WO2023174154A1 - 通信方法、装置和系统 - Google Patents

通信方法、装置和系统 Download PDF

Info

Publication number
WO2023174154A1
WO2023174154A1 PCT/CN2023/080536 CN2023080536W WO2023174154A1 WO 2023174154 A1 WO2023174154 A1 WO 2023174154A1 CN 2023080536 W CN2023080536 W CN 2023080536W WO 2023174154 A1 WO2023174154 A1 WO 2023174154A1
Authority
WO
WIPO (PCT)
Prior art keywords
network element
smf network
target
smf
upf
Prior art date
Application number
PCT/CN2023/080536
Other languages
English (en)
French (fr)
Inventor
夏林瑾
尤正刚
姜传奎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210967015.XA external-priority patent/CN116801227A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023174154A1 publication Critical patent/WO2023174154A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/10Flow control between communication endpoints
    • H04W28/12Flow control between communication endpoints using signalling between network elements

Definitions

  • the embodiments of the present application relate to the field of communication, and more specifically, to a communication method, device and system.
  • the service contracted by the user equipment is in the home place, and the contracted home service is deployed in the local area network.
  • the UE moves from its home place to the access place, such as moving across provinces to the visited province, the location of the UE in the access place is no longer within the service area of the session management function (SMF) network element where the UE subscribes to the service.
  • the public network is unreachable, resulting in the UE being unable to continue to access the local area network services where the contracted service is located at the access location.
  • SMF session management function
  • Embodiments of the present application provide a communication method, device and system, so that when the UE moves out of the location where the contracted service is located, it can still continue to access the local area network service where the contracted service is located.
  • a communication method is provided. The method is applied to a first SMF network element.
  • the first SMF network element is deployed at a UE access location.
  • the first SMF network element does not support the target data network access identifier DNAI.
  • the target DNAI is the access identifier of the data network where the UE subscribes to the service.
  • the method includes: sending the target DNAI to the access and mobility management function AMF network element, and the target DNAI is used to determine the address of the second SMF network element.
  • the second SMF network element is deployed at the location where the UE subscribes to the service; receives one or more DNAIs supported by the second SMF network element and sent by the second SMF network element, and one or more DNAIs supported by the second SMF network element. includes the target DNAI; and sends the target DNAI to the second SMF network element.
  • the target DNAI in the embodiment of this application can be the access identifier of the local area network where the UE subscribes to the service.
  • the first SMF network element does not support the target DNAI, which means that the first SMF network element does not support the local area network corresponding to the UE's subscription service. DNAI.
  • the current location of the UE is not within the service area of the SMF network element where the UE's subscription service is located (that is, the UE's subscription service and the UE's current location are not in the same SMF POOL), but it still needs to access the UE's subscription service Local area network business.
  • the first SMF network element sends the target DNAI to the AMF network element, and the target DNAI is used to determine the second
  • the address of the SMF network element enables the AMF network element to determine the address of the second SMF network element based on the target DNAI after receiving the target DNAI.
  • the connection between the first SMF network element and the second SMF network element can be established, so that the first SMF network element and the second SMF network element can communicate independently.
  • the first SMF network element can negotiate autonomously in the following manner: the first SMF network element can receive one or more DNAIs supported by the second SMF network element and sent by the second SMF network element. Each DNAI includes the target DNAI; the first SMF network element sends the target DNAI to the second SMF network element.
  • the first SMF network element can determine whether the target DNAI is based on the intersection of the one or more DNAIs and the target DNAI. Supported by the second SMF network element.
  • the first SMF network element deployed at the UE access location when the first SMF network element deployed at the UE access location does not support the target DNAI, the first SMF network element can send the target DNAI to the AMF network element, so that the AMF network element can use the target DNAI according to the target DNAI.
  • the first SMF network element and the second SMF network element can establish contact and interact. During the interaction, the first SMF network element can learn about the second SMF network element.
  • the SMF network element is the SMF network element corresponding to the target DNAI, and negotiates with it to determine the target DNAI that the UE needs to access (that is, the first SMF network element first receives one or more DNAIs supported by the second SMF network element sent by the second SMF network element; then the first SMF network element One SMF network element determines based on one or more DNAIs that the target DNAI currently requested by the UE to access is supported by the second SMF network element, and then sends the target DNAI to the second SMF network element), so that the UE can still access the service even if it leaves the contracted service location. Accessing the LAN services at the location where the UE subscribes to the service means that when the UE moves to different locations, it can access the LAN services deployed at the designated location.
  • the method further includes: receiving the secondary anchor user plane sent by the second SMF network element.
  • the N9 interface address of the function UPF, the secondary anchor point UPF is determined based on the target DNAI; send the offloading rule to the offloading UPF, the offloading rule includes the correspondence between the target DNAI and the N9 interface address of the secondary anchor point UPF, the offloading UPF is based on The current location of the UE is determined.
  • the first SMF network element deployed at the UE access location can receive the N9 interface address of the secondary anchor point UPF at the location of the subscription service sent by the second SMF network element deployed at the location of the UE's subscription service, where, The secondary anchor point UPF is determined based on the target DNAI; then the offloading rule is sent to the offloading UPF.
  • the offloading rule includes the corresponding relationship between the target DNAI and the N9 interface address of the secondary anchor point UPF.
  • the offloading UPF is determined based on the current location of the UE.
  • the UE When the UE requests access to the target DNAI, it can match the N9 interface address of the secondary anchor point UPF through the offload UPF at the UE access point, and then access the secondary anchor point UPF based on the N9 interface address of the secondary anchor point UPF, and then can use the secondary anchor point UPF enables access to the local area network where the UE's contracted service is located.
  • the method further includes: sending an update request message to the radio access network RAN network element through the AMF network element, the update request message being used to request that the N3 address is changed from The main anchor point UPF of the UE access location is updated to the offload UPF.
  • a communication method is provided.
  • the method is applied to a second SMF network element.
  • the second SMF network element is deployed at the location where the UE subscribes to the service.
  • the method includes: receiving the first SMF network element sent by the AMF network element. Address, the first SMF network element is deployed at the UE access location; sends one or more DNAIs supported by itself to the first SMF network element.
  • the one or more DNAIs supported by itself include a target DNAI, and the target DNAI is Number of UE contracted service locations access identifier of the data network; receive the target DNAI sent by the first SMF network element.
  • the second SMF network element deployed at the location where the UE subscribes the service also needs to register the DNAI it supports with the network storage function NRF network element.
  • the second SMF network element deployed at the location where the UE subscribes to the service can receive the address of the first SMF network element deployed at the UE access location sent by the AMF network element, so that the second SMF network element can autonomously communicate with the third SMF network element.
  • An SMF network element establishes contact and conducts interactive negotiation to determine the target DNAI that the UE requests to access (that is, the second SMF network element can send one or more DNAIs supported by itself to the first SMF network element; and then receives the first SMF network element.
  • the target DNAI sent by the element This application solution enables the UE to access the LAN services at the location where the UE has the contracted service even if it leaves the location where the UE has the contracted service. That is to say, when the UE moves to a different location, it can access the LAN services deployed at the designated location.
  • the method further includes: determining the auxiliary anchor point UPF according to the target DNAI; sending the auxiliary anchor point UPF.
  • the N9 interface address of the anchor UPF is to the first SMF network element.
  • the second SMF network element deployed at the location where the UE subscribes the service can determine the secondary anchor point UPF according to the target DNAI; and send the N9 interface address of the secondary anchor point UPF to the first SMF network element. This enables the UE at the access location to access the secondary anchor point UPF where the UE subscribes to the service based on the N9 interface address of the secondary anchor point UPF, and then can achieve access to the local area network where the UE subscribes to the service through the secondary anchor point UPF.
  • a communication method is provided, which method is applied to the access and mobility management function AMF network element.
  • the method includes: receiving the target data network access identifier DNAI sent by the first SMF network element, the target DNAI is the access identifier of the data network where the UE subscribes to the service.
  • the first SMF network element is deployed at the UE access location.
  • the address of the second SMF network element is determined based on the target DNAI.
  • the second SMF network element is deployed in the UE to sign the service. location; sending the address of the first SMF network element to the second SMF network element.
  • the AMF network element sends the address of the first SMF network element to the second SMF network element, so that the second SMF network element can communicate with the first SMF network element based on the address of the first SMF network element.
  • the AMF network element can receive the target DNAI sent by the first SMF network element deployed at the UE access location, and then determine the address of the second SMF network element deployed at the location where the UE subscribes to the service based on the target DNAI. Then the address of the first SMF network element is sent to the second SMF network element, so that the first SMF network element and the second SMF network element can establish contact and interact, thereby making the first SMF network element and the second SMF network element
  • the network element autonomously negotiates and determines the target DNAI that the UE requests to access during the interaction.
  • This application solution enables the UE to access the LAN services at the location where the UE has the contracted service even if it leaves the location where the UE has the contracted service. That is to say, when the UE moves to a different location, it can access the LAN services deployed at the designated location.
  • determining the address of the second SMF network element according to the target DNAI includes: sending the target DNAI to the network storage function NRF network element; receiving the address sent by the NRF network element. The address of the second SMF network element.
  • the method further includes: receiving an update request message sent by the first SMF network element, the update request message being used to request that the N3 address be transferred to the location where the UE accesses.
  • the main anchor point UPF is updated to the offload UPF; the update request message is sent to the radio access network RAN.
  • a communication method is provided. The method is applied to a first SMF network element.
  • the first SMF network element is deployed at a UE access location.
  • the first SMF network element does not support the target data network access identifier DNAI.
  • the target DNAI is the access identifier of the data network where the UE subscribes to the service.
  • the method includes: sending the target DNAI to the AMF network element.
  • the target DNAI is used to determine the address of the second SMF network element.
  • the second SMF network element is deployed where the UE subscribes.
  • the service location receives the address of the second SMF network element sent by the AMF network element; and sends the target DNAI to the second SMF network element.
  • target DNAI in the embodiment of this application may be the access identifier of the local area network where the UE subscribes to the service.
  • the current location of the UE is not within the service area of the SMF network element where the UE's subscription service is located (that is, the UE's subscription service and the UE's current location are not in the same SMF POOL), but it still needs to access the UE's subscription service Local area network business.
  • sending the target DNAI to the second SMF network element can also be described as sending the target DNAI to the second SMF network element based on the address of the second SMF network element.
  • the first SMF network element sends the target DNAI to the AMF network element, and the target DNAI is used to determine the address of the second SMF network element, so that after receiving the target DNAI, the AMF network element can determine the address based on the target DNAI.
  • the address of the second SMF network element After the AMF network element confirms the address of the second SMF network element, the connection between the first SMF network element and the second SMF network element can be established, so that the first SMF network element and the second SMF network element can communicate independently.
  • the first SMF network element deployed at the UE access location when the first SMF network element deployed at the UE access location does not support the target DNAI, the first SMF network element can send the target DNAI to the AMF network element, so that the AMF network element can use the target DNAI according to the target DNAI.
  • the first SMF network element and the second SMF network element can establish contact and interact with each other. During the interaction, they can autonomously negotiate the target DNAI requested by the UE (i.e., the second SMF network element).
  • An SMF network element can receive the address of a second SMF network element from the AMF network element, and then send the target DNAI to the second SMF network element), so that the UE can still access the local area network where the UE has contracted the service even if it leaves the location where the contracted service is located.
  • the service means that when the UE moves to different locations, it can access the LAN services deployed at the designated location.
  • the method further includes: receiving the secondary anchor point UPF sent by the second SMF network element. N9 interface address, the secondary anchor point UPF is determined based on the target DNAI; send the offloading rule to the offloading UPF, the offloading rule includes the corresponding relationship between the target DNAI and the N9 interface address of the secondary anchor point UPF, the offloading UPF is based on the current location of the UE Sure.
  • the first SMF network element deployed at the UE access location can receive the N9 interface address of the secondary anchor point UPF at the location of the subscription service sent by the second SMF network element deployed at the location of the UE's subscription service, where, The secondary anchor point UPF is determined based on the target DNAI; then the offloading rule is sent to the offloading UPF.
  • the offloading rule includes the corresponding relationship between the target DNAI and the N9 interface address of the secondary anchor point UPF.
  • the offloading UPF is determined based on the current location of the UE.
  • the UE When the UE requests access to the target DNAI, it can match the N9 interface address of the secondary anchor point UPF through the offload UPF at the UE access point, and then access the secondary anchor point UPF based on the N9 interface address of the secondary anchor point UPF, and then can use the secondary anchor point UPF enables access to the local area network where the UE's contracted service is located.
  • the method further includes: sending an update request message to the radio access network RAN network element through the AMF network element, the update request message being used to request that the N3 address is changed from The main anchor point UPF of the UE access location is updated to the offload UPF.
  • a communication method is provided, which method is applied to a second SMF network element.
  • the second SMF network element is Deployed at the location of the UE's subscription service, the method includes: receiving the target data network access identifier DNAI sent by the first SMF network element, where the target DNAI is the access identifier of the data network where the UE's subscription service is located.
  • the second SMF network element deployed at the location where the UE subscribes the service also needs to register the DNAI it supports with the network storage function NRF network element.
  • the second SMF network element deployed at the location where the UE subscribes to the service can receive the target DNAI sent by the first SMF network element deployed at the UE access location, so that the UE can still access the UE even if it leaves the location of the subscription service.
  • the LAN service at the location where the contracted service is located means that when the UE moves to a different location, it can access the LAN service deployed at the designated location.
  • the method further includes: determining the auxiliary anchor user plane function UPF according to the target DNAI; sending the The N9 interface address of the secondary anchor point UPF is to the first SMF network element.
  • the second SMF network element deployed at the location where the UE subscribes the service can determine the secondary anchor point UPF according to the target DNAI; and send the N9 interface address of the secondary anchor point UPF to the first SMF network element. This enables the UE at the access location to access the secondary anchor point UPF where the UE subscribes to the service based on the N9 interface address of the secondary anchor point UPF, and then can achieve access to the local area network where the UE subscribes to the service through the secondary anchor point UPF.
  • a communication method is provided, which method is applied to an AMF network element.
  • the method includes: receiving a target DNAI sent by the first SMF network element, where the target DNAI is the access identifier of the data network where the UE subscribes to the service. , the first SMF network element is deployed at the UE access location; determine the address of the second SMF network element based on the target DNAI, and the second SMF network element is deployed at the location where the UE subscribes to the service; send the address of the second SMF network element to The first SMF network element.
  • the AMF network element sends the address of the second SMF network element to the first SMF network element, so that the first SMF network element can communicate with the second SMF network element based on the address of the second SMF network element.
  • the AMF network element can receive the target DNAI sent by the first SMF network element deployed at the UE access location, and then determine the address of the second SMF network element deployed at the location where the UE subscribes to the service based on the target DNAI. Then the address of the second SMF network element is sent to the first SMF network element, so that the first SMF network element and the second SMF network element can establish contact and interact, thereby making the first SMF network element and the second SMF network element During the interaction, the network element can independently negotiate and determine the target DNAI that the UE requests to access.
  • This application solution enables the UE to access the LAN services at the location where the UE has the contracted service even if it leaves the location where the UE has the contracted service. That is to say, when the UE moves to a different location, it can access the LAN services deployed at the designated location.
  • determining the address of the second SMF network element according to the target DNAI includes: sending the target DNAI to the network storage function NRF network element; receiving the address sent by the NRF network element. The address of the second SMF network element.
  • the method further includes: receiving an update request message sent by the first SMF network element, the update request message being used to request that the N3 address be transferred to the UE access location.
  • the main anchor point UPF is updated to the offload UPF; and the update request message is sent to the radio access network RAN.
  • a communication method is provided. The method is applied to a first SMF network element.
  • the first SMF network element is deployed at a UE access location.
  • the first SMF network element does not support a target DNAI, and the target DNAI is The access identifier of the data network where the UE subscribes to the service.
  • the method includes: determining the address of the second SMF network element based on the target DNAI.
  • the second SMF network element is deployed at the location where the UE subscribes to the service; sending the target DNAI to the second SMF network element.
  • target DNAI in the embodiment of this application may be the access identifier of the local area network where the UE subscribes to the service.
  • the current location of the UE is not within the service area of the SMF network element where the UE's subscription service is located (that is, the UE's subscription service and the UE's current location are not in the same SMF POOL), but it still needs to access the UE's subscription service Local area network business.
  • sending the target DNAI to the second SMF network element can also be described as sending the target DNAI to the second SMF network element based on the address of the second SMF network element.
  • the first SMF network element when the first SMF network element deployed at the UE access location does not support the target DNAI, the first SMF network element can determine the second SMF network element deployed at the location where the UE subscribes to the service based on the target DNAI. address, which enables the first SMF network element and the second SMF network element to establish contact and interact, and autonomously negotiate the target DNAI requested by the UE to access during the interaction (that is, the first SMF network element sends the target DNAI to the second SMF network element), thereby enabling the UE to access the LAN services at the location where the UE has subscribed the service even if it leaves the location where the UE has the contracted service. That is to say, when the UE moves to a different location, it can access the LAN services deployed at the designated location.
  • determining the address of the second SMF network element according to the target DNAI includes: sending the target DNAI to the NRF network element; receiving the second address sent by the NRF network element. The address of the SMF network element.
  • the method further includes: receiving the secondary anchor user plane sent by the second SMF network element.
  • the N9 interface address of the function UPF, the secondary anchor point UPF is determined based on the target DNAI; send the offloading rule to the offloading UPF, the offloading rule includes the correspondence between the target DNAI and the N9 interface address of the secondary anchor point UPF, the offloading UPF is based on The current location of the UE is determined.
  • the first SMF network element deployed at the UE access location can receive the N9 interface address of the secondary anchor point UPF at the location of the subscription service sent by the second SMF network element deployed at the location of the UE's subscription service, where, The secondary anchor point UPF is determined based on the target DNAI; then the offloading rule is sent to the offloading UPF.
  • the offloading rule includes the corresponding relationship between the target DNAI and the N9 interface address of the secondary anchor point UPF.
  • the offloading UPF is determined based on the current location of the UE.
  • the UE When the UE requests access to the target DNAI, it can match the N9 interface address of the secondary anchor point UPF through the offload UPF at the UE access point, and then access the secondary anchor point UPF based on the N9 interface address of the secondary anchor point UPF, and then can use the secondary anchor point UPF enables access to the local area network where the UE's contracted service is located.
  • the method further includes: sending an update request message to the radio access network RAN network element through the AMF network element, where the update request message is used to request that the N3 address be used by the UE.
  • the main anchor point UPF of the access site is updated to the offload UPF.
  • a communication method is provided.
  • the method is applied to a second SMF network element.
  • the second SMF network element is deployed at the location of the UE contract service.
  • the method includes: receiving the target DNAI sent by the first SMF network element, the The target DNAI is the access identifier of the data network where the UE subscribes to the service.
  • the second SMF network element deployed at the location where the UE subscribes the service also needs to register the DNAI it supports with the network storage function NRF network element.
  • the second SMF network element deployed at the location where the UE subscribes to the service can receive the target DNAI sent by the first SMF network element deployed at the UE access location, so that the UE can still access the UE even if it leaves the location of the subscription service.
  • the LAN service at the location where the contracted service is located means that when the UE moves to a different location, it can access the LAN service deployed at the designated location.
  • the method further includes: determining the auxiliary anchor user plane function UPF according to the target DNAI; sending the The N9 interface address of the secondary anchor point UPF is to the first SMF network element.
  • the second SMF network element deployed at the location where the UE subscribes the service can determine the secondary anchor point UPF according to the target DNAI; and send the N9 interface address of the secondary anchor point UPF to the first SMF network element. This enables the UE at the access location to access the secondary anchor point UPF where the UE subscribes to the service based on the N9 interface address of the secondary anchor point UPF, and then can achieve access to the local area network where the UE subscribes to the service through the secondary anchor point UPF.
  • a communication device in a ninth aspect, can be a first SMF network element, or a device such as a chip, processor or module applied to the first SMF network element.
  • the first SMF network element is deployed in Where the UE accesses, the first SMF network element does not support the target data network access identifier DNAI.
  • the target DNAI is the access identifier of the data network where the UE subscribes to the service.
  • the device includes: a transceiver module, the transceiver module is used to send the target DNAI to the access and mobility management function AMF network element, the target DNAI is used to determine the address of the second SMF network element, and the second SMF network element is deployed At the location of the UE contracted service; receive one or more DNAIs supported by the second SMF network element and sent by the second SMF network element, and the one or more DNAIs supported by the second SMF network element include the target DNAI; send the Target DNAI to the second SMF network element.
  • the transceiver module after sending the target DNAI to the second SMF network element, is further configured to receive the auxiliary anchor point sent by the second SMF network element.
  • the N9 interface address of the UPF, the secondary anchor point UPF is determined based on the target DNAI; send the offloading rule to the offloading UPF, the offloading rule includes the correspondence between the target DNAI and the N9 interface address of the secondary anchor point UPF, the offloading UPF is based on the UE Current location determined.
  • the transceiver module is further configured to send an update request message to the radio access network RAN network element through the AMF network element, and the update request message is used to request that the N3 The address is updated from the main anchor point UPF of the UE access location to the offload UPF.
  • a communication device in a tenth aspect, is provided.
  • the device can be a second SMF network element, or a device such as a chip, processor or module applied to the second SMF network element.
  • the second SMF network element is deployed in The location of the UE contracted business.
  • the device includes: a transceiver module, the transceiver module is used to receive the address of the first SMF network element sent by the access and mobility management function AMF network element, and the first SMF network element is deployed at the UE access location; sending its own support one or more data network access identifiers DNAI to the first SMF network element, and the one or more DNAIs supported by itself include a target DNAI, and the target DNAI is the access identifier of the data network where the UE subscribes to the service; Receive the target DNAI sent by the first SMF network element.
  • the device further includes: a processing module, after receiving the target DNAI sent by the first SMF network element, the processing module is configured to, according to the target DNAI Determine the secondary anchor point UPF; the transceiver module is also used to send the N9 interface address of the secondary anchor point UPF to the first SMF network element.
  • a communication device may be an AMF network element, or a device such as a chip, processor or module applied to the AMF network element.
  • the device includes a transceiver module and a processing module.
  • the transceiver module is used to receive the target data network access identifier DNAI sent by the first SMF network element.
  • the target DNAI is the access identifier of the data network where the UE subscribes to the service.
  • An SMF network element is deployed at the UE access location; the processing module is used to determine the address of a second SMF network element based on the target DNAI, and the second SMF network element is deployed at the location where the UE subscribes to the service; the transceiver module is also used to, Send the address of the first SMF network element to the second SMF network element.
  • the transceiver module is also used to send the target DNAI to the network storage function NRF network element; receive the address of the second SMF network element sent by the NRF network element.
  • the transceiver module is further configured to receive an update request message sent by the first SMF network element, where the update request message is used to request that the N3 address be transferred to the UE.
  • the main anchor point UPF of the access location is updated to the offload UPF; and the update request message is sent to the radio access network RAN.
  • a communication device in a twelfth aspect, can be a first SMF network element, or a device such as a chip, processor or module applied to the first SMF network element.
  • the first SMF network element is deployed At the UE access location, the first SMF network element does not support the target data network access identifier DNAI.
  • the target DNAI is the access identifier of the data network where the UE subscribes to the service.
  • the device includes: a transceiver module, the transceiver module is used to send the target DNAI to the access and mobility management function AMF network element, the target DNAI is used to determine the address of the second SMF network element, and the second SMF network element is deployed At the location where the UE signs a service; receive the address of the second SMF network element sent by the AMF network element; and send the target DNAI to the second SMF network element.
  • the transceiver module after sending the target DNAI to the second SMF network element, is further configured to receive the auxiliary information sent by the second SMF network element.
  • the secondary anchor point UPF is determined based on the target DNAI; send the offloading rule to the offloading UPF.
  • the offloading rule includes the corresponding relationship between the target DNAI and the N9 interface address of the secondary anchor point UPF.
  • the offloading UPF Determined based on the current location of the UE.
  • the transceiver module is also used to send an update request message to the radio access network RAN network element through the AMF network element, and the update request message is used to request The N3 address is updated from the main anchor point UPF of the UE access location to the offload UPF.
  • a communication device in a thirteenth aspect, can be a second SMF network element, or a device such as a chip, processor or module applied to the second SMF network element.
  • the second SMF network element is deployed The location where the UE contract business is located.
  • the device includes: a transceiver module, the transceiver module is configured to receive a target data network access identifier DNAI sent by the first SMF network element, where the target DNAI is the access identifier of the data network where the UE subscribes to the service.
  • the device further includes: a processing module, after receiving the target DNAI sent by the first SMF network element, the processing module is configured to, according to the target DNAI Determine the secondary anchor point UPF; the transceiver module is also used to send the N9 interface address of the secondary anchor point UPF to the first SMF network element.
  • a fourteenth aspect provides a communication device, which may be an AMF network element, or a device such as a chip, processor or module applied to the AMF network element.
  • the device includes a transceiver module and a processing module.
  • the transceiver module is used to receive the target data network access identifier DNAI sent by the first SMF network element.
  • the target DNAI is the access identifier of the data network where the UE subscribes to the service.
  • An SMF network element is deployed at the UE access location; the processing module is used to determine the address of a second SMF network element based on the target DNAI, and the second SMF network element is deployed at the location where the UE subscribes to the service; the transceiver module is also used to, Send the address of the second SMF network element to the first SMF network element.
  • the transceiver module is also used to send the target DNAI to the network storage function NRF network element; and receive the second SMF network element sent by the NRF network element. the address of.
  • the transceiver module is further configured to receive an update request message sent by the first SMF network element, where the update request message is used to request to update the N3 address by The main anchor point UPF of the UE access location is updated to the offload UPF; and the update request message is sent to the radio access network RAN.
  • a fifteenth aspect provides a communication device.
  • the device may be a first SMF network element, or a device such as a chip, processor or module applied to the first SMF network element.
  • the first SMF network element is deployed on UE access location, the first The SMF network element does not support the target DNAI.
  • the target DNAI is the access identifier of the data network where the UE subscribes to the service.
  • the device includes: a processing module and a transceiver module.
  • the processing module is used to determine the second SMF network element according to the target DNAI.
  • the address of the second SMF network element is deployed at the location of the UE contracted service; the transceiver module is used to send the target DNAI to the second SMF network element.
  • the transceiver module is also used to send the target DNAI to the NRF network element; and receive the address of the second SMF network element sent by the NRF network element.
  • the transceiver module after sending the target DNAI to the second SMF network element, is further configured to receive the auxiliary information sent by the second SMF network element.
  • the secondary anchor point UPF is determined based on the target DNAI; send the offloading rule to the offloading UPF.
  • the offloading rule includes the corresponding relationship between the target DNAI and the N9 interface address of the secondary anchor point UPF.
  • the offloading UPF Determined based on the current location of the UE.
  • a communication device may be a second SMF network element, or a device such as a chip, processor or module applied to the second SMF network element.
  • the second SMF network element is deployed in Where the UE subscribes to the service, the device includes: a transceiver module, the transceiver module is used to receive the target DNAI sent by the first SMF network element, where the target DNAI is the access identifier of the data network where the UE subscribes to the service.
  • the device further includes: a processing module, after receiving the target DNAI sent by the first SMF network element, the processing module is configured to, according to the target DNAI Determine the secondary anchor point UPF; the transceiver module is also used to send the N9 interface address of the secondary anchor point UPF to the first SMF network element.
  • a communication device including at least one processor, the at least one processor being coupled to a memory, reading and executing instructions in the memory, to implement the first aspect or the first aspect.
  • the method in any possible implementation manner; or implement the second aspect or the method in any possible implementation manner of the second aspect; or implement the third aspect or any possible implementation manner of the third aspect Method; or implement the method in the fourth aspect or any possible implementation manner of the fourth aspect; or implement the method in the fifth aspect or any possible implementation manner of the fifth aspect; or implement the method in the sixth aspect Or the method in any possible implementation of the sixth aspect; or the method in any possible implementation of the seventh aspect or the seventh aspect; or the method in any possible implementation of the eighth aspect or the eighth aspect method in the implementation.
  • An eighteenth aspect provides a communication system, including: the communication device described in the ninth aspect or any possible implementation of the ninth aspect, or the tenth aspect or any possible implementation of the tenth aspect.
  • a nineteenth aspect provides a communication system, including: a communication device as described in the twelfth aspect or any possible implementation manner of the twelfth aspect, or a communication device as described in the thirteenth aspect or any possible implementation manner of the thirteenth aspect.
  • a twentieth aspect provides a communication system, including: the communication device as described in the fifteenth aspect or any possible implementation manner of the fifteenth aspect, and the sixteenth aspect or any of the sixteenth aspects.
  • the communication device in a possible implementation manner.
  • a computer-readable storage medium is provided.
  • Computer instructions are stored in the computer-readable storage medium.
  • the first aspect or any of the first aspects are implemented.
  • a twenty-second aspect provides a computer program product that includes instructions.
  • the method in the first aspect or any possible implementation of the first aspect is executed; or as in the second aspect, a computer program product is provided, which includes instructions.
  • the method in the second aspect or any possible implementation of the second aspect is executed; or the method in the third aspect or any possible implementation of the third aspect is executed; or the method in the fourth aspect or the fourth aspect is executed.
  • Figure 1 shows a network architecture suitable for embodiments of the present application.
  • Figure 2 is a schematic flow chart of a communication method 200 provided by an embodiment of the present application.
  • Figure 3 is a schematic flow chart of a communication method 300 provided by an embodiment of the present application.
  • Figure 4 is a schematic flow chart of a communication method 400 provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a communication device 500 provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a communication device 600 provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of a communication device 700 provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a communication device 800 provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of a communication device 900 provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of a communication device 1000 provided by an embodiment of the present application.
  • Figure 11 is a schematic diagram of a communication system 1100 provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of a communication system 1200 provided by an embodiment of the present application.
  • Figure 13 is a schematic diagram of a communication device 1300 provided by an embodiment of the present application.
  • Figure 14 is a schematic flow chart of a communication method 1400 provided by an embodiment of the present application.
  • Figure 15 is a schematic flow chart of a communication method 1500 provided by an embodiment of the present application.
  • Figure 16 is a schematic flow chart of a communication method 1600 provided by an embodiment of the present application.
  • Figure 17 is a schematic diagram of a communication device 1700 provided by an embodiment of the present application.
  • Figure 18 is a schematic diagram of a communication device 1800 provided by an embodiment of the present application.
  • Figure 19 is a schematic diagram of a communication system 1900 provided by an embodiment of the present application.
  • Figure 1 shows a network architecture suitable for embodiments of the present application.
  • Terminal equipment can include various handheld devices, vehicle-mounted equipment, wearable equipment, computing equipment or other processing equipment with wireless communication functions, as well as various forms of terminals or devices, mobile stations (MS), users Equipment (user equipment, UE), soft terminals, etc., such as water meters, electricity meters, sensors, etc.
  • MS mobile stations
  • UE users Equipment
  • soft terminals etc., such as water meters, electricity meters, sensors, etc.
  • the terminal device in the embodiment of the present application may refer to an access terminal, a user unit, a user station, a mobile station, a mobile station, a relay station, a remote station, a remote terminal, a mobile device, a user terminal, or a terminal device. , wireless communications equipment, user agent or user device.
  • the user equipment may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a device with wireless communications Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, user equipment in future 5G networks or in future evolved public land mobile communications networks (PLMN) User equipment or user equipment in future Internet of Vehicles, etc., are not limited by the embodiments of this application.
  • the terminal device in the embodiment of the present application may also be a device, such as a chip and/or circuit structure, provided or installed in the various devices mentioned above.
  • a wearable device may also be called a wearable smart device, which is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, Gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Broadly defined wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones. Use, such as various types of smart bracelets, smart jewelry, etc. for physical sign monitoring.
  • the terminal device may also be a terminal device in the Internet of Things (IoT) system.
  • IoT Internet of Things
