WO2023173396A1 - 一种泊车方法、装置和车辆 - Google Patents

一种泊车方法、装置和车辆 Download PDF

Info

Publication number
WO2023173396A1
WO2023173396A1 PCT/CN2022/081636 CN2022081636W WO2023173396A1 WO 2023173396 A1 WO2023173396 A1 WO 2023173396A1 CN 2022081636 W CN2022081636 W CN 2022081636W WO 2023173396 A1 WO2023173396 A1 WO 2023173396A1
Authority
WO
WIPO (PCT)
Prior art keywords
parking
vehicle
user
parking area
information
Prior art date
Application number
PCT/CN2022/081636
Other languages
English (en)
French (fr)
Inventor
胡文潇
许婷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/081636 priority Critical patent/WO2023173396A1/zh
Publication of WO2023173396A1 publication Critical patent/WO2023173396A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/06Automatic manoeuvring for parking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles

Definitions

  • Embodiments of the present application relate to the field of intelligent driving, and more specifically, to a parking method, device and vehicle.
  • Auto parking refers to the automatic parking of vehicles into parking spaces, that is, the autonomous driving system can help users park their vehicles into parking spaces semi-automatically or fully automatically.
  • Automatic parking can include automatic parking assist (auto parking assist, APA), remote parking assist (remote parking assist, RPA), and automatic valet parking (auto valet parking, AVP), etc.
  • Embodiments of the present application provide a parking method, device and vehicle, which help improve the efficiency and accuracy of users when parking.
  • the vehicle (sometimes referred to as a vehicle) in this application is a vehicle in a broad sense, which can be a means of transportation (such as a car, a truck, a motorcycle, a train, an airplane, a ship, etc.), an industrial vehicle (such as a forklift, a trailer, a tractor, etc.) vehicles, etc.), engineering vehicles (such as excavators, bulldozers, cranes, etc.), agricultural equipment (such as lawn mowers, harvesters, etc.), amusement equipment, toy vehicles, etc.
  • This application does not limit the types of vehicles.
  • a parking method includes: obtaining information on multiple parking areas; obtaining a relative position relationship between a vehicle and each parking area in the multiple parking areas; Based on the location relationship and the user's first driving behavior, a first parking area is recommended to the user, and the plurality of parking areas include the first parking area.
  • the vehicle can prompt the user with recommended parking areas based on the relative position relationship between the vehicle and each parking area and the user's driving behavior, so as to facilitate the user to choose from multiple parking areas.
  • the parking area includes a parking area (eg, an area after the vehicle is parked) or a parking area (eg, a parking space).
  • the first driving behavior includes information about the first gear and/or information about the first steering wheel.
  • the first steering wheel steering information corresponds to the first steering direction of the wheel.
  • the first parking area may include two or more parking areas.
  • the method further includes: prompting the user with a recommendation degree of the first parking area.
  • the method further includes: recommending a second parking area to the user based on the relative position relationship and the user's second driving behavior, and the plurality of parking areas include The second parking area.
  • the user drives the vehicle to the first parking area. Due to the user's driving behavior, the recommended parking area may change from the first parking area. Switching to the second parking area allows the vehicle to promptly prompt the user with the updated recommended parking area, which helps to improve the user's efficiency when parking, thus helping to improve the user's parking experience.
  • the second driving behavior includes information about the second gear and/or information about the second steering wheel.
  • the second steering wheel steering information corresponds to the second steering direction of the wheel.
  • the method further includes: determining a parking mode of the vehicle according to the relative position relationship and the user's third driving behavior, and the parking mode includes parking in and out. parking area or park out of the parking area.
  • the vehicle before determining the recommended parking area, the vehicle may first determine the parking mode based on the relative positional relationship between the vehicle and each parking area and the user's driving behavior. In this way, the vehicle can prompt the user with the recommended parking area in the parking mode, without providing the user with information about the parking area when parking in and out.
  • the recommended parking area is more in line with the user's parking intention, which helps Avoid incorrect recommendations for parking areas, thereby helping to improve user efficiency when parking.
  • the third driving behavior includes gear information, steering wheel steering information, information about whether the vehicle is powered on within the first preset time period before determining the parking mode of the vehicle, and information about whether the vehicle is powered on before determining the parking mode of the vehicle.
  • gear information steering wheel steering information
  • information about whether the vehicle is powered on within the first preset time period before determining the parking mode of the vehicle and information about whether the vehicle is powered on before determining the parking mode of the vehicle.
  • the parking mode can be determined to be parking in the parking area based on one or more of the following conditions: the vehicle can recognize the parking space, the vehicle is not in the parking space, or the vehicle is not completely parked in the parking space; The vehicle switches from the state of not being in the parking space to entering one or more parking spaces (for example, the user does not park in the parking space after many times of driving); the vehicle switches from the state of not being in the parking space to entering one or more parking spaces.
  • the vehicle detects the user's operation of parking into the parking space; before determining the parking mode, The vehicle detects that it has entered the automatic parking mode and actively or passively exits the automatic parking mode when the vehicle does not park into the parking space.
  • the parking mode can be determined to be parking out of the parking area based on one or more of the following conditions: the vehicle can recognize the parking space, the vehicle is in the parking space and parked in the center; the vehicle is powered on for the first time and started, The vehicle can recognize the parking space and the vehicle is in the parking space; before judging the parking mode, the vehicle detects that it has entered the automatic parking mode, and the vehicle actively or passively exits the automatic parking mode when the vehicle does not park out of the parking space; the vehicle body is in the parking space, And the vehicle detects that the user has not completely left the parking space after driving the vehicle once or multiple times.
  • the relative position relationship information may also include whether the vehicle has entered a certain parking area. If the vehicle has entered the parking area, the parking area can be determined as a recommended parking area.
  • the first driving behavior includes the first gear information of the vehicle and the first steering wheel turning information of the vehicle, and the first steering wheel turning information corresponds to the first turning of the wheel.
  • the parking mode is to park in the parking area
  • the first parking area is recommended to the user based on the relative position relationship and the user's first driving behavior, including: based on the first gear information, the first steering The angle between the direction and the direction of the first side of each parking area recommends the first parking area to the user, and the first side corresponds to the direction in which the vehicle parks into the parking area.
  • the recommended parking area is determined by combining the direction of wheel turning and the angle between the direction of the outermost parking space line of the parking area opening. In this way, it helps to speed up the process of users selecting a suitable parking area from multiple parking areas, and helps to avoid users from manually selecting parking areas where parking is difficult; at the same time, it also helps to improve users' experience when parking. efficiency, thus helping to improve the user's parking experience and efficiency as a whole.
  • the relative position relationship also includes distance information between the vehicle and each parking area, the wheel center point of the second side of the vehicle and the third The angle between the center point of the parking space line on one side and the direction of the second side.
  • the first side and the second side correspond to the direction in which the vehicle parks into the parking area.
  • the recommended parking area is determined by combining the distance between the vehicle and the parking area and the angle between the direction of the wheels and the direction of the parking space line. In this way, it helps to speed up the process of users selecting a suitable parking area from multiple parking areas, and helps to avoid users from manually selecting parking areas where parking is difficult; at the same time, it also helps to improve users' experience when parking. efficiency, thus helping to improve the user's parking experience as a whole.
  • the method before determining the parking mode of the vehicle, the method further includes: determining that the speed of the vehicle is less than or equal to a preset speed threshold.
  • the distance information between the vehicle and each parking area by combining the distance information between the vehicle and each parking area, the angle between the center point of the vehicle's wheel and the center point of the outermost parking space line of the parking area opening, and the direction of the wheel, it is possible to Determine recommended parking areas. In this way, it helps to speed up the process of users selecting a suitable parking area from multiple parking areas, and helps to avoid users from manually selecting parking areas where parking is difficult; at the same time, it also helps to improve users' experience when parking. efficiency, thus helping to improve the user's parking experience as a whole.
  • the method further includes: determining, based on the posture of the vehicle and the information of the first parking area, from the current location of the vehicle to the first parking area.
  • the information of the parking track in the area prompts the user with the information of the parking track.
  • the vehicle after determining the recommended parking area, can automatically plan the parking trajectory information from the vehicle's current location to the recommended parking area, thereby facilitating the user to drive the vehicle to the first location based on the parking trajectory information.
  • the parking area helps to improve the efficiency of users when parking, thus helping to improve the user's parking experience; at the same time, it also helps to ensure the safety of users when parking.
  • the information about the parking trajectory includes the planned number of times of parking from the current location of the vehicle to the first parking area, the planned parking path, and the planned parking time.
  • the method also includes: prompting the user to use the automatic parking function when one or more of the following conditions are met: a driving process from the current location to the first parking area is detected The number of times of parking by the user is greater than or equal to the planned number of times of parking; it is detected that the length of the driving path of the vehicle from the current position to the first parking area is greater than or equal to the length of the planned parking path; or, it is detected that The parking time of the vehicle from the current location to the first parking area is greater than or equal to the planned parking time.
  • the vehicle when the vehicle detects that the user has difficulty parking while the user is parking, the vehicle can promptly prompt the user to use the automatic parking function, thereby facilitating the user to switch from driver parking to automatic parking in a timely manner. , helps improve parking efficiency and also helps ensure users’ safety when parking.
  • the method further includes: when the vehicle is parked in the first parking area and the vehicle is not parked centrally in the first parking area, prompting the user The vehicle is not parked centrally or prompts the user to use the automatic parking function.
  • the vehicle when the vehicle is parked in the first parking area and the vehicle detects that the vehicle is not parked in the center of the first parking area, the vehicle can prompt the user that the vehicle is not parked in the center, or the vehicle can prompt the user to use the automatic
  • the parking function centers the vehicle in the parking area, which helps reduce the risk of scratches or violations caused by not parking in the center, and helps improve the user experience.
  • the second driving behavior includes the second gear information of the vehicle and the second steering wheel turning information of the vehicle, and the second steering wheel turning information corresponds to the second turning of the wheel.
  • the parking mode is to park in the parking area
  • the second parking area is recommended to the user based on the relative position relationship and the user's second driving behavior, including: based on the second gear information, the second steering The angle between the direction and the direction of the first side of each parking area, which corresponds to the direction in which the vehicle parks into the parking area, recommends a second parking area to the user.
  • a parking device in a second aspect, includes: an acquisition unit for acquiring information on multiple parking areas; the acquisition unit is also used for acquiring information about a vehicle and each parking area in the multiple parking areas. The relative position relationship between car areas; the recommendation unit is used to recommend the first parking area to the user based on the relative position relationship and the user's first driving behavior, and the plurality of parking areas include the first parking area.
  • the recommendation unit is also used to recommend a second parking area to the user based on the relative position relationship and the user's second driving behavior.
  • the multiple parking areas The area includes the second parking area.
  • the device further includes: a first determining unit, configured to determine the relative position relationship and user information before the acquisition unit acquires the information of the plurality of parking areas.
  • the third driving behavior determines the parking mode of the vehicle, and the parking mode includes parking into the parking area or parking out of the parking area.
  • the first driving behavior includes the first gear information of the vehicle and the first steering wheel turning information of the vehicle, and the first steering wheel turning information corresponds to the first turning of the wheel.
  • the parking mode is to park into the parking area
  • the recommendation unit is specifically used to: based on the first gear information, the first steering direction and the direction of the first side of each parking area.
  • the included angle recommends the first parking area to the user, and the first side corresponds to the direction in which the vehicle parks into the parking area.
  • the relative position relationship also includes distance information between the vehicle and each parking area, the wheel center point of the second side of the vehicle and the third The angle between the center point of the parking space line on one side and the direction of the second side.
  • the first side and the second side correspond to the direction in which the vehicle parks into the parking area.
  • the first determination unit is further configured to: before determining the parking mode of the vehicle, determine that the speed of the vehicle is less than or equal to a preset speed threshold.
  • the device further includes: a second determination unit configured to determine, based on the posture of the vehicle and the information of the first parking area, the current location of the vehicle. The information of the parking trajectory from the location to the first parking area; the first prompting unit is used to prompt the user with the information of the parking trajectory.
  • the parking trajectory information includes the planned number of parking passes from the current location of the vehicle to the first parking area, the planned parking path, and the planned parking time.
  • the first prompting unit is also configured to prompt the user to use the automatic parking function when one or more of the following conditions are met: detecting a road from the current location to the first parking area The number of times the user makes parking during driving is greater than or equal to the planned number of times; it is detected that the length of the vehicle's driving path from the current location to the first parking area is greater than or equal to the length of the planned parking path; or, It is detected that the parking time of the vehicle from the current location to the first parking area is greater than or equal to the planned parking time.
  • the device further includes: a second prompting unit configured to park the vehicle in the first parking area and the vehicle is not parked in the center in the first parking area.
  • a second prompting unit configured to park the vehicle in the first parking area and the vehicle is not parked in the center in the first parking area.
  • the user is prompted that the vehicle is not parked in the center or the user is prompted to use the automatic parking function.
  • a device in a third aspect, includes: a memory for storing computer instructions; and a processor for executing the computer instructions stored in the memory, so that the device performs the method in the first aspect.
  • a fourth aspect provides a vehicle, which includes the device described in any one of the above second or third aspects.
  • a computer program product includes: computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute the method in the first aspect.
  • the above computer program code may be stored in whole or in part on the first storage medium, where the first storage medium may be packaged together with the processor, or may be packaged separately from the processor, which is not specifically limited in the embodiments of the present application.
  • a computer-readable medium stores program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute the method in the first aspect.
  • inventions of the present application provide a chip system.
  • the chip system includes a processor for calling a computer program or computer instructions stored in a memory, so that the processor executes the method described in the first aspect.
  • the processor is coupled with the memory through an interface.
  • the chip system further includes a memory, and a computer program or computer instructions are stored in the memory.
  • Figure 1 is a schematic functional block diagram of a vehicle provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of the sensing ranges of various sensors provided by the embodiment of the present application.
  • Figure 3 is a schematic flow chart of the parking method provided by the embodiment of the present application.
  • Figure 4 is a set of graphical user interface GUI provided by an embodiment of the present application.
  • Figure 5 is another GUI provided by an embodiment of the present application.
  • Figure 6 is another GUI provided by an embodiment of the present application.
  • Figure 7 is another set of GUI provided by the embodiment of the present application.
  • Figure 8 is another set of GUI provided by the embodiment of the present application.
  • Figure 9 is another set of GUI provided by the embodiment of the present application.
  • Figure 10 is another GUI provided by an embodiment of the present application.
  • Figure 11 is a schematic flow chart of the parking method provided by the embodiment of the present application.
  • Figure 12 is another set of GUI provided by the embodiment of the present application.
  • Figure 13 is another GUI provided by an embodiment of the present application.
  • Figure 14 is a schematic flow chart of a method for activating the narrow road assist function provided by an embodiment of the present application.
  • Figure 15 is another GUI provided by an embodiment of the present application.
  • Figure 16 is a schematic diagram of the parking area provided by the embodiment of the present application.
  • Figure 17 is another GUI provided by an embodiment of the present application.
  • Figure 18 is another GUI provided by an embodiment of the present application.
  • Figure 19 is another set of GUI provided by the embodiment of the present application.
  • Figure 20 is another set of GUI provided by the embodiment of the present application.
  • Figure 21 is another GUI provided by an embodiment of the present application.
  • Figure 22 is another set of GUI provided by the embodiment of the present application.
  • Figure 23 is a schematic flow chart of the parking method provided by the embodiment of the present application.
  • Figure 24 is a schematic block diagram of a parking device provided by an embodiment of the present application.
  • Prefixes such as “first” and “second” are used in the embodiments of this application only to distinguish different description objects, and have no limiting effect on the position, order, priority, quantity or content of the described objects. For example, if the described object is "parking area”, then the ordinal words before “parking area” in “first parking area” and “second parking area” do not limit the position between "parking area” or order. In short, the use of ordinal words and other prefixes used to distinguish the described objects in the embodiments of this application does not limit the described objects. For the statement of the described objects, please refer to the claims or the context description in the embodiments. The use of this should not be used. A prefix word that constitutes a redundant restriction. Furthermore, in the description of this embodiment, unless otherwise specified, "plurality" means two or more.
  • FIG. 1 is a functional block diagram of a vehicle 100 provided by an embodiment of the present application.
  • the vehicle 100 may include a perception system 120 , a display device 130 , and a computing platform 150 , where the perception system 120 may include several types of sensors that sense information about the environment surrounding the vehicle 100 .
  • the sensing system 120 may include a positioning system.
  • the positioning system may be a global positioning system (GPS), a Beidou system or other positioning systems, an inertial measurement unit (IMU), a lidar, a millimeter One or more of wave radar, ultrasonic radar and camera device.
  • GPS global positioning system
  • IMU inertial measurement unit
  • lidar a millimeter One or more of wave radar, ultrasonic radar and camera device.
  • the computing platform 150 may include processors 151 to 15n (n is a positive integer).
  • the processor is a circuit with signal processing capabilities.
  • the processor may be a circuit with instruction reading and execution capabilities.
  • CPU central processing unit
  • microprocessor graphics processing unit
  • GPU graphics processing unit
  • DSP digital signal processor
  • the processor can realize certain functions through the logical relationship of the hardware circuit. The logical relationship of the hardware circuit is fixed or can be reconstructed.
  • the processor is an application-specific integrated circuit (application-specific integrated circuit). ASIC) or programmable logic device (PLD) implemented hardware circuit, such as FPGA.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the process of the processor loading the configuration file and realizing the hardware circuit configuration can be understood as the process of the processor loading instructions to realize the functions of some or all of the above units.
  • it can also be a hardware circuit designed for artificial intelligence, which can be understood as an ASIC, such as a neural network processing unit (NPU), tensor processing unit (TPU), deep learning processing Unit (deep learning processing unit, DPU), etc.
  • the computing platform 150 may also include a memory, which is used to store instructions. Some or all of the processors 151 to 15n may call instructions in the memory to implement corresponding functions.
  • the vehicle 100 may include an advanced driving assist system (ADAS), which utilizes a variety of sensors on the vehicle (including but not limited to: lidar, millimeter wave radar, camera, ultrasonic sensor, global positioning system, inertial Measurement unit) acquires information from around the vehicle and analyzes and processes the acquired information to achieve functions such as obstacle perception, target recognition, vehicle positioning, path planning, driver monitoring/reminder, etc., thereby improving the safety of vehicle driving. Level of automation and comfort.
  • ADAS advanced driving assist system
  • FIG 2 shows a schematic diagram of the sensing range of various sensors.
  • the sensors can include, for example, lidar, millimeter wave radar, camera devices, and ultrasonic sensors as shown in Figure 1.
  • Millimeter wave radar can be divided into long-range radar and medium/short-range radar.
  • the sensing range of lidar is about 80-150 meters
  • the sensing range of long-range millimeter wave radar is about 1-250 meters
  • the sensing range of medium/short-range millimeter wave radar is about 30-120 meters
  • the sensing range of ultrasonic radar is about 50-200 meters
  • the sensing range of ultrasonic radar is about 0-5 meters.
  • ADAS systems generally include three main functional modules: perception module, decision-making module and execution module.
  • the perception module senses the surrounding environment of the vehicle body through sensors and inputs corresponding real-time data to the decision-making layer processing center.
  • the perception module mainly includes on-board cameras. / Ultrasonic radar / Millimeter wave radar / Lidar, etc.; the decision-making module uses computing devices and algorithms to make corresponding decisions based on the information obtained by the perception module; the execution module takes corresponding actions after receiving the decision-making signal from the decision-making module, such as driving, changing lanes , steering, braking, warning, etc.
  • L0 level is no automation
  • L1 level is driving support
  • L2 level is partial automation
  • L3 level is conditional automation
  • L4 level is high automation
  • L5 level is complete automation.
  • the tasks of monitoring and responding to road conditions from L1 to L3 are jointly completed by the driver and the system, and the driver is required to take over dynamic driving tasks.
  • L4 and L5 levels allow the driver to completely transform into a passenger role.
  • ADAS can implement mainly include but are not limited to: adaptive cruise, automatic emergency braking, automatic parking, blind spot monitoring, front intersection traffic warning/braking, rear intersection traffic warning/braking, and front collision warning. , lane departure warning, lane keeping assist, rear collision avoidance warning, traffic sign recognition, traffic jam assist, highway assist, etc.
  • L0-L5 autonomous driving levels
  • automatic parking can include APA, RPA, AVP, etc.
  • APA the driver does not need to control the steering wheel, but still needs to control the accelerator and brake on the vehicle; for RPA, the driver can use a terminal (such as a mobile phone) to remotely park the vehicle outside the vehicle; for AVP, the vehicle can be parked remotely without driving. Complete the parking without a driver.
  • APA is approximately at the L1 level
  • RPA is approximately at the L2-L3 level
  • AVP is approximately at the L4 level.
  • embodiments of the present application provide a parking method, device, and vehicle.
  • the vehicle can recommend parking modes, parking areas, and parking functions for users based on the vehicle's posture and the driver's driving behavior. Helps improve user efficiency when parking.
  • FIG 3 is a schematic flow chart of the parking method 300 provided by the embodiment of the present application. As shown in Figure 3, the method 300 includes:
  • the vehicle's pose information may include the vehicle's position information and attitude information.
  • the position information of the vehicle can be obtained by the positioning system in the perception system 120 shown in Figure 1
  • the attitude information can be obtained from data collected by sensors such as camera devices, laser radar, millimeter wave radar, ultrasonic radar, and IMU in the perception system 120.
  • the method 300 further includes: obtaining one or more of vehicle parameter information, surrounding environment information, parking area information, and driving trajectory information.
  • the vehicle parameter information includes but is not limited to the vehicle body length, width, and wheelbase information.
  • the surrounding environment information includes but is not limited to information about obstacles around the vehicle, such as pillars, curbs, green belts, distance information and angle information between the cones and the vehicle, etc.
  • the parking area information includes but is not limited to information such as the type of parking area around the vehicle, the size of the parking area, the location of the parking area, and the idle status of the parking area.
  • S320 Determine the parking mode according to the vehicle's posture and/or the driver's driving behavior, where the parking mode may indicate that the vehicle is currently parking into or out of the parking area.
