WO2023173450A1 - 一种基于节水预期成本投入的火电厂节水减排数学求解系统 - Google Patents

一种基于节水预期成本投入的火电厂节水减排数学求解系统 Download PDF

Info

Publication number
WO2023173450A1
WO2023173450A1 PCT/CN2022/082003 CN2022082003W WO2023173450A1 WO 2023173450 A1 WO2023173450 A1 WO 2023173450A1 CN 2022082003 W CN2022082003 W CN 2022082003W WO 2023173450 A1 WO2023173450 A1 WO 2023173450A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
unit
module
data
thermal power
Prior art date
Application number
PCT/CN2022/082003
Other languages
English (en)
French (fr)
Inventor
曾四鸣
张立军
刘克成
石荣雪
王颖楠
侯海萍
Original Assignee
国网河北省电力有限公司电力科学研究院
国家电网有限公司
国网河北能源技术服务有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网河北省电力有限公司电力科学研究院, 国家电网有限公司, 国网河北能源技术服务有限公司 filed Critical 国网河北省电力有限公司电力科学研究院
Publication of WO2023173450A1 publication Critical patent/WO2023173450A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Definitions

  • the invention relates to the technical field of water treatment in power plants, specifically a mathematical solution system for water conservation and emission reduction in thermal power plants based on expected cost investment in water conservation.
  • Reference document 1 discloses a full-membrane zero-discharge treatment system and method for circulating water effluent from thermal power plants, including a regulating pool, a dual-alkali method combined softening, coagulation and clarification treatment system, a multi-media filter, and an ultrafiltration treatment system, nanofiltration treatment system and reverse osmosis treatment system; the outlet of the regulating pool is connected to the inlet of the dual-alkali method combined softening-coagulation and clarification treatment system, and the outlet of the double-alkali method combined softening, coagulation and clarification treatment system is connected to the multi-media filtration system The inlet of the multi-media filter is connected to the nanofiltration treatment system through the ultrafiltration treatment system.
  • the produced water outlet of the nanofiltration treatment system is connected to the reverse osmosis treatment system.
  • the concentrated water outlet of the nanofiltration treatment system is connected to the reverse osmosis treatment system.
  • the process water tanks of the external desulfurization system are connected. This system and method can achieve zero discharge of circulating water and sewage, meet the environmental protection requirements of water conservation and emission reduction in thermal power plants, and have low treatment costs.
  • Reference document 2 discloses a thermal power plant carbon emission reduction system.
  • the thermal power plant carbon emission reduction system shown includes a thermal power plant boiler, a steam turbine and a generator equipment.
  • the thermal power plant boiler is connected to the steam turbine, and the steam turbine Connected to the generator equipment;
  • the carbon emission reduction system of the thermal power plant also includes a pyrolysis gasification device, a pyrolysis gas supply pipeline and a multi-combustion burner.
  • the multi-combustion burner is installed on the boiler of the thermal power plant.
  • the pyrolysis gasification device Connected to the multi-combustion burner through a pyrolysis gas supply pipeline, the pyrolysis gasification device can pyrolyze any kind of coal, biomass, garbage, and sludge fuel into pyrolysis gas, which can be supplied to the thermal power plant boiler for processing Mixed combustion.
  • thermal power plants Due to the distribution characteristics of my country's water resources and coal energy and the demand characteristics of thermal power plants for both, the water situation is becoming increasingly tense, which has seriously restricted the development of thermal power plants.
  • the study of water-saving models for thermal power plants has great practical significance for reducing water consumption per unit of power generation and improving water resource utilization levels.
  • the establishment of water-saving models for thermal power plants is based on water balance test experiments and water quality analysis. The purpose is to Seek advanced water-saving technology, reasonable water treatment technology and perfect water management methods in thermal power plants.
  • the purpose of the present invention is to provide a mathematical solution system for water conservation and emission reduction in thermal power plants based on the expected cost investment of water conservation, so as to solve the problems raised in the above background technology.
  • a mathematical solution system for water saving and emission reduction in thermal power plants based on the expected cost investment of water saving including a monitoring platform and a water treatment system, and the monitoring platform is connected to the water treatment system;
  • the wastewater treatment system includes a first water treatment unit, a second water treatment unit, a third water treatment unit and a fourth water treatment unit connected in sequence along the water treatment sequence, and is used for zero discharge of water and wastewater from thermal power plants. deal with;
  • the monitoring platform includes a data processing module, a model calling unit, a mathematical solving module and a data sending and receiving module.
  • the data processing module, model calling unit, and mathematical solving module are all connected to the data transceiving module.
  • the data transceiving module includes a human-computer interaction interface and a decision-making unit, and the human-computer interaction interface and the decision-making unit are connected.
  • the data processing module includes a data analysis unit, a data management module, a data storage unit, a data dictionary and a data query module.
  • the data analysis unit is connected to the data management module and the data storage unit.
  • the data management module It is also connected to the data dictionary and the data query module, and the data dictionary and the data query module are connected to each other.
  • the data dictionary is also connected to the human-computer interaction interface and the model calling unit respectively, and the model calling unit and the human-computer interactive interface are both connected to the mathematical solving module.
  • the model calling unit includes a model building unit, a model management unit, a model dictionary and a model library.
  • the model management unit is connected to the model building unit and the model library respectively, and the model library and the model dictionary are connected to each other.
  • the model building unit is also connected to the human-computer interaction interface
  • the human-computer interaction interface is also connected to the data processing module
  • the data processing module is also connected to the mathematical solution module.
  • the mathematical solution module includes a method management module, a method dictionary and a method library, and the method management module is connected to the method dictionary and the method library.
  • the method management module is also connected to the data processing module, the data processing module is connected to the model calling unit, and the human-computer interaction interface is also connected to the model calling unit.
  • the human-computer interaction interface includes an interface, a human-computer dialogue module, a conversion unit and an inference unit, the interface is connected to the human-computer dialogue module, and the human-computer dialogue module is connected to the conversion unit, so The conversion unit is connected to the reasoning unit, and the reasoning unit is connected to the decision-making unit.
  • the present invention is equipped with a monitoring platform and a water treatment system.
  • a monitoring platform Based on basic data such as industrial wastewater from thermal power plants, water use units, and water treatment processes, artificial intelligence technology is used to solve problems with experts in the field.
  • the experience and knowledge are acquired through knowledge acquisition to build a knowledge base, using various reasoning strategies and combining some factual rules to solve problems, and form a decision-making plan for wastewater utilization, recycling, and ultimately zero discharge.
  • Figure 1 is the system block diagram of the mathematical solution system for water conservation and emission reduction in thermal power plants based on the expected cost investment of water conservation.
  • Figure 2 is a system block diagram of the database system in the mathematical solution system for water conservation and emission reduction in thermal power plants based on the expected cost investment of water conservation.
  • Figure 3 is a system block diagram of the model library system in the mathematical solution system for water conservation and emission reduction in thermal power plants based on the expected cost investment of water conservation.
