充电装置10发送第一调制信号。
当充电装置10的第一充电电路104接收到该第一调制信号后,第一充电电路104的第一调制解调电路1042对第一调制信号进行解调,如果解调失败,则表明此时电子设备20发送的第一调制信号不满足预先确定的通信协议,也即电子设备20与充电装置10不匹配。
如果解调成功,则第一充电电路10根据解调结果以及预先确定的通信协议,控制第一调制解调电路1042对第一充电电路10的输出电压进行调制,并通过充电端子向电子设备20回复第一调制应答信信号。该第一调制应答信号为电压调制信号,对应于图7中t3至t4时间段内的Tv_ack阶段。
该第一调制应答信号的具体波形情况,与充电装置10和电子设备20预先确定的通信协议相关,本申请实施例不作具体限定。
也即实现了由电子设备20发起的与对充电装置10的通信。
下面说明由充电装置10发起的对电子设备20的通信过程。
下面说明第一种可能的实现方式。
参见图8,该图为本申请实施例提供的调制信号的波形示意图二。
图8中的load C对应于电子设备20的输入电流,当充电端子与受电端子连接后,也即充电装置10的输出电流。
图8中的Initial V对应于电子设备20的输入电压,当充电端子与受电端子连接后,也即充电装置10的输出电压。
当充电装置10需要发起对电子设备20的通信时,第一充电电路104向电子设备20发送第二调制信号,该第二调制信号为电压调制信号。
具体的,第一充电电路104的第一调制解调电路1042先在t0至t1时间段内,对第一充电电路的输出电压进行调制,以使输出电压波形短暂地下拉至第一电压,第一电压为一个较低的电压值,也即使得第二调制信号中携带了第一电压。
第一电压用于使后级连接的电子设备20产生微弱的反灌电流或者欠压,此时第二充电电路202中的第一保护电路控制第二充电电路202与第二电池203断开,也控制图6中的Q1断开,或者可以控制Q1和Q2均断开,以实现欠压保护。
由于电子设备20的第二充电电路202与第二电池203断开,因此避免第二电池203对充电端子输出的电压和电流进行箝位。
第二调制信号中携带的第一电压小于第一保护电路的第一触发电压,本申请实施例对第一电压的具体取值不作限定。
在一种典型的实现方式中,第一电压可以设置为0。图8中的UVLO即表示第一 触发电压,第一电压位于图8中t0至t1时间段,也即第二调制信号的Tv_pre阶段。该第一电压位于第二调制信号的头部位置,以使当电子设备20的第二充电电路202接收到该第二调制信号时,首先接收到第一电压,进而及时控制第二充电电路202与第二电池203断开连接,
第一调制解调电路1042在图8中t1至t2时间段内进行标准通信波形的调制,也即通过对第一充电电路104的输出电压进行调制,以形成第二调制信号的Tv_data段。
第二调制信号的Tv_data阶段的具体波形,与充电装置10和电子设备20预先确定的通信协议相关,本申请实施例不作具体限定。
第一充电电路104通过充电端子向电子设备20发送该第二调制信号。
电子设备20的第二充电电路202接收到该第二调制信号时,先接收到第一电压,进而及时与第二电池203断开连接。然后第二充电电路202的第二调制解调电路2022对第二调制信号的Tv_data阶段进行解调。
第二充电电路202根据解调结果以及预先确定的通信协议,控制第二调制解调电路2022生成第二调制应答信号,该第二调制应答信号为电流调制信号,对应于图8中t3至t4时间段,load C的Ti_dack阶段。
第二充电电路202通过受电端子向充电装置10回复第二调制应答信号。
也即实现了由充电装置10发起的与对电子设备20的通信。
图8所对应的实现方式中,第一调制解调电路1042时通过调制第一充电电路104的输出波形,使第二充电电路202出现反灌电流或者欠压,以触发第一保护电路的保护动作,断开第二电池203的充电链路,进而实现了充电和通信的分时复用。
下面说明另第一种充电装置10发起对电子设备20通信的方式。
本实现方式中,第二充电电路中包括第二保护电路,第二保护电路用于当第二充电电路202向第二电池203输出的充电电压大于或等于第二触发电压时,控制第二充电电路与第二电池断开,也控制图中的Q1断开,或者可以控制Q1和Q2均断开。此时第二保护电路能够在第二充电电路202出现过压或者过流时,切断连接第二电池203的线路,也即此时的第一保护电路相当于过压保护电路。
第一调制解调电路1042通过调制第一充电电路104的输出波形,使第二充电电路202过压,以触发第二保护电路的保护动作,断开第二电池203的充电线路,下面具体说明。
参见图9,该图为本申请实施例提供的调制信号的波形示意图三。
图9中的load C对应于电子设备20的输入电流,当充电端子与受电端子连接后,也即充电装置10的输出电流。
图9中的Initial V对应于电子设备20的输入电压,当充电端子与受电端子连接后,也即充电装置10的输出电压。
当充电装置10需要发起对电子设备20的通信时,第一充电电路104向电子设备20发送第二调制信号,该第二调制信号为电压调制信号。
具体的,第一充电电路104的第一调制解调电路1042先在t0至t1时间段内,对 第一充电电路的输出电压进行调制,以使输出电压波形短暂地上拉至第一电压,第一电压大于第二触发电压,图9中第二触发电压为OVP。也即使得第二调制信号中携带了第一电压。本申请实施例对第一电压的具体值不作限定,实际应用中,第一电压略大于第二触发电压即可。
电子设备20首先接收到该第一电压,由于第一电压略大于第二触发电压,产生微弱的过压或者过流,此时第二充电电路202中的第二保护电路控制第二充电电路202与第二电池203断开,也控制图6中的Q1断开,或者可以控制Q1和Q2均断开。
由于电子设备20的第二充电电路202与第二电池203断开,因此避免第二电池203对充电端子输出的电压和电流进行箝位。
第一电压位于图9中t0至t1时间段,也即第二调制信号的Tv_pre阶段。该第一电压位于第二调制信号的头部位置,以使当电子设备20的第二充电电路202接收到该第二调制信号时,首先接收到第一电压,进而及时控制第二充电电路202与第二电池203断开连接。
第一调制解调电路1042然后在图9中t1至t2时间段内进行标准通信波形的调制,也即通过对第一充电电路104的输出电压进行调制,以形成第二调制信号的Tv_data阶段。
第一充电电路104通过充电端子向电子设备20发送该第二调制信号。电子设备20的第二充电电路202接收到该第二调制信号时,先接收到第一电压,进而及时与第二电池203断开连接。然后第二充电电路202的第二调制解调电路2022对第二调制信号的Tv_data阶段进行解调。
第二充电电路202根据解调结果以及预先确定的通信协议,控制第二调制解调电路2022生成第二调制应答信号,该第二调制应答信号为电流调制信号,对应于图9中t3至t4时间段内,load C的Ti_dack阶段。
第二充电电路202通过受电端子向充电装置10回复第二调制应答信号。
以上各波形示意图中的Tv_pre阶段以及Ti_pre阶段可以作为通信协议波形的一部分,位于调制信号的头部,用于表征通信前的准备过程,由此可以实现在直充时的双向通信,并且可以减少第一充电电路向第一控制器上报中断的次数,以及减少第二充电电路向第二控制器上报中断的次数,也即电子设备进行充电模式和通信调制模式的切换而导致的中断,可以认为属于通信协议的一部分,进而简化了通信的流程,提高了实用性。
结合实际的场景,例如当电子设备为耳机,充电装置为耳机的充电盒时,耳机在使用过程中会与其他电子设备连接,例如与手机连接,并且目前在耳机首次与手机连接后,耳机再次开启时能够自动与手机进行连接,以等待手机发送数据并进入播放状态。耳机放入充电盒中后,在充电过程中,耳机会断开与手机的连接并停止播放。如果耳机的充电过程中断,可能会再次自动与手机实现连接。而本申请实施例提供的方案,将电子设备进行充电模式和通信调制模式的切换而导致的中断,认为属于通信协议的一部分,此时耳机不会判定断开充电进而与手机实现连接,提高了实用性。
图6至图9中以充电装置10对电子设备20进行直充为例进行说明。在另一些实施例中,充电装置既支持对电子设备进行直充,也支持对电子设备进行倍压充电,下面结合附图具体说明。
一并参见图10A和图10B。其中,图10A为本申请实施例提供的又一种充电装置及电子设备的示意图;图10B为本申请实施例提供的开关电容变换器2023的电路示意图。
图10A所示电子设备20与图6的区别在于:第二充电电路202中还包括了开关电容变换器2023。
此时第二充电电路202的直充电路2021包括Q1和Q2,第二充电电路202的倍压充电电路包括了开关电容变换器2023。
并且开关电容变换器2023的第一端连接Q1的第一端,开关电容变换器2023的第二端连接第二充电电路202的输出端。
在充电装置10给电子设备20充电的过程中,开关电容变换器2023可以将输入给开关电容变换器2023的电压升压后输出,能够实现对电压的调节,提高给第二电池203的充电电压,进而能够提高给第二电池203充电的效率。
图10B所示的开关电容变换器2023仅是一种可能的实现方式,并不构成对于本申请技术方案的限定,开关电容变换器2023还可以采用其它的实现方式。
为了方便本领域技术人员更清楚的理解对电子设备的充电过程,下面首先说明充电过程中的各个充电阶段。
参见图10C,该图为本申请实施例提供的一种充电阶段的示意图。
充电装置10对电子设备20的充电阶段可以分为涓流充电阶段、恒流充电阶段、恒压充电阶段和充电终止阶段。
涓流充电阶段时,电子设备采用LDO(Low Dropout Regulator,低压差线性稳压器)充电模式,对应图中INT0-INT1之间;而恒流充电阶段和恒压充电阶段时,电子设备采用直通充电模式。
