WO2023173729A1 - 一种煤矿井下单轨吊多源信息融合精确定位方法及系统 - Google Patents

一种煤矿井下单轨吊多源信息融合精确定位方法及系统 Download PDF

Info

Publication number
WO2023173729A1
WO2023173729A1 PCT/CN2022/124501 CN2022124501W WO2023173729A1 WO 2023173729 A1 WO2023173729 A1 WO 2023173729A1 CN 2022124501 W CN2022124501 W CN 2022124501W WO 2023173729 A1 WO2023173729 A1 WO 2023173729A1
Authority
WO
WIPO (PCT)
Prior art keywords
positioning
model
uwb
monorail crane
underground
Prior art date
Application number
PCT/CN2022/124501
Other languages
English (en)
French (fr)
Inventor
朱真才
李翔
沈刚
汤裕
曲颂
袁冠
袁艺平
叶文凯
赵佳琪
王庆国
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2023173729A1 publication Critical patent/WO2023173729A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains

Definitions

  • the invention relates to the technical field of underground monorail crane positioning technology, and specifically relates to a method and system for accurate positioning of multiple sources of information for an underground monorail crane in a coal mine.
  • the monorail crane is a kind of underground auxiliary transportation equipment. It is mainly used to transport people and materials. It has a large traction force and runs along the rails fixed at the top of the coal mine tunnel. The running speed is not affected by the harsh road conditions of the tunnel ground, so it is widely used underground. With the advancement of the intelligent process of national coal mining, the precise positioning of monorail cranes is an important part of realizing intelligent dispatching of underground auxiliary transportation systems.
  • this positioning method has poor anti-interference ability and low positioning accuracy; the other It is a positioning system based on UWB, which calculates the distance between the fixed base station and the mobile tag through the signal transmission time between the two, but this method is costly and has a large amount of data; there is also a positioning method based on strapdown inertial navigation, which uses The measured acceleration and angular velocity information is used to calculate position information, but due to the existence of accumulated errors, it cannot perform long-term high-precision positioning.
  • the purpose of the present invention is to provide a multi-source information fusion precise positioning method and system for an underground monorail crane in a coal mine to solve the problems existing in the above background technology.
  • the present invention is implemented as follows: a multi-source information fusion precise positioning method for underground monorail cranes in coal mines.
  • the method includes the following steps:
  • the initial attitude matrix is established based on the initial attitude angle, the error compensation model of the gyroscope and accelerometer is constructed, the attitude matrix is updated and the velocity is converted to the coordinate system, and the monorail crane travel displacement model is derived.
  • the map construction system When the map construction system is working normally, it builds a full scene map of the underground tunnel through lidar and visual cameras, and selects and determines the precise location information of feature points;
  • a precise positioning Kalman filter model is constructed, and the real-time position model of the monorail crane is corrected to obtain precise position information.
  • the state parameters composed of the coordinate vector of the UWB mobile node and the speed of the UWB mobile node are analyzed, and a state suitable for the underground monorail crane positioning scenario is established based on the random disturbance received during the movement.
  • the steps of modeling and measuring the model include:
  • ⁇ m is the gyroscope sampling angle increment
  • ⁇ m is the accelerometer sampling specific force increment
  • a full scene map of the underground tunnel is constructed through lidar and a visual camera.
  • the steps of selecting and determining the precise location information of the feature points include: constructing an underground tunnel through lidar and a visual camera
  • Another object of the present invention is to provide a multi-source information fusion precise positioning system for underground monorail cranes in coal mines.
  • the system includes:
  • the UWB positioning module is used to calculate the dynamic position of the moving vehicle based on the UWB system vehicle tag and the base station fixed in the underground tunnel;
  • the strapdown inertial navigation positioning module is used to perform matrix conversion based on the attitude matrix contrast output by the strapdown inertial navigation system to calculate the vehicle's travel distance;
  • the map construction module is used to select and determine the location information of feature points based on the full scene map constructed by the map construction system;
  • the UWB positioning state model and measurement model establishment module when the UWB system is working normally, analyzes the state parameters composed of the coordinate vector of the UWB mobile node and the speed of the UWB mobile node, and establishes a suitable underground monorail crane based on the random disturbances received during the movement. Position the state model and measurement model of the scenario;
  • the strapdown inertial navigation positioning displacement model building module When the strapdown inertial navigation system is working normally, it establishes an initial attitude matrix based on the initial attitude angle, builds an error compensation model for the gyroscope and accelerometer, updates the attitude matrix and coordinates the velocity. System conversion, the monorail crane travel displacement model is derived;
  • the feature point position establishment module of the map construction system when the map construction system is working normally, builds a full scene map of the underground tunnel through lidar and visual cameras, and selects and determines the precise location information of the feature points;
  • the Kalman filter model building module and the position correction module are used to construct a precise positioning Kalman filter model based on the monorail crane travel displacement model and the precise position information of the feature points, and correct the real-time position model of the monorail crane to obtain precise position information. .
  • This invention establishes a motion state model and a measurement model based on the interactive information between the vehicle tags and mobile nodes of the UWB positioning system and the actual constraints of the monorail crane operation; and then compensates errors based on the gyroscope and accelerometer of the strapdown inertial navigation system. model to establish a displacement model during driving; finally, based on the position information of the feature points determined by the map construction system, a Kalman filter model for precise positioning is established, and the precise position information of the monorail crane is obtained after correction.
  • This method and system can realize the precise positioning of the monorail crane when it is running underground through information fusion of three positioning methods. At the same time, it combines the advantages of the three positioning methods to ensure accuracy and high stability. The stability and anti-interference performance make it very suitable for monorail crane positioning in underground environments.
  • Figure 1 is a block diagram of the principle of multi-source information fusion precise positioning technology for underground monorail cranes in coal mines.
  • Figure 2 is a system flow chart of a multi-source information fusion precise positioning method for underground monorail cranes in coal mines.
  • Figure 3 is a flow chart of a multi-source information fusion precise positioning method for underground monorail cranes in coal mines.
  • Figure 4 is a schematic structural diagram of a multi-source information fusion precise positioning system for underground monorail cranes in coal mines.
  • the present invention relates to the technical field of underground monorail crane positioning. Due to the complex and changeable geological environment of coal mines and the deep underground mining environment, traditional positioning methods such as GPS and Beidou cannot be used. However, accurate positioning of personnel and vehicles in coal mines Positioning is indispensable. Although the commonly used RFID personnel and vehicle positioning technology is relatively mature, its positioning range is small and its positioning accuracy is low. It is not suitable for positioning equipment such as monorail cranes that have long running distances and time. The embodiments of the present invention are intended to Solve the above problems.
  • the UWB positioning system calculates the distance between the base station and the tag by calculating the flight time of the electromagnetic wave signal between the base station and the tag, and then uses the three-sided positioning principle to obtain more accurate position information of the mobile tag.