  • Its main technical feature is to transfer items through communication technology. Connect with the network to realize an intelligent network of human-computer interconnection and physical-object interconnection.
  • IOT technology can achieve massive connections, deep coverage, and terminal power saving through, for example, narrowband (NB) technology.
  • terminal equipment may also include sensors such as smart printers, train detectors, and gas stations.
  • the main functions include collecting data (part of the terminal equipment), receiving control information and downlink data of access network equipment, and Send electromagnetic waves to transmit uplink data to access network equipment.
  • Radio access network (R)AN: used to provide network access functions for authorized terminal equipment in a specific area, and can use transmission tunnels of different qualities according to the level of the terminal equipment, business needs, etc. .
  • (R)AN can manage wireless resources, provide access services to terminal equipment, and then complete the forwarding of control signals and terminal equipment data between the terminal equipment and the core network.
  • (R)AN can include base stations in traditional networks, or other A network element or entity that can implement access network functions.
  • the access network device in the embodiment of the present application may be any communication device with wireless transceiver functions used to communicate with terminal devices.
  • the access network equipment includes but is not limited to: evolved Node B (eNB), radio network controller (RNC), Node B (Node B, NB), base station controller (base first AMFtion controller, BSC), base transceiver station (base transceiver first AMFtion, BTS), home base station (home evolved NodeB, HeNB, or home Node B, HNB), baseband unit (baseBand unit, BBU), wireless fidelity (wireless fidelity, WIFI) access point (AP) in the system, Wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc., can also be 5G, such as NR, gNB in the system, or transmission point (TRP or TP), one or a group (including multiple antenna panels) of antenna panels of a base station in a 5G system, or it can also be a network node that constitutes
  • gNB may include centralized units (CUs) and DUs.
  • the gNB may also include an active antenna unit (AAU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • CU is responsible for processing non-real-time protocols and services, implementing radio resource control (RRC), and packet data convergence protocol (PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, media access control (MAC) layer and physical (physical, PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the access network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into access network equipment in the access network (radio access network, RAN), or the CU can be divided into access network equipment in the core network (core network, CN). This application does not Make limitations.
  • User plane network element used for packet routing and forwarding and quality of service (QoS) processing of user plane data.
  • QoS quality of service
  • the user plane network element can be a user plane function (UPF) network element, which can include an intermediate user plane function (I-UPF) network element and an anchor user plane function.
  • UPF user plane function
  • I-UPF intermediate user plane function
  • PSA-UPF anchor user plane function
  • user plane network elements can still be UPF network elements, or they can have other names, which are not limited in this application.
  • Data network element used to provide a network for transmitting data.
  • the data network element may be a data network (DN) network element.
  • DN data network
  • data network elements can still be DN network elements, or they can have other names, which are not limited in this application.
  • the terminal device After the terminal device is connected to the network, it can establish a protocol data unit (PDU) session and access the DN through the PDU session. It can communicate with the application function network elements (application function network elements such as application function network elements) deployed in the DN. for application server) interaction. Depending on the DN that the user accesses, the network can select the UPF of the access DN as the PDU Session Anchor (PSA) according to the network policy, and access the application function network element through the N6 interface of the PSA.
  • PDU protocol data unit
  • PSA PDU Session Anchor
  • Access management network element mainly used for mobility management and access management, etc., and can be used to implement other functions besides session management in the mobility management entity (MME) function, such as legal interception As well as access authorization/authentication and other functions.
  • MME mobility management entity
  • the access management network element may be an access management function (access and mobility management function, AMF).
  • AMF access and mobility management function
  • the access management network element may still be an AMF, or may have other names, which are not limited in this application.
  • Session management network element Mainly used for session management, network interconnection protocol (IP) address allocation and management of terminal equipment, selection of endpoints for manageable user plane functions, policy control and charging function interfaces, and downlink data Notifications etc.
  • IP network interconnection protocol
  • the session management network element can be an SMF network element, which can include an intermediate session management function (I-SMF) network element and an anchor session management function (A-SMF). ) network element, may also include the SMF network element selected based on the data network access identifier (DN Access Identifier, DNAI) mentioned in the embodiment of this application (referred to as D-SMF network element in this application).
  • I-SMF intermediate session management function
  • A-SMF anchor session management function
  • D-SMF network element data network access identifier
  • the session management network element can still be an SMF network element, or it can also have other names, which is not limited in this application.
  • Policy control network element A unified policy framework used to guide network behavior and provide policy rule information for control plane functional network elements (such as AMF, SMF network elements, etc.).
  • the policy control network element may be a policy and charging rules function (PCRF) network element.
  • the policy control network element may be a policy control function (PCF) network element.
  • PCF policy control function
  • future communication systems the policy control network element can still be a PCF network element, or it can also have other names, which is not limited in this application.
  • Authentication server used for authentication services, generating keys to implement two-way authentication of terminal devices, and supporting a unified authentication framework.
  • the authentication server may be an authentication server function (AUSF) network element.
  • AUSF authentication server function
  • the authentication server functional network element can still be an AUSF network element, or it can also have other names, which is not limited in this application.
  • Data management network element used to process terminal device identification, access authentication, registration and mobility management, etc.
  • the data management network element can be a unified data management (UDM) network element; in the 4G communication system, the data management network element can be a home subscriber server (HSS) network element.
  • the unified data management element can still be a UDM network element, or it can also have other names, which is not limited in this application.
  • Application network elements can interact with the 5G system through application function network elements, and are used to access network open function network elements or interact with the policy framework for policy control, etc.
  • the application network element may be an application function (AF) network element.
  • AF application function
  • future communication systems application network elements can still be AF network elements, or they can have other names, which are not limited in this application.
  • Network slice selection network element It mainly includes the following functions: selecting a set of network slice instances for the UE, determining the allowed network slice selection assistance information (NSSAI), and determining the AMF set that can serve the UE.
  • NSSAI network slice selection assistance information
  • the application network element may be a network slice selection function (NSSF) network element.
  • NSSF network slice selection function
  • future communication systems application network elements can still be NSSF network elements, or they can have other names, which are not limited in this application.
  • Figure 1 is only an example and does not constitute any limitation on the protection scope of the present application.
  • the communication method provided by the embodiment of the present application may also involve network elements not shown in Figure 1.
  • it may also involve a network storage network element, where the network storage network element is used to maintain real-time information of all network function services in the network.
  • the network storage network element may be a network registration function (network repository function, NRF) network element.
  • network storage network elements can still be NRF network elements, or they can have other names, which are not limited in this application.
  • the above network elements or functions can be network elements in hardware devices, software functions running on dedicated hardware, or virtualization functions instantiated on a platform (for example, a cloud platform).
  • the access management network element is the AMF network element
  • the data management network element is the UDM network element
  • the session management network element is the SMF network element
  • the user plane network element is the UPF network element.
  • the AMF network element is abbreviated as AMF
  • the UDM network element is abbreviated as UDM
  • the SMF network element is abbreviated as SMF
  • the UPF network element is abbreviated as UPF. That is, the AMF described later in this application can be replaced by the access management network element, the UDM can be replaced by the data management network element, the SMF can be replaced by the session management network element, and the UPF can be replaced by the user plane network element.
  • N1 The interface between AMF and the terminal, which can be used to transmit QoS control rules to the terminal.
  • N2 The interface between AMF and RAN, which can be used to transmit wireless bearer control information from the core network side to the RAN.
  • N3 The interface between RAN and UPF, mainly used to transmit uplink and downlink user plane data between RAN and UPF.
  • N4 The interface between SMF and UPF can be used to transfer information between the control plane and the user plane, including controlling the delivery of forwarding rules, QoS control rules, traffic statistics rules, etc. for the user plane, as well as user plane information. Report.
  • N5 The interface between AF and PCF, which can be used to issue application service requests and report network events.
  • N6 The interface between UPF and DN, used to transmit uplink and downlink user data flows between UPF and DN.
  • N7 The interface between PCF and SMF can be used to deliver protocol data unit (PDU) session granularity and business data flow granularity control policy.
  • PDU protocol data unit
  • N8 The interface between AMF and UDM can be used by AMF to obtain subscription data and authentication data related to access and mobility management from UDM, and for AMF to register current mobility management related information of the terminal with UDM.
  • N9 The user plane interface between UPF and UPF, used to transmit uplink and downlink user data flows between UPF.
  • N10 The interface between SMF and UDM can be used for SMF to obtain session management-related contract data from UDM, and for SMF to register terminal current session-related information with UDM.
  • N11 The interface between SMF and AMF can be used to transfer PDU session tunnel information between RAN and UPF, transfer control messages sent to terminals, transfer radio resource control information sent to RAN, etc.
  • N12 The interface between AMF and AUSF, which can be used by AMF to initiate the authentication process to AUSF, which can carry SUCI as the contract identification;
  • N13 The interface between UDM and AUSF can be used by AUSF to obtain the user authentication vector from UDM to perform the authentication process.
  • network function network element entities such as AMF, SMF network element, PCF network element, BSF network element, and UDM network element are all called network function (NF) network elements; or, in another In some network architectures, the collection of AMF, SMF network elements, PCF network elements, BSF network elements, UDM network elements and other network elements can be called control plane functional network elements.
  • the technical solutions of the embodiments of this application can be applied to various communication systems, such as: long term evolution (long term evolution, LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (time division duplex) , TDD) system, universal mobile telecommunication system (UMTS), global interoperability for microwave access (WiMAX) communication system, fifth generation (5th generation, 5G) system, new wireless (new radio, NR) or future networks, etc.
  • the 5G mobile communication system described in this application includes a non-independent networking (non-first AMFndalone, NSA) 5G mobile communication system or an independent networking (first AMFndalone, SA) 5G mobile communication system.
  • the technical solution provided by this application can also be applied to future communication systems, such as the sixth generation mobile communication system.
  • the communication system can also be a public land mobile communication network (PLMN) network, a device-to-device (D2D) communication system, a machine to machine (M2M) communication system, or a device-to-device (D2D) communication system.
  • PLMN public land mobile communication network
  • D2D device-to-device
  • M2M machine to machine
  • D2D device-to-device
  • IoT Internet of Things
  • the terminal device or the access network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • This hardware layer includes hardware such as central processing unit (CPU), memory management unit (MMU) and memory (also called main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, such as Linux operating system, Unix operating system, Android operating system, iOS operating system or windows operating system, etc.
  • This application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the present application do not specifically limit the specific structure of the execution subject of the method provided by the embodiment of the present application, as long as the program that records the code of the method provided by the embodiment of the present application can be run to provide according to the embodiment of the present application.
  • the execution subject of the method provided by the embodiment of the present application can be a terminal device or an access network device, or a functional module in the terminal device or access network device that can call a program and execute the program.
  • various aspects or features of the present application may be implemented as methods, apparatus, or articles of manufacture using standard programming and/or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer-readable device, carrier or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disks, floppy disks, tapes, etc.), optical disks (e.g., compact discs (CD), digital versatile discs (DVD)) etc.), smart cards and flash memory devices (e.g. erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable storage medium may include, but is not limited to, wireless channels and various other media capable of storing, containing and/or carrying instructions and/or data.
  • the service contracted by the user equipment (UE) is in the home place, and the contracted home service is deployed in the local area network.
  • the UE moves from its home place to the access place, such as moving across provinces to the visited province, the UE's location in the access place is no longer within the service area of the session management function (SMF) network element where the UE subscribes to the service.
  • the public network is unreachable, resulting in the UE being unable to continue to access the local area network services where the contracted service is located at the access location. Therefore, how to make the UE move out of the sign When booking a business location, being able to continue to access the local area network services at the contracted business location is a technical issue that needs to be solved urgently.
  • SMF session management function
  • this application provides a communication method.
  • the first SMF network element deployed at the UE access location is used to send the target DNAI corresponding to the UE's request to access the contracted service to the AMF network element.
  • the AMF network element can send the address of the first SMF network element to the second SMF network element or send the address of the second SMF network element to the first SMF network element, so that the first SMF network element or the second SMF network element can be based on the other party's the address of the second SMF network element to establish contact with the other party); or the first SMF network element can also determine the address of the second SMF network element by itself, and establish contact with the second SMF network element, thereby making the first SMF network element and the second SMF network element
  • the UE can interact and independently negotiate the target DNAI that the UE requests to access, so that the UE can access the local area network service where the contracted service is located at the access location.
  • Figure 2 is a schematic flow chart of a communication method 200 provided by an embodiment of the present application. It should be understood that the method 200 can be applied to the following scenario: the current location of the UE is not within the service area of the SMF network element where the UE subscribes to the service (that is, the UE subscribed service and the current location of the UE are not in the same SMF POOL), but still needs to access the UE The local area network where the contracted business is located. It should be understood that the method 200 is mainly applied in a system including a first SMF network element, a second SMF network element and an AMF network element, where the first SMF network element is deployed at the UE access location, and the second SMF network element is deployed at the UE access location. The location of the contracted business.
  • the AMF network element is only used as an example. In actual operation, other NF network elements can also be used. This application does not limit this. However, for the convenience of description, the AMF network element is used as an example in the embodiments of this application. . As shown in Figure 2, the method 200 includes steps S210 to S230, and these steps will be introduced in detail below.
  • the first SMF network element sends the target DNAI to the AMF network element.
  • the AMF network element receives the target DNAI sent by the first SMF network element.
  • the first SMF network element is deployed at the UE access location, and the target DNAI is the access identifier of the data network where the UE subscribes to the service.
  • the first SMF network element does not support the target DNAI.
  • the target DNAI in the embodiment of this application may be the access identifier of the local area network where the UE subscribes to the service.
  • the first SMF network element does not support the target DNAI, which means that the first SMF network element does not support the DNAI corresponding to the local area network where the UE subscribes to the service. .
  • the method 200 may also include: the first SMF network element requests a user policy from the PCF network element; the first SMF network element receives the user policy sent by the PCF network element, where the user policy includes the UE subscription service The offloading rules and the DNAI of the data network where the contracted service is located; the first SMF network element determines whether it supports the DNAI of the data network where the contracted service is located. If the DNAI of the data network where the contracted service is located in the user policy is the DNAI corresponding to the LAN, then the first SMF network element The SMF network element determines that it does not support the DNAI, records the unsupported DNAI as the target DNAI, and then proceeds to step S210. See steps S304 to S308 in Embodiment 1 or steps S404 to S408 in Embodiment 2 below.
  • the method 200 may also include: the second SMF network element deployed at the location where the UE subscribes the service also needs to register with the NRF network element that it supports. DNAI. Please refer to the relevant description of steps S301 and S302 in Embodiment 1 or the relevant description of steps S401 and S402 in Embodiment 2 below.
  • the second SMF network element deployed at the location where the UE subscribes the service registers the DNAI it supports with the NRF network element, it can also register the fully qualified domain name (fully qualified domain name, FQDN) and policy name it supports. and other keywords.
  • the above user policy may include offloading rules and DNAI, Keywords such as FQDN and policy name.
  • any steps involving sending and receiving the DNAI or further performing other operations based on the DNAI need to also take into account keywords such as FQDN and policy name.
  • the steps involving sending and receiving the DNAI need to be changed to sending and receiving keywords such as the DNAI, FQDN, and policy name; the steps involving further performing other operations based on the DNAI need to be changed to further steps based on the DNAI, FQDN, policy name, and other keywords.
  • the target keyword includes target DNAI, target FQDN, target policy name and other keywords, where,
  • the target FQDN and target policy name refer to the FQDN and policy name of the UE subscription service.
  • the UE leaves the service subscription location to the visiting location (i.e., the UE access location), the UE needs to be activated, and the AMF also needs to select the access SMF network element (i.e., the first SMF network element), and then the access SMF network element Select the main anchor point UPF of the access site (that is, the main anchor point UPF PSA1 deployed at the access site below) to create a user session.
  • the access SMF network element i.e., the first SMF network element
  • the access SMF network element Select the main anchor point UPF of the access site (that is, the main anchor point UPF PSA1 deployed at the access site below) to create a user session.
  • the UE can sign up for a universal data network name (Data Network Name, DNN) and then activate based on the universal DNN.
  • DNN Data Network Name
  • the AMF network element determines the address of the second SMF network element according to the target DNAI. Among them, the second SMF network element is deployed at the location of the UE contracted service.
  • the AMF network element determines the address of the second SMF network element based on the target DNAI including: the AMF network element sends the target DNAI to the NRF network element; the AMF network element receives the address of the second SMF network element sent by the NRF network element.
  • the AMF network element may send a discovery request message carrying the target DNAI to the NRF network element to determine the address of the second SMF network element. See steps S309 and S310 in Embodiment 1 or steps S409 and S410 in Embodiment 2 below.
  • step S230 may include two implementation methods, A and B, which are mainly used to describe the manner in which the first SMF network element and the second SMF network element establish contact and the process of autonomous negotiation to determine the target DNAI that the UE requests to access. These two implementation methods are introduced in detail below.
  • S230 includes steps S230a1 to S230a3.
  • the AMF network element sends the address of the first SMF network element to the second SMF network element.
  • the second SMF network element receives the address of the first SMF network element sent by the AMF network element.
  • step S230a1 the "address of the first SMF network element" may also be carried and sent in the context creation request message. Please refer to the relevant description of step S311 in Embodiment 1 below.
  • the second SMF network element may create a context according to the received address of the first SMF network element, see steps S312 and S313 in Embodiment 1 below.
  • the AMF network element sends the address of the first SMF network element to the second SMF network element, so that the second SMF network element can communicate with the first SMF network element based on the address of the first SMF network element and autonomously negotiate the UE request.
  • the target DNAI to be accessed see steps S230a2 and S230a3.
  • the second SMF network element sends one or more DNAIs supported by itself to the first SMF network element.
  • the first SMF network element receives one or more DNAIs supported by the second SMF network element and sent by the second SMF network element.
  • one or more DNAIs supported by the second SMF network element include the target DNAI.
  • step S230a2 "one or more DNAIs supported by the second SMF network element" may also be carried and sent in the session creation request message. Please refer to the relevant description of step S314 in Embodiment 1 below.
  • the first SMF network element may be based on the intersection of the one or more DNAIs and the target DNAI included in the user policy. It is determined that the target DNAI is supported by the second SMF network element, and then step S230a3 is performed.
  • the second SMF network element while the second SMF network element registers the DNAI it supports with the NRF network element, it can also register keywords such as FQDN and policy name that it supports. Based on this situation, in step S230a2, the second SMF network element can send a keyword list supported by itself to the first SMF network element, and then the first SMF network element can based on the keyword list and the keywords included in the user policy. intersection, and then perform step S230a3 to send the keyword obtained by the intersection to the second SMF network element.
  • the second SMF network element can send a keyword list supported by itself to the first SMF network element, and then the first SMF network element can based on the keyword list and the keywords included in the user policy. intersection, and then perform step S230a3 to send the keyword obtained by the intersection to the second SMF network element.
  • the first SMF network element sends the target DNAI to the second SMF network element.
  • the second SMF network element receives the target DNAI sent by the first SMF network element.
  • step S230a3 the "target DNAI” may also be carried and sent by the response message of the session creation request message. Please refer to the relevant description of step S315 in Embodiment 1 below.
  • the first SMF network element can also carry the data structure obtained by N7, such as charging rules, policy rules, etc., and send it to the second SMF network element.
  • the first SMF network element deployed at the UE access location when the first SMF network element deployed at the UE access location does not support the target DNAI, the first SMF network element can send the target DNAI to the AMF network element, so that the AMF network element can DNAI determines the address of the second SMF network element deployed at the location where the UE subscribes to the service, and then sends the address of the first SMF network element to the second SMF network element. Then the second SMF network element can autonomously based on the address of the first SMF network element. Establish contact and interact with the first SMF network element.
  • the first SMF network element can learn that the second SMF network element is the SMF network element corresponding to the target DNAI, and negotiate with it to determine the target DNAI that the UE needs to access (in this document
  • the negotiation process may be: the second SMF network element sends one or more DNAIs supported by itself to the first SMF network element; then the first SMF network element determines the target of the UE's current request for access based on the one or more DNAIs.
  • DNAI is supported by the second SMF network element, and then the target DNAI is sent to the second SMF network element), so that even if the UE leaves the location where the contracted service is located, it can still access the local area network service where the UE contracted the service, that is to say, the UE moves to In different locations, you can access the LAN services deployed in the designated location.
  • S230 includes steps S230b1 and S230b2.
  • the AMF network element sends the address of the second SMF network element to the first SMF network element.
  • the first SMF network element receives the address of the second SMF network element sent by the AMF network element. See the relevant description of steps S411 to S412 in Embodiment 2 below.
  • the AMF network element sends the address of the second SMF network element to the first SMF network element, so that the first SMF network element can communicate with the second SMF network element based on the address of the second SMF network element and autonomously negotiate the UE request. For the target DNAI to be accessed, see step S230b2.
  • the first SMF network element sends the target DNAI to the second SMF network element.
  • the second SMF network element receives the target DNAI sent by the first SMF network element.
  • the first SMF network element sends the target DNAI to the second SMF network element, which can also be described as the first SMF network element sends the target DNAI to the second SMF network element based on the address of the second SMF network element.
  • step S230b2 the "target DNAI” may also be carried and sent in the context creation request message. Please refer to the relevant description of step S413 in Embodiment 2 below.
  • the first SMF network element can also carry the data structure obtained by N7, such as charging The rules, policy rules, etc. are sent to the second SMF network element.
  • the second SMF network element may create a user context, see steps S414 and S415 in Embodiment 2 below.
  • the first SMF network element deployed at the UE access location when the first SMF network element deployed at the UE access location does not support the target DNAI, the first SMF network element can send the target DNAI to the AMF network element, so that the AMF network element can DNAI determines the address of the second SMF network element deployed at the location where the UE subscribes to the service, and then sends the address of the second SMF network element to the first SMF network element. Then the first SMF network element matches the address of the second SMF network element based on the address of the second SMF network element. The two SMF network elements establish contact and interact.
  • the first SMF network element and the second SMF network element can negotiate the target DNAI that the UE requests to access (in this implementation mode B, the negotiation process can be: the first SMF network element
  • the address of the second SMF network element can be received from the AMF network element, and then the target DNAI is sent to the second SMF network element), so that even if the UE leaves the location where the contracted service is located, it can still access the local area network service where the UE has contracted the service, that is, It is said that when the UE moves to different locations, it can access the LAN services deployed at the designated location.
  • the method 200 may also include: the second SMF network element determines the auxiliary anchor point UPF according to the target DNAI (that is, the auxiliary anchor point UPF PSA2 deployed at the location of the UE subscription service below); the second SMF network element The first SMF network element sends the N9 interface address of the secondary anchor point UPF to the first SMF network element.
  • the target DNAI that is, the auxiliary anchor point UPF PSA2 deployed at the location of the UE subscription service below
  • the second SMF network element The first SMF network element sends the N9 interface address of the secondary anchor point UPF to the first SMF network element.
  • the first SMF network element receives the N9 interface address of the secondary anchor point UPF sent by the second network element; the first SMF network element responds to the UE The current location determines the offloading UPF (that is, the UPF uplink classifier (ULCL) deployed at the location where the UE subscribes to the service below); the first SMF network element sends the offloading rule to the offloading UPF, and the offloading rule includes the target DNAI and the offloading UPF.
  • the offloading UPF that is, the UPF uplink classifier (ULCL) deployed at the location where the UE subscribes to the service below
  • the first SMF network element sends the offloading rule to the offloading UPF, and the offloading rule includes the target DNAI and the offloading UPF.
  • the second SMF network element before the second SMF network element sends the N9 interface address of the secondary anchor point UPF to the first SMF network element, the second SMF network element can also create an N4 session with the secondary anchor point UPF, or can also communicate with the accounting function. (charging function, CHF) network element creates a session so that the subsequent bill generated by the second SMF network element can be directly reported to the CHF network element.
  • the first SMF network element before the first SMF network element sends the offloading rule to the offloading UPF, the first SMF network element can also create an N4 session with the offloading UPF.
  • the first SMF network element can also send the N9 interface address of the offloading UPF to the second SMF network element.
  • the second SMF network element receives the first The N9 interface address of the offloaded UPF sent by the SMF network element.
  • the second SMF network element deployed at the location where the UE subscribes to the service can determine the secondary anchor point UPF based on the target DNAI, and then send the N9 interface address of the secondary anchor point UPF to the third SMF network element deployed at the UE access location.
  • One SMF network element; the first SMF network element deployed at the UE access location can determine the offloading UPF based on the current location of the UE, and send the offloading rule for the UE contracted service to the offloading UPF.
  • the offloading rule includes the target DNAI and the secondary anchor point. Correspondence between the N9 interface addresses of UPF.
  • the UE When the UE requests access to the target DNAI, it can match the N9 interface address of the secondary anchor point UPF through the offload UPF at the UE access point, and then access the secondary anchor point UPF based on the N9 interface address of the secondary anchor point UPF, and then can use the secondary anchor point UPF enables access to the local area network where the UE's contracted service is located.
  • the method 200 may also include: the first SMF network element sends an update request message to the RAN network element through the AMF network element.
  • the update request message is used to request to update the N3 address from the primary anchor point UPF of the UE access location to Offload the UPF so that the RAN can communicate with the offload UPF. Please refer to the relevant description of steps S324 and S325 in Embodiment 1 or steps S424 and S425 in Embodiment 2 below.
  • the N9 interface address of the secondary anchor point UPF can be matched through the offload UPF, and then the secondary anchor point can be accessed based on the N9 interface address of the secondary anchor point UPF.
  • UPF and then access to the local area network where the UE's contracted service is located can be achieved through the secondary anchor point UPF.
  • the N9 interface address of the secondary anchor point UPF cannot be matched through the offload UPF. In this case, the N9 interface of the offload UPF can be directly forwarded to the primary anchor point UPF at the UE access location.
  • FIG 3 is a schematic flow chart of a communication method 300 provided by an embodiment of the present application. As shown in Figure 3, method 300 includes S301 to S333. These steps are described in detail below.
  • the SMF deployed at the UE access location is the above-mentioned first SMF network element;
  • the D-SMF deployed at the contracting service location is the above-mentioned second SMF network element;
  • the UPF ULCL at the UE access location is the above-mentioned offload UPF;
  • the UPF PSA1 deployed at the UE access location is the above-mentioned primary anchor point UPF;
  • the UPF PSA2 deployed at the location of the contracted service is the above-mentioned secondary anchor point UPF.
  • D-SMF sends a registration request message to NRF.
  • NRF receives the registration request message sent by D-SMF.
  • the registration request message includes keywords such as DNAI, FQDN, and policy name supported by D-SMF.
  • the D-SMF can register with the NRF by sending a registration request message.
  • the registration request message can also be described as an Nnrf_NFManagement_NFRegister Request message, which is not limited in this application.
  • NRF sends a response message to the registration request message to D-SMF.
  • D-SMF receives the response message to the registration request message sent by NRF.
  • the response message of the registration request message can also be described as an Nnrf_NFManagement_NFRegister Response message, which is not limited in this application.
  • the UE is activated, the AMF selects the SMF where the UE accesses, and the SMF selects the UPF PSA1 where the UE accesses to create a user session.
  • S304 SMF sends a policy request message to PCF.
  • PCF receives the policy request message sent by SMF.
  • the policy request message is used to request the user session management SM policy.
  • the policy request message can also be described as an Npcf_SMPolicyControl_Create Request message.
  • S305 PCF sends a response message to the policy request message to SMF.
  • SMF receives the response message to the policy request message sent by PCF.
  • the response message of the policy request message includes the user policy.
  • the user policy includes the offloading rules of the subscription service and keywords such as DNAI, FQDN and policy name.
  • the DNAI is used to identify the DN access point information where the UE subscription service is located.
  • the response message of the policy request message can also be described as Npcf_SMPolicyControl_Create Response message.
  • SMF determines that the keywords such as DNAI, FQDN and policy name issued by PCF are not supported.
  • SMF determines that it does not support the keywords such as DNAI, FQDN and policy name issued by PCF and continues. Execute step S307.
  • S307 SMF sends the above-mentioned keywords such as DNAI, FQDN, and policy name that SMF does not support to AMF.
  • AMF receives the keywords such as DNAI, FQDN, and policy name sent by SMF.
  • S308 AMF sends a response message to SMF.
  • SMF receives the response message sent by AMF.
  • AMF sends a discovery request message to NRF.
  • NRF receives the discovery request message sent by AMF.
  • the discovery request message includes keywords such as DNAI, FQDN, and policy name.
  • the AMF sends the discovery request message carrying keywords such as DNAI, FQDN, and policy name to the NRF to discover the D-SMF where the contracted service is located.
  • the discovery request message can also be described as an Nnrf_NFDiscovery_NFDiscover Request message.
  • the NRF sends a response message to the discovery request message to the AMF.
  • the AMF receives the response message to the discovery request message sent by the NRF.
  • the response message for sending the discovery request message includes the address of the D-SMF where the contracted business is located.
  • the address includes the instance (Instance) identification number (ID) of the D-SMF and the fully qualified domain name (Fully Qualified Domain Name, FQDN).
  • Information such as the protocol (IP) for interconnection between networks.
  • the response message of the discovery request message can also be described as the Nnrf_NFDiscovery_NFDiscover Response message.
  • AMF sends a create context request message to D-SMF.
  • D-SMF receives the create context request message sent by AMF.
  • the create context request message includes the address of the SMF, which may include the Instance ID, FQDN, IP and other information of the SMF, without limitation.
  • step S312 the AMF sending a create context request message to the D-SMF can trigger the D-SMF to create the context, that is, step S312 is performed.
  • the create context request message can also be described as an Nsmf_PDUSession_CreateSMContext Request message.
  • D-SMF creates context
  • D-SMF sends a response message to the create context request message to AMF.
  • AMF receives the response message to the create context request message sent by D-SMF.
  • the response message of the create context request message can also be described as an Nsmf_PDUSession_CreateSMContext Response message.
  • S314 D-SMF sends a session creation request message to SMF.
  • SMF receives the session creation request message sent by D-SMF.
  • the session creation request message includes a keyword list such as DNAI, FQDN, and policy name supported by D-SMF.
  • step S311 after D-SMF receives the address of SMF, it can establish an N16a session with SMF based on the address of SMF, and report to SMF the key points such as DNAI, FQDN and policy name supported by D-SMF. word list.
  • the session creation request message can also be described as an Nsmf_PDUSession_Create Request message.
  • S315 SMF sends a response message to the session creation request message to D-SMF.
  • D-SMF receives the response message to the session creation request message sent by SMF.
  • the response message of the session creation request message includes keywords such as DNAI, FQDN, and policy name after negotiation between SMF and D-SMF.
  • the negotiated DNAI, FQDN, and policy name are included in the DNAI supported by D-SMF. , FQDN and policy name in the keyword list.
  • the SMF can negotiate and determine the DNAI based on the intersection between the keywords such as DNAI, FQDN, and policy name of the contracted service issued by the PCF and the keyword list such as DNAI, FQDN, and policy name reported by the D-SMF.
  • the response message of the session creation request message can also carry The data structure obtained by the N7 interface, such as accounting rules, policy rules, etc., is sent to D-SMF.
  • the response message of the session creation request message can also be described as an Nsmf_PDUSession_Create Response message.
  • D-SMF determines the auxiliary anchor point UPF PSA2 based on keywords such as DNAI, FQDN and policy name. That is, D-SMF selects the secondary anchor point UPF PSA2 based on the negotiated DNAI, FQDN, policy name and other keywords.
  • D-SMF creates an N4 session with the secondary anchor UPF PSA2.
  • D-SMF can also create a session with the CHF network element, so that the subsequent bill generated by D-SMF can be directly reported to the CHF network element.
  • D-SMF sends a session update request message to SMF.
  • SMF receives the session update request message sent by D-SMF.
  • the session update request message includes the N9 interface address of the secondary anchor point UPF PSA2 (ie, uplink N9).
  • D-SMF can carry the N9 interface address (uplink N9) of the secondary anchor UPF PSA2 to SMF through the session update request message.
  • the session update request message can also be described as an Nsmf_PDUSession_Update Request message.
  • S319 The SMF sends a response message to the session update request message to the D-SMF.
  • the D-SMF receives the response message to the session update request message sent by the SMF.
  • the response message of the session update request message can also be described as an Nsmf_PDUSession_Update Response message.
  • S320 SMF determines UPF ULCL.
  • the SMF may select the ULCL UPF based on the UE location.
  • S321, SMF and UPF ULCL create an N4 session.
  • the SMF also needs to issue the offloading rules of the contracted service to the UPF ULCL, where the offloading rules include keywords such as the DNAI, FQDN and policy name of the user's contract and the N9 interface of the auxiliary anchor point UPF PSA2 Correspondence of addresses. So that in actual operation, when the UE requests access to the subscription service, the UPF ULCL The N9 interface address of the secondary anchor point UPF PSA2 can be matched, and then the contracted service can be accessed based on the matched N9 interface address of the secondary anchor point UPF PSA2.
  • S322 SMF sends a session update request message to D-SMF.
  • D-SMF receives the second session update request message sent by SMF.
  • the session update request message includes the N9 interface address of UPF ULCL (ie, downlink N9).
  • SMF can carry the N9 interface address (downlink N9) of UPF ULCL to D-SMF through the session update request message.
  • the session update request message can also be described as an Nsmf_PDUSession_Update Request message.
