WO2023171883A1 - 무선 이동 통신 시스템에서 단말 지원 정보 제공 절차와 핸드 오버 절차를 수행하는 방법 및 장치 - Google Patents

무선 이동 통신 시스템에서 단말 지원 정보 제공 절차와 핸드 오버 절차를 수행하는 방법 및 장치 Download PDF

Info

Publication number
WO2023171883A1
WO2023171883A1 PCT/KR2022/019942 KR2022019942W WO2023171883A1 WO 2023171883 A1 WO2023171883 A1 WO 2023171883A1 KR 2022019942 W KR2022019942 W KR 2022019942W WO 2023171883 A1 WO2023171883 A1 WO 2023171883A1
Authority
WO
WIPO (PCT)
Prior art keywords
rrc
musim
timer
cell
message
Prior art date
Application number
PCT/KR2022/019942
Other languages
English (en)
French (fr)
Inventor
김성훈
Original Assignee
주식회사 블랙핀
김성훈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 블랙핀, 김성훈 filed Critical 주식회사 블랙핀
Publication of WO2023171883A1 publication Critical patent/WO2023171883A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present disclosure relates to a method and device for a terminal to perform a terminal support information provision procedure and a handover procedure in a wireless mobile communication system.
  • the 5G communication system To meet the increasing demand for wireless data traffic following the commercialization of the 4G communication system, the 5G communication system was developed. To achieve high data rates, 5G communication systems have introduced ultra-high frequency (mmWave) bands (such as the 60-gigabit (60GHz) band). In order to alleviate the path loss of radio waves in the ultra-high frequency band and increase the transmission distance of radio waves, the 5G communication system uses beamforming, massive array multiple input/output (massive MIMO), and full dimension multiple input/output (FD-MIMO). ), array antenna, analog beam-forming, and large scale antenna technologies are used. In the 5G communication system, scalability is increased by dividing the base station into a central unit and a distributed unit. In addition, the 5G communication system aims to support extremely high data rates and extremely low transmission delays in order to support a variety of services, and a non-terrestrial network has been introduced.
  • mmWave ultra-high frequency
  • 60GHz 60-gigabit
  • the disclosed embodiment seeks to provide a method and device for performing a terminal support information provision procedure and a handover procedure in a wireless mobile communication system.
  • a terminal assistance information process based on musim-AssistanceConfig being set to setup. Initiating, if the UEAssistanceInformation includes the musim-PreferredRRC-State IE, starting the transmission of the UEAssistanceInformation and then starting a first timer set to the first timer value included in the musim-AssistanceConfig IE, a first including ReconfigurationWithSync IE 2.
  • Receiving an RRC reconfiguration message starting a second timer set to a second timer value included in ReconfigurationWithSync IE, and when the second timer expires, starting an RRC connection reset procedure and comprising a set of first reset operations and a second reset operation. Includes steps for performing one of the sets.
  • the disclosed embodiment provides a method and apparatus for performing a terminal support information provision procedure and a handover procedure in a wireless mobile communication system.
  • FIG. 1A is a diagram illustrating the structure of a 5G system and NG-RAN according to an embodiment of the present disclosure.
  • FIG. 1B is a diagram illustrating a wireless protocol structure in an NR system according to an embodiment of the present disclosure.
  • FIG. 1C is a diagram illustrating transitions between RRC states according to an embodiment of the present disclosure.
  • Figure 2 is a diagram explaining the operation of a terminal and a base station according to an embodiment of the present disclosure.
  • Figure 3 is a flowchart for explaining the operation of a terminal according to an embodiment of the present disclosure.
  • Figure 4a is a block diagram showing the internal structure of a terminal to which the present invention is applied.
  • Figure 4b is a block diagram showing the internal structure of a base station to which the present invention is applied.
  • connection node a term referring to network entities
  • a term referring to messages a term referring to an interface between network objects
  • a term referring to various types of identification information a term referring to various types of identification information.
  • the following are examples for convenience of explanation. Accordingly, the present invention is not limited to the terms described below, and other terms referring to objects having equivalent technical meaning may be used.
  • the present invention uses terms and names defined in the 3rd Generation Partnership Project (3GPP) standard, which is the latest standard among currently existing communication standards.
  • 3GPP 3rd Generation Partnership Project
  • the present invention is not limited by the above terms and names, and can be equally applied to systems complying with other standards.
  • Table 1 lists the abbreviations used in the present invention.
  • Table 2 defines terms frequently used in the present invention.
  • UL MAC SDUs from this logical channel can be mapped to any configured numerology. allowedServingCells List of allowed serving cells for the corresponding logical channel. If present, UL MAC SDUs from this logical channel can only be mapped to the serving cells indicated in this list. Otherwise, UL MAC SDUs from this logical channel can be mapped to any configured serving cell of this cell group. Carrier frequency center frequency of the cell. Cell combination of downlink and optionally uplink resources. The linking between the carrier frequency of the downlink resources and the carrier frequency of the uplink resources is indicated in the system information transmitted on the downlink resources. Cell Group in dual connectivity, a group of serving cells associated with either the MeNB or the SeNB.
  • Cell selection A process to find a better suitable cell than the current serving cell based on the system information received in the current serving cell
  • Cell selection A process to find a suitable cell either blindly or based on the stored information Dedicated signaling Signalling sent on DCCH logical channel between the network and a single UE.
  • discardTimer Timer to control the discard of a PDCP SDU. Starting when the SDU arrives. Upon expiry, the SDU is discarded.
  • F The Format field in MAC subheader indicates the size of the Length field. Field The individual contents of an information element are referred to as fields. Frequency layer set of cells with the same carrier frequency.
  • Global cell identity An identity to uniquely identify an NR cell.
  • the Length field in MAC subheader indicates the length of the corresponding MAC SDU or of the corresponding MAC CE LCID 6 bit logical channel identity in MAC subheader to denote which logical channel traffic or which MAC CE is included in the MAC subPDU MAC-I Message Authentication Code - Integrity.
  • Logical channel a logical path between a RLC entity and a MAC entity.
  • LogicalChannelConfig The IE LogicalChannelConfig is used to configure the logical channel parameters.
  • a MAC CE and a corresponding MAC sub-header comprises MAC subPDU Master Cell Group in MR-DC, a group of serving cells associated with the Master Node, comprising of the SpCell (PCell) and optionally one or more SCells.
  • UL MAC SDUs from this logical channel can only be transmitted using uplink grants that result in a PUSCH duration shorter than or equal to the duration indicated by this field. Otherwise, UL MAC SDUs from this logical channel can be transmitted using an uplink grant resulting in any PUSCH duration.
  • PDCP entity reestablishment The process triggered upon upper layer request. It includes the initialization of state variables, reset of header compression and manipulating of stored PDCP SDUs and PDCP PDUs.
  • PDCP suspend The process triggered upon upper layer request.
  • transmitting PDCP entity set TX_NEXT to the initial value and discard all stored PDCP PDUs.
  • the receiving entity stop and reset t-Reordering, deliver all stored PDCP SDUs to the upper layer and set RX_NEXT and RX_DELIV to the initial value PDCP-config
  • the IE PDCP-Config is used to set the configurable PDCP parameters for signaling and data radio bearers. For a data radio bearer, discardTimer, pdcp-SN-Size, header compression parameters, t-Reordering and whether integrity protection is enabled are configured.
  • t-Reordering can be configured PLMN ID Check the process that checks whether a PLMN ID is the RPLMN identity or an EPLMN identity of the UE.
  • Primary Cell The MCG cell, operating on the primary frequency, in which the UE either performs the initial connection establishment procedure or initiates the connection re-establishment procedure.
  • Primary SCG Cell For dual connectivity operation, the SCG cell in which the UE performs random access when performing the Reconfiguration with Sync procedure.
  • priority Logical channel priority as specified in TS 38.321. an integer between 0 and 7. 0 means the highest priority and 7 means the lowest priority PUCCH SCell a Secondary Cell configured with PUCCH.
  • Radio Bearer Logical path between a PDCP entity and upper layer (i.e. SDAP entity or RRC) RLC bearer RLC and MAC logical channel configuration of a radio bearer in one cell group.
  • RLC bearer configuration The lower layer part of the radio bearer configuration comprising the RLC and logical channel configurations.
  • RX_DELIV This state variable indicates the COUNT value of the first PDCP SDU not delivered to the upper layers, but still waited for.
  • RX_NEXT This state variable indicates the COUNT value of the next PDCP SDU expected to be received.
  • RX_REORD This state variable indicates the COUNT value following the COUNT value associated with the PDCP Data PDU which triggered t-Reordering.
  • S.R.B. Signalling Radio Bearers are defined as Radio Bearers (RBs) that are used only for the transmission of RRC and NAS messages.
  • SRB0 SRB0 is for RRC messages using the CCCH logical channel
  • SRB1 SRB1 is for RRC messages (which may include a piggybacked NAS message) as well as for NAS messages prior to the establishment of SRB2, all using DCCH logical channel
  • SRB2 SRB2 is for NAS messages and for RRC messages which include logged measurement information, all using DCCH logical channel.
  • SRB2 has a lower priority than SRB1 and may be configured by the network after AS security activation
  • SRB3 SRB3 is for specific RRC messages when UE is in (NG)EN-DC or NR-DC, all using DCCH logical channel
  • SRB4 SRB4 is for RRC messages which include application layer measurement reporting information, all using DCCH logical channel.
  • Suitable cell A cell on which a UE may camp Following criteria apply - The cell is part of either the selected PLMN or the registered PLMN or PLMN of the Equivalent PLMN list -The cell is not barred - The cell is part of at least one TA that is not part of the list of "Forbidden Tracking Areas for Roaming" (TS 22.011 [18]), which belongs to a PLMN that fulfills the first bullet above. - The cell selection criterion S is fulfilled (ie RSRP and RSRQ are better than specific values t-Reordering Timer to control the reordering operation of received PDCP packets. Upon expiry, PDCP packets are processed and delivered to the upper layers.
  • TX_NEXT This state variable indicates the COUNT value of the next PDCP SDU to be transmitted.
  • UE Inactive AS Context is stored when the connection is suspended and restored when the connection is resumed. It includes information below. the current KgNB and KRRCint keys, the ROHC state, the stored QoS flow to DRB mapping rules, the C-RNTI used in the source PCell, the cellIdentity and the physical cell identity of the source PCell, the spCellConfigCommon within ReconfigurationWithSync of the NR PSCell (if configured) and all other parameters configured except for: - parameters within ReconfigurationWithSync of the PCell; - parameters within ReconfigurationWithSync of the NR PSCell, if configured; - parameters within MobilityControlInfoSCG of the E-UTRA PSCell, if configured; -servingCellConfigCommonSIB;
  • terminal and UE may be used with the same meaning.
  • base station and NG-RAN node may be used with the same meaning.
  • FIG. 1A is a diagram illustrating the structures of a 5G system and NG-RAN according to an embodiment of the present disclosure.
  • the 5G system consists of NG-RAN (1a-01) and 5GC (1a-02).
  • the NG-RAN node is one of the two below.
  • gNB providing NR user plane and control plane towards UE
  • ng-eNB providing E-UTRA user plane and control plane towards UE.
  • gNB (1a-05 to 1a-06) and ng-eNB (1a-03 to 1a-04) are interconnected through the Xn interface.
  • the gNB and ng-eNB are connected to the Access and Mobility Management Function (AMF) (1a-07) and the User Plane Function (UPF) (1a-08) through the NG interface.
