WO2023171813A1 - Braking control device for vehicles - Google Patents

Braking control device for vehicles Download PDF

Info

Publication number
WO2023171813A1
WO2023171813A1 PCT/JP2023/009434 JP2023009434W WO2023171813A1 WO 2023171813 A1 WO2023171813 A1 WO 2023171813A1 JP 2023009434 W JP2023009434 W JP 2023009434W WO 2023171813 A1 WO2023171813 A1 WO 2023171813A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
wheel
brake
braking
control
Prior art date
Application number
PCT/JP2023/009434
Other languages
French (fr)
Japanese (ja)
Inventor
啓介 田中
卓 海老根
俊哉 渡邊
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2023171813A1 publication Critical patent/WO2023171813A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/14Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using accumulators or reservoirs fed by pumps
    • B60T13/142Systems with master cylinder
    • B60T13/145Master cylinder integrated or hydraulically coupled with booster
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/16Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using pumps directly, i.e. without interposition of accumulators or reservoirs
    • B60T13/18Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using pumps directly, i.e. without interposition of accumulators or reservoirs with control of pump output delivery, e.g. by distributor valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/16Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using pumps directly, i.e. without interposition of accumulators or reservoirs
    • B60T13/20Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using pumps directly, i.e. without interposition of accumulators or reservoirs with control of pump driving means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking

Definitions

  • the present disclosure relates to a braking control device for a vehicle.
  • Patent Document 1 states that in order to improve the initial response of brake fluid pressure generation in control that stabilizes vehicle behavior by controlling the yaw moment of the vehicle (so-called sideslip prevention control), it is stated that ⁇ the brake pedal is pressed by the driver.'' A first electric motor driven according to the amount of operation generates brake fluid pressure.A second electric motor generates brake fluid pressure to individually operate the wheel cylinders in a fluid path between the slave cylinder and the wheel cylinder. A yaw moment control device is disposed, and the slave cylinder is temporarily activated when the yaw moment control device starts operating.
  • a unit whose power source is a first electric motor (also referred to as an “upper electric motor”) and a second electric motor (referred to as an “upper electric motor”) are activated.
  • the hydraulic pressure in the wheel cylinders (referred to as “wheel pressure") is increased by a unit powered by a unit (also referred to as “lower braking unit”) powered by a “lower electric motor” (also referred to as “lower electric motor”), which improves the responsiveness of the wheel pressure increase.
  • Ru Incidentally, in a vehicle brake control device composed of two braking units, it is desired not only to improve wheel pressure increase responsiveness but also to reduce the size of the device.
  • An object of the present invention is to provide a brake control device for a vehicle that is configured with two brake units and can be miniaturized.
  • the vehicle brake control device (SC) reduces the supply pressure (Pm ), which is arranged between the upper braking unit (SA) and a plurality of wheel cylinders (CW), and which outputs the supply pressure (Pm) to the plurality of wheel cylinders (CW). and a lower braking unit (SB) that individually adjusts and outputs wheel pressure (Pw) for each of the wheels.
  • Pm supply pressure
  • SB lower braking unit
  • the upper braking unit (SA) performs automatic pressurization control in which the lower braking unit (SB) automatically and individually increases the wheel pressure (Pw).
  • the pressure regulating valve (UA) is controlled based on the required pressure (Pe) required for the automatic pressurization control.
  • the required pressure (Pe) is determined based on the maximum value (MAX[Po]) of the required pressures (Po) required for each of the plurality of wheel cylinders (CW).
  • the upper braking unit (SA) controls the electric motor (MA) based on the required flow rate (Qe) for achieving the required pressure (Pe). do.
  • the required flow rate (Qe) is determined based on the increasing gradient (kP) of the required pressure (Po) required for each of the plurality of wheel cylinders (CW).
  • the required pressure Pe which is the basis for automatic pressurization control, is generated by the upper braking unit SA, and the individual adjustment of the wheel pressure Pw is performed by the lower braking unit SB. Since the small-sized lower braking unit SB can be adopted, the entire device can be downsized. Furthermore, in the upper braking unit SA, the required pressure Pe is generated at the necessary and minimum flow rate. This saves power in the upper braking unit SA.
  • FIG. 1 is a schematic diagram for explaining the overall configuration of a vehicle JV equipped with a brake control device SC according to the present invention. It is a schematic diagram for explaining the example of composition of upper brake unit SA. It is a schematic diagram for explaining the example of composition of lower brake unit SB. It is a block diagram for explaining control of pressure regulating valve UA. It is a block diagram for explaining control of electric motor MA.
  • the side near the master cylinder CM (the side far from the wheel cylinder CW) is called the “upper part”
  • the side near the wheel cylinder CW (the side far from the master cylinder CM)
  • the side near the wheel cylinder CW (the side far from the master cylinder CM)
  • the side closer to the wheel cylinder CW (the side far from the master cylinder CM)
  • the side closer to the discharge parts of the fluid pumps QA and QB is called the "upstream side”
  • the near side (the side away from the discharge part) is called the "downstream side.”
  • the upper actuator YA of the upper braking unit SA (also referred to as the "upper fluid unit”)
  • the lower actuator YB of the lower braking unit SB (also referred to as the "lower fluid unit")
  • the wheel cylinder CW are connected to a fluid path (communication path HS).
  • various components (UA, etc.) are connected through fluid paths.
  • the "fluid path” is a path for moving the brake fluid BF, and includes piping, a flow path in an actuator, a hose, and the like.
  • the communication path HS, return path HK, return path HL, reservoir path HR, input path HN, servo path HV, pressure reduction path HG, etc. are fluid paths.
  • the braking device SX includes a brake caliper CP, a friction member MS (for example, a brake pad), and a rotating member KT (for example, a brake disc).
  • the brake caliper CP is provided with a wheel cylinder CW.
  • the friction member MS is pressed against the rotating member KT fixed to each wheel WH by the hydraulic pressure Pw (referred to as "wheel pressure") in the wheel cylinder CW.
  • Pw hydraulic pressure
  • “Frictional braking force Fm” is a braking force generated by wheel pressure Pw.
  • the vehicle JV is equipped with a brake operation member BP and a steering operation member SH.
  • the brake operation member BP eg, brake pedal
  • the steering operation member SH for example, a steering wheel
  • the vehicle JV is equipped with various sensors (BA, etc.) listed below. Detection signals (Ba, etc.) from these sensors are input to controllers EA and EB and used for various controls.
  • a brake operation amount sensor BA is provided that detects an operation amount Ba (referred to as "brake operation amount") of the brake operation member BP.
  • an operation displacement sensor SP that detects the operation displacement Sp of the brake operation member BP is provided.
  • a simulator pressure sensor PZ that detects the hydraulic pressure Pz (referred to as "simulator pressure”) of the stroke simulator SS is employed.
  • the brake operation amount Ba is a general term for signals representing the driver's braking intention
  • the brake operation amount sensor BA is a general term for sensors that detect the brake operation amount Ba.
  • the braking operation amount Ba is input to the upper controller EA.
  • a wheel speed sensor VW is provided to detect the rotational speed Vw (wheel speed) of the wheel WH.
  • Wheel speed Vw is input to lower controller EB.
  • the lower controller EB calculates the vehicle speed Vx based on the wheel speed Vw. Further, the lower controller EB executes anti-lock brake control to prevent the wheels WH from locking and traction control to prevent the driving wheels WH from spinning based on the wheel speed Vw and the vehicle body speed Vx.
  • a steering operation amount sensor SK is provided that detects an operation amount Sk (a steering operation amount, for example, a steering angle) of the steering operation member SH.
  • the vehicle JV (particularly the vehicle body) is provided with a yaw rate sensor YR that detects the yaw rate Yr, a longitudinal acceleration sensor GX that detects the longitudinal acceleration Gx, and a lateral acceleration sensor GY that detects the lateral acceleration Gy.
  • These sensor signals are input to the lower controller EB.
  • the lower controller EB executes electronic stability control (ESC) that suppresses oversteer and understeer and stabilizes the yawing behavior of the vehicle JV.
  • ESC electronic stability control
  • the vehicle JV is equipped with a brake control device SC.
  • the brake control device SC employs a front and rear type (also referred to as "Type II") as two brake systems.
  • the actual wheel pressure Pw is adjusted by the brake control device SC.
  • the brake control device SC is composed of two brake units SA and SB.
  • the upper braking unit SA includes an upper actuator YA (upper fluid unit) and an upper controller EA (upper control unit). Upper actuator YA is controlled by upper controller EA.
  • a lower brake unit SB is arranged between the upper brake unit SA and the wheel cylinder CW.
  • the lower braking unit SB includes a lower actuator YB (lower fluid unit) and a lower controller EB (lower control unit). Lower actuator YB is controlled by lower controller EB.
  • the upper braking unit SA (especially the upper controller EA) and the lower braking unit SB (especially the lower controller EB) are connected to the communication bus BS.
  • the "communication bus BS" has a network structure in which a plurality of controllers (control units) hang from a communication line.
  • a communication bus BS allows signal transmission between a plurality of controllers (EA, EB, etc.). That is, the plurality of controllers can transmit signals (detected values, calculated values, control flags, etc.) to the communication bus BS, and can receive signals from the communication bus BS.
  • the upper brake unit SA generates a supply pressure Pm in response to operation of a brake operation member BP (brake pedal).
  • the supply pressure Pm is finally supplied to the wheel cylinder CW via the communication path HS (fluid path) and the lower braking unit SB.
  • the upper braking unit SA includes an upper actuator YA and an upper controller EA.
  • the upper actuator YA includes an apply unit AP, a pressure adjustment unit CA, and an input unit NR.
  • the apply unit AP In response to the operation of the brake operation member BP, the supply pressure Pm is output from the apply unit AP.
  • the apply unit AP includes a tandem master cylinder CM, and primary and secondary master pistons NM and NS.
  • Primary and secondary master pistons NM and NS are inserted into the tandem master cylinder CM.
  • the interior of the master cylinder CM is divided into four hydraulic chambers Rmf, Rmr, Ru, and Ro by two master pistons NM and NS.
  • the interior of the master cylinder CM is partitioned into a servo chamber Ru and a reaction force chamber Ro by the flange Tu of the master piston NM.
  • the master chamber Rm and the servo chamber Ru are arranged to face each other with the collar Tu in between.
  • These hydraulic chambers Rmf, Rmr, Ru, and Ro are sealed by a seal member SL. Note that the pressure receiving area rm of the master chamber Rm is equal to the pressure receiving area ru of the servo chamber Ru.