  • D-SMF sends a response message to the session update request message to SMF.
  • SMF receives the response message to the session update request message sent by D-SMF.
  • the response message of the session update request message can also be described as an Nsmf_PDUSession_Update Response message.
  • the SMF sends a message to update the N3 address to the RAN through the AMF.
  • the RAN receives the message to update the N3 address sent by the SMF through the AMF.
  • the SMF may send an update N3 address message to the RAN (eg, gNB) through the AMF to update the uplink N3 interface address from the primary anchor UPF PSA1 to UPF ULCL.
  • the RAN eg, gNB
  • the RAN sends an update success message to the SMF through the AMF.
  • the SMF receives the update success message sent by the RAN through the AMF.
  • the access request can match the offloading rules of the subscription service when passing through the UPF ULCL, and then forward it to the auxiliary anchor point UPF PSA2 where the subscription service is located through the N9 interface, and pass the auxiliary anchor point UPF
  • the N6 interface of PSA2 is routed to the network where the subscription service is located (that is, the local DN deployed at the location of the UE's subscription service). Specifically, please refer to the following steps S326 to step S330:
  • the UE sends an access subscription service request to the UPF ULCL.
  • the request to access the subscription service usually contains keywords such as DNAI, FQDN, and policy name corresponding to the subscription service to be accessed.
  • UPF ULCL matches the distribution rules, that is, it matches the distribution rules of the contracted service.
  • UPF ULCL needs to determine whether there is a corresponding relationship between the keywords such as DNAI, FQDN and policy name requested for access and the N9 interface address of the auxiliary anchor UPF PSA2. If it exists, the offloading rule will be matched; if it does not exist, it will not be matched. Diversion rules.
  • step S326 since in step S326, the UE needs to access keywords such as DNAI, FQDN, and policy name corresponding to the subscription service, there are keywords such as DNAI, FQDN, and policy name requested for access and the auxiliary anchor point UPF The corresponding relationship between the N9 interface address of PSA2 and the UPF ULCL matching distribution rule.
  • UPF ULCL sends an access subscription service request to the secondary anchor UPF PSA2.
  • UPF ULCL sends an access subscription service request to the secondary anchor UPF PSA2 mainly through the N9 interface mentioned above.
  • the auxiliary anchor point UPF PSA2 sends a contract service response to UPF ULCL.
  • UPF ULCL sends a subscription service response to the UE.
  • the access request cannot match the offloading rules when passing through the UPF ULCL.
  • the access request is then forwarded to the main anchor point UPF PSA1 of the UE access location through the N9 interface, and then routed to the public network through the N6 interface of the main anchor point UPF PSA1. Specifically, please refer to the following steps S331 to S333:
  • the UE sends a public network access request to the UPF ULCL.
  • the request to access the public network contains keywords such as the DNAI, FQDN, and policy name of the public network.
  • UPF ULCL does not match the distribution rules, that is, it does not match the distribution rules of the contracted service.
  • UPF ULCL needs to determine whether there is a corresponding relationship between the keywords such as DNAI, FQDN and policy name requested for access and the N9 interface address of the auxiliary anchor UPF PSA2. If it exists, the offloading rule will be matched; if it does not exist, it will not be matched. Diversion rules.
  • step S331 since in step S331, the UE needs to access keywords such as DNAI, FQDN and policy name corresponding to the public network service, the UPF ULCL will not match the offloading rule, so the UPF ULCL can pass the main anchor Click UPF PSA1 to access the public network.
  • keywords such as DNAI, FQDN and policy name corresponding to the public network service
  • UPF ULCL sends a public network response to the UE.
  • FIG 4 is a schematic flow chart of a communication method 400 provided by an embodiment of the present application. As shown in Figure 4, method 400 includes S401 to S433, and these steps are described in detail below.
  • the SMF deployed at the UE access location is the above-mentioned first SMF network element;
  • the D-SMF deployed at the contracting service location is the above-mentioned second SMF network element;
  • the UPF ULCL at the UE access location is the above-mentioned offload UPF;
  • the UPF PSA1 deployed at the UE access location is the above-mentioned primary anchor point UPF;
  • the UPF PSA2 deployed at the location of the contracted service is the above-mentioned secondary anchor point UPF.
  • steps S401 to S410 please refer to steps S301 to S310, which will not be described again.
  • AMF sends the D-SMF address to the SMF.
  • the SMF receives the D-SMF address sent by the AMF.
  • the address of D-SMF includes the Instance ID, FQDN, IP and other information of D-SMF.
  • S412 SMF sends a response message to AMF.
  • AMF receives the response message sent by SMF.
  • this response message is used to indicate that the SMF has received the address of the D-SMF.
  • SMF sends a create context request message to D-SMF.
  • D-SMF receives the create context request message sent by SMF.
  • the creation context request message includes keywords such as DNAI, FQDN and policy name of the UE subscription service.
  • the context creation request message can also carry the data structure obtained by the N7 interface, such as charging rules, policy rules, etc., and is sent to D-SMF.
  • sending a context creation request message by the SMF to the D-SMF can trigger the D-SMF to create a context, that is, step S412 is performed.
  • the create context request message can also be described as an Nsmf_PDUSession_CreateSMContext Request message.
  • D-SMF sends a response message to the create context request message to SMF.
  • SMF receives the response message to the create context request message sent by D-SMF.
  • the response message of the create context request message can also be described as the Nsmf_PDUSession_CreateSMContext Response message.
  • steps S416 to S417 please refer to steps S316 to S317, which will not be described again.
  • D-SMF sends a session creation request message to SMF.
  • SMF receives the session creation request message sent by D-SMF.
  • the session creation request message includes the N9 interface address of the secondary anchor UPF PSA2 (ie, uplink N9).
  • D-SMF can carry the N9 interface address (uplink N9) of the secondary anchor UPF PSA2 to SMF through the session creation request message.
  • SMF sends a response message to the session creation request message to D-SMF.
  • D-SMF receives the response message to the session creation request message sent by SMF.
  • steps S420 to S433 please refer to steps S320 to S333, which will not be described again.
  • FIG 14 is a schematic flow chart of a communication method 1400 provided by an embodiment of the present application. It should be understood that method 1400 can also be applied to the following scenario: the current location of the UE is not within the service area of the SMF network element where the UE subscribes to the service (that is, the UE subscribed service and the current location of the UE are not in the same SMF POOL), but still needs to access The local area network where the UE contract service is located. It should be understood that method 1400 is mainly applied to a system including a first SMF network element and a second SMF network element, where the first SMF network element is deployed at the UE access location, and the second SMF network element is deployed at the location where the UE subscribes to services. As shown in Figure 14, the method 1400 includes steps S1410 and S1420. These steps are described in detail below.
  • the first SMF network element determines the address of the second SMF network element based on the target DNAI.
  • the first SMF network element determines the address of the second SMF network element based on the target DNAI.
  • the first SMF network element sends the target DNAI to the NRF network element; the first SMF network element receives the second SMF sent by the NRF network element.
  • the address of the network element may be sent a discovery request message carrying the target DNAI to the NRF network element to determine the address of the second SMF network element. See steps S1507 and S1508 in Example 3 below.
  • the target DNAI in the embodiment of this application may be the access identifier of the local area network where the UE subscribes to the service.
  • the first SMF network element does not support the target DNAI, which means that the first SMF network element does not support the DNAI corresponding to the local area network where the UE subscribes to the service. .
  • method 1400 may also include: the first SMF network element requests a user policy from the PCF network element; the first SMF network element receives the user policy sent by the PCF network element, where the user policy includes the UE subscription service The offloading rules and the DNAI of the data network where the contracted service is located; the first SMF network element determines whether it supports the DNAI of the data network where the contracted service is located. If the DNAI of the data network where the contracted service is located in the user policy is the DNAI corresponding to the LAN, then the first SMF network element The SMF network element determines that it does not support the DNAI, records the unsupported DNAI as the target DNAI, and then continues to execute step S1410. See steps S1504 to S1508 in Embodiment 3 below.
  • the method 1400 may also include: the second SMF network element deployed at the location where the UE subscribes the service also needs to register with the NRF network element that it supports. DNAI. See steps S1501 and S1502 in Example 3 below.
  • the second SMF network element deployed at the location where the UE subscribes the service registers the DNAI it supports with the NRF network element, it can also register keywords such as FQDN and policy name that it supports.
  • the above user policy may include offloading rules for UE subscription services and keywords such as DNAI, FQDN, and policy name. Based on this, in the interaction between various network elements involved in method 1400, any steps involving sending and receiving the DNAI or further performing other operations based on the DNAI need to also take into account keywords such as FQDN and policy name.
  • the steps involving sending and receiving the DNAI need to be changed to sending and receiving keywords such as the DNAI, FQDN, policy name;
  • the steps to further perform other operations need to be changed to further perform other operations based on the DNAI, FQDN, policy name and other keywords;
  • the above-mentioned first SMF network element does not support the target DNAI, which can be changed to the first SMF network element does not support the target DNAI, target Keywords such as FQDN, target policy name, etc.
  • target keyword includes keywords such as target DNAI, target FQDN, and target policy name, where,
  • the target FQDN and target policy name refer to the FQDN and policy name of the UE subscription service.
  • the UE leaves the service subscription location to the visiting location (i.e., the UE access location), the UE needs to be activated, and the AMF also needs to select the access SMF network element (i.e., the first SMF network element), and then the access SMF network element Select the main anchor point UPF of the access site (that is, the main anchor point UPF PSA1 deployed at the access site below) to create a user session. See step S1503 in Embodiment 3 below.
  • the UE can sign up for a universal DNN and then activate based on the universal DNN.
  • the first SMF network element sends the target DNAI to the second SMF network element.
  • the second SMF network element receives the target DNAI sent by the first SMF network element.
  • the first SMF network element sends the target DNAI to the second SMF network element, which can also be described as the first SMF network element sends the target DNAI to the second SMF network element based on the address of the second SMF network element.
  • step S1420 the "target DNAI” may also be carried and sent in the context creation request message, see step S1509 in Embodiment 3 below.
  • the first SMF network element can also carry the data structure obtained by N7, such as charging rules, policy rules, etc., and send it to the second SMF network element.
  • the second SMF network element may create a user context, see steps S1510 and S1511 in Embodiment 3 below.
  • the first SMF network element deployed at the UE access location when the first SMF network element deployed at the UE access location does not support the target DNAI, the first SMF network element can determine the address of the second SMF network element by itself, and establish a connection with the second SMF network element. Contact, so that the first SMF network element and the second SMF network element can interact and independently negotiate the target DNAI requested by the UE to access, so that the UE can still access the local area network service where the UE has signed the service even if it leaves the location where the UE has the contracted service, that is, It is said that when the UE moves to different locations, it can access the LAN services deployed at the designated location.
  • method 1400 may also include: the second SMF network element determines the secondary anchor point UPF (that is, the secondary anchor point UPF PSA2 deployed at the location where the UE subscribes to the service) according to the target DNAI; the second SMF network element sends The N9 interface address of the secondary anchor point UPF is sent to the first SMF network element.
  • the first SMF network element receives the N9 interface address of the secondary anchor point UPF sent by the second network element; the first SMF network element responds to the current location of the UE.
  • the first SMF network element sends the offloading rule to the offloading UPF, and the offloading rule includes the target DNAI and the auxiliary anchor point UPF
  • the second SMF network element can also create an N4 session with the secondary anchor UPF or with the CHF network element. Create a session so that the subsequent bill generated by the second SMF network element can be directly reported to the CHF network element.
  • the first SMF network element before the first SMF network element sends the offloading rule to the offloading UPF, the first SMF network element can also create an N4 session with the offloading UPF.
  • the first SMF network element after the first SMF network element sends the offloading rule to the offloading UPF, the first SMF network element can also send the N9 interface address of the offloading UPF to the second SMF network element.
  • the second SMF network element receives the first The N9 interface address of the offloaded UPF sent by the SMF network element. It should be understood that the above method can refer to steps S1512 to S1519 in Embodiment 3 below.
  • the second SMF network element deployed at the location where the UE subscribes to the service can determine the secondary anchor point UPF based on the target DNAI, and then send the N9 interface address of the secondary anchor point UPF to the third SMF network element deployed at the UE access location.
  • One SMF network element; the first SMF network element deployed at the UE access location can determine the offloading UPF based on the current location of the UE, and send the offloading rule for the UE contracted service to the offloading UPF.
  • the offloading rule includes the target DNAI and the secondary anchor point. Correspondence between the N9 interface addresses of UPF.
  • the UE When the UE requests access to the target DNAI, it can match the N9 interface address of the secondary anchor point UPF through the offload UPF at the UE access point, and then access the secondary anchor point UPF based on the N9 interface address of the secondary anchor point UPF, and then can use the secondary anchor point UPF enables access to the local area network where the UE's contracted service is located.
  • method 1400 may also include: the first SMF network element sends an update request message to the RAN network element through the AMF network element.
  • the update request message is used to request that the N3 address be updated from the primary anchor point UPF of the UE access location to Offload the UPF so that the RAN can communicate with the offload UPF. Please refer to steps S1520 and S1521 in Embodiment 3 below.
  • the N9 interface address of the secondary anchor UPF can be matched through the offload UPF, and then the secondary anchor UPF can be accessed based on the N9 interface address of the secondary anchor UPF. Access to the local area network where the UE's contracted service is located can be achieved through the secondary anchor point UPF. If the user requests access to public network services, the N9 interface address of the secondary anchor point UPF cannot be matched through the offload UPF. In this case, the N9 interface of the offload UPF can be directly forwarded to the primary anchor point UPF at the UE access location. , routed to the public network through the N6 interface of UPF, the main anchor point of the UE access location. Please refer to steps S1522 to S1529 in Embodiment 3 below.
  • the above-mentioned first SMF network element can also be an SMF convergence node, and the SMF convergence node can be used for users to access any number of 2G, 3G, 4G and 5G.
  • Figure 15 is a schematic flow chart of a communication method 1500 provided by an embodiment of the present application. As shown in Figure 15, method 1500 includes S1501 to S1529. These steps are described in detail below.
  • the SMF deployed at the UE access location is the above-mentioned first SMF network element;
  • the D-SMF deployed at the contracting service location is the above-mentioned second SMF network element;
  • the UPF ULCL at the UE access location is the above-mentioned offload UPF;
  • the UPF PSA1 deployed at the UE access location is the above-mentioned primary anchor point UPF;
  • the UPF PSA2 deployed at the location of the contracted service is the above-mentioned secondary anchor point UPF.
  • steps S1501 to S1506 please refer to steps S401 to S406 (that is, refer to steps S301 to S306), which will not be described again.
  • Step S1507 SMF sends a discovery request message to NRF.
  • NRF receives the discovery request message sent by SMF.
  • the discovery request message includes keywords such as DNAI, FQDN, and policy name.
  • the SMF sends the discovery request message carrying keywords such as DNAI, FQDN, and policy name to the D-SMF where the NRF can discover the location of the contracted service.
  • the discovery request message can also be described as an Nnrf_NFDiscovery_NFDiscover Request message.
  • NRF sends a response message to the discovery request message to SMF.
  • SMF receives the response message to the discovery request message sent by NRF.
  • the response message for sending the discovery request message includes the address of the D-SMF where the contracted service is located, and the address includes the ID, FQDN, IP and other information of the D-SMF.
  • the response message of the discovery request message can also be described as the Nnrf_NFDiscovery_NFDiscover Response message.
  • steps S1509 to S1529 please refer to steps S413 to S433 (that is, refer to steps S413 to S419 and steps S320 to S333), which will not be described again.
  • method 1400 and method 1500 are mainly examples of communication methods when users access from 5G.
  • the first SMF network element involved in method 1400 and the SMF involved in method 1500 are replaced with GW- Fusion nodes such as C/SMF or GGSN/PGW/SMF.
  • Replacing the AMF involved in methods 1400 and 1500 with fusion nodes such as SGSN/MME will enable users to access subscriptions when accessing from 2G/3G/4G. Local area network services at the business location.
  • convergence nodes can be considered based on actual conditions. In actual operations, more or less network elements can be included for convergence to enable users to access local area network services at the location of the contracted service in different scenarios.
  • the AMF involved in methods 1400 and 1500 can also be replaced with an SGSN/MME/AMF convergence node, which will enable users to access the local area network where the contracted service is located when accessing from 2G/3G/4G/5G. business.
  • GW-C is the abbreviation of gateway-control plane (GW-C);
  • GGSN is the abbreviation of gateway GPRS support node (GGSN);
  • GPRS is the general packet radio service , the abbreviation of GPRS);
  • PGW is the abbreviation of PDN GateWay;
  • PDN is the abbreviation of public data network (PDN);
  • SGSN is the abbreviation of service GPRS support node (service GPRS support node);
  • MME is mobile The abbreviation of mobility management entity (MME).
  • FIG. 16 is a schematic flowchart of a communication method 1600 provided by the embodiment of the present application. It should be understood that the main difference between this method 1600 and the above-mentioned method 1500 is that the SMF involved in the method 1500 is replaced by a GW-C/SMF fusion node, and the AMF involved is replaced by an SGSN/MME fusion node, so as to ensure user convenience. Take the 2G/3G/4G access scenario as an example. As shown in Figure 16, method 1600 includes S1601 to S1629, and these steps are introduced below.
  • steps S1501 to S1502 that is, refer to steps S401 to S402 or steps S301 to S302), which will not be described again.
  • the UE is activated, SGSN/MME selects the UE access location GW-C/SMF, and GW-C/SMF selects the UE access location UPF PSA1 to create a user session.
  • GW-C/SMF sends a policy request message to PCF.
  • PCF receives the policy request message sent by GW-C/SMF.
  • the policy request message is used to request SM policy.
  • the policy request message can also be described as an Npcf_SMPolicyControl_Create Request message.
  • PCF sends a response message to the policy request message to GW-C/SMF.
  • GW-C/SMF receives the response message to the policy request message sent by PCF.
  • the response message of the policy request message includes a user policy, and the user policy includes traffic distribution rules for the contracted service. Then, and keywords such as DNAI, FQDN and policy name, the DNAI is used to identify the DN access point information where the UE subscribes to the service.
  • the response message of the policy request message can also be described as the Npcf_SMPolicyControl_Create Response message.
  • GW-C/SMF determines that the keywords such as DNAI, FQDN, and policy name issued by PCF are not supported.
  • GW-C/SMF determines that it does not support the key words such as DNAI, FQDN, and policy name issued by PCF. word, and continue to step S1607.
  • GW-C/SMF sends a discovery request message to NRF.
  • NRF receives the discovery request message sent by GW-C/SMF.
  • the discovery request message includes keywords such as DNAI, FQDN, and policy name.
  • the GW-C/SMF sends the discovery request message carrying keywords such as DNAI, FQDN, and policy name to the D-SMF where the NRF can discover the location of the contracted service.
  • the discovery request message can also be described as an Nnrf_NFDiscovery_NFDiscover Request message.
  • S1608 The NRF sends a response message to the discovery request message to the GW-C/SMF.
  • the GW-C/SMF receives the response message to the discovery request message sent by the NRF.
  • the response message for sending the discovery request message includes the address of the D-SMF where the contracted service is located, and the address includes the ID, FQDN, IP and other information of the D-SMF.
  • the response message of the discovery request message can also be described as the Nnrf_NFDiscovery_NFDiscover Response message.
  • GW-C/SMF sends a create context request message to D-SMF.
  • D-SMF receives the create context request message sent by GW-C/SMF.
  • the creation context request message includes keywords such as DNAI, FQDN and policy name of the UE subscription service.
  • the context creation request message can also carry the data structure obtained by the N7 interface, such as charging rules, policy rules, etc., and is sent to D-SMF.
  • step S1610 the GW-C/SMF sending a create context request message to the D-SMF can trigger the D-SMF to create the context, that is, step S1610 is performed.
  • the create context request message can also be described as an Nsmf_PDUSession_CreateSMContext Request message.
  • D-SMF creates context.
  • D-SMF sends a response message to the create context request message to GW-C/SMF.
  • GW-C/SMF receives the response message to the create context request message sent by D-SMF.
  • the response message of the create context request message can also be described as an Nsmf_PDUSession_CreateSMContext Response message.
  • D-SMF determines the auxiliary anchor point UPF PSA2 based on keywords such as DNAI, FQDN and policy name. That is, D-SMF selects the secondary anchor point UPF PSA2 based on the negotiated DNAI, FQDN, policy name and other keywords.
  • D-SMF creates an N4 session with the secondary anchor UPF PSA2.
  • D-SMF can also create a session with the CHF network element, so that the subsequent bill generated by D-SMF can be directly uploaded. Report to CHF network element.
  • D-SMF sends a session creation request message to GW-C/SMF.
  • GW-C/SMF receives the session creation request message sent by D-SMF.
  • the session creation request message includes the N9 interface address of the secondary anchor UPF PSA2 (ie, uplink N9).
  • D-SMF can carry the N9 interface address (uplink N9) of the secondary anchor UPF PSA2 to GW-C/SMF through the session creation request message.
  • the session creation request message can also be described as an Nsmf_PDUSession_Create Request message.
  • GW-C/SMF sends a response message to the session creation request message to D-SMF.
  • D-SMF receives the response message to the session creation request message sent by SMF.
  • the response message of the session creation request message can also be described as an Nsmf_PDUSession_Create Response message.
  • GW-C/SMF determines UPF ULCL.
  • the GW-C/SMF can select the ULCL UPF based on the UE location.
  • the GW-C/SMF also needs to issue the offloading rules of the subscription service to the UPF ULCL, where the offloading rules include keywords such as the DNAI, FQDN and policy name of the user's contract and the auxiliary anchor point UPF Correspondence between the N9 interface addresses of PSA2.
  • the offloading rules include keywords such as the DNAI, FQDN and policy name of the user's contract and the auxiliary anchor point UPF Correspondence between the N9 interface addresses of PSA2.
  • UPF ULCL can match the N9 interface address of the secondary anchor UPF PSA2, and then access the subscription service based on the matched N9 interface address of the secondary anchor UPF PSA2.
  • S1618 GW-C/SMF sends a session update request message to D-SMF.
  • D-SMF receives the session update request message sent by GW-C/SMF.
  • the session update request message includes the N9 interface address of UPF ULCL (ie, downlink N9).
  • GW-C/SMF can carry the N9 interface address (downlink N9) of UPF ULCL to D-SMF through the session update request message.
  • the session update request message can also be described as an Nsmf_PDUSession_Update Request message.
  • D-SMF sends a response message to the session update request message to GW-C/SMF.
  • GW-C/SMF receives the response message to the session update request message sent by D-SMF.
  • the response message of the session update request message can also be described as an Nsmf_PDUSession_Update Response message.
  • GW-C/SMF sends a message to update the user plane address to the RAN through the SGSN/MME.
  • the RAN receives the message to update the user plane address sent by the GW-C/SMF through the SGSN/MME.
  • the GW-C/SMF may send a message to update the user plane address to the RAN (eg, gNB) through the SGSN/MME to update the uplink user plane address from the main anchor point UPF PSA1 to UPF ULCL.
  • the RAN eg, gNB
  • the SGSN/MME may update the uplink user plane address from the main anchor point UPF PSA1 to UPF ULCL.
  • S1621 RAN sends an update success message to GW-C/SMF through SGSN/MME.
  • GW-C/SMF receives the update success message sent by RAN through SGSN/MME.
  • FIG. 5 is a schematic diagram of a communication device 500 provided by an embodiment of the present application.
  • the device 500 may be a first SMF network element, or may be a device such as a chip, processor or module applied to the first SMF network element, and the first SMF network element is deployed at the UE access location.
  • the device 500 includes: a transceiver module 510. It should be understood that the transceiver module 510 has the capability of sending and/or receiving data.
  • the first SMF network element does not support the target DNAI.
  • the target DNAI is the access identifier of the data network where the UE subscribes to the service.
  • the transceiver module 510 is used to send the target DNAI to the AMF network element.
  • the target DNAI is used to determine the second SMF The address of the network element.
  • the second SMF network element is deployed at the location where the UE subscribes to the service; receives one or more DNAIs supported by the second SMF network element sent by the second SMF network element, and one or more DNAIs supported by the second SMF network element.
  • Each DNAI includes the target DNAI; the target DNAI is sent to the second SMF network element.
  • the transceiver module 510 may also be configured to receive the N9 interface address of the secondary anchor point UPF sent by the second SMF network element, and the secondary anchor point UPF is determined based on the target DNAI; Send the offloading rule to the offloading UPF.
  • the offloading rule includes the correspondence between the target DNAI and the N9 interface address of the secondary anchor point UPF.
  • the offloading UPF is determined based on the current location of the UE.
  • the transceiver module 510 may also be configured to send an update request message to the RAN network element through the AMF network element.
  • the update request message is used to request that the N3 address be updated from the main anchor point UPF of the UE access location to the offload. UPF.
  • FIG. 6 is a schematic diagram of a communication device 600 provided by an embodiment of the present application.
  • the device 600 may be a second SMF network element, or may be a device such as a chip, processor or module applied to the second SMF network element.
  • the second SMF network element is deployed at the location where the UE subscribes to the service.
  • the device 600 includes: a transceiver module 610. It should be understood that the transceiver module 610 has the capability of sending and/or receiving data.
  • the transceiver module 610 is configured to receive the address of the first SMF network element sent by the AMF network element.
  • the first SMF network element is deployed at the UE access location; and send one or more DNAIs supported by itself to the first SMF network element,
  • the one or more DNAIs supported by the self include a target DNAI, where the target DNAI is the access identifier of the data network where the UE subscribes to the service; and the target DNAI sent by the first SMF network element is received.
  • the apparatus 600 may further include: a processing module 620.
  • the processing module 620 may be configured to determine the auxiliary anchor user plane function UPF according to the target DNAI.
  • the transceiver module 610 may also be configured to send the N9 interface address of the secondary anchor point UPF to the first SMF network element.
  • FIG. 7 is a schematic diagram of a communication device 700 provided by an embodiment of the present application.
  • the device 700 may be an AMF network element, or may be a device such as a chip, processor, or module applied to the AMF network element.
  • the device 700 includes a transceiver module 710 and a processing module 720. It should be understood that the transceiver module 710 has the ability to send and/or receive data.
  • the transceiver module 710 is configured to receive the target DNAI sent by the first SMF network element, where the target DNAI is the access identifier of the data network where the UE subscribes to the service.
  • the first SMF network element is deployed at the UE access location.
  • the processing module 720 is configured to determine the address of the second SMF network element according to the target DNAI.
  • the second SMF network element is deployed at the location where the UE subscribes to the service.
  • the transceiving module 710 may also be used to send the address of the first SMF network element to the second SMF network element.
  • the transceiver module 710 may also be configured to send the target DNAI to the NRF network element; and receive the address of the second SMF network element sent by the NRF network element.
  • the transceiver module 710 may also be configured to receive an update request message sent by the first SMF network element, where the update request message is used to request that the N3 address be updated from the main anchor point UPF of the UE access location to the offload UPF. ;Send the update request message to RAN.
  • FIG. 8 is a schematic diagram of a communication device 800 provided by an embodiment of the present application.
  • the device 800 may be the An SMF network element may also be a device such as a chip, processor or module applied to the first SMF network element, and the first SMF network element is deployed at the UE access location.
  • the device 800 includes: a transceiver module 810. It should be understood that the transceiver module 810 has the capability of sending and/or receiving data.
  • the first SMF network element does not support the target DNAI.
  • the target DNAI is the access identifier of the data network where the UE subscribes to the service.
  • the transceiver module 810 is used to send the target DNAI to the AMF network element.
  • the target DNAI is used to determine the second The address of the SMF network element.
  • the second SMF network element is deployed at the location of the UE contracted service; receives the address of the second SMF network element sent by the AMF network element; and sends the target DNAI to the second SMF network element.
  • the transceiver module 810 may also be configured to receive the N9 interface address of the secondary anchor point UPF sent by the second SMF network element, and the secondary anchor point UPF is determined based on the target DNAI; Send the offloading rule to the offloading UPF.
  • the offloading rule includes the correspondence between the target DNAI and the N9 interface address of the secondary anchor point UPF.
  • the offloading UPF is determined based on the current location of the UE.
  • the transceiver module 810 may also be configured to send an update request message to the RAN network element through the AMF network element.
  • the update request message is used to request that the N3 address be updated from the main anchor point UPF of the UE access location to the offload UPF.
  • FIG. 9 is a schematic diagram of a communication device 900 provided by an embodiment of the present application.
  • the device 900 may be a second SMF network element, or may be a device such as a chip, processor or module applied to the second SMF network element.
  • the second SMF network element is deployed at the location where the UE subscribes to the service.
  • the device 900 includes: a transceiver module 910. It should be understood that the transceiver module 910 has the capability of sending and/or receiving data.
  • the transceiver module 910 is configured to receive the target DNAI sent by the first SMF network element, where the target DNAI is the access identifier of the data network where the UE subscribes to the service.
  • the apparatus 900 may also include: a processing module 920.
  • the processing module 920 may be configured to determine the auxiliary anchor user plane function UPF according to the target DNAI.
  • the transceiver module 910 may also be configured to send the N9 interface address of the secondary anchor point UPF to the first SMF network element.
  • FIG 10 is a schematic diagram of a communication device 1000 provided by an embodiment of the present application.
  • the device 1000 may be an AMF network element, or may be a device such as a chip, processor or module applied to the AMF network element.
  • the device 1000 includes a transceiver module 1010 and a processing module 1020. It should be understood that the transceiver module 1010 has the capability of sending and/or receiving data.
  • the transceiver module 1010 is configured to receive the target DNAI sent by the first SMF network element, where the target DNAI is the access identifier of the data network where the UE subscribes to the service.
  • the first SMF network element is deployed at the UE access location.
  • the processing module 1020 is configured to determine the address of the second SMF network element according to the target DNAI, and the second SMF network element is deployed at the location where the UE subscribes to the service.
  • the transceiver module 1010 is also configured to send the address of the second SMF network element to the first SMF network element.
  • the transceiver module 1010 can also be used to send the target DNAI to the NRF network element; and receive the address of the second SMF network element sent by the NRF network element.
  • the transceiver module 1010 may also be configured to receive an update request message sent by the first SMF network element.
  • the update request message is used to request that the N3 address be updated from the main anchor point UPF of the UE access location to the offload UPF; send the update Request message to RAN.
  • Figure 17 is a schematic diagram of a communication device 1700 provided by an embodiment of the present application.
  • the device 1700 may be a first SMF network element, or may be a device such as a chip, processor or module applied to the first SMF network element, and the first SMF network element is deployed at the UE access location.
  • the device 1700 includes: a processing module 1710 and a transceiver module 1720. It should be understood that the transceiver module 1720 has the ability to send and/or receive data.
  • the first SMF network element does not support the target DNAI.
  • the target DNAI is the access identifier of the data network where the UE subscribes to the service.
  • the processing module 1710 is used to determine the address of the second SMF network element according to the target DNAI.
  • the second SMF network The element is deployed at the location where the UE contract service is located.
  • the transceiver module 1720 is used to send the target DNAI to the second SMF network element.
  • the transceiver module 1720 can also be used to send the target DNAI to the NRF network element; and receive the address of the second SMF network element sent by the NRF network element.
  • the transceiver module 1720 may also be configured to receive the N9 interface address of the secondary anchor point UPF sent by the second SMF network element, and the secondary anchor point UPF is determined based on the target DNAI. ;Send the offloading rule to the offloading UPF.
  • the offloading rule includes the correspondence between the target DNAI and the N9 interface address of the secondary anchor point UPF.
  • the offloading UPF is determined based on the current location of the UE.
  • Figure 18 is a schematic diagram of a communication device 1800 provided by an embodiment of the present application.
  • the device 1800 may be a second SMF network element, or may be a device such as a chip, processor or module applied to the second SMF network element.
  • the second SMF network element is deployed at the location where the UE subscribes to the service.
  • the device 1800 includes: a transceiver module 1810. It should be understood that the transceiver module 1810 has the ability to send and/or receive data.
  • the transceiver module 1810 is configured to receive the target DNAI sent by the first SMF network element, where the target DNAI is the access identifier of the data network where the UE subscribes to the service.
  • the device 1800 may also include: a processing module 1820.
  • the processing module 1820 After receiving the target DNAI sent by the first SMF network element, the processing module 1820 is configured to determine the auxiliary anchor point UPF according to the target DNAI; the transceiver module 1810 may also be configured to, Send the N9 interface address of the secondary anchor point UPF to the first SMF network element.
  • target DNAI involved in the above device can also be directly replaced with "target keyword".
  • target keyword includes target DNAI, target FQDN, target policy name and other keywords, where, target FQDN, target policy name Refers to the FQDN and policy name of the UE contracted service. For details, please refer to the descriptions in each method embodiment and will not be described again.
  • Figure 11 is a communication system 1100 provided by an embodiment of the present application. As shown in Figure 11, the system 1100 includes the above-mentioned device 500, device 600 and device 700.
  • Figure 12 is a communication system 1200 provided by an embodiment of the present application. As shown in Figure 12, the system 1200 includes the above-mentioned device 800, device 900 and device 1000.
  • Figure 19 is a communication system 1900 provided by an embodiment of the present application. As shown in Figure 19, the system 1900 includes the above-mentioned device 1700 and device 1800.
  • Figure 13 is a schematic diagram of a communication device 1300 provided by an embodiment of the present application.
  • the communication device 1300 includes: a transceiver 1310, a processor 1320 and a memory 1330.
  • the transceiver 1310, the processor 1320 and the memory 1330 communicate with each other through internal connection paths to transmit control and/or data signals.
  • the transceiver 1310 may also be a communication interface.
  • the memory 1330 is used to store application program code for executing the solution of the present application, and the processor 1320 is used to execute the application program code stored in the memory 1330 .
  • transceiver 1310 can be used to implement the functions involved in the transceiver module in the above embodiment
  • processor 1320 can be used to implement the functions involved in the processing module in the above embodiment.
  • processor 1320 calls and runs the computer program from the memory
  • the processor 1320 can be used to perform related operations performed by the processing modules in the above embodiments.
  • the processor 1320 may include one or more CPUs.
  • the communication device 1300 may include multiple processors, and each processor may be a single-core (single-CPU) processor or a multi-core (multi-CPU) processor.
  • a processor here may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • Memory 1330 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory (RAM)) or other type that can store information and instructions.
  • a dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Any other medium for access, but not limited to this.
  • the memory may exist independently and be connected to the processor through a connection line (such as a system bus). Memory can also be integrated with the processor.
  • the communication device 1300 may also include an output device and an input device.
  • Output devices communicate with processor 1320 and can display information in a variety of ways.
  • the output device may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector), etc.
  • Input devices communicate with processor 1320 and can accept user input in a variety of ways.
  • the input device may be a mouse, a keyboard, a touch screen device or a sensing device, etc.
  • the above-mentioned communication device 1300 may be a general-purpose computer device or a special-purpose computer device.
  • the communication device 1300 may be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, a communication device or an embedded device.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of communication device 1300.
  • Embodiments of the present application also provide a computer-readable storage medium on which computer instructions for implementing the methods executed by network elements or devices in each of the above method embodiments are stored.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the first SMF network element in each embodiment of the above method.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the second SMF network element in each embodiment of the above method.
  • the computer when the computer program is executed by a computer, the computer can implement the method executed by the AMF network element in each embodiment of the above method.
  • Embodiments of the present application also provide a computer program product, which includes instructions.
  • the instructions are executed by a computer, the methods executed by network elements or devices in each of the above method embodiments are implemented.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined.
  • the integration can either be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer may be a personal computer, a server, or a network device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the available media may be magnetic media (such as floppy disks, hard disks, magnetic tapes), optical media (such as DVDs), or semiconductor media (such as solid state disks (SSD)), etc.
  • the aforementioned available media include but Not limited to: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code.