  • UWB positioning often suffers from position loss; strapdown inertial navigation positioning is a positioning method that does not rely on external conditions. It uses the ratio of gyroscope and acceleration output and the Acceleration information, through error compensation and matrix transformation, can calculate the more accurate position value of the inertial navigation system within a period of time.
  • the strapdown inertial navigation system often needs to perform position correction; three-dimensional lidar and visual
  • the distance camera can construct an overall model of the monorail crane operating tunnel.
  • the location information of the feature points can be uploaded to the entire positioning system as a position correction reference point.
  • the present invention provides a method and system for merging multi-source information and precise positioning of underground monorail cranes in coal mines by using the UWB positioning system, strapdown inertial navigation system and map construction system.
  • the method and system perform three positioning methods. Information fusion can achieve precise positioning of the monorail crane when it is running underground. It also integrates the advantages of the three positioning methods to ensure accuracy while also having high stability and anti-interference performance.
  • an embodiment of the present invention provides a multi-source information fusion precise positioning method for an underground monorail crane in a coal mine.
  • the method includes the following steps:
  • This step first measures the distance between the vehicle tag and multiple base stations in the underground tunnel through the principle of bilateral two-way ranging. Both the vehicle tag and the base station are regarded as fixed nodes. Then once the UWB node works, each node generates an independent timestamp. , node A sends a request signal frame at Ta1, and node B receives the signal at its Tb1. After a period of time Treply1, a response signal frame is sent at Tb2, and node A receives the response signal at Ta2. After a period of time Treply2, the end signal frame is sent at Ta3. Node B receives the end signal frame at Tb2, and the ranging process ends. Finally, four time difference data Treply1, Treply2, Tround1, and Tround12 are obtained. The flight time of the UWB signal between node A and node B is:
  • the distance between node A and node B can be obtained from the above formula, where c is the speed of light.
  • c is the speed of light.
  • the coordinates of the three fixed base stations in the tunnel are: BS1 (x1, y1), BS2 (x2, y2), BS3 (x3, y3).
  • a system of equations can be established according to the circle formula, that is:
  • the real-time position of the moving vehicle can be calculated.
  • S200 performs matrix conversion based on the attitude matrix contrast ratio output by the strapdown inertial navigation system to calculate the vehicle's travel distance.
  • This step first converts between the carrier coordinate system (b system) and the navigation coordinate system (n system).
  • the n system can be transformed into the b system through three single-axis rotations.
  • the rotation sequence is as follows:
  • the monorail crane displacement can be obtained as:
  • S300 Select and determine the location information of the feature points based on the full scene map constructed by the map construction system.
  • S400 steps specifically include:
  • the monorail crane keeps traveling at a constant speed along the track.
  • the initial attitude matrix is established based on the initial attitude angle, the error compensation model of the gyroscope and accelerometer is constructed, the attitude matrix is updated and the speed is converted to the coordinate system, and the monorail crane travel is derived Displacement model.
  • the specific steps of S500 include:
  • ⁇ m is the gyroscope sampling angle increment
  • ⁇ m is the accelerometer sampling specific force increment
  • Step S600 specifically includes:
  • S700 Construct a precise positioning Kalman filter model based on the monorail crane traveling displacement model and the precise position information of the characteristic points, and correct the real-time position model of the monorail crane to obtain precise position information.
  • the underground monorail crane position correction adopts Kalman filtering.
  • the selection of system state variables is the same as the UWB/INS combined positioning.
  • the filtered observation volume is:
  • H′ k is the observation matrix of position correction filtering
  • ⁇ p is the observation noise of position correction filtering, which meets the characteristics of Gaussian white noise.
  • embodiments of the present invention also provide a multi-source information fusion precise positioning system for underground monorail cranes in coal mines.
  • the system includes:
  • the UWB positioning module 100 is used to calculate the dynamic position of the moving vehicle based on the UWB system vehicle tag and the base station fixed in the underground tunnel;
  • the strapdown inertial navigation positioning module 200 is used to perform matrix conversion based on the attitude matrix contrast ratio output by the strapdown inertial navigation system to calculate the vehicle travel distance;
  • the map construction module 300 is used to select and determine the location information of feature points based on the full scene map constructed by the map construction system;
  • the UWB positioning state model and measurement model establishment module 400 when the UWB system is working normally, analyzes the state parameters composed of the coordinate vector of the UWB mobile node and the speed of the UWB mobile node, and establishes a suitable underground monorail according to the random disturbances received during the movement.
  • State model and measurement model of crane positioning scenario
  • the strapdown inertial navigation positioning displacement model building module 500 when the strapdown inertial navigation system is working normally, establishes an initial attitude matrix based on the initial attitude angle, constructs an error compensation model for the gyroscope and accelerometer, updates the attitude matrix and calculates the velocity. Coordinate system conversion, deriving the monorail crane travel displacement model;
  • the feature point location establishment module 600 of the map construction system when the map construction system is working normally, builds a full scene map of the underground tunnel through lidar and visual cameras, and selects and determines the precise location information of the feature points;
  • the Kalman filter model building module and the position correction module 700 are used to construct a precise positioning Kalman filter model based on the monorail crane travel displacement model and the precise position information of the feature points, and correct the real-time position model of the monorail crane to obtain the precise position. information.
  • the multi-source information fusion precise positioning system for underground monorail cranes in coal mines provides a practical and feasible new positioning method for the field of precise positioning of underground monorail cranes in coal mines.
  • This method has strong anti-interference ability, long positioning distance and accurate positioning. It has significant advantages such as high efficiency and high reliability, and has good applicability for the positioning of monorail cranes in coal mines.
  • This invention integrates UWB positioning, strapdown inertial navigation positioning and map construction technology, uses strapdown inertial navigation precise position data in a short time to compensate for possible data loss in the UWB positioning system, and uses map construction technology to generate location information of feature points. Correcting the accumulated errors in strapdown inertial positioning allows this positioning system to greatly improve positioning accuracy while ensuring reliability, and provides effective technical support for the subsequent intelligent scheduling of underground auxiliary transportation systems.
  • steps in the flowcharts of various embodiments of the present invention are shown in sequence as indicated by arrows, these steps are not necessarily executed in the order indicated by arrows. Unless explicitly stated in this article, there is no strict order restriction on the execution of these steps, and these steps can be executed in other orders. Moreover, at least some of the steps in each embodiment may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed at the same time, but may be executed at different times. The order of execution is not necessarily sequential, but may be performed in turn or alternately with other steps or sub-steps of other steps or at least part of the stages.
  • Non-volatile memory may include read-only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Synchlink DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDRSDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous chain Synchlink DRAM
  • Rambus direct RAM
  • DRAM direct memory bus dynamic RAM
  • RDRAM memory bus dynamic RAM

