WO2023171935A1 - 아스파르트산을 유효성분으로 함유하는 인삼뿌리썩음병 방제용 조성물 및 이의 용도 - Google Patents
아스파르트산을 유효성분으로 함유하는 인삼뿌리썩음병 방제용 조성물 및 이의 용도 Download PDFInfo
- Publication number
- WO2023171935A1 WO2023171935A1 PCT/KR2023/002371 KR2023002371W WO2023171935A1 WO 2023171935 A1 WO2023171935 A1 WO 2023171935A1 KR 2023002371 W KR2023002371 W KR 2023002371W WO 2023171935 A1 WO2023171935 A1 WO 2023171935A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- composition
- root rot
- aspartic acid
- active ingredient
- rhizosphere
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N37/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
- A01N37/44—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01P—BIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
- A01P21/00—Plant growth regulators
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01P—BIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
- A01P3/00—Fungicides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/20—Bacteria; Culture media therefor
Definitions
- the present invention relates to a composition for controlling ginseng root rot containing aspartic acid as an active ingredient and its use.
- the production amount of ginseng is KRW 830.7 billion ('18), and it is the crop with the highest export amount ('18, KRW 188 million) as a single item among domestic agricultural products.
- the cultivation area has decreased due to various deterioration of the cultivation environment, such as the occurrence of root rot disease, and the area of new cultivation has also continued to decrease since 2008.
- Ginseng root rot disease often occurs not only in re-cropped areas but also in pasture-cropped areas due to deteriorating cultivation environments. In re-cropped areas, the density of root rot pathogens is not high, so there is less damage to low-year ginseng, whereas in re-cropped areas, root rot pathogens are more concentrated in the soil. is quite high, and if ginseng is cultivated here again, root rot disease may occur in low-year plants, and the damage from root rot disease will be extreme. There is no control method for ginseng root rot, so if root rot occurs during ginseng cultivation, in the worst case, all of the ginseng will be discarded (pepo). The damage is estimated to be about 94.2 million won (1ha).
- ginseng root rot causes of ginseng root rot include Cylindrocarpon destructans, Fusarium solani, Pythium sp., Phytophthora cactorum , and Erwinia caroto. It has been reported that diseases caused by purple ( Erwinia carotovora ), etc., are significantly involved singly or in combination.
- Cylindrocapon destructans and Fusarium solani are difficult to control because they can survive in the soil for a long time.
- chemical control can temporarily reduce the density of pathogens, but has problems such as environmental problems and the emergence of drug-resistant strains. Therefore, it is very necessary to develop a ginseng root rot disease control method that is environmentally friendly and can maintain a sustainable agricultural ecosystem. To this end, community analysis of soil microorganisms and development of methods to control pathogen density are required.
- Korean Patent Publication No. 2020-0078316 discloses ‘Composition for promoting the growth of useful strains and controlling plant diseases using prebiotics and its use’
- Korean Patent Publication No. 2021-0157547 discloses ‘Mineral medicinal herbs.
- a 'composition for controlling ginseng root rot pathogens containing aspartic acid' has been disclosed, but there has been no description regarding the 'composition for controlling ginseng root rot containing aspartic acid as an active ingredient and its use' of the present invention.
- the present invention was derived from the above-mentioned needs, and the present inventors discovered that when ginseng seedlings were treated with aspartic acid in pots containing ginseng soil that had been damaged by root rot disease due to repeated cropping, other types of amino acids (glutamic acid, The present invention was completed by confirming that the incidence of root rot disease was lower than the group treated with asparagine and valine).
- the present invention provides a composition for controlling ginseng root rot disease, which contains aspartic acid or an agriculturally acceptable salt thereof as an active ingredient.
- the present invention provides a method for controlling ginseng root rot, comprising treating plant parts, seeds, or soil with an effective amount of the composition.
- the present invention provides a composition for promoting the growth of useful microorganisms in the rhizosphere containing aspartic acid or an agriculturally acceptable salt thereof as an active ingredient.
- the present invention provides a method for promoting the growth of useful microorganisms in the root zone, comprising treating soil with an effective amount of the composition.
- the present invention provides a composition for reducing the activity or density of plant pathogens in the rhizosphere containing aspartic acid or an agriculturally acceptable salt thereof as an active ingredient.
- Figure 1 shows the results of analysis of root rot disease incidence (A), stem length (B), and stem weight (C) according to ammonium chloride (NH 4 Cl) or amino acid (Glu, Asp, Asn, Val) treatment. Each dot represents the actual measured value, and the bar graph and error bar represent the mean and standard error.
- Control Water treatment that does not contain ammonium chloride or amino acids.
- Figure 2 shows the results of confirming the density of Fusarium solani (A) and Fusarium solani in bulk soil, which is general soil with continuous crop damage, and root zone samples where ginseng seedlings were grown by treating ammonium chloride or amino acids. This is the result of Pierce correlation analysis between density and root rot disease (B).
- Figure 3 shows the results of examining the bacterial community in bulk soil, which is general soil with continuous crop damage, and in rhizosphere samples where ginseng seedlings were grown by treating ammonium chloride or amino acids.
- the horizontal axis in (A) is the number of base sequences measured, and the vertical axis is represents the type of nucleotide sequence (OTU, Operational Taxonomic unit), (B) represents the phylogenetic classification based on the results of (A), and the vertical axis represents the percentage of the number of nucleotide sequences according to the identification results.
- OTU Operational Taxonomic unit
- Figure 4 shows the metabolism negatively correlated with ginseng root rot, where each dot represents a sample, the vertical axis represents the activity of the metabolic pathway, the horizontal axis represents the incidence of ginseng root rot, and the blue line represents the Shows the general slope.
- Figure 5 shows the results of analyzing the contribution of metabolic pathways by microbial system [GOO (genes owned by OTUs) index] in bulk soil, which is general soil with damage from continuous cropping, and rhizosphere samples where ginseng seedlings were grown by treating ammonium chloride or amino acids. am.
- GEO genes owned by OTUs
- Figure 6 shows the results of calculating the GOO index by family using all genes involved in the five metabolic pathways.
- the present invention provides a composition for controlling ginseng root rot disease, which contains aspartic acid or an agriculturally acceptable salt thereof as an active ingredient.