  • the master pistons NM and NS When not braking, the master pistons NM and NS are at the most retracted position (that is, the position where the volume of the master chamber Rm is maximum). In this state, the master chamber Rm of the master cylinder CM is in communication with the master reservoir RV. Braking fluid BF is stored inside a master reservoir RV (also referred to as an "atmospheric pressure reservoir").
  • a master reservoir RV also referred to as an "atmospheric pressure reservoir”
  • the brake operation member BP When the brake operation member BP is operated, the master pistons NM and NS are moved in the forward direction Ha (the direction in which the volume of the master chamber Rm decreases). Due to this movement, communication between the master chamber Rm and the master reservoir RV is cut off.
  • the pressure adjustment unit CA supplies the servo pressure Pu to the servo chamber Ru of the apply unit AP.
  • the pressure regulating unit CA includes an upper electric motor MA, an upper fluid pump QA, and a pressure regulating valve UA.
  • An upper fluid pump QA (also simply referred to as a "fluid pump”) is driven by an upper electric motor MA (also simply referred to as an "electric motor”).
  • the suction section and the discharge section are connected by a reflux path HK (fluid path).
  • the suction part of the fluid pump QA is also connected to the master reservoir RV via the reservoir path HR.
  • a check valve is provided at the discharge portion of the fluid pump QA.
  • a normally open pressure regulating valve UA is provided in the reflux path HK.
  • the pressure regulating valve UA is a linear electromagnetic valve whose opening amount is continuously controlled based on the energization state (for example, the supply current Ia).
  • the pressure regulating valve UA is also called a "differential pressure valve” because it regulates the hydraulic pressure difference (differential pressure) between its upstream side and its downstream side.
  • the pressure regulating valve UA When the amount of current Ia (supplied current) to the pressure regulating valve UA is increased, the circulating flow KN (the flow of the brake fluid BF circulating in the recirculation path HK) is throttled by the pressure regulating valve UA. In other words, the pressure regulating valve UA narrows the flow path of the return flow path HK, and the orifice effect of the pressure regulating valve UA is exerted. As a result, the hydraulic pressure Pu on the upstream side of the pressure regulating valve UA is increased from "0".
  • a hydraulic pressure difference (differential pressure) between the upstream hydraulic pressure Pu (servo pressure) and the downstream hydraulic pressure (atmospheric pressure) is generated with respect to the pressure regulating valve UA.
  • the differential pressure is regulated by the current Ia supplied to the pressure regulating valve UA.
  • the reflux passage HK is located between the discharge part of the fluid pump QA (specifically, the downstream part of the check valve) and the pressure regulating valve UA, and is connected to the servo chamber Ru via the servo passage HV (fluid passage). connected to. Therefore, the servo pressure Pu is introduced (supplied) into the servo chamber Ru. As the servo pressure Pu increases, the master pistons NM and NS are pressed in the forward direction Ha, and the hydraulic pressures Pmf and Pmr (front and rear wheel supply pressures) in the front and rear wheel master chambers Rmf and Rmr are increased.
  • the input unit NR includes an input cylinder CN, an input piston NN, an introduction valve VA, a release valve VB, a stroke simulator SS, and a simulator hydraulic sensor PZ.
  • the input cylinder CN is fixed to the master cylinder CM.
  • An input piston NN is inserted into the input cylinder CN.
  • the input piston NN is mechanically connected to the brake operation member BP (brake pedal) via a clevis (U-shaped link) so as to be interlocked with the brake operation member BP.
  • the end face of the input piston NN and the end face of the primary master piston NM have a gap Ks (also referred to as "separation displacement"). Regeneration cooperative control is realized by adjusting the separation distance Ks by the servo pressure Pu.
  • the input chamber Rn of the input unit NR is connected to the reaction force chamber Ro of the apply unit AP via an input path HN (fluid path).
  • the input path HN is provided with a normally closed type introduction valve VA.
  • the input path HN is connected to the master reservoir RV via the reservoir path HR between the introduction valve VA and the reaction force chamber Ro.
  • a normally open open valve VB is provided in the reservoir path HR.
  • the introduction valve VA and the release valve VB are on-off type solenoid valves.
  • a stroke simulator SS (also simply referred to as a "simulator") is connected to an input path HN between the introduction valve VA and the reaction force chamber Ro.
  • the introduction valve VA When power is not supplied to the introduction valve VA and the release valve VB, the introduction valve VA is closed and the release valve VB is opened. By closing the introduction valve VA, the input chamber Rn is sealed and fluid-locked. Thereby, the master pistons NM and NS are displaced integrally with the brake operation member BP. Further, by opening the release valve VB, the simulator SS is communicated with the master reservoir RV. When power is supplied to the introduction valve VA and the release valve VB, the introduction valve VA is opened and the release valve VB is closed. Thereby, the master pistons NM and NS can be displaced separately from the brake operation member BP.
  • the operating force Fp of the brake operating member BP is generated by the simulator SS.
  • a simulator pressure sensor PZ is provided in the input path HN between the introduction valve VA and the reaction force chamber Ro so as to detect the hydraulic pressure Pz (simulator pressure) in the simulator SS.
  • the simulator pressure Pz is also the internal pressure of the input chamber Rn, it is also a state quantity representing the operating force Fp of the brake operating member BP.
  • the state in which the master pistons NM, NS and the brake operation member BP are displaced separately (when the electromagnetic valves VA, VB are energized) is called the "first mode (or by-wire mode)".
  • the brake control device SC functions as a brake-by-wire type device (that is, a device that can generate frictional braking force Fm independently in response to the driver's braking operation). Therefore, in the first mode, the wheel pressure Pw is generated independently of the operation of the brake operation member BP.
  • a state in which the master pistons NM, NS and the brake operation member BP are displaced together (when the electromagnetic valves VA, VB are not energized) is called a "second mode (or manual mode)."
  • the wheel pressure Pw is linked to the driver's braking operation.
  • one of the first mode (by-wire mode) and the second mode (manual mode) is selected depending on whether or not power is supplied to the introduction valve VA and the release valve VB.
  • Upper actuator YA is controlled by upper controller EA.
  • the upper controller EA is composed of a microprocessor MP and a drive circuit DR.
  • the upper controller EA is connected to a communication bus BS so that signals (detected values, calculated values, control flags, etc.) can be shared with other controllers (EB, etc.).
  • a braking operation amount Ba is input to the upper controller EA.
  • the brake operation amount Ba is a general term for state quantities representing the operation amount of the brake operation member BP.
  • a detection signal Sp (operation displacement) of the operation displacement sensor SP and a detection signal Pz (simulator pressure) of the simulator pressure sensor PZ are directly input from the braking operation amount sensor BA to the upper controller EA.
  • the supply pressure Pm and the like are input to the upper controller EA via the communication bus BS.
  • "Supply pressure Pm" is the output pressure of the upper actuator YA.
  • the supply pressure Pm is detected by a supply pressure sensor PM provided in the lower actuator YB, and is transmitted from the lower controller EB.
  • a pressure regulation control algorithm is programmed into the upper controller EA (particularly the microprocessor MP).
  • Pressure adjustment control is control for adjusting the supply pressure Pm (ultimately the wheel pressure Pw).
  • the pressure regulation control is executed based on the braking operation amount Ba (operation displacement Sp, simulator pressure Pz), supply pressure Pm, and the like.
  • the drive circuit DR drives the electric motor MA that constitutes the upper actuator YA and various electromagnetic valves (UA, etc.).
  • the drive circuit DR includes an H-bridge circuit using switching elements (eg, MOS-FET) to drive the electric motor MA.
  • the drive circuit DR is also equipped with switching elements to drive various electromagnetic valves (UA, etc.).
  • the drive circuit DR includes a motor current sensor (not shown) that detects a current Im supplied to the electric motor MA (referred to as “motor current”), and a motor current sensor (not shown) that detects a current Ia supplied to the pressure regulating valve UA (referred to as “pressure regulating valve current”).
  • a pressure regulating valve current sensor (not shown) is included to detect the current.
  • electric motor MA is provided with a rotation angle sensor (not shown) that detects rotation angle Ka (referred to as “motor rotation angle”) of its rotor. Then, the motor rotation speed Na is calculated based on the motor rotation angle Ka.
  • a target current It (target value) corresponding to the pressure regulating valve current Ia (actual value) is calculated based on the braking operation amount Ba.
  • the pressure regulating valve UA is controlled so that the pressure regulating valve current Ia approaches and matches the target current It.
  • a target rotational speed Nt (target value) corresponding to the motor rotational speed Na (actual value) is calculated based on the braking operation amount Ba.
  • the motor current Im is controlled so that the actual rotational speed Na approaches and matches the target rotational speed Nt.
  • a drive signal Ma for controlling the electric motor MA and drive signals Ua, Va, Vb for controlling the various electromagnetic valves UA, VA, VB are calculated. Then, the switching elements of the drive circuit DR are driven according to the drive signal (Ma, etc.), and the electric motor MA and the solenoid valves UA, VA, and VB are controlled.
  • the lower braking unit SB is a general-purpose unit (device) for performing anti-lock brake control, traction control, skid prevention control, etc.
  • the wheel pressure Pw of each wheel cylinder CW is automatically increased independently of the operation of the brake operation member BP.
  • each wheel pressure Pw is adjusted individually. Therefore, controls in which the wheel pressure Pw is automatically and individually increased, such as traction control and skid prevention control, are collectively referred to as "automatic pressurization control.”
  • the lower braking unit SB includes a lower actuator YB and a lower controller EB.
  • the lower actuator YB is provided between the upper actuator YA and the wheel cylinder CW in the communication path HS.
  • the lower actuator YB includes a supply pressure sensor PM, a control valve UB, a lower fluid pump QB, a lower electric motor MB, a pressure regulating reservoir RB, an inlet valve VI, and an outlet valve VO.
  • the control valve UB is a normally open linear solenoid valve (differential pressure valve) like the pressure regulating valve UA.
  • the control valve UB allows the wheel pressure Pw to be increased individually for the front and rear wheel systems from the supply pressure Pm.
  • the front wheel and rear wheel supply pressure sensors PMf and PMr detect the actual hydraulic pressures Pmf and Pmr (front and rear wheel supply pressures) supplied from the upper actuator YA (especially the front and rear wheel master chambers Rmf and Rmr). ) is provided to detect.
  • the lower fluid pump QB is driven by the lower electric motor MB.
  • the brake fluid BF is sucked in from the upper part of the control valve UB by the lower fluid pump QB (also simply referred to as the "fluid pump”). It is discharged to the lower part of the control valve UB.
  • the communication path HS and the return path HL have a circulating flow KL of the brake fluid BF (i.e., a circulating flow KLf of the brake fluid BF including the fluid pump QB, the control valve UB, and the pressure regulating reservoir RB).
  • KLr (indicated by the dashed arrow) occurs.