  • AMF (1a-07) and UPF (1a-08) can be configured as one physical node or as separate physical nodes.
  • gNB (1a-05 to 1a-06) and ng-eNB (1a-03 to 1a-04) host the functions listed below.
  • Radio bearer control radio admission control, connection mobility control, dynamic allocation of resources to UEs in uplink, downlink and sidelink (scheduling), IP and Ethernet header compression, uplink data decompression and encryption of user data streams, Selection of AMF if the AMF cannot be selected with the information provided, routing of user plane data to UPF, scheduling and transmission of paging messages, scheduling and transmission of broadcast information (from AMF or O&M);
  • AMF (1a-07) hosts functions such as NAS signaling, NAS signal security, AS security control, S-GW selection, authentication, mobility management, and location management.
  • UPF (1a-08) hosts functions such as packet routing and forwarding, transport level packet marking on the uplink and downlink, QoS management, and mobility anchoring for mobility.
  • FIG. 1B is a diagram showing the wireless protocol structure of a 5G system.
  • the user plane protocol stack is SDAP (1b-01 to 1b-02), PDCP (1b-03 to 1b-04), RLC (1b-05 to 1b-06), MAC (1b-07 to 1b-08), PHY It consists of (1b-09 to 1b-10).
  • the control name protocol stack consists of NAS (1b-11 to 1b-12), RRC (1b-13 to 1b-14), PDCP, RLC, MAC, and PHY.
  • Each protocol sublayer performs functions related to the operations listed in Table 3.
  • Sublayer Functions NAS Authentication, mobility management, security control, etc.
  • RRC System information paging, RRC connection management, security functions, signaling radio bearer and data radio bearer management, mobility management, QoS management, detection and recovery from radio link failure, NAS message transmission, etc.
  • R.L.C Radio Resource Control
  • the terminal supports three RRC states. Table 4 lists the characteristics of each state.
  • RRC state Characteristic RRC_IDLE PLMN selection Broadcast of system information; Cell re-selection mobility; Paging for mobile terminated data is initiated by 5GC; DRX for CN paging configured by NAS.
  • RRC_INACTIVE PLMN selection Broadcast of system information;Cell re-selection mobility; Paging is initiated by NG-RAN (RAN paging); RAN-based notification area (RNA) is managed by NG- RAN; DRX for RAN paging configured by NG-RAN; 5GC - NG-RAN connection (both C/U-planes) is established for UE;
  • the UE AS context is stored in NG-RAN and the UE; NG-RAN knows the RNA which the UE belongs to.
  • RRC_CONNECTED 5GC - NG-RAN connection (both C/U-planes) is established for UE;
  • the UE AS context is stored in NG-RAN and the UE;NG-RAN knows the cell which the UE belongs to; Transfer of unicast data to/from the UE; Network controlled mobility including measurements.
  • Figure 1c is a diagram showing RRC state transition. Between RRC_CONNECTED (1c-11) and RRC_INACTIVE (1c-13), a state transition occurs through the exchange of a Resume message and a Release message containing the SuspendConfig IE. Between RRC_ CONNECTED (1c-11) and RRC_IDLE (1c-15), state transition occurs through RRC connection establishment and RRC connection release.
  • RRC_INACTIVE (1c-13) to RRC_IDLE (1c-15) occurs through RRC disconnection.
  • SuspendConfig IE includes the information below.
  • First terminal identifier Identifier of the terminal that can be included in RRCResumeRequest when the state transition to RRC_CONNECTED.
  • the length is 40 bits.
  • Second terminal identifier Identifier of the terminal that can be included in RRCResumeRequest when the state transition to RRC_CONNECTED.
  • the length is 24 bits.
  • ran-Paging Cycle Paging cycle to be applied in RRC_INACTIVE state. Indicates one of the predefined values: rf32, rf64, rf128 and rf256.
  • ran-Notification AreaInfo Setting information of ran-Notification Area set as cell list, etc. The terminal starts the restart procedure when the ran_Notification Area changes.
  • NCC NextHopChangingCount
  • Extended-ran-Paging-Cycle Paging cycle to be applied in RRC_INACTIVE state when extended DRX is set. Indicates one of the predefined values: rf256, rf512, rf1024 and a spare value.
  • Multi-USIM devices are becoming increasingly popular in many countries. Users can own both personal and business subscriptions on one device, or two personal subscriptions on one device for different services.
  • support for Multi-USIM within the device is currently handled in an implementation-specific manner without support in the 3GPP specification, resulting in various implementations and UE behavior. Standardizing support for these UEs could prove beneficial from a performance perspective in that network functionality can be based on predictable UE behavior.
  • a UE registered in more than one network must be able to receive pages from more than one network.
  • UE capabilities e.g. Rx and Tx capabilities
  • a situation may arise where the UE is listening to a page from one network while a page from another network may also be transmitted. While one network is paging the UE, the UE may be actively communicating with another network.
  • the UE/user can no longer receive data from the network with which it recently communicated.
  • a method is provided for the UE to request a UE state transition for UE power saving or to handle problems arising from the aforementioned MUSIM.
  • Figure 2 is a diagram showing the operation of a terminal and a base station.
  • UE (2a-01) transmits UECapabilityInformation to GNB (2a-03).
  • the UECapabilityInformation message is used to convey the UE radio access capability requested by the network.
  • the UE may include releasePreference capability IE and releaseRequest capability IE in the message.
  • releasePreference IE indicates whether the UE supports providing preference support information to switch from RRC_CONNECTED for power saving.
  • releaseRequest IE indicates whether the UE supports providing support information to request a transition from RRC_CONNECTED for MUSIM.
  • the UECapabilityInformation message includes UE-NR-Capability IE.
  • UE-NR-Capability IE includes multiple Non-Critical Extensions (NCEs).
  • NCE is characterized by adding new information to the original specification of the PDU (Protocol Data Unit) type.
  • the decoder may skip NCEs that are not understood, but the decoder may complete decoding of the understood portion of the PDU content.
  • NCE for UE-NR-Capability is defined on a release basis. NCEs in later releases are deployed later than NCEs in previous releases.
  • the releasePreference capability IE and the releaseReqeust capability IE are placed in different NCEs.
  • releaseRequest capabilities IE are listed with a single value: “Supported”. If the UE includes the releaseRequest capability IE in the NCE of the UE-NR-Capability, the UE supports the function of the releaseRequest capability IE for both FDD and TDD and FR1 and FR2.
  • the GNB determines the configuration to apply to the UE based on the capability information received in 2a-11.
  • GNB creates an RRCReconfiguration message based on the determined configuration.
  • GNB transmits RRCReconfiguration to the UE.
  • the RRCReconfiguration message is a command to modify the RRC connection. It can convey information about measurement configuration, mobility control, radio resource configuration (including RB, MAC primary configuration, and physical channel configuration) and AS security configuration.
  • the GNB may include UE assistance information configuration such as releasePreferenceConfig IE or musim-AssistanceConfig IE in the message.
  • releasePreferenceConfig IE is a setting that reports the UE's preference for wanting the UE to leave the RRC_CONNECTED state.
  • releasePreferenceConfig IE includes releasePreferenceProhibitTimer, a prohibit timer for reporting release preference support information.
  • musim-AssistanceConfig IE is a setting for the UE to report assistance information about MUSIM.
  • musim-AssistanceConfig IE contains musim-LeaveWithoutResponseTimer, which indicates the timer for the UE to leave RRC_CONNECTED without a network response.
  • the UE is considered to be configured to provide support information for transitioning out of RRC_CONNECTED if releasePreferenceConfig is included in the otherConfig message of the received RRCReconfiguration and releasePreferenceConfig is set to setup.
  • the UE is considered to be configured to provide MUSIM assistance information if otherConfig of the received RRCReconfiguration includes musim-AssistanceConfig and musim-AssistanceConfig is set to setup.
  • the UE initiates a UE assistance information procedure to inform the network of its preference for RRC status or MUSIM assistance information.
  • a UE capable of providing support information for transitioning from the RRC_CONNECTED state may initiate the procedure when it determines that it prefers transitioning from the RRC_CONNECTED state or upon a change in the preferred RRC state.
  • a UE capable of providing MUSIM assistance information may initiate the procedure when it determines that it needs to leave the RRC_CONNECTED state, or when it determines that a gap is needed, or upon a change in gap information.
  • the UE If the UE is configured to provide a release preference and timer T1 is not running and the UE determines that it would prefer to leave the RRC_CONNECTED state, the UE starts timer T1 with the timer value set to releasePreferenceProhibitTimer and the UE determines the release preference in the UEAssistanceInformation providing the release preference. Start transmission.
  • the UE If the UE is configured to provide MUSIM assistance information and the UE needs to leave the RRC_CONNECTED state, the UE starts transmission of a UEAssistanceInformation message to provide MUSIM assistance information and the UE starts timer T2 with the timer value set to MUSIM-LeaveWithoutResponseTimer. Let's begin.
  • the UE When transmission of the UEAssistanceInformation message is initiated to provide release preference, the UE includes releasePreference in the UEAssistanceInformation message. When transmitting the UEAssistanceInformation message, the UE sets the preferredRRC-State of releasePreference to the desired RRC state.
  • the UE When transmission of the UEAssistanceInformation message begins to provide MUSIM support information, the UE includes musim-PreferredRRC-State in the UEAssistanceInformation. The UE sets musim-PreferredRRC-State to the desired RRC state.
  • preferredRRC-State is enumerated as one of IDLE and INACTIVE and CONNECTED and OUTOFCONNECTED. musim-PreferredRRC-State is listed as either IDLE or INACTIVE.
  • the GNB receives the UEAssistanceInformation message.
  • the GNB recognizes that the UE prefers RRC state transition for power saving purposes if releasePreference IE is included in the UEAssistanceInformation.
  • the GNB recognizes that the UE requests RRC state transition for MUSIM purposes if the UEAssistanceInformation includes musim-PreferredRRC-State IE.
  • the GNB When the GNB successfully receives the UEAssistanceInformation message, the GNB takes appropriate action, such as commanding a UE state transition.
  • the GNB does not take appropriate action. In this case, T2 may expire.
  • the GNB may also send mobility-related RRC messages if the GNB deems necessary. In this case, 2a-17 or 2a-19 occurs.
  • T2 expires at 2a-17.
  • the UE performs the first set of operations listed below.
  • the UE resets the MAC.
  • the UE has T302 (related to RRCRlease with waitTime ), T320 (related to valid time configured for dedicated priority), T325 (related to RRCRlease message with deprioritisationTimer ), T330 (related to LoggedMeasurementConfiguration ), T331 ( related to RRCRelease message in measIdleDuration), and Stop T400 ( related to RRCReconfigurationSidelink).
  • the UE stops T1 if T1 is running.
  • the UE releases all radio resources, including RLC entities for all configured radio bearers, MAC configuration and associated PDCP entities, and release of SDAP.
  • the UE enters RRC_IDLE and performs cell selection.
  • the GNB may generate a mobility-related RRC message if UEAssistanceInformation is not received.
  • the mobility-related RRC message may be an RRCReconfiguration message for handover, an RRCReconfiguration message for conditional handover, or a MobilityFromNRCommand message.
  • the RRCReconfiguration message for handover includes masterCellGroup IE containing reconfigurationWithSync .
  • the RRCReconfiguration message for conditional handover includes conditionalReconfiguration IE, which includes another RRCReconfiguration message for handover.
  • the MobilityFromNRCommand message is used to command handover from NR to E-UTRA/EPC, E-UTRA/5GC or UTRA-FDD.
  • the MobilityFromNRCommand message includes a targetRAT-MessageContainer IE, which carries information about target cell identifier(s) and radio parameters related to target radio access technology.