- the ginseng root rot disease may be caused by Cylindrocarpon destructans or Fusarium solani , but is not limited thereto.
- the agriculturally acceptable salt includes, for example, a metal salt, a salt with an organic base, a salt with an inorganic acid, a salt with an organic acid, a salt with a basic or acidic amino acid, etc. This may be included.
- Examples of preferred metal salts include alkali metal salts such as sodium salts and potassium salts; alkaline earth metal salts such as calcium salts, magnesium salts, or barium salts; Aluminum salts, etc. may be included.
- Salts with preferred organic bases are trimethylamine, triethylamine, pyridine, picoline, 2,6-lutidine, ethanolamine, diethanolamine, triethanolamine, cyclohexylamine, dicyclohexylamine or N,N-di.
- Salts with benzylethylenediamine and the like may be included.
- Preferred salts with inorganic acids may include salts with hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, or phosphoric acid.
- Preferred salts with organic acids may include salts with formic acid, acetic acid, trifluoroacetic acid, phthalic acid, fumaric acid, oxalic acid, tartaric acid, maleic acid, citric acid, succinic acid, methanesulfonic acid, benzenesulfonic acid, or p-toluenesulfonic acid.
- Preferred salts with basic amino acids may include salts with arginine, lysine, or ornithine, etc.
- Preferred salts with acidic amino acids may include salts with glutamic acid and the like.
- control composition of the present invention is prepared by diluting or powdering the active ingredients as is, or is mixed with an agrochemically acceptable carrier and formulated into an emulsion, solution, suspension, wetting agent, flow agent, powder, granule, dispersant, etc. You can get angry.
- the "agrochemically acceptable carrier” is mixed with the active ingredient of the control agent composition of the present invention to promote the spraying, storage and/or transport of the active ingredient without inhibiting the activity of the active ingredient and to provide a plant acceptable carrier. It refers to any substance that does not exhibit any of the above toxic effects.
- Carriers that can be used include soil natural minerals (e.g. kaolin, clay, talc, chalk), soil synthetic minerals (e.g. highly dispersed silica, silicates), carbon-based materials (charcoal, bitumen, etc.), sulfur, natural or synthetic. Resins, fertilizers, cellulose-based materials (sawdust and corn cobs), water, aromatic solvents (e.g. Solvesso Products, xylene), paraffins (e.g. mineral oil fractions), alcohols (e.g. methanol, butanol, pentanol, benzyl alcohol), ketones (e.g.
- cyclohexanone methyl hydroxybutyl ketone, diacetone alcohol, mesityl oxide, isophorone), lactones (e.g. gamma-butyrolactone), pyrrolidones (pyrrolidone) , N-methylpyrrolidone, N-ethylpyrrolidone, n-octylpyrrolidone), acetate (glycol diacetate), glycol, dimethyl fatty acid amide, fatty acid, fatty acid ester, and mixtures thereof.
- the pest control composition of the present invention may also include one or more auxiliaries such as wetting agents, dispersing agents, antifreezing agents, thickening agents, preservatives, and spreading agents.
- auxiliaries such as wetting agents, dispersing agents, antifreezing agents, thickening agents, preservatives, and spreading agents.
- auxiliaries can be used by selecting appropriate ones from among those known in the art.
- alkylnaphthalene sulfonate (particularly diisopropylnaphthalenesulfonate or diisobutylnaphthalenesulfonate) can be used as a wetting agent
- nonionic auxiliary agents can be used as a dispersant.
- Dispersants ethylene oxide/propylene oxide block polymer, alkylphenol polyglycol ether, tristyrylphenol polyglycol, etc.
- anionic dispersants lignin sulfonic acid, naphthalene sulfonic acid, phenol sulfonic acid, dibutylnaphthalene sulfonic acid, alkylaryl sulfonate, alkyl alcohol
- Electrolytic agents include polyvinyl alcohol, polyvinylpyrrolidone, polyacrylate, polymethacrylate, and polybutene. , polyisobutylene, polystyrene, polyethyleneamine, polyethyleneamide, polyethyleneimine, polyether, etc. can be used.
- the pest control composition of the present invention may further include other known ingredients, such as herbicidal ingredients, insecticidal ingredients, bactericidal ingredients, etc., depending on the purpose of use, the environment of the farmland, etc.
- the present invention also provides a method for controlling ginseng root rot, comprising treating plant parts, seeds, or soil with an effective amount of the composition.
- the method for controlling ginseng root rot is by spraying and spraying an effective amount of the composition for controlling plant diseases containing aspartic acid as an active ingredient according to the present invention on plant parts, seeds or soil, or spraying the plant parts or seeds. This may be performed by immersing in the pest control composition, but is not limited thereto.
- the 'effective amount' of the present invention is an amount sufficient to produce beneficial or desired results.
- the control composition is uniformly diluted with water and then sprayed on plants and cultivated land using an appropriate spraying device such as a power sprayer. can do.
- the present invention also provides a composition for promoting the growth of useful microorganisms in the rhizosphere containing aspartic acid as an active ingredient.
- the useful microorganisms may be Pseudomonadaceae microorganisms, but are not limited thereto.
- the present invention also provides a method for enhancing the growth of useful microorganisms in the root zone, comprising treating soil with an effective amount of the composition.
- the present invention also provides a composition for reducing the activity or density of plant pathogens in the rhizosphere containing aspartic acid or an agriculturally acceptable salt thereof as an active ingredient.
- the plant pathogens may be Cylindrocarpon destructans or Fusarium solani , but are not limited thereto.
- Example 1 Measurement of root rot disease and crop growth
- Ginseng soil which had been damaged by root rot due to repeated crop damage, and high-temperature, high-pressure sterilized coarse sand were mixed at a weight ratio of 1:9 and placed in pots, each weighing 1 kg. 30 ginseng seedlings per pot (total of 680, 1 after opening and germination). Annual seedlings, average weight 0.866g, weight standard error ⁇ 0.021g, purchased from: Hanul Sprout Ginseng Sacheon Farm, Gyeongnam) were planted and cultivated.