  • Figure 4 is a system block diagram of the method library system in the mathematical solution system for water conservation and emission reduction in thermal power plants based on the expected cost investment of water conservation.
  • Figure 5 is a system block diagram of the decision-making platform in the mathematical solution system for water conservation and emission reduction in thermal power plants based on the expected cost investment of water conservation.
  • Figure 6 is a system block diagram of the human-computer interaction interface in the mathematical solution system for water conservation and emission reduction in thermal power plants based on the expected cost investment of water conservation.
  • a mathematical solution system for water saving and emission reduction in thermal power plants based on expected cost investment of water saving includes an interconnected monitoring platform 100 and a water treatment system 200.
  • the monitoring platform 100 assists in decision-making.
  • the user uses human-computer interaction to make semi-structured or unstructured decisions on the water treatment system 200.
  • the water treatment system 200 is used for zero-discharge treatment of water and wastewater in thermal power plants.
  • the water treatment system 200 includes a first water treatment unit, a second water treatment unit, a third water treatment unit and a fourth water treatment unit that are connected in sequence along the water treatment sequence.
  • Thermal power plant wastewater can generally be classified according to the following indicators:
  • wastewater from thermal power plants includes circulating water drainage, ash wastewater, industrial cooling water drainage, unit miscellaneous drainage, coal-containing wastewater, oil depot flushing water, chemical water treatment process wastewater, domestic sewage, desulfurization wastewater, etc. .
  • wastewater is divided into regular wastewater and non-recurrent wastewater.
  • Regular wastewater includes process wastewater discharged from various systems of thermal power plants during normal operation. These wastewaters are discharged continuously or intermittently. Most of the wastewater from thermal power plants is discharged intermittently, and less wastewater is discharged continuously.
  • Continuously discharged wastewater mainly includes continuous boiler blowdown, steam and water sampling system drainage, cooling water from some equipment, and concentrated drainage from reverse osmosis water treatment equipment; intermittent drainage includes process wastewater from the boiler feed water treatment system and regeneration of the condensate polishing system. Drainage, boiler scheduled sewage discharge, laboratory drainage, cooling tower sewage and various flushing wastewater, etc.
  • Non-recurring wastewater includes wastewater generated during equipment overhaul, maintenance and upkeep, such as chemical cleaning drainage (including cleaning of boilers, condensers and other equipment in the thermal system), boiler air preheater flushing drainage, drainage when the unit is started, Boiler flue gas side flushing and drainage, etc.
  • chemical cleaning drainage including cleaning of boilers, condensers and other equipment in the thermal system
  • boiler air preheater flushing drainage drainage when the unit is started
  • Boiler flue gas side flushing and drainage etc.
  • the water quality of irregular drainage is poorer and unstable.
  • wastewater can be reused and classified according to two representative indicators: suspended solids and salt content of the wastewater.
  • suspended solids There are many types of wastewater according to their sources, which brings great difficulties to the selection of wastewater treatment systems. Analyze from the perspective of reuse and divide based on the similarity of treatment processes.
  • One principle of wastewater classification treatment is to use the simplest treatment process as much as possible to meet the reuse requirements while ensuring reliability. Which type of treatment system needs to be selected depends mainly on the quality of the wastewater in addition to the requirements of the water system.
  • the water system of thermal power plants generally consists of two parts: production water and domestic water.
  • Production water is divided into circulating cooling water, industrial water, chemical desalted water, coal transportation water, ash removal water and other systems according to use and process flow; non-production water usually includes domestic water in the factory area.
  • Industrial water in thermal power plants comes from the circulating water system through industrial water pumps. It is mainly used for cooling of auxiliary equipment in the factory, high-temperature sampling racks, hydrogen production stations, ash removal conveying fans and transfer equipment in each workshop. After use, it can generally be Reused to the circulating water system.
  • Conventional industrial water system cooling water is generally divided into direct cooling water and indirect cooling water.
  • direct cooling water can be used to directly contact the heat medium to achieve cooling purposes through heat exchange.
  • Its water quality requirements should be Low temperature, no impurities, no corrosion to equipment.
  • the indirect cooling water achieves cooling purpose by exchanging heat through the heat exchanger and does not come into direct contact with the heat medium, so it is not polluted by the heat medium.
  • the water quality requirements for indirect cooling water are not high, as long as the water does not corrode or scale the heat pipes of the heat exchanger.
  • Water for chemical desalination systems generally comes from sources with good water quality such as deep well water or river water. It can also come from sources such as circulating cooling water sewage treated by reverse osmosis and other processes.
  • the raw water is mainly used as Boiler water replenishment.
  • the chemical demineralized water system supplies water to boilers, hydrogen stations, furnace sampling cooling, chemical dissolving, fine treatment and regeneration units.
  • the final destination is mainly represented by boiler steam and water loss, boiler blowdown loss and regeneration wastewater.
  • the amount of boiler supply water depends on the boiler blowdown volume and the amount of water lost from the system.
  • the amount of sewage discharged by the boiler varies depending on the conditions of the unit.
  • the boiler steam and water loss mainly includes exhaust steam loss and evaporation loss of some hot water. Generally equivalent to 5-7% of boiler evaporation.
  • the self-water consumption of the chemical desalination system cannot be ignored.
  • the amount of self-water loss is related to the method of water treatment, which generally includes backwashing, acid-base wastewater generated during regeneration equipment, and filter backwash drainage.
  • the water for domestic and fire-fighting water systems of thermal power plants is generally taken from deep well water with good water quality or water from lakes, rivers and municipal water supply systems. It is generally used for bathing, flushing toilets and other water for power plant personnel.
  • the first water treatment unit includes a circulating water and sewage reduction unit, a reverse osmosis concentrated water reduction unit, an acid-base wastewater reduction unit and other wastewater reduction units.
  • the second water treatment unit includes a circulating water and sewage composite utilization unit, a reverse osmosis concentrated water composite utilization unit and other water composite utilization units.
  • the monitoring platform 100 includes a data processing module 120, a model calling unit 130, a mathematical solving module 140 and a data transceiving module 110.
  • the data processing module 120, the model calling unit 130 and the mathematical solving module 140 are all connected to the data transceiving module 110.
  • data is selected from the data processing module 120, an algorithm is selected from the mathematical solution module 140, and a model is selected from the model calling unit 130. Then the data, algorithm, and model are combined to solve the problem, and the results are output and performed. Decision making to solve water treatment problems in the water treatment system 200.
  • the data transceiving module 110 includes a human-computer interaction interface 111 and a decision-making unit 112.
  • the human-computer interaction interface 111 and the decision-making unit 112 are connected.
  • the data processing module 120 includes a data analysis unit 122, a data management module 123, a data storage unit 121, a data dictionary 124 and a data query module 125.
  • the data analysis unit 122, the data management module 123 and the data storage unit 121 are connected to each other.
  • the management module 123 is also connected to the data dictionary 124 and the data query module 125, and the data dictionary 124 and the data query module 125 are connected to each other.
  • the data dictionary 124 is also connected to the human-computer interaction interface 111 and the model calling unit 130 respectively.