  • the UE that receives the RRCReconfiguration message for handover performs handover to the cell indicated in the RRCReconfiguration message and starts T304.
  • the UE starts the random access procedure in the target cell. If the random access procedure is successfully completed before T304 expires, the UE considers the handover to be successful.
  • the UE checks whether the first set of conditions are met. If the first set of conditions is met, the UE performs the second set of actions. As a result of the second set of actions, the UE starts T2 to transmit UEAssistanceInformation from the target cell and perform local release if it has transmitted UEAssistanceInformation from the source cell in the near past.
  • the first set of conditions includes the following conditions:
  • the UE is still configured to provide relevant UE support information.
  • the second set of actions includes:
  • the UE starts transmitting the UEAssistanceInformation message to provide UE assistance information such as musim-PreferredRRC-State or PreferredRRC-State.
  • the UE starts or restarts T1 with the timer value set as the value of releasePreferenceProhibitTimer.
  • the UE starts T2 by setting the timer value to the musim-LeaveWithoutResponseTimer value.
  • the reason the UE stops T2 when receiving the RRCReconfiguration message for handover is to prevent local RRC disconnection from occurring while handover is in progress.
  • the UE that receives the RRCReconfiguration message for conditional handover evaluates execution conditions based on the information in the received RRCReconfiguration. If the execution conditions are met, the UE performs handover to the cell indicated in the RRCReconfiguration message and starts T304. The UE starts the random access procedure in the target cell. If the random access procedure is successfully completed before T304 expires, the UE considers the handover to be successful.
  • conditional handover or conditional reconfiguration
  • the UE checks whether a second set of conditions is met. If the second set of conditions is met, the UE performs the second set of actions.
  • the second set of conditions includes the following conditions:
  • the UE is configured to provide UE assistance information
  • the UE transmits UEAssistanceInformation in the target cell and starts T2 to perform local release.
  • GNB knows the exact time when the handover is executed. GNB does not know the exact time when the conditional handover will be executed.
  • the UE that receives the MobilityFromNRCommand message checks whether T2 is running. If T2 is running, the UE delays performing the action set until T2 expires. When T2 expires, the UE applies the first set of actions. Alternatively, the UE stops running T2 and performs the first set of actions.
  • the third set of actions includes:
  • the UE accesses the target cell indicated in the inter-RAT message according to the specifications of the target RAT.
  • the UE resets the MAC.
  • the UE stops all running timers (including T1) except T325, T330 and T400.
  • the UE releases all radio resources, including release of RLC entities and MAC configuration.
  • the UE releases the associated PDCP entity and SDAP entity for all configured RBs.
  • the UE may initiate an RRC connection re-establishment procedure.
  • the UE initiates the RRC re-establishment procedure.
  • the UE performs the fourth set of operations when the procedure begins.
  • the fourth set of actions includes:
  • the UE Upon selecting a suitable NR cell, the UE stops T311 and sends an RRCReestablishmentRequest message . If RRCReestablishment is received in response to RRCReestablishmentRequest, the UE re-establishes the RRC connection based on the received RRC message.
  • the UE stops T2 and performs the first set of actions.
  • the GNB may transmit an RRCRlease message for state transition instead of transmitting a mobility-related RRC message.
  • GNB transmits an RRCRlease message to the UE.
  • the RRCRlease message includes SuspendConfig.
  • the UE Upon receipt of the RRCRlease, the UE stops T2 and the UE initiates (application of) the fifth set of actions from the moment the RRCRlease message is received, or optionally when the lower layer indicates that receipt of the RRCRlease message has been successfully acknowledged, whichever is earlier . Delays 60ms from this point.
  • the UE receiving RRCRelease stops T2 before applying the 60ms delay and performs the fifth set of operations after the 60ms delay.
  • the UE stops timers T380 and T320 and T316 and T350.
  • the UE applies the received suspendConfig.
  • the UE resets the MAC and deconfigures the default MAC cell group.
  • the UE resets the RLC entity for SRB1.
  • the UE stores the current KgNB and KRRCint keys, ROHC status, stored QoS flows for DRB mapping rules, C-RNTI used in the source PCell, cellIdentity of the source PCell and physical cell ID in the UE inactive AS context.
  • the UE can transmit an RLC acknowledgment for the RRCRlease message.
  • T2 may expire before sending the RLC acknowledgment, resulting in a transition to the IDLE state.
  • Figure 3 is a flowchart for explaining the operation of a terminal according to an embodiment of the present disclosure.
  • step 3a-11 an RRC reconfiguration message including musim-AssistanceConfig IE is received from the base station.
  • step 3a-13 the terminal assistance information process is initiated based on the musim-AssistanceConfig being set to setup.
  • step 3a-15 if UEAssistanceInformation includes musim-PreferredRRC-State IE, transmission of UEAssistanceInformation is initiated and then the first timer is started.
  • step 3a-17 a second RRC reconfiguration message including ReconfigurationWithSync IE is received.
  • steps 3a-19 a second timer set to the second timer value included in ReconfigurationWithSync IE is started.
  • step 3a-21 when the second timer expires, the RRC connection reset procedure is initiated and one of the first set of reset operations and the second set of reset operations is performed.
  • Figure 4a is a block diagram showing the internal structure of a terminal to which the present invention is applied.
  • the terminal includes a control unit (4a-01), a storage unit (4a-02), a transceiver (4a-03), a main processor (4a-04), and an input/output unit (4a-05).
  • the control unit 4a-01 controls overall operations of the UE related to mobile communication.
  • the control unit 4a-01 transmits and receives signals through the transceiver 4a-03.
  • the control unit 4a-01 writes and reads data into the storage unit 4a-02.
  • the control unit 4a-01 may include at least one processor.
  • the control unit 4a-01 may include a communication processor (CP) that performs control for communication and an application processor (AP) that controls upper layers such as application programs.
  • CP communication processor
  • AP application processor
  • the control unit 4a-01 controls the storage unit and the transceiver to perform the terminal operations of FIGS. 2 and 3.
  • the transceiver is also called a transmitter and receiver.
  • the storage unit 4a-02 stores data such as basic programs, application programs, and setting information for operation of the terminal.
  • the storage unit 4a-02 provides stored data upon request from the control unit 4a-01.
  • the transver (4a-03) includes an RF processing unit, a baseband processing unit, and an antenna.
  • the RF processing unit performs functions to transmit and receive signals through wireless channels, such as converting the signal band and amplifying it. That is, the RF processing unit up-converts the baseband signal provided from the baseband processing unit into an RF band signal and transmits it through an antenna, and down-converts the RF band signal received through the antenna into a baseband signal.
  • the RF processing unit may include a transmission filter, a reception filter, an amplifier, a mixer, an oscillator, a digital to analog convertor (DAC), an analog to digital convertor (ADC), etc.
  • the RF processing unit can perform MIMO and can receive multiple layers when performing MIMO operation.
  • the baseband processing unit performs a conversion function between baseband signals and bit strings according to the physical layer specifications of the system. For example, when transmitting data, the baseband processing unit generates complex symbols by encoding and modulating the transmission bit stream. Additionally, when receiving data, the baseband processing unit restores the received bit stream by demodulating and decoding the baseband signal provided from the RF processing unit.
  • the transceiver is also called a transmitter and receiver.
  • the main processor (4a-04) controls overall operations excluding mobile communication-related operations.
  • the main processor (4a-04) processes the user's input transmitted from the input/output unit (4a-05), stores the necessary data in the storage unit (4a-02), and controls the control unit (4a-01) to enable mobile communication. It performs related operations and transmits output information to the input/output unit (4a-05).
  • the input/output unit 4a-05 is composed of a device that receives user input, such as a microphone or screen, and a device that provides information to the user, and inputs and outputs user data under the control of the main processor.
  • Figure 4b is a block diagram showing the configuration of a base station according to the present invention.
  • the distribution unit includes a control unit (4b-01), a storage unit (4b-02), a transceiver (4b-03), and a backhaul interface unit (4b-04).
  • the control unit 4b-01 controls overall operations of the distribution unit. For example, the control unit 4b-01 transmits and receives signals through the transceiver 4b-03 or through the backhaul interface unit 4b-04. Additionally, the control unit 4b-01 writes and reads data into the storage unit 4b-02. For this purpose, the control unit 4b-01 may include at least one processor.
  • the control unit 4b-01 is a transceiver so that the base station operation shown in FIG. 2 is performed. storage unit. Controls the backhaul interface unit.
  • the storage unit 4b-02 stores data such as basic programs, application programs, and setting information for operation of the main distribution unit.
  • the storage unit 4b-02 can store information about bearers assigned to the connected terminal, measurement results reported from the connected terminal, etc. Additionally, the storage unit 4b-02 can store information that serves as a criterion for determining whether to provide or suspend multiple connections to the terminal. And, the storage unit 4b-02 provides stored data according to the request of the control unit 4b-01.
  • the transceiver (4b-03) includes an RF processing unit, a baseband processing unit, and an antenna.
  • the RF processing unit performs functions for transmitting and receiving signals through a wireless channel, such as band conversion and amplification of signals. That is, the RF processing unit upconverts the baseband signal provided from the baseband processing unit into an RF band signal and transmits it through an antenna, and downconverts the RF band signal received through the antenna into a baseband signal.
  • the RF processing unit may include a transmission filter, reception filter, amplifier, mixer, oscillator, DAC, ADC, etc.
  • the RF processing unit can perform downlink MIMO operation by transmitting one or more layers.
  • the baseband processing unit performs a conversion function between baseband signals and bit strings according to physical layer standards.
  • the baseband processing unit when transmitting data, the baseband processing unit generates complex symbols by encoding and modulating the transmission bit stream. Additionally, when receiving data, the baseband processing unit restores the received bit stream by demodulating and decoding the baseband signal provided from the RF processing unit.
  • the transceiver is also called a transmitter and receiver.
  • the backhaul interface unit 4b-04 provides an interface for communicating with other nodes in the network. That is, the backhaul communication unit 4b-04 converts a bit string transmitted from the distributed unit to another node, for example, a centralized unit, into a physical signal, and converts a physical signal received from the other node into a bit string. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서, 단말 방법은 기지국으로부터 musim-AssistanceConfig IE를 포함하는 제1 RRC 재구성 메시지를 수신하는 단계, musim-AssistanceConfig가 셋 업으로 셋된 것에 기반하여 단말 지원 정보 과정을 개시하는 단계, UEAssistanceInformation이 musim-PreferredRRC-State IE를 포함하면 UEAssistanceInformation 전송을 개시한 후 상기 musim-AssistanceConfig IE에 포함된 제1 타이머 값으로 설정된 제1 타이머를 시작하는 단계, ReconfigurationWithSync IE를 포함하는 제2 RRC 재구성 메시지를 수신하는 단계, 제2 타이머를 구동하는 단계, 제2 타이머가 만료되면 RRC 연결 재설정 절차를 시작하고 제1 재설정 동작 집합과 제2 재설정 동작 집합 중 하나를 수행하는 단계를 포함할 수 있다.