- Root rot was measured after harvesting was completed. The measurement method is 0 points if there is no disease, 1 point if only the newly grown fine roots are diseased, 5 points if the overall root rot is in the range of 0 to 10%, 30 points if 10 to 50% rot, and 50 to 50 points. 100% rot was set at 75 points, the average for each pot was calculated, and the differences were measured through statistics. As a result, the least root rot disease occurred in aspartic acid, and the most severe root rot disease symptoms were observed when treated with valine (Figure 1A). Additionally, the ginseng seedlings used in the experiment did not sprout at the time of sowing.
- stem the length and weight of the sprouted upper part
- the length and weight of the stems were both short and light in the valine treatment group, and were observed to be the heaviest and longest in the glutamic acid, aspartic acid, or asparagine treatments ( Figure 1B, Figure 1C).
- Example 2 DNA extraction from rhizosphere and measurement of density of bacteria causing root rot disease
- Roots in the soil exudate nutrients from the plant forming a rhizosphere with a higher density of microorganisms than general soil.
- rhizosphere extraction was first performed. For each harvested pot, the soil from the ginseng root was lightly shaken off and the ginseng root was placed in a glass beaker containing 200 mL of phosphate buffer solution. The glass beaker was placed in an ultrasonic washer containing ice water, and the rhizosphere was separated from the ginseng using ultrasonic waves for 20 minutes using phosphate buffer solution.
- the phosphate buffer solution containing the rhizosphere was centrifuged at 3,000x g for 20 minutes to precipitate the rhizosphere, and then the supernatant was removed.
- DNA was extracted using the entire rhizosphere. DNA was extracted using MP Biomedicals' FastDNATM Spin Kit for Soil DNA Extraction kit according to the instructions.
- Real-time PCR was performed to measure the density of Fusarium solani , one of the causative bacteria of root rot, in the extracted rhizosphere.
- Fusarium solini-specific primers ITS1F (5'-CTTGGTCATTTAGAGGAAGTAA-3', SEQ ID NO: 1) and AFP346 (5'-GGTATGTTCACAGGGTTGATG-3', SEQ ID NO: 2) were used, and after 1 minute of reaction at 95°C, 95
- the amplification reaction was repeated 45 times under the conditions of °C 15 seconds, 60°C 15 seconds, and 72°C 30 seconds.
- the amplification rate was determined by measuring fluorescence with SYBR green, an indicator that can measure the amount of DNA at each repetition.
- the actual density of Fusarium solani was calculated by establishing a proportional equation with the results of DNA extracted from soil, where the density of Fusarium solani was known to be 10 4 to 10 7 CFU/soil g.
- the density of Fusarium solani was the highest among the rhizospheres treated with valine, and calculating with Pearson correlation, it was confirmed that the more severe the root rot disease, the higher the density of Fusarium solani ( Figure 2).
- 16S rRNA used for identification was amplified and analyzed by measuring the type and number of base sequences using a next-generation base sequencer.
- the primers used were 515F (5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGCCAGCMGCCGCGGTAA-3', SEQ ID NO. 3) and 805R (5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATC TAATCC-3', SEQ ID NO. 4), which contain barcode sequences that can be recognized by next-generation sequencing machines. It was utilized.
- the amplification temperature conditions were 95°C for 1 minute, followed by 95°C for 30 seconds, 55°C for 30 seconds, and 82°C for 30 seconds, repeated a total of 25 times to amplify the 16S rRNA base sequences of all microorganisms living in the rhizosphere.
- Base sequence analysis was completed based on the manual used for Illumina's MiSeq 2x300bp, and according to the DADA (divisive amplicon denoising algorithm) method, those with the same base sequence were grouped together, counted, and identified according to the IDTAXA algorithm ( Figure 3 ).
- PICRUSt2 Physical Investigation of Communities by Reconstruction of Unobserved States, version 2.3.0-b
- PICRUSt2 Physical Investigation of Communities by Reconstruction of Unobserved States, version 2.3.0-b
- PICRUSt2 Physical Investigation of Communities by Reconstruction of Unobserved States, version 2.3.0-b
- the metabolic activity of the microbial community was calculated.
- the metabolic pathways that are negatively correlated with metabolic activity and the incidence of root rot disease were categorized into five metabolic pathways (arginine, amithine and proline interconversion; glucose degradation (oxidative); L-arginine degradation II) based on Pearson correlation coefficient.
- AST pathway polymyxin resistance
- the contribution to the metabolic pathway for each microbial lineage was obtained by multiplying and summing the number of microbial genes for each lineage contributing to the metabolic pathway calculated with PICRUSt2 and the ratio of microorganisms for each lineage present in the rhizosphere.
- This contribution calculation method was named the GOO (genes owned by OTUs) index.
- the GOO value of all microorganisms was confirmed to have the largest metabolic pathway activity in aspartic acid, which is negatively correlated with root rot disease, in terms of the number of genes and the quantity of microorganisms (Figure 5).
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Plant Pathology (AREA)
- Environmental Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Biotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Mycology (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Dentistry (AREA)
- Biomedical Technology (AREA)
- Botany (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Agronomy & Crop Science (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
본 발명은 아스파르트산을 유효성분으로 함유하는 인삼뿌리썩음병 방제용 조성물, 상기 조성물을 이용한 인삼뿌리썩음병 방제 방법 및 아스파르트산을 유효성분으로 함유하는 근권의 유용미생물의 생장 증진용 조성물에 관한 것이다.
Description
본 발명은 아스파르트산을 유효성분으로 함유하는 인삼뿌리썩음병 방제용 조성물 및 이의 용도에 관한 것이다.
본 결과물은 과학기술정보통신부의 한국연구재단 개인연구사업(중견연구)의 지원을 받아 연구되었습니다(과제번호: 2020RA2C2004177).
인삼의 생산액은 8,307억원('18)이며, 국내 농산물 중 단일품목으로는 수출액('18, 188백만불)이 가장 높은 작물이다. 그러나 뿌리썩음병 발생 등 각종 재배 환경 악화로 인해 재배면적이 감소되었으며, 신규재배 면적 역시 2008년 이후 계속 감소 추세이다.