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Navigation (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种煤矿井下单轨吊多源信息融合精确定位方法,包括以下步骤:根据UWB系统车载标签和基站解算出运动车辆动态位置(S100);根据捷联惯导系统输出的姿态矩阵对比力进行矩阵转换,解算出车辆行驶路程(S200);根据地图构建系统构建的全场景地图,确定特征点的位置信息(S300);根据单轨吊行驶位移模型和特征点精确位置信息,构建精确定位卡尔曼滤波模型,对单轨吊实时位置模型进行修正,得到精确位置信息(S700)。以及一种煤矿井下单轨吊多源信息融合精确定位系统,通过对三种定位方式进行信息融合,在保证精确度的同时,也能拥有较高的稳定性和抗干扰性能,适用于井下环境中的单轨吊定位。

Description

一种煤矿井下单轨吊多源信息融合精确定位方法及系统 技术领域
本发明涉及井下单轨吊定位技术领域,具体是涉及一种煤矿井下单轨吊多源信息融合精确定位方法及系统。
背景技术
单轨吊是一种井下辅助运输设备,主要用于运输人员及物料,它的牵引力大,且沿固定在煤矿巷道顶部的钢轨运行,运行速度不受巷道地面的恶劣路况影响,因此井下应用广泛。随着国家煤炭开采智能化进程的推进,对单轨吊的精确定位是实现井下辅助运输系统智能调度的重要一环。
限于煤矿井下的特殊环境,GPS以及北斗导航此类定位系统无法在井下使用,目前,国内外针对井下定位技术探索了多种定位方式。一种是基于RFID的人员车辆定位技术,人员车辆携带标识卡与固定的读卡器进行信息交互,即可得到位置信息,但这种定位方式抗干扰能力差,定位精度较低;另一种是基于UWB的定位系统,通过固定基站与移动标签之间的信号传输时间,解算两者距离,但这种方式成本高且数据量大;还有一种基于捷联惯导的定位方法,通过测得的加速度及角速度信息解算出位置信息,但由于累积误差的存在,导致其无法进行长时间的高精度定位。
因此,如何对煤矿井下单轨吊进行精确定位,为实现井下辅助运输系统智能调度提供技术支持,是本领域亟需解决的重大问题。
发明内容
针对现有技术存在的不足,本发明的目的在于提供一种煤矿井下单轨吊多源信息融合精确定位方法及系统,以解决上述背景技术中存在的问题。
本发明是这样实现的,一种煤矿井下单轨吊多源信息融合精确定位方法,所述方法包括以下步骤:
根据UWB系统车载标签和固定在井下巷道内的基站,解算出运动车辆动态位置;
根据捷联惯导系统输出的姿态矩阵对比力进行矩阵转换,解算出车辆行驶路程;
根据地图构建系统构建的全场景地图,选取并确定特征点的位置信息;
当UWB系统正常工作时,分析由UWB移动节点坐标向量及UWB移动节点的速度构成的状态参数,根据运动过程中受到的随机扰动,建立适合井下单轨吊定位场景的状态模型和量测模型;
当捷联惯导系统正常工作时,根据初始姿态角建立初始姿态矩阵,构建陀螺仪和加速度计的误差补偿模型,对姿态矩阵进行更新并对速度进行坐标系转换,推导出单轨吊行驶位移模型;
当地图构建系统正常工作时,通过激光雷达和视觉摄像头构建井下巷道全场景地图,选取并确定特征点精确位置信息;
根据所述的单轨吊行驶位移模型以及特征点精确位置信息,构建精确定位卡尔曼滤波模型,对单轨吊实时位置模型进行修正,得到精确位置信息。
作为本发明进一步的方案:当UWB系统正常工作时,分析由UWB移动节点坐标向量及UWB移动节点的速度构成的状态参数,根据运动过程中受到的随机扰动,建立适合井下单轨吊定位场景的状态模型和量测模型的步骤,具体包括:
构建单轨吊UWB定位状态模型:将单轨吊UWB定位系统划分为若干个由4个UWB定位基站和1个UWB移动节点组成的定位网络最小单元,每一个最小单元中,定位基站坐标向量记为x a∈R 2,a=1,2,3,4,UWB移动节点坐标向量及UWB移动节点的速度作为状态参数,即X d(k)=[p x(k)p y(k)v x(k)v y(k)] T,运动过程中受到随机扰动为u d(k)=[u x(k)u y(k)] T,且u x~N(0,δ x 2),u y~N(0,δ y 2),将单轨吊的运动模型表示为:
Figure PCTCN2022124501-appb-000001
其状态方程为X d(k)=ΦX d(k-1)+τu d(k-1),其中:状态转移矩阵
Figure PCTCN2022124501-appb-000002
噪声驱 动矩阵
Figure PCTCN2022124501-appb-000003
△T为UWB数据采样间隔,
Figure PCTCN2022124501-appb-000004
为采样时刻k处的系统噪声,q为均值为零,方差为
Figure PCTCN2022124501-appb-000005
的白噪声,噪声协方差矩阵为Q=τqτ T
构建单轨吊UWB定位量测模型:通过单轨吊UWB定位系统定位所需的测量值为UWB移动节点与每一个UWB参考节点之间的距离信息,则在k时刻,使用r(k)表示移动节点在采样时刻k处的真实位置,用y(k)表示移动节点在采样时刻k处的观测值,则有y(k)=r(k)+v(k),其中v(k)~N(0,δ R) 2代表距离测量噪声,k时刻的量测方程为Y(k)=[d 1 2(k)…d n 2(k)] T+V(k),其中
Figure PCTCN2022124501-appb-000006
Figure PCTCN2022124501-appb-000007
通过泰勒级数展开将非线性量测方程转化为线性量测方程,即Y(k)=H(k)X d(k)+V(k),其中:
Figure PCTCN2022124501-appb-000008
作为本发明进一步的方案:当捷联惯导系统正常工作时,根据初始姿态角建立初始姿态矩阵,构建陀螺仪和加速度计的误差补偿模型,对姿态矩阵进行更新并对速度进行坐标系转换,推导出单轨吊行驶位移模型的步骤,具体包括:
生成姿态阵更新式:
Figure PCTCN2022124501-appb-000009
Figure PCTCN2022124501-appb-000010
Figure PCTCN2022124501-appb-000011
Figure PCTCN2022124501-appb-000012
其中
Figure PCTCN2022124501-appb-000013
地球自转速率ω ie=7.2921151467×10 -5rad/s,惯导位置速率
Figure PCTCN2022124501-appb-000014
R M=R e(1-2f e+3f e sin 2L),R N=R e(1+f esin 2L),
Figure PCTCN2022124501-appb-000015
分别是惯导系统在东向、北向和高度方向速度向量;h为惯导系统所在高度,L为惯导系统所在地球上纬度,R e为参考地球模型的椭圆长轴半径,f e为参考地球模型的扁率;
生成速度更新式:
Figure PCTCN2022124501-appb-000016
Figure PCTCN2022124501-appb-000017
Figure PCTCN2022124501-appb-000018
生成位置更新式:
Figure PCTCN2022124501-appb-000019
P=[L λ h] T
Figure PCTCN2022124501-appb-000020
Figure PCTCN2022124501-appb-000021
M pV时,
Figure PCTCN2022124501-appb-000022
生成圆锥误差补偿式:
Figure PCTCN2022124501-appb-000023
其中,陀螺在时间段[t m-1,t m]内(T=t m-t m-1)进行了两次等间隔采样,角增量分别为△θ m1,△θ m2
生成旋转误差补偿式:
Figure PCTCN2022124501-appb-000024
其中△θ m为陀螺采样角增量,△ν m为加速度计采样比力增量;
生成划桨误差补偿式:
Figure PCTCN2022124501-appb-000025
作为本发明进一步的方案:当地图构建系统正常工作时,通过激光雷达和视觉摄像头构建井下巷道全场景地图,选取并确定特征点精确位置信息的步骤包括:通过激光雷达和视觉摄像头构建的井下巷道模型为:M={P sta1,P sta2,P sta3…P staN},其中P staN为特征点位置信息,P staN=[L staN λ staN h staN] T
本发明的另一目的在于提供一种煤矿井下单轨吊多源信息融合精确定位系统,所述系统包括:
UWB定位模块,用于根据UWB系统车载标签和固定在井下巷道内的基站,解算出运动车辆动态位置;
捷联惯导定位模块,用于根据捷联惯导系统输出的姿态矩阵对比力进行矩阵转换,解算出车辆行驶路程;
地图构建模块,用于根据地图构建系统构建的全场景地图,选取并确定特征点的位置信息;
UWB定位状态模型和量测模型建立模块,当UWB系统正常工作时,分析由UWB移动节点坐标向量及UWB移动节点的速度构成的状态参数,根据运动过程中受到的随机扰动,建立适合井下单轨吊定位场景的状态模型和量测模型;
捷联惯导定位位移模型建立模块,当捷联惯导系统正常工作时,根据初始姿态角建立 初始姿态矩阵,构建陀螺仪和加速度计的误差补偿模型,对姿态矩阵进行更新并对速度进行坐标系转换,推导出单轨吊行驶位移模型;
地图构建系统特征点位置建立模块,当地图构建系统正常工作时,通过激光雷达和视觉摄像头构建井下巷道全场景地图,选取并确定特征点精确位置信息;以及
卡尔曼滤波模型建立模块以及位置修正模块,用于根据所述的单轨吊行驶位移模型以及特征点精确位置信息,构建精确定位卡尔曼滤波模型,对单轨吊实时位置模型进行修正,得到精确位置信息。
与现有技术相比,本发明的有益效果是:
本发明根据UWB定位系统的车载标签和移动节点之间的交互信息以及单轨吊运行的实际约束,建立运动状态模型和量测模型;然后根据捷联惯导系统的陀螺仪和加速度计的误差补偿模型,建立行驶过程中的位移模型;最后再根据地图构建系统所确定的特征点的位置信息,建立精确定位的卡尔曼滤波模型,经过修正后得到单轨吊的精确位置信息。该方法及系统通过对三种定位方式进行信息融合,能够实现对单轨吊在井下运行时的精确定位,同时融合三种定位方式的优点,在保证精确度的同时,也能拥有较高的稳定性和抗干扰性能,非常适用于井下环境中的单轨吊定位。
附图说明
图1为煤矿井下单轨吊多源信息融合精确定位技术的原理框图。
图2为一种煤矿井下单轨吊多源信息融合精确定位方法的系统流程图。
图3为一种煤矿井下单轨吊多源信息融合精确定位方法的流程图。
图4为一种煤矿井下单轨吊多源信息融合精确定位系统的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清晰,以下结合附图及具体实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
以下结合具体实施例对本发明的具体实现进行详细描述。
需要说明的是,本发明涉及井下单轨吊定位技术领域,由于煤矿井下复杂多变的地质环境以及深处地下的采矿环境,GPS以及北斗等传统定位方式无法使用,但对煤矿井下人员车辆进行精确定位是不可或缺的,目前常用的RFID人员车辆定位虽然技术比较成熟,但是定位范围小且定位精度低,不适用于单轨吊这样运行路程和时间较长的定位设备,本发明实施例旨在解决上述问题。