Description

무선 이동 통신 시스템에서 단말 지원 정보 제공 절차와 핸드 오버 절차를 수행하는 방법 및 장치
본 개시는 단말이 무선 이동 통신 시스템에서 단말 지원 정보 제공 절차와 핸드 오버 절차를 수행하는 방법 및 장치에 관한 것이다.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 5G 통신 시스템이 개발되었다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)을 도입하였다. 초고주파 대역에서의 전파의 경로 손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력 (Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성 (analog beam-forming) 및 대규모 안테나 (large scale antenna) 기술들이 사용된다. 5G 통신 시스템에서는 기지국을 중앙 유니트와 분산 유니트로 분할해서 확장성을 높인다. 또한 5G 통신 시스템에서는 다양한 서비스를 지원하기 위해서 굉장히 높은 데이터 전송률과 굉장히 낮은 전송지연을 지원하는 것을 목표로 하며 비지상 네트워크를 도입하였다.
개시된 실시예는 무선 이동 통신 시스템에서 단말 지원 정보 제공 절차와 핸드 오버 절차를 수행하는 방법 및 장치를 제공하고자 한다.
본 개시의 일 실시예에 따르면, 단말의 방법에 있어서, 기지국으로부터 musim-AssistanceConfig IE를 포함하는 제1 RRC 재구성 메시지를 수신하는 단계, musim-AssistanceConfig가 셋 업으로 셋된 것에 기반하여 단말 지원 정보 과정을 개시하는 단계, 상기 UEAssistanceInformation이 musim-PreferredRRC-State IE를 포함하면 UEAssistanceInformation 전송을 개시한 후 상기 musim-AssistanceConfig IE에 포함된 제1 타이머 값으로 설정된 제1 타이머를 시작하는 단계, ReconfigurationWithSync IE를 포함하는 제2 RRC 재구성 메시지를 수신하는 단계, ReconfigurationWithSync IE에 포함된 제2 타이머 값으로 설정된 제2 타이머를 시작하는 단계 및 제2 타이머가 만료되면 RRC 연결 재설정 절차를 시작하고 제1 재설정 동작 집합과 제2 재설정 동작 집합 중 하나를 수행하는 단계를 포함한다.
개시된 실시예는 무선 이동 통신 시스템에서 단말 지원 정보 제공 절차와 핸드 오버 절차를 수행하는 방법 및 장치를 제공한다.
도 1a는 본 개시의 일 실시예에 따른 5G 시스템과 NG-RAN의 구조를 도시한 도면이다
도 1b는 본 개시의 일 실시예에 따른 NR 시스템에서 무선 프로토콜 구조를 도시한 도면이다.
도 1c는 본 개시의 일 실시예에 따른 RRC 상태 간의 천이를 도시한 도면이다.
도 2는 본 개시의 일 실시예에 따른 단말과 기지국의 동작을 설명한 도면이다.
도 3은 본 개시의 일 실시예에 따른 단말의 동작을 설명하기 위한 흐름도이다.
도 4a는 본 발명을 적용한 단말의 내부 구조를 도시하는 블록도이다.
도 4b는 본 발명을 적용한 기지국의 내부 구조를 도시하는 블록도이다.
이하, 본 발명의 실시예를 첨부한 도면과 함께 상세히 설명한다. 또한 본 발명을 설명함에 있어서 관련된 공지 기능 혹은 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
이하 설명에서 사용되는 접속 노드(node)를 식별하기 위한 용어, 망 객체(network entity)들을 지칭하는 용어, 메시지들을 지칭하는 용어, 망 객체들 간 인터페이스를 지칭하는 용어, 다양한 식별 정보들을 지칭하는 용어 등은 설명의 편의를 위해 예시된 것이다. 따라서, 본 발명이 후술되는 용어들에 한정되는 것은 아니며, 동등한 기술적 의미를 가지는 대상을 지칭하는 다른 용어가 사용될 수 있다.
이하 설명의 편의를 위하여, 본 발명은 현재 존재하는 통신표준 가운데 가장 최신의 표준인 3GPP (3rd Generation Partnership Project) 규격에서 정의하고 있는 용어 및 명칭들을 사용한다. 하지만, 본 발명이 상기 용어 및 명칭들에 의해 한정되는 것은 아니며, 다른 규격에 따르는 시스템에도 동일하 게 적용될 수 있다.
표 1에 본 발명에서 사용되는 약어들을 나열하였다.
Acronym Full name Acronym Full name
5GC 5G Core Network RACH Random Access Channel
ACK Acknowledgement RAN Radio Access Network
AM Acknowledged Mode RA-RNTI Random Access RNTI
AMF Access and Mobility Management Function RAT Radio Access Technology
ARQ Automatic Repeat Request RB Radio Bearer
AS Access Stratum RLC Radio Link Control
ASN.1 Abstract Syntax Notation One RNA RAN-based Notification Area
BSR Buffer Status Report RNAU RAN-based Notification Area Update
BWP Bandwidth Part RNTI Radio Network Temporary Identifier
CA Carrier Aggregation RRC Radio Resource Control
CAG Closed Access Group RRM Radio Resource Management
CG Cell Group RSRP Reference Signal Received Power
C-RNTI Cell RNTI RSRQ Reference Signal Received Quality
CSI Channel State Information RSSI Received Signal Strength Indicator
DCI Downlink Control Information SCell Secondary Cell
DRB (user) Data Radio Bearer SCS Subcarrier Spacing
DRX Discontinuous Reception SDAP Service Data Adaptation Protocol
HARQ Hybrid Automatic Repeat Request SDU Service Data Unit
IE Information element SFN System Frame Number
LCG Logical Channel Group S-GW Serving Gateway
MAC Medium Access Control SI System Information
MIB Master Information Block SIB System Information Block
NAS Non-Access Stratum SpCell Special Cell
NG-RAN NG Radio Access Network SRB Signalling Radio Bearer
NR NR Radio Access SRS Sounding Reference Signal
PBR Prioritised Bit Rate SSB SS/PBCH block
PCell Primary Cell SSS Secondary Synchronisation Signal
PCI Physical Cell Identifier SUL Supplementary Uplink
PDCCH Physical Downlink Control Channel TM Transparent Mode
PDCP Packet Data Convergence Protocol UCI Uplink Control Information
PDSCH Physical Downlink Shared Channel UE User Equipment
PDU Protocol Data Unit UM Unacknowledged Mode
PHR Power Headroom Report CCCH Common Control Channel
PLMN Public Land Mobile Network DL Downlink
PRACH Physical Random Access Channel UL Uplink
PRB Physical Resource Block RAR Random Access Response
PSS Primary Synchronisation Signal MUSIM Multi-Universal Subscriber Identity Module
PUCCH Physical Uplink Control Channel
PUSCH Physical Uplink Shared Channel
표 2에 본 발명에서 빈번하게 사용되는 용어들을 정의하였다.
Terminology Definition
allowedCG-List List of configured grants for the corresponding logical channel. This restriction applies only when the UL grant is a configured grant. If present, UL MAC SDUs from this logical channel can only be mapped to the indicated configured grant configuration. If the size of the sequence is zero, then UL MAC SDUs from this logical channel cannot be mapped to any configured grant configurations. If the field is not present, UL MAC SDUs from this logical channel can be mapped to any configured grant configurations.
allowedSCS-List List of allowed sub-carrier spacings for the corresponding logical channel. If present, UL MAC SDUs from this logical channel can only be mapped to the indicated numerology. Otherwise, UL MAC SDUs from this logical channel can be mapped to any configured numerology.
allowedServingCells List of allowed serving cells for the corresponding logical channel. If present, UL MAC SDUs from this logical channel can only be mapped to the serving cells indicated in this list. Otherwise, UL MAC SDUs from this logical channel can be mapped to any configured serving cell of this cell group.
Carrier frequency center frequency of the cell.
Cell combination of downlink and optionally uplink resources. The linking between the carrier frequency of the downlink resources and the carrier frequency of the uplink resources is indicated in the system information transmitted on the downlink resources.
Cell Group in dual connectivity, a group of serving cells associated with either the MeNB or the SeNB.
Cell reselection A process to find a better suitable cell than the current serving cell based on the system information received in the current serving cell
Cell selection A process to find a suitable cell either blindly or based on the stored information
Dedicated signalling Signalling sent on DCCH logical channel between the network and a single UE.
discardTimer Timer to control the discard of a PDCP SDU. Starting when the SDU arrives. Upon expiry, the SDU is discarded.
F The Format field in MAC subheader indicates the size of the Length field.
Field The individual contents of an information element are referred to as fields.
Frequency layer set of cells with the same carrier frequency.
Global cell identity An identity to uniquely identifying an NR cell. It is consisted of cellIdentity and plmn-Identity of the first PLMN-Identity in plmn-IdentityList in SIB1.
gNB node providing NR user plane and control plane protocol terminations towards the UE, and connected via the NG interface to the 5GC.
Handover procedure that changes the serving cell of a UE in RRC_CONNECTED.
Information element A structural element containing single or multiple fields is referred as information element.
L The Length field in MAC subheader indicates the length of the corresponding MAC SDU or of the corresponding MAC CE
LCID 6 bit logical channel identity in MAC subheader to denote which logical channel traffic or which MAC CE is included in the MAC subPDU
MAC-I Message Authentication Code - Integrity. 16 bit or 32 bit bit string calculated by NR Integrity Algorithm based on the security key and various fresh inputs
Logical channel a logical path between a RLC entity and a MAC entity. There are multiple logical channel types depending on what type of information is transferred e.g. CCCH (Common Control Channel), DCCH (Dedicate Control Channel), DTCH (Dedicate Traffic Channel), PCCH (Paging Control Channel)
