WO2023173851A1 - 通信方法以及用户装置、基站、核心网设备、通信系统 - Google Patents

通信方法以及用户装置、基站、核心网设备、通信系统 Download PDF

Info

Publication number
WO2023173851A1
WO2023173851A1 PCT/CN2022/138963 CN2022138963W WO2023173851A1 WO 2023173851 A1 WO2023173851 A1 WO 2023173851A1 CN 2022138963 W CN2022138963 W CN 2022138963W WO 2023173851 A1 WO2023173851 A1 WO 2023173851A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
data packet
request message
core network
sequence number
Prior art date
Application number
PCT/CN2022/138963
Other languages
English (en)
French (fr)
Inventor
蔺波
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2023173851A1 publication Critical patent/WO2023173851A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point

Definitions

  • This application relates to the field of wireless communications, specifically to a communication method and corresponding user equipment, base stations, core network equipment, and communication systems.
  • the source base station will forward the downlink service data or user data packets it receives from the core network to the target base station, and then the target base station will send them to the terminal.
  • the data packet forwarding process from the source base station to the target base station introduces delay to the forwarded data packets, thereby increasing the end-to-end (E2E) delay of these data packets.
  • this application provides a communication method and corresponding user devices, base stations, core network equipment, communication systems, and computer storage media.
  • One aspect of the present application provides a communication system, including a first base station, a second base station and a core network, characterized in that the first base station is configured to send a first request message to the core network, wherein the third base station A request message is used to request to use a dual-channel transmission method to send a data packet.
  • the dual-channel transmission method is a transmission method in which the core network sends the same data packet to the first base station and the second base station respectively;
  • the core network is configured to send one or more data packets to the first base station and the second base station through the two-way transmission mode after receiving the first request message.
  • the first base station before the first base station sends a first request message to the core network, the first base station is further configured to send a second request message to the second base station, wherein the second base station The request message is used to request transmission network layer information for dual-way transmission; in response to the second request message, the second base station is used to send the transmission network layer information for dual-way transmission to the first base station.
  • the second request message includes first indication information, where the first indication information is used to instruct the core network to send the data packet in a dual-channel transmission mode.
  • the first request message includes second indication information, the identity of the second base station and the transmission network layer information for dual transmission, and the second indication information is used to indicate
  • the core network uses a dual-channel transmission method to send data packets.
  • At least one of the first indication information and the second indication information is associated with one or more service bearers of the user device.
  • the transport network layer information is General Packet Radio Service Tunneling Protocol GTP tunnel endpoint information
  • the GTP tunnel endpoint information includes the transport network layer address of the tunnel and the identifier of the tunnel.
  • the plurality of data packets include service data packets and synchronization data packets; the first base station and the second base station determine the same value for the same service data packet according to the synchronization data packet and preset rules. access layer packet sequence number.
  • the first base station and the second base station determine the same access layer data packet sequence number for the same service data packet according to the synchronization data packet and preset rules, including:
  • the first base station determines the access layer data packet sequence number of the service data packet received by the first base station from the core network, and converts the determined access layer data according to the synchronization data packet and the preset rule. Send one of the packet sequence numbers to the second base station;
  • the second base station determines access layer data for the service data packet received from the core network based on the synchronization data packet, the preset rule and the access layer data packet sequence number received from the first base station. Package serial number.
  • the preset rule is that the first base station sends the access layer data packet sequence number of the previous service data packet or the previous Mth service data packet of the synchronization data packet to the first base station.
  • Two base stations where M is a positive integer greater than 1; or the preset rule is that the first base station sends the first service data packet or the Nth service data packet after the synchronization data packet to the access layer
  • the data packet sequence number is sent to the second base station, where N is a positive integer greater than 1; or the preset rule is that the first base station sends the access layer data packet sequence number of the synchronization data packet to the third base station.
  • Second base station Second base station.
  • the synchronization data packet is a General Packet Radio Service Tunneling Protocol GTP user plane data packet
  • the header of the GTP user plane data packet indicates that the GTP user plane data packet is a synchronization data packet.
  • the access layer data packet sequence number is the Packet Data Convergence Protocol PDCP layer data packet sequence number, or the PDCP layer data packet sequence number and the superframe number HFN.
  • the second base station after the second base station receives the data packet sent by the core network through the dual transmission mode from the core network, the second base station responds to the data packet received from the core network. Processing is performed to obtain a processed data packet, and the processed data packet is sent to the user device.
  • the second request message is a handover request message.
  • the first base station sending one of the determined access layer data packet sequence numbers to the second base station includes: the first base station sending an early state transfer message to the second base station. Or a sequence number state transfer message, wherein the early state transfer message or the sequence number state transfer message includes one of the determined access layer data packet sequence numbers.
  • the second base station after the handover is completed, the second base station sends a third request message to the core network, where the third request message is used to request to deactivate or cancel the dual transmission mode, or the third The request message is used to request the core network to adopt a single-channel transmission mode for the second base station.
  • the third request message is a path switching request message.
  • the first base station sends a fourth request message to the core network, where the fourth request message is used to request deactivation or cancellation of the dual-channel transmission mode, or the The fourth request message is used to request the core network to adopt a single-channel transmission mode for the first base station.
  • the first base station and the second base station are two base stations in a primary and backup network, or two base stations in a concurrent network.
  • the first base station and the second base station after the first base station and the second base station receive the data packet sent by the core network through the dual transmission mode from the core network, the first base station and the second base station At least one of the base stations processes the service data packets it receives from the core network to obtain processed data packets, and sends the processed data packets to the user device.
  • the first base station sends mode indication information to the second base station, where the mode indication information is used to indicate that the mode of the second base station is a standby mode or an operating mode.
  • the second base station determines the mode of the second base station according to the mode indication information; when the mode of the second base station is standby mode, the second base station puts it in the standby mode.
  • the service data packets received from the core network are stored for a specific time period, and when the specific time period expires, if the mode of the second base station is still in standby mode, the service data packets received from the core network in standby mode are deleted.
  • Business data package is a specific time period, and when the specific time period expires, if the mode of the second base station is still in standby mode, the service data packets received from the core network in standby mode are deleted.
  • the first base station or the second base station after the first base station sends a first request message to the core network, the first base station or the second base station sends a fifth request message to the core network, wherein the The fifth request message is used to request to deactivate or cancel the dual-channel transmission mode, or the fifth request message is used to request the core network to adopt the single-channel transmission mode for the first base station or the second base station.
  • the core network includes an access management function AMF entity and a user plane function UPF entity;
  • the first base station sending a first request message to the core network includes:
  • the first base station sends the first request message to the AMF entity
  • the AMF entity sends a first message to the UPF entity, where the first message is used to request to send a data packet in a dual-channel transmission mode;
  • the core network sending one or more data packets to the first base station and the second base station through the dual transmission mode includes:
  • the UPF entity sends one or more data packets to the first base station and the second base station through the two-way transmission mode;
  • the second base station sending the third request message to the core network includes:
  • the second base station sends the third request message to the AMF entity
  • the first base station sending a fourth request message to the core network includes:
  • the first base station sends the fourth request message to the AMF entity
  • the first base station or the second base station sending the fifth request message to the core network includes:
  • the first base station or the second base station sends the fifth request message to the AMF entity.
  • a communication system including a user equipment, a first base station and a second base station, characterized in that the first base station is configured to send indication information to the user equipment, wherein the indication information Used to indicate the use of a dual-channel transmission method to send data packets.
  • the dual-channel transmission method is a transmission method in which the user device sends the same data packet to the first base station and the second base station respectively; the user device uses performing two-way transmission on the first base station and the second base station according to the instruction information; the first base station and the second base station are configured to receive the user equipment from the user equipment through two-way transmission packets sent.
  • the first base station before the first base station sends the indication information to the user device, the first base station is further configured to send a core network address for receiving uplink data to the second base station; After the second base station receives the data packet sent by the user equipment through the dual transmission mode from the user equipment, the second base station is further configured to send the data packet to the core network according to the core network address.
  • Another aspect of the present application provides a data communication method performed by a first base station, including: sending a first request message to the core network, wherein the first request message is used to request to send a data packet in a dual-channel transmission mode,
  • the dual-channel transmission mode is a transmission mode in which the core network sends the same data packet to the first base station and the second base station respectively; and receives from the core network the data packet sent by the core network through the dual-channel transmission mode.
  • the method before sending the first request message to the core network, the method further includes: sending a second request message to the second base station, where the second request message is used to request dual Transmission network layer information for two-way transmission; receiving transmission network layer information for two-way transmission from the second base station.
  • the second request message includes first indication information, where the first indication information is used to instruct the core network to send the data packet in a dual-channel transmission mode.
  • the first request message includes second indication information, the identity of the second base station and the transmission network layer information for dual transmission, and the second indication information is used to indicate
  • the core network uses a dual-channel transmission method to send data packets.
  • At least one of the first indication information and the second indication information is associated with one or more service bearers of the user device.
  • the transport network layer information is General Packet Radio Service Tunneling Protocol GTP tunnel endpoint information
  • the GTP tunnel endpoint information includes the transport network layer address of the tunnel and the identifier of the tunnel.
  • the plurality of data packets include service data packets and synchronization data packets
  • the synchronization data packets are used by the first base station and the second base station to determine the same interface for the same service data packet.
  • Incoming packet sequence number is used by the first base station and the second base station to determine the same interface for the same service data packet.
  • the method further includes: determining that the first base station receives the data packet from the core network.
  • the core network receives the access layer data packet sequence number of the service data packet, and sends one of the determined access layer data packet sequence numbers to the second base station according to the synchronization data packet and the preset rule.
  • the preset rule is that the first base station sends the access layer data packet sequence number of the previous service data packet or the previous Mth service data packet of the synchronization data packet to the first base station.
  • Two base stations where M is a positive integer greater than 1; or the preset rule is that the first base station sends the first service data packet or the Nth service data packet after the synchronization data packet to the access layer
  • the data packet sequence number is sent to the second base station, where N is a positive integer greater than 1; or the preset rule is that the first base station sends the access layer data packet sequence number of the synchronization data packet to the third base station.
  • Second base station Second base station.
  • the synchronization data packet is a General Packet Radio Service Tunneling Protocol GTP user plane data packet
  • the header of the GTP user plane data packet indicates that the GTP user plane data packet is a synchronization data packet.
  • the access layer data packet sequence number is the Packet Data Convergence Protocol PDCP layer data packet sequence number, or the PDCP layer data packet sequence number and the superframe number HFN.
  • the second request message is a handover request message.
  • sending one of the determined access layer data packet sequence numbers to the second base station includes:
  • the method further includes: sending a fourth request message to the core network, where the fourth request message is used to request deactivation or cancellation of the dual transmission mode, or the The fourth request message is used to request the core network to adopt a single-channel transmission mode for the first base station.
  • the method after receiving one or more data packets sent by the core network through the dual transmission mode from the core network, the method further includes:
  • the method also includes:
  • Mode indication information is sent to the second base station, where the mode indication information is used to indicate that the mode of the second base station is a standby mode or an operating mode.
  • the method after sending the first request message to the core network, the method further includes:
  • Send a fifth request message to the core network where the fifth request message is used to request to deactivate or cancel the dual transmission mode, or the fifth request message is used to request the core network to request the first base station Or the second base station adopts a single-channel transmission mode.
  • the core network includes an access and mobility management function AMF entity and a user plane function UPF entity;
  • Sending the first request message to the core network includes:
  • Sending the fourth request message to the core network includes:
  • Sending the fifth request message to the core network includes:
  • Another aspect of the present application provides a data communication method performed by a second base station, including: receiving a second request message from the first base station, wherein the second request message is used to request transmission of dual transmission.
  • Network layer information in response to the second request message, send transmission network layer information for dual-way transmission to the first base station.
  • the second request message includes first indication information, where the first indication information is used to instruct the core network to send the data packet in a dual-channel transmission mode.
  • the first indication information is associated with one or more service bearers of the user device.
  • the transport network layer information is General Packet Radio Service Tunneling Protocol GTP tunnel endpoint information
  • the GTP tunnel endpoint information includes the transport network layer address of the tunnel and the identifier of the tunnel.
  • the method after sending transmission network layer information for dual-way transmission to the first base station, the method further includes:
  • the plurality of data packets include service data packets and synchronization data packets.
  • the synchronization data packets are used by the first base station and the second base station to determine the same access for the same service data packets.
  • Layer packet sequence number is used by the first base station and the second base station to determine the same access for the same service data packets.
  • the method after receiving one or more data packets sent by the core network through the dual transmission mode from the core network, the method further includes:
  • an access layer data packet sequence number is determined for the service data packet received from the core network.
  • the preset rule is that the first base station sends the access layer data packet sequence number of the previous service data packet or the previous Mth service data packet of the synchronization data packet to the first base station.
  • Two base stations where M is a positive integer greater than 1; or the preset rule is that the first base station sends the first service data packet or the Nth service data packet after the synchronization data packet to the access layer
  • the data packet sequence number is sent to the second base station, where N is a positive integer greater than 1; or the preset rule is that the first base station sends the access layer data packet sequence number of the synchronization data packet to the third base station.
  • Second base station Second base station.
  • the synchronization data packet is a General Packet Radio Service Tunneling Protocol GTP user plane data packet
  • the header of the GTP user plane data packet indicates that the GTP user plane data packet is a synchronization data packet.
  • the access layer data packet sequence number is the Packet Data Convergence Protocol PDCP layer data packet sequence number, or the PDCP layer data packet sequence number and the superframe number HFN.
  • the method after receiving one or more data packets sent by the core network through the dual transmission mode from the core network, the method further includes:
  • the second request message is a handover request message.
  • receiving from the first base station the access layer data packet sequence number sent by the first base station according to the synchronization data packet and the preset rule includes:
  • the method further includes: sending a third request message to the core network, where the third request message is used to request deactivation or cancellation of the dual-channel transmission mode, or the third request message
  • the third request message is used to request the core network to adopt a single-channel transmission mode for the second base station.
  • the third request message is a path switching request message.
  • the method further includes: receiving mode indication information from the first base station, where the mode indication information is used to indicate that the mode of the second base station is a standby mode or an operating mode.
  • the method after receiving mode indication information from the first base station, the method further includes:
  • the second base station When the mode of the second base station is the standby mode, the second base station stores the service data packets received from the core network in the standby mode for a specific period of time, and when the specific period of time expires, if the If the mode of the second base station is still the standby mode, the service data packets received by it from the core network in the standby mode are deleted.
  • the method further includes: sending a fifth request message to the core network, where the fifth request message is used to request deactivation or cancellation of the dual transmission mode, or the fifth request message is used to The core network is requested to adopt a single-channel transmission mode for the first base station or the second base station.
  • the core network includes an access management function AMF entity and a user plane function UPF entity;
  • Receiving from the core network one or more data packets sent by the core network through the dual transmission mode includes:
  • Sending the third request message to the core network includes:
  • Sending the fifth request message to the core network includes:
  • Another aspect of the present application provides a data communication method performed by a core network, including: receiving a first request message from a first base station, wherein the first request message is used to request to send a data packet in a dual-channel transmission mode,
  • the dual-channel transmission method is a transmission method in which the core network sends the same data packet to the first base station and the second base station respectively; after receiving the first request message, through the dual-channel transmission The method sends one or more data packets to the first base station and the second base station.
  • the first request message includes first indication information, an identity of the second base station and transmission network layer information for two-way transmission, where the first indication information is used to indicate that the The core network uses dual-channel transmission to send data packets.
  • the first indication information is associated with one or more service bearers of the user device.
  • the transport network layer information is General Packet Radio Service Tunneling Protocol GTP tunnel endpoint information
  • the GTP tunnel endpoint information includes the transport network layer address of the tunnel and the identifier of the tunnel.
  • the plurality of data packets include service data packets and synchronization data packets, wherein the synchronization data packets are used by the first base station and the second base station according to the synchronization data packets and preset
  • the rules determine the same access layer data packet sequence number for the same service data packet.
  • the synchronization data packet is a General Packet Radio Service Tunneling Protocol GTP user plane data packet
  • the header of the GTP user plane data packet indicates that the GTP user plane data packet is a synchronization data packet.
  • the access layer data packet sequence number is the Packet Data Convergence Protocol PDCP layer data packet sequence number, or the PDCP layer data packet sequence number and the superframe number HFN.
  • the method further includes:
  • a third request message is received from the second base station, where the third request message is used to request to deactivate or cancel the dual transmission mode, or the third request message is used to request the core network to provide the second
  • the base station adopts single-channel transmission mode.
  • the third request message is a path switching request message.
  • the method further includes:
  • a fourth request message is received from the first base station, wherein the fourth request message is used to request to deactivate or cancel the dual-way transmission mode, or the fourth request message is used to request the core network to provide the first
  • the base station adopts single-channel transmission mode.
  • the method after receiving the first request message from the first base station, the method further includes:
  • a fifth request message is received from the first base station or the second base station, wherein the fifth request message is used to request to deactivate or cancel the dual transmission mode, or the fifth request message is used to request the core
  • the network adopts a single-channel transmission mode for the first base station or the second base station.
  • the core network includes an access management function AMF entity and a user plane function UPF entity;
  • the receiving the first request message from the first base station includes:
  • the AMF entity receives a first request message from the first base station
  • Sending one or more data packets to the first base station and the second base station through the two-way transmission method includes:
  • the UPF entity sends one or more data packets to the first base station and the second base station through the two-way transmission mode;
  • Receiving a third request message from the second base station includes:
  • the AMF entity receives a third request message from the second base station
  • Receiving a fourth request message from the first base station includes:
  • the AMF entity receives a fourth request message from the first base station
  • Receiving the fifth request message from the first base station or the second base station includes:
  • the AMF entity receives a fifth request message from the first base station or the second base station.
  • Another aspect of the present application provides a data communication method performed by a user device, including: receiving indication information from a first base station, wherein the indication information is used to instruct a two-way transmission method to send a data packet, and the two-way
  • the transmission method is a transmission method in which the user equipment sends the same data packet to the first base station and the second base station respectively; and performs two-way transmission for the first base station and the second base station according to the instruction information.
  • a base station including: a memory for storing computer program code, the computer program code including computer instructions; and a processor for, when the computer instructions are executed, causing the The base station performs the above method performed by the base station.
  • a core network device including: a memory for storing computer program code, the computer program code including computer instructions; and a processor for when the computer instructions are executed, such that The core network device executes the above method executed by the core network device.
  • a user device including: a memory for storing computer program code, the computer program code including computer instructions; and a processor for, when the computer instructions are executed, causing the The user device executes the above method executed by the user device.
  • Another aspect of the present application provides a computer-readable storage medium, which stores a computer program. It is characterized in that when the computer program is executed by a processor, it causes the computer to execute the above-mentioned steps performed by a base station, or Methods executed by core network equipment or user devices.
  • Figure 1 is a schematic diagram of a wireless communication system in which embodiments of the present application can be applied;
  • Figure 2 shows a schematic diagram of data packet forwarding from a source base station to a target base station in a conventional handover technology
  • Figure 3A shows a timing diagram of a communication method for a handover scenario according to an embodiment of the present application
  • Figure 3B shows a schematic diagram of the core network sending data packets to the source base station and the target base station through dual transmission during the handover process according to an embodiment of the present application
  • Figure 4 shows a timing diagram of another communication method for a handover scenario according to an embodiment of the present application
  • Figure 5 shows a timing diagram of another communication method for a handover scenario according to an embodiment of the present application
  • Figure 6 shows a timing diagram of a communication method according to another embodiment of the present application.
  • Figure 7 is a flow chart of a method performed by a base station according to multiple embodiments of the present application.
  • Figure 8 shows a timing diagram of a communication method according to yet another embodiment of the present application.
  • Figure 9 shows a timing diagram of a communication method according to yet another embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a UE provided by an embodiment of the present application.
  • a terminal may also be called a terminal unit, a terminal station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a wireless communication device, a terminal agent, a terminal device or a user equipment (UE).
  • the terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), or a mobile phone with wireless communication capabilities. Handheld devices, computing devices, or other processing devices connected to wireless modems, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the base station can be used to communicate with the UE.
  • the base station can be a BTS (Base Transceiver Station, base station) in GSM (Global System of Mobile communication) or CDMA (Code DivisionMultiple Access, Code Division Multiple Access), or it can be a WCDMA ( RNC (Radio Network Controller, Radio Network Controller) or NB+ (NodeB+) in Wideband Code Division Multiple Access, or the Evolved Universal Terrestrial Radio in LTE Access Network, E-UTRAN) equipment, such as evolutionary NodeB (eNB or e-NodeB), or next generation radio access network (NG-RAN) equipment in the 5G system (such as gNB), etc., or relay stations or access points, or base station equipment in future networks, etc.
  • BTS Base Transceiver Station, base station
  • GSM Global System of Mobile communication
  • CDMA Code DivisionMultiple Access, Code Division Multiple Access
  • WCDMA RNC (Radio Network Controller, Radio Network Controller) or NB+ (NodeB+) in Wideband Code Division Multiple Access
  • FIG. 1 is a schematic diagram of a wireless communication system in which embodiments of the present application can be applied.
  • the wireless communication system may be LTE, a 5G wireless communication system, or a new communication system that will emerge in the future development of wireless communication, etc.
  • a 5G wireless communication system is taken as an example to describe embodiments of the present application.
  • the 3rd generation partnership project of the 5G wireless communication system project, 3GPP) service-based architecture includes network functions and entities mainly including: user equipment (User Equipment, UE), access network (Access Network, AN) or wireless access network ( Radio Access Network, RAN), User Plane Function (UPF), Data Network (DN), Access and Mobility Management Function (AMF), Session Management Function (Session Management Function (SMF), Authentication Server Function (AUSF), Policy Control Function (PCF), Application Function (AF), Network Slice Selection Function (NSSF), Unification Data management (Unified Data Management, UDM), network exposure function (Network Exposure Function, NEF) and network storage function (Network Repository Function, NRF).
  • the network composed of network elements other than UE and AN/RAN can be called a core network.
  • a network function can be implemented as a network element running on proprietary hardware, as a software instance running on proprietary hardware, or as a virtual function instantiated on a suitable platform, such as a cloud infrastructure.
  • AN/RAN can include various forms of base stations, such as macro base stations, micro base stations (also called “small stations"), Distributed Unit-Control Unit (DU-CU), etc.
  • the above-mentioned base station can also be a wireless controller in a Cloud Radio Access Network (CRAN) scenario, or a relay station, access point, vehicle-mounted device, wearable device or future evolved public land mobile network (Public Network equipment in Land Mobile Network (PLMN) network, etc.
  • AN/RAN can also include Broadband Network Gateway (BNG), aggregation switches, non-3GPP access equipment, etc.
  • BNG Broadband Network Gateway
  • AN/RAN is mainly responsible for radio resource management on the air interface side, uplink and downlink data classification, quality of service (QoS) management, data compression and encryption, completing signaling processing with control plane network elements or completing data with user plane network elements. Forwarding and other functions.
  • QoS quality of service
  • the embodiments of this application do not limit the specific form and structure of AN/RAN.
  • the names of devices with base station functions may be different.
  • the base station can be E-UTRAN equipment in LTE (such as e-NodeB), or next-generation radio access network equipment (such as gNB) in the 5G wireless communication system.
  • AMF It can support UE access authentication, mobility management, registration management, connection management, legal answering, and support the transmission of session management information between UE and SMF entities, etc.
  • UPF Has the routing function of data packets, for example, it can obtain data packets from the network and send data packets to the RAN, etc.
  • SMF Can support session management, etc., where the session management can include session establishment, modification and release, etc.
  • DN is the network used to transmit data.
  • DN can be an operator service network, Internet access or third-party service network, etc.
  • each network element for example, the Uu interface between UE and AN/RAN, the N3 interface between AN/RAN and UPF, the N6 interface between UPF and DN, UPF and SMF
  • the N4 interface between AN/RAN and AMF, the N2 interface between AN/RAN and AMF, etc. are shown in Figure 1.
  • the source base station forwards the downlink service data packets it receives from the core network to the target base station, and then the target base station sends them to the UE.
  • the source base station decides to switch the UE's serving base station to the target base station
  • the source base station can send part of the downlink service data packets it received from the core network and has not yet sent to the UE to the UE, and forward the other part of the downlink service data packets. to the target base station, and then the target base station sends the other part of the downlink service data packet to the UE.
  • the source base station when the source base station decides to switch the UE's serving base station to the target base station, the source base station can forward all downlink service data packets it has received from the core network and has not yet sent to the UE to the target base station, and then the target base station sends them. to UE.
  • Figure 2 shows a schematic diagram of data packet forwarding from a source base station to a target base station in conventional handover technology.
  • the current serving base station of UE 201 is base station 202-1 (also called source base station 202-1).
  • the source base station 202-1 can configure the measurement process of the UE 201, and accordingly, the UE 201 can perform measurement reports according to the configuration. Then, the source base station 202-1 can decide to switch the serving base station of the UE 201 to the base station 202-2 (also called the target base station 202-2) based on the measurement report of the UE 201 and other information.
  • the source base station 202-1 can forward the downlink service data packets #1-#4 received from the core network 203 (such as UPF) and not yet sent to the UE 201 to the target base station 202-2, and then The target base station 202-2 sends it to the UE 201.
  • the core network 203 such as UPF
  • the data packet forwarding process from the source base station to the target base station introduces delay to the forwarded data packets (such as downlink service data packets #1-#4), thereby increasing the end-to-end (E2E) of these data packets. ) delay.
  • the increase in the E2E delay of data packets will reduce the quality of service provided by the network to the UE, especially when the services performed by the UE are time-sensitive services (such as industrial control, autonomous driving, etc.). This defect will be more obvious.
  • this application proposes a communication method to avoid the delay introduced by data forwarding from the source base station to the target base station, ensure the service quality provided by the network to the UE, and ensure the delay-sensitive services Delay requirements, etc.
  • FIG. 3A shows a timing diagram of a communication method for a handover scenario according to an embodiment of the present application.
  • the core network sends a service data packet to the source base station, and then the source base station sends a service data packet to the UE.
  • the service data package may also be called service data, or user data (user data), or user data package, etc.
  • the source base station decides to switch the UE's serving base station to the target base station.
  • the source base station decides to use bi-casting mode during the handover process.
  • the dual-channel transmission method is compared to the conventional single-channel transmission method.
  • the core network sends downlink service data packets to the source base station without sending downlink service data packets to the target base station.
  • the dual-channel transmission method in the embodiment of this application means that during the handover process, the core network sends the same downlink service data packet to both the source base station and the target base station. That is to say, during the handover process, the source base station and the target base station will receive the same downlink service data packets from the core network.
  • the source base station sends the first request message to the target base station.
  • the first request message may include dual-channel transmission mode indication information, used to indicate that the dual-channel transmission mode is used during the handover process.
  • the dual-channel transmission mode indication information may be associated with one or more service bearers of the UE.
  • the dual-channel transmission mode indication information may be associated with identities of one or more service bearers of the UE. In this way, two-way transmission can be carried out at the granularity of service bearers.
  • the first request message described above may not only include dual-channel transmission mode indication information, but may also include identifiers of one or more associated service bearers.
  • the target base station sends the first response message to the source base station.
  • the first response message may include Transport Network Layer (Transport Network Layer, TNL) information for dual-way transmission.
  • Transport Network Layer Transport Network Layer, TNL
  • the transmission network layer information used for dual-channel transmission is used by the target base station to receive downlink data packets from the core network in the dual-channel transmission mode.
  • the transport network layer information may be GTP tunnel endpoint information (GTP Tunnel Endpoint).
  • GTP tunnel endpoint information may include the tunnel's transport network layer address, the tunnel's identifier, etc.
  • the GTP tunnel endpoint information may also include information indicating tunnel usage.
  • the transport network layer information may include information related to the other tunnels.
  • the source base station sends a second request message to the core network.
  • the second request message may include dual-channel transmission mode indication information, used to indicate that the dual-channel transmission mode is used during the handover process.
  • the second request message may also include transmission network layer information obtained by the source base station from the target base station for dual-way transmission.
  • the second request message may also include the source base station's own transmission network layer information for dual-channel transmission.
  • the second request message may also include an identification of the target base station.
  • the second request message may also include identifiers of one or more service bearers associated with the dual-channel transmission mode indication information, that is, the dual-channel transmission mode may be per PDU session (session) or per EPS bearer (bearer).
  • the core network performs two-way transmission according to the second request message.
  • the core network after receiving the second request message, the core network will send the downlink service data packet that was originally sent only to the source base station to both the source base station and the target base station.
  • the source base station and the target base station need to assign the same access layer data packet sequence number (Sequence Number, SN) to the same downlink service data packet (for example, PDCP layer data packet sequence number, or PDCP layer data packet sequence number and HFN (Hyper Frame Number) , superframe number)), so that the UE can concatenate the data packets received from the source base station and the data packets received from the target base station to sort the data packets.