  • the model calling unit 130 and the human-computer interaction interface 111 are both connected to the mathematical solving module 140 .
  • the model calling unit 130 includes a model building unit 131, a model management unit 132, a model dictionary 134 and a model library 133.
  • the model management unit 132 is connected to the model building unit 131 and the model library 133 respectively, and the model library 133 and the model dictionary 134 are connected to each other. .
  • the model building unit 131 is also connected to the human-computer interaction interface 111.
  • the human-computer interaction interface 111 is also connected to the data processing module 120.
  • the data processing module 120 is also connected to the mathematical solution module 140. .
  • the mathematical solving module 140 includes a method management module 141, a method dictionary 142 and a method library 143.
  • the method management module 141 is connected to the method dictionary 142 and the method library 143.
  • the method management module 141 is also connected to the data processing module 120, the data processing module 120 is connected to the model calling unit 130, and the human-computer interaction interface 111 is also connected to the model calling unit 130.
  • the model calling unit 130 stores a variety of mathematical models, for example, the relationship between the sewage discharge volume P 3 and the concentration rate K.
  • P 1 is the evaporation loss rate
  • P 2 is the wind loss rate
  • K is the concentration rate
  • the circulating water supply cooling system needs to continuously drain water and replenish new water.
  • Water is circulating water and sewage, and the amount of circulating water sewage generally accounts for 15-70% of the circulating water replenishment amount.
  • the circulating water system as the water system with the largest water consumption in thermal power plants, includes evaporation loss, wind loss and sewage loss.
  • the model calling unit 130 also includes an evaporation loss calculation model for the cooling tower.
  • P 1 is the evaporation loss rate
  • Z is the coefficient related to the ambient temperature
  • ⁇ t is the temperature difference between the inlet and outlet of the cooling tower.
  • the data processing module 120 is responsible for managing and maintaining various types of data used in the water-saving analysis system by the database management system.
  • the data used in the process of running the model are classified and stored according to their data content, and data warehouse files are established respectively; the results of the operation
  • the various decision-making information generated are often stored in the database in the form of reports or graphics, and the time dimension is added to realize the dynamic continuity of the database; the database management system is used to effectively implement the model library, method library, knowledge base and user interface.
  • the components are connected conveniently and quickly to achieve effective output of data to serve the purpose of serving various decisions.
  • the model calling unit 130 is a collection of models. It organically brings together the models according to a certain organizational method and is uniformly managed by the model library management system.
  • the model library requires the model library management system to establish, operate, maintain, and interact.
  • Model library management The system provides users with characteristic information about model attributes, which facilitates users to use the model correctly and make correct judgments on the model's operation results; it guides users to quickly and accurately find relevant models and understand relevant information about the model and its input and output parameters; Provide relevant information for users to modify the source code and executable code of new models and call models; similar to database management, the management of model attribute libraries includes operations such as adding, deleting, modifying, querying, and creating new libraries of model attributes. .
  • a mathematical solution system for water saving and emission reduction in thermal power plants based on expected cost investment of water saving includes an interconnected monitoring platform 100 and a water treatment system 200.
  • the monitoring platform 100 assists in decision-making.
  • the user uses human-computer interaction to make semi-structured or unstructured decisions on the water treatment system 200.
  • the water treatment system 200 is used for zero-discharge treatment of water and wastewater in thermal power plants.
  • the water treatment system 200 includes a first water treatment unit, a second water treatment unit, a third water treatment unit and a fourth water treatment unit that are connected in sequence along the water treatment sequence.
  • Thermal power plant wastewater can generally be classified according to the following indicators.
  • wastewater from thermal power plants includes circulating water drainage, ash wastewater, industrial cooling water drainage, unit miscellaneous drainage, coal-containing wastewater, oil depot flushing water, chemical water treatment process wastewater, domestic sewage, desulfurization wastewater, etc. .
  • wastewater is divided into regular wastewater and non-recurrent wastewater.
  • Regular wastewater includes process wastewater discharged from various systems of thermal power plants during normal operation. These wastewaters are discharged continuously or intermittently. Most of the wastewater from thermal power plants is discharged intermittently, and less wastewater is discharged continuously.
  • Continuously discharged wastewater mainly includes continuous boiler blowdown, steam and water sampling system drainage, cooling water from some equipment, and concentrated drainage from reverse osmosis water treatment equipment; intermittent drainage includes process wastewater from the boiler feed water treatment system and regeneration of the condensate polishing system. Drainage, boiler scheduled sewage discharge, laboratory drainage, cooling tower sewage and various flushing wastewater, etc.
  • Non-recurring wastewater includes wastewater generated during equipment overhaul, maintenance and upkeep, such as chemical cleaning drainage (including cleaning of boilers, condensers and other equipment in the thermal system), boiler air preheater flushing drainage, drainage when the unit is started, Boiler flue gas side flushing and drainage, etc.
  • chemical cleaning drainage including cleaning of boilers, condensers and other equipment in the thermal system
  • boiler air preheater flushing drainage drainage when the unit is started
  • Boiler flue gas side flushing and drainage etc.
  • the water quality of irregular drainage is poorer and unstable.
  • wastewater can be reused and classified according to two representative indicators: suspended solids and salt content of the wastewater.
  • suspended solids There are many types of wastewater according to their sources, which brings great difficulties to the selection of wastewater treatment systems. Analyze from the perspective of reuse and divide based on the similarity of treatment processes.
  • One principle of wastewater classification treatment is to use the simplest treatment process as much as possible to meet the reuse requirements while ensuring reliability. Which type of treatment system needs to be selected depends mainly on the quality of the wastewater in addition to the requirements of the water system.
  • the water system of thermal power plants generally consists of two parts: production water and domestic water.
  • Production water is divided into circulating cooling water, industrial water, chemical desalted water, coal transportation water, ash removal water and other systems according to use and process flow; non-production water usually includes domestic water in the factory area.
  • Industrial water in thermal power plants comes from the circulating water system through industrial water pumps. It is mainly used for cooling of auxiliary equipment in the factory, high-temperature sampling racks, hydrogen production stations, ash removal conveying fans and transfer equipment in each workshop. After use, it can generally be Reused to the circulating water system.
  • Conventional industrial water system cooling water is generally divided into direct cooling water and indirect cooling water.
  • direct cooling water can be used to directly contact the heat medium to achieve cooling purposes through heat exchange.
  • Its water quality requirements should be Low temperature, no impurities, no corrosion to equipment.
  • the indirect cooling water achieves cooling purpose by exchanging heat through the heat exchanger and does not come into direct contact with the heat medium, so it is not polluted by the heat medium.
  • the water quality requirements for indirect cooling water are not high, as long as the water does not corrode or scale the heat pipes of the heat exchanger.