LogicalChannelConfig The IE LogicalChannelConfig is used to configure the logical channel parameters. It includes priority, prioritisedBitRate, allowedServingCells, allowedSCS-List, maxPUSCH-Duration, logicalChannelGroup, allowedCG-List etc
logicalChannelGroup ID of the logical channel group, as specified in TS 38.321, which the logical channel belongs to
MAC CE Control Element generated by a MAC entity. Multiple types of MAC CEs are defined, each of which is indicated by corresponding LCID. A MAC CE and a corresponding MAC sub-header comprises MAC subPDU
Master Cell Group in MR-DC, a group of serving cells associated with the Master Node, comprising of the SpCell (PCell) and optionally one or more SCells.
maxPUSCH-Duration Restriction on PUSCH-duration for the corresponding logical channel. If present, UL MAC SDUs from this logical channel can only be transmitted using uplink grants that result in a PUSCH duration shorter than or equal to the duration indicated by this field. Otherwise, UL MAC SDUs from this logical channel can be transmitted using an uplink grant resulting in any PUSCH duration.
NR NR radio access
PCell SpCell of a master cell group.
PDCP entity reestablishment The process triggered upon upper layer request. It includes the initialization of state variables, reset of header compression and manipulating of stored PDCP SDUs and PDCP PDUs. The details can be found in 5.1.2 of 38.323
PDCP suspend The process triggered upon upper layer request. When triggered, transmitting PDCP entity set TX_NEXT to the initial value and discard all stored PDCP PDUs. The receiving entity stop and reset t-Reordering, deliver all stored PDCP SDUs to the upper layer and set RX_NEXT and RX_DELIV to the initial value
PDCP-config The IE PDCP-Config is used to set the configurable PDCP parameters for signalling and data radio bearers. For a data radio bearer, discardTimer, pdcp-SN-Size, header compression parameters, t-Reordering and whether integrity protection is enabled are configured. For a signaling radio bearer, t-Reordering can be configured
PLMN ID Check the process that checks whether a PLMN ID is the RPLMN identity or an EPLMN identity of the UE.
Primary Cell The MCG cell, operating on the primary frequency, in which the UE either performs the initial connection establishment procedure or initiates the connection re-establishment procedure.
Primary SCG Cell For dual connectivity operation, the SCG cell in which the UE performs random access when performing the Reconfiguration with Sync procedure.
priority Logical channel priority, as specified in TS 38.321. an integer between 0 and 7. 0 means the highest priority and 7 means the lowest priority
PUCCH SCell a Secondary Cell configured with PUCCH.
Radio Bearer Logical path between a PDCP entity and upper layer (i.e. SDAP entity or RRC)
RLC bearer RLC and MAC logical channel configuration of a radio bearer in one cell group.
RLC bearer configuration The lower layer part of the radio bearer configuration comprising the RLC and logical channel configurations.
RX_DELIV This state variable indicates the COUNT value of the first PDCP SDU not delivered to the upper layers, but still waited for.
RX_NEXT This state variable indicates the COUNT value of the next PDCP SDU expected to be received.
RX_REORD This state variable indicates the COUNT value following the COUNT value associated with the PDCP Data PDU which triggered t-Reordering.
Serving Cell For a UE in RRC_CONNECTED not configured with CA/DC there is only one serving cell comprising of the primary cell. For a UE in RRC_CONNECTED configured with CA/ DC the term 'serving cells' is used to denote the set of cells comprising of the Special Cell(s) and all secondary cells.
SpCell primary cell of a master or secondary cell group.
Special Cell For Dual Connectivity operation the term Special Cell refers to the PCell of the MCG or the PSCell of the SCG, otherwise the term Special Cell refers to the PCell.
SRB Signalling Radio Bearers" (SRBs) are defined as Radio Bearers (RBs) that are used only for the transmission of RRC and NAS messages.
SRB0 SRB0 is for RRC messages using the CCCH logical channel
SRB1 SRB1 is for RRC messages (which may include a piggybacked NAS message) as well as for NAS messages prior to the establishment of SRB2, all using DCCH logical channel;
SRB2 SRB2 is for NAS messages and for RRC messages which include logged measurement information, all using DCCH logical channel. SRB2 has a lower priority than SRB1 and may be configured by the network after AS security activation;
SRB3 SRB3 is for specific RRC messages when UE is in (NG)EN-DC or NR-DC, all using DCCH logical channel
SRB4 SRB4 is for RRC messages which include application layer measurement reporting information, all using DCCH logical channel.
Suitable cell A cell on which a UE may camp. Following criteria apply
- The cell is part of either the selected PLMN or the registered PLMN or PLMN of the Equivalent PLMN list
- The cell is not barred
- The cell is part of at least one TA that is not part of the list of "Forbidden Tracking Areas for Roaming" (TS 22.011 [18]), which belongs to a PLMN that fulfils the first bullet above.
- The cell selection criterion S is fulfilled (i.e. RSRP and RSRQ are better than specific values
t-Reordering Timer to control the reordering operation of received PDCP packets. Upon expiry, PDCP packets are processed and delivered to the upper layers.
TX_NEXT This state variable indicates the COUNT value of the next PDCP SDU to be transmitted.
UE Inactive AS Context UE Inactive AS Context is stored when the connection is suspended and restored when the connection is resumed. It includes information below.
the current KgNB and KRRCint keys, the ROHC state, the stored QoS flow to DRB mapping rules, the C-RNTI used in the source PCell, the cellIdentity and the physical cell identity of the source PCell, the spCellConfigCommon within ReconfigurationWithSync of the NR PSCell (if configured) and all other parameters configured except for:
- parameters within ReconfigurationWithSync of the PCell;
- parameters within ReconfigurationWithSync of the NR PSCell, if configured;
- parameters within MobilityControlInfoSCG of the E-UTRA PSCell, if configured;
- servingCellConfigCommonSIB;
본 발명에서 “트리거한다” 혹은 “트리거된다”와 “개시한다” 혹은 “개시된다” 동일한 의미로 사용될 수 있다.
본 발명에서 단말과 UE는 동일한 의미로 사용될 수 있다. 본 발명에서 기지국과 NG-RAN 노드는 동일한 의미로 사용될 수 있다.
도 1a는, 본 개시의 일 실시예에 따른 5G 시스템과 NG-RAN의 구조를 도시한 도면이다.
5G시스템은 NG-RAN (1a-01)과 5GC (1a-02)로 구성된다. NG-RAN 노드는 아래 둘 중 하나이다.
1: NR 사용자 평면 및 제어 평면을 UE쪽으로 제공하는 gNB; 또는
2: E-UTRA 사용자 평면 및 제어 평면을 UE쪽으로 제공하는 ng-eNB.
gNB (1a-05 내지 1a-06)와 ng-eNB(1a-03 내지 1a-04)는 Xn 인터페이스를 통해 상호 연결된다. gNB 및 ng-eNB는 NG 인터페이스를 통해 AMF (Access and Mobility Management Function) (1a-07) 및 UPF (User Plane Function)(1a-08)에 연결된다. AMF (1a-07)와 UPF (1a-08)는 하나의 물리적 노드 또는 별개의 물리적 노드로 구성될 수 있다.
gNB (1a-05 내지 1a-06)와 ng-eNB (1a-03 내지 1a-04)는 아래에 나열된 기능을 호스팅한다.
라디오 베어러 제어, 라디오 수락 제어, 연결 이동성 제어, 업링크, 다운 링크 및 사이드 링크 (일정)에서 UEs에게 자원의 동적 할당, IP 및 이더넷 헤더 압축, 업링크 데이터 감압 및 사용자 데이터 스트림의 암호화, 단말이 제공한 정보로 AMF를 선택할 수 없는 경우 AMF 선택, UPF로 사용자 평면 데이터의 라우팅, 페이징 메시지의 스케줄링 및 전송, (AMF또는 O&M에서 유래한) 방송 정보의 스케줄링 및 전송;
이동성 및 스케줄링을 위한 측정 및 측정 보고 구성, 세션 관리, 데이터 무선 베어러에 대한 QoS 흐름 관리 및 매핑, RRC_INACTIVE 지원, 무선 액세스 네트워크 공유;
NR과 E-UTRA 간의 긴밀한 상호 작용, 네트워크 슬라이싱 지원.
AMF (1a-07)는 NAS 시그널링, NAS 신호 보안, AS 보안 제어, S-GW 선택, 인증, 이동성 관리 및 위치 관리와 같은 기능을 호스팅한다.
UPF (1a-08)는 패킷 라우팅 및 전달, 업링크 및 다운링크의 전송 수준 패킷 마킹, QoS 관리, 이동성을 위한 이동성 앵커링 등의 기능을 호스팅한다.
도 1b는, 5G 시스템의 무선 프로토콜 구조를 도시한 도면이다.
