WO2023173355A1 - 一种声学输出装置 - Google Patents

一种声学输出装置 Download PDF

Info

Publication number
WO2023173355A1
WO2023173355A1 PCT/CN2022/081409 CN2022081409W WO2023173355A1 WO 2023173355 A1 WO2023173355 A1 WO 2023173355A1 CN 2022081409 W CN2022081409 W CN 2022081409W WO 2023173355 A1 WO2023173355 A1 WO 2023173355A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
vibration
output device
acoustic output
mass element
Prior art date
Application number
PCT/CN2022/081409
Other languages
English (en)
French (fr)
Inventor
朱光远
张磊
付峻江
齐心
王庆依
Original Assignee
深圳市韶音科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市韶音科技有限公司 filed Critical 深圳市韶音科技有限公司
Priority to KR1020237000511A priority Critical patent/KR20230136590A/ko
Priority to EP22821276.7A priority patent/EP4274258A4/en
Priority to PCT/CN2022/081409 priority patent/WO2023173355A1/zh
Priority to CN202280005697.4A priority patent/CN117121509A/zh
Priority to JP2023511970A priority patent/JP2024513277A/ja
Priority to TW111145122A priority patent/TW202339521A/zh
Priority to US18/064,282 priority patent/US20230300521A1/en
Publication of WO2023173355A1 publication Critical patent/WO2023173355A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2869Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself
    • H04R1/2876Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself by means of damping material, e.g. as cladding
    • H04R1/288Reduction of undesired resonances, i.e. standing waves within enclosure, or of undesired vibrations, i.e. of the enclosure itself by means of damping material, e.g. as cladding for loudspeaker transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • H04R1/025Arrangements for fixing loudspeaker transducers, e.g. in a box, furniture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • H04R17/10Resonant transducers, i.e. adapted to produce maximum output at a predetermined frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/26Damping by means acting directly on free portion of diaphragm or cone
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/204Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using bending displacement, e.g. unimorph, bimorph or multimorph cantilever or membrane benders
    • H10N30/2041Beam type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/045Plane diaphragms using the distributed mode principle, i.e. whereby the acoustic radiation is emanated from uniformly distributed free bending wave vibration induced in a stiff panel and not from pistonic motion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • H04R7/06Plane diaphragms comprising a plurality of sections or layers
    • H04R7/10Plane diaphragms comprising a plurality of sections or layers comprising superposed layers in contact
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/16Mounting or tensioning of diaphragms or cones
    • H04R7/18Mounting or tensioning of diaphragms or cones at the periphery
    • H04R7/22Clamping rim of diaphragm or cone against seating