  • SN Access Layer data packet sequence number
  • HFN Hyper Frame Number
  • the core network when the core network sends downlink service data packets to the source base station and the target base station through dual transmission mode, the core network follows the A rule sends synchronization data packets to the source base station and the target base station.
  • the first rule may be that the first data packet or the Nth data packet sent by the core network in the dual-channel transmission mode is a synchronization data packet, where N is a positive integer.
  • the core network can sequentially send the synchronization data packet and the first downlink service data packet to the source base station and the target base station. , the second downlink service data packet, the third downlink service data packet, the fourth downlink service data packet, etc.
  • the core network can sequentially send the first downlink service data packet to the source base station and the target base station. , the second downlink service data packet, the synchronization data packet, the third downlink service data packet, the fourth downlink service data packet, etc.
  • the first rule may be to send synchronization data packets when the core network sends service data packets in dual-channel transmission mode.
  • the core network can send one or more synchronization data packets.
  • the following uses the core network to send a synchronization data packet as an example to describe the embodiment of the present application.
  • the synchronization data packet is used to enable the source base station and the target base station to assign the same access layer data packet sequence number to the same downlink service data packet sent by the core network.
  • the specific implementation principle will be described in detail below in conjunction with S307 and S308.
  • the synchronization data packet may not include any business data (which may also be called user data).
  • a sync packet can be one or more empty packets.
  • the header of a synchronization packet may include an indicator to indicate that the packet is a synchronization packet.
  • the synchronization data packet may be a data packet including service data.
  • the header of a synchronization packet may include an indicator to indicate that the packet is a synchronization packet.
  • the data portion of the synchronization data packet may include business data.
  • the bits corresponding to the data part of the synchronization data packet may be normal service data or padding bits. For example, if it is padding bits, the value of each bit may be a preset value, for example, the value of each bit may be 0 or 1.
  • the synchronization data packet may specifically be a GTP-U (GPRS Tunnel Protocol-User plane, GPRS Tunnel Protocol-User plane) data packet.
  • the header of the synchronization data packet may be the header of the GTP-U data packet, that is, the header of the GTP-U data packet indicates that the data packet is a synchronization data packet.
  • the synchronization data packet may also be called a synchronization marker (sync marker), or a special marker (special marker), or a special data packet (special packet), or a dual transmission mark Marker (bi-casting marker), or dual-channel transmission packet (bi-casting packet), etc.
  • sync marker synchronization marker
  • special marker special marker
  • special data packet special packet
  • bi-casting marker dual transmission mark Marker
  • bi-casting packet dual-channel transmission packet
  • the source base station After the source base station receives the synchronization data packet, the source base station sends access to the specific service data packet it received from the core network to the target base station according to the predefined second rule that both the source base station and the target base station comply with. Layer packet sequence number.
  • the second rule may be that the source base station sends the access layer data packet sequence number of a certain service data packet received before receiving the synchronization data packet to the target base station.
  • the certain service data packet may be the previous service data packet or the previous M-th service data packet in the synchronization data packet, where M is a positive integer.
  • a certain service data packet is the previous service data packet of the synchronization data packet
  • the core network sends the first downlink service data packet, the second downlink service data packet, and the synchronization data to the source base station and the target base station in sequence.
  • the source base station can provide the first downlink service data packet, the second downlink service data packet, the synchronization data packet, the third downlink service data packet, The fourth downlink service data packet, etc. are respectively assigned the access layer data packet sequence number SN.
  • the access layer data packet sequence number SN of the first downlink service data packet is 10
  • the access layer data packet sequence number SN of the second downlink service data packet is 11
  • the access layer data packet sequence number SN of the synchronization data packet is 12.
  • the access layer data packet sequence number SN of the third downlink service data packet is 13
  • the access layer data packet sequence number SN of the fourth downlink service data packet is 14, etc.
  • the core network sends the first downlink service data packet, the second downlink service data packet, and the second downlink service data packet to the source base station and the target base station in sequence.
  • the source base station can provide the first downlink service data packet, the second downlink service data packet, the synchronization data packet, the third downlink service data packet, etc.
  • the third downlink service data packet, the fourth downlink service data packet, etc. are respectively assigned access layer data packet sequence numbers SN.
  • the access layer data packet sequence number SN of the first downlink service data packet is 10
  • the access layer data packet sequence number SN of the second downlink service data packet is 11
  • the access layer data packet sequence number SN of the synchronization data packet is 12.
  • the access layer data packet sequence number SN of the third downlink service data packet is 13
  • the access layer data packet sequence number SN of the fourth downlink service data packet is 14, etc.
  • the second rule may also be that the source base station sends the access layer data packet sequence number of a certain service data packet received after receiving the synchronization data packet to the target base station.
  • the certain service data packet may be the first service data packet or the Mth service data packet after the synchronization data packet.
  • a certain service data packet is the first service data packet after the synchronization data packet
  • the core network sends the first downlink service data packet, the second downlink service data packet, and the source base station and the target base station in sequence. Synchronization data packet, third downlink service data packet, fourth downlink service data packet, etc.
  • the source base station can provide the first downlink service data packet, second downlink service data packet, synchronization data packet, and third downlink service data.
  • the access layer data packet sequence number SN is assigned to the packet, the fourth downlink service data packet, etc. respectively.
  • the access layer data packet sequence number SN of the first downlink service data packet is 10
  • the access layer data packet sequence number SN of the second downlink service data packet is 11
  • the access layer data packet sequence number SN of the synchronization data packet is 12.
  • the access layer data packet sequence number SN of the third downlink service data packet is 13
  • the access layer data packet sequence number SN of the fourth downlink service data packet is 14, etc.
  • the core network sends the first downlink service data packet, the second downlink service data packet and the second downlink service data packet to the source base station and the target base station in sequence.
  • the source base station can provide the first downlink service data packet, the second downlink service data packet, the synchronization data packet, the third downlink service data packet, etc.
  • the third downlink service data packet, the fourth downlink service data packet, etc. are respectively assigned access layer data packet sequence numbers SN.
  • the access layer data packet sequence number SN of the first downlink service data packet is 10
  • the access layer data packet sequence number SN of the second downlink service data packet is 11
  • the access layer data packet sequence number SN of the synchronization data packet is 12.
  • the access layer data packet sequence number SN of the third downlink service data packet is 13
  • the access layer data packet sequence number SN of the fourth downlink service data packet is 14, etc.
  • the second rule may also be that the source base station sends the access layer data packet sequence number of the synchronization data packet to the target base station.
  • the core network sequentially sends the first downlink service data packet, the second downlink service data packet, the synchronization data packet, the third downlink service data packet, the fourth downlink service data packet, etc. to the source base station and the target base station.
  • the source base station may assign access layer data packet sequence numbers SN to the first downlink service data packet, the second downlink service data packet, the synchronization data packet, the third downlink service data packet, the fourth downlink service data packet, etc. respectively.
  • the access layer data packet sequence number SN of the first downlink service data packet is 10
  • the access layer data packet sequence number SN of the second downlink service data packet is 11
  • the access layer data packet sequence number SN of the synchronization data packet is 12.
  • the access layer data packet sequence number SN of the third downlink service data packet is 13
  • the access layer data packet sequence number may be the PDCP layer data packet sequence number. It should be understood that for other communication systems, the access layer data packet sequence number may be any access layer data packet sequence number used to maintain data continuity or service continuity during handover.
  • Example 1 to Example 4 described above may be modified.
  • Example 1 can be transformed into Example 6,
  • Example 2 can be transformed into Example 7,
  • Example 3 can be transformed into Example 8, and
  • Example 4 can be transformed into Example 9.
  • a certain service data packet is the previous service data packet of the synchronization data packet
  • the core network sends the first downlink service data packet, the second downlink service data packet, and the synchronization data to the source base station and the target base station in sequence.
  • the source base station can provide the first downlink service data packet, the second downlink service data packet, the third downlink service data packet, the fourth downlink service Data packets... etc. are respectively assigned access layer data packet sequence numbers SN.
  • the core network sends the first downlink service data packet, the second downlink service data packet, and the second downlink service data packet to the source base station and the target base station in sequence.
  • the source base station can provide the first downlink service data packet, the second downlink service data packet, and the third downlink service data
  • the access layer data packet sequence number SN is assigned to the packet, the fourth downlink service data packet, etc. respectively.
  • a certain service data packet is the first service data packet after the synchronization data packet
  • the core network sends the first downlink service data packet, the second downlink service data packet, and the source base station and the target base station in sequence.
  • the source base station can provide the first downlink service data packet, the second downlink service data packet, the third downlink service data packet, the fourth downlink service data packet, etc.
  • Downlink service data packets, etc. are respectively assigned access layer data packet sequence numbers SN.
  • the core network sends the first downlink service data packet, the second downlink service data packet and the second downlink service data packet to the source base station and the target base station in sequence.
  • the source base station can provide the first downlink service data packet, the second downlink service data packet, and the third downlink service data
  • the access layer data packet sequence number SN is assigned to the packet, the fourth downlink service data packet, etc. respectively.
  • the target base station determines the access layer for the downlink service data packet it receives from the core network based on the access layer data packet sequence number it received from the source base station and the second rule. Packet sequence number.
  • the second rule may be that the source base station sends the access layer data packet sequence number of a certain service data packet received before receiving the synchronization data packet to the target base station.
  • the certain service data packet may be the previous service data packet or the previous M-th service data packet in the synchronization data packet, where M is a positive integer.
  • the target base station determines the access layer data packet sequence number of the service data packet received before the synchronization data packet, that is, the second downlink service data packet, to be 11, and may also determine other data accordingly.
  • the access layer packet sequence number of the packet is the access layer data packet sequence number of the packet.
  • the target base station determines the access layer data packet sequence number of the second service data packet before the synchronization data packet received by it, that is, the first downlink service data packet, as 10, and may also respond accordingly. Determine the access layer packet sequence number of other packets.
  • the second rule may also be that the source base station sends the access layer data packet sequence number of a certain service data packet received after receiving the synchronization data packet to the target base station.
  • the certain service data packet may be the first service data packet or the Mth service data packet after the synchronization data packet.
  • the target base station determines the access layer data packet sequence number of the first service data packet received after the synchronization data packet, that is, the third downlink service data packet, to be 13, and may also determine accordingly The access layer packet sequence number of other data packets.
  • the target base station determines the access layer data packet sequence number of the second service data packet received after the synchronization data packet, that is, the fourth downlink service data packet, to be 14, and may also determine accordingly The access layer packet sequence number of other data packets.
  • the second rule may also be that the source base station sends the access layer data packet sequence number of the synchronization data packet to the target base station.
  • the target base station determines the access layer packet sequence number of the synchronization data packet it receives as 12, and can also determine the access layer data packet sequence number of other data packets accordingly.
  • the access layer data packet sequence number SN of the service data packet is 13, the access layer data packet sequence number SN of the fourth downlink service data packet is 14, etc.
  • the target base station determines the access layer data packet sequence number of the second downlink service data packet, which is the service data packet preceding the synchronization data packet it receives, as 11, and may also determine other data accordingly.
  • the access layer packet sequence number of the packet is the access layer data packet sequence number of the packet.
  • the target base station determines the access layer data packet sequence number of the second service data packet before the synchronization data packet received by it, that is, the first downlink service data packet, as 10, and may also respond accordingly. Determine the access layer packet sequence number of other packets.
  • the target base station determines the access layer data packet sequence number of the first service data packet received after the synchronization data packet, that is, the third downlink service data packet, to be 12, and may also determine accordingly The access layer packet sequence number of other data packets.
  • the target base station determines the access layer data packet sequence number of the second service data packet received after the synchronization data packet, that is, the fourth downlink service data packet, to be 13, and may also determine accordingly The access layer packet sequence number of other data packets.
  • the access layer data packet sequence number sent by the source base station to the target base station may be the access layer data packet sequence number of the service data packet sent by the core network through single-channel transmission, that is, the source base station receives the access layer data packet sequence number from the core network.
  • the target base station does not receive the service data packet from the core network.
  • the target base station can determine the access layer data packet sequence number of the service data packet received by the target base station from the core network in the dual transmission mode based on the access layer data packet sequence number it received from the source base station and the second rule. , there is no need to pay attention to whether it has previously received the service data packet corresponding to the access layer data packet sequence number sent by the source base station.
  • the data packets from the core network to the source base station and the data packets from the core network to the target base station have the same access layer data packet sequence number on the source base station side and the target base station side.
  • the target base station processes the service data packets it receives from the core network to obtain processed data packets. Then, the target base station sends the processed data packet to the UE. This processing may be, for example, removing the header of the service data packet received from the core network, adding a new header, and encapsulating it into a new data packet, and the header of the new data packet includes the corresponding access layer data packet sequence number. .
  • the access layer of the UE may process the received data packet according to the access layer data packet sequence number. This processing may be, for example, sorting data packets.
  • the source base station may also process the service data packets it receives from the core network, and send the processed data packets to the UE.
  • This processing is similar to the processing in S309 and will not be described again.
  • the processing performed by the UE may also include deleting duplicate (ie, deduplication) data packets (not shown in the figure).
  • the target base station may send a third request message to the core network.
  • the third request message may be used to request to deactivate or cancel the dual transmission mode (shown in the figure).
  • the third request message may request the core network to use a single-channel transmission mode for the target base station (not shown in the figure).
  • the core network performs one-way transmission according to the third request message, that is, the downlink service data packet is only sent to the target base station but not to the source base station.
  • the target base station processes the service data packets it receives from the core network to obtain processed data packets, and then the target base station sends the processed data packets to the UE.
  • the access layer of the UE may process the received data packet according to the access layer data packet sequence number, for example, sort the data packets.
  • the source base station may send a fourth request message to the core network.
  • the fourth request message may be used to request to deactivate or cancel the dual transmission mode (shown in the figure).
  • the fourth request message may request the core network to use a single-channel transmission mode for the source base station (not shown in the figure).
  • the core network performs one-way transmission according to the fourth request message, that is, the downlink service data packet is only sent to the source base station and not to the target base station.
  • the source base station processes the service data packets it receives from the core network to obtain processed data packets, and then the source base station sends the processed data packets to the UE.
  • the access layer of the UE may process the received data packet according to the access layer data packet sequence number, such as sorting the data packets.
  • Figure 3B shows a schematic diagram of the core network sending data packets to the source base station and the target base station through dual transmission during the handover process according to an embodiment of the present application.
  • the current serving base station of UE 301 is base station 302-1 (also called source base station 302-1).
  • the source base station 302-1 can configure the measurement process of the UE 301, and accordingly, the UE 301 can perform measurement reports according to the configuration.
  • the source base station 302-1 can decide to switch the serving base station of the UE 301 to the base station 302-2 (also called the target base station 302-2) based on the measurement report of the UE 301 and other information.
  • the core network sends the synchronization data packet (gray box in Figure 3B) and downlink service data packets #1-#4 to the source base station 302-1 and the target base station 302-2, where the synchronization data packet is used It is ensured that the source base station 302-1 and the target base station 302-2 assign the same access layer data packet sequence number to the service data packet. Then, the target base station 302-2 sends the service data packet to the UE 301.
  • Figure 4 shows a timing diagram of another communication method for a handover scenario according to an embodiment of the present application.
  • the main difference between Figure 4 and Figure 3A is that Figure 4 further refines the core network to include control plane entities and user plane entities.
  • the embodiment of FIG. 4 is described by taking the control plane entity as AMF and the user plane entity as UPF as an example.
  • the source base station decides to switch the UE's serving base station to the target base station. This step is similar to S301 and will not be described again.
  • the source base station decides to use the dual-channel transmission mode during the handover process. This step is similar to S302 and will not be described again.
  • the source base station sends the first request message to the target base station.
  • the first request message may include dual-channel transmission mode indication information, used to indicate that the dual-channel transmission mode is used during the handover process. This step is similar to S303 and will not be described again.
  • the target base station sends a first response message to the source base station.
  • the first response message may include transport network layer information for dual-way transmission. This step is similar to S304 and will not be described again.
  • the source base station sends a second request message to the AMF.
  • the second request message may include dual-channel transmission mode indication information, used to indicate that the dual-channel transmission mode is used during the handover process.
  • the second request message may also include transmission network layer information obtained by the source base station from the target base station for dual-way transmission.
  • the second request message may also include the source base station's own transmission network layer information for dual-channel transmission.
  • the second request message may also include an identification of the target base station.
  • the second request message may also include identifiers of one or more service bearers associated with the dual-channel transmission mode indication information, that is, the dual-channel transmission mode may be per PDU session (session) or per EPS bearer (bearer).
  • the AMF sends a first message to the UPF, and the first message may include the information element in the second request message.
  • UPF performs two-way transmission according to the first message.
  • the UPF after receiving the first message, the UPF sends the downlink service data packet that is originally only sent to the source base station to both the source base station and the target base station. Moreover, when the UPF sends downlink service data packets to the source base station and the target base station through dual transmission, the UPF sends synchronization data packets to the source base station and the target base station according to the first rule to ensure that the source base station and the target base station send data to the same Downlink service data packets are assigned the same access layer data packet sequence number.
  • This step is similar to S306 and will not be described again.
  • the source base station After the source base station receives the synchronization data packet, the source base station sends access to the specific service data packet it received from the core network to the target base station according to the predefined second rule that both the source base station and the target base station comply with. Layer packet sequence number. This step is similar to S307 and will not be described again.
  • the target base station determines the access layer data for the downlink service data packet it receives from the UPF based on the access layer data packet sequence number it received from the source base station and the second rule. Package serial number. This step is similar to S308 and will not be described again.
  • the target base station processes the service data packets it receives from the core network to obtain processed data packets. Then, the target base station sends the processed data packet to the UE. This step is similar to S309 and will not be described again.
  • the access layer of the UE may process the received data packet according to the access layer data packet sequence number, for example, sort the data packets. This step is similar to S310 and will not be described again.
  • the source base station may also process the service data packets it receives from the core network, and send the processed data packets to the UE.
  • This process is similar to the process in S410 and will not be described again.
  • the processing performed by the UE may also include deleting duplicate (ie, deduplication) data packets (not shown in the figure).
  • the target base station may send a third request message to the AMF.
  • the third request message may be used to request to deactivate or cancel the dual transmission mode (shown in the figure).
  • the third request message may request the core network to use a single-channel transmission mode for the target base station (not shown in the figure).
  • the AMF sends a second message to the UPF.
  • the second message may include information elements from the third request message.
  • the second message may be used to request deactivation or cancellation of the dual transmission mode (shown in the figure).
  • the second message may request the core network to use a single-channel transmission mode for the target base station (not shown in the figure).
  • the UPF performs one-way transmission according to the second message, that is, the downlink service data packet is only sent to the target base station but not to the source base station.
  • the target base station processes the service data packet it receives from the UPF to obtain the processed data packet, and then the target base station sends the processed data packet to the UE.
  • the access layer of the UE may process the received data packet according to the access layer data packet sequence number, for example, sort the data packets.
  • the source base station may send a fourth request message to the AMF.
  • the fourth request message may be used to request to deactivate or cancel the dual transmission mode (shown in the figure).
  • the fourth request message may request the core network to use a single-channel transmission mode for the source base station (not shown in the figure).
  • the AMF sends a third message to the UPF.
  • the third message may include information elements from the fourth request message.
  • the third message may be used to request deactivation or cancellation of the dual transmission mode (shown in the figure).
  • the third message may request the core network to use a single-channel transmission mode for the source base station (not shown in the figure).
  • the UPF performs one-way transmission according to the third message, that is, the downlink service data packet is only sent to the source base station but not to the target base station.
  • the source base station processes the service data packet it receives from the UPF to obtain a processed data packet, and then the source base station sends the processed data packet to the UE.
  • the access layer of the UE may process the received data packet according to the access layer data packet sequence number, such as sorting the data packets.
  • Figure 5 shows a timing diagram of another communication method for a handover scenario according to an embodiment of the present application.
  • the main difference between Figure 5 and Figure 3A- Figure 4 is that the switching scenario targeted by Figures 3A- Figure 4 is a general switching scenario, while the switching scenario targeted by Figure 5 is a dual-activation protocol stack switching in the 5G wireless communication system ( Dual Active Protocol Stack Hand Over, DAPS HO) scenario.
  • Figure 5 also further details the core network including control plane entities and user plane entities.
  • the embodiment of FIG. 5 is described by taking the control plane entity as AMF and the user plane entity as UPF as an example.
  • Figure 5 further details that the source base station is gNB and the target base station is gNB.
  • the UPF before the UE's serving base station is handed over from the source gNB to the target gNB, the UPF sends a service data packet to the source gNB, and then the source gNB sends a service data packet to the UE.
  • the service data package may also be called service data, or user data (user data), or user data package, etc.
  • the AMF provides mobility control information (mobility control information) to the source gNB.
  • mobility control information mobility control information
  • the UE context in the source gNB contains information about roaming and access restrictions, which is provided when the connection is established or when the last tracking area (Tracking Area, TA) is updated.
  • the source gNB configures the UE measurement process, and the UE reports according to the measurement configuration.
  • the source gNB decides to switch the serving base station of the UE based on the measurement report and Radio Resource Management (RRM) information.
  • RRM Radio Resource Management
  • the source gNB sends a handover request message (Handover Request message) to the target gNB, where the handover request message includes information required to prepare for handover on the target side.
  • the handover request message includes, for example, dual-channel transmission mode indication information, which is used to indicate that the dual-channel transmission mode is used during the handover process.
  • the dual-channel transmission mode indication information may be associated with one or more service bearers of the UE.
  • the dual-channel transmission mode indication information may be associated with identities of one or more service bearers of the UE. In this way, two-way transmission can be carried out at the granularity of service bearers.
  • the handover request message described above may not only include dual-way transmission mode indication information, but may also include the identification of one or more associated service bearers, that is, the dual-way transmission mode may be per PDU session. ) or per EPS bearer.
  • the handover request message may also include the target cell identification (ID), KgNB*, C-RNTI of the UE in the source gNB, RRM configuration including the UE inactive time, basic access layer configuration including antenna information and DL carrier frequency, application
  • ID target cell identification
  • KgNB* C-RNTI of the UE in the source gNB
  • RRM configuration including the UE inactive time
  • basic access layer configuration including antenna information and DL carrier frequency
  • application The current QoS flow of the UE to the Data Radio Bearer (DRB) mapping rules, System Information Block 1 (SIB1) from the source gNB, for different radio access technologies (Radio Access Technology, RAT) UE capabilities, Protocol Data Unit (PDU) session related information, and may also include measurement information reported by the UE.
  • the measurement information may include beam related information.
  • PDU session related information may include slice information and QoS flow level QoS profiles.
  • the source gNB may also request DAPS handover for one or more DRBs.
  • the target gNB may indicate whether DAPS handover is accepted. If accepted, in S505, the target gNB sends a Handover Request Acknowledge (Handover Request Acknowledge) to the source gNB.
  • Handover Request Acknowledge Handover Request Acknowledge
  • the target gNB sends the transmission network layer information for dual transmission to the source gNB.
  • the transmission network layer information used for dual-channel transmission is used by the target base station to receive downlink data packets from the core network in the dual-channel transmission mode.
  • the transmission network layer information may be GTP Tunnel Endpoint information (GTP Tunnel Endpoint).
  • GTP Tunnel Endpoint may include the tunnel's transport network layer address, the tunnel's identifier, etc.
  • the GTP tunnel endpoint information may also include information indicating tunnel usage.
  • the transport network layer information may include information related to the other tunnels.
  • the handover request confirmation may include transmission network layer information for dual transmission.
  • the source gNB triggers Uu handover by sending a RRCReconfiguration message to the UE.
  • the message may include information required to access the target cell: target cell identification (ID), new C-RNTI, target gNB security algorithm identifier for the selected security algorithm. It can also include a set of dedicated RACH resources, the association between RACH resources and SSB, the association between RACH resources and UE-specific CSI-RS configuration, public RACH resources, and system information of the target cell, etc.
  • the source gNB sends a request message to the AMF.
  • the request message may include dual-channel transmission mode indication information, used to indicate that the dual-channel transmission mode is used during the handover process.
  • the request message may also include transmission network layer information obtained by the source gNB from the target gNB for dual-way transmission.
  • the request message may also include the source gNB's own transmission network layer information for dual-way transmission.
  • the request message may also include the identity of the target gNB.
  • the request message may also include identifiers of one or more service bearers associated with the dual-channel transmission mode indication information.
  • the AMF sends a first message to the UPF, which may include the information elements in the request message in S508.
  • UPF performs two-way transmission according to the first message.
  • the UPF after receiving the first message, the UPF will send the downlink service data packet that is originally only sent to the source gNB to both the source gNB and the target gNB. Moreover, when UPF sends downlink service data packets to the source gNB and target gNB through dual transmission, UPF sends synchronization data packets to the source gNB and target gNB according to the first rule to ensure that the source gNB and target gNB send data to the same Downlink service data packets are assigned the same access layer data packet sequence number.
  • the first rule is similar to the first rule described above in conjunction with FIG. 3A and will not be described again.
  • Figure 5 shows an example in which the first rule is that the first data packet sent by the UPF is a synchronization data packet in the dual transmission mode.
  • UPF sequentially sends the synchronization data packet (gray box in Figure 5), the first downlink service data packet (#1), and the second downlink service data packet (#2) to the source gNB and target gNB. ), the third downlink service data packet (#3), the fourth downlink service data packet (#4), etc.
  • the synchronization data packet here is similar to the synchronization data packet described above in conjunction with FIG. 3A and will not be described again.
  • the source gNB sends an early status transfer message (EARLY STATUS TRANSFER) or sequence number status to the target gNB according to the predefined second rule that both the source gNB and the target gNB comply with. Transfer (SN STATUS TRANSFER) message.
  • This message includes the access layer data packet sequence number of the specific service data packet received by the source gNB from the UPF. For example, it can be the PDCP layer data packet sequence number, or the PDCP layer data packet sequence number and HFN (Hyper Frame Number, super frame number).
  • the second rule here is similar to the second rule described above in conjunction with FIG. 3A and will not be described again.
  • the target gNB determines the access layer data for the downlink service data packet it receives from the UPF based on the access layer data packet sequence number it received from the source gNB and the second rule. Package serial number. This step is similar to S308 described above in conjunction with FIG. 3A and will not be described again.
  • the UE synchronizes with the target cell and completes the RRC handover process by sending an RRCReconfigurationComplete message to the target gNB.
  • the UE will not detach from the source cell when receiving the RRCReconfiguration message.
  • the UE releases the source SRB resources, the security configuration of the source cell, and stops DL/UL reception/transmission with the source gNB when receiving an explicit release from the target node.
  • the target gNB processes the service data packet it receives from the UPF to obtain the processed data packet. Then, the target gNB sends the processed data packet to the UE.
  • This processing may be, for example, removing the header of the service data packet received from the UPF, adding a new header, and encapsulating it into a new data packet, and the header of the new data packet includes the corresponding access layer data packet sequence number.
  • this processing may also include discarding data packets whose access layer data packet sequence numbers are smaller than the access layer data packet sequence numbers in S511.
  • the access layer of the UE may process the received data packet according to the access layer data packet sequence number. This processing may be, for example, sorting data packets.
  • the target gNB sends a path switching request (PATH SWITCH REQUEST) message to the AMF to trigger the 5G Core network (5G Core network, 5GC) to switch the downlink data path to the target gNB and establish the NG-C interface to the target gNB.
  • PATH SWITCH REQUEST path switching request
  • the target base station may execute S514 and S516 at the same time, or may execute S514 first and then S516, or may execute S516 first and then S514.
  • the 5GC switches the downlink data path to the target gNB.
  • UPF sends one or more end marker (End Marker) packets to the source gNB on the old path of each PDU session/tunnel, and then can release any user plane (U- plane)/TNL resources.
  • End Marker End Marker
  • the AMF sends a path switch request confirmation (PATH SWITCH REQUEST ACKNOWLEDGE) message to the target gNB to confirm the path switch request message.
  • PATH SWITCH REQUEST ACKNOWLEDGE path switch request confirmation
  • the target gNB after receiving the path switch request confirmation message from the AMF, the target gNB sends a UE context release message to the source gNB to notify the source gNB that the switch is successful.
  • the source gNB may then release radio and control plane (C-plane) related resources associated with the UE context.
  • C-plane radio and control plane
  • the UPF After S519, in S521, the UPF performs one-way transmission, that is, the downlink service data packet is only sent to the target gNB but not to the source gNB.
  • the target gNB processes the service data packet it receives from the UPF to obtain the processed data packet, and then the target gNB sends the processed data packet to the UE.
  • the access layer of the UE may process the received data packet according to the access layer data packet sequence number, for example, sort the data packets.
  • the source gNB determines that the handover fails.
  • the source gNB sends a handover failure (Handover Failure) message to the AMF.
  • the handover failure message may include an instruction message for instructing the AMF to stop or cancel the dual transmission mode.
  • the handover failure message may not include the indication message, but after receiving the handover failure message, the AMF may change the dual-channel transmission mode to the single-channel transmission mode according to the definition of the handover failure message in the communication standard.
  • the AMF sends the second message to the UPF.
  • the second message may include information elements in the handover failure message.
  • the second message may be used to request deactivation or cancellation of the dual transmission mode.
  • the second message may indicate that the single-channel transmission mode is used.
  • the UPF performs one-way transmission according to the second message, that is, the downlink service data packet is only sent to the source gNB and not to the target gNB.
  • the source gNB processes the service data packet it receives from the UPF to obtain a processed data packet, and then the source gNB sends the processed data packet to the UE.
  • the access layer of the UE may process the received data packet according to the access layer data packet sequence number, for example, sort the data packets.
  • the delay introduced by data forwarding from the source base station to the target base station during the handover process is avoided, the service quality provided by the network to the UE is guaranteed, and the delay requirements of delay-sensitive services are guaranteed. wait.
  • the above embodiments are specific embodiments for switching scenarios.