사용자 평면 프로토콜 스택은 SDAP (1b-01 내지 1b-02), PDCP (1b-03 내지 1b-04), RLC (1b-05 내지 1b-06), MAC (1b-07 내지 1b-08), PHY (1b-09 내지 1b-10)로 구성된다. 제어 평명 프로토콜 스택은 NAS (1b-11 내지 1b-12), RRC (1b-13 내지 1b-14), PDCP, RLC, MAC, PHY로 구성된다.
각 프로토콜 부계층은 표 3에 나열된 동작과 관련된 기능을 수행한다.
Sublayer Functions
NAS 인증, 모빌리티 관리, 보안 제어 등
RRC 시스템 정보, 페이징, RRC 연결 관리, 보안 기능, 시그널링 무선 베어러 및 데이터 무선 베어러 관리, 모빌리티 관리, QoS 관리, 무선 링크 오류로부터의 복구 감지 및 복구, NAS 메시지 전송 등
SDAP QoS 플로우와 데이터 무선 베어러 간의 매핑, DL 및 UL 패킷의 QoS 플로우 ID(QFI) 마킹.
PDCP 데이터 전송, 헤더 압축 및 복원, 암호화 및 복호화, 무결성 보호 및 무결성 검증, 중복 전송, 순서 조정 및 순서 맞춤 전달 등
RLC 상위 계층PDU 전송, ARQ를 통한 오류 수정, RLC SDU의 분할 및 재분할, SDU의 재조립, RLC 재설립 등
MAC 논리 채널과 전송 채널 간의 매핑, 물리 계층에서 전달되는 전송 블록(TB)에서 하나 또는 다른 논리 채널에 속하는 MAC SDU들을 다중화/역다중화, 정보 보고 일정, UE 간의 우선 순위 처리, 단일 UE 논리적 채널 간의 우선 순위 처리 등
PHY 채널 코딩, 물리적 계층 하이브리드-ARQ 처리, 레이트 매칭, 스크램블링, 변조, 레이어 매핑, 다운링크 제어 정보, 업링크 제어 정보 등
단말은 3가지 RRC 상태를 지원한다. 표 4에 각 상태의 특징을 나열하였다.
RRC state Characteristic
RRC_IDLE PLMN selection;Broadcast of system information;
Cell re-selection mobility;
Paging for mobile terminated data is initiated by 5GC;
DRX for CN paging configured by NAS.
RRC_INACTIVE PLMN selection;Broadcast of system information;Cell re-selection mobility;
Paging is initiated by NG-RAN (RAN paging);
RAN-based notification area (RNA) is managed by NG- RAN;
DRX for RAN paging configured by NG-RAN;
5GC - NG-RAN connection (both C/U-planes) is established for UE;
The UE AS context is stored in NG-RAN and the UE;
NG-RAN knows the RNA which the UE belongs to.
RRC_CONNECTED 5GC - NG-RAN connection (both C/U-planes) is established for UE;The UE AS context is stored in NG-RAN and the UE;NG-RAN knows the cell which the UE belongs to;
Transfer of unicast data to/from the UE;
Network controlled mobility including measurements.
도1c는 RRC 상태 천이를 도시한 도면이다. RRC_CONNECTED (1c-11)와 RRC_INACTIVE (1c-13) 사이에서는 재개 메시지와 SuspendConfig IE를 수납한 Release 메시지의 교환으로 상태 천이가 발생한다. RRC_ CONNECTED (1c-11)와 RRC_IDLE(1c-15) 사이에서는 RRC 연결 설정과 RRC 연결 해제를 통해 상태 천이가 발생한다.
RRC 연결 해제를 통해 RRC_INACTIVE(1c-13)에서 RRC_IDLE(1c-15)로의 상태 천이가 발생한다.
SuspendConfig IE는 아래 정보를 포함한다.
<SuspendConfig>
1: 제1 단말 식별자: RRC_CONNECTED로 상태 천이가 이루어질 때 RRCResumeRequest에 포함될 수 있는 단말의 식별자. 길이는 40비트이다.
2: 제2 단말 식별자: RRC_CONNECTED로 상태 천이가 이루어질 때 RRCResumeRequest에 포함될 수 있는 단말의 식별자. 길이는 24비트이다.
3: ran-Paging Cycle: RRC_INACTIVE 상태에서 적용될 페이징 주기.사전 정의된 값 중 하나를 나타낸다: rf32, rf64, rf128 및 rf256.
4: ran-Notification AreaInfo: 셀 목록 등으로 설정된 ran-Notification Area의 설정 정보. 단말은 ran_Notification Area가 변경되면 재개 절차를 시작한다.
5: t1d-80: 주기적인 재개 절차와 관련된 타이머.
6: NCC(NextHopChangingCount): 재개 절차를 수행한 후 새 보안 키를 유도하는 데 사용되는 카운터이다.
7: Extended-ran-Paging-Cycle: 확장 DRX가 설정될 때 RRC_INACTIVE 상태에서 적용될 페이징 주기. 사전 정의된 값 중 하나를 나타낸다: rf256, rf512, rf1024 및 예비값.
Multi-USIM 장치는 많은 국가에서 점점 더 대중화되고 있다. 사용자는 하나의 장치에 개인 및 비즈니스 구독을 모두 소유하거나 다른 서비스에 대해 하나의 장치에 두 개의 개인 구독을 소유할 수 있다. 그러나 장치 내 Multi-USIM에 대한 지원은 현재 3GPP 규격의 지원 없이 구현별 방식으로 처리되어 다양한 구현 및 UE 동작을 초래한다. 이러한 UE에 대한 지원을 표준화하면 네트워크 기능이 예측 가능한 UE 동작을 기반으로 할 수 있다는 점에서 성능 관점에서 이점이 있음이 입증될 수 있습니다.
둘 이상의 네트워크에 등록된 UE는 둘 이상의 네트워크에서 페이지를 수신할 수 있어야 한다. UE 기능(예: Rx 및 Tx 기능)에 따라 UE가 한 네트워크의 페이지를 듣고 있는 동안 다른 네트워크의 페이지도 전송될 수 있는 상황이 발생할 수 있다. 한 네트워크가 UE를 페이징하는 동안 UE는 다른 네트워크와 능동적으로 통신하고 있을 수 있다. 사용자가 다른 네트워크로 전환하면 UE/사용자가 최근에 통신했던 네트워크에서 더 이상 데이터를 수신할 수 없는 상황이 발생할 수 있다. 이러한 상황은 예를 들어 페이지가 전송되었지만 수신되지 않는 경우 혹은 사용자가 스케줄되었지만 통신을 수신할 수 없는 경우에 성능에 부정적인 영향을 미칠 수 있다.
본 개시에서, UE가 UE 절전을 위해 혹은 앞서 언급한 MUSIM에서 야기되는 문제를 처리하기 위해 UE 상태 천이를 요청하는 방법이 제공된다.
도 2는 단말과 기지국의 동작을 도시한 도면이다.
2a-11에서 UE(2a-01)는 GNB(2a-03)로 UECapabilityInformation을 전송한다. UECapabilityInformation 메시지는 네트워크에서 요청한 UE 무선 액세스 능력을 전달하는 데 사용된다.
UE는 releasePreference 능력 IE 및 releaseRequest 능력 IE를 메시지에 포함할 수 있다. releasePreference IE는 UE가 절전을 위해 RRC_CONNECTED 으로부터 전환하기 위해 선호도 지원 정보를 제공하는 것을 지원하는지 여부를 나타낸다. releaseRequest IE는 UE가 MUSIM을 위해 RRC_CONNECTED 으로부터 전환을 요청하기 위한 지원 정보 제공을 지원하는지 여부를 나타낸다.
UECapabilityInformation 메시지는 UE-NR-Capability IE를 포함한다. UE-NR-Capability IE는 복수의 NCE(Non-Critical Extension)을 포함한다. NCE는 PDU(Protocol Data Unit) 타입의 원래 규격에 새로운 정보를 추가하는 것이 특징이다. 디코더는 이해되지 않는 NCE를 건너뛸 수 있지만 디코더는 PDU 내용의 이해된 부분에 대한 디코딩을 완료할 수 있다.
UE-NR-Capability에 대한 NCE는 릴리스 기반으로 정의된다. 이후 릴리스의 NCE는 이전 릴리스의 NCE보다 나중에 배치된다.
releasePreference 능력 IE 및 releaseReqeust 능력 IE는 서로 다른 NCE에 배치된다.
releaseRequest 능력 IE는 “지원” 이라는 단일 값으로 열거된다. UE가 UE-NR-Capability의 NCE에 releaseRequest 능력 IE를 포함시킨 경우, UE는 FDD 및 TDD 및 FR1 및 FR2 모두에 대해 releaseRequest 능력 IE의 기능을 지원한다.
GNB는 2a-11에서 수신한 능력 정보를 기반으로 UE에 적용할 구성을 결정한다.
GNB는 결정된 구성을 기반으로 RRCReconfiguration 메시지를 생성한다.
2a-13에서, GNB는 UE에게 RRCReconfiguration을 전송한다. RRCReconfiguration 메시지는 RRC 연결을 수정하기 위한 명령이다. 측정 구성, 이동성 제어, 무선 자원 구성(RB, MAC 주 구성 및 물리 채널 구성 포함) 및 AS 보안 구성에 대한 정보를 전달할 수 있다.
GNB는 releasePreferenceConfig IE 또는 musim-AssistanceConfig IE와 같은 UE 지원 정보 구성을 상기 메시지에 포함할 수 있다. 
releasePreferenceConfig IE는 단말이 RRC_CONNECTED 상태를 떠나길 원하는 UE의 선호도를 보고하는 설정이다. releasePreferenceConfig IE는 해제 선호도 지원 정보 보고를 위한 금지 타이머인 releasePreferenceProhibitTimer를 포함한다.
musim-AssistanceConfig IE는 UE가 MUSIM에 대한 지원 정보를 보고하기 위한 설정이다. musim-AssistanceConfig IE는 UE가 네트워크 응답 없이 RRC_CONNECTED를 떠나는 타이머를 나타내는 musim-LeaveWithoutResponseTimer를 포함한다.
UE는 수신된 RRCReconfiguration의 otherConfig 메시지에 releasePreferenceConfig가 포함되어 있고 releasePreferenceConfig가 셋업으로 셋된 경우 RRC_CONNECTED 밖으로 전환하기 위한 지원 정보를 제공하도록 구성되어 있다고 간주한다.
UE는 수신된 RRCReconfiguration의 otherConfig가 musim-AssistanceConfig를 포함하고 musim-AssistanceConfig가 셋업으로 셋 된 경우 MUSIM 지원 정보를 제공하도록 구성되었다고 간주한다.
2a-15에서 UE는 RRC 상태에 대한 선호도 또는 MUSIM 지원 정보를 네트워크에 알리기 위해 UE 지원 정보 절차를 시작한다.
RRC_CONNECTED 상태로부터의 전환에 대한 지원 정보를 제공할 수 있는 UE는 그렇게 하도록 구성된 경우, RRC_CONNECTED 상태로부터의 전환을 선호한다고 결정할 때 또는 선호하는 RRC 상태의 변경 시에 절차를 시작할 수 있다.
MUSIM 지원 정보를 제공할 수 있는 UE는 그렇게 하도록 구성된 경우, RRC_CONNECTED 상태를 떠날 필요가 있다고 결정할 때, 또는 갭이 필요하다고 결정할 때 또는 갭 정보의 변경 시에 절차를 시작할 수 있다.
UE가 해제 선호도를 제공하도록 구성되고 타이머 T1이 실행되고 있지 않고 UE가 RRC_CONNECTED 상태를 벗어나는 것을 선호한다고 결정하면, UE는 타이머 값이 releasePreferenceProhibitTimer로 설정된 타이머 T1을 시작하고 UE는 해제 선호를 제공하는 UEAssistanceInformation의 전송을 시작한다.
UE가 MUSIM 지원 정보를 제공하도록 구성되고 UE가 RRC_CONNECTED 상태를 떠날 필요가 있는 경우, UE는 MUSIM 지원 정보를 제공하기 위해 UEAssistanceInformation 메시지의 전송을 시작하고 UE는 MUSIM-LeaveWithoutResponseTimer로 설정된 타이머 값으로 타이머 T2를 시작한다.
해제 선호도를 제공하기 위해 UEAssistanceInformation 메시지의 전송이 개시되면, UE는 UEAssistanceInformation 메시지에 releasePreference를 포함한다. UE는 UEAssistanceInformation 메시지 전송 시 releasePreference의 preferredRRC-State를 원하는 RRC 상태로 설정한다.
MUSIM 지원 정보를 제공하기 위해 UEAssistanceInformation 메시지의 전송이 시작되면, UE는 UEAssistanceInformation에 musim-PreferredRRC-State를 포함한다. UE는 musim-PreferredRRC-State를 원하는 RRC 상태로 설정한다.
preferredRRC-State는 IDLE 및 INACTIVE 및 CONNECTED 및 OUTOFCONNECTED 중 하나로 열거된다. musim-PreferredRRC-State는 IDLE 및 INACTIVE중 하나로 열거된다.
GNB는 UEAssistanceInformation 메시지를 수신한다. GNB는 UEAssistanceInformation에 releasePreference IE가 포함된 경우 UE가 절전 목적으로 RRC 상태 전환을 선호한다는 것을 인식한다. GNB는 UEAssistanceInformation이 musim-PreferredRRC-State IE를 포함하는 경우 UE가 MUSIM 목적을 위해 RRC 상태 전환을 요청한다는 것을 인지한다.
GNB가 UEAssistanceInformation 메시지를 성공적으로 수신하면 GNB는 UE 상태 전환을 명령하는 것과 같은 적절한 조치를 취한다.
GNB가 UEAssistanceInformation 메시지를 수신하지 못하면 GNB는 적절한 조치를 취하지 않다. 이 경우 T2가 만료될 수 있다. GNB는 또한 GNB가 필요하다고 간주하는 경우 이동성 관련 RRC 메시지를 보낼 수 있다. 이경우 2a-17 또는 2a-19가 일어난다.
2a-17에서 T2가 만료된다. UE는 아래 나열된 첫 번째 동작 집합을 수행한다.
UE는 MAC을 재설정한다. UE는 T302( waitTime을 포함한 RRCRlease 관련), T320(전용 우선 순위에 대해 구성된 유효 시간 관련), T325( deprioritisationTimer 가 포함된 RRCRlease 메시지 관련), T330(LoggedMeasurementConfiguration 관련 ), T331(measIdleDuration 의 RRCRelease 메시지 관련) 및 T400( RRCReconfigurationSidelink 관련)을 중지한다.  UE는 T1이 구동 중이라면 T1을 중지한다. UE는 설정된 모든 무선베어러에 대한 RLC 엔티티, MAC 설정 및 연관된 PDCP 엔티티 및 SDAP의 해제를 포함하는 모든 무선 자원을 해제한다. UE는 RRC_IDLE에 진입하고 셀 선택을 수행한다.
2a-19에서, GNB는 UEAssistanceInformation이 수신되지 않은 경우 이동성 관련 RRC 메시지를 생성할 수 있다. 이동성 관련 RRC 메시지는 핸드오버를 위한 RRCReconfiguration 메시지, 조건부 핸드오버를 위한 RRCReconfiguration 메시지 또는 MobilityFromNRCommand 메시지일 수 있다.