  • the parking mode may be determined to be the parking area according to one or more of the following conditions:
  • the vehicle can recognize the parking space, but the vehicle is not in the parking space or the vehicle is not fully parked in the parking space;
  • the vehicle Before judging the parking mode, the vehicle detects that it has entered the automatic parking mode, and the vehicle actively or passively exits the automatic parking mode when it does not park into the parking space.
  • the above process may refer to the process of the user driving the vehicle from the current location of the vehicle to the parking area.
  • the user puts the R gear in the process of parking the vehicle into a certain parking area
  • if the user can directly park the vehicle in the R gear into the parking area it can mean that the user can complete the parking with one push; If the user cannot directly park the vehicle into the parking area after shifting the R gear, and needs to switch from R to D, drive the vehicle for a certain distance, and then switch from D to R to park the vehicle into the parking area, It can mean that the user completes parking by rubbing the library twice.
  • the more times the user switches between D gear and R gear the more times the user performs the kneading operation.
  • the parking mode may be determined to be parking in the parking area.
  • the parking mode may be determined to be parking out of the parking area according to one or more of the following conditions:
  • the vehicle can recognize the parking space, and the vehicle is parked in the parking space and in the center;
  • the vehicle Before judging the parking mode, the vehicle detects that it has entered the automatic parking mode, and the vehicle actively or passively exits the automatic parking mode when it has not parked out of the parking space;
  • the body of the vehicle is in the parking space, and the vehicle detects that the body has not completely left the parking space after the user has driven the vehicle one or more times.
  • S330 Determine a recommended parking area based on the vehicle's position and/or the driver's driving behavior.
  • the recommended parking area in the parking state, may be a recommended parking space (such as a flat parking space or a space parking space); in the parking state, the recommended parking area may be the parking direction. and the corresponding virtual area where the vehicle stops.
  • a recommended parking space such as a flat parking space or a space parking space
  • the recommended parking area may be the parking space with the shortest distance from the driver's line of sight to the right side of the vehicle's forward direction. If there is a recommended parking area on the right side of the vehicle's forward direction, the parking area on the right will be recommended to the user first; if there is no recommended parking area on the right side of the vehicle's forward direction, an empty parking space on the left will be recommended to the user.
  • Figure 4 shows a set of graphical user interfaces (graphical user interface, GUI) provided by the embodiment of the present application.
  • the inverse perspective transformation (inverse perspective mapping, IPM) image 401 and the rear view image 402 can be displayed on the display screen.
  • the IPM image includes information about the current vehicle and parking space information around the vehicle.
  • the vehicle may display a GUI as shown in (b) of Figure 4 through the display screen.
  • the vehicle can display the recommended parking area through the display screen.
  • the vehicle while the vehicle displays the recommended parking area on the display screen, it can also display a prompt message prompting the user to enter the automatic parking mode, "To provide you with recommended parking areas, whether to automatically park.” car", automatic parking control 403, remote control parking control 404, switching parking area control 405 and cancel control 406.
  • the vehicle's posture, rear wheel steering, and surrounding parking space information including the number of parking spaces that can be parked, Parking space type, surrounding obstacles, etc.). If the surrounding vehicles are all rear-parked vehicles, the probability that the current vehicle is rear-parked is (rear-parked vehicles/total number of parking spaces)*100%.
  • the vehicle may prompt the user for the parking space with the highest recommendation based on the recommendation degree of each parking space among multiple parking spaces.
  • the vehicle when the vehicle detects that the driver is in R gear, the vehicle identifies all available parking spaces in the current parking area, and calculates the recommendation degree of each available parking space as C(x).
  • FIG. 4 shows a schematic diagram of the relationship between vehicle posture information and parking space information in a vertical parking space.
  • the center of the rear axle of the vehicle is the coordinate origin O
  • the midpoint of the outermost parking space line in the opening direction of each empty parking space is selected (for example, the midpoint of the outermost parking space line in the opening direction of parking space 1 is P).
  • Set the relative distance between the coordinate origin O and the midpoint of the parking space as D (when the vehicle is outside the parking space, D is positive; when the vehicle is inside the parking space, D is negative).
  • the distance between the coordinate origin O and the point P is D 1 .
  • the angle between PO and the direction of the rear wheel axis can be determined as ⁇ 1 .
  • the distance D 1 and angle ⁇ 1 will continue to change, thereby determining the relative distance and posture between the vehicle and each parking space in the actual scene.
  • Table 1 shows the corresponding relationship between D 1 and the recommendation degree.
  • D 1 Recommendation degree C (D 1 ) D 1 ⁇ 2 meters 100% 2 meters ⁇ D 1 ⁇ 3 meters 50% D 1 >3 meters 20% ... ...
  • Table 2 shows the corresponding relationship between ⁇ 1 and the recommendation degree.
  • ⁇ 1 means that the deflection from the direction of the rear wheel axle to the direction of PO is a clockwise deflection.
  • the vehicle rear wheel steering angle ⁇ 2 can be the angle between the steering direction of the inner steering wheel and the direction of the outermost parking space line in the direction of the parking space opening.
  • Table 3 shows the corresponding relationship between ⁇ 2 and the recommendation degree.
  • a positive value of ⁇ 2 means that the deflection from the steering direction of the steering wheel to the direction of the outermost parking space line in the direction of the parking space opening is a clockwise deflection.
  • the recommendation degree of the parking space can be calculated by configuring the relative distance D 1 , the self-vehicle posture angle ⁇ 1 , and the wheel steering angle ⁇ 2 .
  • the weights of 2 are 50%, 20% and 30% respectively, then the recommendation degree of each parking area is: 50%*C(D 1 )+20%*C( ⁇ 1 )+30%C( ⁇ 2 ) .
  • the user can be prompted with the parking area with the highest recommendation degree.
  • the above determination of the recommendation degree of the parking area is determined through three parameters: D 1 , ⁇ 1 and ⁇ 2 , and the embodiments of the present application are not limited thereto.
  • the recommendation degree of the parking area can also be determined by any one or two of the three parameters D 1 , ⁇ 1 and ⁇ 2 .
  • the recommendation degree C(x ) is calculated.
  • the training sample collection process can be as follows: when the driver drives the vehicle and arrives near the parking area, he finds that there are multiple parking areas (for example, parking space 1, parking space 2, parking space 3, and parking space 4). At this time, the driver can Prioritize multiple parking areas based on environment. The driver can determine the priority order among multiple parking areas from high to low as parking space 1, parking space 2, parking space 3 and parking space 4.
  • Table 4 shows the corresponding relationship between a parking space identification, the recommendation degree of the parking space, and the parameter information of the parking space.
  • Parking space sign Recommendation of parking spaces Parking space parameter information Parking space 1 [100%, 90%] (D 1 , ⁇ 1 , ⁇ 2 ) Parking space 2 [90%, 50%] (D 2 , ⁇ 3 , ⁇ 4 ) Parking space 3 [50%, 20%] (D 3 , ⁇ 5 , ⁇ 6 ) Parking space 4 [20%, 0%] (D 4 , ⁇ 7 , ⁇ 8 ) ... ... ... ...
  • the prediction error J( ⁇ 1 ) of the parking area can be measured through the cost function, which can be expressed as:
  • f(x 1 ) is the predicted value and y 1 is the real value.
  • the coefficient ⁇ 1 can be obtained (in the same way, ⁇ 2 and ⁇ 3 can be obtained).
  • the formula C(x) can be determined to calculate the recommendation degree of the parking space. That is, when the vehicle is in any posture and in R gear, the recommendation degree of the identified parking space that can be parked can be calculated and prompted to the driver. The parking area with the highest recommendation; alternatively, the driver can also be prompted with the recommendation of each available parking space.
  • the origin of the coordinates can be determined as the center point of the front wheel of the vehicle, and the parking space with the highest recommendation in D gear is calculated.
  • the recommendation degree of parallel parking spaces and inclined train spaces can be judged according to the above method, and the target parking area can be recommended.
  • Figure 5 shows another GUI provided by an embodiment of the present application.
  • the vehicle can display a recommended parking area through the display screen based on the relative positional relationship between the vehicle and each of the multiple parking areas and the user's driving behavior (the recommended parking area is represented by a dotted line show).
  • the vehicle when the user repeatedly moves the vehicle and the vehicle detects that the user switches between D and R, the vehicle can simultaneously recommend the parking area on the front side of the vehicle and the parking area on the rear side of the vehicle.
  • Figure 6 shows another GUI provided by an embodiment of the present application. As shown in Figure 6, when a part of the vehicle has entered the recommended parking area, the vehicle can lock the recommended parking area (the recommended parking area is shown by a thick solid line).
  • Figure 7 shows another set of GUIs provided by embodiments of the present application.
  • the vehicle when a vehicle parks into a parallel parking space through rear parking, the vehicle can display recommended parking options on the display screen based on the steering of the vehicle body and the relative position between the vehicle and the parking space. area (dotted box 701 shown in (a) in Figure 7).
  • the vehicle can lock the recommended parking area through the display screen area (solid line box 702 shown in (b) of Figure 7).
  • Figure 8 shows another set of GUIs provided by embodiments of the present application.
  • the vehicle when a vehicle parks into a parallel parking space through front parking, the vehicle can display the recommended parking area on the display screen based on the steering of the body and the position between the vehicle and the parking space ( As shown in dotted box 801) in (a) of Figure 8.
  • the vehicle can lock the recommended parking area through the display screen area (solid line box 802 shown in (b) of Figure 8).
  • the parking space when the vehicle detects that the vehicle enters a certain parking space or the frequency of the vehicle entering a certain parking space within a preset time is greater than or equal to the preset frequency, the parking space may be determined as a recommended parking area.
  • the vehicle can determine the last selected target parking area as the recommended parking area by default.
  • the parking direction when the vehicle detects that the driver drives the vehicle to park out of a vertical parking space or a diagonal parking space, if it is a front-end parking, the parking direction can be determined based on the steering wheel steering and vehicle body steering when the driver shifts the D gear; if To park at the rear of the car, the parking direction can be determined based on the steering wheel and vehicle body rotation when the driver shifts the R gear.
  • the vehicle can determine the forward direction of the vehicle as the parking direction.
  • Figure 9 shows another set of GUIs provided by embodiments of the present application.
  • the vehicle when the vehicle parks out of the vertical parking space by parking at the front, the vehicle can display the parking direction and parking area through the display screen according to the steering wheel steering when the driver shifts to D gear (as shown in Figure 9 shown in the dotted box).
  • S340 Determine parking-related parameters.
  • the vehicle after determining the parking mode and recommended parking area (or parking direction), the vehicle can plan the parking path L 1 , the number of stops N 1 , and the parking duration T 1 and other information.
  • S350 determines whether the driver has difficulty parking.
  • the vehicle may determine that it is difficult for the current driver to park, and thereby display the automatic parking information on the display screen.
  • the driver’s parking time T 2 is greater than or equal to the planned parking time T 1 ;
  • N 2 The number of times of kneading N 2 is greater than or equal to the planned number of times N 1 of kneading
  • the total parking path L 2 is greater than or equal to the planned parking path L 1 , or the driver’s actual parking path deviates from the vehicle’s planned path and the offset distance is not within the preset range [D 1 , D 2 ];
  • the target parking space is a narrow parking space (near any obstacle less than 30cm).
  • the vehicle may also directly prompt the user to use the automatic parking function to park.
  • Figure 10 shows another GUI provided by an embodiment of the present application.
  • the vehicle when the vehicle detects that it is difficult for the driver to park, the vehicle can display a prompt box 1001.
  • the prompt box 1001 includes the prompt message "It has been detected that you have difficulty parking, it is recommended to use automatic parking.”
  • Car control 1002, use remote parking control 1003 and cancel control 1004.
  • the vehicle can plan a parking path based on the current vehicle posture and the relative position relationship with the recommended parking area, so as to park the vehicle according to the planned parking path. Park the vehicle into the recommended parking area.
  • the vehicle detects the user's click operation using the remote parking control 1003 the vehicle can park into the recommended parking area according to parking instructions from the car key or other terminals (eg, mobile phones).
  • the vehicle When the vehicle detects that the driver has activated the automatic parking function, it obtains the current gear information, uses the current posture as the starting point, and plans a trajectory to the recommended parking area, so that the vehicle can automatically park in or out of the parking space.
  • the vehicle can Users are not prompted to use the automatic parking function.
  • the vehicle can be parked according to the driver's operation.
  • the vehicle when the vehicle detects that the user has completed parking, it can learn the driver's parking operations (for example, the path and speed of the human driver during parking), thereby optimizing the automatic parking method.
  • the default speed of automatic parking is v 1
  • the average speed of the vehicle controlled by the driver when parking multiple times is v 2 .
  • the vehicle can update the default speed of automatic parking from v 1 to v 2 .
  • the vehicle is in the center position of the parking area by default. If the user controls the vehicle to be in the left position of the parking area when parking for many times, the vehicle can change the position of the vehicle in the parking area during the automatic parking process. The position in the car area is updated from the center position to the left position.
  • the vehicle may prompt the user to use the remote parking function to park.
  • the relative positional relationship between the vehicle and the parking area and the driver's driving behavior are used to more accurately recommend the parking mode and parking area, thereby helping the driver to park.
  • the driver can also be prompted to select the automatic parking function.
  • the human-driven parking and automatic parking capabilities complement each other, thereby helping the driver to smoothly switch from human-driven parking to automatic parking. It helps to improve the driver's parking efficiency and also helps to reduce the driver's parking difficulty.
  • FIG 11 shows a schematic flow chart of the parking method 1100 provided by the embodiment of the present application. As shown in Figure 11, the method 1100 includes:
  • S1120 Determine the parking mode according to the vehicle's posture and/or the driver's driving behavior, where the parking mode may indicate that the vehicle is currently parking into or out of the parking space.
  • S1130 Determine a recommended parking area based on the vehicle's position and/or the driver's driving behavior.
  • S1140 displays intelligent parking tracks based on the parking mode and recommended parking area.
  • the vehicle can plan an automatic parking path based on the parking mode and the recommended parking area, and the vehicle can convert the automatic parking path into the corresponding wheel angle, driving distance, body coverage area, etc.
  • the intelligent parking trajectory can be determined by parameters such as wheel angle, driving distance, and vehicle body coverage area.
  • the vehicle when the vehicle detects the user's operation to open the smart parking track, the vehicle can display the smart parking track through the display screen.
  • the vehicle can also automatically display an intelligent parking trajectory based on the driver's driving behavior.
  • the triggering conditions for the vehicle to automatically display the intelligent parking trajectory may include one or more of the following conditions:
  • the vehicle Based on the current steering angle and driving speed, the vehicle predicts a collision with surrounding obstacles or vehicles;
  • the driver can view the planned driving path, as well as the recommended gear, wheel steering, and driving distance in the IPM image and rear view image.
  • the driver can drive the vehicle according to the recommended trajectory to ensure safe parking. .
  • Figure 12 shows another set of GUIs provided by embodiments of the present application.
  • the vehicle may display the IPM image 1201 and the rear view image 1202 through the display screen.
  • the vehicle dynamic prediction trajectory 1203 is displayed in the IPM image 1201 and the rear view image 1202 respectively.
  • the vehicle dynamic prediction trajectory 1203 can be determined based on the driver's driving behavior (for example, the driver controls the turning angle of the steering wheel, etc.).
  • the vehicle may display a GUI as shown in (b) of Figure 12 through the display screen.
  • the vehicle can display intelligent parking trajectories in the IPM image and the rear view image respectively.
  • the solid black line represents the vehicle dynamic prediction trajectory 1203
  • the black dotted line represents the intelligent parking trajectory 1205.
  • the rear view image also includes information used to prompt the number of times of parking required for parking and the current number of times of parking (for example, “2 times of parking are required, and the current time is the first time"), the current wheel rotation angle Information and recommended wheel angle information (for example, "The current wheel rotation angle is 30°, the recommended wheel rotation angle is 45°"), the current distance information that needs to be traveled, and the distance information that the current vehicle has traveled (for example, "The distance that needs to be traveled this time is 2 meters, and it has already traveled 1 meter.")
  • the black solid line represents the vehicle dynamic prediction trajectory
  • the shaded area represents the body coverage area when the vehicle follows the intelligent parking trajectory line.
  • Figure 13 shows another GUI provided by an embodiment of the present application.
  • the vehicle when the vehicle detects through the driver's driving behavior that the vehicle cannot park in or out of the parking space, the vehicle detects that there is a risk of collision, or the vehicle's posture is incorrect after parking in the parking space, the vehicle can automatically display the intelligent parking trajectory.
  • the vehicle when the vehicle detects a risk of collision, it can automatically display the prompt message 1301 "Risk of collision detected, intelligent parking trajectory has been displayed for you", vehicle dynamic prediction trajectory and intelligent parking trajectory through the display screen. Therefore, the driver can complete parking according to the intelligent parking trajectory.
  • the display screen can also display the number of parking times as well as the recommended trajectory and recommended driving distance during the current parking period.
  • the intelligent parking trajectory can be directly displayed on the display screen; if the vehicle is not in the recommended parking gear, the driver is prompted to switch to the correct gear.
  • the driver can observe the vehicle's dynamic trajectory and the intelligent parking trajectory, turn the steering wheel under braking or low-speed driving, and fit the vehicle's dynamic trajectory to Intelligent parking track.
  • the vehicle can prompt the user that the vehicle dynamic trajectory line matches the smart parking trajectory.
  • the car track line fits well.
  • the vehicle can provide sound prompts through speakers, or prompt the user that the vehicle's dynamic trajectory matches the intelligent parking trajectory through changes in the color of the ambient light.
  • the intelligent parking trajectory can be divided into multiple trajectories according to the number of times. After a single trajectory is driven, it will automatically switch to display the next partial trajectory guidance path. The driver repeats the above steps until the vehicle parks into or out of the parking space. If the deviation between the vehicle's actual driving trajectory and the intelligent parking trajectory exceeds the threshold, the vehicle can recalculate the parking path and update the intelligent parking trajectory.
  • the intelligent parking trajectory may be determined by the vehicle after determining the recommended parking area. If the recommended parking area is cancelled, the vehicle can stop displaying the smart parking track.
  • the vehicle can prompt the user to change the recommended parking area or check the surrounding environment.
  • intelligent parking trajectories can be planned based on recommended parking areas and displayed through images, thereby assisting the driver to obtain driving guidance through correct guidance. Route to control the vehicle to park in or out of the parking space.
  • Figure 14 shows a schematic flowchart of a method 1400 for activating the narrow road assist function provided by an embodiment of the present application. As shown in Figure 14, the method 1400 includes:
  • S1410 Collect surrounding environment information and road data.
  • the vehicle can collect information about the surrounding environment and road data, determine the distance between the wheels and the curbs or obstacles on both sides, and then determine the width of the current road based on the distance.
  • the narrow lane assist function is automatically aroused; the vehicle can automatically plan a narrow lane assist trajectory that can safely pass the narrow road.
  • the vehicle can also convert the narrow road auxiliary trajectory into the corresponding wheel angle, driving distance, and predicted body coverage area based on the road width, surrounding obstacles, and vehicle body parameters, and display them on the display to guide the driver.
  • narrow roads can be divided into parallel narrow roads and vertical narrow roads.
  • the vehicle can determine that the current road is not a narrow road and can pass normally.
  • the vehicle can determine that the road ahead is narrow and the vehicle cannot pass.
  • the vehicle can determine that the current road belongs to a parallel narrow road, so that driving path planning and reminders can be carried out based on position and posture.
  • the narrow road assist function is activated.
  • the vehicle can detect road conditions within the range of vehicle driving direction L1 ⁇ L2 (such as 100-200m).
  • the vehicle when the vehicle recognizes that the straight road section ends and there is a left turn or a right turn, it can be determined that the current road is a vertical narrow road. For example, when the wheelbase of the vehicle is d and the width of the road surface perpendicular to the current road is greater than or equal to d+x (for example, the value range of Unable to pass vertical narrow passage.
  • the vehicle may not prompt the user, and the vehicle may pass the road normally according to the user's driving behavior.
  • Figure 15 shows another GUI provided by an embodiment of the present application.
  • the vehicle when the vehicle determines that it is passing through a narrow road, the vehicle can display the prompt message 1501 "It has been detected that you are passing through a narrow road and has provided you with a narrow road auxiliary trajectory", vehicle dynamic prediction trajectory, and narrow road through the display screen.
  • Auxiliary track For example, the black solid line in Figure 15 represents the vehicle dynamic prediction trajectory, the black dotted line represents the narrow road auxiliary trajectory, and the shaded part represents the vehicle body coverage area when the vehicle travels along the narrow road auxiliary trajectory.
  • the driver can turn the steering wheel and control the brakes and accelerator to fit the vehicle's dynamic predicted trajectory to the narrow auxiliary trajectory to pass through narrow roads.
  • the vehicle can estimate the intersection point based on the traveling speed of dynamic obstacles on the road (such as oncoming cars, people, etc.). Plan the driving trajectory according to the preset intersection point, thereby prompting the driver for a suitable driving path through the planned driving trajectory, or prompting the driver to slow down and stop and display appropriate parking avoidance points.
  • dynamic obstacles on the road such as oncoming cars, people, etc.
  • the vehicle when the vehicle detects that the user shifts into R gear and reverses, it can also identify a parallel narrow lane or a vertical narrow lane. When parallel narrow lanes and vertical narrow lanes are identified, the driving trajectory can be planned for the user.
  • the vehicle when the vehicle detects that it is about to pass through a vertical narrow lane, the vehicle can use the turn signal to assist in determining the driver's steering intention. For example, when the vehicle detects that the driver turns on the left turn signal, it plans the corresponding left path and displays the narrow lane auxiliary trajectory based on the vehicle's lane, posture, and vertical lane information.
  • the vehicle when the vehicle detects that it is about to pass through a parallel narrow lane and detects that the driver turns on the left turn signal, the vehicle can plan a U-turn trajectory for the driver on the narrow lane; when the vehicle detects that it is about to pass through a parallel narrow lane and detects that the driver is turning on the left turn signal, Turn on the right turn signal to identify the distance between the wheels and the curb and plan the trajectory for pulling over.
  • the vehicle when the vehicle passes through a narrow road, it can automatically calculate the correct driving path and provide intelligent guidance, thereby facilitating the driver to quickly correct the direction and distance by comparing the guidance and ensuring safe driving.
  • the vehicle can automatically monitor the parking attitude of the vehicle in the parking area, and use the data collected by sensors such as radar and cameras to identify and determine whether the vehicle is pressed against the line, tilted, or close to obstacles/ Barrier cars and doors cannot be opened.
  • the vehicle can be arbitrarily adjusted by the deviation distance between the center point of the vehicle's projection on the ground and the center point of the parking area, the rotation angle between the central axis of the vehicle's projection on the ground and the central axis of the parking area, and the vehicle body.
  • Figure 16 shows a schematic diagram of a parking area.
  • the length of the parking space is 5.3m and the width is 2.5m.
  • the solid black line is the parking space line.
  • the area 0.3m inward on both sides of the parking space line is the area where the vehicle is parked inside the parking space but the monitored vehicle is not centered. area; the shaded area is the center parking area.
  • the coordinates of the center point of the vehicle are (x 1 , y 1 ), the coordinates of the center point of the parking area are (x 2 , y 2 ), and the angle between the central axis of the vehicle and the central axis of the parking area is ⁇ .
  • the vehicle When the distance between the center point of the vehicle's projection on the ground and the center point of the parking area is less than or equal to the first preset difference (for example, the first preset difference is 0.3m), and the angle ⁇ is less than or equal to the preset When the angle is set (for example, 3°), the vehicle is judged to be parked in the center.
  • the first preset difference for example, the first preset difference is 0.3m
  • the angle ⁇ is less than or equal to the preset
  • the angle is set (for example, 3°)
  • the vehicle may determine that the current parking posture of the vehicle is abnormal. As shown in (a) of Figure 16, if the distance projected by the connection line in the y-axis direction is greater than the second preset difference (for example, the second preset difference is 0.2), the vehicle can determine the current direction of the vehicle. The parking posture is abnormal and the front and rear deviation is obvious.