Definitions

  • This specification relates to the field of acoustics, and in particular to an acoustic output device.
  • Piezoelectric ceramic-driven acoustic output devices utilize the inverse piezoelectric effect of piezoelectric ceramic materials to generate vibrations to radiate sound waves outward.
  • piezoelectric ceramic-driven acoustic output devices have the advantages of high electromechanical conversion efficiency, low energy consumption, small size, and high integration.
  • piezoelectric ceramic-driven acoustic output devices have problems such as insufficient low-frequency output and more vibration modes in the audible range, so the sound quality is poor.
  • Beam structures can be used in piezoelectric ceramic driven acoustic output devices to increase low frequency output capabilities and reduce low frequency resonant frequencies.
  • the beam structure may introduce more high-order modes in the audible range, and may especially produce broad-frequency resonance valleys in the mid-frequency band, thereby weakening the mid-frequency output.
  • Embodiments of this specification provide an acoustic output device, which may include a vibrating component and a mass element.
  • the vibration component includes a piezoelectric structure and a vibration element, wherein the piezoelectric structure can be used to convert electrical signals into mechanical vibrations, and the vibration element can be in contact with the piezoelectric structure at a first position of the piezoelectric structure.
  • Structural connections receive said mechanical vibrations to produce sound signals.
  • the mass element can be connected to the piezoelectric structure at a second position of the piezoelectric structure.
  • the vibration response of the first position of the piezoelectric structure has a resonance peak and a resonance valley, and the mass element can reduce the amplitude of the resonance peak and the resonance valley. Value difference.
  • the piezoelectric structure has a beam structure, and the first position and the second position may be disposed at different positions in the length direction of the beam structure.
  • the beam structure includes a fixed end, and the difference between the vibration acceleration level of the beam structure at the first position and the vibration acceleration level of the fixed end may be greater than 20 dB.
  • the ratio of the distance between the second position and the fixed end of the beam structure to the length of the beam structure may be greater than 1/3.
  • the ratio of the elastic coefficient between the mass element and the piezoelectric structure to the mass of the mass element may be in the range of (100 ⁇ ) 2 - (10000 ⁇ ) 2 .
  • the mass of the mass element may be concentrated at the second location.
  • the mass of the mass element is evenly distributed around the second location.
  • the mass element has a mass in the range of 0.1-6g.
  • the elastic coefficient between the mass element and the piezoelectric structure is in the range of 9N/m-6 ⁇ 10 6 N/m.
  • the mass element may be further connected to the housing of the acoustic output device.
  • the ratio of the elastic coefficient between the mass element and the housing and the elastic coefficient between the mass element and the piezoelectric structure may be less than 10.
  • the elastic coefficient between the mass element and the piezoelectric structure is smaller than the elastic coefficient between the mass element and the housing.
  • the mass of the vibration element is 0.1-0.9g, and the ratio of the mass of the mass element to the mass of the vibration component is less than 5.
  • the mass of the vibration element is 0.9-1.8g, and the ratio of the mass of the mass element to the mass of the vibration component is less than 2.
  • the mass of the vibration element is 1.8-5g, and the ratio of the mass of the mass element to the mass of the vibration component is less than 1.
  • the mass element may be elastically connected to the piezoelectric structure through an elastic member.
  • At least a part of the mass element is an elastic structure, and the mass element is elastically connected to the piezoelectric structure through the elastic structure.
  • the elastic structure includes a pore structure.
  • damping material is included in the pore structure.
  • the acoustic output device includes a piezoelectric ceramic driven acoustic output device.
  • FIG. 1 is a block diagram of an exemplary acoustic output device according to some embodiments of the present specification
  • Figure 2 is a schematic structural diagram of an exemplary vibration assembly according to some embodiments of this specification.
  • Figure 3A is an equivalent structural schematic diagram of an exemplary beam structure in a second position according to some embodiments of this specification
  • Figure 3B is an equivalent structural schematic diagram of a mass element connected to a beam structure at a second position according to some embodiments of this specification;
  • FIG. 4A is a vibration schematic diagram of an exemplary beam structure shown in accordance with some embodiments of the present specification.
  • Figure 4B is a vibration schematic diagram of a back beam structure connected to a mass element according to some embodiments of this specification;
  • Figure 4C is a vibration response curve of the first position of the beam structure with and without additional mass elements according to some embodiments of the present specification
  • FIGS. 5A and 5B are vibration schematic diagrams of an exemplary vibration assembly shown in accordance with some embodiments of the present specification.
  • Figure 5C is a schematic diagram of the vibration assembly after connecting the mass element according to some embodiments of this specification.
  • Figure 5D is a vibration response curve diagram of the first position of the vibration assembly with or without a mass element according to some embodiments of this specification;
  • Figure 6 is a schematic structural diagram of the fusion of the elastic part and the mass part according to some embodiments of this specification.
  • Figure 7 is a vibration response curve diagram of the first position when the beam structure shown in some embodiments of the present specification is connected to a mass element that combines elasticity and mass;
  • Figure 8 is a structural schematic diagram of elastically uniformly distributed mass elements connected to a beam structure according to some embodiments of the present specification
  • Figure 9 is a schematic structural diagram of an elastic non-uniformly distributed mass element according to some embodiments of this specification.
  • Figure 10 is a schematic structural diagram of a mass element with uniformly distributed mass and/or damping according to some embodiments of this specification;
  • Figure 11 is a schematic structural diagram of an exemplary elastic member connected to a mass part according to some embodiments of this specification.
  • Figure 12 is a vibration response curve diagram of a beam structure connecting elastic and mass-separated mass elements in a first position according to some embodiments of the present specification
  • Figure 13 is a vibration response curve diagram of the first position of the piezoelectric structure when the mass of the mass element is concentratedly distributed at the second position according to some embodiments of this specification;
  • Figure 14 is a vibration response curve diagram of the first position of the piezoelectric structure when the mass elements are concentrated and evenly distributed according to some embodiments of this specification;
  • Figure 15 is a schematic structural diagram of multiple mass elements connected to a piezoelectric structure according to some embodiments of this specification.
  • Figure 16 is a vibration response curve diagram of the first position of the piezoelectric structure after multiple mass elements are connected according to some embodiments of this specification;
  • Figure 17 is a schematic structural diagram of the elastic connection between the mass element, the piezoelectric structure and the housing according to some embodiments of this specification;
  • Figure 18 is a vibration response curve diagram of the first position of the piezoelectric structure when the first elastic coefficient and the second elastic coefficient are different according to some embodiments of this specification;
  • Figure 19 is a vibration response curve diagram of the first position of the piezoelectric structure corresponding to different mr values when the mass of the vibrating element is 0.5g according to some embodiments of this specification;
  • Figure 20 is a vibration response curve diagram of the first position of the piezoelectric structure corresponding to different mr values when the mass of the vibrating element is 1g according to some embodiments of this specification;
  • Figure 21 is a vibration response curve diagram of the first position of the piezoelectric structure corresponding to different mr values when the mass of the vibrating element is 2g according to some embodiments of this specification.
  • Resonance peak 1310. Resonance Valley; 1320, resonance peak; 1410, resonance peak; 1511, piezoelectric structure; 1520, mass element; 1512, vibration element; 1610, second-order valley; 1620, third-order valley; 1720, mass element; 1711, piezoelectric structure ; 1810, resonance peak; 1820, resonance valley; 1910, resonance peak; 2010, resonance peak; 2110, resonance peak.
  • system means of distinguishing between different components, elements, parts, portions or assemblies at different levels.
  • said words may be replaced by other expressions if they serve the same purpose.
  • the embodiment of this specification provides an acoustic output device.
  • the acoustic output device may include a vibrating component and a mass element.
  • the vibration component may include a piezoelectric structure (eg, a beam structure) and a vibration element (eg, a diaphragm, a vibration plate, etc.) for converting electrical signals into mechanical vibrations.
  • the vibration element may be mechanically connected to the piezoelectric structure at a first position of the piezoelectric structure, thereby receiving the mechanical vibration to generate a sound signal.
  • the mass element may be connected (eg, elastically connected) to the piezoelectric structure at a second position of the piezoelectric structure.
  • the first position and the second position are disposed at different positions in the length direction of the piezoelectric structure (eg, beam structure).
  • the mass element elastically connected to the piezoelectric structure can reduce the amplitude difference between the resonance peak and the resonance valley of the vibration response of the first position of the piezoelectric structure in the target frequency range (for example, 50Hz-5000Hz), thereby improving the sound signal sound quality.
  • the elastic connection can produce a damping effect on the piezoelectric structure, making the vibration response curve of the acoustic output device relatively smooth within the target frequency range, thereby further improving the sound quality of the sound signal generated by the acoustic output device.
  • FIG. 1 is a block diagram of an exemplary acoustic output device according to some embodiments of the present specification.
  • the acoustic output device 100 may include a vibrating component 110 and a mass element 120 .
  • the acoustic output device 100 may include a moving coil driven acoustic output device, an electrostatic driven acoustic output device, a piezoelectric driven acoustic output device, a moving iron driven acoustic output device, a gas driven acoustic output device, or an electromagnetic driven acoustic output device. etc. or any combination thereof.
  • acoustic output device 100 may include a piezoelectric ceramic driven acoustic output device.
  • the acoustic output device 100 can be implemented as glasses, smart bracelets, headphones, hearing aids, smart helmets, smart watches, smart clothing, smart backpacks, smart accessories, etc., or any combination thereof.
  • the acoustic output device 100 may be functional myopia glasses, reading glasses, cycling glasses, sunglasses, etc., or it may be intelligent glasses (such as audio glasses with a headphone function).
  • the acoustic output device 100 may also be a head-mounted device such as a helmet, an augmented reality (Augmented Reality, AR) device, or a virtual reality (Virtual Reality, VR) device.
  • the augmented reality device or virtual reality device may include a virtual reality helmet, virtual reality glasses, augmented reality headset, augmented reality glasses, etc., or any combination thereof, for example, the virtual reality device and/or the augmented reality device may include Google Glass, Oculus Rift, Hololens, Gear VR, etc.
  • the vibration component 110 may be used to convert signals containing sound information into sound signals.
  • signals containing sound information may include electrical signals, optical signals, etc.
  • the sound signal may include bone conduction sound waves or air conduction sound waves, and the sound waves may be transmitted to the human ear through bone conduction or air conduction.
  • the vibration component 110 can receive electrical signals, generate mechanical vibrations, and thereby output sound waves.
  • vibration component 110 may include a conversion structure for converting signals containing acoustic information into mechanical vibrations.
  • Exemplary conversion structures may include moving coil structures, electrostatic structures, piezoelectric structures, moving iron structures, pneumatic structures, electromagnetic structures, etc. or any combination thereof.
  • the vibration assembly 110 may include a vibration element (eg, diaphragm, vibration plate) for converting mechanical vibration into a sound signal.
  • the vibration assembly 110 may include a piezoelectric structure and a vibration element, the vibration element being connected to the piezoelectric structure at a first position of the piezoelectric structure, the piezoelectric structure being used to convert a signal containing sound information into a mechanical Vibration, the vibration element is used to receive the mechanical vibration to generate a sound signal. More description of the vibration assembly can be found in other parts of this specification, such as Figure 2 and its related descriptions.
  • the mass element 120 may be used to provide mass to the mechanical vibration of the vibration component 110 , and the quality is used to change the amplitude difference between the resonance peak and the resonance valley of the mechanical vibration generated by the vibration component 110 .
  • the mass element 120 can be connected to the piezoelectric structure at the second position of the piezoelectric structure.
  • the piezoelectric structure may have a beam structure (eg, a cantilever beam). The first position and the second position may be arranged at different positions along the length of the beam structure.
  • the beam structure may include fixed ends. The fixed end here can refer to the position on the beam structure where the vibration acceleration or acceleration level is less than the vibration acceleration threshold.
  • the vibration acceleration level of the fixed end may be less than 5dB, 3dB, 1dB, 0.8dB, 0.6dB, 0.4dB, 0.2dB, or 0.05dB, etc.
  • the difference between the vibration acceleration level of the beam structure at the first position and the vibration acceleration level at the fixed end may be greater than 5dB, 10dB, 20dB, 30dB, 40dB, or 50dB, etc.
  • the vibration response of the first position of the piezoelectric structure has a resonant peak and a resonant valley within the target frequency range.
  • the mass element 120 can reduce the amplitude difference between the resonance peak and the resonance valley.
  • the target frequency range may include 50Hz-5000Hz, 100Hz-5000Hz, 200Hz-4000Hz, 500Hz-4000Hz, 500Hz-3000Hz, 500Hz-2000Hz, or 1000Hz-2000Hz, etc.
  • the second position can be set such that the mass element 120 can reduce the amplitude difference between the resonance peak and the resonance valley within the target frequency range.
  • the ratio of the distance between the second position and the fixed end to the length of the beam structure may be greater than 1/3, 2/5, 2/3, etc.
  • the mass of the mass element 120 can be set such that within the target frequency range, the mass element 120 can reduce the amplitude difference between the resonance peak and the resonance valley.
  • the mass of mass element 120 may be concentrated at the second location or evenly distributed around the second location. In some embodiments, the mass of mass element 120 may be set within a target mass range.
  • the target mass range may include 0.01-50g, 0.0.2-40g, 0.03-30g, 0.04-20g, 0.05-10g, 0.07-8g, 0.09-6g, 0.1-6g, 0.2-6g, 0.5 -6g, or 1-5g, etc.
  • the mass of mass element 120 may be related to the mass of vibrating assembly 110 .
  • the mass of the vibration component 110 may refer to the total mass of the piezoelectric structure and the vibration element.
  • the ratio of the mass of the mass element 120 to the mass of the vibrating component 110 may be within a preset ratio range.
  • the mass of the vibration element may be 0.1-0.9g, and the ratio of the mass of the mass element 120 to the mass of the vibration component 110 may be less than 5.
  • the mass of the vibrating element may be 0.9-1.8g, and the ratio of the mass of the mass element 120 to the mass of the vibrating component 110 may be less than 2.
  • the mass of the vibrating element may be 1.8-5g, and the ratio of the mass of the mass element 120 to the mass of the vibrating component 110 may be less than 1.
  • the connection between mass element 120 and the piezoelectric structure may include a resilient connection.
  • the acoustic output device 100 or the mass element 120 may include an elastic member (not shown) through which the mass element 120 may be elastically connected to the piezoelectric structure at a second position of the piezoelectric structure.
  • at least a part of the mass element 120 may be an elastic structure, and the mass element 120 may be elastically connected to the piezoelectric structure through the elastic structure at the second position of the piezoelectric structure.
  • the first elastic coefficient between the mass element 120 and the piezoelectric structure can be set so that the mass element 120 can reduce the amplitude difference between the resonance peak and the resonance valley in the target frequency range.
  • the first elastic coefficient between the mass element 120 and the piezoelectric structure may be set at 9N/m-6 ⁇ 10 6 N/m, 50N/m-6 ⁇ 10 6 N/m, 100N/m-6 ⁇ 10 6 N/m, 1000N/m-6 ⁇ 10 6 N/m, 10 4 N/m-6 ⁇ 10 6 N/m, 5 ⁇ 10 4 N/m-6 ⁇ 10 6 N/m, 5 Within the range of ⁇ 10 5 N/m-6 ⁇ 10 6 N/m, 9 ⁇ 10 5 N/m-6 ⁇ 10 6 N/m, or 10 6 N/m-6 ⁇ 10 6 N/m.
  • the mass element 120 may be connected to the housing of the acoustic output device 100 .
  • the connection may include an elastic connection.
  • the acoustic output device 100 or the mass element 120 may include an elastic member (not shown) by which the mass element 120 may be elastically connected to the housing of the acoustic output device 100 .
  • at least a part of the mass element 120 may be an elastic structure, and the mass element 120 may be elastically connected to the housing of the acoustic output device 100 through the elastic structure.
  • the elastic connection between the mass element 120 and the housing may have a second elastic coefficient.
  • the first elastic coefficient may be smaller than the second elastic coefficient.
  • the ratio between the second elastic coefficient and the first elastic coefficient may be less than the preset threshold. For example only, the ratio between the second elastic coefficient and the first elastic coefficient may be less than 10.
  • the mass element 120 can be in any shape, such as a regular structure or an irregular structure such as a cylinder, a cuboid, a cone, a cone, a sphere, etc.
  • the material of the mass element 120 may include but is not limited to plastic, wood, metal, or any other material with a certain degree of rigidity.
  • the material of the mass element 120 may also include various metamaterials such as negative stiffness materials and cubic stiffness materials that are beneficial to expanding the audio frequency bandwidth of the acoustic output device 100 .