  • This application also provides embodiments for other scenarios.
  • the other scenarios may be, for example, primary and secondary networks or concurrent network scenarios to support high-reliability services.
  • the main base station and the backup network may include a main base station and one or more backup base stations.
  • Both the main base station and the backup base station can receive service data from the core network (such as UPF), but the main base station sends service data to the UE. , and the backup base station will only send service data to the UE after transitioning from standby mode to working mode.
  • the backup base station In standby mode, when receiving service data from the core network, the backup base station will store this part of the service data for a specific period of time. If the backup base station is still in standby mode when the specified period of time expires, the backup base station will store this part of the service data. Data deletion.
  • the main base station and the backup base station may be adjacent base stations, for example, two base stations that are geographically close to each other.
  • the concurrent network may include multiple base stations, where each base station may receive service data from the core network (such as UPF), and each base station may send service data to the UE.
  • Each base station described here may be neighboring base stations.
  • the mode of each base station in the plurality of base stations may also be an operating mode or a standby mode.
  • each serving base station of the same UE needs to assign the same access layer data packet sequence number (Sequence Number, SN) to the same downlink service data packet (for example, PDCP layer data packet sequence number, or PDCP layer data Packet sequence number and HFN), so that the UE can concatenate the data packets received from each serving base station to sort the data packets.
  • SN access layer data packet sequence number
  • HFN downlink service data packet
  • Figure 6 shows a timing diagram of a communication method according to another embodiment of the present application.
  • Figure 6 further details the core network including control plane entities and user plane entities.
  • the embodiment of FIG. 6 is described by taking the control plane entity as AMF and the user plane entity as UPF as an example.
  • the first base station in Figure 6 may be the primary base station in the primary and backup networks, and the second base station may be the backup base station in the primary and backup networks.
  • the first base station and the second base station in Figure 6 may be two base stations in a concurrent network.
  • the first base station decides to adopt the dual-channel transmission mode. For example, when the first base station detects a need for high-reliability transmission, it may decide to use a dual-channel transmission method.
  • the dual-channel transmission method in the embodiment of this application means that the core network (such as UPF) sends the same downlink service data packet to both the first base station and the second base station. That is to say, the first base station and the second base station will receive the same downlink service data packet from the core network (for example, UPF).
  • the core network such as UPF
  • the first base station sends a first request message to the second base station.
  • the first request message may include dual-channel transmission mode indication information, used to indicate that the dual-channel transmission mode is used.
  • the dual-channel transmission mode indication information may be associated with one or more service bearers of the UE.
  • the dual-channel transmission mode indication information may be associated with identities of one or more service bearers of the UE. In this way, two-way transmission can be carried out at the granularity of service bearers.
  • the first request message described above may not only include dual-channel transmission mode indication information, but may also include identifiers of one or more associated service bearers.
  • the first base station may also send mode indication information to the second base station.
  • the mode indication information may only indicate the mode of the second base station, for example, indicate that the mode of the second base station is the standby mode or the working mode.
  • the mode indication information may also indicate the mode of the first base station and the mode of the second base station, for example, indicating that the mode of the first base station is the working mode and the mode of the second base station is the standby mode, or indicating that the mode of the first base station is the working mode and the mode of the second base station is the working mode.
  • the mode of the second base station is the working mode.
  • the mode indication information may be included in the first request message, or may be included in other messages and sent, which is not limited in this application.
  • the second base station sends the first response message to the first base station.
  • the first response message may include transport network layer information for dual-way transmission.
  • the transmission network layer information used for dual-channel transmission is used for the second base station to receive downlink data packets from the core network in the dual-channel transmission mode.
  • the transmission network layer information may be GTP Tunnel Endpoint information (GTP Tunnel Endpoint).
  • GTP Tunnel Endpoint may include the tunnel's transport network layer address, the tunnel's identifier, etc.
  • the GTP tunnel endpoint information may also include information indicating tunnel usage.
  • the transport network layer information may include information related to the other tunnels.
  • the first base station sends a second request message to the AMF.
  • the second request message may include dual-channel transmission mode indication information, used to indicate that the dual-channel transmission mode is used.
  • the second request message may also include transmission network layer information obtained by the first base station from the second base station for dual-way transmission.
  • the second request message may also include the first base station's own transmission network layer information for dual-channel transmission.
  • the second request message may also include the identification of the second base station.
  • the second request message may also include identifiers of one or more service bearers associated with the dual-channel transmission mode indication information, that is, the dual-channel transmission mode may be per PDU session (session) or per EPS bearer (bearer).
  • the AMF sends the first message to the UPF.
  • the first message may include information elements from the second request message.
  • UPF performs two-way transmission according to the first message.
  • the UPF after receiving the first message, the UPF sends the downlink service data packet that is originally only sent to the first base station to both the first base station and the second base station. Moreover, when UPF sends downlink service data packets to the first base station and the second base station through dual transmission mode, UPF sends synchronization data packets to the first base station and the second base station according to the first rule to ensure that the first base station and the second base station assign the same access layer data packet sequence number to the same downlink service data packet.
  • This step is similar to S306 and will not be described again.
  • the first base station after the first base station receives the synchronization data packet, the first base station sends the specific service data it received from the UPF to the second base station according to the predefined second rule that both the first base station and the second base station comply with.
  • the access layer packet sequence number of the packet This step is similar to S307 and will not be described again.
  • the second base station determines the access layer for the downlink service data packet it receives from the UPF based on the access layer data packet sequence number it received from the first base station and the second rule. Incoming packet sequence number. This step is similar to S308 and will not be described again.
  • the first base station After S606, in S609, the first base station processes the service data packets it receives from the core network to obtain processed data packets. Then, the first base station sends the processed data packet to the UE. This step is similar to S309 and will not be described again.
  • the second base station After S608, if the mode of the second base station is the working mode, then in S610, the second base station processes the service data packets it receives from the core network to obtain processed data packets. Then, the second base station sends the processed data packet to the UE. This step is similar to S309 and will not be described again.
  • the second base station After S608, if the mode of the second base station is the standby mode, then in S610', the second base station stores the service data packets received from the core network for a specific period of time, and if the second base station is still in the standby mode when the specified period of time expires, In standby mode, the second base station will delete this part of the service data packet.
  • the access layer of the UE can process the received data packet according to the access layer data packet sequence number, such as deleting duplicate data packets, sorting data packets, etc. This step is similar to S310 and will not be described again.
  • the first base station or the second base station may request the AMF to deactivate or cancel the dual-channel transmission mode.
  • the first base station may perform step S612.
  • the first base station sends a third request message to the AMF.
  • the third request message may be used to request deactivation or cancellation of the dual transmission mode.
  • the third request message may request to use a single-channel transmission mode for the first base station or the second base station.
  • the AMF sends a second message to the UPF.
  • the second message may include information elements from the third request message.
  • the second message may be used to request deactivation or cancellation of the dual transmission mode.
  • the second message may indicate that the single-channel transmission mode is used for the first base station or the second base station.
  • the UPF performs one-way transmission according to the second message, for example, sending the downlink service data packet only to the first base station but not to the second base station.
  • the first base station processes the service data packet it receives from the UPF to obtain a processed data packet, and then the first base station sends the processed data packet to the UE (shown in the figure).
  • the access layer of the UE may process the received data packet according to the access layer data packet sequence number, for example, sort the data packets.
  • the UPF performs one-way transmission according to the second message, for example, sends the downlink service data packet only to the second base station but not to the first base station.
  • the second base station processes the service data packet it receives from the UPF to obtain a processed data packet, and then the second base station sends the processed data packet to the UE (not shown in the figure).
  • the second base station may perform step S612'.
  • the second base station sends a fourth request message to the AMF.
  • the fourth request message may be used to request deactivation or cancellation of the dual transmission mode.
  • the fourth request message may request to use a single-channel transmission mode for the first base station or the second base station.
  • the AMF sends a third message to the UPF.
  • the third message may include information elements from the fourth request message.
  • the third message may be used to request deactivation or cancellation of the dual transmission mode.
  • the third message may indicate using a single-channel transmission mode for the first base station or the second base station.
  • the UPF performs one-way transmission according to the third message, for example, only sends the downlink service data packet to the second base station but not to the first base station.
  • the second base station processes the service data packet it receives from the UPF to obtain a processed data packet, and then the second base station sends the processed data packet to the UE (shown in the figure).
  • the access layer of the UE may process the received data packet according to the access layer data packet sequence number, such as sorting the data packets.
  • the UPF performs one-way transmission according to the third message, for example, only sends the downlink service data packet to the first base station but not to the second base station.
  • the first base station processes the service data packet it receives from the UPF to obtain a processed data packet, and then the first base station sends the processed data packet to the UE (not shown in the figure).
  • the service data reaches the two base stations from the core network through two communication links, even if a line failure or equipment failure occurs on one of the communication links, the service data on the other communication link can still reach the UE , improving the reliability of the transmission network.
  • the reliability of the base station and the air interface is improved.
  • the access layer of the UE can deduplicate the received data packets based on the access layer data packet sequence number, thereby effectively ensuring high service quality. reliability.
  • Figure 7 is a flow chart of a method 700 performed by a base station according to an embodiment of the present application.
  • the base station may be the source base station in a handover scenario, or the first base station in an active/standby network or a concurrent network.
  • the method 700 includes steps S701 to S706.
  • the first base station sends dual-channel transmission mode indication information to the second base station.
  • the dual-channel transmission mode indication information is used to indicate the dual-channel transmission mode. This step is similar to step S303 described in conjunction with FIG. 3A , or step S403 described in conjunction with FIG. 4 , or step S504 described in conjunction with FIG. 5 , or step S602 described in conjunction with FIG. 6 , and will not be described again here.
  • the first base station receives transmission network layer information for dual-channel transmission from the second base station.
  • This step is similar to step S304 described in conjunction with FIG. 3A , or step S404 described in conjunction with FIG. 4 , or step S506 described in conjunction with FIG. 5 , or step S603 described in conjunction with FIG. 6 , and will not be described again here.
  • the first base station sends a request message to the core network, where the request message is used to request the dual-channel transmission mode.
  • the request message may include dual-channel transmission mode indication information.
  • the request message may also include transmission network layer information obtained by the first base station from the second base station for dual-way transmission.
  • the request message may also include the first base station's own transmission network layer information for dual-channel transmission.
  • the request message may also include the identity of the second base station and/or the identity of the first base station.
  • the request message may also include identifiers of one or more service bearers associated with the dual-channel transmission mode indication information.
  • step S305 described in conjunction with Figure 3A, or steps S405-S406 described in conjunction with Figure 4, or steps S508 and S509 described in conjunction with Figure 5, or steps S604 and S605 described in conjunction with Figure 6. This will not be described again.
  • the first base station receives a downlink data packet from the core network, where the downlink data packet includes a service data packet and a synchronization data packet.
  • step S306 described in conjunction with FIG. 3A , or step S407 described in conjunction with FIG. 4 , or step S510 described in conjunction with FIG. 5 , or step S606 described in conjunction with FIG. 6 , and will not be described again here.
  • the first base station determines the access layer data packet sequence number of the service data packet it receives from the core network, and converts the determined access layer data of the service data packet according to the preset rules. At least one of the packet sequence numbers is sent to the second base station, so that the second base station determines the access layer data packet sequence number for the downlink service data packet it receives from the core network based on the synchronization data packet and the preset rule.
  • step S307 described in conjunction with FIG. 3A is similar to step S307 described in conjunction with FIG. 3A , or step S408 described in conjunction with FIG. 4 , or step S511 described in conjunction with FIG. 5 , or step S607 described in conjunction with FIG. 6 , and will not be described again here.
  • the first base station sends another request message to the core network.
  • the other request message is used to request to deactivate or cancel the dual transmission mode.
  • the other request message is used to request the core network to adopt a single-channel transmission mode for the first base station or the second base station.
  • step S311 or S311' described in conjunction with Figure 3A
  • step S412 or S412' described in conjunction with Figure 4
  • step S521 described in conjunction with Figure 5 or step S612 or S612' described in conjunction with Figure 6 Similar, will not be repeated here.
  • the first base station can request the core network to perform a dual-channel transmission mode when there is a need, and request to exit the dual-channel transmission mode when the demand is reduced or there is no demand, and under dual-channel transmission, the first base station and the second base station can assign the same access layer data packet sequence number to the service data packet to ensure service continuity.
  • the synchronization data packet may be a GTP-U (GPRS Tunnel Protocol-User plane, GPRS Tunnel Transport Protocol-User plane) data packet.
  • the header of the synchronization data packet may be the header of the GTP-U data packet, that is, the header of the GTP-U data packet indicates that the data packet is a synchronization data packet.
  • the header of the GTP-U data packet may include an SN sequence number (for example, 1) to identify that the data packet is a synchronization data packet.
  • the SN sequence number can be obtained by parsing the header of the data packet, and the data packet can be determined to be a synchronization data packet based on the SN sequence number.
  • the first base station may assign an access layer data packet sequence number (for example, 10) to the data packet. Then, the first base station may notify the second base station of the SN sequence number (for example, 1) and the access layer data packet sequence number (for example, 10). Correspondingly, the second base station may assign the access layer data packet sequence number notified by the first base station to the data packet it receives from the core network and has the SN sequence number notified by the first base station.
  • an access layer data packet sequence number for example, 10
  • the second base station may assign the access layer data packet sequence number notified by the first base station to the data packet it receives from the core network and has the SN sequence number notified by the first base station.
  • the above-mentioned multiple embodiments are embodiments in which the dual-channel transmission method is applied in the downlink.
  • This application also provides an embodiment of applying a dual-channel transmission method in the uplink.
  • the UE has the ability to establish communication protocol stacks for the first base station and the second base station respectively.
  • Figure 8 shows a timing diagram of a communication method according to yet another embodiment of the present application.
  • Figure 8 details the core network including control plane entities and user plane entities.
  • the embodiment of FIG. 8 is described by taking the control plane entity as AMF and the user plane entity as UPF as an example.
  • the first base station in Figure 8 may be the primary base station in the primary and backup networks, and the second base station may be the backup base station in the primary and backup networks.
  • the first base station and the second base station in Figure 8 may be two base stations in a concurrent network.
  • the first base station in Figure 8 may be the source base station, and the second base station may be the target base station.
  • the first base station decides to adopt the dual-channel transmission mode. For example, when the first base station detects that the uplink communication quality of the UE is poor, it may decide to use a dual-channel transmission mode.
  • the first base station sends the first message to the second base station.
  • the first message may include a receiving address of the uplink data, for example, an address used by the UPF to receive the uplink data.
  • the second base station may send the uplink data received from the UE to the UPF according to the receiving address of the uplink data.
  • the second base station sends an acknowledgment message for the first message to the first base station.
  • the first base station sends dual-channel transmission scheduling signaling to the UE.
  • the dual-channel transmission scheduling signaling includes dual-channel transmission indication information, which is used to indicate the dual-channel transmission mode.
  • the dual-channel transmission scheduling signaling may also include an identification (ID) of the second base station.
  • the dual-channel transmission mode indication information may be associated with one or more service bearers of the UE.
  • the dual-channel transmission mode indication information may be associated with the identification of one or more service bearers of the UE. In this way, two-way transmission can be carried out at the granularity of service bearers.
  • the dual-channel transmission scheduling signaling may not only include dual-channel transmission mode indication information, but may also include identifiers of one or more associated service bearers.
  • the UE establishes communication protocol stacks for the first base station and the second base station respectively.
  • the UE performs two-way transmission, that is, sends the same uplink data packet to the first base station and the second base station.
  • the uplink data packet may be a service data packet, or service data, or user data packet, or user data, etc.
  • the first base station After S806, in S807, the first base station processes the uplink data packet it receives from the UE to obtain the processed data packet. Then, the first base station sends the processed data packet to the UPF.
  • This processing may be, for example, adding a new header and encapsulating it into a new data packet, and the header of the new data packet includes the corresponding access layer data packet sequence number.
  • the new data packet may be, for example, a GTP-U data packet, and the new header may be, for example, a GTP-U extension header.
  • the second base station After S806, in S808, the second base station processes the uplink data packet it receives from the UE to obtain a processed data packet. Then, the second base station sends the processed data packet to the UPF. This processing is similar to the processing in S807 and will not be described again.
  • the UPF processes the data packets received from the first base station and the second base station. This processing may include, for example, deleting duplicate (ie deduplication) data packets according to the access layer data packet sequence number in the data packet header, sorting the data packets, etc.
  • the first base station or the second base station may send dual-channel transmission deactivation or cancellation signaling to the UE to instruct the UE to deactivate or cancel dual-channel transmission, or to instruct the UE to use single-channel transmission. transfer method.
  • the UE may decide by itself to deactivate or cancel dual transmission.
  • the header of the data packet sent by the first base station or the second base station to the UPF may not include the access layer data packet sequence number.
  • Figure 9 shows a timing diagram of a communication method according to yet another embodiment of the present application.
  • the main difference between Figure 9 and Figure 8 is that Figure 9 further refines the application scenario, which is the Dual Active Protocol Stack Hand Over (DAPS HO) scenario in the 5G wireless communication system.
  • the first base station in Figure 9 may be the source base station, and the second base station may be the target base station.
  • DAPS HO Dual Active Protocol Stack Hand Over
  • the UE before the UE's serving base station is handed over from the source gNB to the target gNB, the UE sends a service data packet to the source gNB, and then the source gNB sends a service data packet to the UPF.
  • the service data package may also be called service data, or user data (user data), or user data package, etc.
  • the AMF provides mobility control information (mobility control information) to the source gNB.
  • mobility control information mobility control information
  • the UE context in the source gNB contains information about roaming and access restrictions, which is provided when the connection is established or when the last tracking area (Tracking Area, TA) is updated.
  • the source gNB configures the UE measurement process, and the UE reports according to the measurement configuration.
  • the source gNB decides to switch the serving base station of the UE based on the measurement report and Radio Resource Management (RRM) information.
  • RRM Radio Resource Management
  • the source gNB sends a handover request message (Handover Request message) to the target gNB, where the handover request message includes information required to prepare for handover on the target side.
  • the handover request message includes, for example, a receiving address of the uplink data, such as an address used by the UPF to receive the uplink data.
  • the target gNB can send the uplink data received from the UE to the UPF according to the receiving address of the uplink data.
  • the target gNB may indicate whether DAPS handover is accepted. If accepted, in S905, the target gNB sends a Handover Request Acknowledge (Handover Request Acknowledge) to the source gNB.
  • Handover Request Acknowledge Handover Request Acknowledge
  • the source gNB triggers Uu handover by sending a RRCReconfiguration message to the UE.
  • This message includes, for example, dual transmission scheduling signaling.
  • the dual-channel transmission scheduling signaling includes dual-channel transmission indication information, which is used to indicate the dual-channel transmission mode.
  • the dual-channel transmission scheduling signaling may also include an identification (ID) of the second base station.
  • the message may also include information required to access the target cell: target cell identification (ID), new C-RNTI, target gNB security algorithm identifier for the selected security algorithm. It can also include a set of dedicated RACH resources, the association between RACH resources and SSB, the association between RACH resources and UE-specific CSI-RS configuration, public RACH resources, and system information of the target cell, etc.
  • ID target cell identification
  • new C-RNTI new C-RNTI
  • target gNB security algorithm identifier for the selected security algorithm. It can also include a set of dedicated RACH resources, the association between RACH resources and SSB, the association between RACH resources and UE-specific CSI-RS configuration, public RACH resources, and system information of the target cell, etc.
  • the UE establishes communication protocol stacks for the source gNB and the target gNB respectively.
  • the UE performs two-way transmission, that is, sends the same uplink data packet to the source gNB and the target gNB.
  • the source gNB processes the uplink data packet it receives from the UE to obtain the processed data packet. Then, the source gNB sends the processed packet to UPF.
  • This processing may be, for example, adding a new header and encapsulating it into a new data packet, and the header of the new data packet includes the corresponding access layer data packet sequence number.
  • the new data packet may be, for example, a GTP-U data packet, and the new header may be, for example, a GTP-U extension header.
  • the target gNB processes the uplink data packet it receives from the UE to obtain the processed data packet. Then, the target gNB sends the processed packet to UPF. This process is similar to the process in S910 and will not be described again.
  • the UPF processes the data packets received from the source gNB and the target gNB. This processing may include, for example, deleting duplicate (ie deduplication) data packets according to the access layer data packet sequence number in the data packet header, sorting the data packets, etc.
  • the UE synchronizes with the target cell and completes the RRC handover process by sending an RRCReconfigurationComplete message to the target gNB. Furthermore, the UE implicitly notifies the target gNB through S913 that it will deactivate or cancel the dual-channel transmission mode, or use the single-channel transmission mode.
  • the UE performs one-way transmission to the target gNB.
  • the target gNB processes the uplink data packet it receives from the UE to obtain the processed data packet. Then, the target gNB sends the processed packet to UPF. This processing may not include including the access layer packet sequence number in the packet header.
  • the source gNB determines that the handover fails.
  • the UE performs one-way transmission to the source gNB.
  • the source gNB processes the uplink data packet it receives from the UE to obtain the processed data packet. Then, the source gNB sends the processed packet to UPF. This processing may not include including the access layer packet sequence number in the packet header.
  • FIG. 10 is a schematic structural diagram of a communication device 1000 provided by an embodiment of the present application.
  • the communication device 1000 includes one or more processors 1001, communication lines 1002, and at least one communication interface (in Figure 10 This is only illustrative, taking the communication interface 1003 and a processor 1001 as an example), and may optionally also include a memory 1004.
  • the processor 1001 can be a general central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more processors used to control the execution of the program of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication line 1002 may include a path for communication between different components.
  • the communication interface 1003 can be a transceiver module used to communicate with other devices or communication networks, such as Ethernet, RAN, wireless local area networks (WLAN), etc.
  • the transceiver module may be a device such as a transceiver or a transceiver.
  • the communication interface 1003 may also be a transceiver circuit located in the processor 1001 to implement signal input and signal output of the processor.
  • the memory 1004 may be a device with a storage function. For example, it can be read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (random access memory, RAM) or other types of things that can store information and instructions. Dynamic storage devices can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage ( Including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be stored by a computer. any other medium, but not limited to this.
  • the memory may exist independently and be connected to the processor through the communication line 1002 . Memory can also be integrated with the processor.
  • the memory 1004 is used to store computer execution instructions for executing the solution of the present application, and is controlled by the processor 1001 for execution.
  • the processor 1001 is used to execute computer execution instructions stored in the memory 1004, thereby implementing the communication method provided in the embodiment of the present application.
  • the processor 1001 may also perform processing-related functions in the communication method provided in the following embodiments of this application, and the communication interface 1003 is responsible for communicating with other devices or communication networks.
  • the communication interface 1003 is responsible for communicating with other devices or communication networks.
  • the computer-executed instructions in the embodiments of the present application may also be called application codes, which are not specifically limited in the embodiments of the present application.
  • the processor 1001 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 10 .
  • the communication device 1000 may include multiple processors, such as the processor 1001 and the processor 1007 in FIG. 10 .
  • processors can be a single-core processor or a multi-core processor.
  • the processor here may include but is not limited to at least one of the following: central processing unit (CPU), microprocessor, digital signal processor (DSP), microcontroller unit (MCU), or artificial intelligence
  • CPU central processing unit
  • DSP digital signal processor
  • MCU microcontroller unit
  • computing devices such as processors that run software.
  • Each computing device may include one or more cores for executing software instructions to perform calculations or processing.
  • the communication device 1000 may also include an output device 1005 and an input device 1006.
  • the output device 1005 communicates with the processor 1001 and can display information in a variety of ways.
  • the output device 1005 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (cathode ray tube, CRT) display device, or a projector (projector), etc.
  • Input device 1006 communicates with processor 1001 and can receive user input in a variety of ways.
  • the input device 1006 may be a mouse, a keyboard, a touch screen device, a sensing device, or the like.
  • FIG 11 is a schematic diagram of the hardware structure of a UE according to an embodiment of the present application.
  • the UE 1100 may include a processor 1110, an external memory interface 1120, an internal memory 1121, a universal serial bus (USB) interface 1130, a charging management module 1140, a power management module 1141, a battery 1142, Antenna 1, antenna 2, mobile communication module 1150, wireless communication module 1160, audio module 1170, speaker 1170A, receiver 1170B, microphone 1170C, headphone interface 1170D, sensor module 1180, button 1190, motor 1191, indicator 1192, camera 1193, Display 1194, SIM card interface 1195, etc.
  • a processor 1110 an external memory interface 1120, an internal memory 1121, a universal serial bus (USB) interface 1130, a charging management module 1140, a power management module 1141, a battery 1142, Antenna 1, antenna 2, mobile communication module 1150, wireless communication module 1160, audio module 1170, speaker 1170A, receiver 1170
  • the sensor module 1180 may include a pressure sensor 1180A, a gyro sensor 1180B, an air pressure sensor 1180C, a magnetic sensor 1180D, an acceleration sensor 1180E, a distance sensor 1180F, a proximity light sensor 1180G, a fingerprint sensor 1180H, a temperature sensor 1180J, a touch sensor 1180K, and an ambient light sensor. 1180L, bone conduction sensor 1180M, etc.
  • the structure shown in Figure 11 does not constitute a specific limitation on the UE.
  • the UE may include more or less components than shown in the figures, or combine some components, or split some components, or arrange different components.
  • the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
  • Processor 1110 may include one or more processing units.
  • the processor 1110 may include an application processor (Application Processor, AP), a modem, a graphics processor (Graphics Processing Unit, GPU), an image signal processor (Image Signal Processor, ISP), a controller, a video editor Decoder, digital signal processor (Digital Signal Processor, DSP), baseband processor, and/or neural network processor (Neural-network Processing Unit, NPU), etc.
  • Application Processor Application Processor
  • AP Application Processor
  • modem a graphics processor
  • ISP Image Signal Processor
  • ISP Image Signal Processor
  • controller a video editor Decoder
  • digital signal processor Digital Signal Processor
  • DSP Digital Signal Processor
  • NPU neural network Processing Unit
  • Different processing units can be independent devices or integrated into one or more processors.
  • the charging management module 1140 is used to receive charging input from the charger.
  • the charger can be a wireless charger or a wired charger.
  • the power management module 1141 is used to connect the battery 1142, the charging management module 1140 and the processor 1110.
  • the power management module 1141 receives input from the battery 1142 and/or the charging management module 1140, and supplies power to the processor 1110, internal memory 1121, display screen 1194, camera 1193, wireless communication module 1160, etc.
  • the wireless communication function of the UE can be implemented through antenna 1, antenna 2, mobile communication module 1150, wireless communication module 1160, modem, baseband processor, etc.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in a UE can be used to cover a single or multiple communication bands. Different antennas can also be reused to improve antenna utilization.
  • the mobile communication module 1150 can provide wireless communication solutions including 2G/3G/4G/5G applied to the UE.
  • the wireless communication module 1160 can provide wireless local area networks (Wireless Local Area Networks, WLAN) (such as Wi-Fi network), Bluetooth (Blue Tooth, BT), and global navigation satellite system (Global Navigation Satellite System, GNSS) applied to the UE. , Frequency Modulation (FM), Near Field Communication (NFC), infrared technology and other wireless communication solutions.
  • the wireless communication module 1160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 1160 receives electromagnetic waves through the antenna 2, frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 1110.
  • the wireless communication module 1160 can also receive the signal to be sent from the processor 1110, perform frequency modulation and amplification on it, and convert it into electromagnetic waves through the antenna 2 for radiation.
  • the wireless communication module 1160 may be a Bluetooth chip.
  • the Bluetooth chip may include one or more memories, one or more processors, etc.
  • the processor in the Bluetooth chip can perform frequency modulation, filtering, calculation, judgment and other operations on the electromagnetic waves received through the antenna 2, and convert the processed signals into electromagnetic waves for radiation through the antenna 2, that is, there is no need for the processor 1110 to process.
  • the UE implements display functions through the GPU, display screen 1194, application processor, etc.
  • the GPU is an image processing microprocessor and is connected to the display screen 1194 and the application processor.
  • the display screen 1194 is used to display images, videos, etc.
  • a series of graphical user interfaces (Graphical User Interface, GUI) can be displayed on the display screen 1194 of the UE.
  • the UE can realize the shooting function through the ISP, camera 1193, video codec, GPU, display screen 1194 and application processor.
  • Camera 1193 is used to capture still images or video.
  • the external memory interface 1120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capability of the UE 1101.
  • an external memory card such as a Micro SD card
  • Internal memory 1121 may be used to store computer executable program code, which includes instructions.
  • the processor 1110 executes instructions stored in the internal memory 1121 to execute various functional applications and data processing of the UE.
  • the UE can implement audio functions, such as music playback, recording, etc., through the audio module 1170, speaker 1170A, receiver 1170B, microphone 1170C, headphone interface 1170D, and application processor.
  • audio functions such as music playback, recording, etc., through the audio module 1170, speaker 1170A, receiver 1170B, microphone 1170C, headphone interface 1170D, and application processor.
  • the SIM card interface 1195 is used to connect the SIM card.
  • the SIM card can be inserted into the SIM card interface 1195 or pulled out from the SIM card interface 1195 to achieve contact and separation from the UE.
  • the UE can support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • SIM card interface 1195 can support Nano SIM card, Micro SIM card, SIM card, etc. Multiple cards can be inserted into the same SIM card interface 1195 at the same time.
  • the SIM card interface 1195 is also compatible with external memory cards. The UE interacts with the network through the SIM card to implement functions such as calls and data communications.
  • operating systems run, such as Hongmeng operating system, iOS operating system, Android operating system, Windows operating system, etc.
  • Applications can be installed and run on this operating system.
  • the UE may run multiple operating systems.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium includes instructions.
  • the electronic device When the above instructions are run on an electronic device, the electronic device causes the electronic device to execute the relevant method steps of the above embodiments to achieve method in the above embodiment.
  • Embodiments of the present application also provide a computer program product containing instructions.
  • the computer program product When the computer program product is run on an electronic device, it causes the electronic device to execute the relevant method steps of the above embodiments to implement the methods in the above embodiments.
  • An embodiment of the present application also provides a terminal.
  • the terminal includes a processor and a memory.
  • the memory is used to store computer program code.
  • the computer program code includes computer instructions.
  • the terminal executes the relevant method steps of the above embodiment to implement the method in the above embodiment.
  • the terminal can be an integrated circuit IC or a system-on-chip SOC.
  • the integrated circuit can be a general-purpose integrated circuit, a field programmable gate array FPGA, or an application-specific integrated circuit ASIC.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be The combination can either be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of this embodiment is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the method described in each embodiment.
  • the aforementioned storage media include: flash memory, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法以及用户装置、基站、核心网设备、通信系统。该通信系统包括第一基站、第二基站和核心网。在该通信系统中,第一基站用于向核心网发送第一请求消息,其中第一请求消息用于请求采用双路传输方式发送数据包,双路传输方式是核心网将同一数据包分别发送给第一基站和第二基站的传输方式。核心网用于在接收到第一请求消息后,通过双路传输方式向第一基站和第二基站发送一个或多个数据包。