本实施例不具体限定恒流充电阶段分为几个阶段,恒流充电阶段可以分为多个阶段,例如:CC1阶段(对应图中INT1-INT2之间)、CC2阶段(对应图中INT2-INT3之间)和CC3阶段(对应图中INT3-INT4之间)。图中CV表示恒压充电阶段,对应图中INT4-INT5之间。CV1、CV2和CV3表示恒流充电阶时区分CC1阶段、CC2阶段和CC3阶段的电压阈值。
在涓流充电阶段,使用图中所示的LDO充电模式给第二电池203进行充电,当第二电池203的电压到达预充充电阈值时,电子设备20中的第二充电电路主动通过I/O接口产生中断,以使电子设备20和充电装置10进行通信,传递第二电池203的第一充电参数,以使充电装置10根据第二电池203的第一充电参数给电子设备20充电。其中,当第二电池的电压小于预充充电阈值时,第二电池对应的充电阶段为涓流充电阶段。因此,电子设备和充电装置之间仅需要少量的通信即可完成整个充电过程。
图中曲线A表示第二电池的电压,曲线B表示第二电池的充电电流。
当第二电池203的电压不同时,第二电池处于不同的充电阶段,因此可以根据第二电池203的电压信息来确定第二电池的充电阶段。
电子设备20中的第二控制器201能够获取第二电池的电压信息,并根据第二电池的电压信息确定第二电池的充电阶段。
下面分别详细介绍涓流充电阶段、恒流充电阶段、恒压充电阶段和充电终止阶段。
从图10C中可以看出,当电子设备20的第二电池203的电压小于预充充电阈值时,充电装置在给电子设备充电时,则能够确定第二电池的充电阶段为涓流充电阶段。
本申请不限定预充充电阈值,预充充电阈值可以为2.8V,也可以为3V,本领域技术人员可以根据实际需要选择合适的预充充电阈值。
在涓流充电阶段,充电装置10会输出较小的电压给电子设备20,以维持电子设备20的第二控制器201工作。
在涓流充电阶段过程中,随着充电时间的增加,第二电池203的电量越来越多,进而第二电池203的电压也会变大。第二控制器201能够实时或按照预设周期检测第二电池203的电压,当第二控制器201检测到第二电池203的电压大于等于预充充电阈值时,充电阶段由涓流充电阶段变为恒流充电阶段。
第二控制器201能够检测第二电池的电压信息,并进行主动中断,以便充电装置10与电子设备20之间建立通信连接,进而通过与第一控制器101的通信来调整充电电压和充电电流。
在恒流充电阶段过程中,在一些实施例中,第二控制器201能够通过IIC接口给第二充电电路202传递信息,使第二充电电路202控制第二调制解调电路2022给充电装置10发送调制信号,第一充电电路104控制第一调制解调电路1042对接收到的调制信号进行解调,将生成的解调结果发送给第一控制器101,告知第一控制器101准备与第二控制器201进行通信,该过程也即对应于以上图6至图9的说明。
当充电装置10仅支持对电子设备20进行直充时,也即仅包括直充电路2021,不包括开关电容变换器2023时。也即使充电装置10通过第一充电端子111输出的充电电压和充电电流直接为第二电池203进行充电。
当充电装置10即支持对电子设备20进行直充时,也支持对电子设备20进行倍压充电时,也即包括开关电容变换器2023时,Q1在恒压充电阶段或恒流充电阶段关断,以使电能经过开关电容变换器2023直接给第二电池203充电。第二电池203能够通过Q2给第二控制器201供电。
在其他充电阶段时,例如在涓流充电阶段或预充充电阶段Q1导通,电流经过Q1和Q2对第二电池6024充电。
直充电路2021的阻抗可调,进而能够在不同的充电阶段时对充电路径阻抗的控制。
第二控制器201能够根据第二电池203的电压信息获得对应的充电阶段,当充电阶段为恒流充电阶段或恒压充电阶段时,控制Q1断开,Q2闭合,控制开关电容变换器807工作在直通状态,以使充电路径工作在直通状态;当充电阶段为涓流充电阶段 时,控制Q1和Q2闭合,即第二控制器201在不同的充电阶段控制开关电容变换器2023和直充电路2021工作在不同的状态。因此能够在提高第二电池203在恒压充电阶段和恒流充电阶段的充电效率的同时,也能够提高第二电池203在充电阶段的充电效率。
开关电容变换器2023能够使第一充电端子111输出的电压与第二充电电路202向第二电池203输出的充电电压之间具有预设倍数关系。该预设倍数关系可以为2:1,3:1,4:1等,本申请实施例不作具体限定,该预设倍数取决于开关电容变换器2023的参数。
在图6至图9中,第一充电端子111输出的电压与第二电池203的充电电压的比例为1:1,本申请实施例提供的实现方式中通过提升第一充电端子111输出的电压,可以减小线路中的功率损耗,进而提升对第二电池203的充电效率。
当充电装置10对电子设备20进行倍压充电时,充电线路上的电流与电压也会被第二电池203箝位,从而影响通信。因此在充电装置10对电子设备20进行通信的过程中,也需要控制开关电容变换器2023停止对第二电池203进行充电。
此时,由电子设备20发起通信时,由电子设备20控制开关电容变换器203停止对第二电池203充电,然后参见图7对应的说明实现通信;由充电装置10发起通信的实现方式,可以参见图8对应的说明,通过欠压触发欠压保护电路的保护动作;或者参见图9对应的说明,通过过压触发过压保护电路的保护动作,之后具体的通信过程类似,本申请实施例不再赘述。
综上所述,本申请实施例提供的方案,在充电装置即支持对电子设备进行直充,也支持对电子设备进行倍压充电时,可以实现充电装置与电子设备之间的双向通信,并且可以减少第一充电电路向第一控制器上报中断的次数,以及减少第二充电电路向第二控制器上报中断的次数,也即电子设备进行充电模式和通信调制模式的切换而导致的中断,可以认为属于通信协议的一部分,无需报保护终端,进而简化了通信的流程,提高了实用性。
本申请以上实施例中,电子设备和充电装置通过调制信号实现通信,该通信在实际应用中,除了具备如以上说明中所述的告知第一控制器需要与第二控制器进行通信的功能外,还能够用于判断电子设备是否用于充电装置连接,以及对电子设备或者充电装置进行身份识别,也即判断电子设备与充电装置是否匹配。
下面继续以电子设备为耳机,充电装置为耳机的充电盒为例,说明通过调制信号实现耳机的出入盒检测以及身份识别的具体过程。
参见图11,该图为本申请实施例提供的再一种充电装置及电子设备的示意图。
图示充电装置10为耳机充电盒,电子设备20为耳机。
其中,充电装置10包括:第一控制器101、第一DC/DC电路102、第一充电电路104以及充电端子。充电端子包括第一充电端子111和第二充电端子112。
第一充电电路104包括第二DC/DC电路1041、第一开关模块S1、第一调制解调电路1042、第一状态机1043和控制环路1044。
电子设备20包括:第二控制器201、第二充电电路202、第二电池203以及受电 端子。受电端子包括第一受电端子211和第二受电端子212。
第二充电电路202包括第二调制解调电路2022、第二开关模块S2、第三开关模块S3以及调制电流源2024。
第一调制解调电路1042与第一状态机1043连接。
第二状态机2023与第二调制解调电路连接,也即第二状态机2023与调制电流源2023连接。
该充电装置10被配置为开盒有输出,也即充电盒开盒后,第二DC/DC电路1041输出预设电压,或者按照预设周期输出预设电压以降低功耗。本申请实施例对预设电压不作具体限定,例如可以设置为5V,充电装置10开盒后输出电压以等待电子设备20连接。
电子设备20被配置为离盒输入端为高阻态。
当电子设备20入盒后,受电端子与充电电子连接,电子设备接触到合适的输入电压后,主动发送握手信号,也即该第一调制信号。此时,电子设备20中的调制电流源(modem current source)2024产生电流脉冲信号以形成特征字符串。
下面首先说明特征字符串的实现方式。
参见图12,该图为本申请实施例提供的一种特征字符串的示意图。
当电子设备20通过受电端子连接充电装置后,电子设备20检测到合适的输出电压,利用与充电装置10之间的通信协议,在电子设备20侧通过拉电流、电压、开关频率变化等调制出特征状态字符串。
该特征字符串包括前导码(Preamble)、开始码(Start)、数据码(b0至b3)、检验和(checksum)以及终止码(Stop)
其中,图示前导码包括6比特(bit)“1”,开始码包括1bit“1”,数据码中携带有具体的通信信息,与电子设备20与充电装置10预先确定的通信协议有关。
检验和用于校验数据码的和,通常用来在通信中保证数据的完整性和准确性
终止码表征特征字符串的结束位。
以上特征字符串仅是一种可能的实现方式,特征字符串还可以采用其它的实现方式,例如前导码可以不是6位,而设置为5位,或7位等。
也即以上调制电流源2024形成图7所示的第一调制信号中的Ti_data段。
第二状态机2023控制调制电流源2024对第二充电电路202的输入电流进行调制后,将生成的特征字符串携带在第一调制信号中,发送给充电装置。具体的,利用预先确定的电子设备与充电装置的通信协议,在第一调制信号中携带的特征字符串为第一特征字符串。
充电装置的第一调制解调电路1042用于对获取的调制信号进行解调,并将解调结果发送至第一状态机1043。
当第一调制解调电路1042解调成功后,第一状态机1043获取第一调制信号对应的解调结果,解调结果中携带有第一特征字符串。
第一状态机1043判断第一特征字符串是否为第一预设特征字符串,如果是,则表 征此时接收到满足通信协议的字符串,确定此时电子设备20已经连接。
第一状态机1043然后控制第一调制解调电路1042对第一充电电路104的输出电压进行调制,以形成第一调制应答信号,第一调制应答信号中携带有第二特征字符串。
电子设备20的第二调制解调电路对接收到的第一调制应答信号进行解调,并将解调结果发送至第二状态机2023。
第二状态机2023当解调结果中包括的第二特征字符串为第二预设特征字符串时,确定电子设备20已经与充电装置10连接。