  • the hydraulic pressure Pq (referred to as "adjustment pressure") at the lower part of the control valve UB is reduced due to the orifice effect at that time. is increased from the hydraulic pressure Pm (supply pressure) above the control valve UB.
  • the hydraulic pressure difference (differential pressure) between the downstream hydraulic pressure Pm (supply pressure) and the upstream hydraulic pressure Pq (adjustment pressure) with respect to the control valve UB is adjusted by.
  • the adjustment pressure Pq is greater than or equal to the supply pressure Pm (that is, "Pq ⁇ Pm").
  • the mechanism for generating the adjustment pressure Pq in the lower actuator YB is the same as the mechanism for generating the servo pressure Pu in the upper actuator YA.
  • the front wheel and rear wheel connecting paths HSf and HSr are branched into two, respectively, and connected to the front wheel and rear wheel cylinders CWf and CWr.
  • a normally open inlet valve VI and a normally closed outlet valve VO are provided for each wheel cylinder CW so that each wheel pressure Pw can be adjusted individually.
  • the inlet valve VI is provided in the branched communication path HS (that is, on the side closer to the wheel cylinder CW with respect to the branched portion of the communication path HS).
  • the communication path HS is connected to the pressure regulating reservoir RB via the pressure reduction path HG (fluid path) at the lower part of the inlet valve VI (the portion of the communication path HS on the side closer to the wheel cylinder CW).
  • An outlet valve VO is arranged in the pressure reduction path HG.
  • On-off type solenoid valves are employed as the inlet valve VI and outlet valve VO.
  • the inlet valve VI is opened and the outlet valve VO is closed.
  • wheel pressure Pw is equal to adjustment pressure Pq.
  • the wheel pressure Pw is adjusted independently for each wheel cylinder CW.
  • the inlet valve VI is closed and the outlet valve VO is opened.
  • the brake fluid BF is prevented from flowing into the wheel cylinder CW, and the brake fluid BF in the wheel cylinder CW flows out to the pressure regulating reservoir RB, so that the wheel pressure Pw is reduced.
  • the inlet valve VI is opened and the outlet valve VO is closed.
  • the brake fluid BF is prevented from flowing into the pressure regulating reservoir RB, and the regulating pressure Pq from the pressure regulating valve UB is supplied to the wheel cylinder CW, so that the wheel pressure Pw is increased.
  • the upper limit of increase in wheel pressure Pw is adjustment pressure Pq.
  • both the inlet valve VI and the outlet valve VO are closed. Since the wheel cylinder CW is fluidly sealed, the wheel pressure Pw is maintained constant.
  • the lower actuator YB is controlled by the lower controller EB.
  • the lower controller EB includes a microprocessor MP and a drive circuit DR.
  • the lower controller EB is connected to the communication bus BS, so that the upper controller EA and the lower controller EB can share signals via the communication bus BS.
  • Wheel speed Vw, steering operation amount Sk, yaw rate Yr, longitudinal acceleration Gx, and lateral acceleration Gy are input to the lower controller EB (particularly the microprocessor MP).
  • the lower controller EB calculates the vehicle speed Vx based on the wheel speed Vw.
  • Automatic pressurization control is executed in the lower controller EB.
  • the automatic pressurization control includes at least one of traction control, which suppresses the spinning of the drive wheels, and electronic stability control (ESC), which suppresses understeer and oversteer to improve the directional stability of the vehicle. executed.
  • the lower electric motor MB and various electromagnetic valves (UB, etc.) that constitute the lower actuator YB are driven by the lower controller EB.
  • the drive circuit DR of the lower controller EB includes an H-bridge circuit using switching elements (eg, MOS-FET) to drive the lower electric motor MB. Further, the drive circuit DR is equipped with switching elements to drive various electromagnetic valves (UB, etc.). Based on a control algorithm programmed in the microprocessor MP, a drive signal Ub for the control valve UB, a drive signal Vi for the inlet valve VI, a drive signal Vo for the outlet valve VO, and a drive signal Mb for the lower electric motor MB are calculated.
  • the lower electric motor MB and the solenoid valves UB, VI, and VO are controlled by the drive circuit DR based on the drive signal (Ub, etc.).
  • the pressure regulating valve UA is controlled by a required pressure calculation block PO, a required pressure calculation block PE, a command pressure calculation block PS, a target pressure calculation block PT, a command current calculation block IS, a hydraulic pressure deviation calculation block PH, a compensation current calculation block IH, and a current feedback control block IF.
  • the processes of the required pressure calculation block PO and the required pressure calculation block PE are executed by the lower controller EB, and other processes (PS, PT, etc.) are executed by the upper controller EA.
  • the required pressure Po corresponding to the wheel pressure Pw of each wheel cylinder CW is calculated based on the wheel speed Vw, steering operation amount Sk, yaw rate Yr, lateral acceleration Gy, etc.
  • “Required pressure Po” is a target value for each wheel cylinder CW that is required to execute automatic pressurization control.
  • automatic pressurization control is a general term for traction control and skid prevention control, and increases each wheel pressure Pw automatically and individually.
  • the idle state of the driving wheel (for example, the wheel speed of the driving wheel) is determined. Acceleration slip, which is the difference between speed Vw and vehicle speed Vx, is calculated. Then, the required pressure Po is determined for each drive wheel so that the idle state of the drive wheels is suppressed. Therefore, if the vehicle JV is a two-wheel drive vehicle, two required pressures Po are calculated. Furthermore, if the vehicle JV is a four-wheel drive vehicle, four required pressures Po are calculated.
  • the degree of stability of the vehicle JV is calculated in the skid prevention control based on the vehicle body speed Vx, the steering operation amount Sk, the yaw rate Yr, and the lateral acceleration Gy.
  • the comparison result of the target behavior calculated from the vehicle body speed Vx and the steering operation amount Sk and the actual behavior calculated from the yaw rate Yr and the lateral acceleration Gy (for example, the difference between the target behavior and the actual behavior ), the steering characteristics (degree of understeer/oversteer) of the vehicle JV is calculated.
  • the required pressure Po corresponding to each wheel pressure Pw is determined so that understeer and oversteer are suppressed. That is, in the sideslip prevention control, four required pressures Po are calculated.
  • the required pressure Pe is calculated based on the required pressure Po.
  • the command pressure Ps is calculated based on the braking operation amount Ba.
  • "Instruction pressure Ps" is a target value corresponding to supply pressure Pm, and is an intermediate target value for calculating target pressure Pt, which is the final target value.
  • the command pressure Ps is calculated to increase as the braking operation amount Ba increases according to a preset calculation map Zps.
  • the target pressure Pt is calculated based on the command pressure Ps and the required pressure Pe.
  • the instruction current Is is calculated based on the target pressure Pt and a preset calculation map Zis.
  • the "instruction current Is" is a target value corresponding to the supply current Ia of the pressure regulating valve UA, which is necessary for achieving the target pressure Pt.
  • the instruction current Is is determined to increase as the target pressure Pt increases.
  • the command current calculation block IS corresponds to feedforward control based on the target pressure Pt.
  • the compensation current Ih is calculated based on the hydraulic pressure deviation hP and a preset calculation map Zih.
  • the instruction current Is is calculated in accordance with the target pressure Pt, an error may occur between the target pressure Pt and the supply pressure Pm.
  • “Compensation current Ih” is for compensating for (reducing) this error.
  • the compensation current Ih is determined to increase according to the calculation map Zih as the hydraulic pressure deviation hP increases. Specifically, when the target pressure Pt is larger than the supply pressure Pm and the hydraulic pressure deviation hP has a positive sign, a positive compensation current Ih is determined so that the instruction current Is is increased.
  • a negative compensation current Ih is determined so that the instruction current Is is decreased.
  • a dead zone is provided in the calculation map Zih.
  • the compensation current calculation block IH corresponds to feedback control based on the supply pressure Pm.
  • "Target current It” is the final target value of the current supplied to the pressure regulating valve UA. That is, the target current It is determined as the sum of the instruction current Is, which is a feedforward term, and the compensation current Ih, which is a feedback term. Therefore, drive control of the pressure regulating valve UA is configured by feedforward control (processing of the instruction current calculation block IS) and feedback control (processing of the compensation current calculation block IH) in the hydraulic pressure.
  • the drive signal Ua is calculated based on the target current It (target value) and the supply current Ia (actual value) so that the supply current Ia approaches and matches the target current It. Ru.
  • the supply current Ia is detected by a pressure regulating valve current sensor IA provided in the drive circuit DR.
  • the drive signal Ua is determined so that the supply current Ia increases.
  • the drive signal Ua is determined so that the supply current Ia decreases. That is, in the current feedback control block IF, feedback control regarding current is executed. Therefore, the drive control of the pressure regulating valve UA includes feedback control related to current in addition to feedback control related to hydraulic pressure.
  • the brake control device SC is equipped with two brake units SA and SB.
  • One is the upper brake unit SA, which outputs the supply pressure Pm according to the operation amount Ba of the brake operation member BP.
  • the other one is the lower braking unit SB, which individually adjusts the supply pressure Pm to each of the plurality of wheel cylinders CW and outputs the wheel pressure Pw.
  • the lower braking unit SB is provided between the upper braking unit SA and the plurality of wheel cylinders CW.
  • the lower braking unit SB includes a lower electric motor MB, a lower fluid pump QB, a plurality of electromagnetic valves (VI, VO, etc.), and a lower controller EB.
  • Automatic pressurization control is executed by controlling the electric motor MB and a plurality of electromagnetic valves by the lower controller EB.
  • the automatic pressurization control is a control that automatically and individually increases the wheel pressure Pw, and includes, for example, traction control, skid prevention control, and the like.
  • a required pressure Pe for automatic pressurization control is calculated.
  • the required pressure Pe is a target value corresponding to the maximum wheel pressure Pw required to perform automatic pressurization control.
  • the lower controller EB calculates the required pressure Po for each of the plurality of wheel cylinders CW, and the maximum value thereof is determined as the required pressure Pe.
  • the required pressure Pe may be determined by adding a predetermined pressure pe (a preset constant) to this maximum value. In any case, the required pressure Pe is calculated based on the maximum value of the required pressure Po.
  • the upper braking unit SA includes an upper electric motor MA, an upper fluid pump QA, a pressure regulating valve UA, and an upper controller EA.
  • Upper controller EA controls electric motor MA and pressure regulating valve UA.
  • the circulating flow KN also referred to as "upper circulating flow” discharged by the fluid pump QA driven by the electric motor MA is throttled by the pressure regulating valve UA, thereby adjusting the supply pressure Pm.