Description

通信方法以及用户装置、基站、核心网设备、通信系统
本申请要求于2022年03月17日提交中国国家知识产权局、申请号为202210265839.2、发明名称为“通信方法以及用户装置、基站、核心网设备、通信系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信领域,具体涉及一种通信方法以及相应的用户装置、基站、核心网设备、通信系统。
背景技术
在常规的切换技术中,为了保证切换过程中下行数据传输的连续性,源基站会将其从核心网接收的下行业务数据或者用户数据(user data)包转发给目标基站,然后由目标基站发送给终端。从源基站到目标基站的数据包转发过程给被转发的数据包引入了时延,从而增加了这些数据包的端到端(End to End,E2E)时延。
然而,数据包的E2E时延的增加会降低网络给终端提供的服务质量,尤其是当终端进行的业务为时间敏感业务(例如工业控制、自动驾驶等)时这种缺陷会更加明显。
发明内容
为了克服上述缺陷,本申请提供了一种通信方法以及相应的用户装置、基站、核心网设备、通信系统、计算机存储介质。
本申请的一个方面提供了一种通信系统,包括第一基站、第二基站和核心网,其特征在于,所述第一基站用于向所述核心网发送第一请求消息,其中所述第一请求消息用于请求采用双路传输方式发送数据包,所述双路传输方式是所述核心网将同一数据包分别发送给所述第一基站和所述第二基站的传输方式;所述核心网用于在接收到所述第一请求消息后,通过所述双路传输方式向所述第一基站和所述第二基站发送一个或多个数据包。
根据本申请的一个示例,在所述第一基站向所述核心网发送第一请求消息之前,所述第一基站还用于向所述第二基站发送第二请求消息,其中所述第二请求消息用于请求进行双路传输的传输网络层信息;响应于所述第二请求消息,所述第二基站用于向所述第一基站发送用于进行双路传输的传输网络层信息。
根据本申请的一个示例,所述第二请求消息包括第一指示信息,其中所述第一指示信息用于指示所述核心网采用双路传输方式发送数据包。
根据本申请的一个示例,所述第一请求消息包括第二指示信息、所述第二基站的标识和所述用于进行双路传输的传输网络层信息,所述第二指示信息用于指示所述核心网采用双路传输方式发送数据包。
根据本申请的一个示例,所述第一指示信息和所述第二指示信息中的至少一个与用户装置的一个或多个业务承载相关联。
根据本申请的一个示例,所述传输网络层信息是通用分组无线业务隧道协议GTP隧道端点信息,所述GTP隧道端点信息包括隧道的传输网络层地址和隧道的标识。
根据本申请的一个示例,所述多个数据包包括业务数据包和同步数据包;所述第一基 站和所述第二基站根据所述同步数据包和预设规则给相同业务数据包确定相同的接入层数据包序号。
根据本申请的一个示例,所述第一基站和所述第二基站根据所述同步数据包和预设规则给相同业务数据包确定相同的接入层数据包序号包括:
所述第一基站确定所述第一基站从所述核心网接收的业务数据包的接入层数据包序号,并根据所述同步数据包和所述预设规则将所确定的接入层数据包序号中的一个发送给所述第二基站;
所述第二基站根据所述同步数据包、所述预设规则以及从所述第一基站接收的接入层数据包序号,给其从所述核心网接收的业务数据包确定接入层数据包序号。
根据本申请的一个示例,所述预设规则是所述第一基站将所述同步数据包的前一个业务数据包或者前第M个业务数据包的接入层数据包序号发送给所述第二基站,其中M为大于1的正整数;或者所述预设规则是所述第一基站将所述同步数据包的后面第一个业务数据包或者后面第N个业务数据包的接入层数据包序号发送给所述第二基站,其中N为大于1的正整数;或者所述预设规则是所述第一基站将所述同步数据包的接入层数据包序号发送给所述第二基站。
根据本申请的一个示例,所述同步数据包是通用分组无线业务隧道协议GTP用户面数据包,所述GTP用户面数据包的头部指示所述GTP用户面数据包是同步数据包。
根据本申请的一个示例,接入层数据包序号是分组数据汇聚协议PDCP层数据包序号,或者PDCP层数据包序号和超帧号HFN。
根据本申请的一个示例,在所述第二基站从所述核心网接收所述核心网通过双路传输方式发送的数据包之后,所述第二基站对其从所述核心网接收的数据包进行处理以获得处理后的数据包,并将所述处理后的数据包发送给用户装置。
根据本申请的一个示例,所述第二请求消息是切换请求消息。
根据本申请的一个示例,所述第一基站将所确定的接入层数据包序号中的一个发送给所述第二基站包括:所述第一基站向所述第二基站发送早期状态转移消息或序列号状态转移消息,其中所述早期状态转移消息或序列号状态转移消息包括所述所确定的接入层数据包序号中的一个。
根据本申请的一个示例,在切换完成之后,所述第二基站向核心网发送第三请求消息,其中所述第三请求消息用于请求停用或取消双路传输方式,或者所述第三请求消息用于请求所述核心网针对所述第二基站采用单路传输方式。
根据本申请的一个示例,所述第三请求消息是路径切换请求消息。
根据本申请的一个示例,在切换取消或失败之后,所述第一基站向核心网发送第四请求消息,其中所述第四请求消息用于请求停用或取消双路传输方式,或者所述第四请求消息用于请求所述核心网针对所述第一基站采用单路传输方式。
根据本申请的一个示例,所述第一基站和所述第二基站为主备网络中的两个基站,或者并发网络中的两个基站。
根据本申请的一个示例,在所述第一基站和所述第二基站从所述核心网接收所述核心网通过双路传输方式发送的数据包之后,所述第一基站和所述第二基站中的至少一个基站 对其从所述核心网接收的业务数据包进行处理以获得处理后的数据包,并将处理后的数据包发送给用户装置。
根据本申请的一个示例,所述第一基站向所述第二基站发送模式指示信息,其中所述模式指示信息用于指示所述第二基站的模式为待机模式或者工作模式。
根据本申请的一个示例,所述第二基站根据所述模式指示信息确定所述第二基站的模式;当所述第二基站的模式是待机模式时,所述第二基站把其在待机模式下从所述核心网接收的业务数据包存储特定时长,并且在所述特定时长到期时若所述第二基站的模式仍是待机模式则删除其在待机模式下从所述核心网接收的业务数据包。
根据本申请的一个示例,在所述第一基站向所述核心网发送第一请求消息之后,所述第一基站或所述第二基站向所述核心网发送第五请求消息,其中所述第五请求消息用于请求停用或取消双路传输方式,或者所述第五请求消息用于请求所述核心网针对所述第一基站或所述第二基站采用单路传输方式。
根据本申请的一个示例,所述核心网包括接入管理功能AMF实体和用户面功能UPF实体;
所述第一基站向所述核心网发送第一请求消息包括:
所述第一基站向所述AMF实体发送所述第一请求消息;
所述AMF实体向所述UPF实体发送第一消息,所述第一消息用于请求采用双路传输方式发送数据包;
所述核心网通过所述双路传输方式向所述第一基站和所述第二基站发送一个或多个数据包包括:
所述UPF实体通过所述双路传输方式向所述第一基站和所述第二基站发送一个或多个数据包;
所述第二基站向核心网发送第三请求消息包括:
所述第二基站向所述AMF实体发送所述第三请求消息;
所述第一基站向核心网发送第四请求消息包括:
所述第一基站向所述AMF实体发送所述第四请求消息;
所述第一基站或所述第二基站向所述核心网发送第五请求消息包括:
所述第一基站或所述第二基站向所述AMF实体发送所述第五请求消息。
本申请的另一方面提供了一种通信系统,包括用户装置、第一基站和第二基站,其特征在于,所述第一基站用于向所述用户装置发送指示信息,其中所述指示信息用于指示采用双路传输方式发送数据包,所述双路传输方式是所述用户装置将同一数据包分别发送给所述第一基站和所述第二基站的传输方式;所述用户装置用于根据所述指示信息针对所述第一基站和所述第二基站执行双路传输;所述第一基站和所述第二基站用于从所述用户装置接收所述用户装置通过双路传输方式发送的数据包。
根据本申请的一个示例,在所述第一基站向所述用户装置发送所述指示信息之前,所述第一基站还用于向所述第二基站发送用于接收上行数据的核心网地址;在所述第二基站从所述用户装置接收所述用户装置通过双路传输方式发送的数据包之后,所述第二基站还用于根据所述核心网地址向核心网发送数据包。
本申请的另一方面提供了一种由第一基站执行的数据通信方法,包括:向核心网发送第一请求消息,其中所述第一请求消息用于请求采用双路传输方式发送数据包,所述双路传输方式是所述核心网将同一数据包分别发送给所述第一基站和第二基站的传输方式;从所述核心网接收所述核心网通过所述双路传输方式发送的一个或多个数据包。
根据本申请的一个示例,在向所述核心网发送第一请求消息之前,所述方法还包括:向所述第二基站发送第二请求消息,其中所述第二请求消息用于请求进行双路传输的传输网络层信息;从所述第二基站接收用于进行双路传输的传输网络层信息。
根据本申请的一个示例,所述第二请求消息包括第一指示信息,其中所述第一指示信息用于指示所述核心网采用双路传输方式发送数据包。
根据本申请的一个示例,所述第一请求消息包括第二指示信息、所述第二基站的标识和所述用于进行双路传输的传输网络层信息,所述第二指示信息用于指示所述核心网采用双路传输方式发送数据包。
根据本申请的一个示例,所述第一指示信息和所述第二指示信息中的至少一个与用户装置的一个或多个业务承载相关联。
根据本申请的一个示例,所述传输网络层信息是通用分组无线业务隧道协议GTP隧道端点信息,所述GTP隧道端点信息包括隧道的传输网络层地址和隧道的标识。
根据本申请的一个示例,其中所述多个数据包包括业务数据包和同步数据包,所述同步数据包用于所述第一基站和所述第二基站给相同业务数据包确定相同的接入层数据包序号。
根据本申请的一个示例,在从所述核心网接收所述核心网通过所述双路传输方式发送的一个或多个数据包之后,所述方法还包括:确定所述第一基站从所述核心网接收的业务数据包的接入层数据包序号,并根据所述同步数据包和所述预设规则将所确定的接入层数据包序号中的一个发送给所述第二基站。
根据本申请的一个示例,所述预设规则是所述第一基站将所述同步数据包的前一个业务数据包或者前第M个业务数据包的接入层数据包序号发送给所述第二基站,其中M为大于1的正整数;或者所述预设规则是所述第一基站将所述同步数据包的后面第一个业务数据包或者后面第N个业务数据包的接入层数据包序号发送给所述第二基站,其中N为大于1的正整数;或者所述预设规则是所述第一基站将所述同步数据包的接入层数据包序号发送给所述第二基站。
根据本申请的一个示例,所述同步数据包是通用分组无线业务隧道协议GTP用户面数据包,所述GTP用户面数据包的头部指示所述GTP用户面数据包是同步数据包。
根据本申请的一个示例,接入层数据包序号是分组数据汇聚协议PDCP层数据包序号,或者PDCP层数据包序号和超帧号HFN。
根据本申请的一个示例,所述第二请求消息是切换请求消息。
根据本申请的一个示例,将所确定的接入层数据包序号中的一个发送给所述第二基站包括:
向所述第二基站发送早期状态转移消息或序列号状态转移消息,其中所述早期状态转移消息或序列号状态转移消息包括所述所确定的接入层数据包序号中的一个。
根据本申请的一个示例,在切换取消或失败之后,所述方法还包括:向核心网发送第四请求消息,其中所述第四请求消息用于请求停用或取消双路传输方式,或者所述第四请求消息用于请求所述核心网针对所述第一基站采用单路传输方式。
根据本申请的一个示例,在从所述核心网接收所述核心网通过所述双路传输方式发送的一个或多个数据包之后,所述方法还包括:
对其从所述核心网接收的业务数据包进行处理以获得处理后的数据包,并将处理后的数据包发送给用户装置。
根据本申请的一个示例,方法还包括:
向所述第二基站发送模式指示信息,其中所述模式指示信息用于指示所述第二基站的模式为待机模式或者工作模式。
根据本申请的一个示例,在向所述核心网发送第一请求消息之后,所述方法还包括:
向所述核心网发送第五请求消息,其中所述第五请求消息用于请求停用或取消双路传输方式,或者所述第五请求消息用于请求所述核心网针对所述第一基站或所述第二基站采用单路传输方式。
根据本申请的一个示例,所述核心网包括接入和移动性管理功能AMF实体和用户面功能UPF实体;
向所述核心网发送第一请求消息包括:
向所述AMF实体发送所述第一请求消息;
向所述核心网发送第四请求消息包括:
向所述AMF实体发送所述第四请求消息;
向所述核心网发送第五请求消息包括:
向所述AMF实体发送所述第五请求消息。
本申请的另一方面提供了一种由第二基站执行的数据通信方法,包括:从所述第一基站接收第二请求消息,其中所述第二请求消息用于请求进行双路传输的传输网络层信息;响应于所述第二请求消息,向所述第一基站发送用于进行双路传输的传输网络层信息。
根据本申请的一个示例,所述第二请求消息包括第一指示信息,其中所述第一指示信息用于指示所述核心网采用双路传输方式发送数据包。
根据本申请的一个示例,所述第一指示信息与用户装置的一个或多个业务承载相关联。
根据本申请的一个示例,所述传输网络层信息是通用分组无线业务隧道协议GTP隧道端点信息,所述GTP隧道端点信息包括隧道的传输网络层地址和隧道的标识。
根据本申请的一个示例,在向所述第一基站发送用于进行双路传输的传输网络层信息之后,所述方法还包括:
从所述核心网接收所述核心网通过所述双路传输方式发送的一个或多个数据包。
根据本申请的一个示例,所述多个数据包包括业务数据包和同步数据包,所述同步数据包用于所述第一基站和所述第二基站给相同业务数据包确定相同的接入层数据包序号。
根据本申请的一个示例,在从所述核心网接收所述核心网通过所述双路传输方式发送的一个或多个数据包之后,所述方法还包括:
从所述第一基站接收所述第一基站根据所述同步数据包和预设规则而发送的接入层数 据包序号;
根据所述同步数据包、所述预设规则以及从所述第一基站接收的接入层数据包序号,给其从所述核心网接收的业务数据包确定接入层数据包序号。
根据本申请的一个示例,所述预设规则是所述第一基站将所述同步数据包的前一个业务数据包或者前第M个业务数据包的接入层数据包序号发送给所述第二基站,其中M为大于1的正整数;或者所述预设规则是所述第一基站将所述同步数据包的后面第一个业务数据包或者后面第N个业务数据包的接入层数据包序号发送给所述第二基站,其中N为大于1的正整数;或者所述预设规则是所述第一基站将所述同步数据包的接入层数据包序号发送给所述第二基站。
根据本申请的一个示例,所述同步数据包是通用分组无线业务隧道协议GTP用户面数据包,所述GTP用户面数据包的头部指示所述GTP用户面数据包是同步数据包。
根据本申请的一个示例,接入层数据包序号是分组数据汇聚协议PDCP层数据包序号,或者PDCP层数据包序号和超帧号HFN。
根据本申请的一个示例,在从所述核心网接收所述核心网通过所述双路传输方式发送的一个或多个数据包之后,所述方法还包括:
对其从所述核心网接收的数据包进行处理以获得处理后的数据包,并将所述处理后的数据包发送给用户装置。
根据本申请的一个示例,所述第二请求消息是切换请求消息。
根据本申请的一个示例,其中从所述第一基站接收所述第一基站根据所述同步数据包和预设规则而发送的接入层数据包序号包括:
从所述第一基站接收发送早期状态转移消息或序列号状态转移消息,其中所述早期状态转移消息或序列号状态转移消息包括所述第一基站根据所述同步数据包和预设规则而发送的接入层数据包序号。
根据本申请的一个示例,在切换完成之后,所述方法还包括:向核心网发送第三请求消息,其中所述第三请求消息用于请求停用或取消双路传输方式,或者所述第三请求消息用于请求所述核心网针对所述第二基站采用单路传输方式。
根据本申请的一个示例,所述第三请求消息是路径切换请求消息。
根据本申请的一个示例,方法还包括:从所述第一基站接收模式指示信息,其中所述模式指示信息用于指示所述第二基站的模式为待机模式或者工作模式。
根据本申请的一个示例,在从所述第一基站接收模式指示信息之后,所述方法还包括:
根据所述模式指示信息确定所述第二基站的模式;
当所述第二基站的模式是待机模式时,所述第二基站把其在待机模式下从所述核心网接收的业务数据包存储特定时长,并且在所述特定时长到期时若所述第二基站的模式仍是待机模式则删除其在待机模式下从所述核心网接收的业务数据包。
根据本申请的一个示例,方法还包括:向所述核心网发送第五请求消息,其中所述第五请求消息用于请求停用或取消双路传输方式,或者所述第五请求消息用于请求所述核心网针对所述第一基站或所述第二基站采用单路传输方式。
根据本申请的一个示例,所述核心网包括接入管理功能AMF实体和用户面功能UPF 实体;
从所述核心网接收所述核心网通过所述双路传输方式发送的一个或多个数据包包括:
从所述UPF接收所述UPF通过所述双路传输方式发送的一个或多个数据包;
向所述核心网发送第三请求消息包括:
向所述AMF实体发送所述第三请求消息;
向所述核心网发送第五请求消息包括:
向所述AMF实体发送所述第五请求消息。
本申请的另一方面提供了一种由核心网执行的数据通信方法,包括:从第一基站接收第一请求消息,其中所述第一请求消息用于请求采用双路传输方式发送数据包,所述双路传输方式是所述核心网将同一数据包分别发送给所述第一基站和所述第二基站的传输方式;在接收到所述第一请求消息后,通过所述双路传输方式向所述第一基站和第二基站发送一个或多个数据包。
根据本申请的一个示例,所述第一请求消息包括第一指示信息、所述第二基站的标识和用于进行双路传输的传输网络层信息,其中所述第一指示信息用于指示所述核心网采用双路传输方式发送数据包。
根据本申请的一个示例,所述第一指示信息与用户装置的一个或多个业务承载相关联。
根据本申请的一个示例,所述传输网络层信息是通用分组无线业务隧道协议GTP隧道端点信息,所述GTP隧道端点信息包括隧道的传输网络层地址和隧道的标识。
根据本申请的一个示例,所述多个数据包包括业务数据包和同步数据包,其中所述同步数据包用于所述第一基站和所述第二基站根据所述同步数据包和预设规则给相同业务数据包确定相同的接入层数据包序号。
根据本申请的一个示例,所述同步数据包是通用分组无线业务隧道协议GTP用户面数据包,所述GTP用户面数据包的头部指示所述GTP用户面数据包是同步数据包。
根据本申请的一个示例,接入层数据包序号是分组数据汇聚协议PDCP层数据包序号,或者PDCP层数据包序号和超帧号HFN。
根据本申请的一个示例,在切换完成后,所述方法还包括:
从所述第二基站接收第三请求消息,其中所述第三请求消息用于请求停用或取消双路传输方式,或者所述第三请求消息用于请求所述核心网针对所述第二基站采用单路传输方式。
根据本申请的一个示例,所述第三请求消息是路径切换请求消息。
根据本申请的一个示例,在切换取消或失败后,所述方法还包括:
从所述第一基站接收第四请求消息,其中所述第四请求消息用于请求停用或取消双路传输方式,或者所述第四请求消息用于请求所述核心网针对所述第一基站采用单路传输方式。
根据本申请的一个示例,在从所述第一基站接收第一请求消息之后,所述方法还包括:
从所述第一基站或所述第二基站接收第五请求消息,其中所述第五请求消息用于请求停用或取消双路传输方式,或者所述第五请求消息用于请求所述核心网针对所述第一基站或所述第二基站采用单路传输方式。
根据本申请的一个示例,所述核心网包括接入管理功能AMF实体和用户面功能UPF实体;
所述从第一基站接收第一请求消息包括:
所述AMF实体从第一基站接收第一请求消息;
通过所述双路传输方式向所述第一基站和第二基站发送一个或多个数据包包括:
所述UPF实体通过所述双路传输方式向所述第一基站和第二基站发送一个或多个数据包;
从所述第二基站接收第三请求消息包括:
所述AMF实体从所述第二基站接收第三请求消息;
从所述第一基站接收第四请求消息包括:
所述AMF实体从所述第一基站接收第四请求消息;
从所述第一基站或所述第二基站接收第五请求消息包括:
所述AMF实体从所述第一基站或所述第二基站接收第五请求消息。
本申请的另一方面提供了一种由用户装置执行的数据通信方法,包括:从第一基站接收指示信息,其中所述指示信息用于指示采用双路传输方式发送数据包,所述双路传输方式是所述用户装置将同一数据包分别发送给所述第一基站和第二基站的传输方式;根据所述指示信息针对所述第一基站和所述第二基站执行双路传输。
本申请的另一方面提供了一种基站,包括:存储器,用于存储计算机程序代码,所述计算机程序代码包括计算机指令;以及处理器,用于当所述计算机指令被运行时,使得所述基站执行上述由基站执行的方法。
本申请的另一方面提供了一种核心网设备,包括:存储器,用于存储计算机程序代码,所述计算机程序代码包括计算机指令;以及处理器,用于当所述计算机指令被运行时,使得所述核心网设备执行上述由核心网设备执行的方法。
本申请的另一方面提供了一种用户装置,包括:存储器,用于存储计算机程序代码,所述计算机程序代码包括计算机指令;以及处理器,用于当所述计算机指令被运行时,使得所述用户装置执行上述由用户装置执行的方法。
本申请的另一方面提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时,使得计算机执行上述由基站、或者核心网设备、或者用户装置执行的方法。
附图说明
通过结合附图的具体说明,本申请的上述和其他目的、特征和优点将变得更加清楚。此处的附图被并入说明书中并构成本说明书的一部分,并与说明书一起用于解释本申请的原理。在附图中,相同的附图参考标记指代相同或相似的元件、特征和结构,其中:
图1为可以在其中应用本申请实施例的无线通信系统的示意图;
图2示出了在常规的切换技术中从源基站到目标基站的数据包转发的示意图;
图3A示出了根据本申请实施例的针对切换场景的通信方法的时序示意图;
图3B示出了根据本申请实施例的在切换过程中核心网通过双路传输方式向源基站和目标基站发送数据包的示意图;
图4示出了根据本申请实施例的针对切换场景的另一通信方法的时序示意图;
图5示出了根据本申请实施例的针对切换场景的又一通信方法的时序示意图;
图6示出了根据本申请另一实施例的通信方法的时序示意图;
图7是根据本申请多个实施例的由基站执行的方法的流程图;
图8示出了根据本申请又一实施例的通信方法的时序示意图;
图9示出了根据本申请再一实施例的通信方法的时序示意图;
图10为本申请实施例提供的一种通信装置的结构示意图;
图11为本申请实施例提供的UE的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述,显然,所描述的实施例是本专利申请的一部分实施例,而不是全部实施例。基于本专利申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本专利申请保护的范围。
在本说明书中使用的术语“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。此外,结合终端描述了各个实施例。终端也可以称为终端单元、终端站、移动站、移动台、远方站、远程终端、移动设备、无线通信设备、终端代理、终端装置或用户装置(User Equipment,UE)。终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备等。
此外,结合基站描述了各个实施例。基站可用于与UE通信,基站可以是GSM(Global System of Mobile communication,全球移动通讯)或CDMA(Code DivisionMultiple Access,码分多址)中的BTS(Base Transceiver Station,基站),也可以是WCDMA(Wideband Code Division Multiple Access,宽带码分多址)中的RNC(Radio Network Controller,无线网络控制器)或者NB+(NodeB+),还可以是LTE中的演进型通用陆地无线接入网(Evolved Universal Terrestrial Radio Access Network,E-UTRAN)设备,如演进型节点B(evolutional NodeB,eNB或e-NodeB),也可以是5G系统中的下一代无线接入网(Next Generation Radio Access Network,NG-RAN)设备(如gNB)等,或者中继站或接入点,或者未来网络中的基站设备等。
本申请说明书和权利要求书及附图说明中的术语“第一”、“第二”和“第三”等是用于区别不同对象,而不是用于限定特定顺序。
在本申请实施例中,“示例性的”或者“例如”等术语用于表示作示例、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请,下面将结合附图对本申请的实施例进行详细描述。
首先,结合图1来描述可以在其中应用本申请实施例的无线通信系统。图1为可以在 其中应用本申请实施例的无线通信系统的示意图。该无线通信系统可以是LTE,也可以是5G无线通信系统,或者未来无线通信发展中出现的新的通信系统等。在下文中,以5G无线通信系统为例来描述本申请实施例。
如图1所示,以5G无线通信系统的网络服务架构为例展示了网络功能和实体之间的交互关系以及对应的接口,该5G无线通信系统的第三代合作伙伴项目(the 3rd generation partnership project,3GPP)基于服务的网络架构(service-based architecture,SBA)包括的网络功能和实体主要包括:用户设备(User Equipment,UE)、接入网(Access Network,AN)或无线接入网(Radio Access Network,RAN)、用户面功能(User Plane Function,UPF)、数据网络(Data Network,DN)、接入和移动性管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、认证服务功能(Authentication Server Function,AUSF)、策略控制功能(Policy Control Function,PCF)、应用功能(Application Function,AF)、网络切片选择功能(Network Slice Selection Function,NSSF)、统一数据管理(Unified Data Management,UDM)、网络开放功能(Network Exposure Function,NEF)和网络存储功能(Network Repository Function,NRF)。除了UE和AN/RAN之外的网元所组成的网络可以称为核心网。
网络功能能够作为一个运行在专有硬件上的网络元素,或者运行在专有硬件上的软件实例,或者在一个合适平台上进行实例化的虚拟功能,比如在一个云基础设备被实施。
下面对各个网元的主要功能做具体介绍。
AN/RAN:AN/RAN可以包括各种形式的基站,例如:宏基站,微基站(也称为“小站”),分散单元-控制单元(Distribute Unit-Control Unit,DU-CU)等。另外,上述基站还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者中继站、接入点、车载设备、可穿戴设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的网络设备等。AN/RAN也可以包括宽带网络业务网关(Broadband Network Gateway,BNG),汇聚交换机,非3GPP接入设备等。AN/RAN主要负责空口侧的无线资源管理、上下行数据分类、服务质量(quality of service,QoS)管理、数据压缩和加密、与控制面网元完成信令处理或与用户面网元完成数据转发等功能。本申请实施例对AN/RAN的具体形态和结构不做限定。如,在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同。例如,基站可以是LTE中的E-UTRAN设备(如e-NodeB),也可以是5G无线通信系统中的下一代无线接入网设备(如gNB)等。
AMF:可以支持UE的接入认证、移动管理、注册管理、连接管理、合法接听,支持传输UE和SMF实体之间的会话管理信息等。
UPF:具有数据包的路由功能,例如,可以从网络获取数据包并向RAN发送数据包等。
SMF:可以支持会话管理等,其中该会话管理可以包括会话建立、修改和释放等。
DN:DN是用于传输数据的网络。例如:DN可以是运营商服务网络、互联网接入或第三方服务网络等。
对于AUSF、NSSF、NEF、NRF和UDM等网元的功能等的介绍,可以参考常规技术中的解释和说明,这里不做赘述。
应该理解,各个网元之间存在对应的通信接口,例如,UE和AN/RAN之间的Uu接口、 AN/RAN和UPF之间的N3接口、UPF和DN之间的N6接口、UPF和SMF之间的N4接口、AN/RAN和AMF之间的N2接口等,如图1所示。
在常规的切换技术中,为了保证切换过程中下行数据传输的连续性,源基站会将其从核心网接收的下行业务数据包转发给目标基站,然后由目标基站发送给UE。例如,在源基站决定将UE的服务基站切换到目标基站时,源基站可以将其从核心网接收的且还未向UE发送的一部分下行业务数据包发送给UE,另一部分下行业务数据包转发给目标基站,然后由目标基站将该另一部分下行业务数据包发送给UE。又例如,在源基站决定将UE的服务基站切换到目标基站时,源基站可以将其从核心网接收的且还未向UE发送的所有下行业务数据包转发给目标基站,然后由目标基站发送给UE。
图2示出了在常规的切换技术中从源基站到目标基站的数据包转发的一个示意图。如图2所示,UE 201的当前服务基站是基站202-1(也可称为源基站202-1)。源基站202-1可以配置UE 201的测量过程,相应地,UE 201可以根据配置进行测量报告。然后,源基站202-1可以基于UE 201的测量报告等信息决定将UE 201的服务基站切换为基站202-2(也可称为目标基站202-2)。在切换过程中,源基站202-1可以将其从核心网203(例如UPF)接收的且还未向UE 201发送的下行业务数据包#1-#4转发给目标基站202-2,然后由目标基站202-2发送给UE 201。
从源基站到目标基站的数据包转发过程给被转发的数据包(例如下行业务数据包#1-#4)引入了时延,从而增加了这些数据包的端到端(End to End,E2E)时延。然而,数据包的E2E时延的增加会降低网络给UE提供的服务质量,尤其是当UE进行的业务为时间敏感业务(例如工业控制、自动驾驶等)时这种缺陷会更加明显。
为了克服上述缺陷,本申请提出了一种通信方法,以避免从源基站到目标基站的数据转发而引入的时延,保证了网络给UE提供的业务服务质量,保证了时延敏感类业务的时延要求等。
图3A示出了根据本申请实施例的针对切换场景的通信方法的时序示意图。如图3A所示,在UE的服务基站从源基站切换到目标基站之前,核心网向源基站发送业务数据包,然后源基站向UE发送业务数据包。在本申请实施例中,业务数据包也可以称为业务数据,或者用户数据(user data),或者用户数据包等。
在S301中,源基站决定将UE的服务基站切换为目标基站。
在S302中,源基站决定在切换过程中采用双路传输(bi-casting)方式。
双路传输方式是相对于常规的单路传输方式而言的。在常规的切换技术中,在切换过程中,核心网将下行业务数据包发送给源基站,而不会将下行业务数据包发送给目标基站。而本申请实施例中的双路传输方式是指在切换过程中,核心网将同一下行业务数据包发送给源基站和目标基站二者。也就是说,在切换过程中,源基站和目标基站会从核心网接收到相同的下行业务数据包。
在S303中,源基站向目标基站发送第一请求消息。该第一请求消息可以包括双路传输方式指示信息,用于指示在切换过程中采用双路传输方式。
根据本申请实施例的一个示例,双路传输方式指示信息可以与UE的一个或多个业务承载关联。例如,双路传输方式指示信息可以与UE的一个或多个业务承载的标识关联。 通过这种方式,可以以业务承载为粒度来进行双路传输。
在该示例中,上文所描述的第一请求消息不仅可以包括双路传输方式指示信息,还可以包括相关联的一个或多个业务承载的标识。
在S304中,目标基站向源基站发送第一响应消息。该第一响应消息可以包括用于进行双路传输的传输网络层(Transport Network Layer,TNL)信息。
该用于进行双路传输的传输网络层信息用于在双路传输方式下目标基站从核心网接收下行数据包。在无线通信系统使用GPRS(通用分组无线业务,General Packet Radio Service)隧道协议-用户面(GPRS Tunnel Protocol-User plane,GTP-U)隧道的示例中,该传输网络层信息可以是GTP隧道端点信息(GTP Tunnel Endpoint)。该GTP隧道端点信息可以包括隧道的传输网络层地址、该隧道的标识等。该GTP隧道端点信息还可以包括用于指示隧道用途的信息。
应该理解,在无线通信系统使用其他隧道的示例中,该传输网络层信息可以包括与该其他隧道有关的信息。
在S305中,源基站向核心网发送第二请求消息。
该第二请求消息可以包括双路传输方式指示信息,用于指示在切换过程中采用双路传输方式。该第二请求消息还可以包括源基站从目标基站获取的用于进行双路传输的传输网络层信息。该第二请求消息还可以包括源基站自身的用于进行双路传输的传输网络层信息。该第二请求消息还可以包括目标基站的标识。该第二请求消息还可以包括与双路传输方式指示信息相关联的一个或多个业务承载的标识,即双路传输方式可以是per PDU会话(session)或者per EPS承载(bearer)的。
在S306中,核心网根据第二请求消息执行双路传输。
具体地,在接收到第二请求消息后,核心网会将原本只会发送给源基站的下行业务数据包,发送给源基站和目标基站二者。
另外,在切换过程中,通常在接入层(例如,分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层)实现数据连续性。因此,需要源基站和目标基站给同一下行业务数据包赋予相同的接入层数据包序号(Sequence Number,SN)(例如,PDCP层数据包序号,或者PDCP层数据包序号和HFN(Hyper Frame Number,超帧号)),以便UE能够将从源基站接收的数据包和从目标基站接收的数据包连续起来,以对数据包进行排序。在下文中,以接入层数据包序号是PDCP层数据包序号为例来描述本申请的实施例。