  • the vehicle can be parked correctly.
  • the vehicle's posture is abnormal and its left and right deviations are obvious.
  • the parking space when the vehicle determines that the parking posture is normal, there may be no reminder on the display screen and the driver can leave the vehicle; or, when the vehicle determines that the parking posture is normal, the parking space may be displayed in green on the display screen and the driver may be prompted. The driver parked into the parking space normally.
  • the abnormal state of the vehicle when the vehicle determines that the parking posture is abnormal, the abnormal state of the vehicle can be displayed on the display screen to allow the driver to perceive the abnormal scene. At the same time, if the driver is still in the car, the driver can be prompted through the display screen to perform automatic posture adjustment.
  • Figure 17 shows another GUI provided by an embodiment of the present application.
  • the vehicle when the vehicle detects an abnormality in the current parking posture, the vehicle can display the prompt message 1701 "The vehicle is abnormally parked in the parking space, click to start one-click adjustment", a start control 1702, and a cancel control 1703 through the display screen.
  • the vehicle detects the user's click on the start control 1702, the vehicle can select the current parking area as the target parking area and automatically plan a parking trajectory for centered parking.
  • the vehicle can adjust the parking position of the vehicle by controlling the brakes, accelerator and steering wheel according to the centered parking trajectory, so that the vehicle can be parked in the center of the parking area.
  • the vehicle can determine whether the driver or passengers can easily get out of the car after parking based on the type of the current parking area and the distance between the vehicle and the obstacle (for example, when the distance between the door and the obstacle is greater than 30cm , it can be considered that the driver or passenger can easily get off the vehicle). If the driver or passengers can easily get out of the car, the vehicle will automatically adjust to the center position of the parking area and then park automatically. If the driver or passenger cannot easily get out of the car, when the vehicle detects that the current parking posture is abnormal and the vehicle detects that the user has chosen to automatically adjust the parking posture, the vehicle can prompt the user that the vehicle will park from the parking area to the door. The location can be turned on and the user will be prompted to get off the vehicle at that location. When the vehicle detects that the user in the vehicle has exited the vehicle and closed the door, the vehicle can automatically park into the parking area.
  • Figure 18 shows another GUI provided by an embodiment of the present application.
  • the vehicle when the vehicle detects that the current parking posture is abnormal and the vehicle determines that the driver or passenger cannot easily get out of the car, the vehicle can display the prompt message 1801 on the display screen "The door opening is limited, you can drive the vehicle out of the parking space.” , close the door after getting off the car, close the door for 5 seconds and then park again in the parking space", confirm control 1802 and cancel control 1803.
  • the vehicle detects the user's operation of clicking the confirmation control 1802
  • the vehicle can drive out of the parking area after receiving the user's driving instruction.
  • the vehicle After the vehicle detects the user's operation of getting out of the car and closing the door, the vehicle can automatically park and center in the parking area.
  • Figure 19 shows another set of GUIs provided by embodiments of the present application.
  • the vehicle when the vehicle detects that the current parking posture is abnormal and the vehicle determines that the driver or passenger cannot easily get out of the car, the vehicle can display the prompt message 1901 "Door opening is limited, click OK" through the display screen. The vehicle will automatically leave the parking space. After the vehicle stops, please get out of the car and close the door. After closing the door for 5 seconds, re-park the parking space.” Confirm control 1902 and cancel control 1903.
  • the vehicle when the vehicle detects the user's operation of clicking the confirmation control 1902, the vehicle can drive out of the parking space and park in a position where the door is easy to open, and the vehicle can also display prompt information 1904 through the display screen. Please get out of the car and close the door. Please close the door for 5 seconds before re-parking.” After the vehicle detects the user's operation of getting out of the car and closing the door, the vehicle can automatically park and center in the parking area.
  • the vehicle can continue to perform automatic parking. if the distance between the driver's side door and the obstacle is less than or equal to a preset distance (for example, 30cm), the vehicle may be parked on the right side by default.
  • the vehicle can also directly prompt the user to use the remote control parking function.
  • the vehicle can send prompt information to the user's mobile terminal.
  • the prompt information is used to prompt the user to adjust the vehicle's posture through remote control.
  • Figure 20 shows another set of GUIs provided by embodiments of the present application.
  • the mobile phone can display a prompt window 2001 after receiving the prompt message sent by the vehicle.
  • the prompt window 2001 includes the prompt message "The vehicle is abnormally parked in the parking space. To avoid scratches and violation risks, please Turn on one-click smart adjustment.”
  • the mobile phone may display a GUI as shown in (b) of Figure 20.
  • the mobile phone can display the automatic parking display interface.
  • the display interface includes the prompt message "Parking over the line is illegal and may cause the risk of vehicle scratches. Click the button below to adjust with one click" and start adjusting the control 2002.
  • the mobile phone detects that the user clicks to start the operation of adjusting the control 2002, the mobile phone can display the process of automatic parking of the vehicle.
  • the mobile phone can display the display interface for automatic parking of the vehicle.
  • the display interface can display the vehicle's parking posture adjustment information, parking area information, prompt information "re-parking into the parking space” and pause control 2003.
  • the mobile phone can send instruction information to the vehicle, and the instruction information is used to instruct the vehicle to stop automatic parking.
  • the vehicle may control the vehicle to stop traveling.
  • the vehicle can indicate to the mobile phone that automatic parking has been completed.
  • the mobile phone can display another display interface for automatic parking of the vehicle.
  • the display interface includes the prompt message "The vehicle has been re-parked into the parking space for you, and the vehicle is currently placed in the center.”
  • the vehicle will comprehensively consider the abnormal parking posture and whether the user in the vehicle can get out of the vehicle conveniently, and provide the driver with automatic adjustment functions and clear status prompts, including centering adjustment, reserved leaving position, and after leaving the vehicle.
  • Automatic parking and remote control adjustment help the driver adjust the parking position more conveniently, save the driver's time and energy, and avoid situations where other cars are scratched, illegal, unable to get out of the car, or obstructing other people's cars.
  • the vehicle When the vehicle is parked in a parking space, it can automatically switch from automatic parking to remote control parking. For example, when the vehicle detects that the driver initiates automatic parking, the vehicle detects the operation of pausing automatic parking during the automatic parking process, and prompts the user through the display screen to complete parking through remote control parking. When the vehicle detects that the user has determined to switch to remote parking, and detects that the user in the vehicle has left the vehicle and the door has been closed, the vehicle can receive control from the mobile terminal, thereby continuing to complete the parking through remote control parking, and park the vehicle. Selected target parking space.
  • the vehicle can identify whether it is convenient to open the door when the vehicle is parked in the target parking area. If it is inconvenient to open the door, the vehicle can prompt the driver through the display screen to switch to remote parking. In one embodiment, in the predicted automatic parking route planned by the vehicle, the vehicle can automatically brake at the final position where the door is easy to open, and prompt the user to switch to remote control parking through the display screen.
  • the vehicle when the vehicle detects that the user has parked in the target parking area, if it is inconvenient to open the door when the vehicle is parked in the target parking area, the vehicle can prompt the user to switch to remote parking through the display screen. .
  • Figure 21 shows another GUI provided by an embodiment of the present application.
  • the vehicle when the user is parking the vehicle into the recommended parking area, and the vehicle detects that the target parking area is inconvenient to open the door, the vehicle can display the recommended parking area through the display screen. information, the prompt message "The door opening is limited after parking, it is recommended to use remote control parking", the remote parking control 2101 and the cancellation control 2102.
  • the vehicle When the vehicle detects the user's operation of clicking on remote parking 2101, the vehicle can receive parking instructions from the mobile terminal (eg, mobile phone, car key, etc.).
  • the mobile terminal eg, mobile phone, car key, etc.
  • the mobile phone can display the remote parking display interface.
  • the display interface includes a prompt message "Click to start to continue parking" and a start control 2103.
  • the mobile phone detects the operation of the user clicking on the start control 2103, the mobile phone can send a parking instruction to the vehicle, so that the vehicle can park the vehicle into the target parking area according to the parking instruction.
  • the parking experience can be made more seamless and smooth, and the dilemma of being unable to get out of the vehicle and re-park can be avoided.
  • the parking experience can be made more seamless and smooth, and the dilemma of being unable to get out of the vehicle and re-park can be avoided.
  • by more intelligently and timely recommending appropriate parking modes and providing clear operating guidance in the interface it helps reduce users' learning costs.
  • the mobile terminal when the vehicle is parked in a parking space, can also provide an intelligent reminder to park based on the distance between the mobile terminal and the vehicle.
  • the mobile terminal can receive prompt information sent by the vehicle, and the prompt information is used to prompt that the parking space where the vehicle is currently parked is a narrow parking space.
  • the preset distance for example, 50m
  • the user carrying the mobile terminal will arrive at the periphery of the vehicle after a preset period of time (for example, 20s)
  • the mobile terminal can prompt the user to use the parking function. .
  • Figure 22 shows another set of GUIs provided by embodiments of the present application.
  • the mobile phone when the mobile phone detects that the distance between the mobile phone and the vehicle is less than or equal to 50m, the mobile phone can display a prompt box 2201.
  • the prompt box 2201 includes the prompt message "The parking space is a narrow parking space. Start automatic parking with one click."
  • the mobile phone can display the remote parking display interface.
  • the mobile phone in response to detecting the user's operation of clicking the control 2202, the mobile phone may prompt the user to "please select the parking direction", park the control 2202 to the left, and park the control 2203 to the right.
  • the mobile phone when the mobile phone detects the user's operation of clicking the right parking control 2203, the mobile phone can send a parking instruction to the vehicle, and the parking instruction is used to instruct the vehicle to park to the right.
  • the vehicle In response to receiving the parking command, the vehicle may begin to automatically park to the right.
  • the vehicle can also send the vehicle's parking trajectory, vehicle position information, surrounding environment and other information to the mobile phone in real time.
  • the mobile phone In response to receiving the information sent by the vehicle, the mobile phone can display the vehicle's parking trajectory, surrounding environment information, etc. through the display interface.
  • the vehicle when the vehicle completes parking, the vehicle can send an instruction message indicating that parking has been completed to the mobile phone.
  • the mobile phone may prompt the user that parking of the vehicle has been completed.
  • the vehicle can also set the parking time period [t 1 , t 2 ] according to the time period of the user's daily use of the vehicle (for example, the time period for parking the vehicle). During this time period, if the distance between the mobile terminal and the vehicle is less than or equal to the preset distance, the mobile terminal can prompt the user to use the parking out function. In one embodiment, the vehicle can also automatically park out of the parking space when it detects that the distance between the mobile terminal and the vehicle is less than or equal to the preset distance within this time period.
  • the mobile terminal can remind the user to use the automatic parking function based on the distance between the mobile terminal and the vehicle, thereby improving the usage rate of remote control parking.
  • the time it takes for the user to walk to the vehicle is used to start the vehicle and park out of the parking space, so that the user can get in the car directly after arriving at the parking space, thus helping to save time and reduce user waiting.
  • Figure 23 shows a schematic flow chart of the parking method 2300 provided by the embodiment of the present application. As shown in Figure 23, the method 2300 includes:
  • S2301 obtain information of multiple parking areas.
  • the method further includes: determining the parking mode of the vehicle according to the relative position relationship and the user's third driving behavior, and the parking mode includes parking. area or park out of the parking area.
  • the third driving behavior includes but is not limited to one or more of the following: gear information, steering wheel steering information, and whether the vehicle is powered on within the first preset time period before determining the recommended parking area. information, the automated parking mode the vehicle was in before determining the recommended parking area.
  • the parking mode can be determined to be parking in the parking area based on one or more of the following conditions: the vehicle can recognize the parking space, the vehicle is not in the parking space, or the vehicle is not completely parked in the parking space; the vehicle has never been in the parking space
  • the state is switched to entering one or more parking spaces (for example, the user did not park into the parking space after many times of driving); the vehicle is switched from the state of not being in the parking space to being parked in the parking space, but The vehicle is not parked in the center of the parking space (for example, within a period of time before the vehicle is not parked in the center of the parking space, the vehicle detects the user's operation of parking into the parking space); before judging the parking mode, the vehicle detects that the vehicle has entered automatic parking. enter mode, and actively or passively exit the automatic parking mode when the vehicle is not parked in the parking space.
  • the parking mode can be determined to be parking out of the parking area based on one or more of the following conditions: the vehicle can recognize the parking space, the vehicle is in the parking space and parked in the middle; the vehicle is powered on for the first time, and the vehicle can recognize the parking space. And the vehicle is in the parking space; before judging the parking mode, the vehicle detects that it has entered the automatic parking mode, and the vehicle actively or passively exits the automatic parking mode when it has not parked out of the parking space; the vehicle body is in the parking space, and the vehicle detects the user The body of the vehicle does not completely leave the parking space after one or more drives.
  • the method before determining the parking mode of the vehicle, the method further includes: determining that the speed of the vehicle is less than or equal to a preset speed threshold.
  • the relative position relationship also includes the distance information D 1 between the vehicle and each parking area, the connection between the center point of the wheel on the second side of the vehicle and the center point of the parking space line on the first side.
  • the first side and the second side correspond to the direction in which the vehicle parks into the parking area.
  • S2303 Based on the relative position relationship and the user's first driving behavior, recommend a first parking area to the user.
  • the plurality of parking areas include the first parking area.
  • the method further includes: recommending a second parking area to the user based on the relative position relationship and the user's second driving behavior, the plurality of parking areas including the second parking area.
  • the first driving behavior includes the first gear information of the vehicle and the first steering wheel steering information of the vehicle, the first steering wheel steering information corresponds to the first steering direction of the wheels, and the parking mode is to park in the parking area.
  • the angle ⁇ 2 between the two directions recommends the first parking area to the user, and the first side corresponds to the direction in which the vehicle parks into the parking area.
  • the method further includes: determining information on the parking trajectory from the vehicle's current location to the first parking area based on the vehicle's posture and the information on the first parking area; and prompting the user for the parking trajectory. Parking trajectory information.
  • the parking trajectory information includes one or more of the planned number of trips from the current location of the vehicle to the first parking area, the planned parking path, and the planned parking duration; wherein the method further includes Including: prompting the user to use the automatic parking function when one or more of the following conditions are met: it is detected that the number of parking times of the user during driving from the current location to the first parking area is greater than or equal to the planned parking area. The number of times the vehicle has been parked; it is detected that the length of the vehicle's driving path from the current location to the first parking area is greater than or equal to the length of the planned parking path; or, it is detected that the vehicle is driven from the current location to the first parking area.
  • the parking time of the area is greater than or equal to the planned parking time.
  • the method further includes: when the vehicle is parked in the first parking area and the vehicle is not parked in the center in the first parking area, prompting the user that the vehicle is not parked in the center or prompting the user to use automatic parking. Function.
  • Embodiments of the present application also provide a device for implementing any of the above methods.
  • a device is provided that includes a unit (or means) for implementing each step performed by a vehicle in any of the above methods.
  • FIG 24 shows a schematic block diagram of the parking device 2400 provided by the embodiment of the present application.
  • the device 2400 includes:
  • the acquisition unit 2401 is used to acquire information of multiple parking areas
  • the obtaining unit 2401 is also used to obtain the relative positional relationship between the vehicle and each parking area in the plurality of parking areas;
  • the recommendation unit 2402 is configured to recommend a first parking area to the user based on the relative position relationship and the user's first driving behavior.
  • the plurality of parking areas include the first parking area.
  • the recommendation unit 2402 is also configured to recommend a second parking area to the user based on the relative position relationship and the user's second driving behavior, and the plurality of parking areas include the second parking area.
  • the device 2400 further includes: a first determining unit configured to determine the parking location of the vehicle based on the relative position relationship and the user's third driving behavior before the acquisition unit obtains the information of the multiple parking areas.
  • Car mode this parking mode includes parking into or out of the parking area.
  • the first driving behavior includes the first gear information of the vehicle and the first steering wheel steering information of the vehicle, the first steering wheel steering information corresponds to the first steering direction of the wheels, and the parking mode is to park in the parking area.
  • the recommendation unit is specifically used to: recommend the first parking area to the user based on the angle between the first gear information, the first steering direction and the direction of the first side of each parking area, The first side corresponds to the direction in which the vehicle parks into the parking area.
  • the relative position relationship also includes distance information between the vehicle and each parking area, a line connecting the center point of the wheel on the second side of the vehicle and the center point of the parking space line on the first side, and The angle between the direction of the second side, the first side and the second side correspond to the direction in which the vehicle parks into the parking area.
  • the first determination unit is further configured to determine that the speed of the vehicle is less than or equal to a preset speed threshold before determining the parking mode of the vehicle.
  • the device further includes: a second determination unit, configured to determine a parking trajectory from the current location of the vehicle to the first parking area based on the posture of the vehicle and the information of the first parking area. information; the first prompt unit is used to prompt the user with the information of the parking trajectory.
  • a second determination unit configured to determine a parking trajectory from the current location of the vehicle to the first parking area based on the posture of the vehicle and the information of the first parking area. information; the first prompt unit is used to prompt the user with the information of the parking trajectory.
  • the parking trajectory information includes one or more of the planned number of times of parking from the current position of the vehicle to the first parking area, the planned parking path, and the planned parking duration; the first prompt unit , and is also used to prompt the user to use the automatic parking function when one or more of the following conditions are met: it is detected that the number of times the user has parked during driving from the current location to the first parking area is greater than or equal to the The number of times of planned parking; it is detected that the length of the vehicle's driving path from the current position to the first parking area is greater than or equal to the length of the planned parking path; or, it is detected that the vehicle is driven from the current position to the first parking area.
  • the parking time of the parking area is greater than or equal to the planned parking time.
  • the device further includes: a second prompting unit configured to prompt the user that the vehicle is not parked in the center when the vehicle is parked in the first parking area and the vehicle is not parked in the center. Or prompt the user to use the automatic parking function.
  • a second prompting unit configured to prompt the user that the vehicle is not parked in the center when the vehicle is parked in the first parking area and the vehicle is not parked in the center. Or prompt the user to use the automatic parking function.
  • the above acquisition unit can be used to acquire image information from an image sensor (such as a camera).
  • the recommendation unit may be used to control the display device to display information on recommended parking areas.
  • the recommendation unit can be used to control the voice module (such as a speaker) to play voice information, and then prompt the user with information about recommended parking areas.
  • each unit in the above device is only a division of logical functions. In actual implementation, it can be fully or partially integrated into a physical entity, or it can also be physically separated.
  • the unit in the device can be implemented in the form of a processor calling software; for example, the device includes a processor, the processor is connected to a memory, instructions are stored in the memory, and the processor calls the instructions stored in the memory to implement any of the above methods.
  • the processor is, for example, a general-purpose processor, such as a CPU or a microprocessor
  • the memory is a memory within the device or a memory outside the device.
  • the units in the device can be implemented in the form of hardware circuits, and some or all of the functions of the units can be implemented through the design of the hardware circuits, which can be understood as one or more processors; for example, in one implementation,
  • the hardware circuit is an ASIC, which realizes the functions of some or all of the above units through the design of the logical relationship of the components in the circuit; for another example, in another implementation, the hardware circuit can be implemented through PLD, taking FPGA as an example. It can include a large number of logic gate circuits, and the connection relationships between the logic gate circuits can be configured through configuration files to realize the functions of some or all of the above units. All units of the above device may be fully realized by the processor calling software, or may be fully realized by hardware circuits, or part of the units may be realized by the processor calling software, and the remaining part may be realized by hardware circuits.
  • the processor is a circuit with signal processing capabilities.
  • the processor may be a circuit with instruction reading and execution capabilities, such as a CPU, a microprocessor, a GPU, or DSP, etc.; in another implementation, the processor can realize certain functions through the logical relationship of the hardware circuit. The logical relationship of the hardware circuit is fixed or can be reconstructed.
  • the processor is a hardware circuit implemented by ASIC or PLD. For example, FPGA.
  • the process of the processor loading the configuration file and realizing the hardware circuit configuration can be understood as the process of the processor loading instructions to realize the functions of some or all of the above units.
  • it can also be a hardware circuit designed for artificial intelligence, which can be understood as an ASIC, such as NPU, TPU, DPU, etc.
  • each unit in the above device can be one or more processors (or processing circuits) configured to implement the above method, such as: CPU, GPU, NPU, TPU, DPU, microprocessor, DSP, ASIC, FPGA , or a combination of at least two of these processor forms.
  • processors or processing circuits
  • each unit in the above device may be integrated together in whole or in part, or may be implemented independently. In one implementation, these units are integrated together and implemented as a system-on-a-chip (SOC).
  • SOC may include at least one processor for implementing any of the above methods or implementing the functions of each unit of the device.
  • the at least one processor may be of different types, such as a CPU and an FPGA, or a CPU and an artificial intelligence processor. CPU and GPU etc.
  • Embodiments of the present application also provide a device, which includes a processing unit and a storage unit, where the storage unit is used to store instructions, and the processing unit executes the instructions stored in the storage unit, so that the device performs the method performed in the above embodiments or step.
  • the above-mentioned processing unit may be the processor 151-15n shown in Figure 1.
  • An embodiment of the present application also provides a vehicle, which may include the above device 2400.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product includes: computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute the above method.
  • Embodiments of the present application also provide a computer-readable medium.
  • the computer-readable medium stores program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to perform the above method.
  • each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the memory may include a read-only memory and a random access memory, and provide instructions and data to the processor.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be implemented in this application.
  • the implementation of the examples does not constitute any limitations.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种泊车方法,包括:获取多个泊车区域的信息;获取车辆与多个泊车区域中每个泊车区域之间的相对位置关系;根据该相对位置关系和用户的第一驾驶行为,向用户推荐第一泊车区域,多个泊车区域包括第一泊车区域。该泊车方法可以应用于新能源汽车或者智能汽车中,有助于提升用户泊车时的效率,从而有助于提升用户的泊车体验。还涉及一种泊车装置和一种车辆。