Abstract

本申请实施例提供了一种通信方法、装置和系统。其中,该方法包括:若部署于UE接入地的第一SMF网元不支持目标DNAI,第一SMF网元发送目标DNAI至AMF网元,以通过AMF网元确定部署于UE签约业务所在地的第二SMF网元的地址,AMF网元发送第一SMF网元的地址至第二SMF网元或者AMF网元发送第二SMF网元的地址至第一SMF网元使双方建立联系;或者第一SMF网元自身确定第二SMF网元的地址,并与第二SMF网元建立联系,进而使得第一SMF网元和第二SMF网元可以自主协商UE请求访问的目标DNAI。本申请方案使得在UE移出签约业务所在地时,仍能够继续访问签约业务所在局域网的业务。

Description

通信方法、装置和系统
本申请要求于2022年03月18日提交中国专利局、申请号为202210271758.3、申请名称为“通信方法、装置和系统”的中国专利申请以及2022年08月11日提交中国专利局、申请号为202210967015.X、申请名称为“通信方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种通信方法、装置和系统。
背景技术
在当前技术中,若用户设备(user equipment,UE)签约的业务在归属地,并且签约的归属地业务部署在局域网。当UE移出归属地至接入地,例如跨省移动到拜访省时,UE在接入地的位置不再处于UE签约业务所在地的会话管理功能(session management function,SMF)网元的服务区域内,而且,对于局域网而言,是公网不可达的,导致UE在接入地无法再继续访问到签约业务所在地的局域网业务。
因而,如何使得在UE移出签约业务所在地时,仍能够继续访问签约业务所在地的局域网业务是亟需解决的技术问题。
发明内容
本申请实施例提供一种通信方法、装置和系统,使得在UE移出签约业务所在地时,仍能够继续访问签约业务所在地的局域网业务。
第一方面,提供了一种通信方法,该方法应用于第一SMF网元,该第一SMF网元部署于UE接入地,该第一SMF网元不支持目标数据网络接入标识符DNAI,该目标DNAI为UE签约业务所在数据网络的接入标识符,该方法包括:发送该目标DNAI至接入和移动性管理功能AMF网元,该目标DNAI用于确定第二SMF网元的地址,该第二SMF网元部署于UE签约业务所在地;接收该第二SMF网元发送的该第二SMF网元支持的一个或多个DNAI,该第二SMF网元支持的一个或多个DNAI中包括该目标DNAI;发送该目标DNAI至该第二SMF网元。
应理解,本申请实施例中的目标DNAI可以为UE签约业务所在局域网的接入标识符,该第一SMF网元不支持目标DNAI是指该第一SMF网元不支持UE签约业务所在局域网对应的DNAI。
本申请方案可以应用于如下场景:UE当前位置不在UE签约业务所在地的SMF网元的服务区域内(即UE签约业务与UE当前位置之间不在同一个SMF POOL),但仍需要访问UE签约业务所在地的局域网业务。
应理解,第一SMF网元发送目标DNAI至AMF网元,且该目标DNAI用于确定第二 SMF网元的地址,使得AMF网元在接收到该目标DNAI后,便可以根据该目标DNAI确定第二SMF网元的地址。在AMF网元确认第二SMF网元的地址之后,即可建立起第一SMF网元和第二SMF网元之间的联系,使得第一SMF网元和第二SMF网元之间可以自主协商UE请求访问的目标DNAI。具体地,可以通过如下方式自主协商:第一SMF网元可以接收该第二SMF网元发送的该第二SMF网元支持的一个或多个DNAI,该第二SMF网元支持的一个或多个DNAI中包括该目标DNAI;第一SMF网元发送该目标DNAI至该第二SMF网元。
可选地,第一SMF网元接收到第二SMF网元发送的第二SMF网元支持的一个或多个DNAI之后,可以基于该一个或多个DNAI与目标DNAI的交集确定该目标DNAI是第二SMF网元所支持的。
在本申请实施例中,在部署于UE接入地的第一SMF网元不支持目标DNAI时,第一SMF网元可以将该目标DNAI发送至AMF网元,使得AMF网元根据该目标DNAI确定部署于UE签约业务所在地的第二SMF网元的地址。在AMF网元确认第二SMF网元的地址之后,即可使得第一SMF网元和第二SMF网元建立联系并进行交互,在交互中使得第一SMF网元得知第二SMF网元是目标DNAI对应的SMF网元,并与其协商确定UE需要访问的目标DNAI(即第一SMF网元先接收第二SMF网元发送的第二SMF网元支持的一个或多个DNAI;然后第一SMF网元基于一个或多个DNAI确定UE当前请求访问的目标DNAI是第二SMF网元所支持的,再发送目标DNAI至第二SMF网元),进而使得UE即使离开签约业务所在地仍能够访问到UE签约业务所在地的局域网业务,即就是说使得UE移动到不同的位置时,都能访问到指定位置部署的局域网业务。
结合第一方面,在第一方面的某些实现方式中,在该发送该目标DNAI至该第二SMF网元之后,该方法还包括:接收该第二SMF网元发送的辅锚点用户面功能UPF的N9接口地址,该辅锚点UPF根据该目标DNAI确定;发送分流规则至分流UPF,该分流规则包括该目标DNAI和该辅锚点UPF的N9接口地址的对应关系,该分流UPF根据UE当前位置确定。
在本申请实施例中,部署于UE接入地的第一SMF网元可以接收部署于UE签约业务所在地的第二SMF网元发送的签约业务所在地的辅锚点UPF的N9接口地址,其中,辅锚点UPF根据目标DNAI确定;然后发送分流规则至分流UPF,该分流规则包括该目标DNAI和该辅锚点UPF的N9接口地址的对应关系,该分流UPF根据UE当前位置确定。使得UE请求访问目标DNAI时,可以通过UE接入地的分流UPF匹配到辅锚点UPF的N9接口地址,然后基于辅锚点UPF的N9接口地址访问辅锚点UPF,进而可以通过辅锚点UPF实现UE签约业务所在的局域网的访问。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:通过该AMF网元发送更新请求消息至无线接入网RAN网元,该更新请求消息用于请求将N3地址由UE接入地的主锚点UPF更新为该分流UPF。
第二方面,提供了一种通信方法,该方法应用于第二SMF网元,该第二SMF网元部署于UE签约业务所在地,该方法包括:接收AMF网元发送的第一SMF网元的地址,该第一SMF网元部署于UE接入地;发送自身支持的一个或多个DNAI至该第一SMF网元,该自身支持的一个或多个DNAI中包括目标DNAI,该目标DNAI为UE签约业务所在数 据网络的接入标识符;接收该第一SMF网元发送的该目标DNAI。
可选地,在该方法执行之前,部署于UE签约业务所在地的第二SMF网元还需要向网络存储功能NRF网元注册自身所支持的DNAI。
在本申请实施例中,部署于UE签约业务所在地的第二SMF网元可以接收AMF网元发送的部署于UE接入地第一SMF网元的地址,使得第二SMF网元可以自主与第一SMF网元建立联系,并进行交互协商确定UE请求访问的目标DNAI(即第二SMF网元可以发送自身支持的一个或多个DNAI至该第一SMF网元;然后接收该第一SMF网元发送的目标DNAI)。本申请方案使得UE即使离开签约业务所在地仍能够访问到UE签约业务所在地的局域网业务,即就是说使得UE移动到不同的位置时,都能访问到指定位置部署的局域网业务。
结合第二方面,在第二方面的某些实现方式中,在该接收该第一SMF网元发送的该目标DNAI之后,该方法还包括:根据该目标DNAI确定辅锚点UPF;发送该辅锚点UPF的N9接口地址至该第一SMF网元。
在本申请实施例中,部署于UE签约业务所在地的第二SMF网元可以根据目标DNAI确定辅锚点UPF;并发送该辅锚点UPF的N9接口地址至该第一SMF网元。使得UE在接入地可以基于辅锚点UPF的N9接口地址访问到UE签约业务所在地的辅锚点UPF,进而可以通过辅锚点UPF实现UE签约业务所在的局域网的访问。
第三方面,提供了一种通信方法,该方法应用于接入和移动性管理功能AMF网元,该方法包括:接收第一SMF网元发送的目标数据网络接入标识符DNAI,该目标DNAI为UE签约业务所在数据网络的接入标识符,该第一SMF网元部署于UE接入地;根据该目标DNAI确定第二SMF网元的地址,该第二SMF网元部署于UE签约业务所在地;发送该第一SMF网元的地址至该第二SMF网元。
应理解,AMF网元发送第一SMF网元的地址给第二SMF网元,使得第二SMF网元可以基于第一SMF网元的地址与第一SMF网元进行通信。
在本申请实施例中,AMF网元可以接收部署于UE接入地的第一SMF网元发送的目标DNAI,然后根据该目标DNAI确定部署于UE签约业务所在地的第二SMF网元的地址,再将第一SMF网元的地址发送给第二SMF网元,即可使得第一SMF网元和第二SMF网元之间建立联系并进行交互,进而使得第一SMF网元和第二SMF网元在交互中自主协商确定UE请求访问的目标DNAI。本申请方案使得UE即使离开签约业务所在地仍能够访问到UE签约业务所在地的局域网业务,即就是说使得UE移动到不同的位置时,都能访问到指定位置部署的局域网业务。
结合第三方面,在第三方面的某些实现方式中,该根据该目标DNAI确定第二SMF网元的地址包括:发送该目标DNAI至网络存储功能NRF网元;接收该NRF网元发送的该第二SMF网元的地址。
结合第三方面,在第三方面的某些实现方式中,该方法还包括:接收该第一SMF网元发送的更新请求消息,该更新请求消息用于请求将N3地址由UE接入地的主锚点UPF更新为该分流UPF;发送该更新请求消息至无线接入网RAN。
第四方面,提供了一种通信方法,该方法应用于第一SMF网元,该第一SMF网元部署于UE接入地,该第一SMF网元不支持目标数据网络接入标识符DNAI,该目标DNAI 为UE签约业务所在数据网络的接入标识符,该方法包括:发送该目标DNAI至AMF网元,该目标DNAI用于确定第二SMF网元的地址,该第二SMF网元部署于UE签约业务所在地;接收该AMF网元发送的该第二SMF网元的地址;发送该目标DNAI至该第二SMF网元。
应理解,本申请实施例中的目标DNAI可以为UE签约业务所在局域网的接入标识符。
本申请方案可以应用于如下场景:UE当前位置不在UE签约业务所在地的SMF网元的服务区域内(即UE签约业务与UE当前位置之间不在同一个SMF POOL),但仍需要访问UE签约业务所在地的局域网业务。
应理解,发送该目标DNAI至该第二SMF网元,也可以描述为,基于第二SMF网元的地址发送该目标DNAI至该第二SMF网元。
应理解,第一SMF网元发送目标DNAI至AMF网元,且该目标DNAI用于确定第二SMF网元的地址,使得AMF网元在接收到该目标DNAI后,便可以根据该目标DNAI确定第二SMF网元的地址。在AMF网元确认第二SMF网元的地址之后,即可建立起第一SMF网元和第二SMF网元之间的联系,使得第一SMF网元和第二SMF网元之间可以自主协商UE请求访问的目标DNAI。具体地,可以通过如下方式自主协商:第一SMF网元可以从该AMF网元接收第二SMF网元的地址,然后将目标DNAI发送给第二SMF网元。
在本申请实施例中,在部署于UE接入地的第一SMF网元不支持目标DNAI时,第一SMF网元可以将该目标DNAI发送至AMF网元,使得AMF网元根据该目标DNAI确定部署于UE签约业务所在地的第二SMF网元的地址。在AMF网元确认第二SMF网元的地址之后,即可使得第一SMF网元和第二SMF网元之间建立联系并进行交互,在交互中自主协商UE请求访问的目标DNAI(即第一SMF网元可以从该AMF网元接收第二SMF网元的地址,然后将目标DNAI发送给第二SMF网元),进而使得UE即使离开签约业务所在地仍能够访问到UE签约业务所在地的局域网业务,即就是说使得UE移动到不同的位置时,都能访问到指定位置部署的局域网业务。
结合第四方面,在第四方面的某些实现方式中,在该发送该目标DNAI至该第二SMF网元之后,该方法还包括:接收该第二SMF网元发送的辅锚点UPF的N9接口地址,该辅锚点UPF根据该目标DNAI确定;发送分流规则至分流UPF,该分流规则包括该目标DNAI和该辅锚点UPF的N9接口地址的对应关系,该分流UPF根据UE当前位置确定。
在本申请实施例中,部署于UE接入地的第一SMF网元可以接收部署于UE签约业务所在地的第二SMF网元发送的签约业务所在地的辅锚点UPF的N9接口地址,其中,辅锚点UPF根据目标DNAI确定;然后发送分流规则至分流UPF,该分流规则包括该目标DNAI和该辅锚点UPF的N9接口地址的对应关系,该分流UPF根据UE当前位置确定。使得UE请求访问目标DNAI时,可以通过UE接入地的分流UPF匹配到辅锚点UPF的N9接口地址,然后基于辅锚点UPF的N9接口地址访问辅锚点UPF,进而可以通过辅锚点UPF实现UE签约业务所在的局域网的访问。
结合第四方面,在第四方面的某些实现方式中,该方法还包括:通过该AMF网元发送更新请求消息至无线接入网RAN网元,该更新请求消息用于请求将N3地址由UE接入地的主锚点UPF更新为所述分流UPF。
第五方面,提供了一种通信方法,该方法应用于第二SMF网元,该第二SMF网元部 署于UE签约业务所在地,该方法包括:接收第一SMF网元发送的目标数据网络接入标识符DNAI,该目标DNAI为UE签约业务所在数据网络的接入标识符。
可选地,在该方法执行之前,部署于UE签约业务所在地的第二SMF网元还需要向网络存储功能NRF网元注册自身所支持的DNAI。
在本申请实施例中,部署于UE签约业务所在地的第二SMF网元可以接收部署于UE接入地的第一SMF网元发送的目标DNAI,使得UE即使离开签约业务所在地仍能够访问到UE签约业务所在地的局域网业务,即就是说使得UE移动到不同的位置时,都能访问到指定位置部署的局域网业务。
结合第五方面,在第五方面的某些实现方式中,在该接收第一SMF网元发送的目标DNAI之后,该方法还包括:根据该目标DNAI确定辅锚点用户面功能UPF;发送该辅锚点UPF的N9接口地址至该第一SMF网元。
在本申请实施例中,部署于UE签约业务所在地的第二SMF网元可以根据目标DNAI确定辅锚点UPF;并发送该辅锚点UPF的N9接口地址至该第一SMF网元。使得UE在接入地可以基于辅锚点UPF的N9接口地址访问到UE签约业务所在地的辅锚点UPF,进而可以通过辅锚点UPF实现UE签约业务所在的局域网的访问。
第六方面,提供了一种通信方法,该方法应用于AMF网元,所述方法包括:接收第一SMF网元发送的目标DNAI,该目标DNAI为UE签约业务所在数据网络的接入标识符,该第一SMF网元部署于UE接入地;根据该目标DNAI确定第二SMF网元的地址,该第二SMF网元部署于UE签约业务所在地;发送该第二SMF网元的地址至该第一SMF网元。
应理解,AMF网元发送第二SMF网元的地址给第一SMF网元,使得第一SMF网元可以基于第二SMF网元的地址与第二SMF网元进行通信。
在本申请实施例中,AMF网元可以接收部署于UE接入地的第一SMF网元发送的目标DNAI,然后根据该目标DNAI确定部署于UE签约业务所在地的第二SMF网元的地址,再将第二SMF网元的地址发送给第一SMF网元,即可使得第一SMF网元和第二SMF网元之间建立联系并进行交互,进而使得第一SMF网元和第二SMF网元在交互中可以自主协商确定UE请求访问的目标DNAI。本申请方案使得UE即使离开签约业务所在地仍能够访问到UE签约业务所在地的局域网业务,即就是说使得UE移动到不同的位置时,都能访问到指定位置部署的局域网业务。
结合第六方面,在第六方面的某些实现方式中,该根据该目标DNAI确定第二SMF网元的地址包括:发送该目标DNAI至网络存储功能NRF网元;接收该NRF网元发送的该第二SMF网元的地址。
结合第六方面,在第六方面的某些实现方式中,该方法还包括:接收该第一SMF网元发送的更新请求消息,该更新请求消息用于请求将N3地址由UE接入地的主锚点UPF更新为所述分流UPF;发送该更新请求消息至无线接入网RAN。
第七方面,提供了一种通信方法,该方法应用于第一SMF网元,该第一SMF网元部署于UE接入地,该第一SMF网元不支持目标DNAI,所述目标DNAI为UE签约业务所在数据网络的接入标识符,该方法包括:根据该目标DNAI确定第二SMF网元的地址,该第二SMF网元部署于UE签约业务所在地;发送该目标DNAI至该第二SMF网元。
应理解,本申请实施例中的目标DNAI可以为UE签约业务所在局域网的接入标识符。
本申请方案可以应用于如下场景:UE当前位置不在UE签约业务所在地的SMF网元的服务区域内(即UE签约业务与UE当前位置之间不在同一个SMF POOL),但仍需要访问UE签约业务所在地的局域网业务。
应理解,发送该目标DNAI至该第二SMF网元,也可以描述为,基于第二SMF网元的地址发送该目标DNAI至该第二SMF网元。
在本申请实施例中,在部署于UE接入地的第一SMF网元不支持目标DNAI时,第一SMF网元可以根据该目标DNAI确定部署于UE签约业务所在地的第二SMF网元的地址,即可使得第一SMF网元和第二SMF网元之间建立联系并进行交互,在交互中自主协商UE请求访问的目标DNAI(即第一SMF网元将目标DNAI发送给第二SMF网元),进而使得UE即使离开签约业务所在地仍能够访问到UE签约业务所在地的局域网业务,即就是说使得UE移动到不同的位置时,都能访问到指定位置部署的局域网业务。
结合第七方面,在第七方面的某些实现方式中,该根据该目标DNAI确定第二SMF网元的地址包括:发送该目标DNAI至NRF网元;接收该NRF网元发送的该第二SMF网元的地址。
结合第七方面,在第七方面的某些实现方式中,在该发送该目标DNAI至该第二SMF网元之后,该方法还包括:接收该第二SMF网元发送的辅锚点用户面功能UPF的N9接口地址,该辅锚点UPF根据该目标DNAI确定;发送分流规则至分流UPF,该分流规则包括该目标DNAI和该辅锚点UPF的N9接口地址的对应关系,该分流UPF根据UE当前位置确定。
在本申请实施例中,部署于UE接入地的第一SMF网元可以接收部署于UE签约业务所在地的第二SMF网元发送的签约业务所在地的辅锚点UPF的N9接口地址,其中,辅锚点UPF根据目标DNAI确定;然后发送分流规则至分流UPF,该分流规则包括该目标DNAI和该辅锚点UPF的N9接口地址的对应关系,该分流UPF根据UE当前位置确定。使得UE请求访问目标DNAI时,可以通过UE接入地的分流UPF匹配到辅锚点UPF的N9接口地址,然后基于辅锚点UPF的N9接口地址访问辅锚点UPF,进而可以通过辅锚点UPF实现UE签约业务所在的局域网的访问。
结合第七方面,在第七方面的某些实现方式中,该方法还包括:通过AMF网元发送更新请求消息至无线接入网RAN网元,该更新请求消息用于请求将N3地址由UE接入地的主锚点UPF更新为所述分流UPF。
第八方面,提供了一种通信方法,该方法应用于第二SMF网元,该第二SMF网元部署于UE签约业务所在地,该方法包括:接收第一SMF网元发送的目标DNAI,该目标DNAI为UE签约业务所在数据网络的接入标识符。
可选地,在该方法执行之前,部署于UE签约业务所在地的第二SMF网元还需要向网络存储功能NRF网元注册自身所支持的DNAI。
在本申请实施例中,部署于UE签约业务所在地的第二SMF网元可以接收部署于UE接入地的第一SMF网元发送的目标DNAI,使得UE即使离开签约业务所在地仍能够访问到UE签约业务所在地的局域网业务,即就是说使得UE移动到不同的位置时,都能访问到指定位置部署的局域网业务。
结合第八方面,在第八方面的某些实现方式中,在该接收第一SMF网元发送的目标DNAI之后,该方法还包括:根据该目标DNAI确定辅锚点用户面功能UPF;发送该辅锚点UPF的N9接口地址至该第一SMF网元。
在本申请实施例中,部署于UE签约业务所在地的第二SMF网元可以根据目标DNAI确定辅锚点UPF;并发送该辅锚点UPF的N9接口地址至该第一SMF网元。使得UE在接入地可以基于辅锚点UPF的N9接口地址访问到UE签约业务所在地的辅锚点UPF,进而可以通过辅锚点UPF实现UE签约业务所在的局域网的访问。
第九方面,提供了一种通信装置,该装置可以为第一SMF网元,也可以为应用于第一SMF网元的芯片、处理器或模组等装置,该第一SMF网元部署于UE接入地,该第一SMF网元不支持目标数据网络接入标识符DNAI,该目标DNAI为UE签约业务所在数据网络的接入标识符。该装置包括:收发模块,该收发模块用于,发送该目标DNAI至接入和移动性管理功能AMF网元,该目标DNAI用于确定第二SMF网元的地址,该第二SMF网元部署于UE签约业务所在地;接收该第二SMF网元发送的该第二SMF网元支持的一个或多个DNAI,该第二SMF网元支持的一个或多个DNAI中包括该目标DNAI;发送该目标DNAI至该第二SMF网元。
结合第九方面,在第九方面的某些实现方式中,在该发送该目标DNAI至该第二SMF网元之后,该收发模块还用于,接收该第二SMF网元发送的辅锚点UPF的N9接口地址,该辅锚点UPF根据该目标DNAI确定;发送分流规则至分流UPF,该分流规则包括该目标DNAI和该辅锚点UPF的N9接口地址的对应关系,该分流UPF根据UE当前位置确定。
结合第九方面,在第九方面的某些实现方式中,该收发模块还用于,通过该AMF网元发送更新请求消息至无线接入网RAN网元,该更新请求消息用于请求将N3地址由UE接入地的主锚点UPF更新为所述分流UPF。
第十方面,提供了一种通信装置,该装置可以为第二SMF网元,也可以为应用于第二SMF网元的芯片、处理器或模组等装置,该第二SMF网元部署于UE签约业务所在地。该装置包括:收发模块,该收发模块用于,接收接入和移动性管理功能AMF网元发送的第一SMF网元的地址,该第一SMF网元部署于UE接入地;发送自身支持的一个或多个数据网络接入标识符DNAI至该第一SMF网元,该自身支持的一个或多个DNAI中包括目标DNAI,该目标DNAI为UE签约业务所在数据网络的接入标识符;接收该第一SMF网元发送的该目标DNAI。
结合第十方面,在第十方面的某些实现方式中,该装置还包括:处理模块,在该接收该第一SMF网元发送的该目标DNAI之后,该处理模块用于,根据该目标DNAI确定辅锚点UPF;该收发模块还用于,发送该辅锚点UPF的N9接口地址至该第一SMF网元。
第十一方面,提供了一种通信装置,该装置可以为AMF网元,也可以为应用于AMF网元的芯片、处理器或模组等装置。该装置包括收发模块和处理模块,该收发模块用于,接收第一SMF网元发送的目标数据网络接入标识符DNAI,该目标DNAI为UE签约业务所在数据网络的接入标识符,该第一SMF网元部署于UE接入地;该处理模块用于,根据该目标DNAI确定第二SMF网元的地址,该第二SMF网元部署于UE签约业务所在地;该收发模块还用于,发送该第一SMF网元的地址至该第二SMF网元。
结合第十一方面,在第十一方面的某些实现方式中,该收发模块还用于,发送该目标 DNAI至网络存储功能NRF网元;接收该NRF网元发送的该第二SMF网元的地址。
结合第十一方面,在第十一方面的某些实现方式中,该收发模块还用于,接收该第一SMF网元发送的更新请求消息,该更新请求消息用于请求将N3地址由UE接入地的主锚点UPF更新为所述分流UPF;发送该更新请求消息至无线接入网RAN。
第十二方面,提供了一种通信装置,该装置可以为第一SMF网元,也可以为应用于第一SMF网元的芯片、处理器或模组等装置,该第一SMF网元部署于UE接入地,该第一SMF网元不支持目标数据网络接入标识符DNAI,该目标DNAI为UE签约业务所在数据网络的接入标识符。该装置包括:收发模块,该收发模块用于,发送该目标DNAI至接入和移动性管理功能AMF网元,该目标DNAI用于确定第二SMF网元的地址,该第二SMF网元部署于UE签约业务所在地;接收该AMF网元发送的该第二SMF网元的地址;发送该目标DNAI至该第二SMF网元。
结合第十二方面,在第十二方面的某些实现方式中,在该发送该目标DNAI至该第二SMF网元之后,该收发模块还用于,接收该第二SMF网元发送的辅锚点UPF的N9接口地址,该辅锚点UPF根据该目标DNAI确定;发送分流规则至分流UPF,该分流规则包括该目标DNAI和该辅锚点UPF的N9接口地址的对应关系,该分流UPF根据UE当前位置确定。
结合第十二方面,在第十二方面的某些实现方式中,该收发模块还用于,通过该AMF网元发送更新请求消息至无线接入网RAN网元,该更新请求消息用于请求将N3地址由UE接入地的主锚点UPF更新为所述分流UPF。
第十三方面,提供了一种通信装置,该装置可以为第二SMF网元,也可以为应用于第二SMF网元的芯片、处理器或模组等装置,该第二SMF网元部署于UE签约业务所在地。该装置包括:收发模块,该收发模块用于,接收第一SMF网元发送的目标数据网络接入标识符DNAI,该目标DNAI为UE签约业务所在数据网络的接入标识符。
结合第十三方面,在第十三方面的某些实现方式中,该装置还包括:处理模块,在该接收第一SMF网元发送的目标DNAI之后,该处理模块用于,根据该目标DNAI确定辅锚点UPF;该收发模块还用于,发送该辅锚点UPF的N9接口地址至该第一SMF网元。
第十四方面,提供了一种通信装置,该装置可以为AMF网元,也可以为应用于AMF网元的芯片、处理器或模组等装置。该装置包括收发模块和处理模块,该收发模块用于,接收第一SMF网元发送的目标数据网络接入标识符DNAI,该目标DNAI为UE签约业务所在数据网络的接入标识符,该第一SMF网元部署于UE接入地;该处理模块用于,根据该目标DNAI确定第二SMF网元的地址,该第二SMF网元部署于UE签约业务所在地;该收发模块还用于,发送该第二SMF网元的地址至该第一SMF网元。
结合第十四方面,在第十四方面的某些实现方式中,该收发模块还用于,发送该目标DNAI至网络存储功能NRF网元;接收该NRF网元发送的该第二SMF网元的地址。
结合第十四方面,在第十四方面的某些实现方式中,该收发模块还用于,接收该第一SMF网元发送的更新请求消息,该更新请求消息用于请求更新将N3地址由UE接入地的主锚点UPF更新为所述分流UPF;发送该更新请求消息至无线接入网RAN。
第十五方面,提供一种通信装置,该装置可以为第一SMF网元,也可以为应用于第一SMF网元的芯片、处理器或模组等装置,该第一SMF网元部署于UE接入地,该第一 SMF网元不支持目标DNAI,该目标DNAI为UE签约业务所在数据网络的接入标识符,该装置包括:处理模块和收发模块,该处理模块用于,根据该目标DNAI确定第二SMF网元的地址,该第二SMF网元部署于UE签约业务所在地;该收发模块用于,发送该目标DNAI至该第二SMF网元。
结合第十五方面,在第十五方面的某些实现方式中,该收发模块还用于,发送该目标DNAI至NRF网元;接收该NRF网元发送的该第二SMF网元的地址。
结合第十五方面,在第十五方面的某些实现方式中,在该发送该目标DNAI至该第二SMF网元之后,该收发模块还用于,接收该第二SMF网元发送的辅锚点UPF的N9接口地址,该辅锚点UPF根据该目标DNAI确定;发送分流规则至分流UPF,该分流规则包括该目标DNAI和该辅锚点UPF的N9接口地址的对应关系,该分流UPF根据UE当前位置确定。
第十六方面,提供一种通信装置,该装置可以为第二SMF网元,也可以为应用于第二SMF网元的芯片、处理器或模组等装置,该第二SMF网元部署于UE签约业务所在地,该装置包括:收发模块,该收发模块用于,接收第一SMF网元发送的目标DNAI,该目标DNAI为UE签约业务所在数据网络的接入标识符。
结合第十六方面,在第十六方面的某些实现方式中,该装置还包括:处理模块,在该接收第一SMF网元发送的目标DNAI之后,该处理模块用于,根据该目标DNAI确定辅锚点UPF;该收发模块还用于,发送该辅锚点UPF的N9接口地址至该第一SMF网元。
第十七方面,提供一种通信装置,包括至少一个处理器,所述至少一个处理器用于与存储器耦合,读取并执行所述存储器中的指令,以实现如第一方面或第一方面的任一可能的实现方式中的方法;或者实现如第二方面或第二方面的任一可能的实现方式中的方法;或者实现如第三方面或第三方面的任一可能的实现方式中的方法;或者实现如第四方面或第四方面的任一可能的实现方式中的方法;或者实现如第五方面或第五方面的任一可能的实现方式中的方法;或者实现如第六方面或第六方面的任一可能的实现方式中的方法;或者实现如第七方面或第七方面的任一可能的实现方式中的方法;或者实现如第八方面或第八方面的任一可能的实现方式中的方法。
第十八方面,提供了一种通信系统,包括:如第九方面或者第九方面的任一可能的实现方式中所述的通信装置、如第十方面或者第十方面的任一可能的实现方式中所述的通信装置和如第十一方面或者第十一方面的任一可能的实现方式中的所述的通信装置。
第十九方面,提供了一种通信系统,包括:如第十二方面或者第十二方面的任一可能的实现方式中所述的通信装置、如第十三方面或者第十三方面的任一可能的实现方式中所述的通信装置和如第十四方面或者第十四方面的任一可能的实现方式中的所述的通信装置。
第二十方面,提供了一种通信系统,包括:如第十五方面或者第十五方面的任一可能的实现方式中所述的通信装置和如第十六方面或者第十六方面的任一可能的实现方式中的所述的通信装置。
第二十一方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当所述计算机指令在计算机上运行时,实现如第一方面或第一方面的任一可能的实现方式中的方法;或者实现如第二方面或第二方面的任一可能的实现方式中的方法; 或者实现如第三方面或第三方面的任一可能的实现方式中的方法;或者实现如第四方面或第四方面的任一可能的实现方式中的方法;或者实现如第五方面或第五方面的任一可能的实现方式中的方法;或者实现如第六方面或第六方面的任一可能的实现方式中的方法;或者实现如第七方面或第七方面的任一可能的实现方式中的方法;或者实现如第八方面或第八方面的任一可能的实现方式中的方法。
第二十二方面,提供一种计算机程序产品,包含指令,当所述指令在计算机上运行时,如第一方面或第一方面的任一可能的实现方式中的方法被执行;或者如第二方面或第二方面的任一可能的实现方式中的方法被执行;或者如第三方面或第三方面的任一可能的实现方式中的方法被执行;或者如第四方面或第四方面的任一可能的实现方式中的方法被执行;或者如第五方面或第五方面的任一可能的实现方式中的方法被执行;或者如第六方面或第六方面的任一可能的实现方式中的方法被执行;或者如第七方面或第七方面的任一可能的实现方式中的方法被执行;或者如第八方面或第八方面的任一可能的实现方式中的方法被执行。
附图说明
图1示出了适用于本申请实施例的一个网络架构。
图2是本申请实施例提供的一种通信方法200的示意性流程图。
图3是本申请实施例提供的一种通信方法300的示意性流程图。
图4是本申请实施例提供的一种通信方法400的示意性流程图。
图5是本申请实施例提供的一种通信装置500的示意图。
图6是本申请实施例提供的一种通信装置600的示意图。
图7是本申请实施例提供的一种通信装置700的示意图。
图8是本申请实施例提供的一种通信装置800的示意图。
图9是本申请实施例提供的一种通信装置900的示意图。
图10是本申请实施例提供的一种通信装置1000的示意图。
图11是本申请实施例提供的一种通信系统1100的示意图。
图12是本申请实施例提供的一种通信系统1200的示意图。
图13是本申请实施例提供的一种通信装置1300的示意图。
图14是本申请实施例提供的一种通信方法1400的示意性流程图。
图15是本申请实施例提供的一种通信方法1500的示意性流程图。
图16是本申请实施例提供的一种通信方法1600的示意性流程图。
图17是本申请实施例提供的一种通信装置1700的示意图。
图18是本申请实施例提供的一种通信装置1800的示意图。
图19是本申请实施例提供的一种通信系统1900的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。显然,所描述的实施例是本申请的一部分实施例,而不是全部实施例。
图1示出了适用于本申请实施例的一个网络架构。
如图1所示,下面对该网络架构中涉及的各个部分分别进行说明。
1、终端设备:可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或其它处理设备,以及各种形式的终端或装置、移动台(mobile station,MS)、用户设备(user equipment,UE)、软终端等等,例如,水表、电表、传感器等。
示例性地,本申请实施例中的终端设备可以指接入终端、用户单元、用户站、移动站、移动台、中继站、远方站、远程终端、移动设备、用户终端(user terminal)、终端设备、无线通信设备、用户代理或用户装置。用户设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的用户设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的用户设备或者未来车联网中的用户设备等,本申请实施例对此并不限定。本申请实施例中的终端设备,还可以是设置或安装在上述各种设备中的装置,例如芯片和/或电路结构。
作为示例而非限定,在本申请实施例中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,在本申请实施例中,终端设备还可以是物联网(internet of Things,IoT)系统中的终端设备,IoT是未来信息技术发展的重要组成部分,其主要技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。在本申请实施例中,IOT技术可以通过例如窄带(narrow band,NB)技术,做到海量连接,深度覆盖,终端省电。此外,在本申请实施例中,终端设备还可以包括智能打印机、火车探测器、加油站等传感器,主要功能包括收集数据(部分终端设备)、接收接入网设备的控制信息与下行数据,并发送电磁波,向接入网设备传输上行数据。
2、(无线)接入网络(radio access network,(R)AN):用于为特定区域的授权终端设备提供入网功能,并能够根据终端设备的级别,业务的需求等使用不同质量的传输隧道。
(R)AN能够管理无线资源,为终端设备提供接入服务,进而完成控制信号和终端设备数据在终端设备和核心网之间的转发,(R)AN可以包括传统网络中的基站,或者其他可以实现接入网功能的网元或实体。
示例性地,本申请实施例中的接入网设备可以是用于与终端设备通信的任意一种具有无线收发功能的通信设备。该接入网设备包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base第一AMFtion controller,BSC)、基站收发台(base transceiver第一AMFtion,BTS)、家庭基站(home evolved NodeB,HeNB,或home Node B,HNB)、基带单元(baseBand unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、 无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为5G,如,NR,系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,接入网设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的接入网设备,也可以将CU划分为核心网(core network,CN)中的接入网设备,本申请对此不做限定。