  • the mass element 120 may also be used to provide damping to the mechanical vibration of the vibrating assembly 110, and the damping is used to smooth the response curve in the low frequency range.
  • mass element 120 itself may provide damping to vibrating assembly 110 .
  • mass element 120 may include a damping portion that may provide damping to vibrating assembly 110 .
  • mass element 120 provides damping to the mechanical vibration of vibrating assembly 110 by being elastically connected to vibrating assembly 110 . More description of the mass element 120 can be found in other parts of this specification, such as FIG. 3 and its related description.
  • the description of the acoustic output device 100 shown in FIG. 1 is for illustrative purposes only and is not intended to limit the scope of the present description.
  • various variations and modifications can be made under the guidance of this specification. These deformations and modifications will fall within the scope of protection of the manual.
  • the components shown in the figures can be adjusted according to actual conditions.
  • the acoustic output device 100 may include multiple mass elements.
  • the acoustic output device 100 may include an elastic element for providing elasticity between the mass element and the vibrating component.
  • FIG. 2 is a schematic structural diagram of an exemplary vibration assembly according to some embodiments of this specification.
  • the vibration component may include a piezoelectric structure 211 and a vibration element 212 .
  • the vibration element 212 may be connected to the piezoelectric structure 211 .
  • the connection may include bolt connection, riveting, interference fit, buckle, bonding, injection molding, welding, magnetic attraction, etc. or any combination thereof.
  • Piezoelectric structure 211 may be used to convert electrical signals into mechanical vibrations.
  • the piezoelectric structure may include piezoelectric material.
  • Exemplary piezoelectric materials may include piezoelectric crystals, piezoelectric ceramics, piezoelectric polymers, and the like.
  • the piezoelectric structure 211 may have a beam structure (eg, a cantilever beam), and the beam structure may include a piezoelectric material layer 2111 and a substrate 2112 .
  • the metal base plate 2112 extends along the length of the beam structure. In the length direction perpendicular to the beam structure (eg, the length direction L shown in FIG. 2 ), the metal substrate 2112 overlaps with the piezoelectric material layer 2111 .
  • the beam structure may include n (n is a positive integer greater than 1) layers of piezoelectric material layers 2111 and n-1 layers of metal substrates 2112. In the length direction perpendicular to the beam structure, the metal substrate 2112 is in contact with the piezoelectric material layer 2111.
  • the electrical material layers 2111 may be overlapped.
  • the beam structure may include a fixed end 2113 and a free end 2114.
  • the fixed end here can refer to the position on the beam structure where the vibration acceleration or acceleration level is less than the vibration acceleration threshold.
  • the vibration acceleration level of the fixed end 2113 may be less than 5dB, 3dB, 1dB, 0.8dB, 0.6dB, 0.4dB, 0.2dB, or 0.05dB, etc.
  • the fixed end 2113 may be connected to a fixed location or structure on the acoustic output device.
  • the fixed position or structure here may refer to a position or structure on the acoustic output device where the vibration acceleration or acceleration level is less than the vibration acceleration threshold.
  • the acoustic output device may include a housing (not shown in Figure 2), the beam structure may be disposed within the housing, and its fixed end 2113 may be fixedly connected to the housing.
  • the acoustic output device may include a counterweight, and the fixed end 2113 of the beam structure may be fixedly connected to the counterweight.
  • the free end 2114 may refer to the end of the beam structure that is free to vibrate.
  • the vibration element 212 is used to receive mechanical vibration and convert it into a sound signal for output.
  • the vibration element 212 may be connected with the piezoelectric structure 211 (or the beam structure) at a first position of the piezoelectric structure 211 (or the beam structure) to receive the mechanical vibration generated by the piezoelectric structure 211 .
  • the first position may be set at a position on the beam structure where the mechanical vibration amplitude is greater. The difference between the vibration acceleration level of the beam structure at the first position and the vibration acceleration level of the fixed end 2113 may be greater than the difference threshold.
  • the difference between the vibration acceleration level at the first position and the vibration acceleration level at the fixed end 2113 may be greater than 5dB, 10dB, 20dB, 30dB, 40dB, or 50dB, etc.
  • the first location connected to the vibrating element 212 may be the free end 2114.
  • the vibrating element 212 when the acoustic output device is an air-conduction acoustic output device, the vibrating element 212 may be a diaphragm. The diaphragm can receive the mechanical vibration generated by the piezoelectric structure 211 and further push the air to vibrate to generate a sound signal.
  • the vibration element 212 when the acoustic output device is a bone conduction acoustic output device, the vibration element 212 may be a vibration plate, and the vibration plate may be in contact with the human body to transmit vibration to generate a sound signal.
  • a mass element (not shown in FIG. 2 ) can be connected to the piezoelectric structure 211 at a second position of the piezoelectric structure 211 .
  • the first position and the second position may be disposed at different positions along the length direction of the beam structure.
  • the second position may be located between the beam structure fixed end 2113 and the first position.
  • the ratio of the distance between the second position and the fixed end 2113 of the beam structure to the length of the beam structure may be greater than 1/3, 2/5, or 2/3, etc.
  • piezoelectric structure 211 may resonate when converting electrical signals into mechanical vibrations. Accordingly, the vibration response of the piezoelectric structure 211 at the first position has a resonance peak and a resonance valley.
  • the vibration response of the piezoelectric structure 211 at the first position has a resonance peak and a resonance valley.
  • Exemplary target frequency ranges may include 50Hz-5000Hz, 100Hz-5000Hz, 200Hz-4000Hz, 500Hz-4000Hz, 500Hz-3000Hz, 500Hz-2000Hz, or 1000Hz-2000Hz, etc.
  • the mass element can be used to reduce the position and amplitude difference between the resonance peak and the resonance valley at the first position, so that the vibration waveform of the vibration element at the first position is gentler.
  • the second position may be located at the antinode (i.e., the position with the largest amplitude) of the mechanical vibration of the beam structure at a specific frequency, such that the antinode area (the position with the maximum amplitude) is within a certain range to the left and/or to the right.
  • the mechanical vibration at the specific frequency can be suppressed by the mass element and the vibration energy is partially transferred to the first position, so that the mechanical vibration at the specific frequency at the first position is enhanced.
  • the specific frequency may be a frequency corresponding to when a resonance valley occurs at the first position of the piezoelectric structure.
  • the vibration mode of the first position of the piezoelectric structure can be made gentler, thus Can effectively improve sound quality.
  • Figure 3A is an equivalent structural schematic diagram of an exemplary beam structure at a second position according to some embodiments of this specification
  • Figure 3B is an equivalent structural diagram of a mass element connected to the beam structure at its second position according to some embodiments of this specification. Schematic diagram of the effective structure.
  • the vibration of the beam structure in the mechanical vibration state at the second position can be equivalent to the forced vibration of the single-degree-of-freedom system, and its vibration equation can be expressed as (without considering the influence of damping within the system):
  • m 1 represents the mass of the beam structure at the second position (i.e., the antinode area)
  • k 1 represents the equivalent elastic coefficient at the second position
  • represents the vibration displacement at the second position
  • F represents the size of the excitation force.
  • represents the angular frequency of the exciting force
  • F cos ⁇ t represents the component of the exciting force along the vibration direction of the second position.
  • the mass element may be elastically connected to the piezoelectric structure.
  • the mass element can be elastically connected to the piezoelectric structure through an elastic component (for example, an elastic component independently provided with respect to the mass element).
  • the mass element can be elastically connected to the piezoelectric structure through its own elastic structure (for example, an elastic structure integrated with the mass element).
  • the mass element may be elastically connected to the second position of the beam structure.
  • the vibration of the beam structure at the second position after setting the mass element can be equivalent to the forced vibration of the two-degree-of-freedom system as shown in Figure 3B.
  • the mass part with mass m 2 and the elastic part with elastic coefficient k 2 represent the mass element elastically connected to the beam structure. Its vibration equation can be expressed as (without considering the influence of damping within the system):
  • Equation (5) can be transformed into:
  • the natural angular frequency ⁇ r of the mass element can be expressed as
  • the elastic coefficient between the mass element and the piezoelectric structure and/or the mass of the mass element can be set, thereby setting the natural angular frequency ⁇ r of the mass element, so that the mass element can reduce the resonance at the first position at the target frequency.
  • the difference in amplitude between the peak and the resonant valley can be set so that the natural angular frequency ⁇ r of the mass element is the same as or similar to the preset target frequency, thereby reducing the resonance peak at the first position and the resonance at the target frequency.
  • the amplitude difference between valleys can be expressed as
  • the target frequency range may be in the range of 50Hz-5000Hz.
  • the elastic coefficient and/or the mass of the mass element can be set so that the ratio of the elastic coefficient between the mass element and the piezoelectric structure to the mass of the mass element is in the range of (100 ⁇ ) 2 - (10000 ⁇ ) 2 .
  • the mass of the mass element may be set within a target mass range.
  • the target mass range may include 0.01-50g, 0.0.2-40g, 0.03-30g, 0.04-20g, 0.05-10g, 0.07-8g, 0.09-6g, 0.1-6g, 0.2-6g, 0.5 -6g, or 1-5g, etc.
  • the elastic coefficient between the mass element and the piezoelectric structure can be in the range of 9N/m-6 ⁇ 10 6 N/ m range.
  • the fixed end 2113 shown in Figure 2 is located at the end of the beam structure. It should be noted that the fixed end 2113 can also be arranged at other positions on the beam structure.
  • the mass element may include a plurality of individually arranged mass blocks.
  • Figure 4A is a vibration schematic diagram of an exemplary beam structure according to some embodiments of this specification
  • Figure 4B is a vibration schematic diagram of a beam structure connected to a mass element according to some embodiments of this specification
  • Figure 4C is a vibration diagram of an exemplary beam structure according to some embodiments of this specification
  • Figure 4C is a vibration diagram of an exemplary beam structure according to some embodiments of this specification
  • the beam structure 411a shown in FIG. 4A resonates during mechanical vibration (eg, when the angular frequency or frequency of the mechanical vibration is equal to the angular frequency or frequency of the beam structure 411a in this mode).
  • the vibration amplitude is the largest in the middle part of the beam structure 411a, and less mechanical vibration will be transmitted to the free end (ie, the first position), thus resulting in a smaller vibration amplitude at the first position.
  • the vibration response of the beam structure 411a at the first position generates a resonance valley.
  • the vibration response curve of the beam structure 411a in the first position is shown as a dotted line in Figure 4C.
  • the vibration response curve of the first position of the beam structure 411a has relatively obvious resonance peaks 430 and resonance valleys 440 in the range of 100Hz-1000Hz (i.e., the middle and low frequency bands), causing the acoustic output device to vibrate in the middle and low frequency bands.
  • the output is attenuated, affecting the quality of the output sound.
  • the output of the vibration of the acoustic output device in the mid-frequency band can be improved by increasing the vibration amplitude at the first position.
  • a mass element 420 is elastically connected to the antinode area (ie, the second position) of the mechanical vibration of the beam structure 411a.
  • the mass element 420 can be used to suppress the vibration mode in the antinode region, thereby changing the vibration mode at the first position, so that the beam structure can output a relatively gentle vibration response curve, thereby improving the vibration output of the acoustic output device in the mid-frequency band.
  • the vibration response curve of the first position of the beam structure 411a after the mass element 420 is connected is shown as a solid line in Figure 4C. As shown in FIG.
  • the vibration response curve of the beam structure 411a at the first position in the range of 100Hz-1000Hz (for example, around 500Hz), the vibration response curve of the beam structure 411a at the first position generates a resonance peak 450.
  • the amplitude difference between the resonance peak and the resonance valley of the vibration response curve at the first position is significantly reduced, and the response curve in the mid- and low-frequency bands is relatively flat, so that the acoustic output device operates in the mid- and low-frequency bands. Sound quality is improved.
  • the elastic connection between the mass element and the beam structure 411a can have a certain damping effect, so that the resonant peaks and resonant valleys in the mid- and low-frequency bands present a smooth transition without making the transition transition too sharp, which is conducive to improving the sound quality. .
  • FIG. 5A and 5B are vibration schematic diagrams of an exemplary vibration assembly according to some embodiments of this specification;
  • FIG. 5C is a schematic diagram of the vibration assembly after connecting a mass element according to some embodiments of this specification;
  • FIG. 5D is a schematic diagram of some vibration components according to some embodiments of this specification. The vibration response curve of the first position of the vibration assembly shown in the embodiment with and without a mass element.
  • the vibration assembly shown in Figures 5A and 5B includes a beam structure 511a and a vibration element 512a.
  • the vibration element 512a is connected to the free end (ie, the first position) of the beam structure 511a.
  • the vibration components shown in Figures 5A and 5B respectively correspond to the vibration modes of the beam structure at different frequencies. Under the vibration modes corresponding to Figures 5A and 5B, the vibration amplitude at the first position on the beam structure is small, while the vibration amplitude at other positions is large. For example, as shown in Figure 5A, the vibration amplitude of the beam structure 511a is the largest at position A, and less mechanical vibration will be transmitted to the free end (i.e., the first position), thus resulting in a smaller vibration amplitude at the first position.
  • the vibration response curve of the beam structure 511a in the first position is shown as a dotted line in Figure 5D.
  • Figure 5D in the range of 500Hz-1000Hz, a resonance valley 530 appears in the vibration response curve of the first position of the vibration component.
  • Figure 5B the beam structure 511a has the largest vibration amplitude at position B, and less mechanical vibration will be transmitted to the free end (i.e., the first position), thus causing the vibration amplitude at the first position to be larger.
  • Small Combined with Figure 5D, in the range of 1000Hz-2000Hz, a resonance valley 540 appears in the vibration response curve of the first position of the vibration component.
  • the resonance valley 530 in the range of 500Hz-1000Hz as shown in Figure 5A can be called a second-order valley
  • the resonance valley 540 in the range of 1000Hz-2000Hz as shown in Figure 5B can be called a third-order valley. valley.
  • a mass element 520 is elastically connected to the antinode area of the third-order valley of the mechanical vibration of the beam structure 511a (ie, the area where position B is located).
  • the mass element 520 may be used to suppress the vibration mode in the antinode region to change the vibration mode at the first position of the beam structure 511a.
  • the vibration response curve of the vibration component at the first position after the mass element 520 is connected is the solid line curve shown in Figure 5D.
  • the original second-order valley and the original second-order valley in the range of 500Hz-2000Hz (i.e., the middle and low frequency band)
  • the third-order valley has been significantly improved.
  • the amplitude difference between the resonance peak and the resonance valley is significantly reduced, making the response curve in the mid-low frequency band relatively flat, thereby improving the sound quality of the acoustic output device in the mid-low frequency band.
  • the mass element may include a mass portion having mass and an elastic portion having elasticity.
  • the mass element can be elastically connected to the piezoelectric structure via its elastic part.
  • the mass element may further include a damping part for increasing vibration damping of the piezoelectric structure, and the damping part may play a role in smoothing the transition of the vibration response curve.
  • the mass portion may include metallic or non-metallic materials or the like. The density of the material may be within a preset density range.
  • the preset density range may include 0.01-100g/cm 3 , 0.05-80g/cm 3 , 0.1-60g/cm 3 , 0.2-50g/cm 3 , 0.3-40g/cm 3 , 0.4-30g/cm 3 , Or 0.5-20g/ cm3 , etc.
  • the damping part may be implemented as damping material, such as rubber or the like.
  • the elastic portion may be integrated with the mass portion.
  • the elastic portion may be at least part of the mass element.
  • at least part of the mass element may be of elastic structure.
  • the mass element can be elastically connected to the piezoelectric structure via the elastic structure.
  • Exemplary elastic structures may include spring structures.
  • the elastic structure may be made of elastic material.
  • Exemplary elastic materials may include rubber, latex, silicone, sponge, etc. or any combination thereof.
  • the elastic structure can serve as both an elastic portion and a mass portion.
  • the elastic structure may include a metal rubber with a higher mass and/or density.
  • higher quality materials can be added to the elastic structure, such as metal powders added to the sponge.
  • a damping portion may be included in the elastic structure.
  • a damping material eg, nitrile
  • a damping material can be used to create the elastic structure.
  • a damping material can be added to the elastic structure, for example, damping paint is coated on the surface of the elastic structure or penetrates into the interior of the elastic structure.
  • Figure 6 is a schematic structural diagram of the fusion of the elastic part and the mass part according to some embodiments of this specification.
  • high quality material can be evenly distributed in the elastic structure 621a.