인삼뿌리썩음병은 재작지 뿐만 아니라 초작지에서도 재배환경 악화로 인해 종종 발생하고 있는데, 초작지는 뿌리썩음병원균의 밀도가 높지 않아 저년생 인삼에서는 피해가 적은 반면, 재작지는 뿌리썩음병균의 토양 중 밀도는 상당히 높아져 있는 상태로서 여기에 다시 인삼을 재배하면 저년생에서 뿌리썩음병이 발생될 수 있으므로 뿌리썩음병의 피해가 극심하게 된다. 인삼뿌리썩음병은 방제법이 없어 인삼 재배 중 뿌리썩음병이 발생하면 최악의 경우 모두 폐기하게(페포)하게 되는데, 피해액이 약 9,420만원(1ha)으로 추정된다.
인삼뿌리썩음의 원인으로는 실린드로카폰 데스트럭탄스(Cylindrocarpon destructans), 푸사리움 솔라니(Fusarium solani), 피시움 속(Pythium sp.), 파이토프토라 칵토룸(Phytophthora cactorum) 및 어위니아 카로토보라(Erwinia carotovora) 등에 의한 병해가 단독으로 또는 복합적으로 크게 관여한다고 보고되어 있다. 상기 병원균 중 실린드로카폰 데스트럭탄스와 푸사리움 솔라니는 토양 내에서 오랫동안 생존할 수 있기 때문에 방제에 어려움이 있다. 또한 화학적 방제는 병원균 밀도를 일시적으로 줄일 수는 있으나 환경적 문제와 약제 내성 균주 출현 등의 문제점을 안고 있다. 때문에 친환경적이고 지속 가능한 농생태계 유지가 가능한 인삼뿌리썩음병 방제법 개발이 매우 필요하다. 이를 위해 토양미생물의 군집분석과 병원균 밀도를 조절하는 방법 개발이 요구된다.
한편, 한국공개특허 제2020-0078316호에는 '프리바이오틱스를 이용한 유용 균주의 생장 증진 및 식물병 방제용 조성물 및 이의 용도'가 개시되어 있고, 한국공개특허 제2021-0157547호에는 '광물성 약재를 포함하는 인삼 뿌리 썩음 병원균 방제용 조성물'이 개시되어 있으나, 본 발명의 '아스파르트산을 유효성분으로 함유하는 인삼뿌리썩음병 방제용 조성물 및 이의 용도'에 대해서는 기재된 바가 없다.
본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 연작피해로 뿌리썩음병 피해가 있었던 인삼토양을 포함하는 포트에 인삼묘를 재배할 때 아스파르트산을 처리한 경우 다른 종류의 아미노산(글루탐산, 아스파라긴, 발린)을 처리한 군보다 뿌리썩음병의 발병도가 낮음을 확인함으로써, 본 발명을 완성하였다.
상기 과제를 해결하기 위해, 본 발명은 아스파르트산 또는 이의 농약학적으로 허용가능한 염을 유효성분으로 함유하는, 인삼뿌리썩음병 방제용 조성물을 제공한다.
또한, 본 발명은 상기 조성물의 유효량을 식물부위, 종자 또는 토양에 처리하는 단계를 포함하는 인삼뿌리썩음병을 방제하는 방법을 제공한다.
또한, 본 발명은 아스파르트산 또는 이의 농약학적으로 허용가능한 염을 유효성분으로 함유하는 근권의 유용미생물의 생장 증진용 조성물을 제공한다.
또한, 본 발명은 상기 조성물의 유효량을 토양에 처리하는 단계를 포함하는 근권의 유용미생물의 생장을 증진시키는 방법을 제공한다.
또한, 본 발명은 아스파르트산 또는 이의 농약학적으로 허용가능한 염을 유효성분으로 함유하는 근권의 식물병원균의 활성 또는 밀도 감소용 조성물을 제공한다.
본 발명에서는 식물에게 투여하는 질소 영양소를 아미노산으로 대체하는 기술을 활용하면, 아미노산의 종류에 따라 식물이 더욱더 잘 자라거나 식물병의 발병도가 달라지는 것을 관찰할 수 있었으며, 특정 아미노산을 선호하는 미생물량의 증감에 따라 근권에서의 물질대사가 바뀌는 것으로 인하여 식물체가 좀 더 건전하게 자라도록 하고, 식물 병원균의 밀도도 낮추므로, 식물병 방제 농자재 및 미생물 농약 첨가제로서 아미노산을 활용할 수 있다.
도 1은 염화암모늄(NH4Cl) 또는 아미노산(Glu, Asp, Asn, Val) 처리에 따른 뿌리썩음병 발병도(A), 줄기 길이(B) 및 줄기 무게(C) 분석 결과이다. 각 점은 실측값을 나타내며, 막대 그래프와 오차막대는 평균과 표준오차를 나타낸다. Control: 염화암모늄 또는 아미노산을 포함하지 않는 물 처리구.
도 2는 연작피해가 있는 일반토양인 bulk soil과, 염화암모늄 또는 아미노산을 처리하여 인삼묘를 재배하였던 근권 시료에서 푸사리움 솔라니(Fusarium solani)의 밀도를 확인한 결과(A) 및 푸사리움 솔라니 밀도와 뿌리썩음병과의 피어스 상관관계 분석 결과(B)이다.
도 3은 연작피해가 있는 일반토양인 bulk soil과, 염화암모늄 또는 아미노산을 처리하여 인삼묘를 재배하였던 근권 시료에서 세균 커뮤니티를 조사한 결과로, (A)의 가로축은 측정된 염기서열의 개수이며 세로축은 염기서열의 종류(OTU, Operational Taxonomic unit)를 나타내고, (B)는 (A) 결과를 바탕으로 계통학적 분류를 나타낸 것으로, 세로축은 동정결과에 따른 염기서열 개수의 백분율을 의미한다.
도 4는 인삼뿌리썩음병과 음의 상관관계에 있는 물질대사로, 각 점은 샘플을 의미하며, 세로축은 물질대사경로의 활성, 가로축은 인삼뿌리썩음병의 발병도를 나타내며, 파란색 선은 선형회귀에 의한 일반적인 기울기를 보여준다.
도 5는 연작피해가 있는 일반토양인 bulk soil과, 염화암모늄 또는 아미노산을 처리하여 인삼묘를 재배하였던 근권 시료에서 미생물 계통별 물질대사경로 기여도[GOO (genes owned by OTUs) 인덱스]를 분석한 결과이다.