3、用户面网元:用于分组路由和转发以及用户面数据的服务质量(quality of service,QoS)处理等。
在5G通信系统中,该用户面网元可以是用户面功能(user plane function,UPF)网元,可以包括中间用户面功能(intermediate user plane function,I-UPF)网元、锚点用户面功能(PDU Session anchor user plane function,PSA-UPF)网元。在未来通信系统中,用户面网元仍可以是UPF网元,或者,还可以有其它的名称,本申请不做限定。
4、数据网络网元:用于提供传输数据的网络。
在5G通信系统中,该数据网络网元可以是数据网络(data network,DN)网元。在未来通信系统中,数据网络网元仍可以是DN网元,或者,还可以有其它的名称,本申请不做限定。
在5G通信系统中,终端设备接入网络后可以建立协议数据单元(protocol data unit,PDU)会话,并通过PDU会话访问DN,可以与部署在DN中的应用功能网元(应用功能网元比如为应用服务器)交互。根据用户访问的DN不同,网络可以根据网络策略选择接入DN的UPF作为为PDU会话锚点(PDU Session Anchor,PSA),并通过PSA的N6接口访问应用功能网元。
5、接入管理网元:主要用于移动性管理和接入管理等,可以用于实现移动性管理实体(mobility management entity,MME)功能中除会话管理之外的其它功能,例如,合法监听以及接入授权/鉴权等功能。
在5G通信系统中,该接入管理网元可以是接入管理功能(access and mobility management function,AMF)。在未来通信系统中,接入管理网元仍可以是AMF,或者,还可以有其它的名称,本申请不做限定。
6、会话管理网元:主要用于会话管理、终端设备的网络互连协议(internet protocol,IP)地址分配和管理、选择可管理用户平面功能、策略控制和收费功能接口的终结点以及下行数据通知等。
在5G通信系统中,该会话管理网元可以是SMF网元,可以包括中间会话管理功能(intermediate session management function,I-SMF)网元、锚点会话管理功能(anchor session management function,A-SMF)网元,还可以包括本申请实施例所提及的基于数据网络接入标识符(DN Access Identifier,DNAI)选的SMF网元(在本申请中简称为D-SMF网元)。在未来通信系统中,会话管理网元仍可以是SMF网元,或者,还可以有其它的名称,本申请不做限定。
7、策略控制网元:用于指导网络行为的统一策略框架,为控制面功能网元(例如AMF,SMF网元等)提供策略规则信息等。
在4G通信系统中,该策略控制网元可以是策略和计费规则功能(policy and charging rules function,PCRF)网元。在5G通信系统中,该策略控制网元可以是策略控制功能(policy control function,PCF)网元。在未来通信系统中,策略控制网元仍可以是PCF网元,或者,还可以有其它的名称,本申请不做限定。
8、认证服务器:用于鉴权服务、产生密钥实现对终端设备的双向鉴权,支持统一的鉴权框架。
在5G通信系统中,该认证服务器可以是认证服务器功能(authentication server function,AUSF)网元。在未来通信系统中,认证服务器功能网元仍可以是AUSF网元,或者,还可以有其它的名称,本申请不做限定。
9、数据管理网元:用于处理终端设备标识,接入鉴权,注册以及移动性管理等。
在5G通信系统中,该数据管理网元可以是统一数据管理(unified data management,UDM)网元;在4G通信系统中,该数据管理网元可以是归属用户服务器(home subscriber server,HSS)网元在未来通信系统中,统一数据管理仍可以是UDM网元,或者,还可以有其它的名称,本申请不做限定。
10、应用网元:应用网元可以通过应用功能网元与5G系统交互,用于接入网络开放功能网元或与策略框架交互进行策略控制等。
在5G通信系统中,该应用网元可以是应用功能(application function,AF)网元。在未来通信系统中,应用网元仍可以是AF网元,或者,还可以有其它的名称,本申请不做限定。
11、网络切片选择网元:主要包括以下功能:为UE选择一组网络切片实例、确定允许的网络切片选择辅助信息(network slice selection assistance information,NSSAI)和确定可以服务UE的AMF集等。
在5G通信系统中,该应用网元可以是网络切片选择功能(network slice selection function,NSSF)网元。在未来通信系统中,应用网元仍可以是NSSF网元,或者,还可以有其它的名称,本申请不做限定。
还应理解,图1只是一种示例对本申请的保护范围不构成任何限定。本申请实施例提供的通信方法还可以涉及图1中未示出的网元,例如,还可以涉及网络存储网元,其中,网络存储网元用于维护网络中所有网络功能服务的实时信息。
在5G通信系统中,该网络存储网元可以是网络注册功能(network repository function,NRF)网元。在未来通信系统中,网络存储网元仍可以是NRF网元,或者,还可以有其它的名称,本申请不做限定。
可以理解的是,上述网元或者功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。为方便说明,本申请后续,以接入管理网元为AMF网元,数据管理网元为UDM网元,会话管理网元为SMF网元,用户面网元为UPF网元为例进行说明。
进一步地,将AMF网元简称为AMF,UDM网元简称为UDM,SMF网元简称为SMF,UPF网元简称为UPF。即本申请后续所描述的AMF均可替换为接入管理网元,UDM均可替换为数据管理网元,SMF均可替换为会话管理网元,UPF均可替换为用户面网元。
从图1可以看出,图1中的各个控制面网元之间的接口是点对点的接口。在图1所示的架构中,各个网元之间的接口名称及功能如下:
1)N1:AMF与终端之间的接口,可以用于向终端传递QoS控制规则等。
2)N2:AMF与RAN之间的接口,可以用于传递核心网侧至RAN的无线承载控制信息等。
3)N3:RAN与UPF之间的接口,主要用于传递RAN与UPF间的上下行用户面数据。
4)N4:SMF与UPF之间的接口,可以用于控制面与用户面之间传递信息,包括控制面向用户面的转发规则、QoS控制规则、流量统计规则等的下发以及用户面的信息上报。
5)N5:AF与PCF之间的接口,可以用于应用业务请求下发以及网络事件上报。
6)N6:UPF与DN的接口,用于传递UPF与DN之间的上下行用户数据流。
7)N7:PCF与SMF之间的接口,可以用于下发协议数据单元(protocol data unit,PDU)会话粒度以及业务数据流粒度控制策略。
8)N8:AMF与UDM间的接口,可以用于AMF向UDM获取接入与移动性管理相关签约数据与鉴权数据,以及AMF向UDM注册终端当前移动性管理相关信息等。
9)N9:UPF和UPF之间的用户面接口,用于传递UPF间的上下行用户数据流。
10)N10:SMF与UDM间的接口,可以用于SMF向UDM获取会话管理相关签约数据,以及SMF向UDM注册终端当前会话相关信息等。
11)N11:SMF与AMF之间的接口,可以用于传递RAN和UPF之间的PDU会话隧道信息、传递发送给终端的控制消息、传递发送给RAN的无线资源控制信息等。
12)N12:AMF和AUSF间的接口,可以用于AMF向AUSF发起鉴权流程,其中可携带SUCI作为签约标识;
13)N13:UDM与AUSF间的接口,可以用于AUSF向UDM获取用户鉴权向量,以执行鉴权流程。
应理解,其他接口可参见图1,不再一一列举。应理解,以上接口仅作为示例,本申请实施例提供的通信方法可以涉及更多或更少的接口,本申请对此不做限定。例如,还可以包括SMF与D-SMF之间的N16a接口。
应理解,上述应用于本申请实施例的网络架构仅是一种举例说明,适用本申请实施例的网络架构并不局限于此,任何能够实现上述各个网元的功能的网络架构都适用于本申请 实施例。
例如,在某些网络架构中,AMF、SMF网元、PCF网元、BSF网元以及UDM网元等网络功能网元实体都称为网络功能(network function,NF)网元;或者,在另一些网络架构中,AMF,SMF网元,PCF网元,BSF网元,UDM网元等网元的集合都可以称为控制面功能网元。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统、新无线(new radio,NR)或未来网络等,本申请中所述的5G移动通信系统包括非独立组网(non-第一AMFndalone,NSA)的5G移动通信系统或独立组网(第一AMFndalone,SA)的5G移动通信系统。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统。通信系统还可以是陆上公用移动通信网(public land mobile network,PLMN)网络、设备到设备(device-to-device,D2D)通信系统、机器到机器(machine to machine,M2M)通信系统、物联网(internet of Things,IoT)通信系统或者其他通信系统。
在本申请实施例中,终端设备或接入网设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或接入网设备,或者,是终端设备或接入网设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读存储介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
在当前技术中,若用户设备(user equipment,UE)签约的业务在归属地,并且签约的归属地业务部署在局域网。当UE移出归属地至接入地,例如跨省移动到拜访省时,UE在接入地的位置不再处于UE签约业务所在地的会话管理功能(session management function,SMF)网元的服务区域内,而且,对于局域网而言,是公网不可达的,导致UE在接入地无法再继续访问到签约业务所在地的局域网业务。因而,如何使得在UE移出签 约业务所在地时,仍能够继续访问签约业务所在地的局域网业务是亟需解决的技术问题。
为解决上述问题,本申请提供了一种通信方法,在UE移出签约业务所在地时,利用部署于UE接入地的第一SMF网元将UE请求访问签约业务对应的目标DNAI发送至AMF网元,然后利用AMF网元根据该目标DNAI确定部署于UE签约业务所在地的第二SMF网元的地址,再基于该地址起建立第一SMF网元和第二SMF网元之间的联系(具体地,AMF网元可以发送第一SMF网元的地址至第二SMF网元或者发送第二SMF网元的地址至第一SMF网元,使得第一SMF网元或第二SMF网元可以基于对方的地址与对方建立联系);或者第一SMF网元也可以通过自身来确定第二SMF网元的地址,并与第二SMF网元建立联系,进而使得第一SMF网元和第二SMF网元可以进行交互并自主协商UE请求访问的目标DNAI,以实现UE在接入地也能访问签约业务所在地的局域网业务。
图2是本申请实施例提供的一种通信方法200的示意性流程图。应理解,方法200可以应用于如下场景:UE当前位置不在UE签约业务所在地的SMF网元的服务区域内(即UE签约业务与UE当前位置之间不在同一个SMF POOL),但仍需要访问UE签约业务所在的局域网。应理解,方法200主要应用于包括第一SMF网元、第二SMF网元和AMF网元的系统中,其中,第一SMF网元部署于UE接入地,第二SMF网元部署于UE签约业务所在地。其中,AMF网元仅作为一种示例,实际操作中,也可以使用其他NF网元,本申请对此不做限定,但为便于描述,本申请实施例中均以AMF网元为例进行介绍。如图2所示,方法200包括步骤S210至S230,下面对这些步骤进行详细介绍。
S210,第一SMF网元发送目标DNAI至AMF网元。
相应地,AMF网元接收第一SMF网元发送的目标DNAI。其中,第一SMF网元部署于UE接入地,目标DNAI为UE签约业务所在数据网络的接入标识符,第一SMF网元不支持目标DNAI。
应理解,本申请实施例中的目标DNAI可以为UE签约业务所在局域网的接入标识符,第一SMF网元不支持目标DNAI是指第一SMF网元不支持UE签约业务所在局域网对应的DNAI。
可选地,在步骤S210执行之前,方法200还可以包括:第一SMF网元向PCF网元请求用户策略;第一SMF网元接收PCF网元发送的用户策略,该用户策略包括UE签约业务的分流规则和签约业务所在数据网络的DNAI;第一SMF网元判断自身是否支持签约业务所在数据网络的DNAI,若用户策略中的签约业务所在数据网络的DNAI为局域网对应的DNAI,则第一SMF网元判断自身不支持该DNAI,并将该不支持的DNAI记为目标DNAI,再继续执行步骤S210。参见下文实施例1中的步骤S304至S308或实施例2中的步骤S404至S408。
可选地,在第一SMF网元向PCF网元请求用户策略执行之前,该方法200还可以包括:部署于UE签约业务所在地的第二SMF网元还需要向NRF网元注册自身所支持的DNAI。参见下文实施例1中步骤S301和S302的相关描述或实施例2中步骤S401和S402的相关描述。
可选地,部署于UE签约业务所在地的第二SMF网元在向NRF网元注册自身所支持的DNAI的同时,还可以注册自身所支持的全域名(fully qualified domain name,FQDN)和策略名称等关键字。基于此,上述用户策略可以包括UE签约业务的分流规则和DNAI、 FQDN、策略名称等关键字。基于此,在方法200所涉及到的各个网元的交互中,凡是涉及收发该DNAI或者基于该DNAI进一步执行其他操作的步骤,还需要同时考虑到FQDN和策略名称等关键字。例如,涉及收发该DNAI的步骤,需要变成收发该DNAI、FQDN、策略名称等关键字;涉及基于该DNAI进一步执行其他操作的步骤,需要变成基于该DNAI、FQDN、策略名称等关键字进一步执行其他操作;上述第一SMF网元不支持目标DNAI可以更改为第一SMF网元不支持目标DNAI、目标FQDN、目标策略名称等关键字。也就意味着,这种情况下,可以将方法200中涉及到“目标DNAI”直接替换为“目标关键字”,该目标关键字包括目标DNAI、目标FQDN、目标策略名称等关键字,其中,目标FQDN、目标策略名称是指UE签约业务的FQDN和策略名称。
应理解,若UE离开业务签约所在地至拜访地(即UE接入地),UE需要激活,AMF也需要选择接入地SMF网元(即第一SMF网元),然后接入地SMF网元选择接入地主锚点UPF(即下文中部署于接入地的主锚点UPF PSA1)创建用户会话,参见下文实施例1中步骤S303或实施例2中步骤S403的相关描述。
可选地,UE可以签约通用数据网络名称(Data Network Name,DNN),然后基于通用DNN激活。
S220,AMF网元根据目标DNAI确定第二SMF网元的地址。其中,第二SMF网元部署于UE签约业务所在地。
可选地,AMF网元根据目标DNAI确定第二SMF网元的地址包括:AMF网元发送目标DNAI至NRF网元;AMF网元接收NRF网元发送的第二SMF网元的地址。可选地,AMF网元可以向NRF网元发送携带目标DNAI的发现请求消息,以确定第二SMF网元的地址。参见下文实施例1中的步骤S309和S310或实施例2中的步骤S409和S410。
可选地,步骤S230可以包括A和B两种实现方式,主要用于描述第一SMF网元和第二SMF网元建立联系的方式以及自主协商确定UE请求访问的目标DNAI的过程。下面对这两种实现方式进行详细介绍。
在实现方式A中,S230包括步骤S230a1至S230a3。
S230a1,AMF网元发送第一SMF网元的地址至第二SMF网元。相应地,第二SMF网元接收AMF网元发送的第一SMF网元的地址。
可选地,在步骤S230a1中,“第一SMF网元的地址”也可以被创建上下文请求消息携带发送,参见下文实施例1中步骤S311的相关描述。
可选地,在步骤S230a1之后,第二SMF网元可以根据接收到的第一SMF网元的地址创建上下文,参见下文实施例1中的步骤S312和S313。
应理解,AMF网元发送第一SMF网元的地址给第二SMF网元,使得第二SMF网元可以基于第一SMF网元的地址与第一SMF网元进行通信,并自主协商UE请求访问的目标DNAI,参见步骤S230a2和S230a3。
S230a2,第二SMF网元发送自身支持的一个或多个DNAI至第一SMF网元。
相应地,第一SMF网元接收第二SMF网元发送的第二SMF网元支持的一个或多个DNAI。其中,第二SMF网元支持的一个或多个DNAI中包括目标DNAI。
可选地,在步骤S230a2中,“第二SMF网元支持的一个或多个DNAI”也可以被会话创建请求消息携带发送,可参见下文实施例1中步骤S314的相关描述。
可选地,第一SMF网元接收到第二SMF网元发送的第二SMF网元支持的一个或多个DNAI之后,可以基于该一个或多个DNAI与用户策略所包括的目标DNAI的交集确定该目标DNAI是第二SMF网元所支持的,然后再执行步骤S230a3。
可选地,上述提及:第二SMF网元在向NRF网元注册自身所支持的DNAI的同时,还可以注册自身所支持的FQDN和策略名称等关键字。基于这种情况,在步骤S230a2中,第二SMF网元可以发送自身支持的关键字列表至第一SMF网元,随后第一SMF网元可以基于该关键字列表与用户策略所包括的关键字的交集,然后再执行步骤S230a3,将取交集得到的关键字发送至第二SMF网元。
S230a3,第一SMF网元发送目标DNAI至第二SMF网元。相应地,第二SMF网元接收第一SMF网元发送的目标DNAI。
可选地,在步骤S230a3中,“目标DNAI”也可以被会话创建请求消息的响应消息携带发送,可参见下文实施例1中步骤S315的相关描述。
可选地,在步骤S230a3中,第一SMF网元还可以携带N7获取的数据结构,如计费规则、策略规则等发送给第二SMF网元。
在本申请实施例中,在部署于UE接入地的第一SMF网元不支持目标DNAI时,第一SMF网元可以将该目标DNAI发送至AMF网元,使得AMF网元可以根据该目标DNAI确定部署于UE签约业务所在地的第二SMF网元的地址,再将第一SMF网元的地址发送给第二SMF网元,然后第二SMF网元可以基于第一SMF网元的地址自主与第一SMF网元建立联系并进行交互,在交互中第一SMF网元可以得知第二SMF网元是目标DNAI对应的SMF网元,并与其协商确定UE需要访问的目标DNAI(在本实现方式A中,协商过程可以为:第二SMF网元发送自身支持的一个或多个DNAI给第一SMF网元;然后第一SMF网元基于一个或多个DNAI确定UE当前请求访问的目标DNAI是第二SMF网元所支持的,再发送目标DNAI至第二SMF网元),进而使得UE即使离开签约业务所在地仍能够访问到UE签约业务所在地的局域网业务,即就是说使得UE移动到不同的位置时,都能访问到指定位置部署的局域网业务。
在实现方式B中,S230包括步骤S230b1和S230b2。
S230b1,AMF网元发送第二SMF网元的地址至第一SMF网元。相应地,第一SMF网元接收AMF网元发送的第二SMF网元的地址。参见下文实施例2中步骤S411至S412的相关描述。
应理解,AMF网元发送第二SMF网元的地址给第一SMF网元,使得第一SMF网元可以基于第二SMF网元的地址与第二SMF网元进行通信,并自主协商UE请求访问的目标DNAI,参见步骤S230b2。
S230b2,第一SMF网元发送目标DNAI至第二SMF网元。相应地,第二SMF网元接收第一SMF网元发送的目标DNAI。
应理解,第一SMF网元发送目标DNAI至第二SMF网元,也可以描述为,第一SMF网元基于第二SMF网元的地址发送目标DNAI至第二SMF网元。
可选地,在步骤S230b2中,“目标DNAI”也可以被创建上下文请求消息携带发送,参见下文实施例2中步骤S413的相关描述。
可选地,在步骤S230b2中,第一SMF网元还可以携带N7获取的数据结构,如计费 规则、策略规则等发送给第二SMF网元。
可选地,在步骤S230b2之后,第二SMF网元可以创建用户上下文,参见下文实施例2中的步骤S414和S415。
在本申请实施例中,在部署于UE接入地的第一SMF网元不支持目标DNAI时,第一SMF网元可以将该目标DNAI发送至AMF网元,使得AMF网元可以根据该目标DNAI确定部署于UE签约业务所在地的第二SMF网元的地址,再将第二SMF网元的地址发送给第一SMF网元,然后第一SMF网元基于第二SMF网元的地址与第二SMF网元建立联系并进行交互,在交互中第一SMF网元和第二SMF网元可以协商UE请求访问的目标DNAI(在本实现方式B中,协商过程可以为:第一SMF网元可以从该AMF网元接收第二SMF网元的地址,然后将目标DNAI发送给第二SMF网元),进而使得UE即使离开签约业务所在地仍能够访问到UE签约业务所在地的局域网业务,即就是说使得UE移动到不同的位置时,都能访问到指定位置部署的局域网业务。
可选地,在步骤S230之后,方法200还可以包括:第二SMF网元根据目标DNAI确定辅锚点UPF(即下文中部署于UE签约业务所在地的辅锚点UPF PSA2);第二SMF网元发送该辅锚点UPF的N9接口地址至第一SMF网元,相应地,第一SMF网元接收第二网元发送的该辅锚点UPF的N9接口地址;第一SMF网元根据UE当前位置确定分流UPF(即下文中部署于UE签约业务所在地的UPF上行分类器(Uplink-Classifier,ULCL));第一SMF网元发送分流规则至分流UPF,该分流规则包括该目标DNAI和该辅锚点UPF的N9接口地址的对应关系。可选地,第二SMF网元发送该辅锚点UPF的N9接口地址至第一SMF网元之前,第二SMF网元还可以与该辅锚点UPF创建N4会话,也可以与计费功能(charging function,CHF)网元创建会话,以便后续第二SMF网元生成话单可直接上报到CHF网元。可选地,第一SMF网元发送分流规则至分流UPF之前,第一SMF网元还可以与该分流UPF创建N4会话。可选地,在第一SMF网元发送分流规则至分流UPF之后,第一SMF网元还可以发送分流UPF的N9接口地址至第二SMF网元,相应地,第二SMF网元接收第一SMF网元发送的分流UPF的N9接口地址。应理解,以上方法可参见下文实施例1中步骤S316至S323或实施例2中步骤S416至S423的相关描述。
在本申请实施例中,部署于UE签约业务所在地的第二SMF网元可以根据该目标DNAI确定辅锚点UPF,然后发送辅锚点UPF的N9接口地址至该部署于UE接入地的第一SMF网元;部署于UE接入地的第一SMF网元可以根据UE当前位置确定分流UPF,并给分流UPF发送UE签约业务的分流规则,该分流规则包括该目标DNAI和该辅锚点UPF的N9接口地址的对应关系。使得UE请求访问目标DNAI时,可以通过UE接入地的分流UPF匹配到辅锚点UPF的N9接口地址,然后基于辅锚点UPF的N9接口地址访问辅锚点UPF,进而可以通过辅锚点UPF实现UE签约业务所在的局域网的访问。
可选地,方法200还可以包括:第一SMF网元通过AMF网元发送更新请求消息至RAN网元,该更新请求消息用于请求将N3地址由UE接入地的主锚点UPF更新为分流UPF,以使得RAN可以与分流UPF通信,可参见下文实施例1中步骤S324和S325或实施例2中步骤S424和S425的相关描述。
基于以上描述,在实际操作中,若用户请求访问局域网的签约业务,可以通过分流UPF匹配到辅锚点UPF的N9接口地址,然后基于辅锚点UPF的N9接口地址访问辅锚点 UPF,进而可以通过辅锚点UPF实现UE签约业务所在的局域网的访问。若用户请求访问的是公网业务,通过分流UPF无法匹配到辅锚点UPF的N9接口地址,这种情况下,便可以直接通过分流UPF的N9接口转发到UE接入地的主锚点UPF,通过UE接入地的主锚点UPF的N6接口路由到公网。可参见下文实施例1中步骤S326至S333的相关描述或实施例2中步骤S426至S433的相关描述。
为了便于理解,下面再结合图3和图4介绍本申请提供的通信方法200的具体实施例。应理解,图3和图4所示的方法仅为示例,在实际操作中,也可以包括更多或更少的步骤,本申请对此不做限定。应理解,在以下实施例中,涉及RAN、AMF、SMF、UPF ULCL、UPF PSA1、D-SMF、UPF PSA2、PCF、NRF等网元,为便于描述,在下文将上述网元直接简写成RAN、AMF、SMF、UPF ULCL、UPF PSA1、D-SMF、UPF PSA2、PCF、NRF等。
实施例1:
图3是本申请实施例提供的一种通信方法300的示意性流程图。如图3所示,方法300包括S301至S333,下面对这些步骤进行详细介绍。
首先,需要说明的是,在该实施例中,部署于UE接入地的SMF即为上述第一SMF网元;部署于签约业务所在地的D-SMF即为上述第二SMF网元;部署于UE接入地的UPF ULCL即为上述分流UPF;部署于UE接入地的UPF PSA1即为上述主锚点UPF;部署于签约业务所在地的UPF PSA2即为上述辅锚点UPF。
S301,D-SMF向NRF发送注册请求消息,相应地,NRF接收D-SMF发送的注册请求消息。
其中,该注册请求消息包括D-SMF所支持的DNAI、FQDN和策略名称等关键字。
在本申请实施例中,D-SMF可以通过发送注册请求消息向NRF注册。可选地,注册请求消息也可以描述为Nnrf_NFManagement_NFRegister Request消息,本申请对此不做限定。
S302,NRF向D-SMF发送注册请求消息的响应消息,相应地,D-SMF接收NRF发送的注册请求消息的响应消息。
在本申请实施例中,注册请求消息的响应消息也可以描述为Nnrf_NFManagement_NFRegister Response消息,本申请对此不做限定。
S303,UE激活,AMF选择UE接入地SMF,SMF选择UE接入地UPF PSA1创建用户会话。
S304,SMF向PCF发送策略请求消息,相应地,PCF接收SMF发送的策略请求消息。
应理解,策略请求消息用于请求用户会话管理SM策略。可选地,在本申请实施例中,策略请求消息也可以描述为Npcf_SMPolicyControl_Create Request消息。
S305,PCF向SMF发送策略请求消息的响应消息,相应地,SMF接收PCF发送的策略请求消息的响应消息。
其中,该策略请求消息的响应消息包括用户策略,该用户策略包括签约业务的分流规则和DNAI、FQDN和策略名称等关键字,该DNAI用于标识UE签约业务所在的DN接入点信息。
在本申请实施例中,策略请求消息的响应消息也可以描述为 Npcf_SMPolicyControl_Create Response消息。
S306,SMF判断不支持PCF下发的DNAI、FQDN和策略名称等关键字。
若PCF下发的DNAI、FQDN和策略名称等关键字为局域网对应的DNAI、FQDN和策略名称等关键字,则SMF判断自身不支持PCF下发的DNAI、FQDN和策略名称等关键字,并继续执行步骤S307。
S307,SMF向AMF发送上述SMF不支持的DNAI、FQDN和策略名称等关键字,相应地,AMF接收SMF发送的DNAI、FQDN和策略名称等关键字。
S308,AMF向SMF发送响应消息,相应地,SMF接收AMF发送的响应消息。
S309,AMF向NRF发送发现请求消息,相应地,NRF接收AMF发送的发现请求消息。
其中,该发现请求消息包括DNAI、FQDN和策略名称等关键字,AMF发送该携带DNAI、FQDN和策略名称等关键字的发现请求消息到NRF可以发现签约业务所在地的D-SMF。
在本申请实施例中,发现请求消息也可以描述为Nnrf_NFDiscovery_NFDiscover Request消息。
S310,NRF向AMF发送发现请求消息的响应消息,相应地,AMF接收NRF发送的发现请求消息的响应消息。
其中,该发送发现请求消息的响应消息包括签约业务所在地的D-SMF的地址,该地址包括D-SMF的实例(Instance)身份标识号(ID),全域名(Fully Qualified Domain Name,FQDN),网络之间互联的协议(IP)等信息。
在本申请实施例中,发现请求消息的响应消息也可以描述为Nnrf_NFDiscovery_NFDiscover Response消息。
S311,AMF向D-SMF发送创建上下文请求消息,相应地,D-SMF接收AMF发送的创建上下文请求消息。
其中,该创建上下文请求消息包括SMF的地址,该地址可以包括SMF的Instance ID,FQDN,IP等信息,不做限定。
应理解,AMF向D-SMF发送创建上下文请求消息可以触发D-SMF创建上下文,即执行步骤S312。
在本申请实施例中,创建上下文请求消息也可以描述为Nsmf_PDUSession_CreateSMContext Request消息。
S312,D-SMF创建上下文。
S313,D-SMF向AMF发送创建上下文请求消息的响应消息,相应地,AMF接收D-SMF发送的创建上下文请求消息的响应消息。
在本申请实施例中,创建上下文请求消息的响应消息也可以描述为Nsmf_PDUSession_CreateSMContext Response消息。
S314,D-SMF向SMF发送会话创建请求消息,相应地,SMF接收D-SMF发送的会话创建请求消息。
其中,会话创建请求消息包括D-SMF所支持的DNAI、FQDN和策略名称等关键字列表。
应理解,在步骤S311中,D-SMF接收到SMF的地址后,便可以基于SMF的地址与SMF之间建立N16a会话,并向SMF上报D-SMF所支持的DNAI、FQDN和策略名称等关键字列表。
在本申请实施例中,会话创建请求消息也可以描述为Nsmf_PDUSession_Create Request消息。
S315,SMF向D-SMF发送会话创建请求消息的响应消息,相应地,D-SMF接收SMF发送的会话创建请求消息的响应消息。
其中,会话创建请求消息的响应消息包括SMF与D-SMF协商后的DNAI、FQDN和策略名称等关键字,该协商后的DNAI、FQDN和策略名称等关键字包含在D-SMF所支持的DNAI、FQDN和策略名称等关键字列表中。具体地,在实际操作中,SMF可以根据PCF下发签约业务的DNAI、FQDN和策略名称等关键字与D-SMF上报的DNAI、FQDN和策略名称等关键字列表之间取交集来协商确定DNAI、FQDN和策略名称等关键字,然后通过会话创建请求消息的响应消息携带协商后的DNAI、FQDN和策略名称等关键字发送给D-SMF,同时,会话创建请求消息的响应消息中还可以携带N7接口获取的数据结构,如计费规则、策略规则等发送给D-SMF。
在本申请实施例中,会话创建请求消息的响应消息也可以描述为Nsmf_PDUSession_Create Response消息。
S316,D-SMF基于DNAI、FQDN和策略名称等关键字确定辅锚点UPF PSA2。即就是,D-SMF基于协商后的DNAI、FQDN和策略名称等关键字选择辅锚点UPF PSA2。
S317,D-SMF与辅锚点UPF PSA2创建N4会话。
可选地,D-SMF还可以与CHF网元创建会话,以便后续D-SMF生成话单可直接上报到CHF网元。
S318,D-SMF向SMF发送会话更新请求消息,相应地,SMF接收D-SMF发送的会话更新请求消息。
其中,该会话更新请求消息包括辅锚点UPF PSA2的N9接口地址(即上行N9)。
即就是说,D-SMF可以通过会话更新请求消息携带辅锚点UPF PSA2的N9接口地址(上行N9)给SMF。
在本申请实施例中,会话更新请求消息也可以描述为Nsmf_PDUSession_Update Request消息。
S319,SMF向D-SMF发送会话更新请求消息的响应消息,相应地,D-SMF接收SMF发送的会话更新请求消息的响应消息。
在本申请实施例中,会话更新请求消息的响应消息也可以描述为Nsmf_PDUSession_Update Response消息。
S320,SMF确定UPF ULCL。
具体地,SMF可以基于UE位置选择ULCL UPF。
S321,SMF与UPF ULCL创建N4会话。
应理解,在本申请实施例中,SMF还需要给UPF ULCL下发签约业务的分流规则,其中,分流规则包括用户签约的DNAI、FQDN和策略名称等关键字与辅锚点UPF PSA2的N9接口地址的对应关系。使得在实际操作中,在UE请求访问签约业务时,UPF ULCL 可以匹配到辅锚点UPF PSA2的N9接口地址,然后基于所匹配到的辅锚点UPF PSA2的N9接口地址对签约业务进行访问。
S322,SMF向D-SMF发送会话更新请求消息,相应地,D-SMF接收SMF发送的第二会话更新请求消息。
其中,该会话更新请求消息包括UPF ULCL的N9接口地址(即下行N9)。
即就是说,SMF可以通过会话更新请求消息携带UPF ULCL的N9接口地址(下行N9)给D-SMF。
在本申请实施例中,会话更新请求消息也可以描述为Nsmf_PDUSession_Update Request消息。
S323,D-SMF向SMF发送会话更新请求消息的响应消息,相应地,SMF接收D-SMF发送的会话更新请求消息的响应消息。
在本申请实施例中,会话更新请求消息的响应消息也可以描述为Nsmf_PDUSession_Update Response消息。
S324,SMF通过AMF向RAN发送更新N3地址的消息,相应地,RAN通过AMF接收SMF发送的更新N3地址的消息。
具体地,SMF可以通过AMF向RAN(例如,gNB)发送更新N3地址的消息,以将上行N3接口地址从主锚点UPF PSA1更新到UPF ULCL。
S325,RAN通过AMF向SMF发送更新成功的消息,相应地,SMF通过AMF接收RAN发送的更新成功的消息。
应理解,基于以上设计,若UE请求访问签约业务,访问请求经过UPF ULCL时能匹配签约业务的分流规则,然后通过N9接口转发到签约业务所在地的辅锚点UPF PSA2,并通过辅锚点UPF PSA2的N6接口路由到签约业务所在的网络(即部署于UE签约业务所在地的本地DN)。具体地,可参见如下步骤S326至步骤S330:
S326,UE向UPF ULCL发送访问签约业务请求。
应理解,访问签约业务请求中通常包含需要访问的签约业务所对应的DNAI、FQDN和策略名称等关键字。
S327,UPF ULCL匹配分流规则,即就是匹配签约业务的分流规则。
具体地,UPF ULCL需要判断是否存在请求访问的DNAI、FQDN和策略名称等关键字与辅锚点UPF PSA2的N9接口地址的对应关系,若存在,则匹配分流规则;若不存在,则未匹配分流规则。