  • silica gel can be uniformly doped with a certain quality of metal powder and then integrally formed.
  • high quality material 6211b may be disposed at the center of elastic structure 621b.
  • high quality material 6211c may be provided at multiple locations within elastic structure 621c.
  • FIG. 7 is a vibration response curve at the first position when the beam structure is connected to a mass element that combines elasticity and mass according to some embodiments of this specification.
  • M_r2 5.1722E-4kg
  • connecting the mass element in which the elastic part and the mass part are integrated to the piezoelectric structure can reduce the amplitude difference between the resonance peak and the resonance valley of the piezoelectric structure at the first position within the target range.
  • the resonance peak appearing in the low frequency band for example, 80Hz-300Hz
  • the sensitivity of the acoustic output device to low frequencies gradually decreases.
  • the total mass of the mass element in which the elastic part and the mass part are separated can be within the target mass range.
  • the target mass range may include 0.01-50g, 0.0.2-40g, 0.03-30g, 0.04-20g, 0.05-10g, 0.07-8g, 0.09-6g, 0.1-6g, 0.2-6g, 0.5 -6g, or 1-5g, etc.
  • FIGS. 8-10 illustrate some embodiments in which a mass element with an elastic part and a mass part integrated is connected to a beam structure.
  • Figure 8 is a schematic structural diagram of elastically uniformly distributed mass elements connected to a beam structure according to some embodiments of the present specification.
  • Figure 9 is a schematic structural diagram of a mass element with non-uniformly distributed elasticity according to some embodiments of this specification.
  • Figure 10 is a schematic structural diagram of a mass element with uniformly distributed mass and/or damping according to some embodiments of this specification.
  • the mass element may include an elastic structure 821.
  • the elastic structure 821 may extend along the length of the beam structure 811 .
  • the elasticity of the elastic structure 821 may be evenly distributed along the length of the beam structure 811 .
  • the mass portions 822 within the elastic structure 821 may be distributed non-uniformly along the length of the beam structure 811 .
  • the vibration modes of the beam structure 811 in different frequency bands can be shown as dotted lines in the figure.
  • the mass portions 822 within the elastic structure 821 may be distributed at a plurality of second positions respectively.
  • the plurality of second positions are respectively arranged in the antinode areas of the vibration of the lower beam structure 811 in different frequency bands, thereby reducing the amplitude difference between the resonance peak and the resonance valley at the first position in multiple frequency bands, and improving the performance of the acoustic output device. Sound quality across multiple frequency bands.
  • the mass element may include an elastic structure 921.
  • the elastic structure 921 may extend along the length direction of the beam structure 911, and the elastic structure 921 may have a plurality of mass parts 922 therein.
  • elastic structures 921 may be distributed non-uniformly along the length of beam structure 911. For example, an area where the elastic structure 921 redistributes the mass portions 922 may have greater elasticity than an area where the mass portions 922 are distributed. For another example, compared to the area with mass portions 922 of smaller mass, the area in the elastic structure 921 where the mass portion 922 of greater mass is distributed may have greater elasticity.
  • the elastic structure 1021 may include a pore structure 1023 .
  • Pore structure 1023 may include at least one pore.
  • the pore structures may be evenly distributed in the elastic structure 1021 .
  • damping material may be included in the pore structure 1023. The damping material can smoothly transition the vibration response curve of the acoustic output device, thereby effectively improving sound quality.
  • the elastic part may be provided separately from the mass part.
  • the elastic portion may include an elastic member through which the mass element may be elastically connected to the piezoelectric structure.
  • Exemplary elastic members may include foam, silicone, springs, pressure springs, etc. or any combination thereof.
  • the mass part may be implemented as a metal or non-metallic material or the like.
  • the density of the material may be within a preset density range.
  • the preset density range may include 0.01-100g/cm 3 , 0.05-80g/cm 3 , 0.1-60g/cm 3 , 0.2-50g/cm 3 , 0.3-40g/cm 3 , 0.4-30g/cm 3 , Or 0.5-20g/ cm3 , etc.
  • the mass portion may be implemented as a block of metal (eg, iron, copper, metal alloy, etc.), an encapsulating liquid, etc., or a battery, circuit board, etc. of an acoustic output device.
  • the mass portion may be connected to the elastic member.
  • Exemplary connection methods may include bolting, riveting, interference fit, buckle, bonding, injection molding, welding, magnetic attraction, etc. or any combination thereof.
  • both the mass part and the elastic member can be in any shape, such as regular structures or irregular structures such as cylinders, cuboids, cones, truncated cones, spheres, etc.
  • Figure 11 is a schematic structural diagram of an exemplary elastic member connected to a mass part according to some embodiments of this specification. As shown in FIG. 11 , the mass part 1122 is connected to one end of the elastic member 1121 . The other end of the elastic member 1121 may be further connected to a piezoelectric structure (not shown in Figure 6).
  • FIG. 12 is a vibration response curve diagram of a beam structure connecting elastic and mass-separated mass elements in a first position according to some embodiments of the present specification.
  • M_r2 2.3889E-4kg
  • Figure 12 in the range of 100Hz-1000Hz, when mass elements with different masses and elastic separation are added, the resonance valley 1220 of the vibration response of the beam structure at the first position has been effectively improved, and the resonance peak 1210 and the resonance The amplitude difference between the valleys 1220 decreases.
  • the total mass of the mass element in which the elastic part and the mass part are separated can be within the target mass range.
  • the target The mass range may include 0.01-50g, 0.0.2-40g, 0.03-30g, 0.04-20g, 0.05-10g, 0.07-8g, 0.09-6g, 0.1-6g, 0.2-6g, 0.5-6g, or 1-5g etc.
  • the examples provided in Figures 6-12 are for illustrative purposes only and are not intended to limit the scope of this specification.
  • various deformations and modifications can be made under the guidance of this description.
  • the pore structure 1023 can also be non-uniformly distributed in the elastic structure.
  • the mass part may be disposed on the side of the elastic part.
  • the mass of the mass element may be concentrated at the second location of the piezoelectric structure.
  • the concentrated distribution here may mean that the mass of the mass element is concentrated in the area where the second position is located (for example, the area with the second position as the geometric center).
  • the size of the region eg, area, side length, diameter, etc.
  • the area may be a square area, and the side length of the square area may be less than 25 mm, 20 mm, 18 mm, 16 mm, or 12 mm, etc.
  • the area may be a circular area, and the diameter of the circular area may be less than 25 mm, 20 mm, 18 mm, 16 mm, or 12 mm, etc.
  • Figure 13 is a vibration response curve diagram of the first position of the piezoelectric structure when the mass of the mass element is concentratedly distributed at the second position according to some embodiments of this specification. Figure 13 shows the vibration response curve of the first position when the mass of the mass element is concentratedly distributed at the second position and there are different elastic coefficients between the mass element and the piezoelectric structure.
  • 7.5*1col means the response curve of the first position when the mass element is connected to the piezoelectric structure through a single row of rectangular foam with a length of 7.5mm
  • 15*2col means that the mass element passes through a double row of rectangles with a length of 15mm.
  • the length of the rectangular foam may refer to the size of the rectangular foam along the length direction of the piezoelectric structure (or beam structure). Rectangular foams of different lengths have the same width and thickness. As the length and/or number of rows of rectangular foam increases, the elastic coefficient between the mass element and the piezoelectric structure increases.
  • the resonance valley 1310 of the piezoelectric structure at the first position is effectively improved when the mass element and the piezoelectric structure have different elastic coefficients.
  • the resonance peak 1320 corresponding to the mass element in the mid-frequency band moves to the right along the abscissa, and the smooth transition effect of damping increases. Therefore, in some embodiments, the frequency corresponding to the mid-frequency peak of the acoustic output device and the sensitivity of the acoustic output device in the mid-frequency band can be adjusted by setting the elastic size of the mass element.
  • the mass of the mass element may be evenly distributed around the second location. Uniform distribution here can refer to the area where the mass is evenly distributed around the second location.
  • the area of the surrounding area may be within a preset area range.
  • the preset area range may include 0.1*0.1mm 2 -50*50mm 2 , 0.5*0.5mm 2 -40*40mm 2 , 0.5*1mm 2 -35*35mm 2 , 1*1mm 2 -30*30mm 2. 1*2mm 2 -30*20mm 2 , 2*2mm 2 -30*15mm 2 , or 3*3mm 2 -30*10mm 2 , etc.
  • Figure 14 is a vibration response curve of the first position of the piezoelectric structure when the mass elements are concentrated and evenly distributed according to some embodiments of this specification.
  • Figure 14 shows the vibration response curve of the first position when different masses are concentrated or distributed at the second position when the elastic coefficients between the mass element and the piezoelectric structure are the same.
  • "15*2col+1.5g” means that the mass element is connected to the piezoelectric structure through a double row of rectangular foam with a length of 15mm, and the mass element is 1.5g and is concentratedly distributed.
  • the response curve of the first position “15*2col+ “distributed 1.5g” indicates the response curve of the first position when the mass element is connected to the piezoelectric structure through a double row of rectangular foam with a length of 15mm, and the mass element is 1.5g and is evenly distributed.
  • the frequency of the resonance peak 1410 of the first position vibration increases when the distribution is uniform, and the damping effect is enhanced.
  • the frequency corresponding to the frequency peak in the acoustic output device can be adjusted by setting the mass distribution mode of the mass element.
  • the mass is evenly distributed around the second position in the piezoelectric structure.
  • the mid-frequency peak of the acoustic output device can be made to correspond to the frequency. Increase, and improve mid-band sensitivity.
  • Figure 15 is a schematic structural diagram of multiple mass elements connected to a piezoelectric structure according to some embodiments of this specification.
  • the piezoelectric structure 1511 may have multiple second positions, and the vibration element 1512 may be connected to the piezoelectric structure 1511 at the first position of the piezoelectric structure 1511 .
  • the plurality of second positions shown may each have a mass element 1520 connected thereto.
  • a plurality of second positions on the piezoelectric structure 1511 may be determined based on vibration modes of the piezoelectric structure 1511 in different target frequency ranges. For example, with reference to FIGS.
  • the second position may be set at the antinode position when the piezoelectric structure 1511 resonates within the target frequency range.
  • the mass element may be fixed by connecting it to other components of the acoustic output device (eg, battery, housing, etc.). In some embodiments, the fixation of the mass element can prevent the vibration of the mass element itself from affecting the vibration mode of the vibration component.
  • the connection between the mass element and the acoustic output device may be an elastic connection. The elastic connection can reduce the vibration of the acoustic output device that affects the vibration of the vibration component through the mass element, and at the same time can reduce the connection between the mass element and the acoustic output device that affects the vibration of the mass element.
  • the mass element is elastically connected to the housing of the acoustic output device.
  • the elastic connection method between the mass element and the housing can be similar to the elastic connection method between the mass element and the piezoelectric structure, which will not be described again here.
  • Figure 17 is a schematic structural diagram of the elastic connection between the mass element, the piezoelectric structure and the housing according to some embodiments of this specification. As shown in Figure 17, one side of the mass element 1720 can be elastically connected to the piezoelectric structure 1711 through an elastic structure or elastic piece, and the other side of the mass element 1720 can be elastically connected to the shell (not shown in Figure 17) through an elastic structure or elastic piece. connect.
  • the mass element can control the diaphragm mode at the first position of the piezoelectric structure by setting the elasticity between the mass element and the piezoelectric structure and the elasticity between the mass element and the housing.
  • the elastic coefficient between the mass element and the piezoelectric structure i.e., the first elastic coefficient
  • the elastic coefficient between the mass element and the housing i.e., the second elastic coefficient
  • Figure 18 is a vibration response curve diagram of the first position of the piezoelectric structure when the first elastic coefficient and the second elastic coefficient are different according to some embodiments of this specification.
  • the elasticity corresponding to Figure 18 can be achieved by rectangular foam.
  • n1 and n2 respectively represent the number of rectangular foam layers between the mass element and the piezoelectric structure and the number of rectangular foam layers between the mass element and the shell. The more layers of rectangular foam, the smaller the corresponding elastic coefficient.
  • the setting of the first elastic coefficient being greater than or smaller than the second elastic coefficient can reduce the amplitude difference between the resonance peak 1810 and the resonance valley 1820 of the first position vibration in the medium and low frequency band.
  • the first elastic coefficient being smaller than the second elastic coefficient can make the vibration response curve at the first position flatter, which is beneficial to improving the sound quality of the acoustic output device.
  • the ratio between the second elastic coefficient and the first elastic coefficient may be less than the preset threshold.
  • the ratio between the second elastic coefficient and the first elastic coefficient may be less than 50.
  • the ratio between the second elastic coefficient and the first elastic coefficient may be less than 40.
  • the ratio between the second elastic coefficient and the first elastic coefficient may be less than 30.
  • the ratio between the second elastic coefficient and the first elastic coefficient may be less than 20.
  • the ratio between the second elastic coefficient and the first elastic coefficient may be less than 10.
  • the ratio between the second elastic coefficient and the first elastic coefficient may be less than 5.
  • the mass element by setting the mass ratio mr of the mass element to the vibration component, the mass element can reduce the amplitude difference between the resonance peak and the resonance valley of the vibration response at the first position within the target frequency range.
  • the mass ratio mr of the mass element and the vibration component can also be set to smooth the vibration response curve in the frequency band area outside the target frequency range (for example, the area after the resonance peak corresponding to the mass element), which is beneficial to improvement. Sound quality corresponding to the frequency band area.
  • the mass of the vibrating component can refer to the total mass of the piezoelectric structure and the vibrating element.
  • Figure 19 is a vibration response curve of the first position of the piezoelectric structure corresponding to different mr values when the mass of the vibrating element is 0.5g according to some embodiments of this specification.
  • mr when the mass of the vibrating element is 0.1-0.9g, mr may be less than 5. In some embodiments, when the mass of the vibrating element is 0.1-0.9g, mr may be less than 2. In some embodiments, when the mass of the vibrating element is 0.1-0.9g, mr may be less than 1. In some embodiments, in order to smooth the vibration response curve in the mid-frequency band after the resonance peak 1910 corresponding to the mass element, mr may be greater than 1.
  • Figure 20 is a vibration response curve diagram of the first position of the piezoelectric structure corresponding to different mr values when the mass of the vibrating element is 1g according to some embodiments of this specification.
  • mr when the mass of the vibrating element is 0.9-1.8g, mr may be less than 2. In some embodiments, when the mass of the vibrating element is 0.9-1.8g, mr may be less than 1.5. In some embodiments, when the mass of the vibrating element is 0.9-1.8g, mr may be less than 0.8. In some embodiments, when the mass of the vibrating element is 0.9-1.8g, in order to smooth the vibration response curve in the mid-frequency band after the resonance peak 2010 corresponding to the mass element, mr can be greater than 0.8.
  • Figure 21 is a vibration response curve diagram of the first position of the piezoelectric structure corresponding to different mr values when the mass of the vibrating element is 2g according to some embodiments of this specification.
  • mr when the mass of the vibrating element is 1.8-5g, mr may be less than 1. In some embodiments, when the mass of the vibrating element is 1.8-5g, mr may be less than 0.5. In some embodiments, when the mass of the vibrating element is 1.8-5g, mr may be less than 0.2. In some embodiments, when the mass of the vibrating element is 1.8-5g, in order to smooth the vibration response curve in the mid-frequency band after the resonance peak 2110 corresponding to the mass element, mr can be greater than 0.2.
  • the possible beneficial effects may be any one or a combination of the above, or any other possible beneficial effects.
  • the sound quality optimization effect of the acoustic output device can be optimized by simultaneously setting the mass ratio mr of the mass element to the vibrating component and the mass distribution mode of the mass element at the second position.
  • numbers are used to describe the quantities of components and properties. It should be understood that such numbers used to describe the embodiments are modified by the modifiers "about”, “approximately” or “substantially” in some examples. Grooming. Unless otherwise stated, “about,” “approximately,” or “substantially” means that the stated number is allowed to vary by ⁇ 20%. Accordingly, in some embodiments, the numerical parameters used in the specification and claims are approximations that may vary depending on the desired features of the individual embodiment. In some embodiments, numerical parameters should account for the specified number of significant digits and use general digit preservation methods. Although the numerical ranges and parameters used to identify the breadth of ranges in some embodiments of this specification are approximations, in specific embodiments, such numerical values are set as accurately as is feasible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Multimedia (AREA)
  • Piezo-Electric Transducers For Audible Bands (AREA)