  • Water for chemical desalination systems generally comes from sources with good water quality such as deep well water or river water. It can also come from sources such as circulating cooling water sewage treated by reverse osmosis and other processes.
  • the raw water is mainly used as Boiler water replenishment.
  • the chemical demineralized water system supplies water to boilers, hydrogen stations, furnace sampling cooling, chemical dissolving, fine treatment and regeneration units.
  • the final destination is mainly represented by boiler steam and water loss, boiler blowdown loss and regeneration wastewater.
  • the amount of boiler supply water depends on the boiler blowdown volume and the amount of water lost from the system.
  • the amount of sewage discharged by the boiler varies depending on the conditions of the unit.
  • the boiler steam and water loss mainly includes exhaust steam loss and evaporation loss of some hot water. Generally equivalent to 5-7% of boiler evaporation.
  • the self-water consumption of the chemical desalination system cannot be ignored.
  • the amount of self-water loss is related to the method of water treatment, which generally includes backwashing, acid-base wastewater generated during regeneration equipment, and filter backwash drainage.
  • the water for domestic and fire-fighting water systems of thermal power plants is generally taken from deep well water with good water quality or water from lakes, rivers and municipal water supply systems. It is generally used for bathing, flushing toilets and other water for power plant personnel.
  • the first water treatment unit includes a circulating water and sewage reduction unit, a reverse osmosis concentrated water reduction unit, an acid-base wastewater reduction unit and other wastewater reduction units.
  • the second water treatment unit includes a circulating water and sewage composite utilization unit, a reverse osmosis concentrated water composite utilization unit and other water composite utilization units.
  • the monitoring platform 100 includes a data processing module 120, a model calling unit 130, a mathematical solving module 140 and a data transceiving module 110.
  • the data processing module 120, the model calling unit 130 and the mathematical solving module 140 are all connected to the data transceiving module 110.
  • data is selected from the data processing module 120, an algorithm is selected from the mathematical solution module 140, and a model is selected from the model calling unit 130. Then the data, algorithm, and model are combined to solve the problem, and the results are output and performed. Decision making to solve water treatment problems in the water treatment system 200.
  • the data transceiving module 110 includes a human-computer interaction interface 111 and a decision-making unit 112.
  • the human-computer interaction interface 111 and the decision-making unit 112 are connected.
  • the data processing module 120 includes a data analysis unit 122, a data management module 123, a data storage unit 121, a data dictionary 124 and a data query module 125.
  • the data analysis unit 122, the data management module 123 and the data storage unit 121 are connected to each other.
  • the management module 123 is also connected to the data dictionary 124 and the data query module 125, and the data dictionary 124 and the data query module 125 are connected to each other.
  • the data dictionary 124 is also connected to the human-computer interaction interface 111 and the model calling unit 130 respectively.
  • the model calling unit 130 and the human-computer interaction interface 111 are both connected to the mathematical solving module 140 .
  • the model calling unit 130 includes a model building unit 131, a model management unit 132, a model dictionary 134 and a model library 133.
  • the model management unit 132 is connected to the model building unit 131 and the model library 133 respectively, and the model library 133 and the model dictionary 134 are connected to each other. .
  • the model building unit 131 is also connected to the human-computer interaction interface 111.
  • the human-computer interaction interface 111 is also connected to the data processing module 120.
  • the data processing module 120 is also connected to the mathematical solution module 140. .
  • the mathematical solving module 140 includes a method management module 141, a method dictionary 142 and a method library 143.
  • the method management module 141 is connected to the method dictionary 142 and the method library 143.
  • the method management module 141 is also connected to the data processing module 120, the data processing module 120 is connected to the model calling unit 130, and the human-computer interaction interface 111 is also connected to the model calling unit 130.
  • the model calling unit 130 stores a variety of mathematical models, for example, the relationship between the sewage discharge volume P 3 and the concentration rate K.
  • P 1 is the evaporation loss rate
  • P 2 is the wind loss rate
  • K is the concentration rate
  • the circulating water supply cooling system needs to continuously drain water and replenish new water.
  • Water is circulating water and sewage, and the amount of circulating water sewage generally accounts for 15-70% of the circulating water replenishment amount;
  • the circulating water system as the water system with the largest water consumption in thermal power plants, includes evaporation loss, wind loss and sewage loss.
  • the model calling unit 130 also includes an evaporation loss calculation model for the cooling tower.
  • P 1 is the evaporation loss rate
  • Z is the coefficient related to the ambient temperature
  • ⁇ t is the temperature difference between the inlet and outlet of the cooling tower.
  • the data processing module 120 is responsible for managing and maintaining various types of data used in the water-saving analysis system by the database management system.
  • the data used in the process of running the model are classified and stored according to their data content, and data warehouse files are established respectively; the results of the operation
  • the various decision-making information generated are often stored in the database in the form of reports or graphics, and the time dimension is added to realize the dynamic continuity of the database; the database management system is used to effectively implement the model library, method library, knowledge base and user interface.
  • the components are connected conveniently and quickly to achieve effective output of data to serve the purpose of serving various decisions.
  • the model calling unit 130 is a collection of models. It organically brings together the models according to a certain organizational method and is uniformly managed by the model library management system.
  • the model library requires the model library management system to establish, operate, maintain, and interact.
  • Model library management The system provides users with characteristic information about model attributes, which facilitates users to use the model correctly and make correct judgments on the model's operation results; it guides users to quickly and accurately find relevant models and understand relevant information about the model and its input and output parameters; Provide relevant information for users to modify the source code and executable code of new models and call models; similar to database management, the management of model attribute libraries includes operations such as adding, deleting, modifying, querying, and creating new libraries of model attributes. .
  • the human-computer interaction interface includes an interface, a human-computer dialogue module, a conversion unit and an inference unit.
  • the interface is connected to the human-computer dialogue module
  • the human-computer dialogue module is connected to the conversion unit
  • the conversion unit is connected to the inference unit.
  • the reasoning unit is connected to the decision-making unit 112, and is used to assist the decision-maker in formulating plans.
  • the human-machine dialogue module includes an interconnected user interface and a dialogue control unit to facilitate the decision-maker's operation.
  • the feedback unit 300 is connected to the monitoring platform 100 and the water treatment system 200.
  • the feedback unit 300 is used to obtain data of the monitoring platform 100 and the water treatment system 200, and send the data to Thermal power plant experts holding feedback equipment provide water treatment feedback through thermal power plant experts.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Educational Administration (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种基于节水预期成本投入的火电厂节水减排数学求解系统,包括监测平台(100)和水处理系统(200),所述监测平台(100)和水处理系统(200)连接;所述水处理系统(200)包括有沿水处理顺序依次连接的第一水处理单元、第二水处理单元、第三水处理单元和第四水处理单元,用于对火力发电厂用水及废水进行零排放处理;所述监测平台(100)包括有数据处理模块(120)、模型调用单元(130)、数学求解模块(140)和数据收发模块(110)。本系统设置有监测平台(100)和水处理系统(200),根据火电厂工业废水、用水单元、水处理工艺等基础数据,运用各种推理策略并结合一些事实规则进行问题求解,形成废水逐级利用、再生利用,最终零排放的决策方案。