Description

一种泊车方法、装置和车辆 技术领域
本申请实施例涉及智能驾驶领域,并且更具体地,涉及一种泊车方法、装置和车辆。
背景技术
自动泊车(auto parking,AP)是指车辆自动泊车入位,即自动驾驶系统可以半自动或者全自动地帮助用户将车辆停入车位。自动泊车可以包括自动泊车辅助(auto parking assist,APA)、遥控泊车辅助(remote parking assist,RPA)以及自动代客泊车(auto valet parking,AVP)等。
当前的自动泊车技术对于驾驶员的要求较高。例如,驾驶员驾驶车辆时,若车辆的姿态或位置不满足要求(例如,压线),则会导致车辆无法识别车位、车辆误判无法泊入车位等情况,直接造成驾驶员错过合适车位或时机,从而使得泊车效率低。
因此,如何提升泊车的效率和准确度成为了一个亟待解决的问题。
发明内容
本申请实施例提供一种泊车方法、装置和车辆,有助于提升用户在进行泊车时的效率和准确度。
本申请中的车辆(有时简称为车)为广义概念上的车辆,可以是交通工具(如:汽车,卡车,摩托车,火车,飞机,轮船等),工业车辆(如:叉车,挂车,牵引车等),工程车辆(如:挖掘机,推土机,吊车等),农用设备(如割草机、收割机等),游乐设备,玩具车辆等,本申请对车辆的类型不做限定。
第一方面,提供了一种泊车方法,该方法包括:获取多个泊车区域的信息;获取车辆与该多个泊车区域中每个泊车区域之间的相对位置关系;根据该相对位置关系和用户的第一驾驶行为,向用户推荐第一泊车区域,该多个泊车区域包括该第一泊车区域。
本申请实施例中,车辆可以在获取到多个泊车区域的信息后,通过车辆与每个泊车区域的相对位置关系以及用户的驾驶行为向用户提示推荐的泊车区域,方便用户从多个泊车区域中快速锁定推荐的泊车区域进行泊车。这样,有助于加快用户从多个泊车区域选择合适的泊车区域的过程,并有助于避免用户人工选择到泊车困难的泊车区域;同时,也有助于提升用户泊车时的效率,从而整体上有助于提升用户的泊车体验和效率。
在一些可能的实现方式中,该泊车区域包括泊出区域(例如,车辆泊出后的区域)或者泊入区域(例如,泊车位)。
在一些可能的实现方式中,该第一驾驶行为包括第一挡位的信息和/或第一方向盘转向的信息。其中,该第一方向盘转向信息对应车轮的第一转向方向。
在一些可能的实现方式中,该第一泊车区域可以包括2个或者2个以上的泊车区域。
在一些可能的实现方式中,该方法还包括:向用户提示该第一泊车区域的推荐度。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:根据该相对位置关系和用户的第二驾驶行为,向用户推荐第二泊车区域,该多个泊车区域包括该第二泊车区域。
本申请实施例中,在向用户推荐第一泊车区域后,用户在将车辆行驶至第一泊车区域的过程,由于用户的驾驶行为可能会导致推荐的泊车区域从第一泊车区域切换至第二泊车区域,这样车辆可以及时向用户提示更新后的推荐泊车区域,有助于提升用户泊车时的效率,从而有助于提升用户的泊车体验。
在一些可能的实现方式中,该第二驾驶行为包括第二挡位的信息和/或第二方向盘转向的信息。其中,该第二方向盘转向信息对应车轮的第二转向方向。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:根据该相对位置关系和用户的第三驾驶行为,确定该车辆的泊车模式,该泊车模式包括泊入泊车区域或者泊出泊车区域。
本申请实施例中,在确定推荐的泊车区域之前,车辆可以先根据车辆与每个泊车区域之间的相对位置关系以及用户的驾驶行为,来确定泊车模式。这样车辆可以向用户提示该泊车模式下的推荐泊车区域,无需向用户提供泊入和泊出时的泊车区域的信息,在推荐泊车区域时更符合用户的泊车意图,有助于避免泊车区域的错误推荐,从而有助于提升用户泊车时的效率。
在一些可能的实现方式中,该第三驾驶行为包括挡位的信息、方向盘转向的信息、在确定该车辆的泊车模式之前的第一预设时长内车辆是否上电的信息、在确定该车辆的泊车模式之前车辆所处的自动泊车模式中的一个或者多个。
在一些可能的实现方式中,可以根据以下条件中的一个或者多个来确定泊车模式为泊入泊车区域:车辆可以识别到车位,车辆未在车位内或者车辆未完全泊入车位内;车辆从未在车位内的状态切换为进入一个或者多个车位内(例如,用户在人驾泊入车位过程中经过多次揉库均未泊入车位);车辆从未在车位内的状态切换至泊入车位,但车辆未在车位内居中停放(例如,车辆未在车位内居中停放前的一个时间段内,车辆检测到用户人驾泊入车位的操作);在判断泊车模式之前,车辆检测到进入自动泊入模式,且车辆未泊入车位时主动或者被动退出自动泊入模式。
在一些可能的实现方式中,可以根据以下条件中的一个或者多个来确定泊车模式为泊出泊车区域:车辆可以识别到车位,车辆在车位内且居中停放;车辆初次上电启动,车辆可以识别到车位且车辆处于车位内;在判断泊车模式之前,车辆检测到进入自动泊出模式,且车辆未泊出车位时主动或者被动退出自动泊出模式;车辆的车身处于车位内,且车辆检测到用户经过一次或者多次驾驶车辆后车身未完全离开车位。
在一些可能的实现方式中,若该泊车模式为泊入泊车区域,则相对位置关系信息还可以包括车辆是否已经进入某个泊车区域。若车辆已经进入该泊车区域,则可以将该泊车区域确定为推荐的泊车区域。
结合第一方面,在第一方面的某些实现方式中,该第一驾驶行为包括车辆的第一挡位信息以及车辆的第一方向盘转向信息,该第一方向盘转向信息对应车轮的第一转向方向,该泊车模式为泊入泊车区域,该根据该相对位置关系和用户的第一驾驶行为,向用户推荐第一泊车区域,包括:根据该第一挡位信息、该第一转向方向和该每个泊车区域的第一侧所在的方向之间的夹角,向用户推荐第一泊车区域,该第一侧与该车辆泊入泊车区域的方 向相对应。
本申请实施例中,通过结合车轮转向的方向以及泊车区域开口最外侧车位线所在方向的夹角来确定推荐的泊车区域。这样,有助于加快用户从多个泊车区域选择合适的泊车区域的过程,并有助于避免用户人工选择到泊车困难的泊车区域;同时,也有助于提升用户泊车时的效率,从而整体上有助于提升用户的泊车体验和效率。
结合第一方面,在第一方面的某些实现方式中,该相对位置关系还包括该车辆与该每个泊车区域之间的距离信息、该车辆的第二侧的车轮中心点与该第一侧的车位线的中心点的连线与该第二侧所在方向的夹角,该第一侧、该第二侧与该车辆泊入泊车区域的方向相对应。
本申请实施中,通过结合车辆与泊车区域之间的距离、车轮所在方向与车位线所在方向的夹角来确定推荐的泊车区域。这样,有助于加快用户从多个泊车区域选择合适的泊车区域的过程,并有助于避免用户人工选择到泊车困难的泊车区域;同时,也有助于提升用户泊车时的效率,从而整体上有助于提升用户的泊车体验。
结合第一方面,在第一方面的某些实现方式中,该确定该车辆的泊车模式之前,该方法还包括:确定该车辆的速度小于或者等于预设速度阈值。
本申请实施例中,通过结合车辆与每个泊车区域之间的距离信息、车辆的车轮中心点与泊车区域开口最外侧车位线的中心点的连线与车轮所在方向的夹角,可以确定推荐的泊车区域。这样,有助于加快用户从多个泊车区域选择合适的泊车区域的过程,并有助于避免用户人工选择到泊车困难的泊车区域;同时,也有助于提升用户泊车时的效率,从而整体上有助于提升用户的泊车体验。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:根据该车辆的位姿和该第一泊车区域的信息,确定从该车辆的当前位置至该第一泊车区域的泊车轨迹的信息;向用户提示该泊车轨迹的信息。
本申请实施例中,车辆在确定推荐的泊车区域后可以自动规划从车辆当前位置至推荐的泊车区域的泊车轨迹信息,从而方便用户根据该泊车轨迹信息将车辆行驶至该第一泊车区域,有助于提升用户在进行泊车时的效率,从而有助于提升用户的泊车体验;同时,也有助于保证用户在泊车的安全。
结合第一方面,在第一方面的某些实现方式中,该泊车轨迹的信息包括从该车辆当前位置至该第一泊车区域的规划揉库次数、规划泊车路径、规划泊车时长中的一个或者多个;其中,该方法还包括:当满足以下条件中的一个或者多个时,提示用户使用自动泊车功能:检测到从该当前位置至该第一泊车区域的行驶过程中用户的揉库次数大于或者等于该规划揉库次数;检测到该车辆从该当前位置至该第一泊车区域的行驶路径的长度大于或者等于该规划泊车路径的长度;或者,检测到该车辆从该当前位置至该第一泊车区域的泊车时长大于或者等于该规划泊车时长。
本申请实施例中,当用户人驾泊车的过程中车辆检测到用户泊车困难,那么车辆可以及时向用户提示使用自动泊车功能,从而方便用户及时从人驾泊车切换至自动泊车,有助于提升泊车的效率,也有助于保证用户在泊车的安全。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:在该车辆泊入该第一泊车区域且该车辆未居中停放在该第一泊车区域中时,提示用户该车辆未居中停放或者提 示用户使用自动泊车功能。
本申请实施例中,当车辆泊入第一泊车区域后车辆检测到车辆未在第一泊车区域中居中停放,此时车辆可以提示用户车辆未居中停放,或者,车辆可以提示用户使用自动泊车功能将车辆居中停放在泊车区域中,有助于降低因为未居中停放而导致的剐蹭或者违章的风险,有助于提升用户的体验。
结合第一方面,在第一方面的某些实现方式中,该第二驾驶行为包括车辆的第二挡位信息以及车辆的第二方向盘转向信息,该第二方向盘转向信息对应车轮的第二转向方向,该泊车模式为泊入泊车区域,该根据该相对位置关系和用户的第二驾驶行为,向用户推荐第二泊车区域,包括:根据该第二挡位信息、该第二转向方向和该每个泊车区域的第一侧所在的方向之间的夹角,向用户推荐第二泊车区域,该第一侧与该车辆泊入泊车区域的方向相对应。
第二方面,提供了一种泊车装置,该装置包括:获取单元,用于获取多个泊车区域的信息;该获取单元,还用于获取车辆与该多个泊车区域中每个泊车区域之间的相对位置关系;推荐单元,用于根据该相对位置关系和用户的第一驾驶行为,向用户推荐第一泊车区域,该多个泊车区域包括该第一泊车区域。
结合第二方面,在第二方面的某些实现方式中,该推荐单元,还用于根据该相对位置关系和用户的第二驾驶行为,向用户推荐第二泊车区域,该多个泊车区域包括该第二泊车区域。
结合第二方面,在第二方面的某些实现方式中,该装置还包括:第一确定单元,用于在该获取单元获取该多个泊车区域的信息之前,根据该相对位置关系和用户的第三驾驶行为,确定该车辆的泊车模式,该泊车模式包括泊入泊车区域或者泊出泊车区域。
结合第二方面,在第二方面的某些实现方式中,该第一驾驶行为包括车辆的第一挡位信息以及车辆的第一方向盘转向信息,该第一方向盘转向信息对应车轮的第一转向方向,该泊车模式为泊入泊车区域,该推荐单元具体用于:根据该第一挡位信息、该第一转向方向和该每个泊车区域的第一侧所在的方向之间的夹角,向用户推荐第一泊车区域,该第一侧与该车辆泊入泊车区域的方向相对应。
结合第二方面,在第二方面的某些实现方式中,该相对位置关系还包括该车辆与该每个泊车区域之间的距离信息、该车辆的第二侧的车轮中心点与该第一侧的车位线的中心点的连线与该第二侧所在方向的夹角,该第一侧、该第二侧与该车辆泊入泊车区域的方向相对应。
结合第二方面,在第二方面的某些实现方式中,该第一确定单元还用于:在确定该车辆的泊车模式之前,确定该车辆的速度小于或者等于预设速度阈值。
结合第二方面,在第二方面的某些实现方式中,该装置还包括:第二确定单元,用于根据该车辆的位姿和该第一泊车区域的信息,确定从该车辆的当前位置至该第一泊车区域的泊车轨迹的信息;第一提示单元,用于向用户提示该泊车轨迹的信息。
结合第二方面,在第二方面的某些实现方式中,该泊车轨迹的信息包括从该车辆当前位置至该第一泊车区域的规划揉库次数、规划泊车路径、规划泊车时长中的一个或者多个;该第一提示单元,还用于当满足以下条件中的一个或者多个时,提示用户使用自动泊车功能:检测到从该当前位置至该第一泊车区域的行驶过程中用户的揉库次数大于或者等于该 规划揉库次数;检测到该车辆从该当前位置至该第一泊车区域的行驶路径的长度大于或者等于该规划泊车路径的长度;或者,检测到该车辆从该当前位置至该第一泊车区域的泊车时长大于或者等于该规划泊车时长。
结合第二方面,在第二方面的某些实现方式中,该装置还包括:第二提示单元,用于在该车辆泊入该第一泊车区域且该车辆未居中停放在该第一泊车区域中时,提示用户该车辆未居中停放或者提示用户使用自动泊车功能。
第三方面,提供了一种装置,该装置包括:存储器,用于存储计算机指令;处理器,用于执行该存储器中存储的计算机指令,以使得该装置执行上述第一方面中的方法。
第四方面,提供了一种车辆,该车辆包括上述第二方面或者第三方面中任一项所述的装置。
第五方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面中的方法。
上述计算机程序代码可以全部或者部分存储在第一存储介质上,其中第一存储介质可以与处理器封装在一起的,也可以与处理器单独封装,本申请实施例对此不作具体限定。
第六方面,提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面中的方法。
第七方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于调用存储器中存储的计算机程序或计算机指令,以使得该处理器执行上述第一方面所述的方法。
结合第七方面,在一种可能的实现方式中,该处理器通过接口与存储器耦合。
结合第七方面,在一种可能的实现方式中,该芯片系统还包括存储器,该存储器中存储有计算机程序或计算机指令。
附图说明
图1是本申请实施例提供的车辆的一个功能框图示意。
图2是本申请实施例提供的各种传感器感测范围示意图。
图3是本申请实施例提供的泊车方法的示意性流程图。
图4是本申请实施例提供的一组图形用户界面GUI。
图5是本申请实施例提供的另一GUI。
图6是本申请实施例提供的另一GUI。
图7是本申请实施例提供的另一组GUI。
图8是本申请实施例提供的另一组GUI。
图9是本申请实施例提供的另一组GUI。
图10是本申请实施例提供的另一GUI。
图11是本申请实施例提供的泊车方法的示意性流程图。
图12是本申请实施例提供的另一组GUI。
图13是本申请实施例提供的另一GUI。
图14是本申请实施例提供的启动窄道辅助功能的方法的示意性流程图。
图15是本申请实施例提供的另一GUI。
图16是本申请实施例提供的泊车区域的示意图。
图17是本申请实施例提供的另一GUI。
图18是本申请实施例提供的另一GUI。
图19是本申请实施例提供的另一组GUI。
图20是本申请实施例提供的另一组GUI。
图21是本申请实施例提供的另一GUI。
图22是本申请实施例提供的另一组GUI。
图23是本申请实施例提供的泊车方法的示意性流程图。
图24是本申请实施例提供的泊车装置的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例中采用诸如“第一”、“第二”的前缀词,仅仅为了区分不同的描述对象,对被描述对象的位置、顺序、优先级、数量或内容等没有限定作用。例如,被描述对象为“泊车区域”,则“第一泊车区域”和“第二泊车区域”中“泊车区域”之前的序数词并不限制“泊车区域”之间的位置或顺序。总之,本申请实施例中对序数词等用于区分描述对象的前缀词的使用不对所描述对象构成限制,对所描述对象的陈述参见权利要求或实施例中上下文的描述,不应因为使用这种前缀词而构成多余的限制。此外,在本实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
图1是本申请实施例提供的车辆100的一个功能框图示意。车辆100可以包括感知系统120、显示装置130和计算平台150,其中,感知系统120可以包括感测关于车辆100周边的环境的信息的若干种传感器。例如,感知系统120可以包括定位系统,定位系统可以是全球定位系统(global positioning system,GPS),也可以是北斗系统或者其他定位系统、惯性测量单元(inertial measurement unit,IMU)、激光雷达、毫米波雷达、超声雷达以及摄像装置中的一种或者多种。
车辆100的部分或所有功能可以由计算平台150控制。计算平台150可包括处理器151至15n(n为正整数),处理器是一种具有信号的处理能力的电路,在一种实现中,处理器可以是具有指令读取与运行能力的电路,例如中央处理单元(central processing unit,CPU)、微处理器、图形处理器(graphics processing unit,GPU)(可以理解为一种微处理器)、或数字信号处理器(digital signal processor,DSP)等;在另一种实现中,处理器可以通过硬件电路的逻辑关系实现一定功能,该硬件电路的逻辑关系是固定的或可以重构的,例如处理器为专用集成电路(application-specific integrated circuit,ASIC)或可编程逻辑器件(programmable logic device,PLD)实现的硬件电路,例如FPGA。在可重构的硬件电路中,处理器加载配置文档,实现硬件电路配置的过程,可以理解为处理器加载指令,以实现以上部分或全部单元的功能的过程。此外,还可以是针对人工智能设计的硬件电路,其可以理解为一种ASIC,例如神经网络处理单元(neural network processing unit,NPU)、张量处理单元(tensor processing unit,TPU)、深度学习处理单元(deep learning processing  unit,DPU)等。此外,计算平台150还可以包括存储器,存储器用于存储指令,处理器151至15n中的部分或全部处理器可以调用存储器中的指令,以实现相应的功能。
车辆100可以包括高级驾驶辅助系统(advanced driving assistant system,ADAS),ADAS利用在车辆上的多种传感器(包括但不限于:激光雷达、毫米波雷达、摄像装置、超声波传感器、全球定位系统、惯性测量单元)从车辆周围获取信息,并对获取的信息进行分析和处理,实现例如障碍物感知、目标识别、车辆定位、路径规划、驾驶员监控/提醒等功能,从而提升车辆驾驶的安全性、自动化程度和舒适度。
图2示出各种传感器感测范围示意图,传感器可以包括例如图1所示意的激光雷达、毫米波雷达、摄像装置、超声波传感器,其中毫米波雷达可以分为长距雷达和中/短距雷达。目前,激光雷达的感测范围约在80-150米,长距毫米波雷达的感测范围约为1-250米,中/短距毫米波雷达的感测范围约在30-120米,摄像头的感测范围约在50-200米,超声波雷达的感测范围约在0-5米。