Abstract

本说明书提供一种声学输出装置,所述声学输出装置包括振动组件和质量元件。振动组件可以包括压电结构和振动元件,压电结构用于将电信号转换为机械振动,振动元件在压电结构的第一位置与压电结构连接,接收机械振动以产生声音信号。质量元件在压电结构的第二位置与压电结构连接。

Description

一种声学输出装置 技术领域
本说明书涉及声学领域,特别涉及一种声学输出装置。
背景技术
压电陶瓷驱动的声学输出装置利用压电陶瓷材料的逆压电效应产生振动以向外辐射声波。与传统电动式声学输出装置相比,压电陶瓷驱动的声学输出装置具有机电换能效率高、能耗低、体积小、集成度高等优势。但与传统电磁式声学输出装置相比,压电陶瓷驱动的声学输出装置存在低频输出不足、可听域内的振动模态较多等问题,因此音质较差。可以在压电陶瓷驱动声学输出装置中使用梁结构以提升低频输出能力并降低低频谐振频率。但梁结构可能在可听域内引入更多的高阶模态,尤其可能在中频段产生宽频谐振谷,因此削弱了中频输出。
因此,希望提出一种声学输出装置,可以抑制可听域内的高阶模态,提升声学输出装置在中低频段的音质。
发明内容
本说明书实施例提供一种声学输出装置,所述声学输出装置可以包括振动组件和质量元件。所述振动组件包括压电结构和振动元件,其中,所述压电结构可以用于将电信号转换为机械振动,所述振动元件可以在所述压电结构的第一位置与所述压电结构连接,接收所述机械振动以产生声音信号。所述质量元件可以在所述压电结构的第二位置与所述压电结构连接。
在一些实施例中,在50Hz-5000Hz范围内,所述压电结构的第一位置的振动响应具有谐振峰和谐振谷,所述质量元件可以减小所述谐振峰和所述谐振谷的幅值差。
在一些实施例中,所述压电结构具有梁结构,所述第一位置与所述第二位置可以设置在所述梁结构长度方向上的不同位置。
在一些实施例中,所述梁结构包括固定端,所述梁结构在第一位置的振动加速度级与所述固定端的振动加速度级间的差值可以大于20dB。
在一些实施例中,所述第二位置与所述梁结构的固定端之间的距离与所述梁结构的长度之比可以大于1/3。
在一些实施例中,所述质量元件与所述压电结构间的弹性系数与所述质量元件的质量之比可以在(100π) 2-(10000π) 2范围内。
在一些实施例中,所述质量元件的质量可以在所述第二位置处集中分布。
在一些实施例中,所述质量元件的质量在所述第二位置周围均匀分布。
在一些实施例中,所述质量元件的质量在0.1-6g范围内。
在一些实施例中,所述质量元件与所述压电结构间的弹性系数在9N/m-6×10 6N/m范围内。
在一些实施例中,所述质量元件可以进一步与所述声学输出装置的壳体连接。
在一些实施例中,所述质量元件与所述壳体间的弹性系数与所述质量元件与所述压电结构间的弹性系数之比可以小于10。
在一些实施例中,所述质量元件与所述压电结构间的弹性系数小于所述质量元件与所述壳体间的弹性系数。
在一些实施例中,所述振动元件的质量为0.1-0.9g,所述质量元件的质量与所述振动组件的质量之比小于5。
在一些实施例中,所述振动元件的质量为0.9-1.8g,所述质量元件的质量与所述振动组件的质量之比小于2。
在一些实施例中,所述振动元件的质量为1.8-5g,所述质量元件的质量与所述振动组件的质量之比小于1。
在一些实施例中,所述质量元件可以通过弹性件与所述压电结构弹性连接。
在一些实施例中,所述质量元件的至少一部分为弹性结构,所述质量元件通过所述弹性结构与所述压电结构弹性连接。
在一些实施例中,所述弹性结构包括孔隙结构。
在一些实施例中,所述孔隙结构中包括阻尼材料。
在一些实施例中,所述声学输出装置包括压电陶瓷驱动声学输出装置。
附图说明
图1是根据本说明书一些实施例所示的示例性声学输出装置的框图;
图2是根据本说明书一些实施例所示的示例性振动组件的结构示意图;
图3A是根据本说明书一些实施例所示的示例性梁结构在第二位置的等效结构示意图;
图3B是根据本说明书一些实施例所示的质量元件连接于梁结构第二位置处的等效结构示意图;
图4A是根据本说明书一些实施例所示的示例性梁结构的振动示意图;
图4B是根据本说明书一些实施例所示的连接质量元件后梁结构的振动示意图;
图4C是根据本说明书一些实施例所示的梁结构有无附加质量元件时第一位置的振动响应曲线图;
图5A和5B是根据本说明书一些实施例所示的示例性振动组件的振动示意图;
图5C是根据本说明书一些实施例所示的连接质量元件后振动组件的示意图;
图5D是根据本说明书一些实施例所示的振动组件有无质量元件时第一位置的振动响应曲线图;
图6是根据本说明书一些实施例所示的弹性部与质量部融合的结构示意图;
图7是根据本说明书一些实施例所示的梁结构连接弹性与质量融合的质量元件时第一位置的振动响应曲线图;
图8是根据本说明书一些实施例所示的弹性均匀分布的质量元件连接至梁结构的结构示意图;
图9是根据本说明书一些实施例所示的弹性非均匀分布的质量元件的结构示意图;
图10是根据本说明书一些实施例所示的质量和/或阻尼均匀分布的质量元件的结构示意图;
图11是根据本说明书一些实施例所示的示例性弹性件与质量部连接的结构示意图;
图12是根据本说明书一些实施例所示的连接弹性与质量分离的质量元件的梁结构在第一位置的振动响应曲线图;
图13是根据本说明书一些实施例所示的质量元件的质量在第二位置集中分布时压电结构第一位置的振动响应曲线图;
图14是根据本说明书一些实施例所示的质量元件集中和均匀分布时压电结构第一位置的振动响应曲线图;
图15是根据本说明书一些实施例所示的压电结构上连接多个质量元件的结构示意图;
图16是根据本说明书一些实施例所示的连接有多个质量元件后压电结构第一位置的振动响应曲线图;
图17是根据本说明书一些实施例所示的质量元件与压电结构及壳体弹性连接的结构示意图;
图18是根据本说明书一些实施例所示的第一弹性系数与第二弹性系数不同时压电结构第一位置的振动响应曲线图;
图19是根据本说明书一些实施例所示的振动元件的质量为0.5g时不同mr值对应的压电结构第一位置的振动响应曲线图;
图20是根据本说明书一些实施例所示的振动元件的质量为1g时不同mr值对应的压电结构第一位置的振动响应曲线图;
图21是根据本说明书一些实施例所示的振动元件的质量为2g时不同mr值对应的压电结构第一位置的振动响应曲线图。
其中,100、声学输出装置;110、振动组件;120、质量元件;211、压电结构;212、振动元件;2111、压电材料层;2112、基板;2113、固定端;2114、自由端;411a、梁结构;430、谐振峰;440、谐振谷;420、质量元件;450、谐振峰;511a、梁结构;512a、振动元件;530、谐振谷;540、谐振谷;520、质量元件;621a、弹性结构;621b、弹性结构;6211b、高质量材料;621c、弹性结构;6211c、高质量材料;720、谐振谷;710、谐振峰;821、弹性结构;811、梁结构;822、质量部;921、弹性结构;911、梁结构;922、质量部;1021、弹性结构;1023、孔隙结构;1122、质量部;1121、弹性件;1220、谐振谷;1210、谐振峰;1310、谐振谷;1320、谐振峰;1410、谐振峰;1511、压电结构;1520、质量元件;1512、振动元件;1610、二阶谷;1620、三阶谷;1720、质量元件;1711、压电结构;1810、谐振峰;1820、谐振谷;1910、谐振峰;2010、谐振峰;2110、谐振峰。
具体实施方式
为了更清楚地说明本说明书实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本说明书的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本说明书应用于其它类似情景。除非从语言环境中显而易见或另做说明,图中相同标号代表相同结构或操作。
应当理解,本文使用的“系统”、“装置”、“单元”和/或“模块”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相 同的目的,则可通过其他表达来替换所述词语。
如本说明书和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
本说明书中使用了流程图用来说明根据本说明书的实施例的系统所执行的操作。应当理解的是,前面或后面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各个步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
本说明书实施例提供了一种声学输出装置。所述声学输出装置可以包括振动组件和质量元件。在一些实施例中,所述振动组件可以包括压电结构(例如,梁结构)和振动元件(例如,振膜、振动板等),所述压电结构用于将电信号转换为机械振动。所述振动元件可以在压电结构的第一位置与压电结构机械连接,从而接收所述机械振动以产生声音信号。在一些实施例中,质量元件可以在压电结构的第二位置与压电结构连接(例如,弹性连接)。所述第一位置与所述第二位置设置在所述压电结构(例如,梁结构)长度方向上的不同位置。与压电结构弹性连接的质量元件可以减小目标频率范围内(例如,50Hz-5000Hz)压电结构的第一位置的振动响应的谐振峰与谐振谷之间的幅值差,从而提升声音信号的音质。同时,所述弹性连接能够对压电结构产生阻尼效果,使得声学输出装置在目标频率范围内的振动响应曲线相对平滑,从而进一步提升声学输出装置产生的声音信号的音质。
图1是根据本说明书一些实施例所示的示例性声学输出装置的框图。如图1所示,声学输出装置100可以包括振动组件110和质量元件120。
在一些实施例中,声学输出装置100可以包括动圈驱动声学输出装置、静电驱动声学输出装置、压电驱动声学输出装置、动铁驱动声学输出装置、气体驱动声学输出装置、电磁驱动声学输出装置等或其任意组合。在一些实施例中,声学输出装置100可以包括压电陶瓷驱动声学输出装置。在一些实施例中,声学输出装置100可以实现为眼镜、智能手环、耳机、助听器、智能头盔、智能手表、智能服装、智能背包、智能配件等,或其任意组合。例如,声学输出装置100可以是功能型的近视眼镜、老花镜、骑行眼镜或太阳镜等,也可以是智能化的眼镜(例如具有耳机功能的音频眼镜)。又例如,声学输出装置100还可以是头盔、增强现实(Augmented Reality,AR) 设备或虚拟现实(Virtual Reality,VR)设备等头戴式设备。在一些实施例中,增强现实设备或虚拟现实设备可以包括虚拟现实头盔、虚拟现实眼镜、增强现实头盔、增强现实眼镜等或其任何组合,例如,虚拟现实设备和/或增强现实设备可以包括Google Glass、Oculus Rift、Hololens、Gear VR等。
振动组件110可以用于将含有声音信息的信号转换为声音信号。在一些实施例中,含有声音信息的信号可以包括电信号、光信号等。在一些实施例中,声音信号可以包括骨传导声波或气传导声波,所述声波可以通过骨传导或气传导的方式传递至人耳。例如,振动组件110可以接收电信号,产生机械振动,从而输出声波。在一些实施例中,振动组件110可以包括用于将含有声音信息的信号转换为机械振动的转换结构。示例性的转换结构可以包括动圈结构、静电结构、压电结构、动铁结构、气动结构、电磁结构等或其任意组合。在一些实施例中,振动组件110可以包括用于将机械振动转换为声音信号的振动元件(例如,振膜、振动板)。仅作为示例,振动组件110可以包括压电结构和振动元件,振动元件在压电结构的第一位置与所述压电结构连接,所述压电结构用于将含有声音信息的信号转换为机械振动,振动元件用于接收所述机械振动以产生声音信号。关于振动组件的更多说明可以参见本说明书的其它部分,例如图2及其相关描述。
质量元件120可以用于向振动组件110的机械振动提供质量,该质量用于改变振动组件110所产生的机械振动的谐振峰与谐振谷之间的幅值差。以压电结构为例进行说明,质量元件120可以在压电结构的第二位置与所述压电结构连接。在一些实施例中,压电结构可以具有梁结构(例如,悬臂梁)。第一位置和第二位置可以设置在梁结构长度方向上的不同位置。在一些实施例中,梁结构可以包括固定端。这里的固定端可以指梁结构上振动加速度或加速度级小于振动加速度阈值的位置。仅作为示例,所述固定端的振动加速度级可以小于5dB、3dB、1dB、0.8dB、0.6dB、0.4dB、0.2dB、或者0.05dB等。在一些实施例中,所述梁结构在第一位置的振动加速度级与固定端的振动加速度级间的差值可以大于5dB、10dB、20dB、30dB、40dB、或者50dB等。在一些实施例中,在目标频率范围内,压电结构的第一位置的振动响应具有谐振峰和谐振谷。质量元件120可以减小所述谐振峰与谐振谷之间的幅值差。仅作为示例,目标频率范围可以包括50Hz-5000Hz、100Hz-5000Hz、200Hz-4000Hz、500Hz-4000Hz、500Hz-3000Hz、500Hz-2000Hz、或者1000Hz-2000Hz等。
在一些实施例中,可以设置第二位置,使得在目标频率范围内,质量元件120 可以减小所述谐振峰与谐振谷之间的幅值差。仅作为示例,第二位置与固定端之间的距离与梁结构的长度之比可以大于1/3、2/5、2/3等。在一些实施例中,可以设置质量元件120的质量,使得在目标频率范围内,质量元件120可以减小所述谐振峰与谐振谷之间的幅值差。在一些实施例中,质量元件120的质量可以在第二位置处集中分布或在第二位置周围均匀分布。在一些实施例中,质量元件120的质量可以设置在目标质量范围内。仅作为示例,所述目标质量范围可以包括0.01-50g、0.0.2-40g、0.03-30g、0.04-20g、0.05-10g、0.07-8g、0.09-6g、0.1-6g、0.2-6g、0.5-6g、或者1-5g等。在一些实施例中,质量元件120的质量可以与振动组件110的质量相关。振动组件110的质量可以指压电结构与振动元件的总质量。仅作为示例,当振动元件的质量一定时,质量元件120的质量与振动组件110的质量之比可以在在预设比例范围内。例如,振动元件的质量可以为0.1-0.9g,质量元件120的质量与振动组件110的质量之比可以小于5。再例如,振动元件的质量可以为0.9-1.8g,质量元件120的质量与振动组件110的质量之比可以小于2。再例如,振动元件的质量可以为1.8-5g,质量元件120的质量与振动组件110的质量之比可以小于1。
在一些实施例中,质量元件120与压电结构之间的连接可以包括弹性连接。例如,声学输出装置100或质量元件120可以包括弹性件(未示出),质量元件120可以通过所述弹性件在压电结构的第二位置与所述压电结构弹性连接。又例如,质量元件120的至少一部分可以为弹性结构,质量元件120可以通过该弹性结构在压电结构的第二位置与所述压电结构弹性连接。在一些实施例中,可以设置质量元件120与压电结构之间的第一弹性系数,使得在目标频率范围内,质量元件120可以减小所述谐振峰与谐振谷之间的幅值差。仅作为示例,质量元件120与压电结构间的第一弹性系数可以设置在在9N/m-6×10 6N/m、50N/m-6×10 6N/m、100N/m-6×10 6N/m、1000N/m-6×10 6N/m、10 4N/m-6×10 6N/m、5×10 4N/m-6×10 6N/m、5×10 5N/m-6×10 6N/m、9×10 5N/m-6×10 6N/m、或者10 6N/m-6×10 6N/m等范围内。
在一些进一步的实施例中,质量元件120可以与声学输出装置100的壳体连接。所述连接可以包括弹性连接。例如,声学输出装置100或质量元件120可以包括弹性件(未示出),质量元件120可以通过所述弹性件与声学输出装置100的壳体弹性连接。又例如,质量元件120的至少一部分可以为弹性结构,质量元件120可以通过该弹性结构与声学输出装置100的壳体弹性连接。质量元件120与壳体间的弹性连接可以具有第二弹性系数。在一些实施例中,第一弹性系数可以小于第二弹性系数。在一 些实施例中,第二弹性系数与第一弹性系数间的比值可以小于预设阈值。仅作为示例,第二弹性系数与第一弹性系数间的比值可以小于10。
在一些实施例中,质量元件120可以为任意形状,例如圆柱体、长方体、圆锥、圆台、球体等规则结构或不规则结构体。在一些实施例中,质量元件120的材质可以包括但不限于塑胶、木质、金属等任意具有一定刚性的材质。在一些实施例中,质量元件120的材质还可以包括有利于拓展声学输出装置100的音频频宽的负刚度材料、立方刚度材料等各种超材料。在一些实施例中,质量元件120还可以用于向振动组件110的机械振动提供阻尼,该阻尼用于平滑低频段的响应曲线。例如,质量元件120本身可以向振动组件110提供阻尼。又例如,质量元件120可以包括阻尼部,该阻尼部可以向振动组件110提供阻尼。在一些实施例中,质量元件120通过与振动组件110弹性连接向振动组件110的机械振动提供阻尼。关于质量元件120的更多说明可以参见本说明书的其它部分,例如图3及其相关描述。