  • the upper controller EA controls the pressure regulating valve UA based on the required pressure Pe. That is, in the upper controller EA, the pressure regulating valve UA is driven so that the supply pressure Pm approaches and matches the required pressure Pe.
  • the pressure regulating valve current Ia approaches and is controlled to match the target current It.
  • the pressure regulating valve UA is controlled based on the required pressure Pe. Note that the command pressure Ps is determined to increase as the braking operation amount Ba increases.
  • the required pressure Pe necessary for automatic pressurization control is generated by the upper brake unit SA. Since the upper brake unit SA can also handle sudden operation of the brake operation member BP, its rated output is sufficiently satisfactory even in automatic pressurization control. Since the required pressure Pe necessary for the automatic pressurization control is supplied from the upper braking unit SA, the lower braking unit SB is not required to have a considerable level of responsiveness in the automatic pressurization control. Therefore, the lower braking unit SB (particularly the electric motor MB and the fluid pump QB) is downsized. Note that individual control of the automatic pressurization control (adjustment of each wheel Pw) is performed by the lower braking unit SB (particularly the inlet valve VI and the outlet valve VO).
  • the reduction in wheel pressure Pw during automatic pressurization control is achieved by moving the brake fluid BF from the wheel cylinder CW to the pressure regulating reservoir RB, but since the volume of the pressure regulating reservoir RB is finite, , the electric motor MB is driven so that the brake fluid BF is returned to the upper part of the inlet valve VI (between the control valve UB and the inlet valve VI). Therefore, during execution of automatic pressurization control, a circulating flow KL (also referred to as a "lower circulating flow”) is generated by the lower electric motor MB and the lower fluid pump QB.
  • a circulating flow KL also referred to as a "lower circulating flow
  • Control of electric motor MA An example of control processing for upper electric motor MA will be described with reference to the block diagram in FIG. 5 .
  • electric motor MA may be driven at a predetermined rotation speed na.
  • power saving is achieved.
  • the electric motor MA is controlled by a required pressure gradient calculation block KP, a required flow rate calculation block QE, a liquid volume conversion block PR, a liquid volume deviation calculation block RH, a commanded flow rate calculation block QS, a compensation flow rate calculation block QH, and a target flow rate calculation block QT. , a target rotational speed calculation block NT, and a rotational speed feedback control block NF.
  • the processes of the required pressure gradient calculation block KP and the required flow rate calculation block QE are executed by the lower controller EB, and other processes (PR, RH, etc.) are executed by the upper controller EA.
  • an increasing gradient kP (also referred to as “target increasing gradient”) is calculated based on the required pressure Po.
  • the required pressure Po in each wheel cylinder CW is differentiated with respect to time, and each increasing slope (the amount of increase in the required pressure Po per unit time) is determined as the increasing slope kP. Therefore, "increase gradient kP" is a target value corresponding to the actual increase gradient (increase amount per unit time) of wheel pressure Pw. Note that when the necessary pressure Po is maintained at a constant value or when the necessary pressure Po is decreased, the increasing gradient kP is determined to be "0".
  • the required flow rate Qe is calculated based on the increasing slope kP (target increasing slope) corresponding to each wheel cylinder CW.
  • the "required flow rate Qe" is the flow rate of the brake fluid BF necessary to execute automatic pressurization control. Specifically, the required flow rate Qe is determined based on the sum ⁇ kP (total value) of the increasing gradient kP of each wheel cylinder CW. Specifically, the required flow rate calculation block QE adds each of the increasing gradients kP to calculate the total value ⁇ kP. Then, according to a preset calculation map Zqe, the required flow rate Qe is determined to increase as the total value ⁇ kP increases.
  • the requested flow rate Qe is transmitted from the lower controller EB to the communication bus BS and received by the upper controller EA.
  • the target liquid volume Rt and the actual liquid volume Rj are calculated based on the target pressure Pt and the supply pressure Pm.
  • the target pressure Pt is converted into a target liquid amount Rt
  • the supply pressure Pm is converted into an actual liquid amount Rj, based on a preset calculation map Zpr.
  • the "target fluid amount Rt” is the fluid amount (volume of the brake fluid BF to be transferred to the wheel cylinder CW) necessary to achieve the target pressure Pt.
  • the "actual liquid amount Rj" is the amount of liquid that has already flowed into the wheel cylinder CW in order to generate the supply pressure Pm (resultingly, the wheel pressure Pw).
  • the commanded flow rate calculation block QS corresponds to feedforward control in flow rate control.
  • the compensation flow rate calculation block QH corresponds to feedback control in flow rate control.
  • a target flow rate calculation block QT calculates a target flow rate Qt based on the required flow rate Qe, the instructed flow rate Qs, and the compensation flow rate Qh.
  • the target rotation speed Nt is calculated based on the target flow rate Qt.
  • “Target rotation speed Nt” is a target value corresponding to rotation speed Na (actual value) of electric motor MA. Specifically, the target rotation speed Nt is determined to increase as the target flow rate Qt increases, based on the discharge amount of the fluid pump QA (the volume of the brake fluid BF discharged per rotation).
  • the target rotation speed Nt takes into consideration the minimum flow rate of the pressure regulating valve UA and the minimum rotation speed of the electric motor MA.
  • the “minimum flow rate” is the minimum required flow rate for the pressure regulating valve UA to regulate the servo pressure Pu, and is set in advance.
  • the "minimum rotation speed” is the minimum value of the rotation speed at which the electric motor MA can continue to rotate stably.
  • a lower limit rotation speed nt (predetermined value set in advance) is provided for the target rotation speed Nt. Therefore, when the target rotational speed Nt calculated based on the target flow rate Qt is equal to or higher than the lower limit rotational speed nt, the restriction by the lower limit rotational speed nt is not performed, and the calculated target rotational speed Nt is used as is.
  • the target rotational speed Nt calculated based on the target flow rate Qt is less than the lower limit rotational speed nt
  • the motor rotation speed Na approaches and matches the target rotation speed Nt.
  • a drive signal Ma is calculated.
  • the motor rotation speed Na is calculated based on a detection value Ka (rotation angle) of a rotation angle sensor KA provided in the electric motor MA.
  • Ka rotation angle
  • the motor rotation angle Ka is time differentiated to determine the motor rotation speed Na.
  • the drive signal Ma is determined so that the actual rotation speed Na increases.
  • the drive signal Ma is determined so that the actual rotational speed Na decreases. That is, in the rotation speed feedback control block NF, feedback control related to the motor rotation speed is executed.
  • a required liquid amount Qe required to execute automatic pressurization control is calculated.
  • the required flow rate Qe is the flow rate of the brake fluid BF necessary to achieve the required pressure Pe, and is the volume of the brake fluid BF per unit time to be transferred to the plurality of wheel cylinders CW.
  • the necessary pressure Po required to execute automatic pressurization control is calculated for each wheel cylinder CW.
  • an increasing gradient kP which is the amount of change over time when the required pressure Po increases, is calculated. Then, the sum of the increasing gradients kP of each wheel cylinder CW (total value ⁇ kP) is determined as the required flow rate Qe.
  • the electric motor MA is controlled based on the target rotation speed Nt calculated from the required flow rate Qe. Specifically, the current Im supplied to the electric motor MA is controlled so that the actual rotation speed Na of the electric motor MA approaches and matches the target rotation speed Nt. That is, since the target rotational speed Nt is calculated based on the required pressure Po in the lower braking unit SB, the required pressure Po is achieved in the upper braking unit SA with the minimum necessary flow rate. As a result, even in a configuration in which the required pressure Pe for automatic pressurization control is generated by the upper brake unit SA, the power consumption of the upper brake unit SA (particularly, the electric motor MA) is suppressed.
  • the target rotation speed Nt is determined to be a predetermined rotation speed na (a preset constant), and the actual rotation speed Na of the electric motor MA is set to a predetermined rotation speed. It may be driven to approach and match na.
  • the required pressure Pe which is the basis for automatic pressurization control
  • the upper brake unit SA the required pressure
  • the individual adjustment of the wheel pressure Pw is performed by the lower brake unit SB.
  • a small lower brake unit SB can be adopted as the brake control device SC.
  • the entire device can be made smaller.
  • the required pressure Pe is generated using the necessary and minimum flow rate.
  • the brake control device SC in addition to reducing the size of the lower brake unit SB, it is possible to reduce the power consumption of the upper brake unit SA. That is, in the brake control device SC, the overall configuration is optimized by the division of roles between the upper and lower brake units SA and SB.
  • the required pressure Pe was calculated by the lower braking unit SB and sent to the upper braking unit SA.
  • the required pressure Pe may be calculated by the upper braking unit SA. Since signals such as wheel speed Vw and yaw rate Yr are input to the lower braking unit SB, the determination of the start/end of automatic pressurization control and the calculation of each required pressure Po are performed by the lower braking unit SB. be exposed.
  • the required pressure Pe can be calculated by the upper braking unit SA. Therefore, the required pressure Pe is calculated by either the upper braking unit SA or the lower braking unit SB based on the required pressure Po.
  • the increasing slope kP and the required flow rate Qe were calculated in the lower braking unit SB, and the required flow rate Qe was sent to the upper braking unit SA.
  • the increasing gradient kP and the required flow rate Qe may be calculated by the upper braking unit SA.
  • the increased gradient kP and the required flow rate Qe are calculated by either the upper or lower braking unit SA or SB. .
  • front and rear brake systems were used as the two brake systems.
  • a diagonal type also referred to as "X type" may be adopted as the two braking systems.
  • one of the two master chambers Rm is connected to the left front wheel cylinder and the right rear wheel cylinder, and the other of the two master chambers Rm is connected to the right front wheel cylinder and the left rear wheel cylinder. Connected to the rear wheel cylinder.
  • the master chamber Rm may be connected to the front wheel cylinder CWf, and the pressure regulating unit CA may be directly connected to the rear wheel cylinder CWr.
  • the master cylinder CM outputs the front wheel supply pressure Pmf to the front wheel cylinder CWf as the front wheel pressure Pwf.
  • the servo pressure Pu is output from the pressure regulating unit CA to the rear wheel cylinder CWr as the rear wheel supply pressure Pmr.
  • the pressure receiving area rm (master area) of the master chamber Rm and the pressure receiving area ru (servo area) of the servo chamber Ru are set to be equal.
  • the master area rm and the servo area ru do not have to be equal.
  • the brake control device SC includes "an upper brake unit SA that outputs a supply pressure Pm by throttling a circulating flow KN (upper circulating flow) discharged by a fluid pump QA driven by an electric motor MA with a pressure regulating valve UA";”Lower braking unit SB is arranged between upper braking unit SA and a plurality of wheel cylinders CW, and outputs wheel pressure Pw by individually adjusting supply pressure Pm to each of the plurality of wheel cylinders CW", will be provided.