在该实现方式中,由于在步骤S326中,UE需要访问的是签约业务对应的DNAI、FQDN和策略名称等关键字,则存在请求访问的DNAI、FQDN和策略名称等关键字与辅锚点UPF PSA2的N9接口地址的对应关系,UPF ULCL匹配分流规则。
S328,UPF ULCL向辅锚点UPF PSA2发送访问签约业务请求。
应理解,UPF ULCL向辅锚点UPF PSA2发送访问签约业务请求主要通过上文所提及的N9接口实现。
S329,辅锚点UPF PSA2向UPF ULCL发送签约业务响应。
S330,UPF ULCL向UE发送签约业务响应。
另外,若UE请求访问公网业务,访问请求经过UPF ULCL时不能匹配上分流规则, 然后将访问请求通过N9接口转发到UE接入地的主锚点UPF PSA1,再通过主锚点UPF PSA1的N6接口路由到公网。具体地,可参见如下步骤S331至步骤S333:
S331,UE向UPF ULCL发送访问公网请求。
应理解,访问公网请求中包含公网的DNAI、FQDN和策略名称等关键字。
S332,UPF ULCL未匹配分流规则,即未匹配签约业务的分流规则。
具体地,UPF ULCL需要判断是否存在请求访问的DNAI、FQDN和策略名称等关键字与辅锚点UPF PSA2的N9接口地址的对应关系,若存在,则匹配分流规则;若不存在,则未匹配分流规则。
在该实现方式中,由于在步骤S331中,UE需要访问的是公网业务对应的DNAI、FQDN和策略名称等关键字,则UPF ULCL不会匹配到分流规则,于是UPF ULCL便可以通过主锚点UPF PSA1访问公网。
S333,UPF ULCL向UE发送公网响应。
实施例2:
图4是本申请实施例提供的一种通信方法400的示意性流程图。如图4所示,方法400包括S401至S433,下面对这些步骤进行详细介绍。
首先,需要说明的是,在该实施例中,部署于UE接入地的SMF即为上述第一SMF网元;部署于签约业务所在地的D-SMF即为上述第二SMF网元;部署于UE接入地的UPF ULCL即为上述分流UPF;部署于UE接入地的UPF PSA1即为上述主锚点UPF;部署于签约业务所在地的UPF PSA2即为上述辅锚点UPF。
步骤S401至S410可参见步骤S301至S310,不再赘述。
S411,AMF向SMF发送D-SMF的地址,相应地,SMF接收AMF发送的D-SMF的地址。
同样地,D-SMF的地址包括D-SMF的Instance ID,FQDN,IP等信息。
S412,SMF向AMF发送响应消息,相应地,AMF接收SMF发送的响应消息。
应理解,该响应消息用于指示SMF接收到D-SMF的地址。
S413,SMF向D-SMF发送创建上下文请求消息,相应地,D-SMF接收SMF发送的创建上下文请求消息。
其中,该创建上下文请求消息包括UE签约业务的DNAI、FQDN和策略名称等关键字。同时,创建上下文请求消息中还可以携带N7接口获取的数据结构,如计费规则、策略规则等发送给D-SMF。
应理解,SMF向D-SMF发送创建上下文请求消息可以触发D-SMF创建上下文,即执行步骤S412。
在本申请实施例中,创建上下文请求消息也可以描述为Nsmf_PDUSession_CreateSMContext Request消息。
S414,D-SMF创建上下文。
S415,D-SMF向SMF发送创建上下文请求消息的响应消息,相应地,SMF接收D-SMF发送的创建上下文请求消息的响应消息。
在本申请实施例中,创建上下文请求消息的响应消息也可以描述为Nsmf_PDUSession_CreateSMContext Response消息。
步骤S416至S417可参见步骤S316至S317,不再赘述。
S418,D-SMF向SMF发送会话创建请求消息,相应地,SMF接收D-SMF发送的会话创建请求消息。
其中,该会话创建请求消息包括辅锚点UPF PSA2的N9接口地址(即上行N9)。
即就是说,D-SMF可以通过会话创建请求消息携带辅锚点UPF PSA2的N9接口地址(上行N9)给SMF。
S419,SMF向D-SMF发送会话创建请求消息的响应消息,相应地,D-SMF接收SMF发送的会话创建请求消息的响应消息。
步骤S420至S433可参见步骤S320至S333,不再赘述。
图14是本申请实施例提供的一种通信方法1400的示意性流程图。应理解,方法1400同样可以应用于如下场景:UE当前位置不在UE签约业务所在地的SMF网元的服务区域内(即UE签约业务与UE当前位置之间不在同一个SMF POOL),但仍需要访问UE签约业务所在的局域网。应理解,方法1400主要应用于包括第一SMF网元和第二SMF网元的系统中,其中,第一SMF网元部署于UE接入地,第二SMF网元部署于UE签约业务所在地。如图14所示,方法1400包括步骤S1410和S1420,下面对这些步骤进行详细介绍。
S1410,第一SMF网元根据目标DNAI确定第二SMF网元的地址。
可选地,第一SMF网元根据目标DNAI确定第二SMF网元的地址可以包括:第一SMF网元发送目标DNAI至NRF网元;第一SMF网元接收NRF网元发送的第二SMF网元的地址。可选地,第一SMF网元可以向NRF网元发送携带目标DNAI的发现请求消息,以确定第二SMF网元的地址。参见下文实施例3中的步骤S1507和S1508。
应理解,本申请实施例中的目标DNAI可以为UE签约业务所在局域网的接入标识符,第一SMF网元不支持目标DNAI是指第一SMF网元不支持UE签约业务所在局域网对应的DNAI。
可选地,在步骤S1410执行之前,方法1400还可以包括:第一SMF网元向PCF网元请求用户策略;第一SMF网元接收PCF网元发送的用户策略,该用户策略包括UE签约业务的分流规则和签约业务所在数据网络的DNAI;第一SMF网元判断自身是否支持签约业务所在数据网络的DNAI,若用户策略中的签约业务所在数据网络的DNAI为局域网对应的DNAI,则第一SMF网元判断自身不支持该DNAI,并将该不支持的DNAI记为目标DNAI,再继续执行步骤S1410。参见下文实施例3中的步骤S1504至S1508。
可选地,在第一SMF网元向PCF网元请求用户策略执行之前,该方法1400还可以包括:部署于UE签约业务所在地的第二SMF网元还需要向NRF网元注册自身所支持的DNAI。参见下文实施例3中步骤S1501和S1502。
可选地,部署于UE签约业务所在地的第二SMF网元在向NRF网元注册自身所支持的DNAI的同时,还可以注册自身所支持的FQDN和策略名称等关键字。基于此,上述用户策略可以包括UE签约业务的分流规则和DNAI、FQDN、策略名称等关键字。基于此,在方法1400所涉及到的各个网元的交互中,凡是涉及收发该DNAI或者基于该DNAI进一步执行其他操作的步骤,还需要同时考虑到FQDN和策略名称等关键字。例如,涉及收发该DNAI的步骤,需要变成收发该DNAI、FQDN、策略名称等关键字;涉及基于该DNAI 进一步执行其他操作的步骤,需要变成基于该DNAI、FQDN、策略名称等关键字进一步执行其他操作;上述第一SMF网元不支持目标DNAI可以更改为第一SMF网元不支持目标DNAI、目标FQDN、目标策略名称等关键字。也就意味着,这种情况下,可以将方法1400中涉及到“目标DNAI”直接替换为“目标关键字”,该目标关键字包括目标DNAI、目标FQDN、目标策略名称等关键字,其中,目标FQDN、目标策略名称是指UE签约业务的FQDN和策略名称。
应理解,若UE离开业务签约所在地至拜访地(即UE接入地),UE需要激活,AMF也需要选择接入地SMF网元(即第一SMF网元),然后接入地SMF网元选择接入地主锚点UPF(即下文中部署于接入地的主锚点UPF PSA1)创建用户会话,参见下文实施例3中步骤S1503。
可选地,UE可以签约通用DNN,然后基于通用DNN激活。
S1420,第一SMF网元发送目标DNAI至第二SMF网元。相应地,第二SMF网元接收第一SMF网元发送的目标DNAI。
应理解,第一SMF网元发送目标DNAI至第二SMF网元,也可以描述为,第一SMF网元基于第二SMF网元的地址发送目标DNAI至第二SMF网元。
可选地,在步骤S1420中,“目标DNAI”也可以被创建上下文请求消息携带发送,参见下文实施例3中步骤S1509。
可选地,在步骤S1420中,第一SMF网元还可以携带N7获取的数据结构,如计费规则、策略规则等发送给第二SMF网元。
可选地,在步骤S1420之后,第二SMF网元可以创建用户上下文,参见下文实施例3中的步骤S1510和S1511。
在本申请实施例中,在部署于UE接入地的第一SMF网元不支持目标DNAI时,第一SMF网元可以自身确定第二SMF网元的地址,并与第二SMF网元建立联系,进而使得第一SMF网元和第二SMF网元可以进行交互并自主协商UE请求访问的目标DNAI,以实现UE即使离开签约业务所在地仍能够访问到UE签约业务所在地的局域网业务,即就是说使得UE移动到不同的位置时,都能访问到指定位置部署的局域网业务。
可选地,在步骤S1420之后,方法1400还可以包括:第二SMF网元根据目标DNAI确定辅锚点UPF(即部署于UE签约业务所在地的辅锚点UPF PSA2);第二SMF网元发送该辅锚点UPF的N9接口地址至第一SMF网元,相应地,第一SMF网元接收第二网元发送的该辅锚点UPF的N9接口地址;第一SMF网元根据UE当前位置确定分流UPF(即部署于UE签约业务所在地的UPF上行分类器(Uplink-Classifier,ULCL));第一SMF网元发送分流规则至分流UPF,该分流规则包括该目标DNAI和该辅锚点UPF的N9接口地址的对应关系。可选地,第二SMF网元发送该辅锚点UPF的N9接口地址至第一SMF网元之前,第二SMF网元还可以与该辅锚点UPF创建N4会话,也可以与CHF网元创建会话,以便后续第二SMF网元生成话单可直接上报到CHF网元。可选地,第一SMF网元发送分流规则至分流UPF之前,第一SMF网元还可以与该分流UPF创建N4会话。可选地,在第一SMF网元发送分流规则至分流UPF之后,第一SMF网元还可以发送分流UPF的N9接口地址至第二SMF网元,相应地,第二SMF网元接收第一SMF网元发送的分流UPF的N9接口地址。应理解,以上方法可参见下文实施例3中步骤S1512至S1519。
在本申请实施例中,部署于UE签约业务所在地的第二SMF网元可以根据该目标DNAI确定辅锚点UPF,然后发送辅锚点UPF的N9接口地址至该部署于UE接入地的第一SMF网元;部署于UE接入地的第一SMF网元可以根据UE当前位置确定分流UPF,并给分流UPF发送UE签约业务的分流规则,该分流规则包括该目标DNAI和该辅锚点UPF的N9接口地址的对应关系。使得UE请求访问目标DNAI时,可以通过UE接入地的分流UPF匹配到辅锚点UPF的N9接口地址,然后基于辅锚点UPF的N9接口地址访问辅锚点UPF,进而可以通过辅锚点UPF实现UE签约业务所在的局域网的访问。
可选地,方法1400还可以包括:第一SMF网元通过AMF网元发送更新请求消息至RAN网元,该更新请求消息用于请求将N3地址由UE接入地的主锚点UPF更新为分流UPF,以使得RAN可以与分流UPF通信,可参见下文实施例3中步骤S1520和S1521。
基于以上描述,在实际操作中,若用户请求访问局域网的签约业务,可以通过分流UPF匹配到辅锚点UPF的N9接口地址,然后基于辅锚点UPF的N9接口地址访问辅锚点UPF,进而可以通过辅锚点UPF实现UE签约业务所在的局域网的访问。若用户请求访问的是公网业务,通过分流UPF无法匹配到辅锚点UPF的N9接口地址,这种情况下,便可以直接通过分流UPF的N9接口转发到UE接入地的主锚点UPF,通过UE接入地的主锚点UPF的N6接口路由到公网。可参见下文实施例3中步骤S1522至S1529。
可选地,上述第一SMF网元也可以为SMF融合节点,该SMF融合节点可以用于用户从2G、3G、4G和5G中任意多项接入。
为了便于理解,下面再结合图15介绍本申请提供的通信方法1400的具体实施例。应理解,图15所示的方法仅为示例,在实际操作中,也可以包括更多或更少的步骤,本申请对此不做限定。应理解,在以下实施例中,涉及RAN、AMF、SMF、UPF ULCL、UPF PSA1、D-SMF、UPF PSA2、PCF、NRF等网元,为便于描述,在下文将上述网元直接简写成RAN、AMF、SMF、UPF ULCL、UPF PSA1、D-SMF、UPF PSA2、PCF、NRF等。
实施例3:
图15是本申请实施例提供的一种通信方法1500的示意性流程图。如图15所示,方法1500包括S1501至S1529,下面对这些步骤进行详细介绍。
首先,需要说明的是,在该实施例中,部署于UE接入地的SMF即为上述第一SMF网元;部署于签约业务所在地的D-SMF即为上述第二SMF网元;部署于UE接入地的UPF ULCL即为上述分流UPF;部署于UE接入地的UPF PSA1即为上述主锚点UPF;部署于签约业务所在地的UPF PSA2即为上述辅锚点UPF。
步骤S1501至S1506可参见步骤S401至S406(即就是参见步骤S301至S306),不再赘述。
步骤S1507,SMF向NRF发送发现请求消息,相应地,NRF接收SMF发送的发现请求消息。
其中,该发现请求消息包括DNAI、FQDN和策略名称等关键字,SMF发送该携带DNAI、FQDN和策略名称等关键字的发现请求消息到NRF可以发现签约业务所在地的D-SMF。
在本申请实施例中,发现请求消息也可以描述为Nnrf_NFDiscovery_NFDiscover Request消息。
S1508,NRF向SMF发送发现请求消息的响应消息,相应地,SMF接收NRF发送的发现请求消息的响应消息。
其中,该发送发现请求消息的响应消息包括签约业务所在地的D-SMF的地址,该地址包括D-SMF的ID、FQDN、IP等信息。
在本申请实施例中,发现请求消息的响应消息也可以描述为Nnrf_NFDiscovery_NFDiscover Response消息。
步骤S1509至S1529可参见步骤S413至S433(即就是参见步骤S413至S419,以及步骤S320至S333),不再赘述。
应理解,方法1400和方法1500主要为用户从5G接入时的通信方法的示例,类似地,若将方法1400中所涉及的第一SMF网元以及方法1500中所涉及的SMF替换为GW-C/SMF或GGSN/PGW/SMF等融合节点,将方法1400和方法1500中所涉及的AMF替换为SGSN/MME等融合节点,就会使得用户从2G/3G/4G接入时也能够访问签约业务所在地的局域网业务。
应理解,上述融合节点的具体组成可以结合实际情况考虑,在实际操作中可以包括更多或更少的网元进行融合,以实现用户在不同场景下对于签约业务所在地的局域网业务的访问。示例性地,也可以将方法1400和方法1500中所涉及的AMF替换为SGSN/MME/AMF融合节点,就会使得用户从2G/3G/4G/5G接入时均能够访问签约业务所在地的局域网业务。
其中,GW-C为网关-控制面(gateway-control,GW-C)的简称;GGSN为网关GPRS支持节点(gateway GPRS support node,GGSN)的简称;GPRS为通用无线分组业务(general packet radio service,GPRS)的简称;PGW为PDN网关(PDN GateWay)的简称;PDN为公用数据网(public data network,PDN)的简称;SGSN为服务GPRS支持节点(service GPRS support node)的简称;MME为移动性管理实体(mobility management entity,MME)的简称。
示例性地,图16是本申请实施例提供的一种通信方法1600的示意性流程图。应理解,该方法1600与上述方法1500的主要区别在于,将方法1500中所涉及的SMF替换为GW-C/SMF融合节点,将所涉及的AMF替换为SGSN/MME融合节点,以对用户从2G/3G/4G接入的场景进行示例。如图16所示,方法1600包括S1601至S1629,下面对这些步骤进行介绍。
S1601至S1602,可参见步骤S1501至S1502(即就是参见步骤S401至S402或步骤S301至S302),不再赘述。
S1603,UE激活,SGSN/MME选择UE接入地GW-C/SMF,GW-C/SMF选择UE接入地UPF PSA1创建用户会话。
S1604,GW-C/SMF向PCF发送策略请求消息,相应地,PCF接收GW-C/SMF发送的策略请求消息。
应理解,策略请求消息用于请求SM策略。可选地,在本申请实施例中,策略请求消息也可以描述为Npcf_SMPolicyControl_Create Request消息。
S1605,PCF向GW-C/SMF发送策略请求消息的响应消息,相应地,GW-C/SMF接收PCF发送的策略请求消息的响应消息。
其中,该策略请求消息的响应消息包括用户策略,该用户策略包括签约业务的分流规 则和DNAI、FQDN和策略名称等关键字,该DNAI用于标识UE签约业务所在的DN接入点信息。
在本申请实施例中,策略请求消息的响应消息也可以描述为Npcf_SMPolicyControl_Create Response消息。
S1606,GW-C/SMF判断不支持PCF下发的DNAI、FQDN和策略名称等关键字。
若PCF下发的DNAI、FQDN和策略名称等关键字为局域网对应的DNAI、FQDN和策略名称等关键字,则GW-C/SMF判断自身不支持PCF下发的DNAI、FQDN和策略名称等关键字,并继续执行步骤S1607。
S1607,GW-C/SMF向NRF发送发现请求消息,相应地,NRF接收GW-C/SMF发送的发现请求消息。
其中,该发现请求消息包括DNAI、FQDN和策略名称等关键字,GW-C/SMF发送该携带DNAI、FQDN和策略名称等关键字的发现请求消息到NRF可以发现签约业务所在地的D-SMF。
在本申请实施例中,发现请求消息也可以描述为Nnrf_NFDiscovery_NFDiscover Request消息。
S1608,NRF向GW-C/SMF发送发现请求消息的响应消息,相应地,GW-C/SMF接收NRF发送的发现请求消息的响应消息。
其中,该发送发现请求消息的响应消息包括签约业务所在地的D-SMF的地址,该地址包括D-SMF的ID、FQDN、IP等信息。
在本申请实施例中,发现请求消息的响应消息也可以描述为Nnrf_NFDiscovery_NFDiscover Response消息。
S1609,GW-C/SMF向D-SMF发送创建上下文请求消息,相应地,D-SMF接收GW-C/SMF发送的创建上下文请求消息。
其中,该创建上下文请求消息包括UE签约业务的DNAI、FQDN和策略名称等关键字。同时,创建上下文请求消息中还可以携带N7接口获取的数据结构,如计费规则、策略规则等发送给D-SMF。
应理解,GW-C/SMF向D-SMF发送创建上下文请求消息可以触发D-SMF创建上下文,即执行步骤S1610。
在本申请实施例中,创建上下文请求消息也可以描述为Nsmf_PDUSession_CreateSMContext Request消息。
S1610,D-SMF创建上下文。
S1611,D-SMF向GW-C/SMF发送创建上下文请求消息的响应消息,相应地,GW-C/SMF接收D-SMF发送的创建上下文请求消息的响应消息。
在本申请实施例中,创建上下文请求消息的响应消息也可以描述为Nsmf_PDUSession_CreateSMContext Response消息。
S1612,D-SMF基于DNAI、FQDN和策略名称等关键字确定辅锚点UPF PSA2。即就是,D-SMF基于协商后的DNAI、FQDN和策略名称等关键字选择辅锚点UPF PSA2。
S1613,D-SMF与辅锚点UPF PSA2创建N4会话。
可选地,D-SMF还可以与CHF网元创建会话,以便后续D-SMF生成话单可直接上 报到CHF网元。
S1614,D-SMF向GW-C/SMF发送会话创建请求消息,相应地,GW-C/SMF接收D-SMF发送的会话创建请求消息。
其中,该会话创建请求消息包括辅锚点UPF PSA2的N9接口地址(即上行N9)。
即就是说,D-SMF可以通过会话创建请求消息携带辅锚点UPF PSA2的N9接口地址(上行N9)给GW-C/SMF。
在本申请实施例中,会话创建请求消息也可以描述为Nsmf_PDUSession_Create Request消息。
S1615,GW-C/SMF向D-SMF发送会话创建请求消息的响应消息,相应地,D-SMF接收SMF发送的会话创建请求消息的响应消息。
在本申请实施例中,会话创建请求消息的响应消息也可以描述为Nsmf_PDUSession_Create Response消息。
S1616,GW-C/SMF确定UPF ULCL。
具体地,GW-C/SMF可以基于UE位置选择ULCL UPF。
S1617,GW-C/SMF与UPF ULCL创建N4会话。
应理解,在本申请实施例中,GW-C/SMF还需要给UPF ULCL下发签约业务的分流规则,其中,分流规则包括用户签约的DNAI、FQDN和策略名称等关键字与辅锚点UPF PSA2的N9接口地址的对应关系。使得在实际操作中,在UE请求访问签约业务时,UPF ULCL可以匹配到辅锚点UPF PSA2的N9接口地址,然后基于所匹配到的辅锚点UPF PSA2的N9接口地址对签约业务进行访问。
S1618,GW-C/SMF向D-SMF发送会话更新请求消息,相应地,D-SMF接收GW-C/SMF发送的会话更新请求消息。
其中,该会话更新请求消息包括UPF ULCL的N9接口地址(即下行N9)。
即就是说,GW-C/SMF可以通过会话更新请求消息携带UPF ULCL的N9接口地址(下行N9)给D-SMF。
在本申请实施例中,会话更新请求消息也可以描述为Nsmf_PDUSession_Update Request消息。
S1619,D-SMF向GW-C/SMF发送会话更新请求消息的响应消息,相应地,GW-C/SMF接收D-SMF发送的会话更新请求消息的响应消息。
在本申请实施例中,会话更新请求消息的响应消息也可以描述为Nsmf_PDUSession_Update Response消息。
S1620,GW-C/SMF通过SGSN/MME向RAN发送更新用户面平面地址的消息,相应地,RAN通过SGSN/MME接收GW-C/SMF发送的更新用户面平面地址的消息。
具体地,GW-C/SMF可以通过SGSN/MME向RAN(例如,gNB)发送更新用户面平面地址的消息,以将上行用户面平面地址从主锚点UPF PSA1更新到UPF ULCL。
S1621,RAN通过SGSN/MME向GW-C/SMF发送更新成功的消息,相应地,GW-C/SMF通过SGSN/MME接收RAN发送的更新成功的消息。
S1622至S1629可参见步骤S1522至S1529(即就是参见步骤S326至S333),不再赘述。
图5是本申请实施例提供的一种通信装置500的示意图。可选地,装置500可以为第一SMF网元,也可以为应用于第一SMF网元的芯片、处理器或模组等装置,该第一SMF网元部署于UE接入地。装置500包括:收发模块510。应理解,该收发模块510具有数据发送和/或接收的能力。
其中,第一SMF网元不支持目标DNAI,目标DNAI为UE签约业务所在数据网络的接入标识符,收发模块510用于,发送目标DNAI至AMF网元,该目标DNAI用于确定第二SMF网元的地址,该第二SMF网元部署于UE签约业务所在地;接收第二SMF网元发送的第二SMF网元支持的一个或多个DNAI,该第二SMF网元支持的一个或多个DNAI中包括目标DNAI;发送目标DNAI至第二SMF网元。
可选地,在发送目标DNAI至第二SMF网元之后,收发模块510还可以用于,接收第二SMF网元发送的辅锚点UPF的N9接口地址,辅锚点UPF根据目标DNAI确定;发送分流规则至分流UPF,分流规则包括目标DNAI和辅锚点UPF的N9接口地址的对应关系,分流UPF根据UE当前位置确定。
可选地,收发模块510还可以用于,通过AMF网元发送更新请求消息至RAN网元,该更新请求消息用于请求将N3地址由UE接入地的主锚点UPF更新为所述分流UPF。
图6是本申请实施例提供的一种通信装置600的示意图。可选地,装置600可以为第二SMF网元,也可以为应用于第二SMF网元的芯片、处理器或模组等装置,该第二SMF网元部署于UE签约业务所在地。装置600包括:收发模块610。应理解,该收发模块610具有数据发送和/或接收的能力。
收发模块610用于,接收AMF网元发送的第一SMF网元的地址,该第一SMF网元部署于UE接入地;发送自身支持的一个或多个DNAI至该第一SMF网元,该自身支持的一个或多个DNAI中包括目标DNAI,该目标DNAI为UE签约业务所在数据网络的接入标识符;接收第一SMF网元发送的目标DNAI。
可选地,装置600还可以包括:处理模块620,在接收该第一SMF网元发送的目标DNAI之后,处理模块620可以用于,根据目标DNAI确定辅锚点用户面功能UPF。收发模块610还可以用于,发送辅锚点UPF的N9接口地址至第一SMF网元。
图7是本申请实施例提供的一种通信装置700的示意图。可选地,装置700可以为AMF网元,也可以为应用于AMF网元的芯片、处理器或模组等装置。该装置700包括收发模块710和处理模块720,应理解,收发模块710具有数据发送和/或接收的能力。
收发模块710用于,接收第一SMF网元发送的目标DNAI,该目标DNAI为UE签约业务所在数据网络的接入标识符,该第一SMF网元部署于UE接入地。处理模块720用于,根据目标DNAI确定第二SMF网元的地址,该第二SMF网元部署于UE签约业务所在地。收发模块710还可以用于,发送第一SMF网元的地址至第二SMF网元。
可选地,收发模块710还可以用于,发送目标DNAI至NRF网元;接收NRF网元发送的该第二SMF网元的地址。
可选地,收发模块710还可以用于,接收第一SMF网元发送的更新请求消息,该更新请求消息用于请求将N3地址由UE接入地的主锚点UPF更新为所述分流UPF;发送该更新请求消息至RAN。
图8是本申请实施例提供的一种通信装置800的示意图。可选地,装置800可以为第 一SMF网元,也可以为应用于第一SMF网元的芯片、处理器或模组等装置,该第一SMF网元部署于UE接入地。装置800包括:收发模块810。应理解,该收发模块810具有数据发送和/或接收的能力。
其中,第一SMF网元不支持目标DNAI,该目标DNAI为UE签约业务所在数据网络的接入标识符,收发模块810用于,发送目标DNAI至AMF网元,该目标DNAI用于确定第二SMF网元的地址,该第二SMF网元部署于UE签约业务所在地;接收AMF网元发送的第二SMF网元的地址;发送目标DNAI至该第二SMF网元。
可选地,在发送目标DNAI至第二SMF网元之后,收发模块810还可以用于,接收第二SMF网元发送的辅锚点UPF的N9接口地址,辅锚点UPF根据目标DNAI确定;发送分流规则至分流UPF,分流规则包括目标DNAI和辅锚点UPF的N9接口地址的对应关系,分流UPF根据UE当前位置确定。
可选地,收发模块810还可以用于,通过AMF网元发送更新请求消息至RAN网元,该更新请求消息用于请求将N3地址由UE接入地的主锚点UPF更新为分流UPF。
图9是本申请实施例提供的一种通信装置900的示意图。可选地,装置900可以为第二SMF网元,也可以为应用于第二SMF网元的芯片、处理器或模组等装置,该第二SMF网元部署于UE签约业务所在地。装置900包括:收发模块910。应理解,该收发模块910具有数据发送和/或接收的能力。
收发模块910用于,接收第一SMF网元发送的目标DNAI,该目标DNAI为UE签约业务所在数据网络的接入标识符。
可选地,装置900还可以包括:处理模块920,在接收第一SMF网元发送的目标DNAI之后,处理模块920可以用于,根据目标DNAI确定辅锚点用户面功能UPF。收发模块910还可以用于,发送辅锚点UPF的N9接口地址至第一SMF网元。
图10是本申请实施例提供的一种通信装置1000的示意图。可选地,装置1000可以为AMF网元,也可以为应用于AMF网元的芯片、处理器或模组等装置。该装置1000包括收发模块1010和处理模块1020。应理解,该收发模块1010具有数据发送和/或接收的能力。
收发模块1010用于,接收第一SMF网元发送的目标DNAI,目标DNAI为UE签约业务所在数据网络的接入标识符,该第一SMF网元部署于UE接入地。处理模块1020用于,根据目标DNAI确定第二SMF网元的地址,第二SMF网元部署于UE签约业务所在地。收发模块1010还用于,发送第二SMF网元的地址至第一SMF网元。
可选地,收发模块1010还可以用于,发送目标DNAI至NRF网元;接收NRF网元发送的第二SMF网元的地址。
可选地,收发模块1010还可以用于,接收第一SMF网元发送的更新请求消息,更新请求消息用于请求将N3地址由UE接入地的主锚点UPF更新为分流UPF;发送更新请求消息至RAN。
图17是本申请实施例提供的一种通信装置1700的示意图。可选地,该装置1700可以为第一SMF网元,也可以为应用于第一SMF网元的芯片、处理器或模组等装置,该第一SMF网元部署于UE接入地。该装置1700包括:处理模块1710和收发模块1720,应理解,该收发模块1720具有数据发送和/或接收的能力。
其中,第一SMF网元不支持目标DNAI,该目标DNAI为UE签约业务所在数据网络的接入标识符,处理模块1710用于,根据目标DNAI确定第二SMF网元的地址,第二SMF网元部署于UE签约业务所在地。收发模块1720用于,发送目标DNAI至第二SMF网元。
可选地,收发模块1720还可以用于,发送目标DNAI至NRF网元;接收NRF网元发送的第二SMF网元的地址。
可选地,在发送目标DNAI至第二SMF网元之后,收发模块1720还可以用于,接收第二SMF网元发送的辅锚点UPF的N9接口地址,该辅锚点UPF根据目标DNAI确定;发送分流规则至分流UPF,该分流规则包括目标DNAI和辅锚点UPF的N9接口地址的对应关系,该分流UPF根据UE当前位置确定。
图18是本申请实施例提供的一种通信装置1800的示意图。可选地,装置1800可以为第二SMF网元,也可以为应用于第二SMF网元的芯片、处理器或模组等装置,该第二SMF网元部署于UE签约业务所在地。装置1800包括:收发模块1810。应理解,该收发模块1810具有数据发送和/或接收的能力。
收发模块1810用于,接收第一SMF网元发送的目标DNAI,目标DNAI为UE签约业务所在数据网络的接入标识符。
可选地,装置1800还可以包括:处理模块1820,在接收第一SMF网元发送的目标DNAI之后,处理模块1820用于,根据目标DNAI确定辅锚点UPF;收发模块1810还可以用于,发送辅锚点UPF的N9接口地址至第一SMF网元。
同样地,以上装置中所涉及到“目标DNAI”也可以直接替换为“目标关键字”,该目标关键字包括目标DNAI、目标FQDN、目标策略名称等关键字,其中,目标FQDN、目标策略名称是指UE签约业务的FQDN和策略名称。具体可参见各个方法实施例中的描述,不再赘述。
图11是本申请实施例提供的一种通信系统1100。如图11所示,该系统1100包括上述装置500、装置600和装置700。
图12是本申请实施例提供的一种通信系统1200。如图12所示,该系统1200包括上述装置800、装置900和装置1000。
图19是本申请实施例提供的一种通信系统1900。如图19所示,该系统1900包括上述装置1700和装置1800。
图13是本申请实施例提供的一种通信装置1300的示意图。如图13所示,该通信装置1300包括:收发器1310、处理器1320和存储器1330。其中,收发器1310、处理器1320和存储器1330之间通过内部连接通路互相通信,传递控制和/或数据信号。
可选地,收发器1310也可以是通信接口。
其中,存储器1330用于存储执行本申请方案的应用程序代码,处理器1320用于执行存储器1330中存储的应用程序代码。
应理解,收发器1310可以用于实现上述实施例中收发模块所涉及的功能,处理器1320可以用于实现上述实施例中处理模块所涉及的功能。
还应理解,在该处理器1320从存储器中调用并运行该计算机程序时,处理器1320可用于执行上述实施例中处理模块所执行的相关操作。
在具体实现中,作为一种实施例,处理器1320可以包括一个或多个CPU。
在具体实现中,作为一种实施例,通信装置1300可以包括多个处理器,每个处理器可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器1330可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过连接线(如,系统总线)与处理器相连接。存储器也可以和处理器集成在一起。
在具体实现中,作为一种实施例,通信装置1300还可以包括输出设备和输入设备。输出设备和处理器1320通信,可以以多种方式来显示信息。例如,输出设备可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备和处理器1320通信,可以以多种方式接受用户的输入。例如,输入设备可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信装置1300可以是一个通用计算机设备或者是一个专用计算机设备。在具体实现中,通信装置1300可以是台式机、便携式电脑、网络服务器、掌上电脑(Personal Digital Assistant,PDA)、移动手机、平板电脑、无线终端设备、通信设备或嵌入式设备。本申请实施例不限定通信装置1300的类型。
本申请实施例还提供一种计算机可读存储介质,其上存储有用于实现上述各方法实施例中由网元或设备执行的方法的计算机指令。
例如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由第一SMF网元执行的方法。
又如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由第二SMF网元执行的方法。
再如,该计算机程序被计算机执行时,使得该计算机可以实现上述方法各实施例中由AMF网元执行的方法。
本申请实施例还提供一种计算机程序产品,包含指令,该指令被计算机执行时以实现上述各方法实施例中由网元或设备执行的方法。
上述提供的任一种装置中相关内容的解释及有益效果均可参考上文提供的对应的方法实施例,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结 合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者网络设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等。例如,前述的可用介质包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (67)