从逻辑功能上来说,ADAS系统一般包括三个主要功能模块:感知模块,决策模块和执行模块,感知模块通过传感器感知车身周围环境,输入相应实时数据至决策层处理中心,感知模块主要包括车载摄像头/超声波雷达/毫米波雷达/激光雷达等;决策模块根据感知模块获取的信息,使用计算装置和算法做出相应决策;执行模块从决策模块接收到决策信号后采取相应行动,如驾驶、变道、转向、刹车、警示等。
在不同的自动驾驶等级(L0-L5)下,基于人工智能算法和多传感器所获取的信息,ADAS可以实现不同等级的自动驾驶辅助,上述的自动驾驶等级(L0-L5)是基于汽车工程师协会(society of automotive engineers,SAE)的分级标准的。其中,L0级为无自动化;L1级为驾驶支援;L2级为部分自动化;L3级为有条件自动化;L4级为高度自动化;L5级为完全自动化。L1至L3级监测路况并做出反应的任务都由驾驶员和系统共同完成,并需要驾驶员接管动态驾驶任务。L4和L5级可以让驾驶员完全转变为乘客的角色。目前,ADAS可以实现的功能主要包括但不限于:自适应巡航、自动紧急刹车、自动泊车、盲点监测、前方十字路口交通警示/制动、后方十字路口交通警示/制动、前车碰撞预警、车道偏离预警、车道保持辅助、后车防撞预警、交通标识识别、交通拥堵辅助、高速公路辅助等。应当理解的是:上述的各种功能在不同的自动驾驶等级(L0-L5)下可以有具体的模式,自动驾驶等级越高,对应的模式越智能。例如,自动泊车可以包括APA、RPA以及AVP等。对于APA,驾驶员无需操纵方向盘,但是仍然需要在车辆上操控油门和刹车;对于RPA,驾驶员可以使用终端(例如手机)在车辆外部对车辆进行遥控泊车;对于AVP,车辆可以在没有驾驶员的情况下完成泊车。从对应的自动驾驶等级而言,APA约处在L1级的水平,RPA约处于L2-L3级的水平,而AVP约处于L4级的水平。
如前所述,当前的自动泊车技术对于驾驶员的要求较高。例如,驾驶员驾驶车辆时,若车辆的姿态或位置不满足要求(例如,压线),则会导致车辆无法识别车位、车辆误判无法泊入车位等情况,直接造成驾驶员错过合适车位或时机,从而使得自动泊车效率低。
鉴于此,本申请实施例提供了一种泊车方法、装置以及交通工具,车辆可以结合车辆的位姿以及驾驶员的驾驶行为为用户进行泊车模式、泊车区域以及泊车功能的推荐,有助于提升用户在进行泊车时的效率。
图3是本申请实施例提供的泊车方法300的示意性流程图。如图3所示,该方法300 包括:
S310,获取车辆的位姿信息。
车辆的位姿信息可以包括车辆的位置信息和姿态信息。其中,车辆的位置信息可以由图1所示的感知系统120中的定位系统获得,姿态信息可以由感知系统120中的摄像装置、激光雷达、毫米波雷达、超声波雷达、IMU等传感器采集的数据确定。
一个实施例中,该方法300还包括:获取车辆的参数信息、周围环境信息、泊车区域信息以及行驶轨迹信息中的一个或者多个。
示例性的,车辆的参数信息包括但不限于车辆的车身长度、宽度、轴距信息。
示例性的,周围的环境信息包括但不限于车辆周围障碍物的信息,例如,车辆周围的柱子、路沿、绿化带、锥桶与车辆之间的距离信息以及角度信息等。
示例性的,泊车区域信息包括但不限于车辆周围的泊车区域的类型、泊车区域的尺寸、泊车区域的位置以及泊车区域的空闲状态等信息。
S320,根据车辆的位姿和/或驾驶员的驾驶行为,确定泊车模式,其中,泊车模式可以表示车辆当前为泊入泊车区域或者泊出泊车区域。
示例性的,可以根据以下条件中的一个或者多个来确定泊车模式为泊入泊车区域:
(1)车辆可以识别到车位,车辆未在车位内或者车辆未完全泊入车位内;
(2)车辆从未在车位内的状态切换为进入一个或者多个车位内(例如,用户在人驾泊入车位过程中经过多次揉库均未泊入车位);
(3)车辆从未在车位内的状态切换至泊入车位,但车辆未在车位内居中停放(例如,车辆未在车位内居中停放前的一个时间段内,车辆检测到用户人驾泊入车位的操作);
(4)在判断泊车模式之前,车辆检测到进入自动泊入模式,且车辆未泊入车位时主动或者被动退出自动泊入模式。
以上揉库可以指用户驾驶车辆从车辆的当前位置泊入泊车区域的过程。例如,用户挂R挡将车辆泊入某个泊车区域的过程中,如果用户可以在R挡下直接将车辆泊入该泊车区域,则可以表示用户通过一次揉库即可完成泊车;如果用户挂R挡后不能直接将车辆泊入泊车区域,且还需要从R挡切换至D挡并驾驶车辆行驶一段距离,再从D挡切换至R挡才能将车辆泊入泊车区域,则可以表示用户通过两次揉库完成泊车。以此类推,用户在D挡和R挡之间切换的次数越多,则可以表示用户的揉库次数越多。
一个实施例中,在满足以上一个或者多个条件,且车辆的速度小于或者等于预设速度阈值时,可以确定泊车模式为泊入泊车区域。
示例性的,可以根据以下条件中的一个或者多个来确定泊车模式为泊出泊车区域:
(1)车辆可以识别到车位,车辆在车位内且居中停放;
(2)车辆初次上电启动,车辆可以识别到车位且车辆处于车位内;
(3)在判断泊车模式之前,车辆检测到进入自动泊出模式,且车辆未泊出车位时主动或者被动退出自动泊出模式;
(4)车辆的车身处于车位内,且车辆检测到用户经过一次或者多次驾驶车辆后车身未完全离开车位。
S330,根据车辆的位姿和/或驾驶员的驾驶行为,确定推荐的泊车区域。
一个实施例中,在泊入状态下,该推荐的泊车区域可以为推荐的泊入车位(例如平面 车位或者空间车位);在泊出状态下,该推荐的泊车区域可以为泊出方向以及对应的车辆停止的虚拟区域。
一个实施例中,以驾驶区域位于车辆左侧为例,推荐的泊车区域可以为驾驶员视线方向到车辆前进方向右侧距离最短的停车位。若车辆前进方向右侧有推荐的泊车区域,则优先向用户推荐右侧的泊车区域;若车辆前进方向右侧没有推荐的泊车区域,则向用户推荐左侧空车位。
图4示出了本申请实施例提供的一组图形用户界面(graphical user interface,GUI)。
如图4中的(a)所示,车辆在行驶至停车位附近时可以通过显示屏显示逆透视变换(inverse perspective mapping,IPM)图像401以及后视图像402。该IPM图像中包括当前车辆的信息以及车辆周围的停车位信息。当车辆检测到当前车辆的速度小于或者等于预设速度阈值(例如,5Km/h)时,车辆可以通过显示屏显示如图4中的(b)所示的GUI。
如图4中的(b)所示,车辆可以通过显示屏显示推荐泊车区域。
如图4中的(c)所示,车辆在通过显示屏显示推荐泊车区域的同时,还可以显示提示用户进入自动泊车模式的提示信息“以为您提供推荐的泊车区域,是否自动泊车”、自动泊车控件403、遥控泊车控件404、切换泊车区域控件405以及取消控件406。
一个实施例中,以驾驶区域位于车辆左侧为例,当驾驶员人驾泊入车位时,获取车辆的位姿、后轮转向、周围可泊入车位信息(包括可泊入的车位数量、车位类型、周围障碍物等)。若周围车辆均为车尾泊入,则当前车辆为车尾泊入概率为(车尾泊入车辆/总车位数)*100%。
一个实施例中,车辆可以根据多个可泊入车位中每个可泊入车位的推荐度,向用户提示推荐度最高的车位。
示例性的,当车辆检测到驾驶员挂R挡时,车辆识别到当前泊车区域所有可泊车的空车位,计算每个可泊入车位的推荐度为C(x)。
示例性的,以下为可泊入车位的推荐度C(x)的一种计算过程:
(1)获取当前车辆位姿信息与车位信息。
图4中的(d)示出了垂直车位下车辆位姿信息与车位信息的关系示意图。车辆的后轮轴中心为坐标原点O,选取每个空车位开口方向最外侧车位线的中点(例如,车位1开口方向最外侧车位线的中点为P)。设定坐标原点O到达车位中点的相对距离为D(当车辆处于车位外,D为正;当车辆位于车位内,D为负值)。如图4中的(d)所示,坐标原点O距离P点的距离为D 1。相对应的,可以确定PO与后轮轴所在方向的角度为θ 1。在泊车过程中,由于车辆持续移动,距离D 1与角度θ 1会持续发生变化,从而确定车辆与每个车位在实际场景中的相对距离、位姿。
示例性的,表1示出了D 1和推荐度之间对应关系。
表1
D 1 推荐度C(D 1)
D 1≤2米 100%
2米<D 1≤3米 50%
D 1>3米 20%
应理解,以上D 1和推荐度之间对应关系仅仅是示意性的,D 1和推荐度之间对应关系还可以通过其他数值、函数关系进行表示,本申请实施例对此不作限定。
示例性的,表2示出了θ 1和推荐度之间对应关系。
表2
θ 1 推荐度C(θ 1)
30°≤θ 1≤60° 100%
60°<θ 1≤90° 50%
θ 1>90° 20%
应理解,以上θ 1和推荐度之间对应关系仅仅是示意性的,θ 1和推荐度之间对应关系还可以通过其他数值、函数关系进行表示,本申请实施例对此不作限定。
还应理解,θ 1取值为正表示从后轮轴所在方向向PO所在方向的偏转为顺时针偏转。
(2)根据方向盘转向信息,获取车辆内侧转向轮或者外侧转向轮的转向方向。
如图4中的(d)所示,车辆后轮转向角度θ 2可以为内侧转向轮的转向方向与车位开口方向最外侧车位线所在方向的夹角。
示例性的,表3示出了θ 2和推荐度之间对应关系。
表3
Figure PCTCN2022081636-appb-000001
应理解,以上θ 2和推荐度之间对应关系仅仅是示意性的,θ 2和推荐度之间对应关系还可以通过其他数值、函数关系进行表示,本申请实施例对此不作限定。
还应理解,θ 2取值为正表示从转向轮的转向方向向车位开口方向最外侧车位线所在方向的偏转为顺时针偏转。
示例性的,通过配置相对距离D 1、自车位姿角度θ 1、车轮转向角度θ 2的权重可以计算出车位的推荐度,例如相对距离D 1、自车位姿角度θ 1、车轮转向角度θ 2的权重分别为50%、20%和30%,那么每个泊出区域的推荐度为:50%*C(D 1)+20%*C(θ 1)+30%C(θ 2)。在计算出每个泊车区域的推荐度后,可以向用户提示推荐度最高的泊车区域。
应理解,以上各个参数的权重仅仅是示意性的,本申请实施例对此并不做限定。
还应理解,以上在确定泊车区域的推荐度时是通过D 1、θ 1和θ 2这3个参数来确定的,本申请实施例中并不限于此。例如,还可以通过D 1、θ 1和θ 2这3个参数中的任意1个或者任意2个来确定泊车区域的推荐度。
以上通过各个参数与推荐度之间的对应关系以及各个参数的权重来确定某个泊车区域的推荐度。本申请实施例中还可以通过采集训练样本(例如,用户在人驾泊车过程中确定的每个泊车区域的推荐度以及每个泊车区域对应的参数信息)来确定推荐度C(x)的计算方式。
示例性的,训练样本的采集过程可以如下:驾驶员驾驶车辆到达泊车区域附近时发现 有多个泊车区域(例如,车位1、车位2、车位3和车位4),此时驾驶员可以基于环境对多个泊车区域进行优先级排序。驾驶员可以确定多个泊车区域之间的优先级从高至低的顺序为车位1、车位2、车位3和车位4。
此时可以分别记录车辆与每个车位之间的相对位置关系以及此时驾驶员的驾驶行为,从而得到每个车位对应的参数信息。表4示出了一种车位标识、车位的推荐度以及车位的参数信息的对应关系。
表4
车位标识 车位的推荐度 车位的参数信息
车位1 [100%,90%] (D 1、θ 1、θ 2)
车位2 [90%,50%] (D 2、θ 3、θ 4)
车位3 [50%,20%] (D 3、θ 5、θ 6)
车位4 [20%,0%] (D 4、θ 7、θ 8)
应理解,(D 2、θ 3、θ 4)、(D 3、θ 5、θ 6)、(D 4、θ 7、θ 8)的计算过程可以参考上述D 1、θ 1、θ 2的计算过程,此处不再赘述。
基于线性回归模型以及原理,给定N个训练样本,寻找最佳参数α 1、α 2、α 3和b,从而使得模型可以更好的拟合这些训练样本。将各个参数进行归一化处理得到车位推荐度C(x):
C(x)=α 1x 12x 23x 3+b
同时,可通过代价函数衡量泊车区域的预测误差J(α 1),其可以表示为:
Figure PCTCN2022081636-appb-000002
其中,f(x 1)为预测值,y 1为真实值。使用最小二乘法,可得到系数α 1(同理,可以得到α 2、α 3)。基于此,可确定公式C(x),从而计算车位的推荐度,即当车辆处于任意位姿时,在R挡下,可以计算识别到的可泊入车位的推荐度,并向驾驶员提示推荐度最高的泊车区域;或者,也可以向驾驶员提示每个可泊入车位的推荐度。
相应的,如果为车头泊入,则坐标原点可确定为车辆前轮中点,计算D挡下推荐度最高的车位。相应的,可以根据上述方式判断平行车位、斜列车位的推荐度,进行目标泊车区域的推荐。
图5示出了本申请实施例提供的另一GUI。如图5所示,车辆可以根据车辆与多个泊车区域中每个泊车区域之间的相对位置关系以及用户的驾驶行为,通过显示屏显示推荐的泊车区域(推荐泊车区域由虚线显示)。
一个实施例中,用户在反复揉库时,当车辆检测到用户切换D挡和R挡时,车辆可以同时推荐车头侧的泊车区域和车尾侧的泊车区域。
图6示出了本申请实施例提供的另一GUI。如图6所示,当车辆的一部分已经进入推荐泊车区域时,车辆可以锁定推荐泊车区域(推荐泊车区域由粗实线显示)。
图7示出了本申请实施例提供的另一组GUI。
如图7中的(a)所示,当车辆通过车尾泊入的方式泊入平行车位时,车辆可以根据车身转向以及车辆与车位之间的相对位置关系,通过显示屏显示推荐的泊车区域(如图7 中的(a)所示的虚线框701)。当车辆的一部分已经进入该推荐的泊车区域(例如,车身任意位置距离推荐的泊车区域小于或者等于30cm)或者车辆已经进入该泊车区域时,车辆可以通过显示屏锁定该推荐的泊车区域(如图7中的(b)所示的实线框702)。
图8示出了本申请实施例提供的另一组GUI。
如图8中的(a)所示,当车辆通过车头泊入的方式泊入平行车位时,车辆可以根据车身转向以及车辆与车位之间的位置关,通过显示屏显示推荐的泊车区域(如图8中的(a)所示的虚线框801)。当车辆的一部分已经进入该推荐的泊车区域(例如,车身任意位置距离推荐的泊车区域小于或者等于30cm)或者车辆已经进入该泊车区域时,车辆可以通过显示屏锁定该推荐的泊车区域(如图8中的(b)所示的实线框802)。
一个实施例中,当车辆检测到车辆进入某个车位或者车辆在预设时间内进入某个车位的频率大于或者等于预设频率时,可以将该车位确定为推荐的泊车区域。
一个实施例中,若前一次自动泊车时用户已经选定了目标泊车区域,且车辆未泊入或者泊入途中退出。此时,车辆可以默认将上一次选定的目标泊车区域确定为推荐的泊车区域。
一个实施例中,当车辆检测到驾驶员驾驶车辆泊出垂直车位、斜列车位时,若为车头泊出,则可以根据驾驶员挂D挡时方向盘的转向、车身转向判断泊出方向;若为车尾泊出,则可以根据驾驶员挂R挡时方向盘的转向、车身转向判断泊出方向。当车辆检测到驾驶员驾驶车辆泊出平行车位时,车辆可以确定车头向前方向为泊出方向。
图9示出了本申请实施例提供的另一组GUI。如图9所示,当车辆通过车头泊出的方式泊出垂直车位时,车辆可以根据驾驶员挂D挡时方向盘的转向,通过显示屏显示泊出方向以及泊车区域(如图9中的虚线框所示)。
S340,确定泊车的相关参数。
一个实施例中,在确定泊车模式、推荐的泊车区域(或者泊出方向)后,车辆可以规划泊车路径L 1、揉库次数N 1以及泊车时长T 1等信息。
S350,根据泊车的相关参数,判断驾驶员是否泊车困难。
一个实施例中,若S320中确定泊车模式为车辆当前为泊入车位,当满足以下一个或多个泊车条件时,车辆可以确定当前驾驶员泊入较难,从而通过显示屏显示自动泊车控件,提示并引导用户使用自动泊车:
(1)驾驶员泊车的时长T 2大于或者等于规划泊车时长T 1
(2)揉库次数N 2大于或者等于规划揉库次数N 1
(3)泊车总路径L 2大于或者等于规划泊车路径L 1,或者驾驶员实际泊车路径偏移车辆规划的路径且偏移距离不在预设范围[D 1,D 2]内;
(4)目标车位为窄车位(任意位置靠近障碍物小于30cm)。
一个实施例中,当S340中确定了泊车的相关参数时,车辆也可以直接提示用户使用自动泊车功能进行泊车。
S360,若驾驶员泊车困难,则提示用户使用自动泊车功能。
图10示出了本申请实施例提供的另一GUI。如图10所示,当车辆检测到驾驶员泊车较难时,车辆可以显示提示框1001,提示框1001中包括提示信息“检测到您泊车困难,建议使用自动泊车”、使用自动泊车控件1002、使用遥控泊车控件1003和取消控件1004。 当车辆检测到用户点击使用自动泊车控件1002的操作时,车辆可以基于当前车辆位姿以及与推荐的泊车区域之间的相对位置关系,规划泊车路径,从而根据规划的泊车路径将车辆泊入推荐的泊车区域。当车辆检测到用户点击使用遥控泊车控件1003的操作时,车辆可以根据来自于车钥匙或者其他终端(例如,手机)的泊车指令泊入推荐的泊车区域。
当车辆检测到驾驶员启动自动泊车功能后,获取当前挡位信息,以当前位姿作为起点,规划到达推荐的泊车区域的轨迹,从而车辆可以自动泊入或泊出车位。
S370,若驾驶员泊车不困难,则根据驾驶员的操作进行泊车。
示例性的,驾驶员泊车的时长T 2小于规划泊车时长T 1,揉库次数N 2小于规划揉库次数N 1且泊车总路径L 2小于规划泊车路径L 1时,车辆可以不提示用户使用自动泊车功能。车辆可以根据驾驶员的操作进行泊车。
一个实施例中,当车辆检测到用户泊车完成时,可以对驾驶员泊车时的操作(例如,人驾泊车时的路径和速度)进行学习,从而优化自动泊车方式。例如,自动泊车默认速度为v 1,驾驶员在多次人驾泊车时控制车辆的平均速度为v 2,车辆可以将自动泊车的默认速度从v 1更新为v 2。又例如,自动泊车过程中默认车辆在泊车区域中处于居中位置,用户在多次人驾泊车时控制车辆位于泊车区域居左的位置,则车辆可以将自动泊车过程中车辆在泊车区域中的位置从居中的位置更新为居左的位置。
一个实施例中,在人驾泊车或者自动泊车过程中,若车辆确定推荐的泊车区域为窄车位,则车辆可以提示用户使用遥控泊车功能进行泊车。
本申请实施例中,通过对车辆与泊车区域之间的相对位置关系及驾驶员的驾驶行为,更精准的推荐泊车模式及泊车区域,从而帮助驾驶员进行泊车。当检测到驾驶员泊车困难时,还可以提示驾驶员选择自动泊车功能,这样人驾泊车与自动泊车能力互补,从而帮助驾驶员从人驾泊车顺利切换至自动泊车,有助于提升驾驶员的泊车效率,也有助于降低驾驶员的泊车难度。
图11示出了本申请实施例提供的泊车方法1100的示意性流程图。如图11所示,该方法1100包括:
S1110,获取车辆的位姿信息。
S1120,根据车辆的位姿和/或驾驶员的驾驶行为,确定泊车模式,其中,泊车模式可以表示车辆当前为泊入车位或者泊出车位。
S1130,根据车辆的位姿和/或驾驶员的驾驶行为,确定推荐的泊车区域。
应理解,S1110-S1130可以参考上述S310-S330的描述,为了简洁,此处不再赘述。
S1140,根据泊车模式和推荐的泊车区域,显示智能泊车轨迹。
一个实施例中,车辆可以基于泊车模式和推荐的泊车区域,规划自动泊车路径,并且车辆可以将该自动泊车路径转化为对应的车轮转角、驾驶距离、车身覆盖面积等。应理解,智能泊车轨迹可以由车轮转角、驾驶距离以及车身覆盖面积等参数确定。
一个实施例中,当车辆检测到用户打开智能泊车轨迹的操作时,车辆可以通过显示屏显示该智能泊车轨迹。