  • the pressure regulating valve UA is controlled based on the required pressure Pe required for automatic pressurization control.
  • the required pressure Pe is a target value corresponding to the maximum value of each wheel pressure Pw required for automatic pressurization control.
  • the required pressure Po required for each of the plurality of wheel cylinders CW is calculated, and the required pressure Pe is determined based on the maximum value of the plurality of required pressures Po.
  • the control of the pressure regulating valve UA in the upper brake unit SA will be summarized.
  • the pressure regulating valve UA is controlled based on the required pressure Pe. Specifically, when the required pressure Pe is larger than the command pressure Ps calculated from the braking operation amount Ba, the supply pressure Pm is controlled to approach and match the required pressure Pe.
  • the pressure (that is, the required pressure Pe) that is the source of automatic pressurization control is generated in the upper brake unit SA. Since the rated output of the upper braking unit SA is capable of responding to sudden braking, it has sufficient responsiveness to automatic pressurization control. Since the required pressure Pe is supplied by the upper brake unit SA, the lower brake unit SB is made smaller.
  • the control of electric motor MA in upper braking unit SA will be summarized.
  • an electric motor MA is driven to generate a circulating flow KN of the brake fluid BF, which includes the fluid pump QA and the pressure regulating valve UA.
  • the electric motor MA is driven at a constant speed of a predetermined rotation speed na.
  • the electric motor MA is controlled based on the required flow rate Qe for achieving the required pressure Pe. Specifically, based on the above-mentioned required pressure Po, the increasing slope kP (the amount of increase per unit time of the required pressure Po) is calculated, and the required flow rate Qe is calculated based on the increasing slope kP.
  • the required flow rate Qe is determined based on the sum ⁇ kP of the increasing gradients kP in each wheel cylinder CW.
  • a target rotational speed Nt is calculated based on the required flow rate Qe.
  • the actual rotation speed Na of the electric motor MA is controlled based on the target rotation speed Nt.
  • the electric motor MA is controlled at the minimum necessary rotation speed based on the required flow rate Qe required for automatic pressurization control. Therefore, the power consumption of the upper braking unit SA is suppressed.
  • the required pressure Pe for the automatic pressurization control is generated in the upper braking unit SA, and each wheel pressure Pw is equal to or lower than the required pressure Pe, and the required pressure Pe for the automatic pressurization control is generated in the lower braking unit.
  • SB in particular, inlet valve VI and outlet valve VO
  • the required pressure Pe is generated at a flow rate necessary for automatic pressurization control (ie, required flow rate Qe).

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

Provided is a braking control device comprising: an upper braking unit that outputs a supply pressure by restricting, with a pressure regulation valve, a circulation flow which has been discharged by a fluid pump driven by an electric motor; and a lower braking unit that is provided between the upper braking unit and a plurality of wheel cylinders and that outputs a wheel pressure by adjusting the supply pressure individually for each of the plurality of wheel cylinders. In the braking control device, the upper braking unit controls the pressure regulation valve on the basis of a requested pressure, which is requested for automatic pressurization control, when the lower braking unit carries out the automatic pressurization control under which the wheel pressure is automatically and individually increased. The requested pressure here is determined on the basis of the maximum value of necessary pressures respectively requested for the plurality of wheel cylinders.

Description

車両の制動制御装置Vehicle braking control device
 本開示は、車両の制動制御装置に関する。 The present disclosure relates to a braking control device for a vehicle.
 特許文献1には、車両のヨーモーメントを制御することで車両挙動の安定を図る制御(所謂、横滑り防止制御)においてブレーキ液圧発生の初期応答性を高めるために、「運転者によるブレーキペダルの操作量に応じて駆動される第1電動モータによりブレーキ液圧を発生するスレーブシリンダとホイールシリンダとの間の液路に、第2電動モータによりホイールシリンダを個別に作動させるブレーキ液圧を発生するヨーモーメント制御装置を配置し、ヨーモーメント制御装置の作動開始時にスレーブシリンダを一時的に作動させる」ことが記載されている。特許文献1の装置では、横滑り防止制御の開始時点で、第1電動モータ(「上部電気モータ」ともいう)を動力源とするユニット(「上部制動ユニット」という)、及び、第2電動モータ(「下部電気モータ」ともいう)を動力源とするユニット(「下部制動ユニット」)によって、ホイールシリンダの液圧(「ホイール圧」という)が増加されるので、ホイール圧の昇圧応答性が向上される。ところで、2つの制動ユニットで構成される車両の制動制御装置では、ホイール圧の昇圧応答性だけではなく、装置の小型化が望まれている。 Patent Document 1 states that in order to improve the initial response of brake fluid pressure generation in control that stabilizes vehicle behavior by controlling the yaw moment of the vehicle (so-called sideslip prevention control), it is stated that ``the brake pedal is pressed by the driver.'' A first electric motor driven according to the amount of operation generates brake fluid pressure.A second electric motor generates brake fluid pressure to individually operate the wheel cylinders in a fluid path between the slave cylinder and the wheel cylinder. A yaw moment control device is disposed, and the slave cylinder is temporarily activated when the yaw moment control device starts operating. In the device of Patent Document 1, at the start of stability control control, a unit (referred to as an "upper braking unit") whose power source is a first electric motor (also referred to as an "upper electric motor") and a second electric motor (referred to as an "upper electric motor") are activated. The hydraulic pressure in the wheel cylinders (referred to as "wheel pressure") is increased by a unit powered by a unit (also referred to as "lower braking unit") powered by a "lower electric motor" (also referred to as "lower electric motor"), which improves the responsiveness of the wheel pressure increase. Ru. Incidentally, in a vehicle brake control device composed of two braking units, it is desired not only to improve wheel pressure increase responsiveness but also to reduce the size of the device.
特開2009-227023号公報JP2009-227023A
 本発明の目的は、2つの制動ユニットにて構成される車両の制動制御装置において、装置が小型化されるものを提供することである。 An object of the present invention is to provide a brake control device for a vehicle that is configured with two brake units and can be miniaturized.
 本発明に係る車両の制動制御装置(SC)は、電気モータ(MA)によって駆動される流体ポンプ(QA)が吐出する循環流(KN)を調圧弁(UA)によって絞ることで供給圧(Pm)を出力する上部制動ユニット(SA)と、前記上部制動ユニット(SA)と複数のホイールシリンダ(CW)との間に配置され、前記供給圧(Pm)を、前記複数のホイールシリンダ(CW)の夫々に対して個別調整してホイール圧(Pw)を出力する下部制動ユニット(SB)と、を備える。 The vehicle brake control device (SC) according to the present invention reduces the supply pressure (Pm ), which is arranged between the upper braking unit (SA) and a plurality of wheel cylinders (CW), and which outputs the supply pressure (Pm) to the plurality of wheel cylinders (CW). and a lower braking unit (SB) that individually adjusts and outputs wheel pressure (Pw) for each of the wheels.
 本発明に係る車両の制動制御装置(SC)では、前記上部制動ユニット(SA)は、前記下部制動ユニット(SB)が前記ホイール圧(Pw)を自動的且つ個別に増加する自動加圧制御を実行する場合には、前記自動加圧制御に要求される要求圧(Pe)に基づいて前記調圧弁(UA)を制御する。ここで、前記要求圧(Pe)は、前記複数のホイールシリンダ(CW)の夫々に要求される必要圧(Po)のうちの最大値(MAX[Po])に基づいて決定される。 In the vehicle braking control device (SC) according to the present invention, the upper braking unit (SA) performs automatic pressurization control in which the lower braking unit (SB) automatically and individually increases the wheel pressure (Pw). When executed, the pressure regulating valve (UA) is controlled based on the required pressure (Pe) required for the automatic pressurization control. Here, the required pressure (Pe) is determined based on the maximum value (MAX[Po]) of the required pressures (Po) required for each of the plurality of wheel cylinders (CW).
 本発明に係る車両の制動制御装置(SC)では、前記上部制動ユニット(SA)は、前記要求圧(Pe)を達成するための要求流量(Qe)に基づいて前記電気モータ(MA)を制御する。ここで、前記要求流量(Qe)は、前記複数のホイールシリンダ(CW)の夫々に要求される必要圧(Po)の増加勾配(kP)に基づいて決定される。 In the vehicle brake control device (SC) according to the present invention, the upper braking unit (SA) controls the electric motor (MA) based on the required flow rate (Qe) for achieving the required pressure (Pe). do. Here, the required flow rate (Qe) is determined based on the increasing gradient (kP) of the required pressure (Po) required for each of the plurality of wheel cylinders (CW).
 上記構成によれば、自動加圧制御のための元となる要求圧Peが上部制動ユニットSAによって発生され、ホイール圧Pwの個別調整は下部制動ユニットSBによって行われる。小型の下部制動ユニットSBが採用できるので、装置全体が小型化される。更に、上部制動ユニットSAでは、必要且つ最低限の流量で要求圧Peが発生される。これにより、上部制動ユニットSAが省電力化される。 According to the above configuration, the required pressure Pe, which is the basis for automatic pressurization control, is generated by the upper braking unit SA, and the individual adjustment of the wheel pressure Pw is performed by the lower braking unit SB. Since the small-sized lower braking unit SB can be adopted, the entire device can be downsized. Furthermore, in the upper braking unit SA, the required pressure Pe is generated at the necessary and minimum flow rate. This saves power in the upper braking unit SA.
本発明に係る制動制御装置SCを搭載する車両JVの全体構成を説明するための概略図である。1 is a schematic diagram for explaining the overall configuration of a vehicle JV equipped with a brake control device SC according to the present invention. 上部制動ユニットSAの構成例を説明するための概略図である。It is a schematic diagram for explaining the example of composition of upper brake unit SA. 下部制動ユニットSBの構成例を説明するための概略図である。It is a schematic diagram for explaining the example of composition of lower brake unit SB. 調圧弁UAの制御を説明するためのブロック図である。It is a block diagram for explaining control of pressure regulating valve UA. 電気モータMAの制御を説明するためのブロック図である。It is a block diagram for explaining control of electric motor MA.