应当理解的是,图1所述的声学输出装置100的描述仅是出于说明目的,并不旨在限制本说明书的范围。对于本领域的普通技术人员来说,在本说明书的指导下可以进行各种变形和修改。而这些变形和修改都将落入被说明书的保护范围内。在一些实施例中,图中所示的组件可以根据实际情况进行调整。例如,声学输出装置100可以包括多个质量元件。又例如,声学输出装置100可以包括用于向质量元件与振动组件之间提供弹性的弹性元件。
图2是根据本说明书一些实施例所示的示例性振动组件的结构示意图。如图2所示,振动组件可以包括压电结构211和振动元件212。振动元件212可以与压电结构211连接。所述连接可以包括螺栓连接、铆接、过盈配合、卡扣、粘接、注塑、焊接、磁吸等或其任意组合的连接方式。
压电结构211可以用于将电信号转换为机械振动。在一些实施例中,压电结构可以包括压电材料。示例性的压电材料可以包括压电晶体、压电陶瓷、压电聚合物等。如图2所示,压电结构211可以具有梁结构(例如,悬臂梁),所述梁结构可以包括压电材料层2111和基板2112。金属基板2112沿梁结构的长度方向延伸。在垂直于梁结构的长度方向(例如,图2所示的长度方向L)上,金属基板2112与压电材料层2111重叠设置。在一些实施例中,梁结构可以包括n(n为大于1的正整数)层压电材料层2111和n-1层金属基板2112,在垂直于梁结构的长度方向上,金属基板2112与压电材料层2111可以交叠设置。
梁结构可以包括固定端2113和自由端2114。这里的固定端可以指梁结构上振动加速度或加速度级小于振动加速度阈值的位置。仅作为示例,所述固定端2113的振动加速度级可以小于5dB、3dB、1dB、0.8dB、0.6dB、0.4dB、0.2dB、或者0.05dB等。在一些实施例中,固定端2113可以与声学输出装置上的固定位置或结构连接。这里的固定位置或结构可以指声学输出装置上振动加速度或加速度级小于振动加速度阈值的位置或结构。例如,声学输出装置可以包括壳体(图2中未示出),梁结构可以设置于壳体内,其固定端2113可以与壳体固定连接。再例如,声学输出装置可以包括配重块,梁结构的固定端2113可以与配重块固定连接。自由端2114可以指梁结构上可以自由振动的一端。
振动元件212用于接收机械振动并转换为声音信号输出。在一些实施例中,振动元件212可以在压电结构211(或梁结构)的第一位置与压电结构211(或梁结构)连接以接收压电结构211产生的机械振动。在一些实施例中,第一位置可以设置在梁结构上机械振动幅度较大的位置。梁结构在第一位置的振动加速度级与固定端2113的振动加速度级间的差值可以大于差值阈值。例如,第一位置的振动加速度级与固定端2113的振动加速度级间的差值可以大于5dB、10dB、20dB、30dB、40dB、或者50dB等。仅作为示例,与振动元件212连接的第一位置可以为自由端2114。在一些实施例中,当声学输出装置为气传导声学输出装置时,振动元件212可以为振膜。所述振膜可以接收压电结构211产生的机械振动,并进一步推动空气振动以产生声音信号。在一些实施例中,当声学输出装置为骨传导声学输出装置时,振动元件212可以为振动板,振动板可以与人体接触以传递振动,从而产生声音信号。
质量元件(图2中未示出)可以在压电结构211的第二位置与压电结构211连接。在一些实施例中,第一位置与第二位置可以设置在梁结构长度方向上的不同位置。在一些实施例中,第二位置可以位于梁结构固定端2113与第一位置之间。在一些实施例中,第二位置与梁结构的固定端2113之间的距离与所述梁结构的长度之比可以大于1/3、2/5、或者2/3等。在一些实施例中,压电结构211在将电信号转换为机械振动时可能发生谐振。相应地,压电结构211在第一位置处的振动响应具有谐振峰和谐振谷。例如,在目标频率范围内,压电结构211在第一位置处的振动响应具有谐振峰和谐振谷。示例性的目标频率范围可以包括50Hz-5000Hz、100Hz-5000Hz、200Hz-4000Hz、500Hz-4000Hz、500Hz-3000Hz、500Hz-2000Hz、或者1000Hz-2000Hz等。质量元件可以用于减小第一位置处的谐振峰和谐振谷出现的位置以及幅值差,从而使第一位 置处的振动元件的振动波形较为平缓。在一些实施例中,第二位置可以位于梁结构在特定频率下的机械振动的波腹(即振幅最大的位置)处,这样波腹区域(振幅最大位置向左和/或向右一定范围内的振波区域)在该特定频率下的机械振动可以被质量元件抑制而振动能量部分转移到第一位置处,使得第一位置处在该特定频率下的机械振动得到增强。所述特定频率可以是压电结构的第一位置处出现谐振谷时所对应的频率。由于压电结构的第一位置在谐振谷处的振动得到增强,并且质量元件提供的阻尼对谐振峰处的振动的削减,可以使压电结构的第一位置的振动模态更为平缓,从而能够有效地提升音质。
以下将结合图3A及图3B对质量元件改变压电结构振动形态的原理进行示例性说明。图3A是根据本说明书一些实施例所示的示例性梁结构在第二位置的等效结构示意图;图3B是根据本说明书一些实施例所示的质量元件连接于梁结构第二位置处的等效结构示意图。
如图3A所示,机械振动状态下的梁结构,其在第二位置的振动可以等效成单自由度系统的受迫振动,其振动方程可以表示为(不考虑系统内阻尼的影响):
Figure PCTCN2022081409-appb-000001
其中,m 1表示梁结构在第二位置(即波腹区域)的质量,k 1表示第二位置处的等效弹性系数,ξ表示第二位置处的振动位移,F表示激振力的大小,ω表示激振力的角频率,F cosωt表示激振力沿第二位置振动方向的分力。式(1)的一个特解为:
Figure PCTCN2022081409-appb-000002
其中,
Figure PCTCN2022081409-appb-000003
表示第二位置处的固有角频率。在不考虑阻尼的情况下,当激振力的角频率ω等于第二位置的固有角频率ω 0时,第二位置发生谐振,振幅(位移ξ)为无穷大。考虑到实际阻尼的效果,振幅在此处出现峰值,即第二位置(或波腹区域)为梁结构垂直于长度方向的最大位移处。
在一些实施例中,质量元件可以与压电结构弹性连接。例如,质量元件可以通过弹性件(例如,相对质量元件独立设置的弹性件)与压电结构弹性连接。又例如,质量元件可以通过其本身具有的弹性结构(例如,与质量元件融合为一体的弹性结构)与压电结构弹性连接。在一些实施例中,质量元件可以弹性连接于梁结构的第二位置。设置质量元件后梁结构在第二位置处的振动可以等效为如图3B所示的二自由度系统的 受迫振动。如图3B所示的具有质量m 2的质量部与具有弹性系数k 2的弹性部表示与梁结构弹性连接的质量元件,其振动方程可以表示为(不考虑系统内阻尼的影响):
Figure PCTCN2022081409-appb-000004
其中,ξ 2表示质量元件的振动位移,其余符号的含义可以参见式(1)及其相关说明(ξ 1同ξ)。式(3)的一个特解为:
Figure PCTCN2022081409-appb-000005
其中,
Figure PCTCN2022081409-appb-000006
表示质量元件的固有角频率,α=m 2/m 1为质量元件与第二位置处的质量比。由此可知,可以通过调控质量元件的固有角频率ω r与激振力角频率ω相等,使第二位置的振动位移ξ 1为零,此时质量元件的振动方程为:
Figure PCTCN2022081409-appb-000007
式(5)可以变形为:
k 2·ξ 2r=ω+F cos ωt=0.   (1)
由式(6)可知,质量元件的弹性系数k 2与梁结构第二位置所受的激振力F cosωt的合力为零,故在不考虑阻尼的情况下,在梁结构第二位置附加质量元件可以使得波腹的振动转移到质量元件上,可以消除梁结构在第二位置的大幅度振动,考虑到实际阻尼的效果,在梁结构第二位置附加质量元件也可以明显抑制或破坏梁结构在第二位置的振动模态。此时,梁结构产生的机械振动可以被传递至第一位置,使得第一位置的振动幅度增加,振动模态更为平缓,从而使声学输出装置输出的音质得到有效提升。
在一些实施例中,质量元件的固有角频率ω r可以表示为
Figure PCTCN2022081409-appb-000008
由此,可以设置质量元件与压电结构间的弹性系数和/或质量元件的质量,从而设置质量元件的固有角频率ω r,使得质量元件可以在目标频率上减小第一位置处的谐振峰和所述谐振谷间的幅值差。例如,可以设置弹性系数和/或质量元件的质量,使质量元件的固有角频率ω r与预设目标频率相同或相似,从而在目标频率上减小第一位置处的谐振峰和所述谐振谷间的幅值差。仅作为示例,目标频率范围可以在50Hz-5000Hz范围内。相 应地,可以设置弹性系数和/或质量元件的质量,使质量元件与压电结构间的弹性系数与质量元件的质量之比在(100π) 2-(10000π) 2范围内。在一些实施例中,质量元件的质量可以设置在目标质量范围内。仅作为示例,所述目标质量范围可以包括0.01-50g、0.0.2-40g、0.03-30g、0.04-20g、0.05-10g、0.07-8g、0.09-6g、0.1-6g、0.2-6g、0.5-6g、或者1-5g等。相应地,为了在目标频率范围内质量元件可以减小所述谐振峰与谐振谷之间的幅值差,质量元件与压电结构间的弹性系数可以在9N/m-6×10 6N/m范围内。
应当注意的是,上述有关振动组件和质量元件的描述仅仅是为了示例和说明,而不限定本说明书的适用范围。对于本领域的普通技术人员来说,在本说明书的指导下可以对振动组件和质量元件进行各种修正和改变。然而,这些修正和改变仍在本说明书的范围之内。例如,图2所示的固定端2113位于梁结构的端部。需要知道的是,固定端2113还可以设置在梁结构上的其他位置。再例如,质量元件可以包括单独设置的多个质量块。
以下将结合图4A-4C及图5A-5C描述质量元件对梁结构振动状态的影响。图4A是根据本说明书一些实施例所示的示例性梁结构的振动示意图;图4B是根据本说明书一些实施例所示的连接质量元件后梁结构的振动示意图;图4C是根据本说明书一些实施例所示的梁结构有无附加质量元件时第一位置的振动响应曲线图。
如图4A所示的梁结构411a在机械振动的过程中发生谐振(例如,当机械振动的角频率或频率等于梁结构411a处于此振型时的角频率或频率时)。此时,梁结构411a的中部的振动幅度最大,将会有较少的机械振动被传递到自由端(即第一位置),因此导致第一位置的振动幅度较小。相应地,梁结构411a在第一位置的振动响应产生谐振谷。梁结构411a在第一位置的振动响应曲线如图4C中的虚线所示。如图4C所示,梁结构411a第一位置的振动响应曲线在100Hz-1000Hz范围(即中低频段)内出现较为明显的谐振峰430和谐振谷440,导致声学输出装置在中低频段振动的输出被削弱,从而影响输出声音的音质。
可以通过增加第一位置处的振动幅度来提升声学输出装置在该中频段振动的输出。如图4B所示,梁结构411a机械振动的波腹区域(即第二位置)弹性连接有质量元件420。质量元件420可以用于抑制波腹区域的振动模态,进而改变第一位置的振动模态,使梁结构能够输出较为平缓的振动响应曲线,从而提升声学输出装置在该中频段振动的输出。连接了质量元件420后的梁结构411a第一位置的振动响应曲线如图4C 中的实线所示。如图4C所示,在100Hz-1000Hz范围内(例如,500Hz左右),梁结构411a在第一位置的振动响应曲线产生谐振峰450。相比无质量元件的情况,第一位置的振动响应曲线的谐振峰和谐振谷之间的幅值差明显减小,中低频段的响应曲线相对平缓,从而使声学输出装置在中低频段的音质得到提升。在一些实施例中,质量元件与梁结构411a之间的弹性连接可以具有一定的阻尼效果,使得中低频段的谐振峰和谐振谷呈现平滑过渡,不至于过渡转折过于尖锐,有利于音质的提升。
图5A和5B是根据本说明书一些实施例所示的示例性振动组件的振动示意图;图5C是根据本说明书一些实施例所示的连接质量元件后振动组件的示意图;图5D是根据本说明书一些实施例所示的振动组件有无质量元件时第一位置的振动响应曲线图。
如图5A和5B所示的振动组件包括梁结构511a及振动元件512a。振动元件512a连接在梁结构511a的自由端(即第一位置)。如图5A和5B所示的振动组件分别对应梁结构在不同频率下的振动模态。在图5A和5B所对应的振动模态下,梁结构上第一位置的振动幅度较小,而其它位置振动幅度较大。例如,如图5A所示,梁结构511a在位置A处的振动幅度最大,将会有较少的机械振动被传递到自由端(即第一位置),因此导致第一位置的振动幅度较小。梁结构511a在第一位置的振动响应曲线如图5D中的虚线所示。结合图5D,在500Hz-1000Hz范围内,振动组件第一位置的振动响应曲线出现谐振谷530。又例如,如图5B所示,梁结构511a在位置B处的振动幅度最大,将会有较少的机械振动被传递到自由端(即第一位置),因此导致第一位置的振动幅度较小。结合图5D,在1000Hz-2000Hz范围内,振动组件第一位置的振动响应曲线出现谐振谷540。在一些实施例中,如图5A所示的在500Hz-1000Hz范围内的谐振谷530可以称为二阶谷,如图5B所示的在1000Hz-2000Hz范围内的谐振谷540可以称为三阶谷。
为提升二阶谷和三阶谷,如图5C所示,梁结构511a机械振动三阶谷的波腹区域(即位置B所在区域)弹性连接有质量元件520。质量元件520可以用于抑制波腹区域的振动模态,以改变梁结构511a第一位置的振动模态。连接了质量元件520后的振动组件在第一位置的振动响应曲线如图5D中所示的实线曲线,如图5D所示,500Hz-2000Hz范围内(即中低频段)的原二阶谷和原三阶谷得到了明显提升。相比较无质量元件的情况,谐振峰与谐振谷间的幅值差明显减小,使中低频段的响应曲线相对平缓,从而使声学输出装置在中低频段的音质得到提升。
在一些实施例中,质量元件可以包括具有质量的质量部以及具有弹性的弹性部。 质量元件可以通过其弹性部实现与压电结构的弹性连接。在一些实施例中,质量元件还可以包括用于增加压电结构振动阻尼的阻尼部,阻尼部可以起到使振动响应曲线平滑过渡的作用。在一些实施例中,质量部可以包括金属或非金属材料等。所述材料的密度可以在预设的密度范围内。所述预设密度范围可以包括0.01-100g/cm 3、0.05-80g/cm 3、0.1-60g/cm 3、0.2-50g/cm 3、0.3-40g/cm 3、0.4-30g/cm 3、或者0.5-20g/cm 3等。在一些实施例中,阻尼部可以实现为阻尼材料,例如橡胶等。
在一些实施例中,弹性部可以与质量部融合为一体。或者,弹性部可以作为质量元件的至少一部分。例如,质量元件中至少一部分可以为弹性结构。质量元件可以通过所述弹性结构与压电结构弹性连接。示例性的弹性结构可以包括弹簧结构。在一些实施例中,弹性结构可以由弹性材料制成。示例性的弹性材料可以包括橡胶、乳胶、硅胶、海绵等或其任意组合。在一些实施例中,弹性结构可以同时作为弹性部和质量部。例如弹性结构可以包括质量和/或密度较高的金属橡胶。再例如,可以在弹性结构中加入更高质量的材料,例如将金属粉末加入海绵中。在一些实施例中,弹性结构中可以包括阻尼部。例如,可以使用阻尼材料(例如,丁腈)制成弹性结构。再例如,可以向弹性结构中加入阻尼材料,例如阻尼涂料涂覆于弹性结构表面或渗透入弹性结构内部。
图6是根据本说明书一些实施例所示的弹性部与质量部融合的结构示意图。如图6所示,在一些实施例中,高质量材料可以均匀分布在弹性结构621a中。例如,可以在硅胶中均匀掺杂一定质量的金属粉末后一体成型。在一些实施例中,高质量材料6211b可以设置在弹性结构621b的中心位置。在一些实施例中,高质量材料6211c可以设置在弹性结构621c中的多个位置。
图7是根据本说明书一些实施例所示的梁结构连接弹性与质量融合的质量元件时第一位置的振动响应曲线图。如图7所示,“M_r2=5.1722E-4kg,E_r=1E6Pa”表示质量元件总质量为0.51722g、质量元件与梁结构间的弹性模量为10 6Pa时第一位置的振动响应曲线。由图7可知,100Hz-1000Hz范围内,附加不同质量元件后梁结构在第一位置出现的谐振谷720均得到了有效提升,谐振峰710与谐振谷720之间的幅值差减小。因此,将弹性部与质量部融合一体的质量元件连接至压电结构可以减小目标范围内压电结构在第一位置的谐振峰与谐振谷之间的幅值差。另外,随着质量元件质量的逐渐增大,低频段(例如,80Hz-300Hz)范围内出现的谐振峰逐渐向横坐标零点靠近。相应地,声学输出装置对低频的灵敏度逐渐降低。在一些实施例中,为了保证声 学输出装置的低频灵敏度,弹性部与质量部分离设置的质量元件的总质量可以在目标质量范围内。仅作为示例,所述目标质量范围可以包括0.01-50g、0.0.2-40g、0.03-30g、0.04-20g、0.05-10g、0.07-8g、0.09-6g、0.1-6g、0.2-6g、0.5-6g、或者1-5g等。