Description

一种基于节水预期成本投入的火电厂节水减排数学求解系统 技术领域
本发明涉及发电厂水处理技术领域,具体是一种基于节水预期成本投入的火电厂节水减排数学求解系统。
背景技术
近年来,我国现代化和工业化进程不断提速,废水排放总量也呈现持续增长态势。我国废水排放总量从2001年的433亿吨增长到2012年的685亿吨,12年间增加了252亿吨,平均每年多排放了21亿吨废水,平均年复合增长率约4.3%。我国废水污染源主要分为工业源、农业源、城镇生活源,以及少量的集中式污染设施排放源。在三种废水污染源中,工业废水特点是排放数量及污染物含量相对小,污染物种类多、治理难度大,引起水环境发生质化污染。
对比文件1(公开号CN112142233A)公开了一种火电厂循环水排污水全膜法零排放处理系统及方法,包括调节水池、双碱法联合软化混凝澄清处理系统、多介质过滤器、超滤处理系统、纳滤处理系统及反渗透处理系统;调节水池的出口与双碱法联合软化-混凝澄清处理系统的入口相连通,双碱法联合软化混凝澄清处理系统的出口与多介质过滤器的入口相连通,多介质过滤器的出口经超滤处理系统与纳滤处理系统相连通,纳滤处理系统的产水出口与反渗透处理系统相连通,纳滤处理系统的浓水出口与外界脱硫系统的工艺水箱相连通,该系统及方法能够实现循环水排污水零排放,满足火电厂节水减排的环保要求,且处理成本低。
对比文件2(公开号CN111363590A)公开了一种火电厂碳减排系统,所示火电厂碳减排系统包括火电厂锅炉、汽机和发电机设备,所述火电厂锅炉与汽机连接,所述汽机与发电机设备连接;所述火电厂碳减排系统还包括热解气化装置、热解气供气管路和多燃烧燃烧器,多燃烧燃烧器设置在火电厂锅炉上,热解气化装置通过热解气供气管路与多燃烧燃烧器连接,所述热解气化装置能够将煤炭、生物质、垃圾、污泥燃料中的任意一种热解为热解气,供给火电厂锅炉进行混配燃烧。
由于我国水资源与煤炭能源的分布特征以及火电厂对二者的需求特点,用水形势日趋紧张,严重地限制了火电厂的发展。火电厂节水模型的研究,对减少单位发电量水耗、提高水资源利用水平有着很重大的现实意义,火电厂节水模型的建立以水平衡测试试验以及用水水质分析为数据依据,目的在于寻求火电厂先进的节水技术、合理的水处理工艺以及完善的水务管理方式。
因此,针对以上现状,迫切需要开发一种基于节水预期成本投入的火电厂节水减排数学求解系统,以克服当前实际应用中的不足。
技术问题
本发明的目的在于提供一种基于节水预期成本投入的火电厂节水减排数学求解系统,以解决上述背景技术中提出的问题。
技术解决方案
为实现上述目的,本发明提供如下技术方案:
一种基于节水预期成本投入的火电厂节水减排数学求解系统,包括监测平台和水处理系统,所述监测平台和水处理系统连接;
所述废水处理系统包括有沿水处理顺序依次连接的第一水处理单元、第二水处理单元、第三水处理单元和第四水处理单元,用于对火力发电厂用水及废水进行零排放处理;
所述监测平台包括有数据处理模块、模型调用单元、数学求解模块和数据收发模块。
作为本发明进一步的方案:所述数据处理模块、模型调用单元、数学求解模块均与数据收发模块连接。
作为本发明进一步的方案:所述数据收发模块包括有人机交互界面和决策制定单元,人机交互界面和决策制定单元相连接。
作为本发明进一步的方案:所述数据处理模块包括有数据分析单元、数据管理模块、数据存储单元、数据字典和数据查询模块,数据分析单元与数据管理模块、数据存储单元相互连接,数据管理模块还与数据字典和数据查询模块相互连接,数据字典和数据查询模块相互连接。
作为本发明进一步的方案:所述数据字典还分别与人机交互界面、模型调用单元相互连接,模型调用单元与人机交互界面均与数学求解模块相互连接。
作为本发明进一步的方案:所述模型调用单元包括模型建立单元、模型管理单元、模型字典和模型库,模型管理单元分别与模型建立单元、模型库连接,模型库与模型字典相互连接。
作为本发明进一步的方案:所述模型建立单元还与人机交互界面相互连接,人机交互界面还与数据处理模块相互连接,数据处理模块还与数学求解模块相互连接。
作为本发明进一步的方案:所述数学求解模块包括有方法管理模块、方法字典和方法库,方法管理模块与方法字典、方法库相连接。
作为本发明进一步的方案:所述方法管理模块还与数据处理模块相互连接,数据处理模块与模型调用单元相互连接,人机交互界面还与模型调用单元相互连接。
作为本发明进一步的方案:所述人机交互界面包括有界面、人机对话模块、转换单元和推理单元,所述界面与人机对话模块连接,所述人机对话模块与转换单元连接,所述转换单元和推理单元连接,所述推理单元与决策制定单元连接。
有益效果
与现有技术相比,本发明的有益效果是:本发明设置有监测平台和水处理系统,根据火电厂工业废水、用水单元、水处理工艺等基础数据,利用人工智能技术把领域专家处理问题的经验和知识通过知识获取建成知识库,运用各种推理策略并结合一些事实规则进行问题求解,形成废水逐级利用、再生利用,最终零排放的决策方案。
附图说明
图1为基于节水预期成本投入的火电厂节水减排数学求解系统的系统框图。
图2为基于节水预期成本投入的火电厂节水减排数学求解系统中数据库系统的系统框图。
图3为基于节水预期成本投入的火电厂节水减排数学求解系统中模型库系统的系统框图。
图4为基于节水预期成本投入的火电厂节水减排数学求解系统中方法库系统的系统框图。
图5为基于节水预期成本投入的火电厂节水减排数学求解系统中决策平台的系统框图。
图6为基于节水预期成本投入的火电厂节水减排数学求解系统中人机交互界面的系统框图。
本发明的实施方式
下面结合具体实施方式对本专利的技术方案作进一步详细地说明。
下面详细描述本专利的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本专利,而不能理解为对本专利的限制。
实施例1
请参阅图1-6,本发明实施例中,一种基于节水预期成本投入的火电厂节水减排数学求解系统,包括相互连接的监测平台100和水处理系统200,监测平台100辅助决策者通过数据、模型和知识,以人机交互方式对水处理系统200进行半结构化或非结构化决策,水处理系统200用于对火力发电厂用水及废水进行零排放处理。
所述水处理系统200包括有沿水处理顺序依次连接的第一水处理单元、第二水处理单元、第三水处理单元和第四水处理单元。
不同类型火力发电厂废水的种类较多,水质、水量的特性差异很大。一般情况有机污染物少,除了油之外,废水中的污染成分主要是无机物;另外,间断性排水较多,连续排水量一般不大。火力发电厂废水一般可以按照以下指标进行分类:
(1)按照废水的来源划分
按照废水的来源划分,火力发电厂的废水包括循环水排污水、灰渣废水、工业冷却水排水、机组杂排水、含煤废水、油库冲洗水、化学水处理工艺废水、生活污水、脱硫废水等。
(2)按照废水的流量特点划分
按照流量特点,废水分为经常性废水和非经常性废水。经常性废水包含火力发电厂在正常运行过程中,各系统排出的工艺废水,这些废水是连续排放的,也有间断性排放的。火力发电厂的大部分废水为间断排放,连续排放的废水较少。连续排放的废水主要有锅炉连续排污、汽水取样系统排水、部分设备的冷却水、反渗透水处理设备的浓排水;间断性排水包括锅炉补给水处理系统的工艺废水、凝结水精处理系统的再生排水、锅炉定时排污、化验室排水、冷却塔排污及各种冲洗废水等。
非经常性废水包含设备检修、维护、保养期间产生的废水,如化学清洗排水(包括锅炉、凝汽器和热力系统其它设备的清洗)、锅炉空气预热器冲洗排水、机组启动时的排水、锅炉烟气侧冲洗排水等。与经常性排水相比,非经常性排水的水质较差而且不稳定。
(3)按照废水的水质特点划分