如图1和图2所示,UWB定位系统通过计算基站与标签之间电磁波信号的飞行时间从而计算二者之间的距离,再通过三边定位原理便可得到移动标签较为精确的位置信息,但是由于井下非视距以及信号失真等影响,UWB定位常常会出现位置丢失的现象;捷联惯导定位是一种不依赖于外接条件的定位方式,其通过陀螺仪以及加速度输出的比力和加速度信息,通过误差补偿以及矩阵变换后能计算出该惯导系统在一段时间内较为精确的位置值,但是由于累积误差的存在,捷联惯导系统常常需要进行位置修正;三维激光雷达以及视距相机能够构建出单轨吊运行巷道的整体模型,通过选取确定的特征点,便可将特征点的位置信息上传至整个定位系统作为位置修正参考点。为此,本发明提供了一种利用UWB定位系统、捷联惯导系统以及地图构建系统进行煤矿井下单轨吊多源信息融合精确定位的方法及系统,该方法及系统通过对三种定位方式进行信息融合,能够实现对单轨吊在井下运行时的精确定位,同时融合三种定位方式的优点,在保证精确度的同时,也能拥有较高的稳定性和抗干扰性能。
如图3所示,本发明实施例提供了一种煤矿井下单轨吊多源信息融合精确定位方法,所述方法包括以下步骤:
S100,根据UWB系统车载标签和固定在井下巷道内的基站,解算出运动车辆动态位置。
该步骤首先通过双边双程测距原理测得车载标签与井下巷道内多个基站的距离,将车载标签与基站都视为固定节点,那么一旦UWB节点工作,每个节点生成一个独立的时间戳,节点A在Ta1发出请求信号帧,节点B在其Tb1接收该信号。经过一个时间Treply1后在Tb2处发送响应信号帧,节点A在Ta2处接收到响应信号。经过一个时间Treply2后在Ta3处发送结束信号帧,节点B在Tb2处接收到该结束信号帧,测距过程结束。最终得到四个 时间差数据Treply1、Treply2、Tround1、Tround12,在节点A与节点B之间UWB信号的飞行时间为:
Figure PCTCN2022124501-appb-000026
由上式可得到节点A与节点B之间的距离,其中c为光速。再根据三边定位原理,假设巷道内三个固定基站的坐标分别为:BS1(x1,y1)、BS2(x2,y2)、BS3(x3,y3),三个定位基站与定位标签MS(x,y)的距离分别为R1=v*t1、R2=v*t2、R3=v*t3,则根据圆周公式可建立方程组,即:
Figure PCTCN2022124501-appb-000027
就可以计算出运动车辆的实时位置。
S200,根据捷联惯导系统输出的姿态矩阵对比力进行矩阵转换,解算出车辆行驶路程。
该步骤首先进行载体坐标系(b系)与导航坐标系(n系统)之间的转换,n系可经过三次单轴旋转变换到b系,旋转顺序如下所示:
Figure PCTCN2022124501-appb-000028
则三次基本旋转所对应的坐标变换矩阵为:
Figure PCTCN2022124501-appb-000029
将上述三个转换矩阵相乘,即可得到n系到b系的姿态转换矩阵,如下式所示:
Figure PCTCN2022124501-appb-000030
再根据捷联惯导比力方程,进行积分后可得单轨吊位移为:
Figure PCTCN2022124501-appb-000031
其中,
Figure PCTCN2022124501-appb-000032
为ti时刻至ti+1时刻n系中的速度投影,
Figure PCTCN2022124501-appb-000033
为单轨吊的初始位置信息。
S300,根据地图构建系统构建的全场景地图,选取并确定特征点的位置信息。
需要说明的是,在单轨吊进行运输活动前,首先进行多次模型运行,通过安装在单轨吊车身上激光雷达和视觉摄像头构建完整精确的井下巷道模型,通过对比整个井下模型的样貌,选取合适的特征点。
S400,当UWB系统正常工作时,分析由UWB移动节点坐标向量及UWB移动节点的速度构成的状态参数,根据运动过程中受到的随机扰动,建立适合井下单轨吊定位场景的状态模型和量测模型。
S400步骤具体包括:
构建单轨吊UWB定位状态模型:将单轨吊UWB定位系统划分为若干个由4个UWB定位基站和1个UWB移动节点组成的定位网络最小单元,每一个最小单元中,定位基站坐标向量记为x a∈R 2,a=1,2,3,4,UWB移动节点坐标向量及UWB移动节点的速度作为状态参数,即X d(k)=[p x(k) p y(k) v x(k) v y(k)] T,运动过程中受到随机扰动为u d(k)=[u x(k) u y(k)] T,且u x~N(0,δ x 2),u y~N(0,δ y 2),假设UWB标签固定在单轨吊车身上并未被异物遮盖,单轨吊沿轨道保持匀速行进,单轨吊的运动模型为可表示为:
Figure PCTCN2022124501-appb-000034
其状态方程为X d(k)=ΦX d(k-1)+τu d(k-1),其中:状态转移矩阵
Figure PCTCN2022124501-appb-000035
噪声驱 动矩阵
Figure PCTCN2022124501-appb-000036
△T为UWB数据采样间隔,
Figure PCTCN2022124501-appb-000037
为采样时刻k处的系统噪声,q为均值为零,方差为
Figure PCTCN2022124501-appb-000038
的白噪声,噪声协方差矩阵为Q=τqτ T
构建单轨吊UWB定位量测模型:在单轨吊UWB定位系统中,定位所需的测量值为UWB移动节点与每一个UWB参考节点之间的距离信息,则在k时刻,使用r(k)表示移动节点在采样时刻k处的真实位置,用y(k)表示移动节点在采样时刻k处的观测值,则有y(k)=r(k)+v(k),其中v(k)~N(0,δ R) 2代表距离测量噪声,δ R由UWB系统的测量精度决定,则系统k时刻的量测方程可以表示为:Y(k)=[d 1 2(k)…d n 2(k)] T+V(k),其中
Figure PCTCN2022124501-appb-000039
即:
Figure PCTCN2022124501-appb-000040
通过泰勒级数展开可将非线性量测方程转化为线性量测方程,即Y(k)=H(k)X d(k)+V(k),
其中:
Figure PCTCN2022124501-appb-000041
S500,当捷联惯导系统正常工作时,根据初始姿态角建立初始姿态矩阵,构建陀螺仪和加速度计的误差补偿模型,对姿态矩阵进行更新并对速度进行坐标系转换,推导出单轨吊行驶位移模型。
S500的步骤具体包括:
生成姿态阵更新式:
Figure PCTCN2022124501-appb-000042
Figure PCTCN2022124501-appb-000043
Figure PCTCN2022124501-appb-000044
Figure PCTCN2022124501-appb-000045
其中
Figure PCTCN2022124501-appb-000046
地球自转速率ω ie=7.2921151467×10 -5rad/s,惯导位置速率
Figure PCTCN2022124501-appb-000047
R M=R e(1-2f e+3f e sin 2L),R N=R e(1+f esin 2L),
Figure PCTCN2022124501-appb-000048
分别是惯导系统在东向、北向和高度方向速度向量;h为惯导系统所在高度,L为惯导系统所在地球上纬度,R e为参考地球模型的椭圆长轴半径,f e为参考地球模型的扁率;
生成速度更新式:
Figure PCTCN2022124501-appb-000049
Figure PCTCN2022124501-appb-000050
Figure PCTCN2022124501-appb-000051
生成位置更新式:
Figure PCTCN2022124501-appb-000052
P=[L λ h] T
Figure PCTCN2022124501-appb-000053
Figure PCTCN2022124501-appb-000054
M pV时,
Figure PCTCN2022124501-appb-000055
生成圆锥误差补偿式:
Figure PCTCN2022124501-appb-000056
其中,陀螺在时间段[t m-1,t m]内(T=t m-t m-1)进行了两次等间隔采样,角增量分别为△θ m1,△θ m2
生成旋转误差补偿式:
Figure PCTCN2022124501-appb-000057
其中△θ m为陀螺采样角增量,△ν m为加速度计采样比力增量;
生成划桨误差补偿式:
Figure PCTCN2022124501-appb-000058
S600,当地图构建系统正常工作时,通过激光雷达和视觉摄像头构建井下巷道全场景地图,选取并确定特征点精确位置信息。
S600步骤具体包括:通过激光雷达和视觉摄像头构建的井下巷道模型为:M={P sta1,P sta2,P sta3…P staN},其中P staN为特征点位置信息,P staN=[L staN λ staN h staN] T
S700,根据所述的单轨吊行驶位移模型以及特征点精确位置信息,构建精确定位卡尔曼滤波模型,对单轨吊实时位置模型进行修正,得到精确位置信息。
需要说明的是,井下单轨吊位置修正采用Kalman滤波的方式,系统状态量的选取和UWB/INS组合定位相同,滤波观测量为:
Figure PCTCN2022124501-appb-000059
式中:Z p(t)是滤波位置观测量;r p(t)是特征点位置值。则Kalman的量测方程为:
Z′ k=Z p(t)=H′ kx+ν p
式中:H′ k位置修正滤波的观测矩阵;ν p为位置修正滤波的观测噪声,满足高斯白噪声特性。
如图4所示,本发明实施例还提供了一种煤矿井下单轨吊多源信息融合精确定位系统,所述系统包括:
UWB定位模块100,用于根据UWB系统车载标签和固定在井下巷道内的基站,解算出运动车辆动态位置;
捷联惯导定位模块200,用于根据捷联惯导系统输出的姿态矩阵对比力进行矩阵转换,解算出车辆行驶路程;
地图构建模块300,用于根据地图构建系统构建的全场景地图,选取并确定特征点的位置信息;
UWB定位状态模型和量测模型建立模块400,当UWB系统正常工作时,分析由UWB移动节点坐标向量及UWB移动节点的速度构成的状态参数,根据运动过程中受到的随机扰动,建立适合井下单轨吊定位场景的状态模型和量测模型;
捷联惯导定位位移模型建立模块500,当捷联惯导系统正常工作时,根据初始姿态角建立初始姿态矩阵,构建陀螺仪和加速度计的误差补偿模型,对姿态矩阵进行更新并对速度进行坐标系转换,推导出单轨吊行驶位移模型;
地图构建系统特征点位置建立模块600,当地图构建系统正常工作时,通过激光雷达和视觉摄像头构建井下巷道全场景地图,选取并确定特征点精确位置信息;
卡尔曼滤波模型建立模块以及位置修正模块700,用于根据所述的单轨吊行驶位移模型以及特征点精确位置信息,构建精确定位卡尔曼滤波模型,对单轨吊实时位置模型进行修正,得到精确位置信息。
本发明提供的煤矿井下单轨吊多源信息融合精确定位系统,为煤矿井下单轨吊精确定位领域提供了一种实际可行的新的定位方法,该方法具有抗干扰能力强、定位距离远、定位精确高以及可靠性高等显著优势,对煤矿井下单轨吊的定位具有很好的适用性。本发明通过融合UWB定位、捷联惯导定位以及地图构建技术,利用捷联惯导短时间内精确位置数据补偿UWB定位系统可能出现的数据丢失现象,利用地图构建技术生成的特征点的位置信息修正捷联惯导定位中的累积误差,让本定位系统在保证可靠性的同时,极大地提高了定 位精度,为后续实现井下辅助运输系统智能调度提供了有效的技术支持。
以上仅对本发明的较佳实施例进行了详细叙述,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
应该理解的是,虽然本发明各实施例的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,各实施例中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一非易失性计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
本领域技术人员在考虑说明书及实施例处的公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由权利要求指出。