핸드오버를 위한 RRCReconfiguration 메시지 에는 reconfigurationWithSync 를 포함 하는 masterCellGroup IE가 포함된다 . 
조건부 핸드오버를 위한 RRCReconfiguration 메시지는 핸드오버를 위한 또 다른 RRCReconfiguration 메시지를 포함하는 conditionalReconfiguration IE를 포함한다. 
MobilityFromNRCommand 메시지는 NR에서 E-UTRA/EPC, E-UTRA/5GC 또는 UTRA-FDD로 핸드오버를 명령하는 데 사용된다. MobilityFromNRCommand 메시지는 targetRAT-MessageContainer IE를 포함하며, targetRAT-MessageContainer IE는 target cell identifier(s)와 target radio access technology와 관련된 radio parameter에 대한 정보를 전달한다.
핸드오버를 위한 RRCReconfiguration 메시지를 수신한 UE는 RRCReconfiguration 메시지에 지시된 셀로 핸드오버를 수행하고 T304를 시작한다. UE는 타겟 셀에서 랜덤 액세스 절차를 시작한다. T304가 만료되기 전에 랜덤 액세스 절차가 성공적으로 완료되면 UE는 핸드오버가 성공한 것으로 간주한다. 
핸드오버가 성공적으로 완료되면 UE는 첫 번째 조건 집합이 충족되는지 확인한다. 첫 번째 조건 집합이 충족되면 UE는 두 번째 동작 집합을 수행한다. 두 번째 동작 집합의 결과로 UE는 가까운 과거에 소스 셀에서 UEAssistanceInformation을 전송했을 경우 타겟 셀에서 UEAssistanceInformation을 전송하고 로컬 해제를 수행하기 위해 T2를 시작한다.
첫 번째 조건 집합에는 다음 조건이 포함된다.
reconfigurationWithSync가 masterCellGroup에 포함된 경우;
UE가 지난 1초 동안(during the last 1 second) UEAssistanceInformation 메시지의 전송을 시작했던 경우;
UE가 여전히 관련 UE 지원 정보를 제공하도록 구성된 경우.
두 번째 동작 집합은 다음을 포함한다.
T2가 구동 중이라면 UE는 T2를 중지한다. UE 는 musim-PreferredRRC-State 나 PreferredRRC-State 같은 UE 지원 정보를 제공하기 위해 UEAssistanceInformation 메시지의 전송을 시작 한다. UE는 releasePreferenceProhibitTimer의 값으로 설정된 타이머 값으로 T1을 시작하거나 다시 시작한다. UE는 타이머 값을 musim-LeaveWithoutResponseTimer 값으로 설정하여 T2를 시작한다.
UE가 핸드오버를 위한 RRCReconfiguration 메시지 수신 시 T2를 중단하는 이유는 핸드오버가 진행되는 동안 로컬 RRC 연결 해제가 발생하는 것을 방지하기 위함이다.
조건부 핸드오버를 위한 RRCReconfiguration 메시지를 수신한 UE는 수신된 RRCReconfiguration의 정보를 기반으로 실행 조건을 평가한다. 실행 조건이 충족되면, UE는 RRCReconfiguration 메시지에 지시된 셀로 핸드오버를 수행하고 T304를 시작한다. UE는 타겟 셀에서 랜덤 액세스 절차를 시작한다. T304가 만료되기 전에 랜덤 액세스 절차가 성공적으로 완료되면 UE는 핸드오버가 성공한 것으로 간주한다. 
조건부 핸드오버(또는 조건부 재구성)가 성공적으로 완료된 후, UE는 두 번째 조건 집합이 충족되는지 확인한다. 두 번째 조건 집합이 충족되면 UE는 두 번째 동작 집합을 수행한다.
두 번째 조건 집합에는 다음 조건이 포함된다.
reconfigurationWithSync가 masterCellGroup에 포함된 경우;
조건부 재구성 실행으로 인해 RRCReconfiguration 메시지가 적용된 경우;
UE가 UE 지원 정보를 제공하도록 구성된 경우; 그리고
UE가 그렇게 하도록 구성된 이후 UEAssistanceInformation 메시지의 전송을 시작했던 경우.
두 번째 동작 집합의 결과로, UE가 임의의 셀에서 UEAssistanceInformation을 전송했었다면, UE는 타겟 셀에서 UEAssistanceInformation을 전송하고 로컬 해제를 수행하기 위해 T2를 시작한다.
*위와 같은 서로 다른 처리는 핸드오버와 조건부 핸드오버 간의 차이를 완화하기 위한 것이다. GNB는 핸드오버가 실행되는 정확한 시간을 알고 있다. GNB는 조건부 핸드오버가 실행되는 정확한 시간을 모른다.
MobilityFromNRCommand 메시지를 수신한 UE는 T2가 구동 중인지 확인한다. T2가 구동 중이면 UE는 T2가 만료될 때까지 동작 집합 수행을 지연한다. T2가 만료되면 UE는 첫 번째 동작 집합을 적용한다.또는 UE는 구동 중인 T2를 중지하고 첫 번째 동작 집합을 수행한다.
T2가 구동 중이 아니면 UE는 세번째 동작 집합을 적용한다. 세 번째 동작 집합에는 다음이 포함된다.
UE는 target RAT의 규격에 따라 inter-RAT 메시지에 표시된 target 셀에 액세스한다. UE는 MAC을 리셋한다. UE는 T325, T330 및 T400을 제외하고 실행 중인 모든 타이머(T1 포함)를 중지한다. UE는 RLC 엔터티 및 MAC 구성의 해제를 포함하여 모든 무선 자원을 해제한다. UE는 설정된 모든 RB에 대해 연관된 PDCP 엔티티 및 SDAP 엔티티를 해제한다.
NR로부터의 핸드오버 또는 이동이 실패하는 경우, UE는 RRC 연결 재확립 절차를 개시할 수 있다.
2a-21에서, UE는 RRC 재확립 절차를 개시한다. UE는 절차가 시작되면 네 번째 동작 집합을 수행한다. 네 번째 동작 집합에는 다음이 포함된다.
UE는 T310(물리 계층 문제 감지 관련) 및 T304(핸드오버 관련) 및 T1을 중지한다. UE는 T311을 시작한다. UE는 MAC을 재설정한다. UE는 SRB0을 제외한 모든 RB를 일시 중단한다. UE는 셀 선택을 수행한다.
적합한 NR 셀을 선택하면, UE는 T311을 중지하고 RRCReestablishmentRequest 메시지를 전송 한다 . RRCReestablishmentRequest에 대한 응답으로 RRCReestablishment가 수신되면, UE는 수신된 RRC 메시지를 기반으로 RRC 연결을 재확립한다.
T311이 만료될 때까지 적절한 셀을 찾지 못하면 UE는 T2를 중지하고 첫 번째 동작 집합을 수행한다.  
GNB가 2a-15에서 전송된 UEAssistanceInformation을 수신했다면, GNB는 이동성 관련 RRC 메시지를 전송하는 대신 상태 전이를 위한 RRCRlease 메시지를 전송할 수 있다.
2a-23에서 GNB는 RRCRlease 메시지를 UE로 전송한다. RRCRlease 메시지에는 SuspendConfig가 포함된다.
RRCRlease를 수신하면 UE는 T2를 중지하고 UE는 다섯 번째 동작 집합(의 적용)을 RRCRelease 메시지가 수신된 순간부터 또는 선택적으로 하위 계층이 RRCRlease 메시지 의 수신 이 성공적으로 확인 되었음을 표시하는 경우 둘 중 더 이른 시점부터 60ms 지연한다 .
RRCRelease를 수신한 UE는 60ms 지연을 적용하기 전에 T2를 중지하고 60ms 지연 후에 다섯 번째 동작 집합을 수행한다.
UE는 타이머 T380 및 T320 및 T316 및 T350을 중지한다. UE는 수신된 suspendConfig를 적용한다. UE는 MAC을 리셋하고 기본 MAC 셀 그룹 구성을 해제한다. UE는 SRB1에 대한 RLC 엔티티를 재설정한다. UE는 UE 비활성 AS 컨텍스트에 현재 KgNB 및 KRRCint 키, ROHC 상태, DRB 매핑 규칙에 대한 저장된 QoS 흐름, 소스 PCell에서 사용되는 C-RNTI, 소스 PCell의 cellIdentity 및 물리적 셀 ID를 저장한다.
60ms 지연을 적용하여 UE는 RRCRlease 메시지에 대한 RLC 확인을 전송할 수 있다. 그러나 T2 정지에 60ms 지연이 적용되면 RLC 확인을 전송하기 전 T2가 만료되어 IDLE 상태로 전환될 수 있다.
도 3은 본 개시의 일 실시예에 따른 단말의 동작을 설명하기 위한 흐름도이다.
3a-11 단계에서, 기지국으로부터 musim-AssistanceConfig IE를 포함하는 RRC 재구성 메시지를 수신한다.
3a-13 단계에서, musim-AssistanceConfig가 셋 업으로 셋된 것에 기반하여 단말 지원 정보 과정을 개시한다.
3a-15 단계에서, UEAssistanceInformation이 musim-PreferredRRC-State IE를 포함하면 UEAssistanceInformation 전송을 개시한 후 제1 타이머를 시작한다.
3a-17 단계에서, ReconfigurationWithSync IE를 포함하는 제2 RRC 재구성 메시지를 수신한다.
3a-19 단계에서, ReconfigurationWithSync IE에 포함된 제2 타이머 값으로 설정된 제2 타이머를 시작한다.
3a-21 단계에서, 제2 타이머가 만료되면 RRC 연결 재설정 절차를 시작하고 제1 재설정 동작 집합과 제2 재설정 동작 집합 중 하나를 수행한다.
도 4a는 본 발명을 적용한 단말의 내부 구조를 도시하는 블록도이다.
상기 도면을 참고하면, 상기 단말은 제어부 (4a-01), 저장부 (4a-02), 트랜시버 (4a-03), 주프로세서 (4a-04), 입출력부 (4a-05)를 포함한다.
상기 제어부 (4a-01)는 이동 통신 관련 상기 UE의 전반적인 동작들을 제어한다. 예를 들어, 상기 제어부 (4a-01)는 상기 트랜시버 (4a-03)를 통해 신호를 송수신한다. 또한, 상기 제어부(4a-01)는 상기 저장부 (4a-02)에 데이터를 기록하고, 읽는다. 이를 위해, 상기 제어부(4a-01)는 적어도 하나의 프로세서(processor)를 포함할 수 있다. 예를 들어, 상기 제어부 (4a-01)는 통신을 위한 제어를 수행하는 CP(communication processor) 및 응용 프로그램 등 상위 계층을 제어하는 AP(application processor)를 포함할 수 있다. 상기 제어부 (4a-01)는 도 2와 도 3의 단말 동작이 수행되도록 저장부와 트랜시버를 제어한다. 상기 트랜시버는 송수신부라고도 한다.
상기 저장부 (4a-02)는 상기 단말의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 상기 저장부 (4a-02)는 상기 제어부 (4a-01)의 요청에 따라 저장된 데이터를 제공한다.
상기 트랜스버 (4a-03)는 RF처리부, 기저대역처리부, 안테나를 포함한다. RF처리부는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행한다. 즉, 상기 RF처리부는 상기 기저대역처리부로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향 변환한 후 안테나를 통해 송신하고, 상기 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환한다. 상기 RF처리부는 송신 필터, 수신 필터, 증폭기, 믹서 (mixer), 오실레이터 (oscillator), DAC (digital to analog convertor), ADC (analog to digital convertor) 등을 포함할 수 있다. 상기 RF 처리부는 MIMO를 수행할 수 있으며, MIMO 동작 수행 시 여러 개의 레이어를 수신할 수 있다. 상기 기저대역처리부는 시스템의 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행 한다. 예를 들어, 데이터 송신 시, 상기 기저대역처리부는 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 상기 기저대역처리부는 상기 RF처리부로부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 상기 트랜시버는 송수신부라고도 한다.
상기 주프로세서(4a-04)는 이동통신 관련 동작을 제외한 전반적인 동작을 제어한다. 상기 주프로세서(4a-04)는 입출렵부(4a-05)가 전달하는 사용자의 입력을 처리하여 필요한 데이터는 저장부(4a-02)에 저장하고 제어부(4a-01)를 제어해서 이동통신 관련 동작을 수행하고 입출력부(4a-05)로 출력 정보를 전달한다.
상기 입출력부(4a-05)는 마이크로폰, 스크린 등 사용자 입력을 받아들이는 장치와 사용자에게 정보를 제공하는 장치로 구성되며, 주프로세서의 제어에 따라 사용자 데이터의 입출력을 수행한다.
도 4b는 본 발명에 따른 기지국의 구성을 나타낸 블록도이다.
상기 도면에 도시된 바와 같이, 상기 분산 유닛은 제어부 (4b-01), 저장부 (4b-02), 트랜시버(4b-03), 백홀 인터페이스부 (4b-04)를 포함하여 구성된다.
상기 제어부 (4b-01)는 상기 분산 유닛의 전반적인 동작들을 제어한다. 예를 들어, 상기 제어부 (4b-01)는 상기 트랜시버 (4b-03)를 통해 또는 상기 백홀 인터페이스부(4b-04)을 통해 신호를 송수신한다. 또한, 상기 제어부(4b-01)는 상기 저장부(4b-02)에 데이터를 기록하고, 읽는다. 이를 위해, 상기 제어부(4b-01)는 적어도 하나의 프로세서를 포함할 수 있다. 상기 제어부 (4b-01)는 도 2에 도시된 기지국 동작이 수행되도록 트랜시버. 저장부. 백홀 인터페이스부를 제어한다.
상기 저장부 (4b-02)는 상기 주분산 유닛의 동작을 위한 기본 프로그램, 응용 프로그램, 설정 정보 등의 데이터를 저장한다. 특히, 상기 저장부 (4b-02)는 접속된 단말에 할당된 베어러에 대한 정보, 접속된 단말로부터 보고된 측정 결과 등을 저장할 수 있다. 또한, 상기 저장부 (4b-02)는 단말에게 다중 연결을 제공하거나, 중단할지 여부의 판단 기준이 되는 정보를 저장할 수 있다. 그리고, 상기 저장부 (4b-02)는 상기 제어부(4b-01)의 요청에 따라 저장된 데이터를 제공한다.
상기 트랜시버 (4b-03)는 RF처리부, 기저대역처리부, 안테나를 포함한다. 상기 RF처리부는 신호의 대역 변환, 증폭 등 무선 채널을 통해 신호를 송수신하기 위한 기능을 수행한다. 즉, 상기 RF처리부는 상기 기저대역처리부로부터 제공되는 기저대역 신호를 RF 대역 신호로 상향변환한 후 안테나를 통해 송신하고, 상기 안테나를 통해 수신되는 RF 대역 신호를 기저대역 신호로 하향 변환한다. 상기 RF처리부는 송신 필터, 수신 필터, 증폭기, 믹서, 오실레이터, DAC, ADC 등을 포함할 수 있다. 상기 RF 처리부는 하나 이상의 레이어를 전송함으로써 하향 MIMO 동작을 수행할 수 있다. 상기 기저대역처리부는 물리 계층 규격에 따라 기저대역 신호 및 비트열 간 변환 기능을 수행한다. 예를 들어, 데이터 송신 시, 상기 기저대역처리부는 송신 비트열을 부호화 및 변조함으로써 복소 심벌들을 생성한다. 또한, 데이터 수신 시, 상기 기저대역처리부은 상기 RF처리부로 부터 제공되는 기저대역 신호를 복조 및 복호화를 통해 수신 비트열을 복원한다. 상기 트랜시버는 송수신부라고도 한다.
상기 백홀 인터페이스부 (4b-04)는 네트워크 내 다른 노드들과 통신을 수행하기 위한 인터페이스를 제공한다. 즉, 상기 백홀 통신부 (4b-04)는 상기 분산 유닛에서 다른 노드, 예를 들어, 집중 유닛으로 송신되는 비트열을 물리적 신호로 변환하고, 상기 다른 노드로부터 수신되는 물리적 신호를 비트열로 변환한다.