<構成部材等の記号、及び、記号末尾の添字>
 以下の説明において、「CW」等の如く、同一記号を付された構成部材、演算処理、信号、特性、及び、値は、同一機能のものである。各車輪に係る記号末尾に付された添字「f」、「r」は、それが前後輪の何れの系統に関するものであるかを示す包括記号である。例えば、各車輪に設けられたホイールシリンダCWにおいて、「前輪ホイールシリンダCWf」、「後輪ホイールシリンダCWr」と表記される。更に、記号末尾の添字「f」、「r」は省略され得る。添字「f」、「r」が省略された場合には、各記号は総称を表す。例えば、「CW」は、車両の前後車輪に設けられたホイールシリンダの総称である。
<Symbols of component parts, etc. and subscripts at the end of the symbol>
In the following description, components, arithmetic processing, signals, characteristics, and values having the same symbol, such as "CW", have the same function. The suffixes "f" and "r" attached to the end of the symbol for each wheel are comprehensive symbols indicating which system of the front and rear wheels the symbol relates to. For example, the wheel cylinders CW provided on each wheel are written as "front wheel cylinder CWf" and "rear wheel cylinder CWr." Furthermore, the subscripts "f" and "r" at the end of the symbol may be omitted. When the subscripts "f" and "r" are omitted, each symbol represents a generic term. For example, "CW" is a general term for wheel cylinders provided on the front and rear wheels of a vehicle.
 マスタシリンダCMからホイールシリンダCWに至るまでの流体路において、マスタシリンダCMに近い側(ホイールシリンダCWから遠い側)が「上部」と称呼され、ホイールシリンダCWに近い側(マスタシリンダCMから遠い側)が「下部」と称呼される。また、制動液BFの循環流KN、KLにおいて、流体ポンプQA、QBの吐出部に近い側(吸入部から離れた側)が「上流側」と称呼され、流体ポンプQA、QBの吸入部に近い側(吐出部から離れた側)が「下流側」と称呼される。 In the fluid path from the master cylinder CM to the wheel cylinder CW, the side near the master cylinder CM (the side far from the wheel cylinder CW) is called the "upper part", and the side near the wheel cylinder CW (the side far from the master cylinder CM) ) is called the "lower part". In addition, in the circulation flows KN and KL of the brake fluid BF, the side closer to the discharge parts of the fluid pumps QA and QB (the side away from the suction parts) is called the "upstream side", and the side closer to the discharge parts of the fluid pumps QA and QB is called the "upstream side", The near side (the side away from the discharge part) is called the "downstream side."
 上部制動ユニットSAの上部アクチュエータYA(「上部流体ユニット」ともいう)、下部制動ユニットSBの下部アクチュエータYB(「下部流体ユニット」ともいう)、及び、ホイールシリンダCWは、流体路(連絡路HS)にて接続される。更に、上部、下部アクチュエータYA、YBでは、各種構成要素(UA等)が流体路にて接続される。ここで、「流体路」は、制動液BFを移動するための経路であり、配管、アクチュエータ内の流路、ホース等が該当する。以下の説明において、連絡路HS、還流路HK、戻し路HL、リザーバ路HR、入力路HN、サーボ路HV、減圧路HG等は流体路である。 The upper actuator YA of the upper braking unit SA (also referred to as the "upper fluid unit"), the lower actuator YB of the lower braking unit SB (also referred to as the "lower fluid unit"), and the wheel cylinder CW are connected to a fluid path (communication path HS). Connected at Further, in the upper and lower actuators YA and YB, various components (UA, etc.) are connected through fluid paths. Here, the "fluid path" is a path for moving the brake fluid BF, and includes piping, a flow path in an actuator, a hose, and the like. In the following description, the communication path HS, return path HK, return path HL, reservoir path HR, input path HN, servo path HV, pressure reduction path HG, etc. are fluid paths.
<制動制御装置SCを搭載した車両JV>
 図1の概略図を参照して、本発明に係る制動制御装置SCを搭載した車両JVの全体構成について説明する。
<Vehicle JV equipped with braking control device SC>
The overall configuration of a vehicle JV equipped with a brake control device SC according to the present invention will be described with reference to the schematic diagram of FIG.
 車両JVには、前輪、後輪制動装置SXf、SXr(=SX)が備えられる。制動装置SXは、ブレーキキャリパCP、摩擦部材MS(例えば、ブレーキパッド)、及び、回転部材KT(例えば、ブレーキディスク)にて構成される。ブレーキキャリパCPには、ホイールシリンダCWが設けられる。ホイールシリンダCW内の液圧Pw(「ホイール圧」という)によって、摩擦部材MSが、各車輪WHに固定された回転部材KTに押し付けられる。これにより、車輪WHには摩擦制動力Fmが発生される。「摩擦制動力Fm」は、ホイール圧Pwによって発生される制動力である。 The vehicle JV is equipped with front wheel and rear wheel braking devices SXf and SXr (=SX). The braking device SX includes a brake caliper CP, a friction member MS (for example, a brake pad), and a rotating member KT (for example, a brake disc). The brake caliper CP is provided with a wheel cylinder CW. The friction member MS is pressed against the rotating member KT fixed to each wheel WH by the hydraulic pressure Pw (referred to as "wheel pressure") in the wheel cylinder CW. As a result, a frictional braking force Fm is generated at the wheel WH. "Frictional braking force Fm" is a braking force generated by wheel pressure Pw.
 車両JVには、制動操作部材BP、及び、操舵操作部材SHが備えられる。制動操作部材BP(例えば、ブレーキペダル)は、運転者が車両JVを減速するために操作する部材である。操舵操作部材SH(例えば、ステアリングホイール)は、運転者が車両JVを旋回させるために操作する部材である。 The vehicle JV is equipped with a brake operation member BP and a steering operation member SH. The brake operation member BP (eg, brake pedal) is a member operated by the driver to decelerate the vehicle JV. The steering operation member SH (for example, a steering wheel) is a member operated by the driver to turn the vehicle JV.
 車両JVには、以下に列挙される各種センサ(BA等)が備えられる。これらのセンサの検出信号(Ba等)は、コントローラEA、EBに入力され、各種の制御に用いられる。
- 制動操作部材BPの操作量Ba(「制動操作量」という)を検出する制動操作量センサBAが設けられる。例えば、制動操作量センサBAとして、制動操作部材BPの操作変位Spを検出する操作変位センサSPが設けられる。加えて、ストロークシミュレータSSの液圧Pz(「シミュレータ圧」という)を検出するシミュレータ圧センサPZが採用される。制動制御装置SCにおいては、制動操作量Baは、運転者の制動意志を表す信号の総称であり、制動操作量センサBAは、制動操作量Baを検出するセンサの総称である。制動操作量Baは、上部コントローラEAに入力される。
- 車輪WHの回転速度Vw(車輪速度)を検出する車輪速度センサVWが設けられる。車輪速度Vwは、下部コントローラEBに入力される。そして、下部コントローラEBでは、車輪速度Vwに基づいて、車体速度Vxが演算される。更に、下部コントローラEBでは、車輪速度Vw、及び、車体速度Vxに基づいて、車輪WHのロックを防止するアンチロックブレーキ制御、及び、駆動車輪WHの空転を防止するトラクション制御が実行される。
- 操舵操作部材SHの操作量Sk(操舵操作量であって、例えば、操舵角)を検出する操舵操作量センサSKが設けられる。車両JV(特に、車体)について、ヨーレイトYrを検出するヨーレイトセンサYR、前後加速度Gxを検出する前後加速度センサGX、及び、横加速度Gyを検出する横加速度センサGYが設けられる。これらのセンサ信号は、下部コントローラEBに入力される。そして、下部コントローラEBでは、オーバステア及びアンダステアを抑制し、車両JVのヨーイング挙動を安定化する横滑り防止制御(ESC:Electronic Stability Control)が実行される。
The vehicle JV is equipped with various sensors (BA, etc.) listed below. Detection signals (Ba, etc.) from these sensors are input to controllers EA and EB and used for various controls.
- A brake operation amount sensor BA is provided that detects an operation amount Ba (referred to as "brake operation amount") of the brake operation member BP. For example, as the brake operation amount sensor BA, an operation displacement sensor SP that detects the operation displacement Sp of the brake operation member BP is provided. In addition, a simulator pressure sensor PZ that detects the hydraulic pressure Pz (referred to as "simulator pressure") of the stroke simulator SS is employed. In the brake control device SC, the brake operation amount Ba is a general term for signals representing the driver's braking intention, and the brake operation amount sensor BA is a general term for sensors that detect the brake operation amount Ba. The braking operation amount Ba is input to the upper controller EA.
- A wheel speed sensor VW is provided to detect the rotational speed Vw (wheel speed) of the wheel WH. Wheel speed Vw is input to lower controller EB. The lower controller EB calculates the vehicle speed Vx based on the wheel speed Vw. Further, the lower controller EB executes anti-lock brake control to prevent the wheels WH from locking and traction control to prevent the driving wheels WH from spinning based on the wheel speed Vw and the vehicle body speed Vx.
- A steering operation amount sensor SK is provided that detects an operation amount Sk (a steering operation amount, for example, a steering angle) of the steering operation member SH. The vehicle JV (particularly the vehicle body) is provided with a yaw rate sensor YR that detects the yaw rate Yr, a longitudinal acceleration sensor GX that detects the longitudinal acceleration Gx, and a lateral acceleration sensor GY that detects the lateral acceleration Gy. These sensor signals are input to the lower controller EB. The lower controller EB executes electronic stability control (ESC) that suppresses oversteer and understeer and stabilizes the yawing behavior of the vehicle JV.
 車両JVには、制動制御装置SCが備えられる。制動制御装置SCでは、2系統の制動系統として、前後型(「II型」ともいう)のものが採用される。制動制御装置SCによって、実際のホイール圧Pwが調整される。 The vehicle JV is equipped with a brake control device SC. The brake control device SC employs a front and rear type (also referred to as "Type II") as two brake systems. The actual wheel pressure Pw is adjusted by the brake control device SC.
 制動制御装置SCは、2つの制動ユニットSA、SBにて構成される。上部制動ユニットSAは、上部アクチュエータYA(上部流体ユニット)、及び、上部コントローラEA(上部制御ユニット)にて構成される。上部アクチュエータYAは、上部コントローラEAによって制御される。上部制動ユニットSAとホイールシリンダCWとの間には、下部制動ユニットSBが配置される。下部制動ユニットSBは、下部アクチュエータYB(下部流体ユニット)、及び、下部コントローラEB(下部制御ユニット)にて構成される。下部アクチュエータYBは、下部コントローラEBによって制御される。 The brake control device SC is composed of two brake units SA and SB. The upper braking unit SA includes an upper actuator YA (upper fluid unit) and an upper controller EA (upper control unit). Upper actuator YA is controlled by upper controller EA. A lower brake unit SB is arranged between the upper brake unit SA and the wheel cylinder CW. The lower braking unit SB includes a lower actuator YB (lower fluid unit) and a lower controller EB (lower control unit). Lower actuator YB is controlled by lower controller EB.