Claims (5)

  1. 一种煤矿井下单轨吊多源信息融合精确定位方法,其特征在于,所述方法包括以下步骤:
    根据UWB系统车载标签和固定在井下巷道内的基站,解算出运动车辆动态位置;
    根据捷联惯导系统输出的姿态矩阵对比力进行矩阵转换,解算出车辆行驶路程;
    根据地图构建系统构建的全场景地图,选取并确定特征点的位置信息;
    当UWB系统正常工作时,分析由UWB移动节点坐标向量及UWB移动节点的速度构成的状态参数,根据运动过程中受到的随机扰动,建立适合井下单轨吊定位场景的状态模型和量测模型;
    当捷联惯导系统正常工作时,根据初始姿态角建立初始姿态矩阵,构建陀螺仪和加速度计的误差补偿模型,对姿态矩阵进行更新并对速度进行坐标系转换,推导出单轨吊行驶位移模型;
    当地图构建系统正常工作时,通过激光雷达和视觉摄像头构建井下巷道全场景地图,选取并确定特征点精确位置信息;
    根据所述的单轨吊行驶位移模型以及特征点精确位置信息,构建精确定位卡尔曼滤波模型,对单轨吊实时位置模型进行修正,得到精确位置信息。
  2. 根据权利要求1所述一种煤矿井下单轨吊多源信息融合精确定位方法,其特征在于,当UWB系统正常工作时,分析由UWB移动节点坐标向量及UWB移动节点的速度构成的状态参数,根据运动过程中受到的随机扰动,建立适合井下单轨吊定位场景的状态模型和量测模型的步骤,具体包括:
    构建单轨吊UWB定位状态模型:将单轨吊UWB定位系统划分为若干个由4个UWB定位基站和1个UWB移动节点组成的定位网络最小单元,每一个最小单元中,定位基站坐标向量记为x a∈R 2,a=1,2,3,4,UWB移动节点坐标向量及UWB移动节点的速度作为状态参数,即X d(k)=[p x(k) p y(k) v x(k) v y(k)] T,运动过程中受到随机扰动为u d(k)=[u x(k) u y(k)] T,且u x~N(0,δ x 2),u y~N(0,δ y 2),将单轨吊的运动模型表示为:
    Figure PCTCN2022124501-appb-100001
    其状态方程为X d(k)=ΦX d(k-1)+τu d(k-1),其中:状态转移矩阵
    Figure PCTCN2022124501-appb-100002
    噪声驱动矩阵
    Figure PCTCN2022124501-appb-100003
    △T为UWB数据采样间隔,
    Figure PCTCN2022124501-appb-100004
    为采样时刻k处的系统噪声,q为均值为零,方差为
    Figure PCTCN2022124501-appb-100005
    的白噪声,噪声协方差矩阵为Q=τqτ T
    构建单轨吊UWB定位量测模型:通过单轨吊UWB定位系统定位所需的测量值为UWB移动节点与每一个UWB参考节点之间的距离信息,则在k时刻,使用r(k)表示移动节点在采样时刻k处的真实位置,用y(k)表示移动节点在采样时刻k处的观测值,则有y(k)=r(k)+v(k),其中v(k)~N(0,δ R) 2代表距离测量噪声,k时刻的量测方程为Y(k)=[d 1 2(k)…d n 2(k)] T+V(k),其中
    Figure PCTCN2022124501-appb-100006
    Figure PCTCN2022124501-appb-100007
    通过泰勒级数展开将非线性量测方程转化为线性量测方程,即Y(k)=H(k)X d(k)+V(k),其中:
    Figure PCTCN2022124501-appb-100008
  3. 根据权利要求2所述一种煤矿井下单轨吊多源信息融合精确定位方法,其特征在于,当捷联惯导系统正常工作时,根据初始姿态角建立初始姿态矩阵,构建陀螺仪和加速度计的误差补偿模型,对姿态矩阵进行更新并对速度进行坐标系转换,推导出单轨吊行驶位移模型的步骤,具体包括:
    生成姿态阵更新式:
    Figure PCTCN2022124501-appb-100009
    Figure PCTCN2022124501-appb-100010
    Figure PCTCN2022124501-appb-100011
    Figure PCTCN2022124501-appb-100012
    其中
    Figure PCTCN2022124501-appb-100013
    地球自转速率ω ie=7.2921151467×10 -5rad/s,惯导位置速率
    Figure PCTCN2022124501-appb-100014
    R M=R e(1-2f e+3f e sin 2L),R N=R e(1+f esin 2L),
    Figure PCTCN2022124501-appb-100015
    分别是惯导系统在东向、北向和高度方向速度向量;h为惯导系统所在高度,L为惯导系统所在地球上纬度,R e为参考地球模型的椭圆长轴半径,f e为参考地球模型的扁率;
    生成速度更新式:
    Figure PCTCN2022124501-appb-100016
    Figure PCTCN2022124501-appb-100017
    Figure PCTCN2022124501-appb-100018
    生成位置更新式:
    Figure PCTCN2022124501-appb-100019
    P=[L λ h] T
    Figure PCTCN2022124501-appb-100020
    Figure PCTCN2022124501-appb-100021
    时,
    Figure PCTCN2022124501-appb-100022
    生成圆锥误差补偿式:
    Figure PCTCN2022124501-appb-100023
    其中,陀螺在时间段[t m-1,t m]内(T=t m-t m-1)进行了两次等间隔采样,角增量分别为△θ m1,△θ m2
    生成旋转误差补偿式:
    Figure PCTCN2022124501-appb-100024
    其中△θ m为陀螺采样角增量,△ν m为加速度计采样比力增量;
    生成划桨误差补偿式:
    Figure PCTCN2022124501-appb-100025
  4. 根据权利要求3所述一种煤矿井下单轨吊多源信息融合精确定位方法,其特征在于,当地图构建系统正常工作时,通过激光雷达和视觉摄像头构建井下巷道全场景地图,选取并确定特征点精确位置信息的步骤包括:通过激光雷达和视觉摄像头构建的井下巷道模型为:M={P sta1,P sta2,P sta3…P staN},其中P staN为特征点位置信息,P staN=[L staN λ staN h staN] T
  5. 一种煤矿井下单轨吊多源信息融合精确定位系统,其特征在于,所述系统包括:
    UWB定位模块,用于根据UWB系统车载标签和固定在井下巷道内的基站,解算出运动车辆动态位置;
    捷联惯导定位模块,用于根据捷联惯导系统输出的姿态矩阵对比力进行矩阵转换,解算出车辆行驶路程;
    地图构建模块,用于根据地图构建系统构建的全场景地图,选取并确定特征点的位置信息;
    UWB定位状态模型和量测模型建立模块,当UWB系统正常工作时,分析由UWB移动节点坐标向量及UWB移动节点的速度构成的状态参数,根据运动过程中受到的随机扰动,建 立适合井下单轨吊定位场景的状态模型和量测模型;
    捷联惯导定位位移模型建立模块,当捷联惯导系统正常工作时,根据初始姿态角建立初始姿态矩阵,构建陀螺仪和加速度计的误差补偿模型,对姿态矩阵进行更新并对速度进行坐标系转换,推导出单轨吊行驶位移模型;
    地图构建系统特征点位置建立模块,当地图构建系统正常工作时,通过激光雷达和视觉摄像头构建井下巷道全场景地图,选取并确定特征点精确位置信息;以及
    卡尔曼滤波模型建立模块以及位置修正模块,用于根据所述的单轨吊行驶位移模型以及特征点精确位置信息,构建精确定位卡尔曼滤波模型,对单轨吊实时位置模型进行修正,得到精确位置信息。
PCT/CN2022/124501 2022-03-16 2022-10-11 一种煤矿井下单轨吊多源信息融合精确定位方法及系统 WO2023173729A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210256874.8 2022-03-16
CN202210256874.8A CN114701544B (zh) 2022-03-16 2022-03-16 一种煤矿井下单轨吊多源信息融合精确定位方法及系统