为了保证源基站和目标基站给同一下行业务数据包赋予相同的接入层数据包序号,在核心网通过双路传输方式向源基站和目标基站发送下行业务数据包的过程中,核心网按照第一规则向源基站和目标基站发送同步数据包。
例如,该第一规则可以是在双路传输方式下核心网发送的第一个数据包或者第N个数据包是同步数据包,其中N为正整数。在第一规则是在双路传输方式下核心网发送的第一个数据包是同步数据包的示例中,核心网可以向源基站和目标基站依次发送同步数据包、第一下行业务数据包、第二下行业务数据包、第三下行业务数据包、第四下行业务数据包等。在第一规则是在双路传输方式下核心网发送的第N个数据包是同步数据包且N=3的示例中,核心网可以向源基站和目标基站依次发送第一下行业务数据包、第二下行业务数据 包、同步数据包、第三下行业务数据包、第四下行业务数据包等。
又例如,该第一规则可以是在双路传输方式下在核心网发送业务数据包的过程中发送同步数据包。
应该理解,在双路传输方式下,核心网可以发送一个或多个同步数据包。下面以核心网发送一个同步数据包为例来描述本申请实施例。同步数据包用于实现源基站和目标基站给由核心网发送的同一下行业务数据包赋予相同的接入层数据包序号。具体的实现原理将在下文结合S307和S308详细描述。
根据本申请实施例的一个示例,同步数据包可以不包括任何业务数据(也可以称为用户数据user data)。例如,同步数据包可以是一个或多个空数据包。同步数据包的头部可以包括一个指示符,以指示该数据包是同步数据包。
根据本申请实施例的另一示例,同步数据包可以是包括业务数据的数据包。例如,同步数据包的头部可以包括一个指示符,以指示该数据包是同步数据包。该同步数据包的数据部分可以包括业务数据。该同步数据包的数据部分对应的比特可以是正常的业务数据或者填充比特。例如,如果是填充比特时,各个比特的取值可以是预设值,例如每个比特的取值可以均为0或1。
根据本申请实施例的另一示例,该同步数据包具体可以是GTP-U(GPRS Tunnel Protocol-User plane,GPRS隧道协议-用户面)数据包。在这种情形下,同步数据包的头部可以是GTP-U数据包的头部,即在GTP-U数据包的头部指示该数据包是同步数据包。
在本申请实施例中,同步数据包还可以被称为同步标记符(synchronization marker,或者sync marker),或者特殊标记符(special marker),或者特殊数据包(special packet),或者双路传输标记符(bi-casting marker),或者双路传输数据包(bi-casting packet)等。
在S307中,在源基站接收到同步数据包后,源基站按照预先定义的且源基站和目标基站均遵守的第二规则,向目标基站发送其从核心网接收的特定业务数据包的接入层数据包序号。
根据本申请实施例的一个示例,该第二规则可以是源基站将在接收同步数据包之前接收的某个业务数据包的接入层数据包序号发送给目标基站。该某个业务数据包可以是在同步数据包的前一个业务数据包或者前第M个业务数据包,其中M为正整数。
示例1:
在该某个业务数据包是在同步数据包的前一个业务数据包的示例中,假设核心网向源基站和目标基站依次发送第一下行业务数据包、第二下行业务数据包、同步数据包、第三下行业务数据包、第四下行业务数据包等,相应地,源基站可以给第一下行业务数据包、第二下行业务数据包、同步数据包、第三下行业务数据包、第四下行业务数据包…等分别赋予了接入层数据包序号SN。例如,第一下行业务数据包的接入层数据包序号SN=10,第二下行业务数据包的接入层数据包序号SN=11,同步数据包的接入层数据包序号SN=12,第三下行业务数据包的接入层数据包序号SN=13,第四下行业务数据包的接入层数据包序号SN=14等。然后,源基站可以把在同步数据包的前一个业务数据包即第二下行业务数据包的接入层数据包序号发送给目标基站,即将SN=11发送给目标基站。
示例2:
在该某个业务数据包是在同步数据包的前第M个业务数据包且M=2的示例中,假设核心网向源基站和目标基站依次发送第一下行业务数据包、第二下行业务数据包、同步数据包、第三下行业务数据包、第四下行业务数据包等,相应地,源基站可以给第一下行业务数据包、第二下行业务数据包、同步数据包、第三下行业务数据包、第四下行业务数据包…等分别赋予了接入层数据包序号SN。例如,第一下行业务数据包的接入层数据包序号SN=10,第二下行业务数据包的接入层数据包序号SN=11,同步数据包的接入层数据包序号SN=12,第三下行业务数据包的接入层数据包序号SN=13,第四下行业务数据包的接入层数据包序号SN=14等。然后,源基站可以把在同步数据包的前第2个业务数据包即第一下行业务数据包的接入层数据包序号发送给目标基站,即将SN=10发送给目标基站。
根据本申请实施例的另一示例,该第二规则还可以是源基站将在接收同步数据包之后接收的某个业务数据包的接入层数据包序号发送给目标基站。该某个业务数据包可以是在同步数据包的后面第一个业务数据包或者后面第M个业务数据包。
示例3:
在该某个业务数据包是在同步数据包的后面第一个业务数据包的示例中,假设核心网向源基站和目标基站依次发送第一下行业务数据包、第二下行业务数据包、同步数据包、第三下行业务数据包、第四下行业务数据包等,相应地,源基站可以给第一下行业务数据包、第二下行业务数据包、同步数据包、第三下行业务数据包、第四下行业务数据包…等分别赋予了接入层数据包序号SN。例如,第一下行业务数据包的接入层数据包序号SN=10,第二下行业务数据包的接入层数据包序号SN=11,同步数据包的接入层数据包序号SN=12,第三下行业务数据包的接入层数据包序号SN=13,第四下行业务数据包的接入层数据包序号SN=14等。然后,源基站可以把在同步数据包的后面第一个业务数据包即第三下行业务数据包的接入层数据包序号发送给目标基站,即将SN=13发送给目标基站。
示例4:
在该某个业务数据包是在同步数据包的后面第M个业务数据包且M=2的示例中,假设核心网向源基站和目标基站依次发送第一下行业务数据包、第二下行业务数据包、同步数据包、第三下行业务数据包、第四下行业务数据包等,相应地,源基站可以给第一下行业务数据包、第二下行业务数据包、同步数据包、第三下行业务数据包、第四下行业务数据包…等分别赋予了接入层数据包序号SN。例如,第一下行业务数据包的接入层数据包序号SN=10,第二下行业务数据包的接入层数据包序号SN=11,同步数据包的接入层数据包序号SN=12,第三下行业务数据包的接入层数据包序号SN=13,第四下行业务数据包的接入层数据包序号SN=14等。然后,源基站可以把在同步数据包的后面第2个业务数据包即第四下行业务数据包的接入层数据包序号发送给目标基站,即将SN=14发送给目标基站。
根据本申请实施例的另一示例,该第二规则还可以是源基站将同步数据包的接入层数据包序号发送给目标基站。
示例5:
例如,假设核心网向源基站和目标基站依次发送第一下行业务数据包、第二下行业务数据包、同步数据包、第三下行业务数据包、第四下行业务数据包等,相应地,源基站可以给第一下行业务数据包、第二下行业务数据包、同步数据包、第三下行业务数据包、第 四下行业务数据包…等分别赋予了接入层数据包序号SN。例如,第一下行业务数据包的接入层数据包序号SN=10,第二下行业务数据包的接入层数据包序号SN=11,同步数据包的接入层数据包序号SN=12,第三下行业务数据包的接入层数据包序号SN=13,第四下行业务数据包的接入层数据包序号SN=14等。然后,源基站可以把在同步数据包的接入层数据包序号发送给目标基站,即将SN=12发送给目标基站。
如上文所描述的,接入层数据包序号可以是PDCP层数据包序号。应该理解,对于其他通信系统,接入层数据包序号可以是任何用于切换时维护数据连续性或者业务连续性的接入层数据包序号。
应该理解,源基站和目标基站也可以预先协商或约定均不给同步数据包赋予接入层数据包序号。在这种情况下,上面所描述的示例1至示例4可以变形。例如,示例1可以变形为示例6,示例2可以变形为示例7,示例3可以变形为示例8,示例4可以变形为示例9。
示例6:
在该某个业务数据包是在同步数据包的前一个业务数据包的示例中,假设核心网向源基站和目标基站依次发送第一下行业务数据包、第二下行业务数据包、同步数据包、第三下行业务数据包、第四下行业务数据包等,相应地,源基站可以给第一下行业务数据包、第二下行业务数据包、第三下行业务数据包、第四下行业务数据包…等分别赋予了接入层数据包序号SN。例如,第一下行业务数据包的接入层数据包序号SN=10,第二下行业务数据包的接入层数据包序号SN=11,第三下行业务数据包的接入层数据包序号SN=12,第四下行业务数据包的接入层数据包序号SN=13等。然后,源基站可以把在同步数据包的前一个业务数据包即第二下行业务数据包的接入层数据包序号发送给目标基站,即将SN=11发送给目标基站。
示例7:
在该某个业务数据包是在同步数据包的前第M个业务数据包且M=2的示例中,假设核心网向源基站和目标基站依次发送第一下行业务数据包、第二下行业务数据包、同步数据包、第三下行业务数据包、第四下行业务数据包等,相应地,源基站可以给第一下行业务数据包、第二下行业务数据包、第三下行业务数据包、第四下行业务数据包…等分别赋予了接入层数据包序号SN。例如,第一下行业务数据包的接入层数据包序号SN=10,第二下行业务数据包的接入层数据包序号SN=11,第三下行业务数据包的接入层数据包序号SN=12,第四下行业务数据包的接入层数据包序号SN=13等。然后,源基站可以把在同步数据包的前第2个业务数据包即第一下行业务数据包的接入层数据包序号发送给目标基站,即将SN=10发送给目标基站。
示例8:
在该某个业务数据包是在同步数据包的后面第一个业务数据包的示例中,假设核心网向源基站和目标基站依次发送第一下行业务数据包、第二下行业务数据包、同步数据包、第三下行业务数据包、第四下行业务数据包等,相应地,源基站可以给第一下行业务数据包、第二下行业务数据包、第三下行业务数据包、第四下行业务数据包…等分别赋予了接入层数据包序号SN。例如,第一下行业务数据包的接入层数据包序号SN=10,第二下行业 务数据包的接入层数据包序号SN=11,第三下行业务数据包的接入层数据包序号SN=12,第四下行业务数据包的接入层数据包序号SN=13等。然后,源基站可以把在同步数据包的后面第一个业务数据包即第三下行业务数据包的接入层数据包序号发送给目标基站,即将SN=12发送给目标基站。
示例9:
在该某个业务数据包是在同步数据包的后面第M个业务数据包且M=2的示例中,假设核心网向源基站和目标基站依次发送第一下行业务数据包、第二下行业务数据包、同步数据包、第三下行业务数据包、第四下行业务数据包等,相应地,源基站可以给第一下行业务数据包、第二下行业务数据包、第三下行业务数据包、第四下行业务数据包…等分别赋予了接入层数据包序号SN。例如,第一下行业务数据包的接入层数据包序号SN=10,第二下行业务数据包的接入层数据包序号SN=11,第三下行业务数据包的接入层数据包序号SN=12,第四下行业务数据包的接入层数据包序号SN=13等。然后,源基站可以把在同步数据包的后面第2个业务数据包即第四下行业务数据包的接入层数据包序号发送给目标基站,即将SN=13发送给目标基站。
在S308中,在目标基站接收到同步数据包后,目标基站根据其从源基站接收的接入层数据包序号、以及第二规则,给其从核心网接收的下行业务数据包确定接入层数据包序号。
如上文结合S307所描述的,该第二规则可以是源基站将在接收同步数据包之前接收的某个业务数据包的接入层数据包序号发送给目标基站。该某个业务数据包可以是在同步数据包的前一个业务数据包或者前第M个业务数据包,其中M为正整数。
在上述示例1中,源基站把在同步数据包的前一个业务数据包即第二下行业务数据包的接入层数据包序号发送给目标基站,即将SN=11发送给目标基站。相应地,在S308中,目标基站将其接收到的在同步数据包的前面一个业务数据包即第二下行业务数据包的接入层数据包序号确定为11,并且还可以相应地确定其他数据包的接入层数据包序号。例如,目标基站能够确定其从核心网接收的第一下行业务数据包的接入层数据包序号SN=10,同步数据包的接入层数据包序号SN=12,第三下行业务数据包的接入层数据包序号SN=13,第四下行业务数据包的接入层数据包序号SN=14等。
在上述示例2中,源基站可以把在同步数据包的前第2个业务数据包即第一下行业务数据包的接入层数据包序号发送给目标基站,即将SN=10发送给目标基站。相应地,在S308中,目标基站将其接收到的在同步数据包的前第2个业务数据包即第一下行业务数据包的接入层数据包序号确定为10,并且还可以相应地确定其他数据包的接入层数据包序号。例如,目标基站能够确定其从核心网接收的第二下行业务数据包的接入层数据包序号SN=11,同步数据包的接入层数据包序号SN=12,第三下行业务数据包的接入层数据包序号SN=13,第四下行业务数据包的接入层数据包序号SN=14等。
如上文结合S307所描述的,该第二规则还可以是源基站将在接收同步数据包之后接收的某个业务数据包的接入层数据包序号发送给目标基站。该某个业务数据包可以是在同步数据包的后面第一个业务数据包或者后面第M个业务数据包。
在上述示例3中,源基站可以把在同步数据包的后面第一个业务数据包即第三下行业务数据包的接入层数据包序号发送给目标基站,即将SN=13发送给目标基站。相应地,在 S308中,目标基站将其接收到的在同步数据包的后面第一个业务数据包即第三下行业务数据包的接入层数据包序号确定为13,并且还可以相应地确定其他数据包的接入层数据包序号。例如,目标基站能够确定其从核心网接收的第一下行业务数据包的接入层数据包序号SN=10,第二下行业务数据包的接入层数据包序号SN=11,同步数据包的接入层数据包序号SN=12,第四下行业务数据包的接入层数据包序号SN=14等。
在上述示例4中,源基站可以把在同步数据包的后面第2个业务数据包即第四下行业务数据包的接入层数据包序号发送给目标基站,即将SN=14发送给目标基站。相应地,在S308中,目标基站将其接收到的在同步数据包的后面第2个业务数据包即第四下行业务数据包的接入层数据包序号确定为14,并且还可以相应地确定其他数据包的接入层数据包序号。例如,目标基站能够确定其从核心网接收的第一下行业务数据包的接入层数据包序号SN=10,第二下行业务数据包的接入层数据包序号SN=11,同步数据包的接入层数据包序号SN=12,第三下行业务数据包的接入层数据包序号SN=13等。
如上文结合S307所描述的,该第二规则还可以是源基站将同步数据包的接入层数据包序号发送给目标基站。
在示例5中,源基站可以把在同步数据包的接入层数据包序号发送给目标基站,即将SN=12发送给目标基站。相应地,在S308中,目标基站将其接收到的同步数据包的接入层包序号确定为12,并且还可以相应地确定其他数据包的接入层数据包序号。例如,目标基站能够确定其从核心网接收的第一下行业务数据包的接入层数据包序号SN=10,第二下行业务数据包的接入层数据包序号SN=11,第三下行业务数据包的接入层数据包序号SN=13,第四下行业务数据包的接入层数据包序号SN=14等。
此外,在示例6中,源基站可以把在同步数据包的前一个业务数据包即第二下行业务数据包的接入层数据包序号发送给目标基站,即将SN=11发送给目标基站。相应地,在S308中,目标基站将其接收到的在同步数据包的前一个业务数据包即第二下行业务数据包的接入层数据包序号确定为11,并且还可以相应地确定其他数据包的接入层数据包序号。例如,目标基站能够确定其从核心网接收的第一下行业务数据包的接入层数据包序号SN=10,第三下行业务数据包的接入层数据包序号SN=12,第四下行业务数据包的接入层数据包序号SN=13等。
在示例7中,源基站可以把在同步数据包的前第2个业务数据包即第一下行业务数据包的接入层数据包序号发送给目标基站,即将SN=10发送给目标基站。相应地,在S308中,目标基站将其接收到的在同步数据包的前第2个业务数据包即第一下行业务数据包的接入层数据包序号确定为10,并且还可以相应地确定其他数据包的接入层数据包序号。例如,目标基站能够确定其从核心网接收的第二下行业务数据包的接入层数据包序号SN=11,第三下行业务数据包的接入层数据包序号SN=12,第四下行业务数据包的接入层数据包序号SN=13等。
在示例8中,源基站可以把在同步数据包的后面第一个业务数据包即第三下行业务数据包的接入层数据包序号发送给目标基站,即将SN=12发送给目标基站。相应地,在S308中,目标基站将其接收到的在同步数据包的后面第一个业务数据包即第三下行业务数据包的接入层数据包序号确定为12,并且还可以相应地确定其他数据包的接入层数据包序号。 例如,目标基站能够确定其从核心网接收的第一下行业务数据包的接入层数据包序号SN=10,第二下行业务数据包的接入层数据包序号SN=11,第四下行业务数据包的接入层数据包序号SN=13等。
在示例9中,源基站可以把在同步数据包的后面第2个业务数据包即第四下行业务数据包的接入层数据包序号发送给目标基站,即将SN=13发送给目标基站。相应地,在S308中,目标基站将其接收到的在同步数据包的后面第2个业务数据包即第四下行业务数据包的接入层数据包序号确定为13,并且还可以相应地确定其他数据包的接入层数据包序号。例如,目标基站能够确定其从核心网接收的第一下行业务数据包的接入层数据包序号SN=10,第二下行业务数据包的接入层数据包序号SN=11,第三下行业务数据包的接入层数据包序号SN=12等。
此外,在其他示例中,源基站向目标基站发送的接入层数据包序号可能是核心网通过单路传输方式发送的业务数据包的接入层数据包序号,即源基站从核心网接收到该业务数据包而目标基站没有从核心网接收到该业务数据包。在这种情况下,目标基站可以根据其从源基站接收的接入层数据包序号和第二规则确定目标基站在双路传输方式下从核心网接收的业务数据包的接入层数据包序号,无需关注自身是否之前接收到了与源基站所发送的接入层数据包序号对应的业务数据包。
通过S307和S308,在双路传输方式下,从核心网到源基站的数据包和从核心网到目标基站的数据包在源基站侧和目标基站侧具有相同的接入层数据包序号。
在S309中,目标基站对其从核心网接收的业务数据包进行处理,以获得处理后的数据包。然后,目标基站将处理后的数据包发送给UE。该处理例如可以是将其从核心网接收的业务数据包的头部去掉、增加新的头部、封装成新的数据包,并且新的数据包的头部包括相应的接入层数据包序号。
在S310中,UE的接入层可以根据接入层数据包序号对所接收的数据包进行处理。该处理例如可以是对数据包排序等。
可选地,在S306之后,源基站也可以将其从核心网接收的业务数据包进行处理,并将处理后的数据包发送给UE。该处理与S309中的处理类似,在此不再赘述。在这种情况下,在S310中,UE所进行的处理还可以包括删除重复(即去重)数据包(图中未示出)。在切换成功的场景下,在S311中,目标基站可以向核心网发送第三请求消息。该第三请求消息可以用于请求停用或取消双路传输方式(图中已示出)。或者,该第三请求消息可以请求核心网针对目标基站采用单路传输方式(图中未示出)。然后,在S312中,核心网根据第三请求消息执行单路传输,即将下行业务数据包只发送给目标基站而不发送给源基站。在S313中,目标基站对其从核心网接收的业务数据包进行处理以获得处理后的数据包,然后,目标基站将处理后的数据包发送给UE。在S314中,UE的接入层可以根据接入层数据包序号对所接收的数据包进行处理,例如对数据包排序等。
在切换失败或取消的场景下,在S311’中,源基站可以向核心网发送第四请求消息。该第四请求消息可以用于请求停用或取消双路传输方式(图中已示出)。或者,该第四请求消息可以请求核心网针对源基站采用单路传输方式(图中未示出)。然后,在S312’中,核心网根据第四请求消息执行单路传输,即将下行业务数据包只发送给源基站而不发送给目 标基站。在S313’中,源基站对其从核心网接收的业务数据包进行处理以获得处理后的数据包,然后,源基站将处理后的数据包发送给UE。在S314’中,UE的接入层可以根据接入层数据包序号对所接收的数据包进行处理,例如对数据包排序等。
图3B示出了根据本申请实施例的在切换过程中核心网通过双路传输方式向源基站和目标基站发送数据包的一个示意图。如图3B所示,UE 301的当前服务基站是基站302-1(也可称为源基站302-1)。源基站302-1可以配置UE 301的测量过程,相应地,UE 301可以根据配置进行测量报告。然后,源基站302-1可以基于UE 301的测量报告等信息决定将UE 301的服务基站切换为基站302-2(也可称为目标基站302-2)。在切换过程中,核心网将同步数据包(图3B中的灰色方框)和下行业务数据包#1-#4发送给源基站302-1和目标基站302-2,其中同步数据包用于保证源基站302-1和目标基站302-2对业务数据包赋予相同的接入层数据包序号。然后,由目标基站302-2将业务数据包发送给UE 301。
图4示出了根据本申请实施例的针对切换场景的另一通信方法的时序示意图。图4与图3A的主要区别在于,图4进一步细化了核心网包括控制面实体和用户面实体。在图4中,以控制面实体是AMF且用户面实体是UPF为例来描述图4的实施例。
在S401中,源基站决定将UE的服务基站切换为目标基站。该步骤与S301类似,在此不再赘述。
在S402中,源基站决定在切换过程中采用双路传输方式。该步骤与S302类似,在此不再赘述。
在S403中,源基站向目标基站发送第一请求消息。该第一请求消息可以包括双路传输方式指示信息,用于指示在切换过程中采用双路传输方式。该步骤与S303类似,在此不再赘述。
在S404中,目标基站向源基站发送第一响应消息。该第一响应消息可以包括用于进行双路传输的传输网络层信息。该步骤与S304类似,在此不再赘述。
在S405中,源基站向AMF发送第二请求消息。
该第二请求消息可以包括双路传输方式指示信息,用于指示在切换过程中采用双路传输方式。该第二请求消息还可以包括源基站从目标基站获取的用于进行双路传输的传输网络层信息。该第二请求消息还可以包括源基站自身的用于进行双路传输的传输网络层信息。该第二请求消息还可以包括目标基站的标识。该第二请求消息还可以包括与双路传输方式指示信息相关联的一个或多个业务承载的标识,即双路传输方式可以是per PDU会话(session)或者per EPS承载(bearer)的。
在S406中,AMF向UPF发送第一消息,该第一消息可以包括第二请求消息中的信息元素。
在S407中,UPF根据第一消息执行双路传输。
具体地,在接收到第一消息后,UPF会将原本只会发送给源基站的下行业务数据包,发送给源基站和目标基站二者。并且,在UPF通过双路传输方式向源基站和目标基站发送下行业务数据包的过程中,UPF按照第一规则,向源基站和目标基站发送同步数据包,以保证源基站和目标基站给同一下行业务数据包赋予相同的接入层数据包序号。
该步骤与S306类似,在此不再赘述。
在S408中,在源基站接收到同步数据包后,源基站按照预先定义的且源基站和目标基站均遵守的第二规则,向目标基站发送其从核心网接收的特定业务数据包的接入层数据包序号。该步骤与S307类似,在此不再赘述。
在S409中,在目标基站接收到同步数据包后,目标基站根据其从源基站接收的接入层数据包序号、以及第二规则,给其从UPF接收的下行业务数据包确定接入层数据包序号。该步骤与S308类似,在此不再赘述。
在S410中,目标基站对其从核心网接收的业务数据包进行处理,以获得处理后的数据包。然后,目标基站将处理后的数据包发送给UE。该步骤与S309类似,在此不再赘述。
在S411中,UE的接入层可以根据接入层数据包序号对所接收的数据包进行处理,例如对数据包排序等。该步骤与S310类似,在此不再赘述。
可选地,在S407之后,源基站也可以将其从核心网接收的业务数据包进行处理,并将处理后的数据包发送给UE。该处理与S410中的处理类似,在此不再赘述。在这种情况下,在S411中,UE所进行的处理还可以包括删除重复(即去重)数据包(图中未示出)。
在切换成功的场景下,在S412中,目标基站可以向AMF发送第三请求消息。该第三请求消息可以用于请求停用或取消双路传输方式(图中已示出)。或者,该第三请求消息可以请求核心网针对目标基站采用单路传输方式(图中未示出)。然后,在S413中,AMF向UPF发送第二消息。该第二消息可以包括第三请求消息中的信息元素。该第二消息可以用于请求停用或取消双路传输方式(图中已示出)。或者,该第二消息可以请求核心网针对目标基站采用单路传输方式(图中未示出)。然后,在S414中,UPF根据第二消息执行单路传输,即将下行业务数据包只发送给目标基站而不发送给源基站。在S415中,目标基站对其从UPF接收的业务数据包进行处理以获得处理后的数据包,然后,目标基站将处理后的数据包发送给UE。在S416中,UE的接入层可以根据接入层数据包序号对所接收的数据包进行处理,例如对数据包排序等。
在切换失败或取消的场景下,在S412’中,源基站可以向AMF发送第四请求消息。该第四请求消息可以用于请求停用或取消双路传输方式(图中已示出)。或者,该第四请求消息可以请求核心网针对源基站采用单路传输方式(图中未示出)。然后,在S413’中,AMF向UPF发送第三消息。该第三消息可以包括第四请求消息中的信息元素。该第三消息可以用于请求停用或取消双路传输方式(图中已示出)。或者,该第三消息可以请求核心网针对源基站采用单路传输方式(图中未示出)。然后,在S414’中,UPF根据第三消息执行单路传输,即将下行业务数据包只发送给源基站而不发送给目标基站。在S415’中,源基站对其从UPF接收的业务数据包进行处理以获得处理后的数据包,然后,源基站将处理后的数据包发送给UE。在S416’中,UE的接入层可以根据接入层数据包序号对所接收的数据包进行处理,例如对数据包排序等。
图5示出了根据本申请实施例的针对切换场景的另一通信方法的时序示意图。图5与图3A-图4的主要区别在于,图3A-图4所针对的切换场景是通用的切换场景,而图5所针对的切换场景是5G无线通信系统中的双激活协议栈切换(Dual Active Protocol Stack Hand Over,DAPS HO)场景。图5也进一步细化了核心网包括控制面实体和用户面实体。在图5中,以控制面实体是AMF且用户面实体是UPF为例来描述图5的实施例。图5还进一 步细化了源基站是gNB,目标基站是gNB。
如图5所示,在UE的服务基站从源gNB切换到目标gNB之前,UPF向源gNB发送业务数据包,然后源gNB向UE发送业务数据包。如上面所描述的,在本申请实施例中,业务数据包也可以称为业务数据,或者用户数据(user data),或者用户数据包等。
在S501中,由AMF给源gNB提供移动控制信息(mobility control information)。源gNB中的UE上下文包含关于漫游和访问限制的信息,这些信息是在连接建立时或上次跟踪区域(Tracking Area,TA)更新时提供的。
在S502中,源gNB配置UE测量过程,并且UE根据测量配置进行报告。
在S503中,源gNB基于测量报告和无线资源管理(Radio Resource Management,RRM)信息决定切换UE的服务基站。
在S504中,源gNB向目标gNB发送切换请求消息(Handover Request message),其中该切换请求消息包括在目标侧准备切换所需的信息。切换请求消息例如包括双路传输方式指示信息,用于指示在切换过程中采用双路传输方式。
根据本申请实施例的一个示例,双路传输方式指示信息可以与UE的一个或多个业务承载关联。例如,双路传输方式指示信息可以与UE的一个或多个业务承载的标识关联。通过这种方式,可以以业务承载为粒度来进行双路传输。在该示例中,上文所描述的切换请求消息不仅可以包括双路传输方式指示信息,还可以包括相关联的一个或多个业务承载的标识,即双路传输方式可以是per PDU会话(session)或者per EPS承载(bearer)的。
切换请求消息还可以包括目标小区标识(ID)、KgNB*、源gNB中UE的C-RNTI、包括UE非激活时间的RRM配置、包括天线信息和DL载波频率的基本接入层配置、应用于UE的当前QoS流到数据无线承载(Data Radio Bearer,DRB)映射规则、来自源gNB的系统信息块1(System Information Block 1,SIB1)、用于不同无线接入技术(Radio Access Technology,RAT)的UE能力、协议数据单元(Protocol Data Unit,PDU)会话相关信息、并且还可以包括UE报告的测量信息。测量信息可以包括波束相关信息。PDU会话相关信息可以包括切片信息和QoS流级别QoS配置文件。源gNB还可以请求针对一个或多个DRB的DAPS切换。
目标gNB可以指示DAPS切换是否被接受。如果接受,则在S505中,目标gNB向源gNB发送切换请求确认(Handover Request Acknowledge)。
在S506中,目标gNB向源gNB发送用于进行双路传输的传输网络层信息。
该用于进行双路传输的传输网络层信息用于在双路传输方式下目标基站从核心网接收下行数据包。在无线通信系统使用GPRS隧道传输协议-用户面(GPRS Tunnel Protocol-User plane,GTP-U)隧道的示例中,该传输网络层信息可以是GTP隧道端点信息(GTP Tunnel Endpoint)。该GTP隧道端点信息可以包括隧道的传输网络层地址、该隧道的标识等。该GTP隧道端点信息还可以包括用于指示隧道用途的信息。
应该理解,在无线通信系统使用其他隧道的示例中,该传输网络层信息可以包括与该其他隧道有关的信息。
应该理解,S505和S506可以同时执行,也可以先执行S505再执行S506。在S505和S506同时执行的情况下,切换请求确认可以包括用于进行双路传输的传输网络层信息。
此外,在S505之后,在S507中,源gNB通过向UE发送RRCReconfiguration消息来触发Uu切换。该消息可以包括接入目标小区所需的信息:目标小区标识(ID)、新的C-RNTI、针对所选安全算法的目标gNB安全算法标识符。它还可以包括一组专用的RACH资源、RACH资源与SSB之间的关联、RACH资源与UE特定CSI-RS配置之间的关联、公共RACH资源以及目标小区的系统信息等。
在S506之后,在S508中,源gNB向AMF发送一个请求消息。该请求消息可以包括双路传输方式指示信息,用于指示在切换过程中采用双路传输方式。该请求消息还可以包括源gNB从目标gNB获取的用于进行双路传输的传输网络层信息。该请求消息还可以包括源gNB自身的用于进行双路传输的传输网络层信息。该请求消息还可以包括目标gNB的标识。该请求消息还可以包括与双路传输方式指示信息相关联的一个或多个业务承载的标识。
在S509中,AMF向UPF发送第一消息,该第一消息可以包括S508中的请求消息中的信息元素。
在S510中,UPF根据第一消息执行双路传输。
具体地,在接收到第一消息后,UPF会将原本只会发送给源gNB的下行业务数据包,发送给源gNB和目标gNB二者。并且,在UPF通过双路传输方式向源gNB和目标gNB发送下行业务数据包的过程中,UPF按照第一规则,向源gNB和目标gNB发送同步数据包,以保证源gNB和目标gNB给同一下行业务数据包赋予相同的接入层数据包序号。第一规则与上文结合图3A所描述的第一规则类似,在此不再赘述。
图5示出了该第一规则是在双路传输方式下UPF发送的第一个数据包是同步数据包的示例。如图5所示,UPF向源gNB和目标gNB依次发送同步数据包(如图5中的灰色方框)、第一下行业务数据包(#1)、第二下行业务数据包(#2)、第三下行业务数据包(#3)、第四下行业务数据包(#4)等。
这里的同步数据包与上文结合图3A所描述的同步数据包类似,在此不再赘述。
在S511中,在源gNB接收到同步数据包后,源gNB按照预先定义的且源gNB和目标gNB均遵守的第二规则,向目标gNB发送早期状态转移消息(EARLY STATUS TRANSFER)或者序列号状态转移(SN STATUS TRANSFER)消息。该消息包括源gNB从UPF接收的特定业务数据包的接入层数据包序号,例如可以是PDCP层数据包序号、或者PDCP层数据包序号和HFN(Hyper Frame Number,超帧号)。
这里的第二规则与上文结合图3A所描述的第二规则类似,在此不再赘述。
在S512中,在目标gNB接收到同步数据包后,目标gNB根据其从源gNB接收的接入层数据包序号、以及第二规则,给其从UPF接收的下行业务数据包确定接入层数据包序号。该步骤与上文结合图3A所描述的S308类似,在此不再赘述。
在切换成功的情形下,在S513中,UE通过向目标gNB发送RRCReconfigurationComplete消息与目标小区同步并完成RRC切换过程。在DAPS HO的情况下,UE在接收到RRCReconfiguration消息时不会从源小区分离(detach)。UE在接收到来自目标节点的显式释放时释放源SRB资源、源小区的安全配置,并停止与源gNB的DL/UL接收/传输。
在S514中,目标gNB对其从UPF接收的业务数据包进行处理,以获得处理后的数据包。然后,目标gNB将处理后的数据包发送给UE。该处理例如可以是将其从UPF接收的业务数据包的头部去掉、增加新的头部、封装成新的数据包,并且新的数据包的头部包括相应的接入层数据包序号。该处理例如还可以是把接入层数据包序号小于S511中的接入层数据包序号的数据包丢弃。
在S515中,UE的接入层可以根据接入层数据包序号对所接收的数据包进行处理。该处理例如可以是对数据包排序等。