仅作为示例,图8-图10示出了弹性部与质量部融合一体的质量元件连接至梁结构的一些实施例。图8是根据本说明书一些实施例所示的弹性均匀分布的质量元件连接至梁结构的结构示意图。图9是根据本说明书一些实施例所示的弹性非均匀分布的质量元件的结构示意图。图10是根据本说明书一些实施例所示的质量和/或阻尼均匀分布的质量元件的结构示意图。
如图8所示,质量元件可以包括弹性结构821。弹性结构821可以沿梁结构811的长度方向延伸。弹性结构821内可以具有多个质量部822。在一些实施例中,弹性结构821的弹性可以沿梁结构811的长度方向均匀分布。弹性结构821内的质量部822可以沿梁结构811的长度方向非均匀分布。例如,如图8所示,梁结构811在不同频段下的振动模态可以如图中虚线所示。弹性结构821内的质量部822可以分别分布在多个第二位置。所述多个第二位置分别设置在不同频段下梁结构811振动的波腹区域,从而可以减小多个频段下第一位置处的谐振峰与谐振谷的幅值差,提升声学输出装置在多个频段的音质。
如图9所示,质量元件可以包括弹性结构921。弹性结构921可以沿梁结构911的长度方向延伸,弹性结构921内可以具有多个质量部922。在一些实施例中,弹性结构921可以沿梁结构911的长度方向非均匀分布。例如,相比较无质量部922分布的区域,弹性结构921重分布有质量部922的区域可以具有更大的弹性。再例如,相比较具有更小质量的质量部922的区域,弹性结构921中分布有更大质量的质量部922的区域可以具有更大的弹性。
如图10所示,弹性结构1021可以包括孔隙结构1023。孔隙结构1023可以包括至少一个孔隙。在一些实施例中,孔隙结构可以均匀分布于弹性结构1021中。在一些实施例中,孔隙结构1023中可以包括阻尼材料。所述阻尼材料可以使声学输出装置的振动响应曲线平滑过渡,从而能够有效提升音质。
在一些实施例中,弹性部可以与质量部分离设置。例如,弹性部可以包括弹性件,质量元件可以通过该弹性件与压电结构弹性连接。示例性的弹性件可以包括泡棉、硅胶、弹簧、压簧等或其任意组合。在一些实施例中,质量部可以实现为金属或非金属材料等。所述材料的密度可以在预设的密度范围内。所述预设密度范围可以包括 0.01-100g/cm 3、0.05-80g/cm 3、0.1-60g/cm 3、0.2-50g/cm 3、0.3-40g/cm 3、0.4-30g/cm 3、或者0.5-20g/cm 3等。在一些实施例中,质量部可以实现为金属(例如,铁、铜或金属合金等)块、封装液体等或声学输出装置的电池、电路板等器件。在一些实施例中,质量部可以与弹性件连接。示例性的连接方式可以包括螺栓连接、铆接、过盈配合、卡扣、粘接、注塑、焊接、磁吸等或其任意组合。在一些实施例中,质量部及弹性件均可以为任意形状,例如圆柱体、长方体、圆锥、圆台、球体等规则结构或不规则结构体。
图11是根据本说明书一些实施例所示的示例性弹性件与质量部连接的结构示意图。如图11所示,质量部1122与弹性件1121的一端连接。弹性件1121的另一端可以进一步与压电结构(图6未示出)连接。
图12是根据本说明书一些实施例所示的连接弹性与质量分离的质量元件的梁结构在第一位置的振动响应曲线图。如图12所示,“M_r2=2.3889E-4kg,E_r=1E6Pa”表示质量元件总质量为0.23889g、“、质量元件与梁结构间的弹性模量为10 6Pa时第一位置的振动响应曲线。由图12可知,在100Hz-1000Hz范围内,附加不同质量与弹性分离的质量元件时,梁结构在第一位置处的振动响应的谐振谷1220均得到了有效提升,谐振峰1210与谐振谷1220之间的幅值差减小。另外,随着质量元件质量的逐渐增大,低频段(例如,80Hz-300Hz)范围内出现的谐振峰逐渐向横坐标零点靠近。相应地,声学输出装置对低频的灵敏度逐渐降低。在一些实施例中,为了保证声学输出装置的低频灵敏度,弹性部与质量部分离设置的质量元件的总质量可以在目标质量范围内。仅作为示例,所述目标质量范围可以包括0.01-50g、0.0.2-40g、0.03-30g、0.04-20g、0.05-10g、0.07-8g、0.09-6g、0.1-6g、0.2-6g、0.5-6g、或者1-5g等。在一些实施例中,结合图7和图12可知,在相同频率下需要达到相似的谐振谷提升效果,质量与弹性分离时所需的质量比质量与弹性融合时所需的质量更小。在一些实施例中,考虑到声学输出装置的便携性和人体佩戴的舒适度,为达到相同的音质优化效果并减小声学输出装置的重量,可以采用质量部与弹性部分离设置的质量元件。
应当理解的是,图6-12所提供的示例仅是出于说明目的,并不旨在限制本说明书的范围。对于领域内的普通技术人员而言,在本说明书的指导下可以进行各种变形和修改,例如,孔隙结构1023也可以在弹性结构中非均匀分布。又例如,质量部与弹性部分离设置的质量元件中质量部可以设置于弹性部的侧面。而这些变形和修改都将落入被说明书的保护范围内。
在一些实施例中,质量元件的质量可以在压电结构第二位置处集中分布。这里的集中分布可以指质量元件的质量集中在第二位置所在区域(例如,以第二位置为几何中心的区域)内。在一些实施例中,所述区域的尺寸(例如,面积、边长、直径等)可以小于预设值。例如,所述区域可以为正方形区域,所述正方形区域的边长可以小于25mm、20mm、18mm、16mm、或者12mm等。再例如,所述区域可以为圆形区域,所述圆形区域的直径可以小于25mm、20mm、18mm、16mm、或者12mm等。图13是根据本说明书一些实施例所示的质量元件的质量在第二位置集中分布时压电结构第一位置的振动响应曲线图。图13示出了质量元件的质量在第二位置集中分布时,质量元件与压电结构间具有不同弹性系数时第一位置的振动响应曲线。例如,“7.5*1col”表示质量元件通过长度为7.5mm的单排矩形泡棉与压电结构连接时第一位置的响应曲线,“15*2col”表示质量元件通过长度为15mm的双排矩形泡棉与压电结构连接时第一位置的响应曲线。其中,矩形泡棉的长度可以指矩形泡棉沿压电结构(或梁结构)长度方向的尺寸。不同长度的矩形泡棉宽度和厚度相同。随着矩形泡棉的长度和/或排数增加,质量元件与压电结构间弹性系数增加。由图13可知,质量元件的质量在第二位置集中分布时,质量元件与压电结构间具有不同弹性系数时压电结构在第一位置出现的谐振谷1310均得到了有效提升。另外,随着弹性系数的增大,质量元件在中频段对应的谐振峰1320沿横坐标右移,阻尼平滑过渡的效果增大。因此,在一些实施例中,可以通过设置质量元件的弹性大小,来调整声学输出装置中频峰对应频率以及声学输出装置在中频段的灵敏度。
在一些实施例中,质量元件的质量可以在第二位置周围均匀分布。这里的均匀分布可以指质量均匀分布在第二位置周围的区域。在一些实施例中,所述周围区域的面积可以在预设面积范围内。例如,所述预设面积范围可以包括0.1*0.1mm 2-50*50mm 2、0.5*0.5mm 2-40*40mm 2、0.5*1mm 2-35*35mm 2、1*1mm 2-30*30mm 2、1*2mm 2-30*20mm 2、2*2mm 2-30*15mm 2、或者3*3mm 2-30*10mm 2等。图14是根据本说明书一些实施例所示的质量元件集中和均匀分布时压电结构第一位置的振动响应曲线图。图14示出了质量元件与压电结构间的弹性系数相同时,不同质量在第二位置集中或分布时第一位置的振动响应曲线。例如,“15*2col+1.5g”表示质量元件通过长度为15mm的双排矩形泡棉与压电结构连接、质量元件为1.5g且集中分布时第一位置的响应曲线,“15*2col+distributed 1.5g”表示质量元件通过长度为15mm的双排矩形泡棉与压电结构连接、质量元件为1.5g且均匀分布时第一位置的响应曲线。如图14所示, 相比较集中分布,均匀分布时第一位置振动的谐振峰1410出现的频率增大,且阻尼效果增强。当在均匀分布的质量上增加集中分布质量时,第一位置振动的谐振峰1410出现的频率减小且阻尼效果不变。因此,在一些实施例中,可以通过设置质量元件的质量分布方式来调整声学输出装置中频峰对应的频率。在一些实施例中,质量元件的质量一定的前提下,质量在压电结构绕第二位置均匀分布,相较质量在压电结构在第二位置集中分布,可以使声学输出装置中频峰对应频率增大,并提高中频段灵敏度。
图15是根据本说明书一些实施例所示的压电结构上连接多个质量元件的结构示意图。在一些实施例中,如图15所示,压电结构1511上可以具有多个第二位置,振动元件1512可以在压电结构1511的第一位置与压电结构1511连接。所示多个第二位置可以分别连接有质量元件1520。可以根据压电结构1511在不同目标频率范围内的振动模态来确定压电结构上1511上的多个第二位置。例如,结合图3A和3B及其描述,在一定的目标频率范围内,第二位置可以设置在压电结构1511在该目标频率范围内谐振时的波腹位置。图16是根据本说明书一些实施例所示的连接有多个质量元件后压电结构第一位置的振动响应曲线图。如图16所示,“硅胶-3阶谷Esi1=5.5255E6Pa”表示在三阶谷对应频率下的梁结构波腹区域连接弹性模量为5.5255*10 6Pa的质量元件时,第一位置的振动响应曲线。结合图5D及图16,在二、三阶谷对应频率下的梁结构波腹区域分别连接质量元件后,压电结构1511第一位置振动的二阶谷1610和三阶谷1620均得到提升。另外,含有阻尼的质量元件可以使第一位置的振动响应曲线更为平直,从而可以提升声学输出装置的音质。因此,可以通过在压电结构上附加多个质量元件,提升声学输出装置在多个频段的输出,从而有利于实现全频段音质的提升。
在一些实施例中,可以通过使质量元件与声学输出装置的其他组件(例如,电池、壳体等)连接,以实现质量元件的固定。在一些实施例中,质量元件的固定可以避免质量元件自身的振动影响振动组件的振动模态。在一些实施例中,质量元件于声学输出装置间的连接可以为弹性连接。所述弹性连接可以减少声学输出装置的振动通过质量元件影响振动组件的振动,同时可以减少质量元件与声学输出装置的连接影响质量元件的振动。在一些实施例中,质量元件与声学输出装置的壳体弹性连接。在一些实施例中,质量元件与壳体之间的弹性连接方式可以与质量元件与压电结构之间的弹性连接方式相似,此处不再赘述。图17是根据本说明书一些实施例所示的质量元件与压电结构及壳体弹性连接的结构示意图。如图17所示,质量元件1720一侧可以通过弹性结构或弹性件与压电结构1711弹性连接,质量元件1720另一侧可以通过弹性 结构或弹性件与壳体(图17未示出)弹性连接。
在一些实施例中,可以通过设置质量元件与压电结构间的弹性以及质量元件与壳体间的弹性,实现质量元件对压电结构第一位置的振膜模态的调控。在一些实施例中,质量元件与压电结构间的弹性系数(即第一弹性系数)可以小于质量元件与壳体间的弹性系数(即第二弹性系数),使目标频率范围内第一位置振动的谐振峰与谐振谷之间的幅值差减小,从而使第一位置振动响应曲线更加平缓。图18是根据本说明书一些实施例所示的第一弹性系数与第二弹性系数不同时压电结构第一位置的振动响应曲线图。图18对应的弹性可以通过矩形泡棉实现。其中,n1与n2分别表示质量元件与压电结构间矩形泡棉的层数以及质量元件与壳体间矩形泡棉的层数。矩形泡棉的层数越多,其对应的弹性系数越小。根据图18所示,第一弹性系数大于或小于第二弹性系数的设置均能够减小中低频段内第一位置振动的谐振峰1810与谐振谷1820间的幅值差。另外,第一弹性系数小于第二弹性系数可以使第一位置的振动响应曲线更为平缓,有利于提升声学输出装置的音质。在一些实施例中,第二弹性系数与第一弹性系数间的比值可以小于预设阈值。例如,第二弹性系数与第一弹性系数间的比值可以小于50。又例如,第二弹性系数与第一弹性系数间的比值可以小于40。又例如,第二弹性系数与第一弹性系数间的比值可以小于30。又例如,第二弹性系数与第一弹性系数间的比值可以小于20。又例如,第二弹性系数与第一弹性系数间的比值可以小于10。再例如,第二弹性系数与第一弹性系数间的比值可以小于5。
在一些实施例中,可以通过设置质量元件与振动组件的质量之比mr,使质量元件可以在目标频率范围内减小第一位置振动响应的谐振峰和谐振谷的幅值差。在一些实施例中,还可以设置质量元件与振动组件的质量之比mr,使目标频率范围以外频段区域(例如,质量元件对应的谐振峰之后的区域)的振动响应曲线平缓,从而有利于提升对应频段区域的音质。振动组件的质量可以指压电结构和振动元件的总质量。
图19是根据本说明书一些实施例所示的振动元件的质量为0.5g时不同mr值对应的压电结构第一位置的振动响应曲线图。如图19所示,“M_z=5E-4kg,mr=0.1”表示振动元件质量为0.5g、mr为0.1时第一位置的振动响应曲线图。结合图19所示,在一些实施例中,振动元件的质量为0.1-0.9g时,mr可以小于5。在一些实施例中,振动元件的质量为0.1-0.9g时,mr可以小于2。在一些实施例中,振动元件的质量为0.1-0.9g时,mr可以小于1。在一些实施例中,为了使质量元件对应的谐振峰1910之后的中频段的振动响应曲线平缓,mr可以大于1。
图20是根据本说明书一些实施例所示的振动元件的质量为1g时不同mr值对应的压电结构第一位置的振动响应曲线图。结合图19所示,在一些实施例中,振动元件的质量为0.9-1.8g时,mr可以小于2。在一些实施例中,振动元件的质量为0.9-1.8g时,mr可以小于1.5。在一些实施例中,振动元件的质量为0.9-1.8g时,mr可以小于0.8。在一些实施例中,振动元件的质量为0.9-1.8g时,为了使质量元件对应的谐振峰2010之后的中频段的振动响应曲线平缓,mr可以大于0.8。
图21是根据本说明书一些实施例所示的振动元件的质量为2g时不同mr值对应的压电结构第一位置的振动响应曲线图。结合图19所示,在一些实施例中,振动元件的质量为1.8-5g时,mr可以小于1。在一些实施例中,振动元件的质量为1.8-5g时,mr可以小于0.5。在一些实施例中,振动元件的质量为1.8-5g时,mr可以小于0.2。在一些实施例中,振动元件的质量为1.8-5g时,为了使质量元件对应的谐振峰2110之后的中频段的振动响应曲线平缓,mr可以大于0.2。
需要说明的是,不同实施例可能产生的有益效果不同,在不同的实施例里,可能产生的有益效果可以是以上任意一种或几种的组合,也可以是其他任何可能获得的有益效果,例如,可以通过同时设置质量元件与振动组件的质量之比mr以及质量元件的质量在第二位置处分布方式,以使得声学输出装置的音质优化效果最佳。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本说明书的限定。虽然此处并没有明确说明,本领域技术人员可能会对本说明书进行各种修改、改进和修正。该类修改、改进和修正在本说明书中被建议,所以该类修改、改进、修正仍属于本说明书示范实施例的精神和范围。
同时,本说明书使用了特定词语来描述本说明书的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本说明书至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本说明书的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,除非权利要求中明确说明,本说明书所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本说明书流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要 求旨在覆盖所有符合本说明书实施例实质和范围的修正和等价组合。例如,虽然以上所描述的系统组件可以通过硬件设备实现,但是也可以只通过软件的解决方案得以实现,如在现有的服务器或移动设备上安装所描述的系统。
同理,应当注意的是,为了简化本说明书披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本说明书实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本说明书对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本说明书一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本说明书引用的每个专利、专利说明书、专利说明书公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本说明书作为参考。与本说明书内容不一致或产生冲突的说明书历史文件除外,对本说明书权利要求最广范围有限制的文件(当前或之后附加于本说明书中的)也除外。需要说明的是,如果本说明书附属材料中的描述、定义、和/或术语的使用与本说明书所述内容有不一致或冲突的地方,以本说明书的描述、定义和/或术语的使用为准。
最后,应当理解的是,本说明书中所述实施例仅用以说明本说明书实施例的原则。其他的变形也可能属于本说明书的范围。因此,作为示例而非限制,本说明书实施例的替代配置可视为与本说明书的教导一致。相应地,本说明书的实施例不仅限于本说明书明确介绍和描述的实施例。