도 6은 5개의 물질대사경로에 관여하는 모든 유전자를 활용하여 GOO 인덱스를 과(Family) 별로 계산한 결과이다.
본 발명의 목적을 달성하기 위하여, 본 발명은 아스파르트산(aspartic acid) 또는 이의 농약학적으로 허용가능한 염을 유효성분으로 함유하는, 인삼뿌리썩음병 방제용 조성물을 제공한다.
본 발명에 따른 방제용 조성물에 있어서, 상기 인삼뿌리썩음병은 실린드로카폰 데스트럭탄스(Cylindrocarpon destructans) 또는 푸사리움 솔라니(Fusarium solani)에 의해 유발된 것일 수 있으나, 이에 제한되지 않는다.
본 발명에 따른 방제용 조성물에 있어서, 상기 농약학적으로 허용 가능한 염은, 예를 들어, 금속염, 유기 염기와의 염, 무기산과의 염, 유기산과의 염, 염기성, 또는 산성 아미노산과의 염 등이 포함될 수 있다.
바람직한 금속염의 일례로는 나트륨염 또는 칼륨염 등과 같은 알칼리 금속염; 칼슘염, 마그네슘염 또는 바륨염 등과 같은 알칼리 토금속염; 알루미늄염 등이 포함될 수 있다. 바람직한 유기 염기와의 염은 트리메틸아민, 트리에틸아민, 피리딘, 피콜린, 2,6-루티딘, 에탄올아민, 디에탄올아민, 트리에탄올아민, 시클로헥실아민, 디시클로헥실아민 또는 N,N-디벤질에틸렌디아민 등과의 염이 포함될 수 있다. 바람직한 무기산과의 염은 염산, 브롬화수소산, 질산, 황산 또는 인산 등과의 염이 포함될 수 있다. 바람직한 유기산과의 염은 포름산, 아세트산, 트리플루오로아세트산, 프탈산, 푸마르산, 옥살산, 타르타르산, 말레인산, 시트르산, 숙신산, 메탄술폰산, 벤젠술폰산 또는 p-톨루엔 술폰산 등과의 염이 포함될 수 있다. 바람직한 염기성 아미노산과의 염은 알기닌, 라이신 또는 오르니틴 등과의 염이 포함될 수 있다. 바람직한 산성 아미노산과의 염은 글루탐산 등과의 염이 포함될 수 있다.
본 발명의 상기 방제용 조성물은 유효 성분을 그대로 희석 또는 분말화하여 제조되거나, 농약학적으로 허용 가능한 담체와 혼합되어 유제, 용액제, 현탁제, 수화제, 유동제, 분제, 과립제, 분산제 등으로 제형화될 수 있다.
상기에서 "농약학적으로 허용 가능한 담체"는 본 발명의 방제제 조성물의 유효성분과 배합되어 그 유효성분의 활성을 저해하지 않으면서 그 유효성분의 살포, 저장 및/또는 운반을 촉진시키고 식물에 허용 가능한 이상의 독성을 나타내지 않는 임의의 물질을 말한다.
사용될 수 있는 담체는 토양 천연 광물(예를 들면 카올린, 점토, 활석, 초크), 토양 합성 광물(예를 들면 고분산 실리카, 실리케이트), 탄소 기재 물질(목탄, 역청 등), 황, 천연 또는 합성 수지, 비료, 셀룰로스 기재 물질(톱밥 및 옥수수 속대), 물, 방향족 용매(예: 솔베소 프로덕츠, 자일렌), 파라핀(예를 들면 광유 분획), 알코올(예를 들면 메탄올, 부탄올, 펜탄올, 벤질 알코올), 케톤(예를 들면 시클로헥사논, 메틸 히드록시부틸 케톤, 디아세톤 알코올, 메시틸 옥사이드, 이소포론), 락톤(예를 들면 감마-부티로락톤), 피롤리돈(피롤리돈, N-메틸피롤리돈, N-에틸피롤리돈, n-옥틸피롤리돈), 아세테이트(글리콜 디아세테이트), 글리콜, 디메틸 지방산 아미드, 지방산, 지방산 에스테르, 및 이들의 혼합물을 포함한다.
본 발명의 방제용 조성물은 또한 습윤제, 분산제, 부동제, 증점제, 보존제, 전착제 등 하나 이상의 보조제를 포함할 수 있다.
이러한 보조제는 당업계에서 공지된 것들 중에서 적절한 것을 선택하여 사용할 수 있는데, 예컨대 습윤제로서는 알킬나프탈렌 술포네이트(특히 디이소프로필나프탈렌술포네이트 또는 디이소부틸나프탈렌술포네이트)를 사용할수 있고, 분산제로서는 비이온성 분산제(에틸렌 옥사이드/프로필렌 옥사이드 블록중합체, 알킬페놀 폴리글리콜에테르, 트리스티릴페놀 폴리글리콜 등), 음이온성 분산제(리그닌술폰산, 나프탈렌술폰산, 페놀술폰산, 디부틸나프탈렌술폰산, 알킬아릴술포네이트, 알킬 술페이트, 알킬술포네이트 등) 또는 이들의 혼합물을 사용할 수 있으며, 부동제로서는 메탄올, 에탄올, 이소프로판올, 부탄올, 글리콜, 글리세린, 디에틸렌글리콜 등을 사용할 수 있고, 증점제로서는 셀룰로즈 유도체, 폴리아크릴산 유도체, 잔탄, 개질된 점토 등을 사용할 수 있으며, 보존제로서는 디클로로펜, 이소티아졸렌, 벤질 알코올 등을 사용할 수 있으며, 전착제는 폴리비닐알코올, 폴리비닐피롤리돈, 폴리아크릴레이트, 폴리메타크릴레이트, 폴리부텐, 폴리이소부틸렌, 폴리스티렌, 폴리에틸렌아민, 폴리에틸렌아미드, 폴리에틸렌이민, 폴리에테르 등을 사용할 수 있다.
본 발명의 방제용 조성물은 사용 목적, 경작지의 환경 등에 따라 추가로 기타의 공지의 성분, 예컨대 제초성 성분, 살충성 성분, 살균성 성분 등을 포함할 수 있다.