 上部制動ユニットSA(特に、上部コントローラEA)、及び、下部制動ユニットSB(特に、下部コントローラEB)は通信バスBSに接続されている。「通信バスBS」は、通信線に複数のコントローラ(制御ユニット)がぶら下がるネットワーク構造を有している。通信バスBSによって、複数のコントローラ(EA、EB等)の間で信号伝達が行われる。つまり、複数のコントローラは、通信バスBSに信号(検出値、演算値、制御フラグ等)を送信することができるとともに、通信バスBSから信号を受信することができる。 The upper braking unit SA (especially the upper controller EA) and the lower braking unit SB (especially the lower controller EB) are connected to the communication bus BS. The "communication bus BS" has a network structure in which a plurality of controllers (control units) hang from a communication line. A communication bus BS allows signal transmission between a plurality of controllers (EA, EB, etc.). That is, the plurality of controllers can transmit signals (detected values, calculated values, control flags, etc.) to the communication bus BS, and can receive signals from the communication bus BS.
<上部制動ユニットSA>
 図2の概略図を参照して、上部制動ユニットSAの構成例について説明する。上部制動ユニットSAは、制動操作部材BP(ブレーキペダル)の操作に応じて、供給圧Pmを発生する。供給圧Pmは、連絡路HS(流体路)、及び、下部制動ユニットSBを介して、最終的には、ホイールシリンダCWに供給される。上部制動ユニットSAは、上部アクチュエータYA、及び、上部コントローラEAにて構成される。
<Upper braking unit SA>
An example of the configuration of the upper braking unit SA will be described with reference to the schematic diagram of FIG. 2. The upper brake unit SA generates a supply pressure Pm in response to operation of a brake operation member BP (brake pedal). The supply pressure Pm is finally supplied to the wheel cylinder CW via the communication path HS (fluid path) and the lower braking unit SB. The upper braking unit SA includes an upper actuator YA and an upper controller EA.
≪上部アクチュエータYA≫
 上部アクチュエータYAは、アプライユニットAP、調圧ユニットCA、及び、入力ユニットNRにて構成される。
<<Upper actuator YA>>
The upper actuator YA includes an apply unit AP, a pressure adjustment unit CA, and an input unit NR.
[アプライユニットAP]
 制動操作部材BPの操作に応じて、アプライユニットAPから供給圧Pmが出力される。アプライユニットAPは、タンデム型のマスタシリンダCM、及び、プライマリ、セカンダリマスタピストンNM、NSにて構成される。
[Apply unit AP]
In response to the operation of the brake operation member BP, the supply pressure Pm is output from the apply unit AP. The apply unit AP includes a tandem master cylinder CM, and primary and secondary master pistons NM and NS.
 タンデム型マスタシリンダCMには、プライマリ、セカンダリマスタピストンNM、NSが挿入される。マスタシリンダCMの内部は、2つのマスタピストンNM、NSによって、4つの液圧室Rmf、Rmr、Ru、Roに区画される。前輪、後輪マスタ室Rmf、Rmr(=Rm)は、マスタシリンダCMの一方側底部、及び、マスタピストンNM、NSによって区画される。更に、マスタシリンダCMの内部は、マスタピストンNMのつば部Tuによって、サーボ室Ruと反力室Roとに仕切られる。マスタ室Rmとサーボ室Ruとは、つば部Tuを挟んで、相対するように配置される。これらの液圧室Rmf、Rmr、Ru、Roは、シール部材SLによって封止されている。なお、マスタ室Rmの受圧面積rmとサーボ室Ruの受圧面積ruとは等しくされている。 Primary and secondary master pistons NM and NS are inserted into the tandem master cylinder CM. The interior of the master cylinder CM is divided into four hydraulic chambers Rmf, Rmr, Ru, and Ro by two master pistons NM and NS. The front wheel and rear wheel master chambers Rmf and Rmr (=Rm) are defined by one side bottom of the master cylinder CM and the master pistons NM and NS. Further, the interior of the master cylinder CM is partitioned into a servo chamber Ru and a reaction force chamber Ro by the flange Tu of the master piston NM. The master chamber Rm and the servo chamber Ru are arranged to face each other with the collar Tu in between. These hydraulic chambers Rmf, Rmr, Ru, and Ro are sealed by a seal member SL. Note that the pressure receiving area rm of the master chamber Rm is equal to the pressure receiving area ru of the servo chamber Ru.
 非制動時には、マスタピストンNM、NSは、最も後退した位置(即ち、マスタ室Rmの体積が最大になる位置)にある。該状態では、マスタシリンダCMのマスタ室Rmは、マスタリザーバRVに連通している。マスタリザーバRV(「大気圧リザーバ」ともいう)の内部に制動液BFが貯蔵される。制動操作部材BPが操作されると、マスタピストンNM、NSが前進方向Ha(マスタ室Rmの体積が減少する方向)に移動される。該移動により、マスタ室RmとマスタリザーバRVとの連通は遮断される。そして、マスタピストンNM、NSが、更に、前進方向Haに移動されると、前輪、後輪供給圧Pmf、Pmr(=Pm)が「0(大気圧)」から増加される。これにより、マスタシリンダCMのマスタ室Rmから、供給圧Pmに加圧された制動液BFが出力(圧送)される。供給圧Pmは、マスタ室Rmの液圧であるため、「マスタ圧」とも称呼される。 When not braking, the master pistons NM and NS are at the most retracted position (that is, the position where the volume of the master chamber Rm is maximum). In this state, the master chamber Rm of the master cylinder CM is in communication with the master reservoir RV. Braking fluid BF is stored inside a master reservoir RV (also referred to as an "atmospheric pressure reservoir"). When the brake operation member BP is operated, the master pistons NM and NS are moved in the forward direction Ha (the direction in which the volume of the master chamber Rm decreases). Due to this movement, communication between the master chamber Rm and the master reservoir RV is cut off. Then, when the master pistons NM and NS are further moved in the forward direction Ha, the front wheel and rear wheel supply pressures Pmf and Pmr (=Pm) are increased from "0 (atmospheric pressure)". As a result, the brake fluid BF pressurized to the supply pressure Pm is output (forced) from the master chamber Rm of the master cylinder CM. Since the supply pressure Pm is the hydraulic pressure of the master chamber Rm, it is also called "master pressure."
[調圧ユニットCA]
 調圧ユニットCAによって、アプライユニットAPのサーボ室Ruに対して、サーボ圧Puが供給される。調圧ユニットCAは、上部電気モータMA、上部流体ポンプQA、及び、調圧弁UAにて構成される。
[Pressure adjustment unit CA]
The pressure adjustment unit CA supplies the servo pressure Pu to the servo chamber Ru of the apply unit AP. The pressure regulating unit CA includes an upper electric motor MA, an upper fluid pump QA, and a pressure regulating valve UA.
 上部電気モータMA(単に、「電気モータ」ともいう)によって、上部流体ポンプQA(単に、「流体ポンプ」ともいう)が駆動される。流体ポンプQAにおいて、吸入部と吐出部とは、還流路HK(流体路)によって接続される。また、流体ポンプQAの吸入部は、リザーバ路HRを介して、マスタリザーバRVとも接続される。流体ポンプQAの吐出部には、逆止弁が設けられる。 An upper fluid pump QA (also simply referred to as a "fluid pump") is driven by an upper electric motor MA (also simply referred to as an "electric motor"). In the fluid pump QA, the suction section and the discharge section are connected by a reflux path HK (fluid path). Moreover, the suction part of the fluid pump QA is also connected to the master reservoir RV via the reservoir path HR. A check valve is provided at the discharge portion of the fluid pump QA.
 還流路HKには、常開型の調圧弁UAが設けられる。調圧弁UAは、通電状態(例えば、供給電流Ia)に基づいて開弁量が連続的に制御されるリニア型の電磁弁である。調圧弁UAは、その上流側と下流側との液圧差(差圧)を調整するので、「差圧弁」とも称呼される。 A normally open pressure regulating valve UA is provided in the reflux path HK. The pressure regulating valve UA is a linear electromagnetic valve whose opening amount is continuously controlled based on the energization state (for example, the supply current Ia). The pressure regulating valve UA is also called a "differential pressure valve" because it regulates the hydraulic pressure difference (differential pressure) between its upstream side and its downstream side.
 電気モータMAが駆動され、流体ポンプQAから制動液BFが吐出されると、還流路HKには、制動液BFの循環流KN(破線矢印で示す)が発生される。調圧弁UAが全開状態にある場合(調圧弁UAは常開型であるため、非通電時)には、還流路HKにおいて、流体ポンプQAの吐出部と調圧弁UAとの間の液圧Pu(「サーボ圧」という)は、「0(大気圧)」である。調圧弁UAへの通電量Ia(供給電流)が増加されると、調圧弁UAによって循環流KN(還流路HK内で循環する制動液BFの流れ)が絞られる。換言すれば、調圧弁UAによって、還流路HKの流路が狭められて、調圧弁UAによるオリフィス効果が発揮される。これにより、調圧弁UAの上流側の液圧Puが「0」から増加される。つまり、循環流KNにおいて、調圧弁UAに対して、上流側の液圧Pu(サーボ圧)と下流側の液圧(大気圧)との液圧差(差圧)が発生される。該差圧は、調圧弁UAへの供給電流Iaによって調節される。 When the electric motor MA is driven and the brake fluid BF is discharged from the fluid pump QA, a circulation flow KN (indicated by a broken line arrow) of the brake fluid BF is generated in the reflux path HK. When the pressure regulating valve UA is fully open (the pressure regulating valve UA is of a normally open type and is not energized), the fluid pressure Pu between the discharge part of the fluid pump QA and the pressure regulating valve UA is lowered in the reflux path HK. (referred to as "servo pressure") is "0 (atmospheric pressure)". When the amount of current Ia (supplied current) to the pressure regulating valve UA is increased, the circulating flow KN (the flow of the brake fluid BF circulating in the recirculation path HK) is throttled by the pressure regulating valve UA. In other words, the pressure regulating valve UA narrows the flow path of the return flow path HK, and the orifice effect of the pressure regulating valve UA is exerted. As a result, the hydraulic pressure Pu on the upstream side of the pressure regulating valve UA is increased from "0". That is, in the circulating flow KN, a hydraulic pressure difference (differential pressure) between the upstream hydraulic pressure Pu (servo pressure) and the downstream hydraulic pressure (atmospheric pressure) is generated with respect to the pressure regulating valve UA. The differential pressure is regulated by the current Ia supplied to the pressure regulating valve UA.