Claims (21)

  1. 一种声学输出装置,其特征在于,包括:
    振动组件,包括压电结构和振动元件,其中,
    所述压电结构用于将电信号转换为机械振动;以及
    所述振动元件在所述压电结构的第一位置与所述压电结构连接,接收所述机械振动以产生声音信号;以及
    质量元件,所述质量元件在所述压电结构的第二位置与所述压电结构连接。
  2. 根据权利要求1所述的声学输出装置,其特征在于,在50Hz-5000Hz范围内,所述压电结构的第一位置的振动响应具有谐振峰和谐振谷,所述质量元件减小所述谐振峰和所述谐振谷的幅值差。
  3. 根据权利要求1所述的声学输出装置,其特征在于,所述压电结构具有梁结构,所述第一位置与所述第二位置设置在所述梁结构长度方向上的不同位置。
  4. 根据权利要求3所述的声学输出装置,其特征在于,所述梁结构包括固定端,所述梁结构在第一位置的振动加速度级与所述固定端的振动加速度级间的差值大于20dB。
  5. 根据权利要求4所述的声学输出装置,其特征在于,所述第二位置与所述梁结构的固定端之间的距离与所述梁结构的长度之比大于1/3。
  6. 根据权利要求1所述的声学输出装置,其特征在于,所述质量元件与所述压电结构间的弹性系数与所述质量元件的质量之比在(100π) 2-(10000π) 2范围内。
  7. 根据权利要求1所述的声学输出装置,其特征在于,所述质量元件的质量在所述第二位置处集中分布。
  8. 根据权利要求1所述的声学输出装置,其特征在于,所述质量元件的质量在所 述第二位置周围均匀分布。
  9. 根据权利要求1所述的声学输出装置,其特征在于,所述质量元件的质量在0.1-6g范围内。
  10. 根据权利要求9所述的声学输出装置,其特征在于,所述质量元件与所述压电结构间的弹性系数在9N/m-6×10 6N/m范围内。
  11. 根据权利要求1所述的声学输出装置,其特征在于,所述质量元件进一步与所述声学输出装置的壳体连接。
  12. 根据权利要求11所述的声学输出装置,其特征在于,所述质量元件与所述壳体间的弹性系数与所述质量元件与所述压电结构间的弹性系数之比小于10。
  13. 根据权利要求11所述的声学输出装置,其特征在于,所述质量元件与所述压电结构间的弹性系数小于所述质量元件与所述壳体间的弹性系数。
  14. 根据权利要求1所述的声学输出装置,其特征在于,所述振动元件的质量为0.1-0.9g,所述质量元件的质量与所述振动组件的质量之比小于5。
  15. 根据权利要求1所述的声学输出装置,其特征在于,所述振动元件的质量为0.9-1.8g,所述质量元件的质量与所述振动组件的质量之比小于2。
  16. 根据权利要求1所述的声学输出装置,其特征在于,所述振动元件的质量为1.8-5g,所述质量元件的质量与所述振动组件的质量之比小于1。
  17. 根据权利要求1所述的声学输出装置,其特征在于,所述质量元件通过弹性件与所述压电结构弹性连接。
  18. 根据权利要求1所述的声学输出装置,其特征在于,所述质量元件的至少一部分为弹性结构,所述质量元件通过所述弹性结构与所述压电结构弹性连接。
  19. 根据权利要求18所述的声学输出装置,其特征在于,所述弹性结构包括孔隙结构。
  20. 根据权利要求19所述的声学输出装置,其特征在于,所述孔隙结构中包括阻尼材料。
  21. 根据权利要求1所述的声学输出装置,其特征在于,所述声学输出装置包括压电陶瓷驱动声学输出装置。
PCT/CN2022/081409 2022-03-17 2022-03-17 一种声学输出装置 WO2023173355A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020237000511A KR20230136590A (ko) 2022-03-17 2022-03-17 음향출력장치
EP22821276.7A EP4274258A4 (en) 2022-03-17 2022-03-17 AUDIBLE DISPENSING DEVICE
PCT/CN2022/081409 WO2023173355A1 (zh) 2022-03-17 2022-03-17 一种声学输出装置
CN202280005697.4A CN117121509A (zh) 2022-03-17 2022-03-17 一种声学输出装置
JP2023511970A JP2024513277A (ja) 2022-03-17 2022-03-17 音響出力装置
TW111145122A TW202339521A (zh) 2022-03-17 2022-11-25 一種聲學輸出裝置
US18/064,282 US20230300521A1 (en) 2022-03-17 2022-12-11 Acoustic output apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/081409 WO2023173355A1 (zh) 2022-03-17 2022-03-17 一种声学输出装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/064,282 Continuation US20230300521A1 (en) 2022-03-17 2022-12-11 Acoustic output apparatus

Publications (1)

Publication Number Publication Date
WO2023173355A1 true WO2023173355A1 (zh) 2023-09-21

Family

ID=88021909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081409 WO2023173355A1 (zh) 2022-03-17 2022-03-17 一种声学输出装置

Country Status (7)

Country Link
US (1) US20230300521A1 (zh)
EP (1) EP4274258A4 (zh)
JP (1) JP2024513277A (zh)
KR (1) KR20230136590A (zh)
CN (1) CN117121509A (zh)
TW (1) TW202339521A (zh)
WO (1) WO2023173355A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030053643A1 (en) * 2000-01-27 2003-03-20 New Transducers Limited Apparatus comprising a vibration component
WO2010106736A1 (ja) * 2009-03-16 2010-09-23 日本電気株式会社 圧電音響素子、電子機器及び圧電音響素子の製造方法
WO2014034866A1 (ja) * 2012-08-30 2014-03-06 京セラ株式会社 音響発生器、音響発生装置および電子機器
JP2014049992A (ja) * 2012-08-31 2014-03-17 Kyocera Corp 音響発生器、音響発生装置および電子機器
CN104012113A (zh) * 2012-12-25 2014-08-27 京瓷株式会社 音响发生器、音响发生装置以及电子设备
CN104094612A (zh) * 2012-09-28 2014-10-08 京瓷株式会社 音响发生器、音响发生装置以及电子设备
CN104396278A (zh) * 2012-08-10 2015-03-04 京瓷株式会社 音响产生器、音响产生装置以及电子设备
US20160269820A1 (en) * 2013-10-25 2016-09-15 B & W Group Ltd Improvements in and relating to loudspeakers
US10001391B1 (en) * 2014-08-14 2018-06-19 Vesper Technologies Inc. Adjusting resonant frequencies based on feedback networks
CN215268715U (zh) * 2021-06-18 2021-12-21 上海思立微电子科技有限公司 Mems压电执行器及其扬声器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2178307B1 (en) * 1998-01-16 2013-11-27 Sony Corporation Speaker apparatus and electronic apparatus having speaker apparatus enclosed therein
US6885753B2 (en) * 2000-01-27 2005-04-26 New Transducers Limited Communication device using bone conduction
US10631072B2 (en) * 2018-06-25 2020-04-21 Google Llc Actuator for distributed mode loudspeaker with extended damper and systems including the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030053643A1 (en) * 2000-01-27 2003-03-20 New Transducers Limited Apparatus comprising a vibration component
WO2010106736A1 (ja) * 2009-03-16 2010-09-23 日本電気株式会社 圧電音響素子、電子機器及び圧電音響素子の製造方法
CN104396278A (zh) * 2012-08-10 2015-03-04 京瓷株式会社 音响产生器、音响产生装置以及电子设备
WO2014034866A1 (ja) * 2012-08-30 2014-03-06 京セラ株式会社 音響発生器、音響発生装置および電子機器
JP2014049992A (ja) * 2012-08-31 2014-03-17 Kyocera Corp 音響発生器、音響発生装置および電子機器
CN104094612A (zh) * 2012-09-28 2014-10-08 京瓷株式会社 音响发生器、音响发生装置以及电子设备
CN104012113A (zh) * 2012-12-25 2014-08-27 京瓷株式会社 音响发生器、音响发生装置以及电子设备
US20160269820A1 (en) * 2013-10-25 2016-09-15 B & W Group Ltd Improvements in and relating to loudspeakers
US10001391B1 (en) * 2014-08-14 2018-06-19 Vesper Technologies Inc. Adjusting resonant frequencies based on feedback networks
CN215268715U (zh) * 2021-06-18 2021-12-21 上海思立微电子科技有限公司 Mems压电执行器及其扬声器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4274258A4 *

Also Published As

Publication number Publication date
JP2024513277A (ja) 2024-03-25
EP4274258A1 (en) 2023-11-08
KR20230136590A (ko) 2023-09-26
TW202339521A (zh) 2023-10-01
CN117121509A (zh) 2023-11-24
EP4274258A4 (en) 2023-11-08
US20230300521A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
CN110611873B (zh) 一种骨传导扬声器的测试方法
KR102533576B1 (ko) 골전도 스피커 및 이어폰
US11405734B1 (en) Hearing aid devices
WO2023173355A1 (zh) 一种声学输出装置
CN201718027U (zh) 一种压电平板扬声器用的柔性配重结构
CN116801161A (zh) 一种声学输出装置
RU2803960C1 (ru) Акустическое выходное устройство
TWI843498B (zh) 聲學輸出裝置
US20230328458A1 (en) Acoustic output device
RU2780549C2 (ru) Динамик на основе костной проводимости
WO2023193195A1 (zh) 一种压电式扬声器
RU2805379C1 (ru) Динамики
TWI839829B (zh) 聲學設備
TW202341760A (zh) 聲學輸出裝置
WO2024020846A1 (zh) 一种声学输出装置
US20230328455A1 (en) Acoustic output devices
EP4294049A1 (en) Acoustic output device
CN116939445A (zh) 一种压电扬声器
CN116939450A (zh) 一种声学输出装置
JP2024517522A (ja) 音響装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022821276

Country of ref document: EP

Effective date: 20221219

WWE Wipo information: entry into national phase

Ref document number: 2023511970

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023000593

Country of ref document: BR