본 발명은 또한, 상기 조성물의 유효량을 식물부위, 종자 또는 토양에 처리하는 단계를 포함하는 인삼뿌리썩음병을 방제하는 방법을 제공한다. 상기 인삼뿌리썩음병을 방제하는 방법으로는 본 발명에 따른 아스파르트산(aspartic acid)을 유효성분으로 함유하는 식물병 방제용 조성물의 유효량을 식물부위, 종자 또는 토양에 분무 및 살포 또는 식물부위 또는 종자를 상기 방제용 조성물에 침지하여 수행할 수 있으나, 이에 제한되지 않는다.
본 발명의 '유효량'은 유익한 또는 원하는 결과를 일으키기에 충분한 양으로, 인삼뿌리썩음병을 방제하기 위해 방제용 조성물을 물로 균일하게 희석한 후 동력살포기와 같은 적절한 살포장치를 이용하여 식물체 및 경작지에 살포할 수 있다.
본 발명은 또한, 아스파르트산(aspartic acid)을 유효성분으로 함유하는 근권의 유용미생물의 생장 증진용 조성물을 제공한다. 본 발명에 따른 생장 증진용 조성물에 있어서, 상기 유용미생물은 슈도모나스과(Pseudomonadaceae) 미생물일 수 있으나, 이에 제한되지 않는다.
본 발명은 또한, 상기 조성물의 유효량을 토양에 처리하는 단계를 포함하는 근권의 유용미생물의 생장을 증진시키는 방법을 제공한다.
본 발명은 또한, 아스파르트산 또는 이의 농약학적으로 허용가능한 염을 유효성분으로 함유하는 근권의 식물병원균의 활성 또는 밀도 감소용 조성물을 제공한다. 본 발명에 따른 근권의 식물병원균의 활성 또는 밀도 감소용 조성물에 있어서, 상기 식물병원균은 실린드로카폰 데스트럭탄스(Cylindrocarpon destructans) 또는 푸사리움 솔라니(Fusarium solani)일 수 있으나, 이에 제한되지 않는다.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
실시예 1. 뿌리썩음병과 작물 성장 측정
연작피해로 뿌리썩음병 피해가 있었던 인삼토양과 고온고압멸균한 굵은모래를 1:9의 중량비로 섞은 후 포트에다 1 kg씩 담은 후 각 포트 당 인삼묘 30개(총 680개, 개갑 및 발아 후 1년생 묘, 무게 평균 0.866g, 무게 표준오차 ±0.021g, 구매처:한울새싹삼 경남 사천농장)를 심어 재배하였다. 그 후, 인삼묘의 재배를 시작한 당일과 10일째에 물(control), 물에 50 mM의 농도로 용해한 염화암모늄(NH4Cl) 또는 아미노산인 글루탐산(Glutamic acid, Glu), 아스파르트산(aspartic acid, Asp), 아스파라긴(Asparagin, Asn) 또는 발린(Valine, Val)을 각기 다른 포트에 100 mL씩 처리하였다. 각 처리구 당 포트는 5개씩이었으며, 20일째가 되는 날 수확하였다.
수확을 완료한 이후에 뿌리썩음병을 측정하였다. 측정방법은 병이 없는 경우 0점, 새로 자란 잔뿌리에만 병이 난 경우 1점, 뿌리가 전반적으로 0~10% 범위로 썩었을 때 5점, 10~50% 썩었을 때를 30점, 50~100% 썩었을 때를 75점으로 하여 각 포트의 평균을 구한 뒤 통계를 통해 차이점을 측정하였다. 그 결과, 아스파르트산에서 뿌리썩음병이 가장 적게 나타났고, 발린을 처리했을 때 뿌리썩음병 증상이 가장 심각한 것으로 관찰되었다(도 1A). 또한, 실험에 사용한 인삼묘는 파종 시 싹이 나지 않은 상태였다. 수확한 이후에 싹이난 윗 부분(=줄기)의 길이와 무게를 측정하여 인삼묘의 성장을 평가하였다. 그 결과, 줄기의 길이와 무게는 모두 발린 처리구에서 짧거나 가벼웠으며 글루탐산, 아스파르트산 또는 아스파라긴 처리구에서 가장 무겁고 긴 것으로 관찰되었다(도 1B, 도 1C).
실시예 2. 근권에서 DNA 추출 및 뿌리썩음병 원인균 밀도 측정
토양 속의 뿌리는 식물체가 가진 영양분이 삼출(exudation)되어 일반적인 토양보다 미생물 밀도가 높은 근권(rhizosphere)을 형성하게 된다. 근권의 미생물을 평가하기 위하여 먼저 근권 추출을 시행하였다. 수확한 각 포트 별로 인삼 뿌리의 흙을 가볍게 털어내고 인산완충용액 200 mL이 담긴 유리비커에 인삼 뿌리를 넣었다. 그 유리비커를 얼음물이 들어있는 초음파세척기에 넣어 20분간 초음파로 인삼으로부터 근권을 인산완충용액으로 분리하였다. 인삼을 제거한 뒤 근권이 포함된 인산완충용액을 3,000xg로 20분간 원심분리를 수행하여 근권을 침전시킨 뒤 상층액을 제거하였다. 근권에 서식하는 미생물을 평가하기 위하여 근권을 통째로 사용하여 DNA를 추출하였다. MP Biomedicals사의 FastDNA™ Spin Kit for Soil DNA Extraction 키트를 이용하여 사용설명서에 따라 DNA를 추출하였다.
추출한 근권에서 뿌리썩음병의 원인균 중 하나인 푸사리움 솔라니(Fusarium solani)의 밀도를 측정하기 위하여 real time PCR을 진행하였다. 푸사리움 솔리니에 특이적인 프라이머 ITS1F (5'-CTTGGTCATTTAGAGGAAGTAA-3', 서열번호 1)와 AFP346 (5'-GGTATGTTCACAGGGTTGATG-3', 서열번호 2)를 사용하였으며, 95℃에서 1분의 반응 후에 95℃ 15초, 60℃ 15초, 72℃ 30초의 조건으로 45회 반복하여 증폭반응을 수행하였다. 또한 매 반복마다 DNA의 양을 측정할 수 있는 지시약 SYBR green으로 형광을 측정하여 증폭속도를 구하였다. 푸사리움 솔라니의 밀도가 104 ~ 107 CFU/soil g으로 알려져 있는 흙으로부터 추출한 DNA 결과와 비례식을 세워 실제 푸사리움 솔라니의 밀도를 계산하였다. 그 결과, 발린을 처리한 근권 중에서 푸사리움 솔라니의 밀도가 가장 높았으며, 피어슨 상관관계로 계산해 보니 뿌리썩음병의 발병도가 심할수록 푸자리움 솔라니의 밀도가 높은 것으로 확인되었다(도 2).