一个实施例中,车辆也可以根据驾驶员的驾驶行为自动显示智能泊车轨迹。
示例性的,车辆自动显示智能泊车轨迹的触发条件可以包括以下条件中的一个或者多个:
(1)车辆基于当前转向角度及行驶速度,预测与周边障碍物或者车辆发生碰撞;
(2)在泊入车位时,基于当前转向角度,预测泊入车位后无法居中停放或无法泊入车位。
车辆显示智能泊车轨迹后,驾驶员可在IPM图像及后视图像中查看规划的驾驶路径,以及建议的档位、车轮转向、行驶距离,驾驶员可按照建议轨迹驾驶车辆,确保安全泊车。
图12示出了本申请实施例提供的另一组GUI。
如图12中的(a)所示,车辆可以通过显示屏显示IPM图像1201和后视图像1202。其中,在IPM图像1201和后视图像1202中分别显示车辆动态预测轨迹1203。该车辆动态预测轨迹1203可以根据驾驶员的驾驶行为(例如,驾驶员控制方向盘的转角等)确定。当车辆检测到用户开启轨迹辅助功能1204的操作时,车辆可以通过显示屏显示如图12中的(b)所示的GUI。
如图12中的(b)所示,车辆可以在IPM图像和后视图像中分别显示智能泊车轨迹。例如,在后视图像中,黑色实线表示车辆动态预测轨迹1203,黑色虚线表示智能泊车轨迹1205。该后视图像中还包括用于提示泊车所需的揉库次数以及当前的揉库次数的信息(例如,“需要进行2次揉库,当前为第1次揉库”)、当前车轮转角的信息以及建议的车轮转角的信息(例如,“当前车轮转角为30°,建议的车轮转角为45°”)、当前揉库所需要行驶的距离信息以及当前车辆已经行驶的距离信息(例如,“本次揉库需要行驶的距离为2米,当前已经行驶1米”)。
在IPM图像中,黑色实线表示车辆动态预测轨迹,阴影区域表示车辆按照智能泊车轨迹线行驶时的车身覆盖区域。
图13示出了本申请实施例提供的另一GUI。
如图13所示,当车辆通过驾驶员的驾驶行为检测到车辆无法泊入或者泊出车位,车辆检测到有碰撞风险或者泊入车位后车辆位姿不正时,车辆可以自动显示智能泊车轨迹。例如,车辆检测到有碰撞风险时,可以通过显示屏自动显示提示信息1301“检测到有碰撞风险,已为您显示智能泊车轨迹”、车辆动态预测轨迹以及智能泊车轨迹。从而驾驶员可以根据智能泊车轨迹完成泊车。
一个实施例中,当智能泊车轨迹当由多段轨迹构成时,还可以通过显示屏显示揉库次数以及当前揉库时建议的轨迹与建议的行驶距离。
一个实施例中,若车辆处于泊车推荐挡位,可以通过显示屏直接显示智能泊车轨迹;若车辆未处于泊车推荐档位,提示驾驶员切换到正确的档位。
在驾驶员按照智能泊车轨迹进行泊车或者车辆进行自动泊车时,驾驶员可以通过观察车辆动态轨迹与智能泊车轨迹,在刹车或低速行驶状态下转动方向盘,将车辆动态轨迹贴合至智能泊车轨迹。一个实施例中,当车辆动态轨迹与智能泊车轨迹贴合,或者当车辆动态轨迹与智能泊车轨迹贴合的程度大于或者等于预设值时,车辆可以提示用户车辆动态轨迹线与智能泊车轨迹线贴合。例如,车辆可以通过扬声器进行声音提示,或者通过氛围灯颜色的变化来提示用户车辆动态轨迹与智能泊车轨迹贴合。
智能泊车轨迹可以按照揉库次数分为多段轨迹,在单段轨迹行驶结束后,自动切换显示下一段局部轨迹引导路径,驾驶员重复上述步骤,直到车辆泊入车位或泊出车位。若车辆实际行驶轨迹与智能泊车轨迹存在的偏差超出阈值,则车辆可以重新计算泊车路径并更 新智能泊车轨迹。
一个实施例中,该智能泊车轨迹可以是车辆在确定推荐的泊车区域后确定的。若推荐的泊车区域被取消,则车辆可以停止显示该智能泊车轨迹。
一个实施例中,若车辆根据当前泊车意图以及推荐的泊车区域无法确定智能泊车轨迹,则车辆可以提示用户更换推荐的泊车区域或者检查周围环境。
本申请实施例中,在人驾泊车或自动驾驶无法启动的场景下,可以基于推荐的泊车区域,规划智能泊车轨迹,并通过图像进行显示,从而辅助驾驶员通过正确的指引获取驾驶路径,控制车辆泊入或者泊出车位。
以上结合图11至图13介绍了在进行泊车时提供智能泊车轨迹的技术方案,下面结合图14至图15介绍车辆在经过狭窄道路时提供窄道辅助功能的技术方案。
图14示出了本申请实施例提供的启动窄道辅助功能的方法1400的示意性流程图。如图14所示,该方法1400包括:
S1410,对周围环境的信息和道路数据进行采集。
示例性的,车辆可以对周围环境的信息和道路数据进行采集,确定车轮与两侧路沿或者障碍物的距离,进而可以基于该距离来确定当前道路的宽度。
S1420,判断当前道路是否为狭窄道路。
通过对周围环境的信息以及道路数据的采集,车辆在判断当前处于并要通过狭窄道路时,窄道辅助功能被自动唤起;车辆可以自动规划可安全通过该狭窄道路的窄道辅助轨迹。车辆还可以基于道路宽度、周边障碍物、自车车身参数,将窄道辅助轨迹转换为对应车轮转角、驾驶距离、预测车身覆盖面积,并通过显示屏进行显示,从而指引驾驶员行驶。
示例性的,狭窄道路可以分为平行窄道和垂直窄道。
示例性的,若道路宽度为b且车辆的轮距为a,当b>4m时,车辆可以确定当前道路为非窄道,可正常通行。
示例性的,当b<1.4a时,车辆可以确定前方道路狭窄,车辆无法通行。
示例性的,当1.4a≤b≤4m时,车辆可以确定当前道路属于平行窄道,从而可以基于位姿进行行驶路径规划和提醒。车辆行驶时,当车速小于或者等于15Km/h时,激活窄道辅助功能。车辆可以检测车辆行驶方向L1~L2(如100-200m)范围内的道路状况。
示例性的,当车辆识别到直行路段结束并存在向左转向或者向右转向时,可以确定当前道路为垂直窄道。示例性的,车辆轴距为d,垂直于当前所在道路的路面宽度大于或者等于d+x时(例如,x的取值范围可以为0.4~1m),即可通过垂直窄道;否则提示用户无法通过垂直窄道。
一个实施例中,若当前道路不是窄狭道路,则车辆可以不对用户进行提示,车辆可以根据用户的驾驶行为正常通过该道路。
S1430,向用户提示车辆动态预测轨迹线和窄道辅助轨迹。
图15示出了本申请实施例提供的另一GUI。如图15所示,当车辆判断当前经过狭窄道路时,车辆可以通过显示屏显示提示信息1501“检测到您正在通过狭窄道路,已为您提供窄道辅助轨迹”、车辆动态预测轨迹以及窄道辅助轨迹。示例性的,图15中的黑色实线表示车辆动态预测轨迹,黑色虚线表示窄道辅助轨迹,阴影部分表示车辆按照窄道辅助轨迹行驶时的车身覆盖面积。驾驶员可以通过转动方向盘,控制刹车、油门的方式,将 车辆动态预测轨迹贴合窄道辅助轨迹,从而通过狭窄道路。
一个实施例中,车辆可以根据道路中动态障碍物(例如对向来车、人等)的行进速度来预估交会点。根据预设交会点规划行驶轨迹,从而通过该规划行驶轨迹提示驾驶员合适的驾驶路径,或者,提示减速停车并显示合适的停车避让点。
一个实施例中,当车辆检测到用户挂入R挡倒车时,也可以识别平行窄道或者垂直窄道。在识别到平行窄道和垂直窄道时,可以为用户规划行驶轨迹。
一个实施例中,当车辆检测到即将通过垂直窄道时,车辆可以通过转向灯辅助判断驾驶员的转向意图。例如,当车辆检测到驾驶员开启左转向灯时,根据自车所在车道、位姿、垂直车道信息,规划对应的向左路径并显示窄道辅助轨迹。
一个实施例中,当车辆检测到即将通过平行窄道且检测到驾驶员开启左转向灯,则车辆可以为驾驶员规划窄道掉头轨迹;当车辆检测到即将通过平行窄道且检测到驾驶员开启右转向灯,识别车轮与路沿之间的距离并规划靠边停车轨迹。
本申请实施例中,车辆在通过狭窄道路时,可以自动计算正确的驾驶路径并提供智能引导,从而便于驾驶员对比引导快速修正方向与距离,保证安全行驶。
以上结合实施例介绍了本申请实施例提供的泊车的技术方案以及通过狭窄道路时启动窄道辅助功能的技术方案,下面结合附图介绍本申请实施例提供的泊车位姿异常检测与自动调整的技术方案。
当车辆泊入泊车区域后,车辆可以自动监测车辆当前所在泊车区域内的停车姿态,通过雷达、摄像头等传感器采集的数据识别和判断车辆是否存在压线、倾斜摆放、靠近障碍物/障碍车、车门无法开启。
一个实施例中,车辆可以通过对于车辆在地面上投影的中心点与泊车区域的中心点偏离距离、车辆在地面上投影的中轴线与泊车区域的中轴线的旋转角度、以及车辆车身任意位置与周边障碍物/障碍车的距离。
示例性的,图16示出了泊车区域的示意图。如图16中的(a)所示,车位长度为5.3m且宽度为2.5米,黑色实线为车位线,车位线两侧向内0.3m的区域为停放在车位内部但可监测车辆不居中区域;阴影部分区域为居中停放区域。车辆中心点坐标为(x 1,y 1),泊车区域的中心点坐标为(x 2,y 2),车辆中轴线与泊车区域的中轴线的夹角为θ。当车辆在地面上投影的中心点与泊车区域的中心点的距离小于或者等于第一预设差值(例如,第一预设差值为0.3m)时,且夹角θ小于或者等于预设角度(例如,3°)时,判断车辆处于居中停放。
一个实施例中,当车辆在地面上投影的中心点与泊车区域的中心点的连线的距离大于预设差值时,车辆可以确定车辆当前泊车位姿异常。如图16中的(a)所示,若该连线在y轴方向上投影的距离大于第二预设差值(例如,该第二预设差值为0.2)时,则车辆可以确当前泊车位姿异常且前后偏差明显。
如图16中的(b)所示,若该距离在x轴方向上投影的距离大于第三预设差值(例如,该第三预设差值为0.2cm),则车辆可以确当前泊车位姿异常且左右偏差明显。
如图16中的(c)所示,若车辆确定夹角θ为10°,则车辆可以确当前泊车位姿异常且车辆歪斜明显。
一个实施例中,当车辆确定泊车位姿正常,显示屏中可以无提醒,驾驶员可离车;或 者,当车辆确定泊车位姿正常,可以通过显示屏将该车位显示为绿色,并提示驾驶员泊入车位正常。
一个实施例中,当车辆确定泊车位姿异常,则可以通过显示屏对车辆的异常状态进行显示,使驾驶员感知异常场景。同时,若驾驶员仍在车内,可以通过显示屏提示驾驶员进行自动位姿调整。
图17示出了本申请实施例提供的另一GUI。如图17所示,当车辆检测到当前泊车位姿异常时,车辆可以通过显示屏显示提示信息1701“车辆泊入车位异常,点击开始一键调整”、开始控件1702以及取消控件1703。当车辆检测到用户点击开始控件1702的操作时,车辆可以选择当前泊车区域为目标泊车区域且自动规划居中停放的泊车轨迹。当驾驶员松开刹车后,车辆可以根据该居中停放的泊车轨迹,通过控制刹车、油门和方向盘调整车辆的泊车位姿,从而使得车辆在泊车区域内居中停放。
一个实施例中,车辆可以根据当前泊车区域的类型以及车辆与障碍物之间的距离判断泊入后驾驶员或者乘客是否可以便捷下车(例如,当车门与障碍物之间的距离大于30cm时,可以认为驾驶员或者乘客可以便捷下车)。若驾驶员或者乘客可以便捷下车,那么车辆自动调整至泊车区域的居中位置后自动泊车结束。若驾驶员或者乘客不可以便捷下车,当车辆检测到当前泊车位姿异常且车辆检测到用户选择自动进行泊车位姿调整的操作时,车辆可以提示用户车辆将从泊车区域泊出至车门可以开启的位置,并提示用户在该位置下车。当车辆检测到车内的用户下车且关闭车门后,车辆可以自动泊入泊车区域。
图18示出了本申请实施例提供的另一GUI。如图18所示,当车辆检测到当前泊车位姿异常且车辆确定驾驶员或者乘客不能便捷下车时,车辆可以通过显示屏显示提示信息1801“车门打开受限,您可以将车辆驶出车位,下车后关闭好车门,车门关闭5s后重新泊入车位”、确定控件1802和取消控件1803。当车辆检测到用户点击确定控件1802的操作时,车辆可以在接收到用户的驾驶指令后驶离泊车区域。在车辆检测到用户下车且关闭好车门的操作后,车辆可以进行自动泊车且居中停放在泊车区域中。
图19示出了本申请实施例提供的另一组GUI。如图19中的(a)所示,当车辆检测到当前泊车位姿异常且车辆确定驾驶员或者乘客不能便捷下车时,车辆可以通过显示屏显示提示信息1901“车门打开受限,点击确定后车辆将自动驶离泊车位,在车辆停止后请您下车并关闭好车门,车门关闭5s后重新泊入车位”、确定控件1902和取消控件1903。如图19中的(b)所示,当车辆检测到用户点击确定控件1902的操作时,车辆可以驶离泊车位并停放在车门便于打开的位置,车辆还可以通过显示屏显示提示信息1904“请您下车并关闭好车门,车门关闭5s后重新泊入车位”。在车辆检测到用户下车且关闭好车门的操作后,车辆可以进行自动泊车且居中停放在泊车区域中。
一个实施例中,若车辆驶离泊车位并停放在车门便于打开的位置后的预设时长(例如,20s)内,检测到驾驶员或者乘客并未下车,则车辆可以继续执行自动泊入。一个实施例中,若驾驶员一侧的车门与障碍物之间的距离小于或者等于预设距离(例如,30cm),则车辆可以默认靠右停放。
一个实施例中,若车辆确定驾驶员或者乘客不能便捷下车,那么车辆还可以直接提示用户使用遥控泊车功能。
一个实施例中,若驾驶员在当前泊车位姿异常时离开车辆,则车辆可以向用户的移动 终端发送提示信息,该提示信息用于提示用户通过远程遥控,对车辆的位姿进行调整。
图20示出了本申请实施例提供的另一组GUI。
如图20中的(a)所示,手机在接收到车辆发送的提示信息后可以显示提示窗口2001,其中提示窗口2001中包括提示信息“车辆泊入车位异常,为避免剐蹭以及违章风险,请开启一键智能调整”。当手机检测到用户点击提示窗口2001的操作时,手机可以显示如图20中的(b)所示的GUI。
如图20中的(b)所示,手机可以显示自动泊车的显示界面。该显示界面上包括提示信息“泊车压线为违法行为,并有可能造成车辆剐蹭风险,点击下方按钮一键调整”和开始调整控件2002。当手机检测到用户点击开始调整控件2002的操作时,手机可以显示车辆自动泊车的过程。
如图20中的(c)所示,手机可以显示车辆自动泊车的显示界面。该显示界面上可以显示车辆进行泊车位姿调整的信息、泊车区域的信息、提示信息“正在重新泊入车位”以及暂停控件2003。
一个实施例中,若手机检测到用户点击暂停控件2003的操作,则手机可以向车辆发送指示信息,该指示信息用于指示车辆停止自动泊车。响应于接收到该指示信息,车辆可以控制车辆停止行驶。
如图20中的(d)所示,当车辆完成泊车位姿的调整后,车辆可以向手机指示已完成自动泊车。手机可以显示车辆自动泊车的另一显示界面。该显示界面上包括提示信息“已为您将车辆重新泊入车位,车辆当前居中放置”。
本申请实施例中,车辆会综合考虑泊车位姿异常与车内用户是否便捷下车,为驾驶员提供了自动调整功能以及清晰的状态提示,包括居中调整、预留下车位置、离车后自动泊入以及远程遥控调整,有助于驾驶员更加便捷得调整泊车位姿,节省驾驶员时间与精力,避免出现他车刮擦、违法、无法下车、阻碍他人车辆的情况。
以上结合图16至图20介绍了本申请实施例提供的车辆泊车位姿调整的过程。下面结合附图介绍本申请实施例提供的在泊车过程中自动泊车和遥控泊车切换的过程。
当车辆泊入车位时可以主动从自动泊车切换为遥控泊车。示例性的,当车辆检测到驾驶员启动自动泊车后,车辆在自动泊车的过程中检测到暂停自动泊车的操作,通过显示屏提示用户通过遥控泊车完成泊车。当车辆检测到用户确定切换至遥控泊车,并检测到车内用户离开车辆且车门已关闭时,车辆可以接收移动终端的控制,从而通过遥控泊车继续完成本次泊车,并泊入已选的目标车位。
一个实施例中,车辆在检测到用户启动自动泊车后,可以识别车辆停放在目标泊车区域时是否便于打开车门。若不便于打开车门,则车辆可以通过显示屏提示提醒驾驶员切换至遥控泊车。一个实施例中,在车辆规划的自动泊车预测路线中,车辆可以在车门便于打开的最终位置处自动刹停,并通过显示屏提示用户切换至遥控泊车。
一个实施例中,车辆在检测到用户人驾泊入目标泊车区域的过程中,若识别车辆停放在目标泊车区域时不便于打开车门,那么车辆可以通过显示屏提示用户切换至遥控泊车。
图21示出了本申请实施例提供的另一GUI。
如图21中的(a)所示,用户在将车辆泊入推荐的泊车区域的过程中,车辆检测到目标泊车区域不便于打开车门,那么车辆可以通过显示屏显示推荐的泊车区域的信息、提示 信息“泊入后车门打开受限,建议使用遥控泊车”、遥控泊车控件2101以及取消控件2102。当车辆检测到用户点击遥控泊车2101的操作时,车辆可以接收移动终端(例如,手机、车钥匙等)的泊车指令。
如图21中的(b)所示,手机可以显示遥控泊车的显示界面。该显示界面上包括提示信息“点击开始继续泊入”以及开始控件2103。当手机检测到用户点击开始控件2103的操作时,手机可以向车辆发送泊车指令,从而车辆可以根据该泊车指令将车辆泊入目标泊车区域。
本申请实施例中,通过简化自动泊车与遥控泊车之间的切换步骤和操作成本,可以使得泊车体验更无缝且流畅,避免出现无法下车、重新泊车的困境。同时,通过更智能、及时的推荐合适的泊车模式,在界面中提供清晰的操作指引,有助于减少用户的学习成本。
一个实施例中,当车辆停放在泊车位后,移动终端还可以基于移动终端与车辆之间的距离进行泊出的智能提醒。
示例性的,车辆在泊入窄车位后,移动终端可以接收车辆发送的提示信息,该提示信息用于提示当前车辆所停的车位为窄车位。当移动终端与车辆之间的距离小于或者等于预设距离(例如,50m)或者用户携带移动终端将在预设时长(例如,20s)后到达车辆周边时,移动终端可以提示用户使用泊出功能。
图22示出了本申请实施例提供的另一组GUI。
如图22中的(a)所示,当手机检测到手机与车辆之间的距离小于或者等于50m时,手机可以显示提示框2201,提示框2201中包括提示信息“泊入车位为窄车位,一键启动自动泊出”。当手机检测到用户点击提示框2201的操作时,手机可以显示遥控泊车的显示界面。
如图22中的(b)所示,响应于检测到用户点击控件2202的操作,手机可以提示用户“请选择泊出方向”、向左泊出控件2202以及向右泊出控件2203。
如图22中的(c)所示,当手机检测到用户点击向右泊出控件2203的操作时,手机可以向车辆发送泊车指令,该泊车指令用于指示车辆向右泊出。响应于接收到该泊车指令,车辆可以开始向右侧自动泊出。同时,车辆还可以实时向手机发送车辆的泊出轨迹、车辆的位姿信息、周围环境等信息。响应于接收到车辆发送的信息,手机可以通过显示界面显示车辆的泊出轨迹、周围环境信息等。
如图22中的(d)所示,当车辆完成泊出后,车辆可以向手机发送已完成泊出的指示信息。响应于接收到该指示信息,手机可以提示用户车辆已完成泊出。
一个实施例中,车辆还可以根据用户日常用车的时间段(例如,泊出车辆的时间段),设定泊出时间段[t 1,t 2]。在该时间段内,若移动终端与车辆之间的距离小于或者等于预设距离,移动终端可以提示用户使用泊出功能。一个实施例中,车辆也可以在该时间段内检测到移动终端与车辆之间的距离小于或者等于预设距离时自动泊出车位。
本申请实施例中,移动终端可以基于移动终端与车辆之间的距离提醒用户使用自动泊出功能,提高遥控泊车的使用率。同时,利用用户步行至车辆的时间启动车辆并泊出车位,实现到达车位可直接上车,从而有助于节约时间并且减少用户等待。
图23示出了本申请实施例提供的泊车方法2300的示意性流程图。如图23所示,该方法2300包括:
S2301,获取多个泊车区域的信息。
可选地,该获取多个泊车区域的信息之前,该方法还包括:根据该相对位置关系和用户的第三驾驶行为,确定该车辆的泊车模式,该泊车模式包括泊入泊车区域或者泊出泊车区域。