以上的第一预设特征字符串与第二预设特征字符串的具体实现方式,由电子设备20与充电装置10之间的通信协议确定,本申请实施例不作具体限定。
以上说明了充电装置与电子设备之间通过调制信号实现在位检测的过程,此外,充电装置和电子设备之间还可以通过调制信号实现身份识别,也即识别双方是否匹配,下面具体说明。
当第一调制解调电路1042解调成功后,第一状态机1043获取第一调制信号对应的解调结果,解调结果中携带有第一特征字符串。
第一状态机1043判断第一特征字符串是否为第一预设特征字符串,如果是,则表征此时接收到满足通信协议的字符串,确定此时电子设备20已经连接,并且确定发送该第一调制信号的电子设备20与充电装置匹配。然后第一状态机1043控制第一调制解调电路1042对第一充电电路104的输出电压进行调制,以形成所述第一调制应答信号。
当第一状态机1043判断第一特征字符串不为第一预设特征字符串,或者第一调制解调电路1042对第一调制信号解调失败时,确定身份认证的结果为电子设备与充电装置不匹配,此时第一状态机1043控制第一调制解调电路1042不对第一充电电路104的输出电压进行调制,也即不发送第一调制应答信号。
电子设备侧的第二充电电路202当未接收到第一调制应答信号时,确定电子设备20与充电装10置不匹配。
也即实现了电子设备20与充电装置10之间的身份识别。
综上所述,通过以上的通信握手机制,能够使电子设备20与充电装置10双方均完成了身份识别与入盒检测。然后充电装置10对电子设备20进行充电,充电时两者之间的功率传输线上会有持续的电压和电流,实际应用中,随着充电过程的进行,电子设备20的第二电池203的电量逐渐上升,电压也逐渐上升,电子设备20与充电装置10之间还需要通过通信来调整对第二电池203的充电电流与充电电压,下面具体说明该实现过程。
继续参见图11所示的充电装置及电子设备的示意图。
充电装置10还包括第一控制器101。
第一控制器101的第一通信接口,也即图11中第一控制器101的IIC接口,与第一充电电路104连接,并在第一充电电路104内与第一状态机1043连接。
第一控制器101的第二通信接口,也即图11中第一控制器101的UART接口,与第一开关模块S1的第二端连接,第一开关模块S1的第一端连接第二DC/DC电路1041的输出端,第一开关模块S1的第三端,连接第一充电电路104的输出端。
电子设备20还包括第二控制器201。
第二控制器201的第一通信接口,也即图11中第二控制器201的IIC接口,与第二充电电路202连接,并在第二充电电路202内与第二状态机2023连接。
第二控制器201的第二通信接口,也即图11中第二控制器201的UART接口,与第二开关模块S2的第二端连接,第二开关模块S2的第一端连接第二充电电路202的输如端,第二开关模块S2的第三端,连接第三开关模块S3的第一端,第三开关模块S3的第二端连接第二电池203。
其中,第三开关模块S3包括:第一MOS管和第二MOS管。第一MOS管和第二MOS管串联,且第一MOS管的反并联二极管和第二MOS管的反并联二极管方向相反。此时,通过调整第一MOS管和第二MOS管的状态,能够使第二开关模块S3的阻抗最小,进而使充电装置10通过充电端子111输出的充电电压和充电电流直接给电子设备20的第二电池203进行充电。
第一状态机1043当通过以上实施例中所述的握手机制,确定电子设备20在位时,向第一控制器101的第一通信接口发送第一中断信号,第一中断信号用于指示第一控制器101当前电子设备20在位。
第一状态机1043还用于当第一控制器101需要与电子设备20的第二控制器201通信时,控制第一开关模块S1的第二端和第一开关模块S1的第三端接通,使得第一控制器101的UART接口接入电路,此时第二DC/DC电路1041的输出端未连接充电端子,也即充电装置10暂时停止对电子设备20进行充电。
第一控制器101的第二状态机2023当通过以上实施例中的握手机制,确定电子设备20与充电装置10连接时,向第二控制器201的UART接口发送第三中断信号,该第三中断信号用于指示电子设备与所述充电装置连接。
第二状态机2023当第二控制器201与充电装置10通信时,控制第二开关模块S2的第一端和第二开关模块S2的第二端接通。
此时第一控制器101与第二控制器201之间连通,用于实现充电过程中的数据交互。
在一种可能的实现方式中,第一控制器101与第二控制器201之间连通后,第二控制器201向第一控制器101发送第一充电参数,第一充电参数包括第二电池203对应的充电电压和充电电流。第一控制器101接收第二控制器201发送的第一充电参数,并将第一充电参数发送至第一状态机1043,以使第一状态机1043根据第一充电参数控制第二DC/DC电路1041。
在另一种可能的实现方式中,第一控制器101与第二控制器201之间连通后,第二控制器201向第一控制器101发送第二电池203的电压信息。第一控制器101接收第二控制器201发送的第二电池203的电压信息后,根据该第二电池203的电压信息 确定第二电池203对应的第一充电参数,第一充电参数包括第二电池对应的充电电压和充电电流,并将第一充电参数发送至第一状态机,以使第一状态机1043根据第一充电参数控制第二DC/DC电路1041。
第二电池203的电压信息与第一充电参数的对应关系可以预先进行标定进行存储,例如可以以数据表的形式进行存储,待第一控制器101使用时进行调用。
当第一控制器101与第二控制器201之间的通信结束后,第一状态机1043控制第一开关模块S1的第一端和第一开关模块的第三端接通,以使第二DC/DC电路1041与充电端子连通。同时,第二状态机2023控制第二开关模块S2的第一端和第二开关模块S2的第三端接通,以使第二充电电路202对第二电池203充电。
此时,通过以上的通信获取了第一充电参数,在第一充电电路104中设置有控制环路1044,控制环路1044包括电压环和电流环,控制环路1044的输入量包括Iou和Vout。Iout是检测的充电端子的输出电流,Vout是检测的充电端子的输出电压,将Vout和第一充电参数中的充电电压进行比较,根据电压比较结果控制充电端子的输出电压与所述充电电压一致,进而实现电压环的闭环控制;将Iout和第一充电参数中的充电电流进行比较,根据电流比较结果控制输出电流与充电电流一致,进而实现电流环的闭环控制。
以上第一控制器101与第二控制器201的通信在整个充电过程中可以出现多次,本申请实施例对通信次数不作具体限定。
以上说明中以对电子设备进行直充为例,当对电子设备进行倍压充电时,可以参见图10A对应的电路,但第一控制器101与第二控制器201的通信过程与以上说明类似,在此不再赘述。
综上所述,利用本申请实施例提供的以上方案,在充电过程中,能够使充电装置与电子设备实现双向的通信,并且支持充电装置对电子设备进行直充或倍压充电,提升了对电子设备的充电效率。
以上说明中主要介绍了充电过程中的通信方式,下面具体说明检测充电装置与电子设备发生分离的方式。
参见图13,该图为本申请实施例提供的另一种充电装置及电子设备的示意图。
本申请实施例与图11所示实现方式的区别在于:充电装置10还包括第一比较器1045,电子设备20还包括第二比较器2025。
图11中的第一比较器1045与第一充电电路104集成在一起,在另一些实施例中,第一比较器1045也可以独立设置。
第一比较器1045用于将充电装置10的输出电流Iout和预设电流I1进行比较,并将获取的第一比较结果发送至第一状态机1043。
第一状态机1043当根据第一比较结果确定充电装置10的输出电流Iout小于预设电流I1时,向第一控制器101的IIC接口发送第二中断信号,该第二中断信号用于指示第一控制器101电子设备20与充电装置10断开连接。
在一些实施例中,当第一控制器101接收到第二中断信号后,确定电子设备20断开连接,进而可以控制第一DC/DC电路102和/或第二DC/DC电路1041停止工作。
图11中的第二比较器2025与第二充电电路202集成在一起,在另一些实施例中,第二比较器2025也可以独立设置。
第二比较器2025用于将电子设备的输人电压Vin和预设电压V1进行比较,并将获取的第二比较结果发送至第二状态机2023。
第二比较器2025当根据第二比较结果确定输入电压Vin小于预设电压V1时,向第二控制器201的IIC接口发送第四中断信号,第四中断信号用于指示第二控制器201电子设备20与充电装置10断开连接。
综上所述,通过以上的方式检测出了电子设备与充电装置是否断开连接。但是,实际应用中可能存在以下的特殊情况:
情况一:电子设备20的第二电池203充满电,但是电子设备20仍然与充电装置连接,此时电子设备20的输入电压低,充电装置10的输出电流低。
情况二:电子设置20在充电之前,第二电池203发生了过放,为了保护第二电池203,需要先对第二电池203进行涓流充电一段时间,涓流充电期间,电子设备20的输入电压低,充电装置10的输出电流低。
对于以上情况,可能存在第一比较器1045可能存在检测不到输出电流Iout的情况,因此可能会误判电子设备20出盒,进而停止继续对电子设备20充电。
因此为了使检测逻辑更加完整,避免充电装置出现误判,可以利用第二充电电路202的调制电流源发送心跳脉冲信号,下面具体说明。
参见图14,该图为本申请实施例提供的调制信号的波形示意图四。
电子设备20的第二状态机2023,当电池2023处于涓流充电状态或者满电状态时,控制第二调制解调电路对第二充电电路的输入电流进行调制,以使调制后的电流中包括了预设脉冲信号,并将该预设脉冲信号发送至充电装置10。
图14中所示的预设脉冲信号仅是一种可能的实现方式,并不构成对于本实施例的具体限定,预设脉冲信号具体由充电装置10与电子设备20之间的通信协议决定。参见图14所示,也即电子设备20每150ms向充电装置10发送一个持续0.1ms的脉冲,以告知充电装置10此时电子设备20仍然在位。