根据电厂不同系统用水的水质差异,将废水进行回用,可以根据废水的悬浮物和含盐量两个代表性指标进行分类。按照来源划分,废水种类很多,这给废水处理系统的选择带来了很大的困难。从回用角度分析,从处理工艺的相似性来划分。废水分类处理的一个原则是在保证可靠性的前提下,尽可能用最简单的处理工艺满足回用要求。具体需要选择哪一类处理系统,除了用水系统的要求外,主要取决于废水的水质。
火力发电厂的用水系统一般由生产用水和生活用水两部分构成。生产用水按 用途和工艺流程分为循环冷却水、工业用水、化学除盐水、输煤用水、除灰渣用水等系统;非生产用水通常包括厂区生活用水。
(1)火电厂的循环冷却水水质虽低于锅炉补给水,但若冷却水水质不好,会造成冷却系统管道和设备结垢、腐蚀和微生物滋生,导致系统的热传导性和严密性降低,设备出力下降,严重时甚至会发生故障,影响电厂经济运行和安全生产。
(2)火电厂工业用水通过工业水泵由循环水系统而来,主要是用于厂房内辅机设备、高温取样架、制氢站、除灰输送风机及各车间转机设备冷却,使用后一般可回用至循环水系统,常规的工业水系统冷却水一般分为直接冷却水和间接冷却水,其中,直接冷却水可用于直接和热介质接触通过热交换以达到冷却目的,其水质要求应为低温,无杂质,不腐蚀设备。而间接冷却水是通过热交换器换热来达到冷却目的,并不与热介质直接接触,故其不受热介质污染。间接冷却水的水质要求不高,只需用水对换热器的热管无腐蚀,不结垢。
(3)化学除盐水系统用水一般来源千深井水或者河水等水质较好的源水,也可来 源千如经过反渗透等工艺处理后的循环冷却水排污水等,其原水经过处理后主要 作为锅炉用水的补水。化学除盐水系统为锅炉、氢站、炉内采样冷却、溶药和精处理再生等单位供水,最终的去向主要表现为锅炉汽水损失、锅炉排污损失和再生废水。在疑汽器发电厂中,锅炉补给水董的多少取决于锅炉排污量和系统汽水损失水董的多少。锅炉的排污量因机组情况的不同而异,锅炉汽水损失主要包括排汽损失和一些热水的蒸发损失等。一般相当于锅炉蒸发量的5-7%。此外,化学除盐系统自用水量也不容忽视,一般自用水损失量大小与水处理的方式有关,一般包括反洗、再生设备时产生的酸碱废水以及过滤器反洗排水等。
(4)火电厂生活、消防用水系统来水一般取自水质较好的深井水或者湖泊、河流来水以及市政给水系统等,一般用于洗澡、冲厕等电厂人员用水。
具体的,本实施例中,所述第一水处理单元包括有循环水及排污水减量单元、反渗透浓水减量单元、酸碱废水减量单元和其他废水减量单元。
进一步的,本实施例中,第二水处理单元包括有循环水及排污水复合利用单元、反渗透浓水复合利用单元和其他水复合利用单元。
所述监测平台100包括有数据处理模块120、模型调用单元130、数学求解模块140和数据收发模块110,数据处理模块120、模型调用单元130、数学求解模块140均与数据收发模块110连接,在节水分析过程中,从数据处理模块120中选择数据,从数学求解模块140中选择算法,从模型调用单元130中选择模型,然后将数据、算法、模型结合起来进行问题求解,输出结果并进行决策制定,解决水处理系统200中水处理问题。
所述数据收发模块110包括有人机交互界面111和决策制定单元112,人机交互界面111和决策制定单元112相连接。
所述数据处理模块120包括有数据分析单元122、数据管理模块123、数据存储单元121、数据字典124和数据查询模块125,数据分析单元122与数据管理模块123、数据存储单元121相互连接,数据管理模块123还与数据字典124和数据查询模块125相互连接,数据字典124和数据查询模块125相互连接。
具体的,本实施例中,数据字典124还分别与人机交互界面111、模型调用单元130相互连接,模型调用单元130与人机交互界面111均与数学求解模块140相互连接。
所述模型调用单元130包括模型建立单元131、模型管理单元132、模型字典134和模型库133,模型管理单元132分别与模型建立单元131、模型库133连接,模型库133与模型字典134相互连接。
具体的,本实施例中,所述模型建立单元131还与人机交互界面111相互连接,人机交互界面111还与数据处理模块120相互连接,数据处理模块120还与数学求解模块140相互连接。
所述数学求解模块140包括有方法管理模块141、方法字典142和方法库143,方法管理模块141与方法字典142、方法库143相连接。
具体的,本实施例中,所述方法管理模块141还与数据处理模块120相互连接,数据处理模块120与模型调用单元130相互连接,人机交互界面111还与模型调用单元130相互连接。
需要说明的是,作为火电厂节水方法计算的模型调用渠道,模型调用单元130存有多种数学模型,例如,排污量 P 3与浓缩倍率 K之间的关系。
P 3=[ P 1+ P 2(1- K)]/ ( K-1)
式中: P 1为蒸发损失率; P 2为风吹损失率; K为浓缩倍率。
在火电厂循环式冷却系统的中水多次使用后其中杂质浓度提高,导致循环式水质变差,为保证机组的安全与经济运行,循环供水冷却系统都需要不断排水并补充新水,排放的水即为循环水排污水,循环水排污量一般占循环水补充量的15-70%。
还有,循环水系统作为火电厂用水量最大的水系统,包括有蒸发损失,风吹损失以及排污损失,模型调用单元130还包括有冷却塔的蒸发损失计算模型。
P 1= Z*Δt(%)
式中: P 1为蒸发损失率; Z为与环境温度有关的系数;Δt为冷却塔进出口水温差。
数据处理模块120由数据库管理系统负责管理和维护节水分析系统中使用的各类数据,在模型运行的过程中所使用的数据,按其数据内容分类存储,分别建立数据仓库文件;运行的结果所产生的各种决策信息,常以报表或图形形式存放在数据库中,并增加时间维度来实现数据库的动态连续性;通过数据库管理系统有效地实现与模型库、方法库、知识库与用户接口部件方便、快捷的联结,实现数据的有效输出,以达到为各种决策服务的目的。
模型调用单元130是模型的集合,它按照一定的组织方法,将模型有机地汇集起来,由模型库管理系统统一管理,模型库需要模型库管理系统来建立、运行、维护、交互,模型库管理系统为用户提供有关模型属性的特征信息,便于用户正确地使用模型,对模型的运算结果做出正确的判断;指导用户迅速准确地查找到有关模型,了解模型及其输入输出参数的相关信息;为用户新增模型的源代码和可执行代码的修改以及模型的调用提供相关信息;类似于数据库管理,模型属性库的管理包括模型属性的增加、删除、修改、查询以及新库的创建等操作。
实施例2
请参阅图1-6,本发明实施例中,一种基于节水预期成本投入的火电厂节水减排数学求解系统,包括相互连接的监测平台100和水处理系统200,监测平台100辅助决策者通过数据、模型和知识,以人机交互方式对水处理系统200进行半结构化或非结构化决策,水处理系统200用于对火力发电厂用水及废水进行零排放处理。
所述水处理系统200包括有沿水处理顺序依次连接的第一水处理单元、第二水处理单元、第三水处理单元和第四水处理单元。
不同类型火力发电厂废水的种类较多,水质、水量的特性差异很大。一般情况有机污染物少,除了油之外,废水中的污染成分主要是无机物;另外,间断性排水较多,连续排水量一般不大。火力发电厂废水一般可以按照以下指标进行分类。
(1)按照废水的来源划分
按照废水的来源划分,火力发电厂的废水包括循环水排污水、灰渣废水、工业冷却水排水、机组杂排水、含煤废水、油库冲洗水、化学水处理工艺废水、生活污水、脱硫废水等。
(2)按照废水的流量特点划分
按照流量特点,废水分为经常性废水和非经常性废水。经常性废水包含火力发电厂在正常运行过程中,各系统排出的工艺废水,这些废水是连续排放的,也有间断性排放的。火力发电厂的大部分废水为间断排放,连续排放的废水较少。连续排放的废水主要有锅炉连续排污、汽水取样系统排水、部分设备的冷却水、反渗透水处理设备的浓排水;间断性排水包括锅炉补给水处理系统的工艺废水、凝结水精处理系统的再生排水、锅炉定时排污、化验室排水、冷却塔排污及各种冲洗废水等。