  1. 一种通信方法,其特征在于,所述方法应用于第一会话管理功能SMF网元,所述第一SMF网元部署于UE接入地,所述第一SMF网元不支持目标关键字,所述目标关键字包括目标数据网络接入标识符DNAI,所述目标DNAI为UE签约业务所在数据网络的接入标识符,所述方法包括:
    发送所述目标关键字至接入和移动性管理功能AMF网元,所述目标关键字用于确定第二SMF网元的地址,所述第二SMF网元部署于UE签约业务所在地;
    接收所述第二SMF网元发送的所述第二SMF网元支持的关键字列表,所述第二SMF网元支持的关键字列表中包括所述目标关键字;
    发送所述目标关键字至所述第二SMF网元。
  2. 根据权利要求1所述的方法,其特征在于,在所述发送所述目标关键字至所述第二SMF网元之后,所述方法还包括:
    接收所述第二SMF网元发送的辅锚点用户面功能UPF的N9接口地址,所述辅锚点UPF根据所述目标关键字确定;
    发送分流规则至分流UPF,所述分流规则包括所述目标关键字和所述辅锚点UPF的N9接口地址的对应关系,所述分流UPF根据UE当前位置确定。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    通过所述AMF网元发送更新请求消息至无线接入网RAN网元,所述更新请求消息用于请求将N3地址由UE接入地的主锚点UPF更新为所述分流UPF。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述发送所述目标关键字至所述第二SMF网元包括:
    发送所述目标关键字以及N7接口获取的数据结构至所述第二SMF网元,所述数据结构包括计费规则和/或策略规则。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述目标关键字还包括目标全域名和目标策略名称。
  6. 一种通信方法,其特征在于,所述方法应用于第二会话管理功能SMF网元,所述第二SMF网元部署于UE签约业务所在地,所述方法包括:
    接收接入和移动性管理功能AMF网元发送的第一SMF网元的地址,所述第一SMF网元部署于UE接入地;
    发送自身支持的关键字列表至所述第一SMF网元,所述自身支持的关键字列表包括目标关键字,所述目标关键字包括目标数据网络接入标识符DNAI,所述目标DNAI为UE签约业务所在数据网络的接入标识符;
    接收所述第一SMF网元发送的所述目标关键字。
  7. 根据权利要求6所述的方法,其特征在于,在所述接收所述第一SMF网元发送的所述目标关键字之后,所述方法还包括:
    根据所述目标关键字确定辅锚点用户面功能UPF;
    发送所述辅锚点UPF的N9接口地址至所述第一SMF网元。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    与计费功能CHF网元创建会话,以将自身所生成的话单上报到CHF网元。
  9. 根据权利要求6至8中任一项所述的方法,其特征在于,所述目标关键字还包括目标全域名和目标策略名称。
  10. 一种通信方法,其特征在于,所述方法应用于接入和移动性管理功能AMF网元,所述方法包括:
    接收第一会话管理功能SMF网元发送的目标关键字,所述目标关键字包括目标数据网络接入标识符DNAI,所述目标DNAI为UE签约业务所在数据网络的接入标识符,所述第一SMF网元部署于UE接入地;
    根据所述目标关键字确定第二SMF网元的地址,所述第二SMF网元部署于UE签约业务所在地;
    发送所述第一SMF网元的地址至所述第二SMF网元。
  11. 根据权利要求10所述的方法,其特征在于,所述根据所述目标关键字确定第二SMF网元的地址包括:
    发送所述目标关键字至网络存储功能NRF网元;
    接收所述NRF网元发送的所述第二SMF网元的地址。
  12. 根据权利要求10或11所述的方法,其特征在于,所述方法还包括:
    接收所述第一SMF网元发送的更新请求消息,所述更新请求消息用于请求将N3地址由UE接入地的主锚点UPF更新为所述分流UPF;
    发送所述更新请求消息至无线接入网RAN。
  13. 根据权利要求10至12中任一项所述的方法,其特征在于,所述目标关键字还包括目标全域名和目标策略名称。
  14. 一种通信方法,其特征在于,所述方法应用于第一会话管理功能SMF网元,所述第一SMF网元部署于UE接入地,所述第一SMF网元不支持目标关键字,所述目标关键字包括目标数据网络接入标识符DNAI,所述目标DNAI为UE签约业务所在数据网络的接入标识符,所述方法包括:
    发送所述目标关键字至接入和移动性管理功能AMF网元,所述目标关键字用于确定第二SMF网元的地址,所述第二SMF网元部署于UE签约业务所在地;
    接收所述AMF网元发送的所述第二SMF网元的地址;
    发送所述目标关键字至所述第二SMF网元。
  15. 根据权利要求14所述的方法,其特征在于,在所述发送所述目标关键字至所述第二SMF网元之后,所述方法还包括:
    接收所述第二SMF网元发送的辅锚点用户面功能UPF的N9接口地址,所述辅锚点UPF根据所述目标关键字确定;
    发送分流规则至分流UPF,所述分流规则包括所述目标关键字和所述辅锚点UPF的N9接口地址的对应关系,所述分流UPF根据UE当前位置确定。
  16. 根据权利要求15所述的方法,其特征在于,所述方法还包括:
    通过所述AMF网元发送更新请求消息至无线接入网RAN网元,所述更新请求消息用于请求将N3地址由UE接入地的主锚点UPF更新为所述分流UPF。
  17. 根据权利要求14所述的方法,其特征在于,所述发送所述目标关键字至所述第二SMF网元包括:
    发送所述目标关键字以及N7接口获取的数据结构至所述第二SMF网元,所述数据结构包括计费规则和/或策略规则。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,所述目标关键字还包括目标全域名和目标策略名称。
  19. 一种通信方法,其特征在于,所述方法应用于第二会话管理功能SMF网元,所述第二SMF网元部署于UE签约业务所在地,所述方法包括:
    接收第一SMF网元发送的目标关键字,所述目标关键字包括目标数据网络接入标识符DNAI,所述目标DNAI为UE签约业务所在数据网络的接入标识符。
  20. 根据权利要求19所述的方法,其特征在于,在所述接收第一SMF网元发送的目标关键字之后,所述方法还包括:
    根据所述目标关键字确定辅锚点用户面功能UPF;
    发送所述辅锚点UPF的N9接口地址至所述第一SMF网元。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    与计费功能CHF网元创建会话,以将自身所生成的话单上报到CHF网元。
  22. 根据权利要求19至21中任一项所述的方法,其特征在于,所述目标关键字还包括目标全域名和目标策略名称。
  23. 一种通信方法,其特征在于,所述方法应用于接入和移动性管理功能AMF网元,所述方法包括:
    接收第一会话管理功能SMF网元发送的目标关键字,所述目标关键字包括目标数据网络接入标识符DNAI,所述目标DNAI为UE签约业务所在数据网络的接入标识符,所述第一SMF网元部署于UE接入地;
    根据所述目标关键字确定第二SMF网元的地址,所述第二SMF网元部署于UE签约业务所在地;
    发送所述第二SMF网元的地址至所述第一SMF网元。
  24. 根据权利要求23所述的方法,其特征在于,所述根据所述目标关键字确定第二SMF网元的地址包括:
    发送所述目标关键字至网络存储功能NRF网元;
    接收所述NRF网元发送的所述第二SMF网元的地址。
  25. 根据权利要求23或24所述的方法,其特征在于,所述方法还包括:
    接收所述第一SMF网元发送的更新请求消息,所述更新请求消息用于请求将N3地址由UE接入地的主锚点UPF更新为所述分流UPF;
    发送所述更新请求消息至无线接入网RAN。
  26. 根据权利要求23至25中任一项所述的方法,其特征在于,所述目标关键字还包括目标全域名和目标策略名称。
  27. 一种通信方法,其特征在于,所述方法应用于第一会话管理功能SMF网元,所述第一SMF网元部署于UE接入地,所述第一SMF网元不支持目标关键字,所述目标关键字包括目标数据网络接入标识符DNAI,所述目标DNAI为UE签约业务所在数据网络 的接入标识符,所述方法包括:
    根据所述目标关键字确定第二SMF网元的地址,所述第二SMF网元部署于UE签约业务所在地;
    发送所述目标关键字至所述第二SMF网元。
  28. 根据权利要求27所述的方法,其特征在于,所述根据所述目标关键字确定第二SMF网元的地址包括:
    发送所述目标关键字至网络存储功能NRF网元;
    接收所述NRF网元发送的所述第二SMF网元的地址。
  29. 根据权利要求27所述的方法,其特征在于,所述根据所述目标关键字确定第二SMF网元的地址包括:
    根据所述目标关键字从本地配置列表查询获得所述第二SMF网元地址。
  30. 根据权利要求27至29中任一项所述的方法,其特征在于,在所述发送所述目标关键字至所述第二SMF网元之后,所述方法还包括:
    接收所述第二SMF网元发送的辅锚点用户面功能UPF的N9接口地址,所述辅锚点UPF根据所述目标关键字确定;
    发送分流规则至分流UPF,所述分流规则包括所述目标关键字和所述辅锚点UPF的N9接口地址的对应关系,所述分流UPF根据UE当前位置确定。
  31. 根据权利要求30所述的方法,其特征在于,所述方法还包括:
    通过接入和移动性管理功能AMF网元发送更新请求消息至无线接入网RAN网元,所述更新请求消息用于请求将N3地址由UE接入地的主锚点UPF更新为所述分流UPF。
  32. 根据权利要求27至31中任一项所述的方法,其特征在于,所述第一SMF网元为SMF融合节点,所述SMF融合节点用于用户从2G、3G、4G和5G中任意多项接入。
  33. 根据权利要求27至32中任一项所述的方法,其特征在于,所述发送所述目标关键字至所述第二SMF网元包括:
    发送所述目标关键字以及N7接口获取的数据结构至所述第二SMF网元,所述数据结构包括计费规则和/或策略规则。
  34. 根据权利要求27至33中任一项所述的方法,其特征在于,所述目标关键字还包括目标全域名和目标策略名称。
  35. 一种通信方法,其特征在于,所述方法应用于第二会话管理功能SMF网元,所述第二SMF网元部署于UE签约业务所在地,所述方法包括:
    接收第一SMF网元发送的目标关键字,所述目标关键字包括目标数据网络接入标识符DNAI,所述目标DNAI为UE签约业务所在数据网络的接入标识符。
  36. 根据权利要求35所述的方法,其特征在于,在所述接收第一SMF网元发送的目标关键字之后,所述方法还包括:
    根据所述目标关键字确定辅锚点用户面功能UPF;
    发送所述辅锚点UPF的N9接口地址至所述第一SMF网元。
  37. 根据权利要求35所述的方法,其特征在于,所述方法还包括:
    与计费功能CHF网元创建会话,以将自身所生成的话单上报到CHF网元。
  38. 根据权利要求35至37中任一项所述的方法,其特征在于,所述目标关键字还包 括目标全域名和目标策略名称。
  39. 一种通信装置,其特征在于,所述装置应用于第一会话管理功能SMF网元,所述第一SMF网元部署于UE接入地,所述第一SMF网元不支持目标关键字,所述目标关键字包括目标数据网络接入标识符DNAI,所述目标DNAI为UE签约业务所在数据网络的接入标识符,所述装置包括:收发模块,所述收发模块用于,
    发送所述目标关键字至接入和移动性管理功能AMF网元,所述目标关键字用于确定第二SMF网元的地址,所述第二SMF网元部署于UE签约业务所在地;接收所述第二SMF网元发送的所述第二SMF网元支持的关键字列表,所述第二SMF网元支持的关键字列表中包括所述目标关键字;发送所述目标关键字至所述第二SMF网元。
  40. 根据权利要求39所述的装置,其特征在于,在所述发送所述目标关键字至所述第二SMF网元之后,所述收发模块还用于,
    接收所述第二SMF网元发送的辅锚点用户面功能UPF的N9接口地址,所述辅锚点UPF根据所述目标关键字确定;发送分流规则至分流UPF,所述分流规则包括所述目标关键字和所述辅锚点UPF的N9接口地址的对应关系,所述分流UPF根据UE当前位置确定。
  41. 根据权利要求39或40所述的装置,其特征在于,所述目标关键字还包括目标全域名和目标策略名称。
  42. 一种通信装置,其特征在于,所述装置应用于第二会话管理功能SMF网元,所述第二SMF网元部署于UE签约业务所在地,所述装置包括:收发模块,所述收发模块用于,
    接收接入和移动性管理功能AMF网元发送的第一SMF网元的地址,所述第一SMF网元部署于UE接入地;发送自身支持的关键字列表至所述第一SMF网元,所述自身支持的关键字列表中包括目标关键字,所述目标关键字包括目标数据网络接入标识符DNAI,所述目标DNAI为UE签约业务所在数据网络的接入标识符;接收所述第一SMF网元发送的所述目标关键字。
  43. 根据权利要求42所述的装置,其特征在于,所述装置还包括:处理模块,在所述接收所述第一SMF网元发送的所述目标关键字之后,所述处理模块用于,
    根据所述目标关键字确定辅锚点用户面功能UPF;
    所述收发模块还用于,发送所述辅锚点UPF的N9接口地址至所述第一SMF网元。
  44. 根据权利要求42或43所述的装置,其特征在于,所述目标关键字还包括目标全域名和目标策略名称。
  45. 一种通信装置,其特征在于,所述装置应用于接入和移动性管理功能AMF网元,所述装置包括收发模块和处理模块,
    所述收发模块用于,接收第一会话管理功能SMF网元发送的目标关键字,所述目标关键字包括目标数据网络接入标识符DNAI,所述目标DNAI为UE签约业务所在数据网络的接入标识符,所述第一SMF网元部署于UE接入地;
    所述处理模块用于,根据所述目标关键字确定第二SMF网元的地址,所述第二SMF网元部署于UE签约业务所在地;
    所述收发模块还用于,发送所述第一SMF网元的地址至所述第二SMF网元。
  46. 根据权利要求45所述的装置,其特征在于,所述收发模块还用于,
    发送所述目标关键字至网络存储功能NRF网元;接收所述NRF网元发送的所述第二SMF网元的地址。
  47. 根据权利要求45或46所述的装置,其特征在于,所述目标关键字还包括目标全域名和目标策略名称。
  48. 一种通信装置,其特征在于,所述装置应用于第一会话管理功能SMF网元,所述第一SMF网元部署于UE接入地,所述第一SMF网元不支持目标关键字,所述目标关键字包括目标数据网络接入标识符DNAI,所述目标DNAI为UE签约业务所在数据网络的接入标识符,所述装置包括:收发模块,所述收发模块用于,
    发送所述目标关键字至接入和移动性管理功能AMF网元,所述目标关键字用于确定第二SMF网元的地址,所述第二SMF网元部署于UE签约业务所在地;接收所述AMF网元发送的所述第二SMF网元的地址;发送所述目标关键字至所述第二SMF网元。
  49. 根据权利要求48所述的装置,其特征在于,在所述发送所述目标关键字至所述第二SMF网元之后,所述收发模块还用于,
    接收所述第二SMF网元发送的辅锚点用户面功能UPF的N9接口地址,所述辅锚点UPF根据所述目标关键字确定;发送分流规则至分流UPF,所述分流规则包括所述目标关键字和所述辅锚点UPF的N9接口地址的对应关系,所述分流UPF根据UE当前位置确定。
  50. 根据权利要求48或49所述的装置,其特征在于,所述目标关键字还包括目标全域名和目标策略名称。
  51. 一种通信装置,其特征在于,所述装置应用于第二会话管理功能SMF网元,所述第二SMF网元部署于UE签约业务所在地,所述装置包括:收发模块,所述收发模块用于,
    接收第一SMF网元发送的目标关键字,所述目标关键字包括目标数据网络接入标识符DNAI,所述目标DNAI为UE签约业务所在数据网络的接入标识符。
  52. 根据权利要求51所述的装置,其特征在于,所述装置还包括:处理模块,在所述接收第一SMF网元发送的目标关键字之后,所述处理模块用于,
    根据所述目标关键字确定辅锚点用户面功能UPF;
    所述收发模块还用于,发送所述辅锚点UPF的N9接口地址至所述第一SMF网元。
  53. 根据权利要求51或52所述的装置,其特征在于,所述目标关键字还包括目标全域名和目标策略名称。
  54. 一种通信装置,其特征在于,所述装置应用于接入和移动性管理功能AMF网元,所述装置包括收发模块和处理模块,
    所述收发模块用于,接收第一会话管理功能SMF网元发送的目标关键字,所述目标关键字包括目标数据网络接入标识符DNAI,所述目标DNAI为UE签约业务所在数据网络的接入标识符,所述第一SMF网元部署于UE接入地;
    所述处理模块用于,根据所述目标关键字确定第二SMF网元的地址,所述第二SMF网元部署于UE签约业务所在地;
    所述收发模块还用于,发送所述第二SMF网元的地址至所述第一SMF网元。
  55. 根据权利要求54所述的装置,其特征在于,所述收发模块还用于,
    发送所述目标关键字至网络存储功能NRF网元;接收所述NRF网元发送的所述第二 SMF网元的地址。
  56. 根据权利要求54或55所述的装置,其特征在于,所述目标关键字还包括目标全域名和目标策略名称。
  57. 一种通信装置,其特征在于,所述装置应用于第一会话管理功能SMF网元,所述第一SMF网元部署于UE接入地,所述第一SMF网元不支持目标关键字,所述目标关键字包括目标数据网络接入标识符DNAI,所述目标DNAI为UE签约业务所在数据网络的接入标识符,所述装置包括:处理模块和收发模块,
    所述处理模块用于,根据所述目标关键字确定第二SMF网元的地址,所述第二SMF网元部署于UE签约业务所在地;
    所述收发模块用于,发送所述目标关键字至所述第二SMF网元。
  58. 根据权利要求57所述的装置,其特征在于,所述收发模块还用于,
    发送所述目标关键字至网络存储功能NRF网元;
    接收所述NRF网元发送的所述第二SMF网元的地址。
  59. 根据权利要求57所述的装置,其特征在于,所述处理模块还用于,
    根据所述目标关键字从本地配置列表查询获得所述第二SMF网元地址。
  60. 根据权利要求57至59中任一项所述的装置,其特征在于,在所述发送所述目标关键字至所述第二SMF网元之后,所述收发模块还用于,
    接收所述第二SMF网元发送的辅锚点用户面功能UPF的N9接口地址,所述辅锚点UPF根据所述目标关键字确定;发送分流规则至分流UPF,所述分流规则包括所述目标关键字和所述辅锚点UPF的N9接口地址的对应关系,所述分流UPF根据UE当前位置确定。
  61. 根据权利要求57至60中任一项所述的装置,其特征在于,所述目标关键字还包括目标全域名和目标策略名称。
  62. 一种通信装置,其特征在于,所述装置应用于第二会话管理功能SMF网元,所述第二SMF网元部署于UE签约业务所在地,所述装置包括:收发模块,所述收发模块用于,
    接收第一SMF网元发送的目标关键字,所述目标关键字包括目标数据网络接入标识符DNAI,所述目标DNAI为UE签约业务所在数据网络的接入标识符。
  63. 根据权利要求62所述的装置,其特征在于,所述装置还包括:处理模块,在所述接收第一SMF网元发送的目标关键字之后,所述处理模块用于,根据所述目标关键字确定辅锚点用户面功能UPF;
    所述收发模块还用于,发送所述辅锚点UPF的N9接口地址至所述第一SMF网元。
  64. 根据权利要求62或63所述的装置,其特征在于,所述目标关键字还包括目标全域名和目标策略名称。
  65. 一种通信系统,其特征在于,包括:如权利要求39至41中任一项所述的通信装置、如权利要求42至44中任一项所述的通信装置和如权利要求45至47中任一项所述的通信装置;或者,包括:如权利要求48至50中任一项所述的通信装置、如权利要求51至53中任一项所述的通信装置和如权利要求54至56中任一项所述的通信装置;或者,包括:如权利要求57至61中任一项所述的通信装置和如权利要求62至64中任一项所述的通信装置。
  66. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行如权利要求1至38任一项所述的方法。
  67. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得处理器执行如权利要求1至38任一项所述的方法。
PCT/CN2023/080536 2022-03-18 2023-03-09 通信方法、装置和系统 WO2023174154A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210271758.3 2022-03-18
CN202210271758 2022-03-18
CN202210967015.X 2022-08-11
CN202210967015.XA CN116801227A (zh) 2022-03-18 2022-08-11 通信方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2023174154A1 true WO2023174154A1 (zh) 2023-09-21