充电装置10的第一调制解调电路1042对接收到的调制信号进行解调,并将解调结果发送至第一状态机1043。第一状态机1043当确定电子设备20向充电装置10发送预设脉冲信号时,确定电子设备20与充电装置连接正常。
进一步的,第一状态机1043当确定电子设备20向充电装置10发送预设脉冲信号时,维持当前第二DC/DC电路的工作状态,并向第一控制器101发送第五中断信号,该第五中断信号用于指示第一控制器101当前电子设备20处于涓流充电状态。
在另一些实施例中,电子设备处于满电充电状态下或涓流充电状态下可以分别对应不同的预设脉冲信号,以使第一状态机1043确定出当前电子设备的具体状态。
综上所述,以上实施例中,利用第二充电电路202的调制电流源2024向充电装置 发送心跳脉冲信号,进而在第二电池203满电或者涓流充电时,避免了充电装置10误判电子设备断开连接。
在实际应用中的另一些极限场景中,存在充电装置10由于过流、过温,或者其他原因突然输出断电情况,导致电子设备20的输入电压为零,因此电子设备20可能会误判出盒,以电子设备为耳机为例,耳机误判出盒后,可能自动发起与手机设备的连接,如果成功连接手机设备后,则会持续处于等待手机传输数据或者启动播放的状态,可能再次耗尽电量。另一方面,电子设备20误判出盒后,充电装置10如果从过流、过温等异常状态下恢复正常,由于电子设备20误判出盒,不对充电装置发送握手信号,因此可能导致充电装置10不继续对电子设备20充电,使得电子设备20未被充满电,降低了用户的使用体验。
为了避免电子设备20在以上情况下误判自身出盒,仍然可以利用第二充电电路202的调制电流源实现检测,下面具体说明。
参见图15,该图为本申请实施例提供的另一种充电装置及电子设备的示意图。
图15与图14的区别在于,图15中的调制电流源2024向电子设备20的受电端子211反向输出电流,也即电子设备20向充电装置10反灌电流。
第二比较器2025用于将电子设备的输人电压Vin和预设电压V1进行比较,并将获取的第二比较结果发送至第二状态机2023。
第二比较器2025当根据第二比较结果确定输入电压Vin小于预设电压V1时,控制第二调制解调电路向受电端子211发送检测信号,检测信号中包括调制电流源2024向电子设备20的受电端子211反向输出的电流。在一些实施例中,该检测信号可以为一个恒定的电流信号。
由于充电装置10的第二DC/DC电路1041的输出端包括电容,利用对电容充电的特性,如果此时电子设备20还与充电装置10连接,调制电流源2024向电子设备20发送的电流信号会先为电容充电,则受电端子的电压不会快速上升,如果此时真实断开连接,则受电端子的电压会很快上升至调制电流源2024的电压。
也即当检测信号为一个恒流信号时,充电盒10与电子设备20之间断开连接时,第一受电端子211处的电压会很快上升。
第二状态机2023当受电端子的电压在预设时间内超过预设阈值电压时,向第二控制器201的IIC接口发送第四中断信号,第四中断信号用于指示第二控制器201电子设备20与充电装置10断开连接。
其中,预设时间与预设阈值电压可以通过测试进行标定,以确定出合适的取值,本申请实施例对此不作具体限定。
综上所述,利用本申请实施例提供的方案,能够实现双向在位检测,并且避免了充电装置误判与电子设备断开连接,以及避免了电子设备误判与充电装置断开连接,提升了在位检测的可靠性与准确度,并且以上的实现方式具有较高的集成度,不需要依赖于霍尔传感器、红外光传感器等器件,还降低了硬件成本。
以上实施例的说明中,说明了通过调制信号实现双向在位检测与身份识别的实现 方式,此外,在另一些实现方式中,电子设备向充电装置发送的第一调制信号或第二调制应答信号中也可以携带有电子设备的充电参数,该充电参数可以包括第二电池对应的充电电流、第二电池对应的充电电压或第二电池的电压等信息中的一项或多项。充电装置10向电子设备20发送的第二调制信号和第一调制应答信号中还可以包括充电装置10的输出参数,例如输出电流或输出电压。通过该方式,可以将第一控制器101与第二控制器201通过UART接口传输的数据放至调制信号中进行传输,简化了通信过程,减少上报中断的次数。
以上实施例中以充电盒为耳机进行充电为例进行说明,此时充电端子和受电端子均包括了两个PIN以实现电气连接,充电端子和受电端子可以为pogo pin或金属弹片。
在另一些实施例中,充电端子和受电端子之间也可以通过通用串行总线(Universal Serial Bus,USB)接口实现连接,在此不再赘述。进一步的,本申请的方案也可以应用于其它的场景中,为智能手环或者智能手表进行充电的场景,也即电子设备还可以为智能手环或者智能手表。
基于以上实施例提供的充电装置和电子设备,本申请实施例还提供了一种充电系统,包括了以上实施例中所述的充电装置和电子设备,下面结合附图具体说明。
参见图16,该图为本申请实施例提供的又一种充电装置及电子设备的示意图。
第二充电电路,用于断开与第二电池之间的连接,向充电装置发送第一调制信号,接收充电装置发送的第一调制应答信号,并解调第一调制应答信号,第一调制信号中包括第一电流,第一电流用于标识电子设备向充电装置发起了通信;或者,接收充电装置发送的第二调制信号,并解调第二调制信号,当第二调制信号的解调结果中包括第一电压时,断开与第二电池之间的连接,并向充电装置发送第二调制应答信号;
第一充电电路,用于接收电子设备发送的第一调制信号,并解调第一调制信号,当解调结果中包括第一电流时,向电子设备发送第一调制应答信号;或者,向电子设备发送第二调制信号,接收电子设备发送的第二调制应答信号,并对第二调制应答信号进行解调,第二调制信号中包括第一电压,第一电压用于使电子设备的第二充电电路与第二电池断开。
继续以包括充电盒和耳机的耳机充电系统为例进行说明,此时充电端子和受电端子均包括了两个PIN以实现电气连接。可以理解的是,以上说明中是以充电盒为一个耳机充电为例进行说明。实际应用中,充电装置能够同时对两个耳机进行充电,也即对电子设备20和电子设备30进行充电。也即充电系统包括了充电装置10、电子设备20和电子设备30,电子设备20和电子设备30内部的电路实现方式相同,在此不再赘述。此时电子设备20为一只耳机,电子设备30为另一只耳机。
充电装置内部可以包括两路相同第一充电电路104,两路第一充电电路104共通连接第一DC/DC电路102的输出端。
每路第一充电电路104对应一个第一控制器101。图中的两个第一控制器101分开设置,在另一些实施例中,两个第一控制器101也可以集成在一起。
以上的耳机充电系统仅是一种可能的实现方式,并不构成对于本申请技术方案的限定,实际应用中,两路第一充电电路104也可以直接连接至同第一控制器101,也即充电装置10中仅设置有一个第一控制器;或者,可以在充电装置10中同时设置两路第一DC/DC电路102,每路第一充电电路104连接对应的一路DC/DC电路102,此时两路第一DC/DC电路102可以共同连接一个第一电池103,或者分别连接不同的第一电池103。
关于充电装置10与电子设备20、电子设备30间实现通信的具体方式,可以参见以上实施例中的说明,在此不再赘述。
以上实施例中以耳机充电系统为例进行说明,当本申请提供的方案应用于其它的场景中,例如为智能手环或者智能手表进行充电的场景时,也即此时电子设备20还可以为智能手环或者智能手表,此时充电装置10一般仅设置一路第一充电电路104。
综上所述,利用本申请实施例提供的充电系统,能够实现对电子设备进行直充或倍压充电,并且实现了电子设备与充电装置之间的双向通信,通过双向通信能够实现双向在位检测与身份识别,并且避免了充电装置误判与电子设备断开连接,以及避免了电子设备误判与充电装置断开连接,提升了在位检测的可靠性与准确度。并且以上的实现方式,基于两个金属端子即可实现,也即仅需充电装置上包括两个充电端子,电子设备上包括两个受电端子,具有较高的集成度,不需要依赖于霍尔传感器、红外光传感器等期器件就能够实现检测效果,还降低了硬件成本。
基于以上实施例提供的充电装置和电子设备,本申请实施例还提供了一种通信方法,下面结合附图具体说明。
参见图17,该图为本申请实施例提供的一种通信方法的流程图。
该方法应用于充电装置,该方法包括以下步骤:
S1701:接收电子设备发送的第一调制信号,并向电子设备发送第一调制应答信号。
S1702:当需要发起与电子设备的通信时,向电子设备发送第二调制信号,第二调制信号中包括第一电压,第一电压用于使电子设备的第二充电电路与第二电池断开,并接收电子设备发送的第二调制应答信号。
参见图18,该图为本申请实施例提供的另一种通信方法的流程图。
该方法应用于电子设备,该方法包括以下步骤:
S1801:当需要发起与充电装置通信时,控制第二充电电路与第二电池断开,向充电装置发送第一调制信号,并接收充电装置发送的第一调制应答信号。
S1802:当接收到充电装置发送的第二调制信号时,根据第二调制信号中的第一电压控制第二充电电路与第二电池断开,并向充电装置发送第二调制应答信号。
当电子设备需要发起对充电装置的通信时,第二充电电路首先控制第二充电电路与第二电池之间的连接断开,以避免第二电池对线路上的电压和电流进行箝位。此时第二充电电路暂时停止对第二电池进行充电。
第二充电电路通过第一受电端子向充电装置发送第一调制信号,第一调制信号中 包括第一电流值,第一电流值用于指示充电装置此时电子设备发起了通信。
在充电装置和电子设备预先确定的通信协议中,预先明确该第一电流值表征的含义为此时电子设备发起了通信。
当充电装置的第一充电电路接收到该第一调制信号后,获取到该第一电流,也即确定电子设备发起了通信。第一充电电路根据预先确定的通信协议,通过第一充电端子向电子设备回复第一调制应答信号。
在一些实施例中,该第一电流位于第一调制信号的头部位置,当充电装置的第一充电电路接收到该第二调制信号时,首先接收到第一电流,第一充电电路即可确定电子设备发起了通信。