在S516中,目标gNB向AMF发送路径切换请求(PATH SWITCH REQUEST)消息以触发5G核心网(5G Core network,5GC)将下行链路数据路径切换到目标gNB并建立到目标gNB的NG-C接口(control plane interface between NG-RAN and 5GC)接口实例。
应该理解,在S513之后,目标基站可以同时执行S514和S516,或者可以先执行S514再执行S516,或者可以先执行S516再执行S514。
在S517中,5GC将下行链路数据路径切换到目标gNB。
可选的,在S518中,UPF在每个PDU会话/隧道的旧路径上向源gNB发送一个或多个结束标记符(End Marker)数据包,然后可以向源gNB释放任何用户平面(U-plane)/TNL资源。
在S519中,AMF向目标gNB发送路径切换请求确认(PATH SWITCH REQUEST ACKNOWLEDGE)消息,以确认路径切换请求消息。
在S520中,在接收到来自AMF的路径切换请求确认消息后,目标gNB向源gNB发送UE上下文释放消息以通知源gNB切换成功。然后,源gNB可以释放与UE上下文相关联的无线电和控制平面(C-plane)相关资源。
在S519之后,在S521中,UPF执行单路传输,即将下行业务数据包只发送给目标gNB而不发送给源gNB。
在S522中,目标gNB对其从UPF接收的业务数据包进行处理以获得处理后的数据包,然后,目标gNB将处理后的数据包发送给UE。
在S523中,UE的接入层可以根据接入层数据包序号对所接收的数据包进行处理,例如对数据包排序等。
在切换失败的情形下,在S513’中,源gNB确定切换失败。
在S514’中,源gNB给AMF发送切换失败(Handover Failure)消息。该切换失败消息可以包括一个指示消息,用于指示AMF停止或者取消双路传输方式。或者,该切换失败消息可以不包括该指示消息,但AMF在接收到该切换失败消息后可以根据通信标准对该切换失败消息的定义而将双路传输方式更改为单路传输方式。
在S515’中,AMF向UPF发送第二消息。该第二消息可以包括该切换失败消息中的信息元素。该第二消息可以用于请求停用或取消双路传输方式。或者,该第二消息可以指示采用单路传输方式。
在S516’中,UPF根据第二消息执行单路传输,即将下行业务数据包只发送给源gNB而不发送给目标gNB。
在S517’中,源gNB对其从UPF接收的业务数据包进行处理以获得处理后的数据包,然后,源gNB将处理后的数据包发送给UE。
在S518’中,UE的接入层可以根据接入层数据包序号对所接收的数据包进行处理,例如对数据包排序等。
通过上述多个实施例,避免了在切换过程中从源基站到目标基站的数据转发而引入的时延,保证了网络给UE提供的业务服务质量,保证了时延敏感类业务的时延要求等。
上述实施例是针对切换场景的具体实施例。本申请还提供了针对其他场景的实施例。该其他场景例如可以是为了支持高可靠业务的主备网络或者并发网络场景。
在本申请实施例中,主备网络可以包括一个主基站和一个或多个备份基站,其中主基站和备份基站都可以从核心网(例如UPF)接收业务数据,但主基站向UE发送业务数据,而备份基站只有从待机(standby)模式转变为工作模式后才会向UE发送业务数据。在待机模式下,当从核心网接收到业务数据时,备份基站会把这部分业务数据存储特定时长,并且若在特定时长到期时备份基站仍处于待机模式,那么备份基站会把这部分业务数据删除。此外,主基站和备份基站可以是相邻基站,例如地理位置较近的两个基站。
在本申请实施例中,并发网络可以包括多个基站,其中每个基站都可以从核心网(例如UPF)接收业务数据,并且每个基站都可以会向UE发送业务数据。这里所描述的多个基站可以是相邻基站。该多个基站中的每个基站的模式也可以是工作模式或者待机模式。
不管是主备网络还是并发网络,需要同一UE的各个服务基站给同一下行业务数据包赋予相同的接入层数据包序号(Sequence Number,SN)(例如,PDCP层数据包序号,或者PDCP层数据包序号和HFN),以便UE能够将从各个服务基站接收的数据包连续起来,以对数据包进行排序。为此,本申请提供了以下实施例。
图6示出了根据本申请另一实施例的通信方法的时序示意图。图6进一步细化了核心网包括控制面实体和用户面实体。在图6中,以控制面实体是AMF且用户面实体是UPF为例来描述图6的实施例。图6中的第一基站可以是主备网络中的主基站,第二基站可以是主备网络中的备份基站。或者,图6中的第一基站和第二基站可以是并发网络中的两个基站。
如图6所示,在S601中,第一基站决定采用双路传输方式。例如,当第一基站检测到有高可靠性传输的需求时,可以决定采用双路传输方式。
本申请实施例中的双路传输方式是指核心网(例如UPF)将同一下行业务数据包发送给第一基站和第二基站二者。也就是说,第一基站和第二基站会从核心网(例如UPF)接收到相同的下行业务数据包。
在S602中,第一基站向第二基站发送第一请求消息。该第一请求消息可以包括双路传输方式指示信息,用于指示采用双路传输方式。
根据本申请实施例的一个示例,双路传输方式指示信息可以与UE的一个或多个业务承载关联。例如,双路传输方式指示信息可以与UE的一个或多个业务承载的标识关联。通过这种方式,可以以业务承载为粒度来进行双路传输。
在该示例中,上文所描述的第一请求消息不仅可以包括双路传输方式指示信息,还可以包括相关联的一个或多个业务承载的标识。
根据本申请实施例的一个示例,第一基站还可以向第二基站发送模式指示信息。该模式指示信息可以只指示第二基站的模式,例如指示第二基站的模式为待机模式或者工作模式。该模式指示信息还可以指示第一基站的模式和第二基站的模式,例如指示第一基站的模式为工作模式且第二基站的模式为待机模式,或者指示第一基站的模式为工作模式且第二基站的模式为工作模式。
该模式指示信息可以被包括在第一请求消息中,或者可以被包括在其他消息中发送,本申请对此不做限定。
在S603中,第二基站向第一基站发送第一响应消息。该第一响应消息可以包括用于进行双路传输的传输网络层信息。
该用于进行双路传输的传输网络层信息用于在双路传输方式下第二基站从核心网接收下行数据包。在无线通信系统使用GPRS隧道传输协议-用户面(GPRS Tunnel Protocol-User plane,GTP-U)隧道的示例中,该传输网络层信息可以是GTP隧道端点信息(GTP Tunnel Endpoint)。该GTP隧道端点信息可以包括隧道的传输网络层地址、该隧道的标识等。该GTP隧道端点信息还可以包括用于指示隧道用途的信息。
应该理解,在无线通信系统使用其他隧道的示例中,该传输网络层信息可以包括与该其他隧道有关的信息。
在S604中,第一基站向AMF发送第二请求消息。
该第二请求消息可以包括双路传输方式指示信息,用于指示采用双路传输方式。该第二请求消息还可以包括第一基站从第二基站获取的用于进行双路传输的传输网络层信息。该第二请求消息还可以包括第一基站自身的用于进行双路传输的传输网络层信息。该第二请求消息还可以包括第二基站的标识。该第二请求消息还可以包括与双路传输方式指示信息相关联的一个或多个业务承载的标识,即双路传输方式可以是per PDU会话(session)或者per EPS承载(bearer)的。
在S605中,AMF向UPF发送第一消息。该第一消息可以包括第二请求消息中的信息元素。
在S606中,UPF根据第一消息执行双路传输。
具体地,在接收到第一消息后,UPF会将原本只会发送给第一基站的下行业务数据包,发送给第一基站和第二基站二者。并且,在UPF通过双路传输方式向第一基站和第二基站发送下行业务数据包的过程中,UPF按照第一规则,向第一基站和第二基站发送同步数据包,以保证第一基站和第二基站给同一下行业务数据包赋予相同的接入层数据包序号。
该步骤与S306类似,在此不再赘述。
在S607中,在第一基站接收到同步数据包后,第一基站按照预先定义的且第一基站和第二基站均遵守的第二规则,向第二基站发送其从UPF接收的特定业务数据包的接入层数据包序号。该步骤与S307类似,在此不再赘述。
在S608中,在第二基站接收到同步数据包后,第二基站根据其从第一基站接收的接入层数据包序号、以及第二规则,给其从UPF接收的下行业务数据包确定接入层数据包序号。该步骤与S308类似,在此不再赘述。
在S606之后,在S609中,第一基站对其从核心网接收的业务数据包进行处理,以获 得处理后的数据包。然后,第一基站将处理后的数据包发送给UE。该步骤与S309类似,在此不再赘述。
在S608之后,若第二基站的模式是工作模式,则在S610中,第二基站对其从核心网接收的业务数据包进行处理,以获得处理后的数据包。然后,第二基站将处理后的数据包发送给UE。该步骤与S309类似,在此不再赘述。
在S608之后,若第二基站的模式是待机模式,则在S610’中,第二基站把其从核心网接收的业务数据包存储特定时长,并且若在特定时长到期时第二基站仍处于待机模式,那么第二基站会把这部分业务数据包删除。
在S611中,UE的接入层可以根据接入层数据包序号对所接收的数据包进行处理,例如删除重复的数据包、对数据包排序等。该步骤与S310类似,在此不再赘述。
当高可靠性的需求降低或者没有高可靠性需求时,第一基站或者第二基站可以请求AMF停用或取消双路传输方式。
在第一基站请求AMF停用或取消双路传输方式的示例中,第一基站可以执行步骤S612。在S612中,第一基站向AMF发送第三请求消息。该第三请求消息可以用于请求停用或取消双路传输方式。或者,该第三请求消息可以请求针对第一基站或第二基站采用单路传输方式。然后,在S613中,AMF向UPF发送第二消息。该第二消息可以包括第三请求消息中的信息元素。该第二消息可以用于请求停用或取消双路传输方式。或者,该第二消息可以指示针对第一基站或第二基站采用单路传输方式。然后,在S614中,UPF根据第二消息执行单路传输,例如将下行业务数据包只发送给第一基站而不发送给第二基站。在S615中,第一基站对其从UPF接收的业务数据包进行处理以获得处理后的数据包,然后,第一基站将处理后的数据包发送给UE(图中已示出)。在S616中,UE的接入层可以根据接入层数据包序号对所接收的数据包进行处理,例如对数据包排序等。
可替换地,在S614中,UPF根据第二消息执行单路传输,例如将下行业务数据包只发送给第二基站而不发送给第一基站。在S615中,第二基站对其从UPF接收的业务数据包进行处理以获得处理后的数据包,然后,第二基站将处理后的数据包发送给UE(图中未示出)。
在第二基站请求AMF停用或取消双路传输方式的示例中,第二基站可以执行步骤S612’。在S612’中,第二基站向AMF发送第四请求消息。该第四请求消息可以用于请求停用或取消双路传输方式。或者,该第四请求消息可以请求针对第一基站或第二基站采用单路传输方式。然后,在S613’中,AMF向UPF发送第三消息。该第三消息可以包括第四请求消息中的信息元素。该第三消息可以用于请求停用或取消双路传输方式。或者,该第三消息可以指示针对第一基站或第二基站采用单路传输方式。然后,在S614’中,UPF根据第三消息执行单路传输,例如将下行业务数据包只发送给第二基站而不发送给第一基站。在S615’中,第二基站对其从UPF接收的业务数据包进行处理以获得处理后的数据包,然后,第二基站将处理后的数据包发送给UE(图中已示出)。在S616’中,UE的接入层可以根据接入层数据包序号对所接收的数据包进行处理,例如对数据包排序等。
可替换地,在S614’中,UPF根据第三消息执行单路传输,例如将下行业务数据包只发送给第一基站而不发送给第二基站。在S615’中,第一基站对其从UPF接收的业务数 据包进行处理以获得处理后的数据包,然后,第一基站将处理后的数据包发送给UE(图中未示出)。
通过上述步骤,因为业务数据从核心网经过两条通信链路到达两个基站,即使在其中一条通信链路上出现了线路故障或者设备故障,另一条通信链路上的业务数据仍然能够到达UE,提高了传输网的可靠性。此外,即使一个基站故障但另一个基站是正常的,或者一条通信链路的通信质量下降但另一条通信链路的通信质量未下降,从而提高了基站和空口的可靠性。虽然两条通信链路相比于一条通信链路是冗余的,但UE的接入层可以根据接入层数据包序号对所接收的数据包进行去重处理,从而有效地保障业务的高可靠性。
图7是根据本申请实施例的由基站执行的方法700的流程图。该基站可以是切换场景中的源基站,或者是主备网络或并发网络中的第一基站。方法700包括步骤S701至步骤S706。
在S701中,第一基站向第二基站发送双路传输方式指示信息。该双路传输方式指示信息用于指示采用双路传输方式。该步骤与结合图3A所描述的步骤S303,或者结合图4所描述的步骤S403,或者结合图5所描述的步骤S504,或者结合图6所描述的步骤S602类似,在此不再赘述。
在S702中,第一基站从第二基站接收用于进行双路传输的传输网络层信息。该步骤与结合图3A所描述的步骤S304,或者结合图4所描述的步骤S404,或者结合图5所描述的步骤S506,或者结合图6所描述的步骤S603类似,在此不再赘述。
在S703中,第一基站向核心网发送请求消息,所述请求消息用于请求采用双路传输方式。
该请求消息可以包括双路传输方式指示信息。该请求消息还可以包括第一基站从第二基站获取的用于进行双路传输的传输网络层信息。该请求消息还可以包括第一基站自身的用于进行双路传输的传输网络层信息。该请求消息还可以包括第二基站的标识,和/或第一基站的标识。该请求消息还可以包括与双路传输方式指示信息相关联的一个或多个业务承载的标识。
该步骤与结合图3A所描述的步骤S305,或者结合图4所描述的步骤S405-S406,或者结合图5所描述的步骤S508和S509,或者结合图6所描述的步骤S604和S605类似,在此不再赘述。
在S704中,第一基站从核心网接收下行数据包,其中所述下行数据包包括业务数据包和同步数据包。
该步骤与结合图3A所描述的步骤S306,或者结合图4所描述的步骤S407,或者结合图5所描述的步骤S510,或者结合图6所描述的步骤S606类似,在此不再赘述。
在S705中,在接收到同步数据包后,第一基站确定其从核心网接收的业务数据包的接入层数据包序号,并根据预设规则将所确定的业务数据包的接入层数据包序号中的至少一个发送给第二基站,以便第二基站根据同步数据包和该预设规则给其从核心网接收的下行业务数据包确定接入层数据包序号。
该步骤与结合图3A所描述的步骤S307,或者结合图4所描述的步骤S408,或者结合图5所描述的步骤S511,或者结合图6所描述的步骤S607类似,在此不再赘述。
在S706中,第一基站向核心网发送另一请求消息。所述另一请求消息用于请求停用或取消双路传输方式。或者所述另一请求消息用于请求核心网针对第一基站或者第二基站采用单路传输方式。
该步骤与结合图3A所描述的步骤S311或S311’,或者结合图4所描述的步骤S412或S412’,或者结合图5所描述的步骤S521,或者结合图6所描述的步骤S612或S612’类似,在此不再赘述。
通过图7所示的方法700,第一基站能够在有需求时请求核心网进行双路传输方式,并且在需求降低或没有需求时请求退出双路传输方式,而且在双路传输下第一基站和第二基站能够对业务数据包赋予相同的接入层数据包序号以保证业务连续性。
如上述实施例所描述的,同步数据包可以是GTP-U(GPRS Tunnel Protocol-User plane,GPRS隧道传输协议-用户面)数据包。在这种情形下,同步数据包的头部可以是GTP-U数据包的头部,即在GTP-U数据包的头部指示该数据包是同步数据包。例如,GTP-U数据包的头部可以包括SN序号(例如1)来标识该数据包是同步数据包。当第一基站和第二基站都从核心网接收到该数据包后,可以通过解析该数据包的头部来获得该SN序号,并且能够根据该SN序号确定该数据包是同步数据包。
在该示例中,当第一基站接收到该数据包后,第一基站可以给该数据包赋予一个接入层数据包序号(例如10)。然后,第一基站可以将该SN序号(例如1)和该接入层数据包序号(例如10)通知给第二基站。相应地,第二基站可以给其从核心网接收到的、具有第一基站所通知的SN序号的数据包赋予第一基站所通知的接入层数据包序号。
上述多个实施例是在下行链路应用双路传输方式的实施例。本申请还提供了在上行链路应用双路传输方式的实施例。在该实施例中,UE具备针对第一基站和第二基站分别建立通信协议栈的能力。
图8示出了根据本申请又一实施例的通信方法的时序示意图。图8细化了核心网包括控制面实体和用户面实体。在图8中,以控制面实体是AMF且用户面实体是UPF为例来描述图8的实施例。图8中的第一基站可以是主备网络中的主基站,第二基站可以是主备网络中的备份基站。或者,图8中的第一基站和第二基站可以是并发网络中的两个基站。或者,图8中的第一基站可以是源基站,第二基站可以是目标基站。
如图8所示,在S801中,第一基站决定采用双路传输方式。例如,当第一基站检测到UE的上行链路通信质量较差时,可以决定采用双路传输方式。
在S802中,第一基站向第二基站发送第一消息。该第一消息可以包括上行数据的接收地址,例如UPF用于接收上行数据的地址。后续,第二基站可以根据该上行数据的接收地址,将其从UE接收的上行数据发送至UPF。
可选地,在S803中,第二基站向第一基站发送针对第一消息的确认(acknowledge)消息。
在S804中,第一基站向UE发送双路传输调度信令。该双路传输调度信令包括双路传输指示信息,用于指示采用双路传输方式。该双路传输调度信令还可以包括第二基站的标识(ID)。
此外,双路传输方式指示信息可以与UE的一个或多个业务承载关联。例如,双路传 输方式指示信息可以与UE的一个或多个业务承载的标识关联。通过这种方式,可以以业务承载为粒度来进行双路传输。在这种情况下,双路传输调度信令不仅可以包括双路传输方式指示信息,还可以包括相关联的一个或多个业务承载的标识。
在S805中,UE针对第一基站和第二基站分别建立通信协议栈。
在S806中,UE执行双路传输,即向第一基站和第二基站发送相同的上行数据包。该上行数据包可以是业务数据包,或者业务数据,或者用户数据包,或者用户数据等。
在S806之后,在S807中,第一基站对其从UE接收的上行数据包进行处理,以获得处理后的数据包。然后,第一基站将处理后的数据包发送给UPF。
该处理例如可以是增加新的头部,封装成新的数据包,并且新的数据包的头部包括相应的接入层数据包序号。新的数据包例如可以是GTP-U数据包,新的头部例如可以是GTP-U扩展头部(GTP-U extension header)。
在S806之后,在S808中,第二基站对其从UE接收的上行数据包进行处理,以获得处理后的数据包。然后,第二基站将处理后的数据包发送给UPF。该处理与S807中的处理类似,在此不再赘述。
在S809中,UPF对从第一基站和第二基站接收的数据包进行处理。该处理例如可以是根据数据包头部中的接入层数据包序号来删除重复(即去重)数据包、对数据包排序等。
当没有双路传输的需求时,第一基站或第二基站可以向UE发送双路传输停用或取消信令,用于指示UE停用或取消双路传输,或者用于指示UE采用单路传输方式。或者,UE可以自身决定停用或取消双路传输。相应地,第一基站或第二基站向UPF发送的数据包的头部可以不包括接入层数据包序号。
图9示出了根据本申请再一实施例的通信方法的时序示意图。图9和图8的主要区别在于,图9进一步细化了应用场景是5G无线通信系统中的双激活协议栈切换(Dual Active Protocol Stack Hand Over,DAPS HO)场景。图9中的第一基站可以是源基站,第二基站可以是目标基站。
如图9所示,在UE的服务基站从源gNB切换到目标gNB之前,UE向源gNB发送业务数据包,然后源gNB向UPF发送业务数据包。如上面所描述的,在本申请实施例中,业务数据包也可以称为业务数据,或者用户数据(user data),或者用户数据包等。
在S901中,由AMF给源gNB提供移动控制信息(mobility control information)。源gNB中的UE上下文包含关于漫游和访问限制的信息,这些信息是在连接建立时或上次跟踪区域(Tracking Area,TA)更新时提供的。
在S902中,源gNB配置UE测量过程,并且UE根据测量配置进行报告。
在S903中,源gNB基于测量报告和无线资源管理(Radio Resource Management,RRM)信息决定切换UE的服务基站。
在S904中,源gNB向目标gNB发送切换请求消息(Handover Request message),其中该切换请求消息包括在目标侧准备切换所需的信息。该切换请求消息例如包括上行数据的接收地址,例如UPF用于接收上行数据的地址。后续,目标gNB可以根据该上行数据的接收地址,将其从UE接收的上行数据发送至UPF。
目标gNB可以指示DAPS切换是否被接受。如果接受,则在S905中,目标gNB向源 gNB发送切换请求确认(Handover Request Acknowledge)。
在S905之后,在S907中,源gNB通过向UE发送RRCReconfiguration消息来触发Uu切换。该消息例如包括双路传输调度信令。该双路传输调度信令包括双路传输指示信息,用于指示采用双路传输方式。该双路传输调度信令还可以包括第二基站的标识(ID)。
该消息还可以包括接入目标小区所需的信息:目标小区标识(ID)、新的C-RNTI、针对所选安全算法的目标gNB安全算法标识符。它还可以包括一组专用的RACH资源、RACH资源与SSB之间的关联、RACH资源与UE特定CSI-RS配置之间的关联、公共RACH资源以及目标小区的系统信息等。
在S908中,UE针对源gNB和目标gNB分别建立通信协议栈。
在S909中,UE执行双路传输,即向源gNB和目标gNB发送相同的上行数据包。
在S909之后,在S910中,源gNB对其从UE接收的上行数据包进行处理,以获得处理后的数据包。然后,源gNB将处理后的数据包发送给UPF。
该处理例如可以是增加新的头部,封装成新的数据包,并且新的数据包的头部包括相应的接入层数据包序号。新的数据包例如可以是GTP-U数据包,新的头部例如可以是GTP-U扩展头部(GTP-U extension header)。
在S909之后,在S911中,目标gNB对其从UE接收的上行数据包进行处理,以获得处理后的数据包。然后,目标gNB将处理后的数据包发送给UPF。该处理与S910中的处理类似,在此不再赘述。
在S912中,UPF对从源gNB和目标gNB接收的数据包进行处理。该处理例如可以是根据数据包头部中的接入层数据包序号来删除重复(即去重)数据包、对数据包排序等。
在切换成功的情形下,在S913中,UE通过向目标gNB发送RRCReconfigurationComplete消息与目标小区同步并完成RRC切换过程。并且,UE通过S913隐式地通知目标gNB其将停用或取消双路传输方式,或将采用单路传输方式。
然后,在S914中,UE针对目标gNB执行单路传输。
然后,在S915中,目标gNB对其从UE接收的上行数据包进行处理,以获得处理后的数据包。然后,目标gNB将处理后的数据包发送给UPF。该处理可以不包括将接入层数据包序号包含在数据包头部内。
在切换失败的情形下,在S913’中,源gNB确定切换失败。
然后,在S914’中,UE针对源gNB执行单路传输。
然后,在S915’中,源gNB对其从UE接收的上行数据包进行处理,以获得处理后的数据包。然后,源gNB将处理后的数据包发送给UPF。该处理可以不包括将接入层数据包序号包含在数据包头部内。
通过图9的实施例,可以避免在切换过程中上行数据包从源基站到目标基站的数据转发而引入的时延,保证了网络给UE提供的业务服务质量,保证了时延敏感类业务的时延要求等。本申请上述实施例中的基站或者核心网网元可采用图10所示的组成结构或者包括图10所示的部件。图10为本申请实施例提供的一种通信装置1000的结构示意图,如图10所示,该通信设备1000包括一个或多个处理器1001,通信线路1002,以及至少一个通信接口(图10中仅是示例性的以包括通信接口1003,以及一个处理器1001为例进行说明), 可选的还可以包括存储器1004。
处理器1001可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路1002可包括一通路,用于不同组件之间的通信。
通信接口1003,可以是收发模块用于与其他设备或通信网络通信,如以太网,RAN,无线局域网(wireless local area networks,WLAN)等。例如,所述收发模块可以是收发器、收发机一类的装置。可选的,所述通信接口1003也可以是位于处理器1001内的收发电路,用以实现处理器的信号输入和信号输出。
存储器1004可以是具有存储功能的装置。例如可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路1002与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器1004用于存储执行本申请方案的计算机执行指令,并由处理器1001来控制执行。处理器1001用于执行存储器1004中存储的计算机执行指令,从而实现本申请实施例中提供的通信方法。
或者,可选的,本申请实施例中,也可以是处理器1001执行本申请下述实施例提供的通信方法中的处理相关的功能,通信接口1003负责与其他设备或通信网络通信,本申请实施例对此不作具体限定。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器1001可以包括一个或多个CPU,例如图10中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备1000可以包括多个处理器,例如图10中的处理器1001和处理器1007。这些处理器中的每一个可以是一个单核(single-core)处理器,也可以是一个多核(multi-core)处理器。这里的处理器可以包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类运行软件的计算设备,每种计算设备可包括一个或多个用于执行软件指令以进行运算或处理的核。
在具体实现中,作为一种实施例,通信设备1000还可以包括输出设备1005和输入设备1006。输出设备1005和处理器1001通信,可以以多种方式来显示信息。例如,输出设备1005可以是液晶显示器(liquid crystal display,LCD),发光二极管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector) 等。输入设备1006和处理器1001通信,可以以多种方式接收用户的输入。例如,输入设备1006可以是鼠标、键盘、触摸屏设备或传感设备等。
图11为根据本申请实施例的UE的硬件结构示意图。如图11所示,UE 1100可以包括处理器1110、外部存储器接口1120、内部存储器1121、通用串行总线(universal serial bus,USB)接口1130、充电管理模块1140、电源管理模块1141、电池1142、天线1、天线2、移动通信模块1150、无线通信模块1160、音频模块1170、扬声器1170A、受话器1170B、麦克风1170C、耳机接口1170D、传感器模块1180、按键1190、马达1191、指示器1192、摄像头1193、显示屏1194、以及SIM卡接口1195等。传感器模块1180可以包括压力传感器1180A、陀螺仪传感器1180B、气压传感器1180C、磁传感器1180D、加速度传感器1180E、距离传感器1180F、接近光传感器1180G、指纹传感器1180H、温度传感器1180J、触摸传感器1180K、环境光传感器1180L、骨传导传感器1180M等。
可以理解的是,图11所示意的结构并不构成对UE的具体限定。在本申请的另一实施例中,UE可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件、软件、或软件和硬件的组合实现。
处理器1110可以包括一个或多个处理单元。例如,处理器1110可以包括应用处理器(Application Processor,AP)、调制解调器(Modem)、图形处理器(Graphics Processing Unit,GPU)、图像信号处理器(Image Signal Processor,ISP)、控制器、视频编解码器、数字信号处理器(Digital Signal Processor,DSP)、基带处理器、和/或神经网络处理器(Neural-network Processing Unit,NPU)等。不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
充电管理模块1140用于从充电器接收充电输入。充电器可以是无线充电器,也可以是有线充电器。
电源管理模块1141用于连接电池1142,充电管理模块1140与处理器1110。电源管理模块1141接收电池1142和/或充电管理模块1140的输入,为处理器1110、内部存储器1121、显示屏1194、摄像头1193和无线通信模块1160等供电。
UE的无线通信功能可以通过天线1、天线2、移动通信模块1150、无线通信模块1160、调制解调器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。UE中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。
移动通信模块1150可以提供应用在UE上的包括2G/3G/4G/5G等无线通信的解决方案。
无线通信模块1160可以提供应用在UE上的包括无线局域网(Wireless Local Area Networks,WLAN)(如Wi-Fi网络)、蓝牙(Blue Tooth,BT)、全球导航卫星系统(Global Navigation Satellite System,GNSS)、调频(Frequency Modulation,FM)、近距离无线通信技术(Near Field Communication,NFC)、红外技术等无线通信的解决方案。无线通信模块1160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块1160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器1110。无线通信模块1160还可以从处理器1110接收待发送的信号,对其进行调频、放大,经天线2转为电磁波辐射出去。
在一些实施例中,在无线通信模块1160提供蓝牙通信的示例中,无线通信模块1160具体可以是蓝牙芯片。该蓝牙芯片可以包括一个或多个存储器、以及一个或多个处理器等。该蓝牙芯片中的处理器可以对经由天线2所接收的电磁波进行调频、滤波、运算、判断等操作,并将处理后的信号经由天线2转为电磁波辐射出去,即无需处理器1110进行处理。
UE通过GPU、显示屏1194以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏1194和应用处理器。
显示屏1194用于显示图像或者视频等。UE的显示屏1194上可以显示一系列图形用户界面(Graphical User Interface,GUI)。
UE可以通过ISP、摄像头1193、视频编解码器、GPU、显示屏1194以及应用处理器等实现拍摄功能。
摄像头1193用于捕获静态图像或视频。
外部存储器接口1120可以用于连接外部存储卡,例如Micro SD卡,以实现扩展UE 1101的存储能力。
内部存储器1121可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。处理器1110通过运行存储在内部存储器1121的指令,从而执行UE的各种功能应用以及数据处理。
UE可以通过音频模块1170、扬声器1170A、受话器1170B、麦克风1170C、耳机接口1170D以及应用处理器等实现音频功能,例如音乐播放、录音等。
SIM卡接口1195用于连接SIM卡。SIM卡可以通过插入SIM卡接口1195,或从SIM卡接口1195拔出,以实现和UE的接触和分离。UE可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口1195可以支持Nano SIM卡、Micro SIM卡、SIM卡等。同一个SIM卡接口1195可以同时插入多张卡。SIM卡接口1195也可以兼容外部存储卡。UE通过SIM卡和网络交互,实现通话以及数据通信等功能。
在上述部件之上,运行有操作系统,例如鸿蒙操作系统、iOS操作系统、安卓操作系统、视窗(windows)操作系统等。在该操作系统上可以安装并且运行应用程序。在另一些实施例中,UE运行的操作系统可以有多个。
本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中包括指令,当上述指令在电子设备上运行时,使得该电子设备执行上述实施例的相关方法步骤,以实现上述实施例中的方法。
本申请实施例还提供了一种包含指令的计算机程序产品,当该计算机程序产品在电子设备上运行时,使得该电子设备执行上述实施例的相关方法步骤,以实现上述实施例中的方法。
本申请实施例还提供了一种终端,所述终端包括处理器和存储器,所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述处理器执行所述计算机指令时,所述终端执行上述实施例的相关方法步骤,以实现上述实施例中的方法。该终端可以是一个集成电路IC,也可以是一个片上系统SOC。其中集成电路可以是通用集成电路,也可以是一个现场可编程门阵列FPGA,也可以是一个专用集成电路ASIC。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通 过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (49)