非经常性废水包含设备检修、维护、保养期间产生的废水,如化学清洗排水(包括锅炉、凝汽器和热力系统其它设备的清洗)、锅炉空气预热器冲洗排水、机组启动时的排水、锅炉烟气侧冲洗排水等。与经常性排水相比,非经常性排水的水质较差而且不稳定。
(3)按照废水的水质特点划分
根据电厂不同系统用水的水质差异,将废水进行回用,可以根据废水的悬浮物和含盐量两个代表性指标进行分类。按照来源划分,废水种类很多,这给废水处理系统的选择带来了很大的困难。从回用角度分析,从处理工艺的相似性来划分。废水分类处理的一个原则是在保证可靠性的前提下,尽可能用最简单的处理工艺满足回用要求。具体需要选择哪一类处理系统,除了用水系统的要求外,主要取决于废水的水质。
火力发电厂的用水系统一般由生产用水和生活用水两部分构成。生产用水按 用途和工艺流程分为循环冷却水、工业用水、化学除盐水、输煤用水、除灰渣用水等系统;非生产用水通常包括厂区生活用水。
(1)火电厂的循环冷却水水质虽低于锅炉补给水,但若冷却水水质不好,会造成冷却系统管道和设备结垢、腐蚀和微生物滋生,导致系统的热传导性和严密性降低,设备出力下降,严重时甚至会发生故障,影响电厂经济运行和安全生产。
(2)火电厂工业用水通过工业水泵由循环水系统而来,主要是用于厂房内辅机设备、高温取样架、制氢站、除灰输送风机及各车间转机设备冷却,使用后一般可回用至循环水系统,常规的工业水系统冷却水一般分为直接冷却水和间接冷却水,其中,直接冷却水可用于直接和热介质接触通过热交换以达到冷却目的,其水质要求应为低温,无杂质,不腐蚀设备。而间接冷却水是通过热交换器换热来达到冷却目的,并不与热介质直接接触,故其不受热介质污染。间接冷却水的水质要求不高,只需用水对换热器的热管无腐蚀,不结垢。
(3)化学除盐水系统用水一般来源千深井水或者河水等水质较好的源水,也可来 源千如经过反渗透等工艺处理后的循环冷却水排污水等,其原水经过处理后主要 作为锅炉用水的补水。化学除盐水系统为锅炉、氢站、炉内采样冷却、溶药和精处理再生等单位供水,最终的去向主要表现为锅炉汽水损失、锅炉排污损失和再生废水。在疑汽器发电厂中,锅炉补给水董的多少取决于锅炉排污量和系统汽水损失水董的多少。锅炉的排污量因机组情况的不同而异,锅炉汽水损失主要包括排汽损失和一些热水的蒸发损失等。一般相当于锅炉蒸发量的5-7%。此外,化学除盐系统自用水量也不容忽视,一般自用水损失量大小与水处理的方式有关,一般包括反洗、再生设备时产生的酸碱废水以及过滤器反洗排水等。
(4)火电厂生活、消防用水系统来水一般取自水质较好的深井水或者湖泊、河流来水以及市政给水系统等,一般用于洗澡、冲厕等电厂人员用水。
具体的,本实施例中,所述第一水处理单元包括有循环水及排污水减量单元、反渗透浓水减量单元、酸碱废水减量单元和其他废水减量单元。
进一步的,本实施例中,第二水处理单元包括有循环水及排污水复合利用单元、反渗透浓水复合利用单元和其他水复合利用单元。
所述监测平台100包括有数据处理模块120、模型调用单元130、数学求解模块140和数据收发模块110,数据处理模块120、模型调用单元130、数学求解模块140均与数据收发模块110连接,在节水分析过程中,从数据处理模块120中选择数据,从数学求解模块140中选择算法,从模型调用单元130中选择模型,然后将数据、算法、模型结合起来进行问题求解,输出结果并进行决策制定,解决水处理系统200中水处理问题。
所述数据收发模块110包括有人机交互界面111和决策制定单元112,人机交互界面111和决策制定单元112相连接。
所述数据处理模块120包括有数据分析单元122、数据管理模块123、数据存储单元121、数据字典124和数据查询模块125,数据分析单元122与数据管理模块123、数据存储单元121相互连接,数据管理模块123还与数据字典124和数据查询模块125相互连接,数据字典124和数据查询模块125相互连接。
具体的,本实施例中,数据字典124还分别与人机交互界面111、模型调用单元130相互连接,模型调用单元130与人机交互界面111均与数学求解模块140相互连接。
所述模型调用单元130包括模型建立单元131、模型管理单元132、模型字典134和模型库133,模型管理单元132分别与模型建立单元131、模型库133连接,模型库133与模型字典134相互连接。
具体的,本实施例中,所述模型建立单元131还与人机交互界面111相互连接,人机交互界面111还与数据处理模块120相互连接,数据处理模块120还与数学求解模块140相互连接。
所述数学求解模块140包括有方法管理模块141、方法字典142和方法库143,方法管理模块141与方法字典142、方法库143相连接。
具体的,本实施例中,所述方法管理模块141还与数据处理模块120相互连接,数据处理模块120与模型调用单元130相互连接,人机交互界面111还与模型调用单元130相互连接。
需要说明的是,作为火电厂节水方法计算的模型调用渠道,模型调用单元130存有多种数学模型,例如,排污量 P 3与浓缩倍率 K之间的关系。
P 3 =[ P 1+ P 2(1- K)]/ ( K-1)
式中: P 1为蒸发损失率; P 2为风吹损失率; K为浓缩倍率。
在火电厂循环式冷却系统的中水多次使用后其中杂质浓度提高,导致循环式水质变差,为保证机组的安全与经济运行,循环供水冷却系统都需要不断排水并补充新水,排放的水即为循环水排污水,循环水排污量一般占循环水补充量的15-70%;
还有,循环水系统作为火电厂用水量最大的水系统,包括有蒸发损失,风吹损失以及排污损失,模型调用单元130还包括有冷却塔的蒸发损失计算模型。
  P 1= Z*Δt(%)
式中: P 1为蒸发损失率; Z为与环境温度有关的系数;Δt为冷却塔进出口水温差。
数据处理模块120由数据库管理系统负责管理和维护节水分析系统中使用的各类数据,在模型运行的过程中所使用的数据,按其数据内容分类存储,分别建立数据仓库文件;运行的结果所产生的各种决策信息,常以报表或图形形式存放在数据库中,并增加时间维度来实现数据库的动态连续性;通过数据库管理系统有效地实现与模型库、方法库、知识库与用户接口部件方便、快捷的联结,实现数据的有效输出,以达到为各种决策服务的目的。
模型调用单元130是模型的集合,它按照一定的组织方法,将模型有机地汇集起来,由模型库管理系统统一管理,模型库需要模型库管理系统来建立、运行、维护、交互,模型库管理系统为用户提供有关模型属性的特征信息,便于用户正确地使用模型,对模型的运算结果做出正确的判断;指导用户迅速准确地查找到有关模型,了解模型及其输入输出参数的相关信息;为用户新增模型的源代码和可执行代码的修改以及模型的调用提供相关信息;类似于数据库管理,模型属性库的管理包括模型属性的增加、删除、修改、查询以及新库的创建等操作。
请参阅图6,本实施例与实施例1的不同之处在于:
所述人机交互界面包括有界面、人机对话模块、转换单元和推理单元,所述界面与人机对话模块连接,所述人机对话模块与转换单元连接,所述转换单元和推理单元连接,所述推理单元与决策制定单元112连接,用于辅助决策者进行方案制定。
具体的,本实例中,所述人机对话模块包括相互连接的用户界面和对话控制单元,方便决策者操作。
请再次参阅图1,还包括有反馈单元300,所述反馈单元300与监测平台100、水处理系统200连接,反馈单元300用于获取监测平台100和水处理系统200数据,将该数据发送给持有反馈设备的火电厂专家,通过火电厂专家进行水处理反馈。
以上的仅是本发明的优选实施方式,应当指出,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以作出若干变形和改进,这些也应该视为本发明的保护范围,这些都不会影响本发明实施的效果和专利的实用性。