也即实现了由电子设备发起的与对充电装置的通信。
当充电装置需要发起对电子设备的通信时,第一充电电路通过第一充电端子向电子设备发送第二调制信号,该第二调制信号中包括第一电压,第一电压用于使电子设备的第二充电电路与第二电池断开,以避免第二电池对电压和电流进行箝位。
在一些实施例中,该第一电压位于第二调制信号的头部位置,当电子设备的第二充电电路接收到该第二调制信号时,首先接收到第一电压,以使第二充电电路202及时与第二电池断开连接。
第二充电电路然后根据第二调制信号,以及预先确定的通信协议,通过受电端子向充电装置回复第二调制应答信号。
电子设备的第二充电电路接收该第二调制应答信号。
也即实现了由充电装置发起的与对电子设备的通信。
可以理解的是,图17与图18中以上步骤的划分仅是为了方便说明,并不构成对于本申请技术方案的限定,实际应用中可以将充电系统配置为由电子设备主动向充电装置发起通信,或者由充电装置主动向电子设备发起通信,本申请实施例不作具体限定。
综上所述,本申请实施例提供的方法,充电装置在对电子设备进行直充或者倍压充电时,能够实现充电装置与电子设备之间的双向通信,且通信过程简单,实用性强。通过该通信方式,可以实现电子设备以及充电装置之间相互的身份认证,以及在位检测,而无需额外设置其他的检测传感器,因此还降低了硬件成本。
下面以电子设备为耳机,充电装置为耳机的充电盒为例具体说明充电盒实现耳机入盒检测方法。关于充电装置和电子设备的具体电路实现可以参见以上实施例中的说明,不再一一赘述。
参见图19,该图为本申请实施例提供的又一种通信方法的流程图。
该方法应用于充电装置,也即应用于耳机充电盒,包括以下步骤:
S1901:充电装置开盒。
S1902:通知第一控制器开盒。
S1903:确定第一充电电路的输出状态。
第一控制器确定第一充电电路的工作状态,当确定当前第一充电电路的输出状态 为通信状态时,也即第一充电电路利用调制信号与电子设备通信时,执行S1904;当检测到当前第一充电电路的输出为高阻态时,也即还未连接电子设备时,执行S1906;当检测到当前第一充电电路的工作状态为对电子设备进行充电时,执行S1905。
S1904:更新通信内容。
也即此时充电装置的第一充电电路,根据与电子设备预先确定的通信协议,控制第一调制解调电路对第一充电电路的输出电压进行调制,以生成第一调制应答信号或者生成第二调制信号,并发送至电子设备。
S1905:控制第一控制器的第二通信接口连接充电端子。
此时第一控制器需要与电子设备的第二控制器通信。
在第一控制器需要与电子设备的第二控制器的通信过程中,第一充电电路中的第一开关模块的第二端和第一开关模块的第三端接通,以使第一控制器的第二通信接口,也即第一控制器的UART接口接入电路,此时第二DC/DC电路的输出端未连接充电端子,也即充电装置暂时停止对电子设备进行充电。
在一些实施例中,第一控制器接收第二控制器发送的第一充电参数,并将第一充电参数发送至第一状态机,以使第一状态机根据第一充电参数控制第二DC/DC电路。该第一参数信息包括第二电池的充电电流和充电电压。
在另一些实施例中,第一控制器接收第二控制器发送的第二电池的电压信息,并根据该第二电池的电压信息确定第二电池对应的第一充电参数,第一充电参数包括第二电池对应的充电电压和充电电流,并将第一充电参数发送至第一状态机,以使第一状态机根据第一充电参数控制第二DC/DC电路。
第一控制器需要与电子设备的第二控制器的通信过程中,第一控制器还可以向第二控制器发送当前充电装置的输出参数,例如输出电压和输出电流。
S1906:输出预设电压。
在一些实施例中,充电装置被配置为,开盒未连接电子设备时,输出端为高阻态,此时输出预设电压,或者按照预设周期输出预设电压以降低功耗。
通过以上配置,充电装置开盒后,输出预设电压以触发耳机接收到充电装置的输出后发送握手信号。
S1907:等待电子设备发送握手信号。
当电子设备入盒后,受电端子与充电装置的充电电子连接,电子设备接触到合适的输入电压后,主动发送握手信号,也即该第一调制信号。此时,电子设备中的调制电流源产生电流脉冲信号以形成特征字符串。
充电装置的第一调制解调电路对获取的调制信号进行解调,并将解调结果发送至第一状态机。第一状态机判断第一特征字符串是否为第一预设特征字符串,如果是,则表征此时接收到满足通信协议的字符串,确定此时电子设备已经连接,则执行S1909。
当第一状态机判断第一特征字符串不为第一预设特征字符串,或者第一调制解调电路对第一调制信号解调失败时,确定身份认证的结果为电子设备与充电装置不匹配,此时第一状态机控制第一调制解调电路不对第一充电电路的输出电压进行调制,也即 不发送第一调制应答信号。
如果电子设备在充电之前,第二电池发生了过放,为了保护第二电池,需要先对第二电池进行涓流充电一段时间。
电子设备的第二状态机,此时控制第二调制解调电路对第二充电电路的输入电流进行调制,以使调制后的电流中包括了预设脉冲信号,并将该预设脉冲信号发送至充电装置。该预设脉冲信号可以参见图14,在此不再赘述。
充电装置的第一调制解调电路对接收到的调制信号进行解调,并将解调结果发送至第一状态机。第一状态机当确定电子设备向充电装置发送预设脉冲信号时,确定电子设备与充电装置连接正常,该预设脉冲信号即为涓流充电握手信号,则执行S1908。
S1908:维持输出,上报中断,刷新耳机在位寄存器。
第一状态机当确定电子设备向充电装置发送预设脉冲信号时,维持当前第二DC/DC电路的工作状态,并向第一控制器发送第五中断信号,该第五中断信号用于指示第一控制器当前电子设备处于涓流充电状态。
在一些实施例中,耳机在位寄存器与第一控制器集成在一起。耳机在位寄存器可以通过耳机在位标识在指示第一控制器当前耳机是否在位,例如耳机在位标识为1,指示耳机在位,耳机在位标识为0,指示耳机不在位,则此时耳机在位标识刷新后置位为1;或者耳机在位标识为0,指示耳机在位,耳机在位标识为1,指示耳机不在位,则此时耳机在位标识刷新后置位为0。
S1909:上报中断,置位耳机在位寄存器,开始进行在位检测。
第一状态机当确定电子设备向充电装置发送正常的握手信号时,也即第一调制信号或第二调制应答信号时,确定耳机在位。此时若耳机在位标识为1,指示耳机在位,耳机在位标识为0,指示耳机不在位,则耳机在位标识刷新后置位为1;若耳机在位标识为0,指示耳机在位,耳机在位标识为1,指示耳机不在位,则此时耳机在位标识刷新后置位为0。
S1910:控制第一控制器的第二通信接口连接充电端子,停止在位检测。
也即第一控制器的UART接口接入电路,第一控制器准备和电子设备的第二控制器进行通信。
S1911:向耳机发送开盒信息。
S1912:完成电子设备的在位检测以及机盒通信。
下面具体说明耳机实现入盒检测方法。
参见图20,该图为本申请实施例提供的再一种通信方法的流程图。
该方法应用于电子设备,也即应用于耳机,包括以下步骤:
S2001:耳机入盒。
S2002:检测到输入电压。
由于充电装置被配置为开盒后自动输出预设电压,因此耳机入盒后,第二充电电路即可连接输入电压。
S2003:第二电池的电压是否足够。
电子设备的第二控制器判断第二电池的电压是否足够,若是,则表明此时第二电池可以进行直充或者倍压充电,执行S2005;否则,标表示此时第二电池在入盒前发生了过放,为了保护第二电池,需要先对第二电池进行涓流充电一段时间,执行S2004。
S2004:发送涓流充电握手信号。
涓流充电握手信号,也即预设脉冲信号,可以参见图14所示的实现方式。
S2005:发送握手信号。
该握手信号也即第一调制信号。
在一些实施例中,电子设备也可以对充电装置发送的第二调制信号进行应答,也即向充电装置发送第二调制应答信号。
S2006:等待充电装置回复应答信号。
若无回复,表明充电装置的第一状态机判断解调结果中的第一特征字符串,与预先确定的通信协议中的第一预设特征字符串并不一致,也即电子设备与充电装置不匹配,执行S2007。
若有回复,则表明电子设备的身份认证通过,此时收到的充电装置发送的应答信号与预先确定的协议相关,本申请不作具体限定,然后执行S2006。
S2007:维持LDO模式,上报连接了不匹配的充电装置。
由于电子设备与充电装置不匹配,因此维持LDO模式,避免第二电池输入电压过大而损坏第二电池,电子设备的第二状态机然后通知第二控制器当前连接了不匹配的充电装置。
S2008:上报中断,置位充电装置在位寄存器。
当第一状态机接收导充电装置的应答信号后,确定当前连接了匹配的充电装置,向电子设备的第一控制器发送第三中断信号,该第三中断信号用于指示电子设备当前已经与充电装置连接。
在一些实施例中,充电装置在位寄存器与第二控制器集成在一起。充电装置在位寄存器可以通过充电装置在位标识在指示第二控制器当前充电装置是否在位,例如充电装置在位标识为1,指示充电装置在位,充电装置在位标识为0,指示充电装置不在位,则此时充电装置在位标识刷新后置位为1;或者充电装置在位标识为0,指示充电装置在位,充电装置在位标识为1,指示充电装置不在位,则此时充电装置在位标识刷新后置位为0。
S2009:完成入盒检测。
S2010:接收到连接第二控制器的第二通信接口的请求。
也即此时充电装置的第一控制器发起了对第二控制器的主动通信。
S2011:向充电装置回复应答信号。
该应答信号表征电子设备允许将第二控制器的第二通信接口接入,第一控制器可以准备进行通信、
S2012:将第二控制器的第二通信接口接入受电端子。
S2013:完成入盒交互。
第二控制器的第二通信接口接入后,第一控制器与第二控制器进行通信。
下面说明充电盒实现耳机出盒检测的方法。
参见图21,该图为本申请实施例提供的另一种通信方法的流程图。
该方法在完成电子设备的在位检测以及机盒通信,也即完成S1912后,还包括以下步骤:
S1913:按照需求输出电压和电流。