示例性的,该第三驾驶行为包括但不限于以下一项或者多项:挡位的信息、方向盘转向的信息、在确定推荐的泊车区域之前的第一预设时长内车辆是否上电的信息、在确定推荐的泊车区域之前车辆所处的自动泊车模式。
例如,可以根据以下条件中的一个或者多个来确定泊车模式为泊入泊车区域:车辆可以识别到车位,车辆未在车位内或者车辆未完全泊入车位内;车辆从未在车位内的状态切换为进入一个或者多个车位内(例如,用户在人驾泊入车位过程中经过多次揉库均未泊入车位);车辆从未在车位内的状态切换至泊入车位,但车辆未在车位内居中停放(例如,车辆未在车位内居中停放前的一个时间段内,车辆检测到用户人驾泊入车位的操作);在判断泊车模式之前,车辆检测到进入自动泊入模式,且车辆未泊入车位时主动或者被动退出自动泊入模式。
又例如,可以根据以下条件中的一个或者多个来确定泊车模式为泊出泊车区域:车辆可以识别到车位,车辆在车位内且居中停放;车辆初次上电启动,车辆可以识别到车位且车辆处于车位内;在判断泊车模式之前,车辆检测到进入自动泊出模式,且车辆未泊出车位时主动或者被动退出自动泊出模式;车辆的车身处于车位内,且车辆检测到用户经过一次或者多次驾驶车辆后车身未完全离开车位。
可选地,该确定该车辆的泊车模式之前,该方法还包括:确定该车辆的速度小于或者等于预设速度阈值。
S2302,获取车辆与该多个泊车区域中每个泊车区域之间的相对位置关系。
可选地,该相对位置关系还包括该车辆与该每个泊车区域之间的距离信息D 1、该车辆的第二侧的车轮中心点与该第一侧的车位线的中心点的连线与该第二侧所在方向的夹角θ 1,该第一侧、该第二侧与该车辆泊入泊车区域的方向相对应。
应理解,上述距离信息D 1、夹角θ 1的描述可以参考上述实施例中的描述,此处不再赘述。
S2303,根据该相对位置关系和用户的第一驾驶行为,向用户推荐第一泊车区域,该多个泊车区域包括该第一泊车区域。
可选地,该方法还包括:根据该相对位置关系和用户的第二驾驶行为,向用户推荐第二泊车区域,该多个泊车区域包括该第二泊车区域。
可选地,该第一驾驶行为包括车辆的第一挡位信息以及车辆的第一方向盘转向信息,该第一方向盘转向信息对应车轮的第一转向方向,该泊车模式为泊入泊车区域,该根据该相对位置关系和用户的第一驾驶行为,向用户推荐第一泊车区域,包括:根据该第一挡位信息、该第一转向方向和该每个泊车区域的第一侧所在的方向之间的夹角θ 2,向用户推荐第一泊车区域,该第一侧与该车辆泊入泊车区域的方向相对应。
应理解,上述夹角θ 2的描述可以参考上述实施例中的描述,此处不再赘述。
可选地,该方法还包括:根据该车辆的位姿和该第一泊车区域的信息,确定从该车辆的当前位置至该第一泊车区域的泊车轨迹的信息;向用户提示该泊车轨迹的信息。
可选地,该泊车轨迹的信息包括从该车辆当前位置至该第一泊车区域的规划揉库次数、规划泊车路径、规划泊车时长中的一个或者多个;其中,该方法还包括:当满足以下条件中的一个或者多个时,提示用户使用自动泊车功能:检测到从该当前位置至该第一泊车区域的行驶过程中用户的揉库次数大于或者等于该规划揉库次数;检测到该车辆从该当前位置至该第一泊车区域的行驶路径的长度大于或者等于该规划泊车路径的长度;或者,检测到该车辆从该当前位置至该第一泊车区域的泊车时长大于或者等于该规划泊车时长。
可选地,该方法还包括:在该车辆泊入该第一泊车区域且该车辆未居中停放在该第一泊车区域中时,提示用户该车辆未居中停放或者提示用户使用自动泊车功能。
本申请实施例还提供用于实现以上任一种方法的装置,例如,提供一种装置包括用以实现以上任一种方法中车辆所执行的各步骤的单元(或手段)。
图24示出了本申请实施例提供的泊车装置2400的示意性框图。如图24所示,该装置2400包括:
获取单元2401,用于获取多个泊车区域的信息;
该获取单元2401,还用于获取车辆与该多个泊车区域中每个泊车区域之间的相对位置关系;
推荐单元2402,用于根据该相对位置关系和用户的第一驾驶行为,向用户推荐第一泊车区域,该多个泊车区域包括该第一泊车区域。
可选地,该推荐单元2402,还用于根据该相对位置关系和用户的第二驾驶行为,向用户推荐第二泊车区域,该多个泊车区域包括该第二泊车区域。
可选地,该装置2400还包括:第一确定单元,用于在该获取单元获取该多个泊车区域的信息之前,根据该相对位置关系和用户的第三驾驶行为,确定该车辆的泊车模式,该泊车模式包括泊入泊车区域或者泊出泊车区域。
可选地,该第一驾驶行为包括车辆的第一挡位信息以及车辆的第一方向盘转向信息,该第一方向盘转向信息对应车轮的第一转向方向,该泊车模式为泊入泊车区域,该推荐单元具体用于:根据该第一挡位信息、该第一转向方向和该每个泊车区域的第一侧所在的方向之间的夹角,向用户推荐第一泊车区域,该第一侧与该车辆泊入泊车区域的方向相对应。
可选地,该相对位置关系还包括该车辆与该每个泊车区域之间的距离信息、该车辆的第二侧的车轮中心点与该第一侧的车位线的中心点的连线与该第二侧所在方向的夹角,该第一侧、该第二侧与该车辆泊入泊车区域的方向相对应。
可选地,该第一确定单元还用于:在确定该车辆的泊车模式之前,确定该车辆的速度小于或者等于预设速度阈值。
可选地,该装置还包括:第二确定单元,用于根据该车辆的位姿和该第一泊车区域的信息,确定从该车辆的当前位置至该第一泊车区域的泊车轨迹的信息;第一提示单元,用于向用户提示该泊车轨迹的信息。
可选地,该泊车轨迹的信息包括从该车辆当前位置至该第一泊车区域的规划揉库次数、规划泊车路径、规划泊车时长中的一个或者多个;该第一提示单元,还用于当满足以下条件中的一个或者多个时,提示用户使用自动泊车功能:检测到从该当前位置至该第一泊车区域的行驶过程中用户的揉库次数大于或者等于该规划揉库次数;检测到该车辆从该当前位置至该第一泊车区域的行驶路径的长度大于或者等于该规划泊车路径的长度;或 者,检测到该车辆从该当前位置至该第一泊车区域的泊车时长大于或者等于该规划泊车时长。
可选地,该装置还包括:第二提示单元,用于在该车辆泊入该第一泊车区域且该车辆未居中停放在该第一泊车区域中时,提示用户该车辆未居中停放或者提示用户使用自动泊车功能。
以上获取单元可以用于从图像传感器(例如摄像头)获取图像信息。推荐单元可以用于控制显示装置显示推荐的泊车区域的信息。或者推荐单元可以用于控制语音模块(例如扬声器)播放语音信息,进而向用户提示推荐的泊车区域的信息。
应理解以上装置中各单元的划分仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。此外,装置中的单元可以以处理器调用软件的形式实现;例如装置包括处理器,处理器与存储器连接,存储器中存储有指令,处理器调用存储器中存储的指令,以实现以上任一种方法或实现该装置各单元的功能,其中处理器例如为通用处理器,例如CPU或微处理器,存储器为装置内的存储器或装置外的存储器。或者,装置中的单元可以以硬件电路的形式实现,可以通过对硬件电路的设计实现部分或全部单元的功能,该硬件电路可以理解为一个或多个处理器;例如,在一种实现中,该硬件电路为ASIC,通过对电路内元件逻辑关系的设计,实现以上部分或全部单元的功能;再如,在另一种实现中,该硬件电路为可以通过PLD实现,以FPGA为例,其可以包括大量逻辑门电路,通过配置文件来配置逻辑门电路之间的连接关系,从而实现以上部分或全部单元的功能。以上装置的所有单元可以全部通过处理器调用软件的形式实现,或全部通过硬件电路的形式实现,或部分通过处理器调用软件的形式实现,剩余部分通过硬件电路的形式实现。
在本申请实施例中,处理器是一种具有信号的处理能力的电路,在一种实现中,处理器可以是具有指令读取与运行能力的电路,例如CPU、微处理器、GPU、或DSP等;在另一种实现中,处理器可以通过硬件电路的逻辑关系实现一定功能,该硬件电路的逻辑关系是固定的或可以重构的,例如处理器为ASIC或PLD实现的硬件电路,例如FPGA。在可重构的硬件电路中,处理器加载配置文档,实现硬件电路配置的过程,可以理解为处理器加载指令,以实现以上部分或全部单元的功能的过程。此外,还可以是针对人工智能设计的硬件电路,其可以理解为一种ASIC,例如NPU、TPU、DPU等。
可见,以上装置中的各单元可以是被配置成实施以上方法的一个或多个处理器(或处理电路),例如:CPU、GPU、NPU、TPU、DPU、微处理器、DSP、ASIC、FPGA,或这些处理器形式中至少两种的组合。
此外,以上装置中的各单元可以全部或部分可以集成在一起,或者可以独立实现。在一种实现中,这些单元集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。该SOC中可以包括至少一个处理器,用于实现以上任一种方法或实现该装置各单元的功能,该至少一个处理器的种类可以不同,例如包括CPU和FPGA,CPU和人工智能处理器,CPU和GPU等。
本申请实施例还提供了一种装置,该装置包括处理单元和存储单元,其中存储单元用于存储指令,处理单元执行存储单元所存储的指令,以使该装置执行上述实施例执行的方法或者步骤。
可选地,若该装置位于车辆中,上述处理单元可以是图1所示的处理器151-15n。
本申请实施例还提供了一种车辆,该车辆可以包括上述装置2400。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述方法。
本申请实施例还提供了一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行上述方法。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应理解,本申请实施例中,该存储器可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。
还应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计 算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖。在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种泊车方法,其特征在于,包括:
    获取多个泊车区域的信息;
    获取车辆与所述多个泊车区域中每个泊车区域之间的相对位置关系;
    根据所述相对位置关系和用户的第一驾驶行为,向用户推荐第一泊车区域,所述多个泊车区域包括所述第一泊车区域。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    根据所述相对位置关系和用户的第二驾驶行为,向用户推荐第二泊车区域,所述多个泊车区域包括所述第二泊车区域。
  3. 如权利要求1或2所述的方法,其特征在于,所述向用户推荐第一泊车区域之前,所述方法还包括:
    根据所述相对位置关系和用户的第三驾驶行为,确定所述车辆的泊车模式,所述泊车模式包括泊入泊车区域或者泊出泊车区域。
  4. 如权利要求3所述的方法,其特征在于,所述第一驾驶行为包括所述车辆的第一挡位信息以及所述车辆的第一方向盘转向信息,所述第一方向盘转向信息对应车轮的第一转向方向,所述泊车模式为泊入泊车区域,所述根据所述相对位置关系和用户的第一驾驶行为,向用户推荐第一泊车区域,包括:
    根据所述第一挡位信息、所述第一转向方向和所述每个泊车区域的第一侧所在的方向之间的夹角,向用户推荐所述第一泊车区域,所述第一侧与所述车辆泊入泊车区域的方向相对应。
  5. 如权利要求3或4所述的方法,其特征在于,所述相对位置关系还包括所述车辆与所述每个泊车区域之间的距离信息、所述车辆的第二侧的车轮中心点与所述每个泊车区域在第一侧的车位线的中心点的连线与所述第二侧所在方向的夹角,所述第一侧、所述第二侧与所述车辆泊入泊车区域的方向相对应。
  6. 如权利要求3至5中任一项所述的方法,其特征在于,所述确定所述车辆的泊车模式之前,所述方法还包括:
    确定所述车辆的速度小于或者等于预设速度阈值。
  7. 如权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述车辆的位姿和所述第一泊车区域的信息,确定从所述车辆的当前位置至所述第一泊车区域的泊车轨迹的信息;
    向用户提示所述泊车轨迹的信息。
  8. 根据权利要求7所述的方法,其特征在于,所述泊车轨迹的信息包括从所述车辆当前位置至所述第一泊车区域的规划揉库次数、规划泊车路径、规划泊车时长中的一个或者多个;
    其中,所述方法还包括:
    当满足以下条件中的一个或者多个时,提示用户使用自动泊车功能:
    检测到从所述当前位置至所述第一泊车区域的行驶过程中用户的揉库次数大于或者 等于所述规划揉库次数;
    检测到所述车辆从所述当前位置至所述第一泊车区域的行驶路径的长度大于或者等于所述规划泊车路径的长度;或者,
    检测到所述车辆从所述当前位置至所述第一泊车区域的泊车时长大于或者等于所述规划泊车时长。
  9. 如权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    在所述车辆泊入所述第一泊车区域且所述车辆未居中停放在所述第一泊车区域时,提示用户所述车辆未居中停放或者提示用户使用自动泊车功能。
  10. 如权利要求2所述的方法,其特征在于,所述第二驾驶行为包括第二挡位的信息和/或第二方向盘转向的信息。
  11. 如权利要求3所述的方法,其特征在于,所述第三驾驶行为包括第三挡位的信息、第三方向盘转向的信息、在确定所述车辆的泊车模式之前的第一预设时长内所述车辆是否上电的信息、在确定所述车辆的泊车模式之前所述车辆所处的自动泊车模式中的一个或者多个。
  12. 一种泊车装置,其特征在于,包括:
    获取单元,用于获取多个泊车区域的信息;
    所述获取单元,还用于获取车辆与所述多个泊车区域中每个泊车区域之间的相对位置关系;
    推荐单元,用于根据所述相对位置关系和用户的第一驾驶行为,向用户推荐第一泊车区域,所述多个泊车区域包括所述第一泊车区域。
  13. 如权利要求12所述的装置,其特征在于,
    所述推荐单元,还用于根据所述相对位置关系和用户的第二驾驶行为,向用户推荐第二泊车区域,所述多个泊车区域包括所述第二泊车区域。
  14. 如权利要求12或13所述的装置,其特征在于,所述装置还包括:
    第一确定单元,用于根据所述相对位置关系和用户的第三驾驶行为,确定所述车辆的泊车模式,所述泊车模式包括泊入泊车区域或者泊出泊车区域。
  15. 如权利要求14所述的装置,其特征在于,所述第一驾驶行为包括所述车辆的第一挡位信息以及所述车辆的第一方向盘转向信息,所述第一方向盘转向信息对应车轮的第一转向方向,所述泊车模式为泊入泊车区域,
    所述推荐单元具体用于:根据所述第一挡位信息、所述第一转向方向和所述每个泊车区域的第一侧所在的方向之间的夹角,向用户推荐第一泊车区域,所述第一侧与所述车辆泊入泊车区域的方向相对应。
  16. 如权利要求14或15所述的装置,其特征在于,所述相对位置关系还包括所述车辆与所述每个泊车区域之间的距离信息、所述车辆的第二侧的车轮中心点与所述每个泊车区域在第一侧的车位线的中心点的连线与所述第二侧所在方向的夹角,所述第一侧、所述第二侧与所述车辆泊入泊车区域的方向相对应。
  17. 如权利要求14至16中任一项所述的装置,其特征在于,所述第一确定单元还用于:
    在确定所述车辆的泊车模式之前,确定所述车辆的速度小于或者等于预设速度阈值。
  18. 如权利要求12至17中任一项所述的装置,其特征在于,所述装置还包括:
    第二确定单元,用于根据所述车辆的位姿和所述第一泊车区域的信息,确定从所述车辆的当前位置至所述第一泊车区域的泊车轨迹的信息;
    第一提示单元,用于向用户提示所述泊车轨迹的信息。
  19. 如权利要求18所述的装置,其特征在于,所述泊车轨迹的信息包括从所述车辆当前位置至所述第一泊车区域的规划揉库次数、规划泊车路径、规划泊车时长中的一个或者多个;
    所述第一提示单元,还用于当满足以下条件中的一个或者多个时,提示用户使用自动泊车功能:
    检测到从所述当前位置至所述第一泊车区域的行驶过程中用户的揉库次数大于或者等于所述规划揉库次数;
    检测到所述车辆从所述当前位置至所述第一泊车区域的行驶路径的长度大于或者等于所述规划泊车路径的长度;或者,
    检测到所述车辆从所述当前位置至所述第一泊车区域的泊车时长大于或者等于所述规划泊车时长。
  20. 如权利要求12至19中任一项所述的装置,其特征在于,所述装置还包括:
    第二提示单元,用于在所述车辆泊入所述第一泊车区域且所述车辆未居中停放在所述第一泊车区域时,提示用户所述车辆未居中停放或者提示用户使用自动泊车功能。
  21. 如权利要求13所述的装置,其特征在于,所述第二驾驶行为包括第二挡位的信息和/或第二方向盘转向的信息。
  22. 如权利要求14所述的装置,其特征在于,所述第三驾驶行为包括第三挡位的信息、第三方向盘转向的信息、在确定所述车辆的泊车模式之前的第一预设时长内所述车辆是否上电的信息、在确定所述车辆的泊车模式之前所述车辆所处的自动泊车模式中的一个或者多个。
  23. 一种泊车装置,其特征在于,包括处理器和存储器,所述存储器用于存储程序指令,所述处理器用于调用所述程序指令来执行权利要求1至11中任一项所述的方法。
  24. 一种车辆,其特征在于,所述车辆包括如权利要求12至23中任一项所述的装置。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读介质存储有程序代码,当所述程序代码在计算机上运行时,使得计算机执行如权利要求1至11中任意一项所述的方法。
  26. 一种芯片,其特征在于,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的指令,以执行如权利要求1至11中任一项所述的方法。
  27. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码在计算机上运行时,使得所述计算机执行如权利要求1至11中任一项所述的方法。
PCT/CN2022/081636 2022-03-18 2022-03-18 一种泊车方法、装置和车辆 WO2023173396A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/081636 WO2023173396A1 (zh) 2022-03-18 2022-03-18 一种泊车方法、装置和车辆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/081636 WO2023173396A1 (zh) 2022-03-18 2022-03-18 一种泊车方法、装置和车辆