Family

ID=88022202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080536 WO2023174154A1 (zh) 2022-03-18 2023-03-09 通信方法、装置和系统

Country Status (1)

Country Link
WO (1) WO2023174154A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111630824A (zh) * 2018-04-04 2020-09-04 中兴通讯股份有限公司 用于卸载数据流量的方法和系统
WO2021168715A1 (zh) * 2020-02-26 2021-09-02 华为技术有限公司 一种发现应用的方法、装置及系统
WO2021188033A1 (en) * 2020-03-20 2021-09-23 Telefonaktiebolaget Lm Ericsson (Publ) Method and network node for home charging of offloaded traffic at visited network
CN113676977A (zh) * 2020-05-13 2021-11-19 阿里巴巴集团控股有限公司 一种应用重定位的方法及装置、电子设备、存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111630824A (zh) * 2018-04-04 2020-09-04 中兴通讯股份有限公司 用于卸载数据流量的方法和系统
WO2021168715A1 (zh) * 2020-02-26 2021-09-02 华为技术有限公司 一种发现应用的方法、装置及系统
WO2021188033A1 (en) * 2020-03-20 2021-09-23 Telefonaktiebolaget Lm Ericsson (Publ) Method and network node for home charging of offloaded traffic at visited network
CN113676977A (zh) * 2020-05-13 2021-11-19 阿里巴巴集团控股有限公司 一种应用重定位的方法及装置、电子设备、存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on Enhancing Topology of SMF and UPF in 5G Networks (Release 16)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 23.726, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. V0.6.0, 5 September 2018 (2018-09-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 94, XP051475214 *

Similar Documents

Publication Publication Date Title
US11432366B2 (en) Session management method, device, and system
EP3668054B1 (en) Data transmission method, device and system
WO2020224345A1 (zh) 网络接入控制方法、计算机可读介质及电子设备
WO2022257549A1 (zh) 网络切片方法、设备及存储介质
US20220346190A1 (en) Session Management Method, Device, and System
WO2019042182A1 (zh) 数据传输方法、设备及系统
US20230388756A1 (en) Communication method and apparatus for multicast/broadcast service
US20230047783A1 (en) Data transmission method and apparatus
WO2023174154A1 (zh) 通信方法、装置和系统
US20230137283A1 (en) Systems and methods to optimize registration and session establishment in a wireless network
WO2022069481A2 (en) Method, apparatus, and computer program product for network slice and frequency band selection configuration
CN116801227A (zh) 通信方法、装置和系统
WO2023179262A1 (zh) 小区信息的配置方法、装置、可读存储介质及芯片系统
WO2023179231A1 (zh) 小区信息的配置方法、装置、可读存储介质及芯片系统
TWI833316B (zh) 通信方法、裝置、電腦可讀存儲介質、電腦程式產品以及通信系統
WO2023185295A1 (zh) 通信方法及终端设备、核心网设备
WO2024041422A1 (zh) 通信方法、装置、终端及核心网节点
WO2023216696A1 (zh) 信息处理的方法和装置
WO2023213132A1 (zh) 一种网络切片的通信方法、通信装置、接入网设备和终端设备
WO2024032552A1 (zh) 通信方法、装置及存储介质
TWI814242B (zh) 傳輸多播業務的方法及裝置
WO2022214094A1 (zh) 一种网络切换方法和装置
WO2024032537A1 (zh) 通信方法、设备及可读存储介质
WO2022252859A1 (zh) 一种算力资源调度的方法以及相关装置
WO2024027299A1 (zh) 消息路由方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769660

Country of ref document: EP

Kind code of ref document: A1