  1. 一种通信系统,包括第一基站、第二基站和核心网,其特征在于,
    所述第一基站用于向所述核心网发送第一请求消息,其中所述第一请求消息用于请求采用双路传输方式发送数据包,所述双路传输方式是所述核心网将同一数据包分别发送给所述第一基站和所述第二基站的传输方式;
    所述核心网用于在接收到所述第一请求消息后,通过所述双路传输方式向所述第一基站和所述第二基站发送一个或多个数据包。
  2. 如权利要求1所述的通信系统,其特征在于,在所述第一基站向所述核心网发送第一请求消息之前,
    所述第一基站还用于向所述第二基站发送第二请求消息,其中所述第二请求消息用于请求进行双路传输的传输网络层信息;
    响应于所述第二请求消息,所述第二基站用于向所述第一基站发送用于进行双路传输的传输网络层信息。
  3. 如权利要求2所述的通信系统,其特征在于,
    所述第二请求消息包括第一指示信息,其中所述第一指示信息用于指示所述核心网采用双路传输方式发送数据包。
  4. 如权利要求3所述的通信系统,其特征在于,
    所述第一请求消息包括第二指示信息、所述第二基站的标识和所述用于进行双路传输的传输网络层信息,所述第二指示信息用于指示所述核心网采用双路传输方式发送数据包。
  5. 如权利要求3或4所述的通信系统,其特征在于,
    所述第一指示信息和所述第二指示信息中的至少一个与用户装置的一个或多个业务承载相关联。
  6. 如权利要求2至5任一项所述的通信系统,其特征在于,
    所述传输网络层信息是通用分组无线业务隧道协议GTP隧道端点信息,所述GTP隧道端点信息包括隧道的传输网络层地址和隧道的标识。
  7. 如权利要求1至6任一项所述的通信系统,其特征在于,
    所述多个数据包包括业务数据包和同步数据包;
    所述第一基站和所述第二基站根据所述同步数据包和预设规则给相同业务数据包确定相同的接入层数据包序号。
  8. 如权利要求7所述的通信系统,其特征在于,所述第一基站和所述第二基站根据所述同步数据包和预设规则给相同业务数据包确定相同的接入层数据包序号包括:
    所述第一基站确定所述第一基站从所述核心网接收的业务数据包的接入层数据包序号,并根据所述同步数据包和所述预设规则将所确定的接入层数据包序号中的一个发送给所述第二基站;
    所述第二基站根据所述同步数据包、所述预设规则以及从所述第一基站接收的接入层数据包序号,给其从所述核心网接收的业务数据包确定接入层数据包序号。
  9. 如权利要求8所述的通信系统,其特征在于,
    所述预设规则是所述第一基站将所述同步数据包的前一个业务数据包或者前第M个 业务数据包的接入层数据包序号发送给所述第二基站,其中M为大于1的正整数;或者
    所述预设规则是所述第一基站将所述同步数据包的后面第一个业务数据包或者后面第N个业务数据包的接入层数据包序号发送给所述第二基站,其中N为大于1的正整数;或者
    所述预设规则是所述第一基站将所述同步数据包的接入层数据包序号发送给所述第二基站。
  10. 如权利要求7至9任一项所述的通信系统,其特征在于,
    所述同步数据包是通用分组无线业务隧道协议GTP用户面数据包,所述GTP用户面数据包的头部指示所述GTP用户面数据包是同步数据包。
  11. 如权利要求7至9任一项所述的通信系统,其特征在于,
    接入层数据包序号是分组数据汇聚协议PDCP层数据包序号,或者PDCP层数据包序号和超帧号HFN。
  12. 如权利要求1至11任一项所述的通信系统,其特征在于,在所述第二基站从所述核心网接收所述核心网通过双路传输方式发送的数据包之后,
    所述第二基站对其从所述核心网接收的数据包进行处理以获得处理后的数据包,并将所述处理后的数据包发送给用户装置。
  13. 如权利要求2至6任一项所述的通信系统,其特征在于,所述第二请求消息是切换请求消息。
  14. 如权利要求8至11任一项所述的通信系统,其特征在于,所述第一基站将所确定的接入层数据包序号中的一个发送给所述第二基站包括:
    所述第一基站向所述第二基站发送早期状态转移消息或序列号状态转移消息,其中所述早期状态转移消息或序列号状态转移消息包括所述所确定的接入层数据包序号中的一个。
  15. 如权利要求13或14所述的通信系统,其特征在于,
    在切换完成之后,所述第二基站向核心网发送第三请求消息,其中所述第三请求消息用于请求停用或取消双路传输方式,或者所述第三请求消息用于请求所述核心网针对所述第二基站采用单路传输方式。
  16. 如权利要求15所述的通信系统,其特征在于,
    所述第三请求消息是路径切换请求消息。
  17. 如权利要求13或14所述的通信系统,其特征在于,
    在切换取消或失败之后,所述第一基站向核心网发送第四请求消息,其中所述第四请求消息用于请求停用或取消双路传输方式,或者所述第四请求消息用于请求所述核心网针对所述第一基站采用单路传输方式。
  18. 如权利要求1至11任一项所述的通信系统,其特征在于,
    所述第一基站和所述第二基站为主备网络中的两个基站,或者并发网络中的两个基站。
  19. 如权利要求1至18任一项所述的通信系统,其特征在于,
    所述核心网包括接入管理功能AMF实体和用户面功能UPF实体;
    所述第一基站向所述核心网发送第一请求消息包括:
    所述第一基站向所述AMF实体发送所述第一请求消息;
    所述AMF实体向所述UPF实体发送第一消息,所述第一消息用于请求采用双路传输方式发送数据包;
    所述核心网通过所述双路传输方式向所述第一基站和所述第二基站发送一个或多个数据包包括:
    所述UPF实体通过所述双路传输方式向所述第一基站和所述第二基站发送一个或多个数据包;
    所述第二基站向核心网发送第三请求消息包括:
    所述第二基站向所述AMF实体发送所述第三请求消息;
    所述第一基站向核心网发送第四请求消息包括:
    所述第一基站向所述AMF实体发送所述第四请求消息;
    所述第一基站或所述第二基站向所述核心网发送第五请求消息包括:
    所述第一基站或所述第二基站向所述AMF实体发送所述第五请求消息。
  20. 一种由第一基站执行的数据通信方法,其特征在于,包括:
    向核心网发送第一请求消息,其中所述第一请求消息用于请求采用双路传输方式发送数据包,所述双路传输方式是所述核心网将同一数据包分别发送给所述第一基站和第二基站的传输方式;
    从所述核心网接收所述核心网通过所述双路传输方式发送的一个或多个数据包。
  21. 如权利要求20所述的方法,在向所述核心网发送第一请求消息之前,所述方法还包括:
    向所述第二基站发送第二请求消息,其中所述第二请求消息用于请求进行双路传输的传输网络层信息;
    从所述第二基站接收用于进行双路传输的传输网络层信息。
  22. 如权利要求21所述的方法,其中,
    所述第二请求消息包括第一指示信息,其中所述第一指示信息用于指示所述核心网采用双路传输方式发送数据包。
  23. 如权利要求20所述的方法,其中,
    所述第一请求消息包括第二指示信息、所述第二基站的标识和所述用于进行双路传输的传输网络层信息,所述第二指示信息用于指示所述核心网采用双路传输方式发送数据包。
  24. 如权利要求22或23所述的方法,其中,
    所述第一指示信息和所述第二指示信息中的至少一个与用户装置的一个或多个业务承载相关联。
  25. 如权利要求21至24任一项所述的方法,其中,
    所述传输网络层信息是通用分组无线业务隧道协议GTP隧道端点信息,所述GTP隧道端点信息包括隧道的传输网络层地址和隧道的标识。
  26. 如权利要求20至25任一项所述的方法,
    其中所述多个数据包包括业务数据包和同步数据包,所述同步数据包用于所述第一基站和所述第二基站给相同业务数据包确定相同的接入层数据包序号。
  27. 如权利要求26所述的方法,在从所述核心网接收所述核心网通过所述双路传输方 式发送的一个或多个数据包之后,所述方法还包括:
    确定所述第一基站从所述核心网接收的业务数据包的接入层数据包序号,并根据所述同步数据包和所述预设规则将所确定的接入层数据包序号中的一个发送给所述第二基站。
  28. 如权利要求27所述的方法,其中,
    所述预设规则是所述第一基站将所述同步数据包的前一个业务数据包或者前第M个业务数据包的接入层数据包序号发送给所述第二基站,其中M为大于1的正整数;或者
    所述预设规则是所述第一基站将所述同步数据包的后面第一个业务数据包或者后面第N个业务数据包的接入层数据包序号发送给所述第二基站,其中N为大于1的正整数;或者
    所述预设规则是所述第一基站将所述同步数据包的接入层数据包序号发送给所述第二基站。
  29. 如权利要求26至28任一项所述的方法,其中,
    所述同步数据包是通用分组无线业务隧道协议GTP用户面数据包,所述GTP用户面数据包的头部指示所述GTP用户面数据包是同步数据包。
  30. 如权利要求26至28任一项所述的方法,其中,
    接入层数据包序号是分组数据汇聚协议PDCP层数据包序号,或者PDCP层数据包序号和超帧号HFN。
  31. 如权利要求21至25任一项所述的方法,其中,
    所述第二请求消息是切换请求消息。
  32. 如权利要求27至30任一项所述的方法,其中,将所确定的接入层数据包序号中的一个发送给所述第二基站包括:
    向所述第二基站发送早期状态转移消息或序列号状态转移消息,其中所述早期状态转移消息或序列号状态转移消息包括所述所确定的接入层数据包序号中的一个。
  33. 如权利要求31或32所述的方法,在切换取消或失败之后,所述方法还包括:
    向核心网发送第四请求消息,其中所述第四请求消息用于请求停用或取消双路传输方式,或者所述第四请求消息用于请求所述核心网针对所述第一基站采用单路传输方式。
  34. 如权利要求20至30任一项所述的方法,在从所述核心网接收所述核心网通过所述双路传输方式发送的一个或多个数据包之后,所述方法还包括:
    对其从所述核心网接收的业务数据包进行处理以获得处理后的数据包,并将处理后的数据包发送给用户装置。
  35. 如权利要求20至34任一项所述的方法,其中,
    所述核心网包括接入和移动性管理功能AMF实体和用户面功能UPF实体;
    向所述核心网发送第一请求消息包括:
    向所述AMF实体发送所述第一请求消息;
    向所述核心网发送第四请求消息包括:
    向所述AMF实体发送所述第四请求消息;
    向所述核心网发送第五请求消息包括:
    向所述AMF实体发送所述第五请求消息。
  36. 一种由核心网执行的数据通信方法,包括:
    从第一基站接收第一请求消息,其中所述第一请求消息用于请求采用双路传输方式发送数据包,所述双路传输方式是所述核心网将同一数据包分别发送给所述第一基站和所述第二基站的传输方式;
    在接收到所述第一请求消息后,通过所述双路传输方式向所述第一基站和第二基站发送一个或多个数据包。
  37. 如权利要求36所述的方法,其中,
    所述第一请求消息包括第一指示信息、所述第二基站的标识和用于进行双路传输的传输网络层信息,其中所述第一指示信息用于指示所述核心网采用双路传输方式发送数据包。
  38. 如权利要求37所述的方法,其中,
    所述第一指示信息与用户装置的一个或多个业务承载相关联。
  39. 如权利要求37或38所述的方法,其中,
    所述传输网络层信息是通用分组无线业务隧道协议GTP隧道端点信息,所述GTP隧道端点信息包括隧道的传输网络层地址和隧道的标识。
  40. 如权利要求36至39任一项所述的方法,其中,
    所述多个数据包包括业务数据包和同步数据包,其中所述同步数据包用于所述第一基站和所述第二基站根据所述同步数据包和预设规则给相同业务数据包确定相同的接入层数据包序号。
  41. 如权利要求40所述的方法,其中,
    所述同步数据包是通用分组无线业务隧道协议GTP用户面数据包,所述GTP用户面数据包的头部指示所述GTP用户面数据包是同步数据包。
  42. 如权利要求40或41所述的方法,其中,
    接入层数据包序号是分组数据汇聚协议PDCP层数据包序号,或者PDCP层数据包序号和超帧号HFN。
  43. 如权利要求36至42任一项所述的方法,在切换完成后,所述方法还包括:
    从所述第二基站接收第三请求消息,其中所述第三请求消息用于请求停用或取消双路传输方式,或者所述第三请求消息用于请求所述核心网针对所述第二基站采用单路传输方式。
  44. 如权利要求43所述的方法,其中,
    所述第三请求消息是路径切换请求消息。
  45. 如权利要求36至42任一项所述的方法,在切换取消或失败后,所述方法还包括:
    从所述第一基站接收第四请求消息,其中所述第四请求消息用于请求停用或取消双路传输方式,或者所述第四请求消息用于请求所述核心网针对所述第一基站采用单路传输方式。
  46. 如权利要求36至42任一项所述的方法,在从所述第一基站接收第一请求消息之后,所述方法还包括:
    从所述第一基站或所述第二基站接收第五请求消息,其中所述第五请求消息用于请求停用或取消双路传输方式,或者所述第五请求消息用于请求所述核心网针对所述第一基站 或所述第二基站采用单路传输方式。
  47. 如权利要求36至46任一项所述的方法,其中,
    所述核心网包括接入管理功能AMF实体和用户面功能UPF实体;
    所述从第一基站接收第一请求消息包括:
    所述AMF实体从第一基站接收第一请求消息;
    通过所述双路传输方式向所述第一基站和第二基站发送一个或多个数据包包括:
    所述UPF实体通过所述双路传输方式向所述第一基站和第二基站发送一个或多个数据包;
    从所述第二基站接收第三请求消息包括:
    所述AMF实体从所述第二基站接收第三请求消息;
    从所述第一基站接收第四请求消息包括:
    所述AMF实体从所述第一基站接收第四请求消息;
    从所述第一基站或所述第二基站接收第五请求消息包括:
    所述AMF实体从所述第一基站或所述第二基站接收第五请求消息。
  48. 一种基站,其特征在于,包括:
    存储器,用于存储计算机程序代码,所述计算机程序代码包括计算机指令;以及
    处理器,用于当所述计算机指令被运行时,使得所述基站执行如权利要求20至35任一项所述的方法。
  49. 一种核心网设备,其特征在于,包括:
    存储器,用于存储计算机程序代码,所述计算机程序代码包括计算机指令;以及
    处理器,用于当所述计算机指令被运行时,使得所述核心网设备执行如权利要求36至47任一项所述的方法。
PCT/CN2022/138963 2022-03-17 2022-12-14 通信方法以及用户装置、基站、核心网设备、通信系统 WO2023173851A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210265839.2A CN116801335A (zh) 2022-03-17 2022-03-17 通信方法以及用户装置、基站、核心网设备、通信系统
CN202210265839.2 2022-03-17