Claims (3)

  1. 무선 통신 시스템에서, 단말 방법에 있어서,
    기지국으로부터 musim-AssistanceConfig IE를 포함하는 제1 RRC 재구성 메시지를 수신하는 단계;
    musim-AssistanceConfig가 셋 업으로 셋된 것에 기반하여 단말 지원 정보 과정을 개시하는 단계;
    상기 UEAssistanceInformation이 musim-PreferredRRC-State IE를 포함하면 UEAssistanceInformation 전송을 개시한 후 상기 musim-AssistanceConfig IE에 포함된 제1 타이머 값으로 설정된 제1 타이머를 시작하는 단계;
    ReconfigurationWithSync IE를 포함하는 제2 RRC 재구성 메시지를 수신하는 단계;
    제2 타이머를 구동하는 단계;
    제2 타이머가 만료되면 RRC 연결 재설정 절차를 시작하고 제1 재설정 동작 집합과 제2 재설정 동작 집합 중 하나를 수행하는 단계를 포함하는 방법.
  2. 제1 항에 있어서,
    상기 제2 타이머는 제2 RRC 재구성 메시지가 적용되면 시작되는 것을 특징으로 하는 방법.
  3. 제1 항에 있어서,
    제1 항에 있어서 제2 타이머가 구동되는 중 제1 타이머가 만료되면 제1 동작 집합을 수행하는 것을 특징으로 하는 방법.
PCT/KR2022/019942 2022-03-11 2022-12-08 무선 이동 통신 시스템에서 단말 지원 정보 제공 절차와 핸드 오버 절차를 수행하는 방법 및 장치 WO2023171883A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220030512A KR20230133471A (ko) 2022-03-11 2022-03-11 무선 이동 통신 시스템에서 단말 지원 정보 제공 절차와 핸드 오버 절차를 수행하는 방법 및 장치
KR10-2022-0030512 2022-03-11

Publications (1)

Publication Number Publication Date
WO2023171883A1 true WO2023171883A1 (ko) 2023-09-14

Family

ID=87935546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/019942 WO2023171883A1 (ko) 2022-03-11 2022-12-08 무선 이동 통신 시스템에서 단말 지원 정보 제공 절차와 핸드 오버 절차를 수행하는 방법 및 장치

Country Status (2)

Country Link
KR (1) KR20230133471A (ko)
WO (1) WO2023171883A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210143047A (ko) * 2020-05-19 2021-11-26 삼성전자주식회사 무선 통신 시스템에서 채널 측정을 수행하는 방법 및 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210143047A (ko) * 2020-05-19 2021-11-26 삼성전자주식회사 무선 통신 시스템에서 채널 측정을 수행하는 방법 및 장치

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Remaining Issues for NW switching without leaving RRC_CONNECTED", 3GPP DRAFT; R2-2202698, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20220221 - 20220303, 14 February 2022 (2022-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052110601 *
NOKIA, NOKIA SHANGHAI BELL: "Further analysis on the signalling message contents for switching notification", 3GPP DRAFT; R2-2110144, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20211101 - 20211112, 22 October 2021 (2021-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052066596 *
SAMSUNG: "Further discussion on network switching for MUSIM", 3GPP DRAFT; R2-2109788, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20211101 - 20211112, 22 October 2021 (2021-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052066265 *
SAMSUNG: "Remaining issues on network switching for MUSIM", 3GPP DRAFT; R2-2200211, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online; 20220117 - 20220125, 11 January 2022 (2022-01-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052093413 *

Also Published As

Publication number Publication date
KR20230133471A (ko) 2023-09-19

Similar Documents

Publication Publication Date Title
WO2023038327A1 (ko) 무선 이동 통신 시스템에서 축소된 성능의 단말이 셀에 접근하는 방법 및 장치.
WO2023038332A1 (ko) 무선 이동 통신 시스템에서 기지국이 복수의 공통 설정 정보와 하나의 시간정렬타이머를 이용해서 축소된 성능의 단말과 랜덤 액세스를 수행하는 방법 및 장치.
WO2023038345A1 (ko) 무선 이동 통신 시스템에서 축소된 성능의 단말이 주파수내셀재선택 매개 변수를 판단하는 방법 및 장치.
WO2023128354A1 (ko) 무선 이동 통신 시스템에서 단말 상태 선호에 대한 단말 지원 정보를 제공하고 핸드 오버를 수행하는 방법 및 장치
WO2023080470A1 (ko) 무선 이동 통신 시스템에서 응용 계층 측정을 수행하고 보고하는 방법 및 장치
WO2023038333A1 (ko) 무선 이동 통신 시스템에서 축소된 성능의 단말이 복수의 탐색구간과 제어자원셋을 이용해서 랜덤 액세스를 수행하는 방법 및 장치.
WO2023171883A1 (ko) 무선 이동 통신 시스템에서 단말 지원 정보 제공 절차와 핸드 오버 절차를 수행하는 방법 및 장치
WO2023128372A1 (ko) 무선 이동 통신 시스템에서 단말 지원 정보 제공 절차와 핸드 오버 절차를 수행하는 방법 및 장치
WO2023128334A1 (ko) 무선 이동 통신 시스템에서 단말 상태 선호에 대한 단말 지원 정보를 제공하고 rrc 연결을 해제하는 방법 및 장치
WO2023128333A1 (ko) 무선 이동 통신 시스템에서 단말 상태 선호에 대한 단말 지원 정보를 제공하는 방법 및 장치
WO2023080473A1 (ko) 무선 이동 통신 시스템에서 응용 계층 측정을 수행하고 보고하는 방법 및 장치
WO2023080474A1 (ko) 무선 이동 통신 시스템에서 응용 계층 측정을 수행하고 보고하는 방법 및 장치
WO2023080677A1 (ko) 무선 이동 통신 시스템에서 분산 유닛이 페이징 메시지를 처리하는 방법 및 장치
WO2023080471A1 (ko) 무선 이동 통신 시스템에서 응용 계층 측정을 수행하고 보고하는 방법 및 장치
KR102500495B1 (ko) 무선 이동 통신 시스템에서 rrc 연결 재개 절차와 데이터 송수신을 수행하기 위해 복수의 타이머와 베어러를 제어하는 방법 및 장치
KR102491977B1 (ko) 무선 이동 통신 시스템에서 rrc_inactive 상태의 단말이 미리 정의된 설정과 저장된 설정을 사용해서 데이터를 송수신하는 방법 및 장치
WO2023080472A1 (ko) 무선 이동 통신 시스템에서 응용 계층 측정을 수행하고 보고하는 방법 및 장치
KR102490815B1 (ko) 무선 이동 통신 시스템에서 안전한 rrc 연결 재개 절차와 데이터 송수신을 위한 방법 및 장치
KR102628660B1 (ko) 무선 이동 통신 시스템에서 분산 유닛이 페이징 메시지를 처리하는 방법 및 장치
KR102619369B1 (ko) 무선 이동 통신 시스템에서 단말이 페이징 메시지를 처리하는 방법 및 장치
KR102628661B1 (ko) 무선 이동 통신 시스템에서 기지국이 페이징 메시지를 처리하는 방법 및 장치
KR102478962B1 (ko) 무선 이동 통신 시스템에서 rrc_inactive 상태의 단말이 버퍼 상태를 보고하는 방법 및 장치
KR102491962B1 (ko) 무선 이동 통신 시스템에서 rrc_inactive 상태의 단말이 데이터를 송수신하는 방법 및 장치
WO2023013977A1 (ko) 무선 이동 통신 시스템에서 rrc 연결을 재개하는 방법 및 장치.
KR102434789B1 (ko) 무선 이동 통신 시스템에서 rrc_inactive 상태의 단말이 버퍼 상태 보고와 파워 헤드룸 보고를 전송하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931130

Country of ref document: EP

Kind code of ref document: A1