第一控制器通过与第二控制器进行信息交互,确定了第二电池对应的第一充电参数,也即第二电池的充电电流与充电电压。第一控制器将第一充电参数发送至第一状态机,以使第一状态机根据第一充电参数控制第二DC/DC电路。
在第一充电电路中设置有控制环路,控制环路包括电压环和电流环,控制环路的输入量包括检测的充电端子的输出电流,以及检测的充电端子的输出电压。
将检测的充电端子的输出电压和第一充电参数中的充电电压进行比较,根据电压比较结果控制充电端子的输出电压与所述充电电压一致,进而实现电压环的闭环控制;将检测的充电端子的输出电流和第一充电参数中的充电电流进行比较,根据电流比较结果控制输出电流与充电电流一致,进而实现电流环的闭环控制,进而能够按照第二电池的充电需求输出电压和电流。
S1914:第一控制器结束通过第二通信接口进行的通信。
S1915:打开在位检测。
S1916:进行充电或进行通信。
当进行通信时,具体如果为响应耳机的请求进行通信,则执行S1917;具体如果为主动请求进行通信,则执行S1918。
当进行充电时,继续执行S1922。
S1917:收到耳机侧的通信请求。
也即耳机的第二控制器主动发起了对第一控制器的通信请求。
S1918:上报中断,第一控制器的第二通信接口连接充电端子,停止在位检测。
在一些实施例中,S1917中的耳机侧的通信请求可以携带在耳机发送中第一调制信号中,第一充电电路的第一调制解调电路解调第一调制信号后,将解调结果发送至第一状态机,第一状态机根据解调结果判断第二控制器需要与第一控制器进行通信,然后第一状态机向第一控制器上报中断,以使第一控制器的第二通信接口接入,也即第一控制器的UART接口接入电路,与第二控制器进行通信。
S1919:结束通信。
S1920:通信异常。
由与耳机取出,充电端子与受电端子之间的连接中断,会引起的通信中断。
S1921:打开在位检测。
S1922:通过在位检测确定耳机断开连接。
充电装置中可以设置有第一比较器,第一比较器用于将充电装置的输出电流和预设电流进行比较,并将获取的第一比较结果发送至第一状态机。
第一状态机当根据第一比较结果确定充电装置输出电流小于预设电流时,确定耳机断开连接。
S1923:上报中断,刷新耳机在位寄存器。
第一状态机向第一控制器发送第二中断信号,该第二中断信号用于指示第一控制器电子设备与充电装置断开连接。
刷新耳机在位寄存器。对于耳机在位寄存器,当耳机在位标识为1,指示耳机在位,耳机在位标识为0,指示耳机不在位时,则此时耳机在位标识刷新后置位为0;或者耳机在位标识为0,指示耳机在位,耳机在位标识为1,指示耳机不在位,则此时耳机在位标识刷新后置位为1。
S1924:第一控制器读取耳机在位寄存器的状态。
也即第一控制器读取耳机在位寄存器的耳机在位标识,确定当前耳机不在位。
S1925:完成耳机的出盒检测。
在一些实施例中,当耳机进行涓流充电或者满电后仍然连接充电盒时,充电装置的输出电流较小,为了避免充电盒误判耳机出盒,耳机被配置为向充电装置发送预设脉冲信号,此时该方法还包括:
第一状态机当确定电子设备向充电装置发送预设脉冲信号时,维持当前第二DC/DC电路的工作状态,并向第一控制器发送第五中断信号,第五中断信号用于指示当前电子设备处于满电状态或涓流充电状态。
下面说明耳机实现出盒检测的方法。
参见图22,该图为本申请实施例提供的又一种通信方法的流程图。
该方法在耳机实现上报终端,置位耳机在位寄存器,也即实现S2008之后,还包括以下步骤:
S2101:开始进行在位检测。
S2102:确定进行充电或者进行通信。
当确定进行通信时,执行S2103;
当确定进行充电时,执行S2106。
S2103:第二控制器的第二通信接口连接受电端子。
也即第二控制器的UART接口接入电路。
S2104:结束通信。
S2105:通信中断,输入降低。
当耳机从充电盒中取出时,充电端子与受电端子断开连接,此时通信中断,并且耳机的第二充电电路的输入电压降低至零。
S2106:确定耳机断开连接。
耳机侧包括第二比较器,第二比较器用于将电子设备的输人电压和预设电压进行比较,并将获取的第二比较结果发送至第二状态机。
第二比较器当根据第二比较结果确定输入电压小于预设电压时,确定电子设备断开与充电装置的连接。
S2107:上报中断,刷新耳机在位寄存器。
第二比较器当根据第二比较结果确定输入电压小于预设电压时,向第二控制器发送第四中断信号,第四中断信号用于指示第二控制器电子设备与充电装断开连接。
刷新充电装置在位寄存器。对于充电装置在位寄存器,当充电装置在位标识为1,指示充电装置在位,充电装置在位标识为0,指示充电装置不在位时,则此时充电装置在位标识刷新后置位为0;或者充电装置在位标识为0,指示充电装置在位,充电装置在位标识为1,指示充电装置不在位,则此时充电装置在位标识刷新后置位为1。
S2108:第二控制器读取耳机在位寄存器的状态。
第二控制器读取充电装置在位寄存器中的在位标识,确定当前充电装置不在位。
S2109:完成出盒检测。
在一些实施例中,存在充电装置由于过流、过温,或者其他原因突然输出断电情况,导致电子设备的输入电压为零,因此电子设备可能会误判出盒,因此该方法还包括:
第二状态机根据第二比较结果确定输入电压小于预设电压时,控制第二调制解调电路向受电端子发送电流检测信号,当受电端子的电压在预设时间内超过预设阈值电压时,向第二控制器发送第四中断信号,第四中断信号用于指示第二控制器电子设备与充电装置断开连接,否则,在另一些实施例中,可以向第二控制器发送第六中断信号,第六中断信号用于指示第二控制器当前电子设备与充电装置断开连接。
可以理解的是,本申请实施例以上步骤的划分仅是为了方便说明,并不构成对于本申请技术方案的限定,实际应用中,本领域技术人员可以在以上方法的技术上进行调整与简化,得到的实现方式仍然属于本申请的保护范围。
综上所述,利用本申请实施例提供的通信方法,能够使充电装置支持对电子设备进行直充或倍压充电时,实现充电装置与电子设备之间的双向通信。该双向通信可以用于实现双向的在位识别以及身份认证,并且避免了充电装置误判与电子设备断开连接,以及避免了电子设备误判与充电装置断开连接,提升了在位检测的可靠性与准确度,并且以上的实现方式具有较高的集成度,不需要依赖于霍尔传感器、红外光传感器等器件,还降低了硬件成本。
本申请实施例还提供了一种芯片,应用于以上实施例提供的充电装置,下面结合附图具体说明。
参见图23,该图为本申请实施例提供的一种芯片的示意图。
芯片2300集成有第一充电电路,芯片2300包括:输入端口Input1和输出端口Output1。
其中,输入端口Input1为第一充电电路的输入端,用于连接第一DC/DC电路。
输出端口Output1为第一充电电路的输出端,用于连接充电端子。
进一步的,芯片2300还包括用于和第一控制器101的I/O接口进行通信的接口、用于和第一控制器101的IIC接口进行通信的接口以及用于和第一控制器101的UART 接口进行通信的接口
第一充电电路,用于接收电子设备发送的第一调制信号,并解调第一调制信号,当解调结果中包括第一电流时,向电子设备发送第一调制应答信号,第一电流用于标识电子设备向充电装置发起通信;或者,向电子设备发送第二调制信号,接收电子设备发送的第二调制应答信号,并解调第二调制应答信号,第二调制信号中包括第一电压,第一电压用于使电子设备的第二充电电路与第二电池断开。
本申请实施例还提供了另一种芯片,应用于以上实施例提供的电子设备,下面结合附图具体说明。
参见图24,该图为本申请实施例提供的另一种芯片的示意图。
芯片集成有所述第二充电电路,所述芯片包括:输入端口Input2和输出端口Output2。
输入端口Input2为第二充电电路的第一端连接受电端子。
输出端口Input2为第二充电电路的第二端连接第二电池,用于为第二电池充电。
第二充电电路,用于断开与第二电池之间的连接,并向充电装置发送第一调制信号,接收充电装置发送的第一调制应答信号,并解调第一调制应答信号,第一调制信号中包括第一电流,第一电流用于标识电子设备向充电装置发起了通信;或者,接收充电装置发送的第二调制信号,并解调第二调制信号,当解调结果中包括第一电压时,断开与第二电池之间的连接,并向充电装置发送第二调制应答信号。
进一步的,芯片2400还包括用于和第二控制器201的I/O接口进行通信的接口、用于和第二控制器201的IIC接口进行通信的接口、用于和第二控制器201的UART接口进行通信的接口以及用于为第二控制器供电的接口。
本申请以上实施例中的第一控制器和第二控制器可以为专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Programmable Logic Device,PLD)、数字信号处理器(Digital Signal Processor,DSP)或其组合。上述PLD可以是复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)、现场可编程逻辑门阵列(Field-programmable Gate Array,FPGA)、通用阵列逻辑(Generic Array Logic,GAL)或其任意组合,本申请实施例不作具体限定。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元及模块可以是或者 也可以不是物理上分开的。另外,还可以根据实际的需要选择其中的部分或者全部单元和模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (27)

  1. 一种充电装置,其特征在于,所述充电装置用于对电子设备进行充电,所述充电装置包括:第一DC/DC电路、第一充电电路、第一电池和充电端子;
    所述第一DC/DC电路,用于利用输入的直流电为所述第一电池充电,以及向所述第一充电电路的输入端输出直流电;
    所述第一充电电路的输出端连接所述充电端子;