Publications (1)

Publication Number Publication Date
WO2023173729A1 true WO2023173729A1 (zh) 2023-09-21

Family

ID=82169311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124501 WO2023173729A1 (zh) 2022-03-16 2022-10-11 一种煤矿井下单轨吊多源信息融合精确定位方法及系统

Country Status (2)

Country Link
CN (1) CN114701544B (zh)
WO (1) WO2023173729A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117788592A (zh) * 2024-02-26 2024-03-29 北京理工大学前沿技术研究院 一种矿井车辆的雷达点云处理装置、方法、设备及介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114701544B (zh) * 2022-03-16 2023-09-26 中国矿业大学 一种煤矿井下单轨吊多源信息融合精确定位方法及系统
CN116750651B (zh) * 2023-08-18 2023-10-20 山东鲁运智能装备有限公司 一种单轨吊机车装载能力调节方法、系统及终端

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130245933A1 (en) * 2010-06-02 2013-09-19 Nadir Castaneda Device to Aid Navigation, Notably Inside Buildings
WO2015086062A1 (en) * 2013-12-11 2015-06-18 Abb Technology Ltd Method for positioning humans and devices in underground environments
CN112034479A (zh) * 2020-06-15 2020-12-04 煤炭科学技术研究院有限公司 一种应用于煤矿井下智能巡检无人机的定位方法及系统
CN112556695A (zh) * 2020-11-30 2021-03-26 北京建筑大学 室内定位与三维建模方法、系统、电子设备及存储介质
CN113758488A (zh) * 2021-09-27 2021-12-07 同济大学 一种基于uwb与vio的室内定位方法及设备
CN114166221A (zh) * 2021-12-08 2022-03-11 中国矿业大学 动态复杂矿井环境中辅助运输机器人定位方法及系统
CN114701544A (zh) * 2022-03-16 2022-07-05 中国矿业大学 一种煤矿井下单轨吊多源信息融合精确定位方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105371871B (zh) * 2015-12-02 2018-01-02 中国矿业大学 井下采煤机捷联惯导系统的组合初始对准系统及对准方法
CN108089180A (zh) * 2017-12-18 2018-05-29 江苏添仂智能科技有限公司 基于uwb传感器作为轨道信标对gps和惯性导航系统矫正的悬挂式轨道车的定位方法
CN110850457A (zh) * 2019-10-22 2020-02-28 同济大学 一种用于室内煤场的无人机定位导航方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130245933A1 (en) * 2010-06-02 2013-09-19 Nadir Castaneda Device to Aid Navigation, Notably Inside Buildings
WO2015086062A1 (en) * 2013-12-11 2015-06-18 Abb Technology Ltd Method for positioning humans and devices in underground environments
CN112034479A (zh) * 2020-06-15 2020-12-04 煤炭科学技术研究院有限公司 一种应用于煤矿井下智能巡检无人机的定位方法及系统
CN112556695A (zh) * 2020-11-30 2021-03-26 北京建筑大学 室内定位与三维建模方法、系统、电子设备及存储介质
CN113758488A (zh) * 2021-09-27 2021-12-07 同济大学 一种基于uwb与vio的室内定位方法及设备
CN114166221A (zh) * 2021-12-08 2022-03-11 中国矿业大学 动态复杂矿井环境中辅助运输机器人定位方法及系统
CN114701544A (zh) * 2022-03-16 2022-07-05 中国矿业大学 一种煤矿井下单轨吊多源信息融合精确定位方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CUI YUMING; LIU SONGYONG; YAO JIAN; GU CONGCONG: "Integrated Positioning System of Unmanned Automatic Vehicle in Coal Mines", IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, IEEE, USA, vol. 70, 26 May 2021 (2021-05-26), USA, pages 1 - 13, XP011859583, ISSN: 0018-9456, DOI: 10.1109/TIM.2021.3083903 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117788592A (zh) * 2024-02-26 2024-03-29 北京理工大学前沿技术研究院 一种矿井车辆的雷达点云处理装置、方法、设备及介质
CN117788592B (zh) * 2024-02-26 2024-06-07 北京理工大学前沿技术研究院 一种矿井车辆的雷达点云处理装置、方法、设备及介质

Also Published As

Publication number Publication date
CN114701544B (zh) 2023-09-26
CN114701544A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
WO2023173729A1 (zh) 一种煤矿井下单轨吊多源信息融合精确定位方法及系统
CN109059942B (zh) 一种井下高精度导航地图构建系统及构建方法
US11802769B2 (en) Lane line positioning method and apparatus, and storage medium thereof
EP2450763B1 (en) Global position and orientation estimation system for a vehicle in a passageway environment
CN114199240B (zh) 无gps信号下二维码、激光雷达与imu融合定位系统及方法
CN105628026A (zh) 一种移动物体的定位定姿方法和系统
CN110702091B (zh) 一种沿地铁轨道移动机器人的高精度定位方法
CN105300410A (zh) 采煤机惯性导航定位误差校准装置及方法
CN102636166B (zh) 基于航向角的wsn/ins组合导航系统的控制方法
CN110412596A (zh) 一种基于图像信息和激光点云的机器人定位方法
CN112578394B (zh) 附有几何约束的LiDAR/INS融合定位与制图方法
CN114088091B (zh) 一种基于多传感器的井工矿位姿融合方法和系统
CN112683268A (zh) 一种基于扩展卡尔曼滤波的巷道实时定位导航方法及系统
CN114216459A (zh) Elm辅助的gnss/ins组合导航无人靶车定位方法
CN114838732B (zh) 一种基于图优化的通信受限环境下协同导航方法
CN114615740A (zh) 一种基于蓝牙、pdr和地图匹配融合的室内人员定位方法
Chiang et al. Semantic proximity update of GNSS/INS/VINS for seamless vehicular navigation using smartphone sensors
WO2022257196A1 (zh) 基于点云地图动态加载的自主移动装置定位方法
CN104296741A (zh) 采用距离平方和距离平方变化率的wsn/ahrs紧组合方法
Liu et al. An indoor 3-D quadrotor localization algorithm based on WiFi RTT and MEMS sensors
CN113236363A (zh) 开采设备导航定位方法、系统、设备及可读存储介质
Siebler et al. Train localization with particle filter and magnetic field measurements
Deusch et al. Improving localization in digital maps with grid maps
Yi et al. Geographical map registration and fusion of lidar-aerial orthoimagery in gis
Dai et al. LiDAR–Inertial Integration for Rail Vehicle Localization and Mapping in Tunnels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931745

Country of ref document: EP

Kind code of ref document: A1