Publications (1)

Publication Number Publication Date
WO2023173396A1 true WO2023173396A1 (zh) 2023-09-21

Family

ID=88021894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081636 WO2023173396A1 (zh) 2022-03-18 2022-03-18 一种泊车方法、装置和车辆

Country Status (1)

Country Link
WO (1) WO2023173396A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017168754A1 (ja) * 2016-04-01 2017-10-05 三菱電機株式会社 自動駐車システム、自動駐車制御装置および自動駐車制御方法
CN111591283A (zh) * 2020-04-13 2020-08-28 长城汽车股份有限公司 一种监控车辆运动轨迹的方法、装置及系统
CN112644478A (zh) * 2020-12-30 2021-04-13 广州小鹏自动驾驶科技有限公司 一种泊车控制方法和装置
CN113788009A (zh) * 2021-08-27 2021-12-14 北京百度网讯科技有限公司 指示泊车模式的方法和装置、电子设备
WO2021259280A1 (zh) * 2020-06-24 2021-12-30 中国第一汽车股份有限公司 一种车辆泊车方法、装置、车载设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017168754A1 (ja) * 2016-04-01 2017-10-05 三菱電機株式会社 自動駐車システム、自動駐車制御装置および自動駐車制御方法
CN108885825A (zh) * 2016-04-01 2018-11-23 三菱电机株式会社 自动泊车系统、自动泊车控制装置及自动泊车控制方法
CN111591283A (zh) * 2020-04-13 2020-08-28 长城汽车股份有限公司 一种监控车辆运动轨迹的方法、装置及系统
WO2021259280A1 (zh) * 2020-06-24 2021-12-30 中国第一汽车股份有限公司 一种车辆泊车方法、装置、车载设备及存储介质
CN112644478A (zh) * 2020-12-30 2021-04-13 广州小鹏自动驾驶科技有限公司 一种泊车控制方法和装置
CN113788009A (zh) * 2021-08-27 2021-12-14 北京百度网讯科技有限公司 指示泊车模式的方法和装置、电子设备

Similar Documents

Publication Publication Date Title
US20240075961A1 (en) Inferring State of Traffic Signal and Other Aspects of a Vehicle&#39;s Environment Based on Surrogate Data
CN110379193B (zh) 自动驾驶车辆的行为规划方法及行为规划装置
US20200269835A1 (en) Vehicle control device, vehicle control method, and storage medium
CN112714729A (zh) 车辆的路径规划方法以及车辆的路径规划装置
CN113968216B (zh) 一种车辆碰撞检测方法、装置及计算机可读存储介质
WO2020005875A1 (en) Orientation-adjust actions for autonomous vehicle operational management
CN113492830B (zh) 一种车辆泊车路径规划方法及相关设备
US10649453B1 (en) Introspective autonomous vehicle operational management
CN112534483B (zh) 预测车辆驶出口的方法和装置
CN111376853B (zh) 车辆控制系统、车辆控制方法及存储介质
CN113460033B (zh) 一种自动泊车方法以及装置
EP3407325A1 (en) Display device control method and display device
US11753037B2 (en) Method and processor for controlling in-lane movement of autonomous vehicle
JP2020518501A (ja) 複雑なリカレント低速マヌーバを実行する自動車自律運転
JP2020140516A (ja) 車両制御システム、車両制御方法、およびプログラム
US10678249B2 (en) System and method for controlling a vehicle at an uncontrolled intersection with curb detection
WO2022061702A1 (zh) 驾驶提醒的方法、装置及系统
CN114440908A (zh) 一种规划车辆驾驶路径的方法、装置、智能车以及存储介质
WO2023173396A1 (zh) 一种泊车方法、装置和车辆
CN113799794A (zh) 车辆纵向运动参数的规划方法和装置
WO2023039737A1 (zh) 自动泊车的方法和装置
CN114616153B (zh) 防碰撞的方法和控制装置
WO2023010267A1 (zh) 确定泊出方向的方法和装置
WO2022127502A1 (zh) 控制方法和装置
WO2024036580A1 (zh) 运动轨迹规划的方法、装置以及智能驾驶设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931430

Country of ref document: EP

Kind code of ref document: A1