Publications (1)

Publication Number Publication Date
WO2023173851A1 true WO2023173851A1 (zh) 2023-09-21

Family

ID=88022153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/138963 WO2023173851A1 (zh) 2022-03-17 2022-12-14 通信方法以及用户装置、基站、核心网设备、通信系统

Country Status (2)

Country Link
CN (1) CN116801335A (zh)
WO (1) WO2023173851A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108616945A (zh) * 2017-02-10 2018-10-02 华为技术有限公司 一种通信链路切换的方法及相关设备
CN111771393A (zh) * 2018-02-26 2020-10-13 高通股份有限公司 基于用户面功能(upf)重复的先建后断切换
WO2021081785A1 (en) * 2019-10-30 2021-05-06 Zte Corporation Reducing service disruption in handover scenarios
CN113507718A (zh) * 2018-06-25 2021-10-15 华为技术有限公司 通信方法和通信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108616945A (zh) * 2017-02-10 2018-10-02 华为技术有限公司 一种通信链路切换的方法及相关设备
CN111771393A (zh) * 2018-02-26 2020-10-13 高通股份有限公司 基于用户面功能(upf)重复的先建后断切换
CN113507718A (zh) * 2018-06-25 2021-10-15 华为技术有限公司 通信方法和通信装置
WO2021081785A1 (en) * 2019-10-30 2021-05-06 Zte Corporation Reducing service disruption in handover scenarios

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Discussion on SA2 LS on supporting low latency and low jitter during handover procedure", 3GPP DRAFT; R2-1903532 - DISCUSSION ON SA2 LS ON SUPPORTING LOW LATENCY AND LOW JITTER DURING HANDOVER PROCEDURE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Xian, China; 20190408 - 20190412, 28 March 2019 (2019-03-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051688602 *

Also Published As

Publication number Publication date
CN116801335A (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
EP3731484B1 (en) Data transmission method and device
JP7428229B2 (ja) 無線局、無線端末、及びこれらの方法
WO2018029933A1 (ja) 無線アクセスネットワークノード、無線端末、コアネットワークノード、及びこれらの方法
RU2679417C1 (ru) Способ распространения контекста ключа безопасности, объект управления мобильностью и базовая станция
WO2018029930A1 (ja) 無線アクセスネットワークノード、無線端末、コアネットワークノード、及びこれらの方法
US10064115B2 (en) Method and apparatus for handover in dual connectivity user equipment and base station
US20170019945A1 (en) Dual Connectivity Re-Establishment
CN111212459A (zh) 一种中继通信方法及装置
US11937319B2 (en) Integrity protection handling at the gNB-CU-UP
KR20150058347A (ko) 3gpp에서 비-3gpp 오프로드를 인에이블하는 시스템 강화
WO2017054178A1 (zh) 保持业务连续性的方法、控制面网关和移动管理网元
EP2340678A1 (en) Qos management for self-backhauling in lte
CN109151932B (zh) 处理双连接中交递的装置及方法
WO2018000441A1 (zh) 传输数据的方法和装置
CN109548096B (zh) 通信方法、基站、终端设备和系统
US11849498B2 (en) Communication system
EP4181600A1 (en) Logical channel (lch) configuration method, communication device and communication system
CN114600508A (zh) Iab节点双连接建立的方法和通信装置
EP4124107A1 (en) Communication method, access network device, terminal device and core network device
CN115299107A (zh) 重建立的方法和通信装置
CN113938840A (zh) 通信方法和通信装置
WO2016197845A1 (zh) 辅基站SeNB的处理方法及装置
TW201836382A (zh) 通信方法、輔網絡節點和終端
US20240179560A1 (en) Communication method and communication apparatus
WO2023173851A1 (zh) 通信方法以及用户装置、基站、核心网设备、通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931859

Country of ref document: EP

Kind code of ref document: A1