실시예 3. 근권에 서식하는 세균 커뮤니티 조사 및 물질대사활성 분석
근권의 세균 커뮤니티를 조사하기 위하여 동정에 활용되는 16S rRNA를 증폭하여 차세대 염기서열 분석기로 염기서열의 종류와 개수를 측정하여 분석하였다. 사용된 프라이머는 차세대염기서열 분석기가 인식할 수 있는 바코드 염기서열이 포함된 515F (5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGCCAGCMGCCGCGGTAA-3', 서열번호 3)와 805R (5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATC TAATCC-3', 서열번호 4)를 활용하였다. 증폭 온도 조건은 95℃에서 1분간의 반응 후에 95℃ 30초, 55℃ 30초, 82℃ 30초의 반응을 총 25번 반복하여, 근권에 사는 모든 미생물의 16S rRNA의 염기서열을 증폭하였다. Illumina사의 MiSeq 2x300bp에 사용되는 매뉴얼을 바탕으로 염기서열 분석을 완료하였으며, DADA (divisive amplicon denoising algorithm) 방법에 따라 염기서열이 같은것 끼리 모으고 개수를 세었으며 IDTAXA 알고리즘에 따라 동정이 진행되었다(도 3).
근권에서 얻어낸 16S rRNA 염기서열 정보를 바탕으로 미생물 군집의 물질대사활성을 계산하는 컴퓨터 소프트웨어인 PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States, version 2.3.0-b)를 활용하여 각 처리구당 근권의 미생물 군집의 물질대사활성을 계산하였다. 그 다음 물질대사활성과 뿌리썩음병의 발병도와 음의 상관관계에 있는 물질대사경로를 피어슨 상관계수를 토대로 5개의 물질대사경로(arginine, amithine and proline interconversion; glucose degradation (oxidative); L-arginine degradation Ⅱ (AST pathway); polymyxin resistance; pyridoxal 5'-phosphate biosynthesis I)를 선발하였다(도 4).
그 다음, PICRUSt2로 계산된 해당 물질대사경로에 기여하는 각 계통별 미생물의 유전자 개수와 근권에 존재하는 각 계통별 미생물 비율을 곱하고 합산하여 미생물 계통별 물질대사경로 기여도를 구하였다. 이러한 기여도 계산방법을 GOO (genes owned by OTUs) 인덱스라고 명명하였다. 그 결과 모든 미생물의 총 GOO 값은 아스파르트산에서 뿌리썩음병과 음의 상관관계인 물질대사경로 활성이 유전자 수적으로, 미생물의 양적으로 가장 큰 것으로 확인되었다(도 5).
그런 다음, 상기 물질대사에 관여하는지 미생물 종류를 알아보기 위하여 동정결과와 비교해 본 결과 계통학적으로 크게 6개의 과(Burkholderiaceae, Enterobacteriaceae, Pseudomonadaceae, Myxococcaceae, Oxalobacteraceae, Sumerlaeaceae)로 분류되었으며, 상기 5개의 물질대사경로에 관여하는 모든 유전자를 활용하여 GOO 인덱스를 과(Family) 별로 계산하였다. 그 결과 슈도모나스과(Pseudomonadaceae) 미생물이 아스파르트산에서 가장 양적으로, 유전자적으로 5개의 물질대사경로에 많이 기여함을 알 수 있었다(도 6).
Claims (9)
- 아스파르트산 또는 이의 농약학적으로 허용가능한 염을 유효성분으로 함유하는, 인삼뿌리썩음병 방제용 조성물.
- 제1항에 있어서, 상기 인삼뿌리썩음병은 실린드로카폰 데스트럭탄스(Cylindrocarpon destructans) 또는 푸사리움 솔라니(Fusarium solani)에 의해 유발되는 것을 특징으로 하는 식물병 방제용 조성물.
- 제1항에 있어서, 상기 조성물은 농약학적으로 허용 가능한 담체, 습윤제, 분산제, 부동제, 증점제, 보존제 및 전착제로 구성된 군에서 선택된 하나 이상의 보조제를 추가로 포함하는 것을 특징으로 하는 식물병 방제용 조성물.
- 제1항의 조성물의 유효량을 식물부위, 종자 또는 토양에 처리하는 단계를 포함하는 인삼뿌리썩음병을 방제하는 방법.
- 아스파르트산 또는 이의 농약학적으로 허용가능한 염을 유효성분으로 함유하는 근권(rhizosphere)의 유용미생물의 생장 증진용 조성물.
- 제5항에 있어서, 상기 유용미생물은 슈도모나스과(Pseudomonadaceae) 미생물인 것을 특징으로 하는 유용미생물의 생장 증진용 조성물.
- 제5항의 조성물의 유효량을 토양에 처리하는 단계를 포함하는 근권의 유용미생물의 생장을 증진시키는 방법.
- 아스파르트산 또는 이의 농약학적으로 허용가능한 염을 유효성분으로 함유하는 근권의 식물병원균의 활성 또는 밀도 감소용 조성물.