Claims (10)

  1. 一种基于节水预期成本投入的火电厂节水减排数学求解系统,其特征在于,包括监测平台和水处理系统,所述监测平台和水处理系统连接;
    所述废水处理系统包括有沿水处理顺序依次连接的第一水处理单元、第二水处理单元、第三水处理单元和第四水处理单元,用于对火力发电厂用水及废水进行零排放处理;
    所述监测平台包括有数据处理模块、模型调用单元、数学求解模块和数据收发模块。
  2. 根据权利要求所述的基于节水预期成本投入的火电厂节水减排数学求解系统,其特征在于,所述数据处理模块、模型调用单元、数学求解模块均与数据收发模块连接。
  3. 根据权利要求所述的基于节水预期成本投入的火电厂节水减排数学求解系统,其特征在于,所述数据收发模块包括有人机交互界面和决策制定单元,人机交互界面和决策制定单元相连接。
  4. 根据权利要求所述的基于节水预期成本投入的火电厂节水减排数学求解系统,其特征在于,所述数据处理模块包括有数据分析单元、数据管理模块、数据存储单元、数据字典和数据查询模块,数据分析单元与数据管理模块、数据存储单元相互连接,数据管理模块还与数据字典和数据查询模块相互连接,数据字典和数据查询模块相互连接。
  5. 根据权利要求所述的基于节水预期成本投入的火电厂节水减排数学求解系统,其特征在于,所述数据字典还分别与人机交互界面、模型调用单元相互连接,模型调用单元与人机交互界面均与数学求解模块相互连接。
  6. 根据权利要求所述的基于节水预期成本投入的火电厂节水减排数学求解系统,其特征在于,所述模型调用单元包括模型建立单元、模型管理单元、模型字典和模型库,模型管理单元分别与模型建立单元、模型库连接,模型库与模型字典相互连接。
  7. 根据权利要求所述的基于节水预期成本投入的火电厂节水减排数学求解系统,其特征在于,所述模型建立单元还与人机交互界面相互连接,人机交互界面还与数据处理模块相互连接,数据处理模块还与数学求解模块相互连接。
  8. 根据权利要求所述的基于节水预期成本投入的火电厂节水减排数学求解系统,其特征在于,所述数学求解模块包括有方法管理模块、方法字典和方法库,方法管理模块与方法字典、方法库相连接。
  9. 根据权利要求所述的基于节水预期成本投入的火电厂节水减排数学求解系统,其特征在于,所述方法管理模块还与数据处理模块相互连接,数据处理模块与模型调用单元相互连接,人机交互界面还与模型调用单元相互连接。
  10. 根据权利要求所述的基于节水预期成本投入的火电厂节水减排数学求解系统,其特征在于,所述人机交互界面包括有界面、人机对话模块、转换单元和推理单元,所述界面与人机对话模块连接,所述人机对话模块与转换单元连接,所述转换单元和推理单元连接,所述推理单元与决策制定单元连接。
PCT/CN2022/082003 2022-03-17 2022-03-21 一种基于节水预期成本投入的火电厂节水减排数学求解系统 WO2023173450A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210264894.XA CN114707821A (zh) 2022-03-17 2022-03-17 一种基于节水预期成本投入的火电厂节水减排数学求解系统
CN202210264894.X 2022-03-17

Publications (1)

Publication Number Publication Date
WO2023173450A1 true WO2023173450A1 (zh) 2023-09-21

Family

ID=82168858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082003 WO2023173450A1 (zh) 2022-03-17 2022-03-21 一种基于节水预期成本投入的火电厂节水减排数学求解系统

Country Status (2)

Country Link
CN (1) CN114707821A (zh)
WO (1) WO2023173450A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10235333A (ja) * 1997-02-28 1998-09-08 Toshiba Corp 下水処理プロセスシミュレータ
CN205134483U (zh) * 2015-11-06 2016-04-06 武汉新天达美环境科技有限公司 一种用于煤化工污水处理的水管控系统
CN105527915A (zh) * 2016-02-05 2016-04-27 浙江浙能技术研究院有限公司 一种火电厂实时水务监测系统及监测方法
CN109324583A (zh) * 2018-11-02 2019-02-12 河北涿州京源热电有限责任公司 一种基于三维显示的火力发电厂给排水网络管理方法及系统
CN109884995A (zh) * 2019-02-01 2019-06-14 北京朗新明环保科技有限公司 一种智慧水务管理平台
CN109976187A (zh) * 2019-02-28 2019-07-05 重庆工商大学 基于污水生化处理优化与精细曝气的污水管理平台
CN112875957A (zh) * 2020-12-28 2021-06-01 国网河北省电力有限公司电力科学研究院 一种火力发电厂优化用水及废水零排放处理系统
CN112990768A (zh) * 2021-04-20 2021-06-18 中国水利水电科学研究院 一种基于废水零排放的工业水系统节水优化方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10235333A (ja) * 1997-02-28 1998-09-08 Toshiba Corp 下水処理プロセスシミュレータ
CN205134483U (zh) * 2015-11-06 2016-04-06 武汉新天达美环境科技有限公司 一种用于煤化工污水处理的水管控系统
CN105527915A (zh) * 2016-02-05 2016-04-27 浙江浙能技术研究院有限公司 一种火电厂实时水务监测系统及监测方法
CN109324583A (zh) * 2018-11-02 2019-02-12 河北涿州京源热电有限责任公司 一种基于三维显示的火力发电厂给排水网络管理方法及系统
CN109884995A (zh) * 2019-02-01 2019-06-14 北京朗新明环保科技有限公司 一种智慧水务管理平台
CN109976187A (zh) * 2019-02-28 2019-07-05 重庆工商大学 基于污水生化处理优化与精细曝气的污水管理平台
CN112875957A (zh) * 2020-12-28 2021-06-01 国网河北省电力有限公司电力科学研究院 一种火力发电厂优化用水及废水零排放处理系统
CN112990768A (zh) * 2021-04-20 2021-06-18 中国水利水电科学研究院 一种基于废水零排放的工业水系统节水优化方法

Also Published As

Publication number Publication date
CN114707821A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
Liu et al. Calculation of carbon emissions in wastewater treatment and its neutralization measures: A review
Zhang et al. Application with Internet of things technology in the municipal industrial wastewater treatment based on membrane bioreactor process
CN113159387A (zh) 一种工业园区污水近零排放的水资源优化配置系统及方法
Zouboulis et al. “Cycle closure” in waste management: tools, procedures and examples
CN112875957A (zh) 一种火力发电厂优化用水及废水零排放处理系统
WO2023173450A1 (zh) 一种基于节水预期成本投入的火电厂节水减排数学求解系统
CN112415965A (zh) 一种循环水数字化在线监测控制装置及方法
CN205134483U (zh) 一种用于煤化工污水处理的水管控系统
CN112344350B (zh) 一种污泥减量化处理的系统和方法
CN116293712A (zh) 一种焚烧炉烟气余热回收系统
CN115630473A (zh) 一种考虑污水回用的污水处理厂优化运行方法
CN109507868A (zh) 一种模糊pid控制器及规模化养猪场沼气工程控制系统
CN114091823A (zh) 污水处理系统的可调节潜力确定方法、系统及存储介质
CN107578162A (zh) 工业园区水污染防治技术路线决策方法
Pagilla Operational optimization and control strategies for decarbonization in WRRFs
Ruhua et al. Automatic control of sewage treatment process using biological reaction (iSPEC 2021)
CN116062945B (zh) 基于神经网络的煤化工节能数据预测系统
Prasad et al. Environmental issues and challenges of water consumption for thermal power plant: Impact of new water consumption norms.
CN212179596U (zh) 玻璃厂综合污染处理及余热利用系统
CN221051707U (zh) 利用锅炉烟气降低污水多效蒸发蒸汽用量的装置
CN103043858B (zh) 一种味精工业生产废水循环利用工艺及装置
CN218642586U (zh) 电厂循环冷却水中水回用及零排放的处理系统
CN205974192U (zh) 用于处理垃圾渗滤液的多级高温蒸氨系统
Liu Analysis on Water Saving Effect of “Zero Discharge” Wastewater from 4× 300MW Coal-fired Power Plants
Xiao et al. Research on Remote Monitoring System for Zero Discharge Treatment of External Cooling Water in Converter Valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931481

Country of ref document: EP

Kind code of ref document: A1