    所述第一充电电路,用于接收所述电子设备发送的第一调制信号,并向所述电子设备发送第一调制应答信号,所述第一电流用于标识所述电子设备向所述充电装置发起通信;向所述电子设备发送第二调制信号,接收所述电子设备发送的第二调制应答信号,所述第二调制信号中包括第一电压,所述第一电压用于使所述电子设备的第二充电电路与第二电池断开。
  2. 根据权利要求1所述的充电装置,其特征在于,所述第一调制信号和所述第二调制应答信号为电流调制信号,所述第一调制应答信号和所述第二调制信号为电压调制信号。
  3. 根据权利要求1或2所述的充电装置,其特征在于,所述第一电压小于所述电子设备的第一保护电路的第一触发电压;所述第一保护电路用于当所述第二充电电路向所述第二电池输出的充电电压小于所述第一触发电压时,控制所述第二充电电路与第二电池断开。
  4. 根据权利要求1或2所述的充电装置,其特征在于,所述第一电压大于或等于所述电子设备的第二保护电路的第二触发电压;所述第二保护电路用于当所述第二充电电路向所述第二电池输出的充电电压大于或等于所述第二触发电压时,控制所述第二充电电路与第二电池断开。
  5. 根据权利要求1至4中任一项所述的充电装置,其特征在于,所述第一充电电路具体包括:第一状态机和第一调制解调电路;
    所述第一调制解调电路与所述第一状态机连接;
    所述第一调制解调电路,用于对获取的调制信号进行解调,并将解调结果发送至所述第一状态机;
    所述第一状态机,用于当根据所述第一调制信号对应的解调结果确定所述电子设备连接时,控制所述第一调制解调电路对所述第一充电电路的输出电压进行调制,以形成所述第一调制应答信号。
  6. 根据权利要求5所述的充电装置,其特征在于,所述解调结果还包括第一特征字符串;
    所述第一充电电路,具体用于当所述第一特征字符串为第一预设特征字符串时,确定所述电子设备的在位识别的结果为在位,向所述电子设备发送携带有所述在位识别结果的第一调制应答信号,所述第一调制应答信号的解调结果中包括第二特征字符串。
  7. 根据权利要求5或6所述的充电装置,其特征在于,所述第一状态机,用于当 第一调制解调电路解调失败,或者,根据所述第一调制信号对应的解调结果对所述电子设备进行身份识别,当所述身份识别的结果为所述电子设备与所述充电装置匹配时,控制所述第一调制解调电路对所述第一充电电路的输出电压进行调制,以形成所述第一调制应答信号;当所述身份识别的结果为所述电子设备与所述充电装置不匹配时,控制所述第一调制解调电路停止对所述第一充电电路的输出电压进行调制。
  8. 根据权利要求5至7中任一项所述的充电装置,其特征在于,所述充电装置还包括第一控制器;
    所述第一控制器的第一通信接口与所述第一状态机连接;
    所述第一状态机,还用于若确定所述电子设备在位,向所述第一控制器的第一通信接口发送第一中断信号,所述第一中断信号用于指示所述电子设备在位。
  9. 根据权利要求5至8中任一项所述的充电装置,其特征在于,所述第一状态机,还用于若根据所述解调结果确定所述电子设备向所述充电装置发送预设脉冲信号,则确定所述电子设备与所述充电装置连接正常。
  10. 根据权利要求9所述的充电装置,其特征在于,所述第一状态机,还用于当确定所述电子设备向所述充电装置发送预设脉冲信号时,维持当前所述第二DC/DC电路的工作状态,并向所述第一控制器发送第五中断信号,所述第五中断信号用于指示当前所述电子设备处于满电状态或涓流充电状态。
  11. 根据权利要求1所述的充电装置,其特征在于,所述第二调制信号和所述第一调制应答信号中还包括所述充电装置的输出参数;
    所述输出参数包括以下中的至少一项:
    所述输出电流或输出电压。
  12. 一种电子设备,其特征在于,所述电子设备包括:第二充电电路、第二电池和受电端子;
    所述受电端子,用于连接充电装置的充电端子并接受所述充电端子输出的直流电;
    所述第二充电电路的第一端连接所述受电端子,所述第二充电电路的第二端连接所述第二电池,所述充电端子输出的电压与所述第二充电电路向所述第二电池输出的充电电压一致或者具有预设倍数关系;
    所述第二充电电路,用于控制所述第二充电电路与所述第二电池断开,向所述充电装置发送第一调制信号,接收所述充电装置发送的第一调制应答信号,并解调所述第一调制应答信号,所述第一调制信号中包括第一电流,所述第一电流用于标识所述电子设备向所述充电装置发起了通信;或者,接收所述充电装置发送的第二调制信号,并解调所述第二调制信号,当解调结果中包括第一电压时,断开所述第二充电电路与所述第二电池之间的连接,并向所述充电装置发送第二调制应答信号。
  13. 根据权利要求12所述的电子设备,其特征在于,所述第一调制信号和所述第二调制应答信号为电流调制信号,所述第一调制应答信号和所述第二调制信号为电压调制信号。
  14. 根据权利要求13所述的电子设备,其特征在于,所述电子设备还包括:第一 保护电路;
    所述第一保护电路用于当所述第二充电电路向所述第二电池输出的充电电压小于所述第一触发电压时,控制所述第二充电电路与第二电池断开;
    所述第一电压小于所述第一触发电压。
  15. 根据权利要求13所述的电子设备,其特征在于,所述电子设备还包括:第二保护电路;
    所述第二保护电路用于当所述第二充电电路向所述第二电池输出的充电电压大于或等于所述第二触发电压时,控制所述第二充电电路与第二电池断开;
    所述第一电压大于或等于所述第二触发电压。
  16. 根据权利要求12至15中任一项所述的电子设备,其特征在于,所述第二充电电路具体包括:第二状态机和第二调制解调电路;
    所述第二状态机与所述第二调制解调电路连接;
    所述第二调制解调电路,用于对获取的调制信号进行解调,并将解调结果发送至所述第二状态机;
    所述第二状态机,用于控制所述第二调制解调电路对所述第二充电电路的输入电流进行调制,以形成所述第一调制信号,所述第一调制信号中携带第一特征字符串,以及根据所述第一调制应答信号对应的解调结果确定所述电子设备与所述充电装置是否连接。
  17. 根据权利要求16所述的电子设备,其特征在于,所述解调结果还包括第二特征字符串;
    所述第二充电电路,具体用于当所述第二特征字符串为第二预设特征字符串时,确定所述电子设备与所述充电装置连接。
  18. 根据权利要求16所述的电子设备,其特征在于,所述第二充电电路,用于当未接收到所述第一调制应答信号时,确定所述电子设备与所述充电装置不匹配。
  19. 根据权利要求16至18中任一项所述的电子设备,其特征在于,所述电子设备还包括第二控制器;
    所述第二控制器的第一通信接口与所述第二状态机连接;
    所述第二状态机,还用于若确定所述电子设备与所述充电装置连接,向所述第二控制器的第一通信接口发送第三中断信号,所述第三中断信号用于指示所述电子设备与所述充电装置连接。
  20. 根据权利要求19所述的电子设备,其特征在于,所述电子设备还包括第二比较器;
    所述第二比较器,用于将所述第二充电电路的输入电压和预设电压进行比较,并将获取的第二比较结果发送至所述第二状态机;
    所述第二状态机,还用于当根据所述第二比较结果确定所述输入电压小于所述预设电压时,控制所述第二调制解调电路向所述受电端子发送电流检测信号,当所述受电端子的电压在预设时间内超过预设阈值电压时,向所述第二控制器发送第四中断信 号,所述第四中断信号用于指示所述第二控制器所述电子设备与所述充电装置断开连接。
  21. 根据权利要求20所述的电子设备,其特征在于,所述第二状态机,还用于当所述电子设备处于满电状态或涓流充电状态时,控制所述第二调制解调电路对所述第二充电电路的输入电流进行调制,以形成预设脉冲信号,并将所述预设脉冲信号发送至所述充电装置。
  22. 根据权利要求12所述的电子设备,其特征在于,所述第一调制信号和所述第二调制应答信号中还包括所述电子设备的充电参数;
    所述充电参数包括以下中的至少一项:
    所述第二电池对应的充电电流、所述第二电池对应的充电电压或所述第二电池的电压。
  23. 一种充电系统,其特征在于,所述充电系统包括充电装置和电子设备,所述充电装置用于为所述电子设备充电;所述充电装置包括第一DC/DC电路、第一充电电路、第一电池和充电端子;所述第一DC/DC电路,用于利用输入的直流电为所述第一电池充电,以及向所述第一充电电路的输入端输出直流电;所述第一充电电路的输出端连接所述充电端子;所述电子设备包括:第二充电电路、第二电池和受电端子;所述受电端子,用于连接充电装置的充电端子并接受所述充电端子输出的直流电;所述第二充电电路的第一端连接所述受电端子,所述第二充电电路的第二端连接所述第二电池,所述充电端子输出的电压与所述第二充电电路向所述第二电池输出的充电电压一致或者具有预设倍数关系;
    所述第二充电电路,用于断开所述与所述第二电池之间的连接,向所述充电装置发送第一调制信号,接收所述充电装置发送的第一调制应答信号,并解调所述第一调制应答信号,所述第一调制信号中包括第一电流,所述第一电流用于标识所述电子设备向所述充电装置发起了通信;或者,接收充电装置发送的第二调制信号,并解调所述第二调制信号,当所述第二调制信号的解调结果中包括第一电压时,断开与所述第二电池之间的连接,并向所述充电装置发送第二调制应答信号;
    所述第一充电电路,用于接收电子设备发送的第一调制信号,并解调所述第一调制信号,当解调结果中包括第一电流时,向所述电子设备发送第一调制应答信号;或者,向所述电子设备发送第二调制信号,接收所述电子设备发送的第二调制应答信号,并对所述第二调制应答信号进行解调,所述第二调制信号中包括第一电压,所述第一电压用于使所述电子设备的第二充电电路与第二电池断开。