- 제8항에 있어서, 상기 식물병원균은 실린드로카폰 데스트럭탄스(Cylindrocarpon destructans) 또는 푸사리움 솔라니(Fusarium solani)인 것을 특징으로 하는 근권의 식물병원균의 활성 또는 밀도 감소용 조성물.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220029256A KR102657697B1 (ko) | 2022-03-08 | 2022-03-08 | 아스파르트산을 유효성분으로 함유하는 인삼뿌리썩음병 방제용 조성물 및 이의 용도 |
KR10-2022-0029256 | 2022-03-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023171935A1 true WO2023171935A1 (ko) | 2023-09-14 |
Family
ID=87935604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/002371 WO2023171935A1 (ko) | 2022-03-08 | 2023-02-20 | 아스파르트산을 유효성분으로 함유하는 인삼뿌리썩음병 방제용 조성물 및 이의 용도 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102657697B1 (ko) |
WO (1) | WO2023171935A1 (ko) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105237110A (zh) * | 2015-08-27 | 2016-01-13 | 青岛深蓝肥业有限公司 | 一种西洋参专用抗病复合微生物菌肥及其制备方法 |
KR20200078168A (ko) * | 2018-12-21 | 2020-07-01 | 대한민국(농촌진흥청장) | 식물 주요 병원균에 대하여 항균활성을 갖는 슈도모나스 프레데릭스버겐시스 균주 및 이의 용도 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0752476A1 (en) * | 1994-12-09 | 1997-01-08 | Mitsubishi Chemical Corporation | Process for the production of l-aspartic acid |
-
2022
- 2022-03-08 KR KR1020220029256A patent/KR102657697B1/ko active IP Right Grant
-
2023
- 2023-02-20 WO PCT/KR2023/002371 patent/WO2023171935A1/ko unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105237110A (zh) * | 2015-08-27 | 2016-01-13 | 青岛深蓝肥业有限公司 | 一种西洋参专用抗病复合微生物菌肥及其制备方法 |
KR20200078168A (ko) * | 2018-12-21 | 2020-07-01 | 대한민국(농촌진흥청장) | 식물 주요 병원균에 대하여 항균활성을 갖는 슈도모나스 프레데릭스버겐시스 균주 및 이의 용도 |
Non-Patent Citations (3)
Title |
---|
"Ph.D. Thesis", 1 August 2021, GYEONGSANG NATIONAL UNIVERSITY, KR, article CHO, GYEONGJUN: "Dynamics and Development of the Bacterial Community in Ginseng Root Rot Disease Suppressiveness", pages: 1 - 146, XP009549087 * |
LIM HO-SEONG, KIM YONG-SU, KIM SANG-DAL: "Pseudomonas stutzeri YPL-1 Genetic Transformation and Antifungal Mechanism against Fusarium solani , an Agent of Plant Root Rot", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 57, no. 2, 1 February 1991 (1991-02-01), US , pages 510 - 516, XP093091672, ISSN: 0099-2240, DOI: 10.1128/aem.57.2.510-516.1991 * |
WANG PANPAN, YANG LIFANG, SUN JIALING, YANG YE, QU YUAN, WANG CHENGXIAO, LIU DIQIU, HUANG LUQI, CUI XIUMING, LIU YUAN: "Structure and Function of Rhizosphere Soil and Root Endophytic Microbial Communities Associated With Root Rot of Panax notoginseng", FRONTIERS IN PLANT SCIENCE, vol. 12, XP093091668, DOI: 10.3389/fpls.2021.752683 * |
Also Published As
Publication number | Publication date |
---|---|
KR102657697B1 (ko) | 2024-04-15 |
KR20230132121A (ko) | 2023-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11751515B2 (en) | Endophyte compositions and methods for improvement of plant traits in plants of agronomic importance | |
Erdogan et al. | Biological control of Verticillium wilt on cotton by the use of fluorescent Pseudomonas spp. under field conditions | |
CN102946713B (zh) | 用于增强植物出苗和生长的生氮假单胞菌种的新的荧光假单胞菌 | |
Fernández-Pascual et al. | Singular features of the Bradyrhizobium-Lupinus symbiosis | |
Santos-Cervantes et al. | Characterization, pathogenicity and chemical control of Streptomyces acidiscabies associated to potato common scab | |
Zhao et al. | Effects of Bacillus subtilis NCD-2 and broccoli residues return on potato Verticillium wilt and soil fungal community structure | |
Kawaguchi et al. | Biological control for grapevine crown gall using nonpathogenic Rhizobium vitis strain ARK-1 | |
EP3495510A1 (en) | Antagonistic bacterial strains, compositions thereof and use for plant protection | |
Jones et al. | Seed‐borne alfalfa mosaic virus infecting annual medics (Medicago spp.) in Western Australia | |
Wei-Dong et al. | Overexpression of a foreign Bt gene in cotton affects the low-molecular-weight components in root exudates | |
WO2023171935A1 (ko) | 아스파르트산을 유효성분으로 함유하는 인삼뿌리썩음병 방제용 조성물 및 이의 용도 | |
Scortichini | Aspects still to solve for the management of kiwifruit bacterial canker caused by Pseudomonas syringae pv. actinidiae biovar 3 | |
Goss et al. | Fitness consequences of infection of Arabidopsis thaliana with its natural bacterial pathogen Pseudomonas viridiflava | |
US11825849B2 (en) | Methods and compositions for increasing plant growth using a biochar-microbial composite | |
Veisz et al. | Effect of common bunt on the frost resistance and winter hardiness of wheat (Triticum aestivum L.) lines containing Bt genes | |
CN111471620B (zh) | 一种生防细菌bv03、应用及其菌剂和菌剂制备方法 | |
Kumar et al. | Performance and persistence of phosphate solubilizing Azotobacter chroococcum in wheat rhizosphere | |
Monira et al. | Bacterial Panicle Blight: a new challange of rice | |
KR102684883B1 (ko) | 푸트레신을 유효성분으로 함유하는 식물의 가뭄 스트레스 내성 증진용 조성물 및 이의 용도 | |
CN108811577B (zh) | 一种减少草莓土壤病原菌含量的方法 | |
CN114403153B (zh) | 一种含有氟嘧菌酯、噻霉酮和丙硫菌唑的种子处理剂及其应用 | |
Bouchon | Vascular wilt disease of Theobroma cacao in Uganda and DR Congo caused by Verticillium dahliae: studies on management using a genetic approach | |
US20240081337A1 (en) | Compositions including endophytes for improving plant nutrition, growth,and performance and methods of using the same | |
Pylak et al. | Impact of microbial-based biopreparations on soil quality, plant health, and fruit chemistry in raspberry cultivation | |
Perkins | Differential Effects of First Year Wheat Genotype on the Suppression of Take-All Disease and the Establishment of Suppressive Microbial Agents in the Rhizosphere |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23767039 Country of ref document: EP Kind code of ref document: A1 |