  24. 一种通信方法,其特征在于,应用于充电装置,所述充电装置包括第一DC/DC电路、第一充电电路、第一电池和充电端子;所述第一DC/DC电路,用于利用输入的直流电为所述第一电池充电,以及向所述第一充电电路的输入端输出直流电;所述第一充电电路的输出端连接所述充电端子;
    所述通信方法包括:
    所述第一充电电路接收电子设备发送的第一调制信号,并解调所述第一调制信号; 当解调结果中包括第一电流时,向所述电子设备发送第一调制应答信号,所述第一电流用于标识所述电子设备向所述充电装置发起通信;或者,所述第一充电电路向所述电子设备发送第二调制信号,所述第二调制信号中包括第一电压,所述第一电压用于使所述电子设备的第二充电电路与第二电池断开;所述第一充电电路接收所述电子设备发送的第二调制应答信号,并对所述第二调制应答信号进行解调。
  25. 一种通信方法,其特征在于,应用于电子设备,所述电子设备包括第二充电电路、第二电池和受电端子;所述受电端子,用于连接充电装置的充电端子,并接受所述充电端子输出的电压;所述第二充电电路的第一端连接所述受电端子,所述第二充电电路的第二端连接所述第二电池,所述充电端子输出的电压与所述第二充电电路向所述第二电池输出的充电电压一致或者具有预设倍数关系;
    所述通信方法包括:
    断开所述第二充电电路与所述第二电池之间的连接;
    所述第二充电电路向所述充电装置发送第一调制信号,所述第一调制信号中包括第一电流,所述第一电流用于标识所述电子设备向所述充电装置发起了通信;所述第二充电电路接收所述充电装置发送的第一调制应答信号,并对所述第一调制应答信号进行解调;或者,
    所述第二充电电路接收充电装置发送的第二调制信号,并对所述第二调制信号进行解调,当解调结果中包括第一电压时,断开所述第二充电电路与所述第二电池之间的连接,并向所述充电装置发送第二调制应答信号。
  26. 一种芯片,其特征在于,所述芯片集成有第一充电电路,所述芯片包括:输入端口和输出端口;
    所述输入端口为所述第一充电电路的输入端,用于连接充电装置的第一DC/DC电路的输出端;
    所述输出端口为所述第一充电电路的输出端,用于连接充电端子;
    所述第一充电电路,用于接收电子设备发送的第一调制信号,并解调所述第一调制信号,当解调结果中包括第一电流时,向所述电子设备发送第一调制应答信号,所述第一电流用于标识所述电子设备向所述充电装置发起通信;或者,向所述电子设备发送第二调制信号,接收所述电子设备发送的第二调制应答信号,并解调所述第二调制应答信号,所述第二调制信号中包括第一电压,所述第一电压用于使所述电子设备的第二充电电路与第二电池断开。
  27. 一种芯片,其特征在于,所述芯片集成有第二充电电路,所述芯片包括:输入端口和输出端口;
    所述输入端口为所述第二充电电路的第一端,用于连接受电端子;
    所述输出端口为所述第二充电电路的第二端,用于连接电子设备的第二电池;
    所述第二充电电路,用于断开所述与所述第二电池之间的连接,并向所述充电装置发送第一调制信号,接收所述充电装置发送的第一调制应答信号,并解调所述第一调制应答信号,所述第一调制信号中包括第一电流,所述第一电流用于标识所述电子 设备向所述充电装置发起了通信;或者,接收充电装置发送的第二调制信号,并解调所述第二调制信号,当解调结果中包括第一电压时,断开与所述第二电池之间的连接,并向所述充电装置发送第二调制应答信号。
PCT/CN2023/080675 2022-03-15 2023-03-10 一种充电装置、电子设备、通信方法及充电系统 WO2023174164A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210253929 2022-03-15
CN202210253929.X 2022-03-15
CN202210600786.5A CN116799891A (zh) 2022-03-15 2022-05-30 一种充电装置、电子设备、通信方法及充电系统
CN202210600786.5 2022-05-30

Publications (1)

Publication Number Publication Date
WO2023174164A1 true WO2023174164A1 (zh) 2023-09-21

Family

ID=88022222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080675 WO2023174164A1 (zh) 2022-03-15 2023-03-10 一种充电装置、电子设备、通信方法及充电系统

Country Status (1)

Country Link
WO (1) WO2023174164A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110572736A (zh) * 2019-09-20 2019-12-13 歌尔科技有限公司 无线耳机、充电盒及无线耳机充电系统
CN113141556A (zh) * 2020-01-17 2021-07-20 Oppo广东移动通信有限公司 一种通讯方法、系统以及存储介质
CN113991762A (zh) * 2020-07-27 2022-01-28 华为技术有限公司 充电装置、电子设备、充电系统及充电方法
CN114172218A (zh) * 2020-09-10 2022-03-11 华为技术有限公司 一种电子设备、充电装置、控制方法及通讯系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110572736A (zh) * 2019-09-20 2019-12-13 歌尔科技有限公司 无线耳机、充电盒及无线耳机充电系统
CN113141556A (zh) * 2020-01-17 2021-07-20 Oppo广东移动通信有限公司 一种通讯方法、系统以及存储介质
CN113991762A (zh) * 2020-07-27 2022-01-28 华为技术有限公司 充电装置、电子设备、充电系统及充电方法
CN114172218A (zh) * 2020-09-10 2022-03-11 华为技术有限公司 一种电子设备、充电装置、控制方法及通讯系统

Similar Documents

Publication Publication Date Title
US9899848B2 (en) Mobile terminal, DC-charging power source adaptor, and charging method
CN101335470B (zh) 送电控制装置、送电装置、无触点电力传输系统及电子设备
US7489102B2 (en) Battery charger that identifies portable device type and rechargeable battery type and method
US20100264875A1 (en) Intelligent device and power source interaction
CN105140985A (zh) 移动终端、可直充电源适配器及充电方法
US20160336779A1 (en) Charging Method, Alternating Current Adaptor, Charging Management Device and Terminal
CN104993562A (zh) 可直充电源适配器
CN113991762A (zh) 充电装置、电子设备、充电系统及充电方法
CN211480942U (zh) 一种电源适配器
CN114243871B (zh) 充放电电路、电子设备及电子系统
CN218974478U (zh) 负载检测电路、供电设备及电子装置
CN211405512U (zh) 适配器
US8810207B2 (en) Communication systems and methods for transmitting communications between a charge system and an AC adapter
WO2023174164A1 (zh) 一种充电装置、电子设备、通信方法及充电系统
EP3972072B1 (en) Adapter and battery pack and adapter combination
CN116799891A (zh) 一种充电装置、电子设备、通信方法及充电系统
CN217822945U (zh) 电池包及电动工具系统
US11824368B1 (en) Fast charging device with multiple intelligent terminals and charging method thereof
CN221042352U (zh) 转接件及太阳能发电模块
CN214850615U (zh) 一种给cpe及小基站供电的装置
CN220544747U (zh) 一种带可充电电池的收音装置
CN213693208U (zh) 充电系统及配售终端
CN220586025U (zh) 一种功率分配电路及具有其的供电设备
CN219477600U (zh) 一种移动式智能合环装置
CN112769177B (zh) 电源适配器、电子设备、充电系统和充电方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769668

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023769668

Country of ref document: EP

Effective date: 20240820