 還流路HKは、流体ポンプQAの吐出部(詳細には、逆止弁の下流側部位)と調圧弁UAとの間の部位にて、サーボ路HV(流体路)を介して、サーボ室Ruに接続される。従って、サーボ圧Puは、サーボ室Ruに導入(供給)される。サーボ圧Puの増加によって、マスタピストンNM、NSが前進方向Haに押圧され、前輪、後輪マスタ室Rmf、Rmr内の液圧Pmf、Pmr(前輪、後輪供給圧)が増加される。 The reflux passage HK is located between the discharge part of the fluid pump QA (specifically, the downstream part of the check valve) and the pressure regulating valve UA, and is connected to the servo chamber Ru via the servo passage HV (fluid passage). connected to. Therefore, the servo pressure Pu is introduced (supplied) into the servo chamber Ru. As the servo pressure Pu increases, the master pistons NM and NS are pressed in the forward direction Ha, and the hydraulic pressures Pmf and Pmr (front and rear wheel supply pressures) in the front and rear wheel master chambers Rmf and Rmr are increased.
 前輪、後輪マスタ室Rmf、Rmr(=Rm)には、前輪、後輪連絡路HSf、HSr(=HS)が接続される。前輪、後輪連絡路HSf、HSrは、下部制動ユニットSB(特に、下部アクチュエータYB)を経由して、前輪、後輪ホイールシリンダCWf、CWr(=CW)に接続される。従って、前輪、後輪供給圧Pmf、Pmrは、上部制動ユニットSAから前輪、後輪ホイールシリンダCWf、CWrに対して供給される。ここで、前輪供給圧Pmfと後輪供給圧Pmrとは等しい(即ち、「Pmf=Pmr」)。 Front wheel and rear wheel communication paths HSf and HSr (=HS) are connected to the front wheel and rear wheel master chambers Rmf and Rmr (=Rm). The front wheel and rear wheel communication paths HSf and HSr are connected to the front and rear wheel cylinders CWf and CWr (=CW) via the lower braking unit SB (particularly the lower actuator YB). Therefore, the front wheel and rear wheel supply pressures Pmf and Pmr are supplied from the upper braking unit SA to the front wheel and rear wheel cylinders CWf and CWr. Here, the front wheel supply pressure Pmf and the rear wheel supply pressure Pmr are equal (ie, "Pmf=Pmr").
[入力ユニットNR]
 入力ユニットNRによって、回生協調制御を実現するよう、制動操作部材BPは操作されるが、ホイール圧Pwが発生しない状態が生み出される。「回生協調制御」は、制動時に、車両JVが有する運動エネルギを、モータ/ジェネレータ(非図示)によって、効率良く電気エネルギに回収できるよう、摩擦制動力Fm(ホイール圧Pwによる制動力)と回生制動力Fg(モータ/ジェネレータによる制動力)とを協働させるものである。入力ユニットNRは、入力シリンダCN、入力ピストンNN、導入弁VA、開放弁VB、ストロークシミュレータSS、及び、シミュレータ液圧センサPZにて構成される。
[Input unit NR]
Although the brake operation member BP is operated by the input unit NR so as to realize regeneration cooperative control, a state is created in which no wheel pressure Pw is generated. "Regenerative cooperative control" is a system that regenerates friction braking force Fm (braking force due to wheel pressure Pw) and regeneration so that the kinetic energy possessed by the vehicle JV can be efficiently recovered into electric energy by a motor/generator (not shown) during braking. This is to cooperate with the braking force Fg (braking force by the motor/generator). The input unit NR includes an input cylinder CN, an input piston NN, an introduction valve VA, a release valve VB, a stroke simulator SS, and a simulator hydraulic sensor PZ.
 入力シリンダCNは、マスタシリンダCMに固定される。入力シリンダCNには、入力ピストンNNが挿入される。入力ピストンNNは、制動操作部材BP(ブレーキペダル)に連動するよう、クレビス(U字リンク)を介して、制動操作部材BPに機械的に接続される。入力ピストンNNの端面とプライマリマスタピストンNMの端面とは隙間Ks(「離間変位」ともいう)を有している。離間距離Ksがサーボ圧Puによって調節されることで、回生協調制御が実現される。 The input cylinder CN is fixed to the master cylinder CM. An input piston NN is inserted into the input cylinder CN. The input piston NN is mechanically connected to the brake operation member BP (brake pedal) via a clevis (U-shaped link) so as to be interlocked with the brake operation member BP. The end face of the input piston NN and the end face of the primary master piston NM have a gap Ks (also referred to as "separation displacement"). Regeneration cooperative control is realized by adjusting the separation distance Ks by the servo pressure Pu.
 入力ユニットNRの入力室Rnは、入力路HN(流体路)を介して、アプライユニットAPの反力室Roに接続される。入力路HNには、常閉型の導入弁VAが設けられる。入力路HNは、導入弁VAと反力室Roとの間にて、リザーバ路HRを介して、マスタリザーバRVに接続される。リザーバ路HRには、常開型の開放弁VBが設けられる。導入弁VA、及び、開放弁VBは、オン・オフ型の電磁弁である。導入弁VAと反力室Roとの間で、ストロークシミュレータSS(単に、「シミュレータ」ともいう)が、入力路HNに接続される。 The input chamber Rn of the input unit NR is connected to the reaction force chamber Ro of the apply unit AP via an input path HN (fluid path). The input path HN is provided with a normally closed type introduction valve VA. The input path HN is connected to the master reservoir RV via the reservoir path HR between the introduction valve VA and the reaction force chamber Ro. A normally open open valve VB is provided in the reservoir path HR. The introduction valve VA and the release valve VB are on-off type solenoid valves. A stroke simulator SS (also simply referred to as a "simulator") is connected to an input path HN between the introduction valve VA and the reaction force chamber Ro.
 導入弁VA、及び、開放弁VBに電力供給(給電)が行われない場合には、導入弁VAは閉弁され、開放弁VBは開弁される。導入弁VAの閉弁により、入力室Rnは封止され、流体ロックされる。これにより、マスタピストンNM、NSは、制動操作部材BPと一体で変位する。また、開放弁VBの開弁により、シミュレータSSは、マスタリザーバRVに連通される。導入弁VA、及び、開放弁VBに給電(電力供給)が行われる場合には、導入弁VAは開弁され、開放弁VBは閉弁される。これにより、マスタピストンNM、NSは、制動操作部材BPとは別体で変位することが可能である。このとき、入力室RnはストロークシミュレータSSに接続されるので、制動操作部材BPの操作力FpはシミュレータSSによって発生される。シミュレータSS内の液圧Pz(シミュレータ圧)を検出するよう、入力路HNには、導入弁VAと反力室Roとの間で、シミュレータ圧センサPZが設けられる。なお、シミュレータ圧Pzは、入力室Rnの内圧でもあるため、制動操作部材BPの操作力Fpを表す状態量でもある。 When power is not supplied to the introduction valve VA and the release valve VB, the introduction valve VA is closed and the release valve VB is opened. By closing the introduction valve VA, the input chamber Rn is sealed and fluid-locked. Thereby, the master pistons NM and NS are displaced integrally with the brake operation member BP. Further, by opening the release valve VB, the simulator SS is communicated with the master reservoir RV. When power is supplied to the introduction valve VA and the release valve VB, the introduction valve VA is opened and the release valve VB is closed. Thereby, the master pistons NM and NS can be displaced separately from the brake operation member BP. At this time, since the input chamber Rn is connected to the stroke simulator SS, the operating force Fp of the brake operating member BP is generated by the simulator SS. A simulator pressure sensor PZ is provided in the input path HN between the introduction valve VA and the reaction force chamber Ro so as to detect the hydraulic pressure Pz (simulator pressure) in the simulator SS. In addition, since the simulator pressure Pz is also the internal pressure of the input chamber Rn, it is also a state quantity representing the operating force Fp of the brake operating member BP.
 マスタピストンNM、NSと制動操作部材BPとが別体で変位する状態(電磁弁VA、VBの通電時)が「第1モード(又は、バイワイヤモード)」と称呼される。第1モードでは、制動制御装置SCはブレーキバイワイヤ型の装置(即ち、運転者の制動操作に対して、摩擦制動力Fmが独立で発生可能な装置)として機能する。このため、第1モードでは、ホイール圧Pwは、制動操作部材BPの操作とは独立で発生される。一方、マスタピストンNM、NSと制動操作部材BPとが一体で変位する状態(電磁弁VA、VBの非通電時)が「第2モード(又は、マニュアルモード)」と称呼される。第2モードでは、ホイール圧Pwは運転者の制動操作に連動する。入力ユニットNRでは、導入弁VA、及び、開放弁VBへの給電の有無によって、第1モード(バイワイヤモード)、及び、第2モード(マニュアルモード)のうちの一方の作動モードが選択される。 The state in which the master pistons NM, NS and the brake operation member BP are displaced separately (when the electromagnetic valves VA, VB are energized) is called the "first mode (or by-wire mode)". In the first mode, the brake control device SC functions as a brake-by-wire type device (that is, a device that can generate frictional braking force Fm independently in response to the driver's braking operation). Therefore, in the first mode, the wheel pressure Pw is generated independently of the operation of the brake operation member BP. On the other hand, a state in which the master pistons NM, NS and the brake operation member BP are displaced together (when the electromagnetic valves VA, VB are not energized) is called a "second mode (or manual mode)." In the second mode, the wheel pressure Pw is linked to the driver's braking operation. In the input unit NR, one of the first mode (by-wire mode) and the second mode (manual mode) is selected depending on whether or not power is supplied to the introduction valve VA and the release valve VB.
≪上部コントローラEA≫
 上部コントローラEAによって、上部アクチュエータYAが制御される。上部コントローラEAは、マイクロプロセッサMP、及び、駆動回路DRにて構成される。上部コントローラEAは、他のコントローラ(EB等)との間で信号(検出値、演算値、制御フラグ等)を共有できるよう、通信バスBSに接続されている。
≪Upper controller EA≫
Upper actuator YA is controlled by upper controller EA. The upper controller EA is composed of a microprocessor MP and a drive circuit DR. The upper controller EA is connected to a communication bus BS so that signals (detected values, calculated values, control flags, etc.) can be shared with other controllers (EB, etc.).
 上部コントローラEAには、制動操作量Baが入力される。制動操作量Baは、制動操作部材BPの操作量を表す状態量の総称である。制動操作量Baとして、操作変位センサSPの検出信号Sp(操作変位)、及び、シミュレータ圧センサPZの検出信号Pz(シミュレータ圧)が、制動操作量センサBAから上部コントローラEAに直接入力される。また、上部コントローラEAには、通信バスBSを介して、供給圧Pm等が入力される。「供給圧Pm」は、上部アクチュエータYAの出力圧である。供給圧Pmは、下部アクチュエータYBに設けられる供給圧センサPMによって検出され、下部コントローラEBから送信される。 A braking operation amount Ba is input to the upper controller EA. The brake operation amount Ba is a general term for state quantities representing the operation amount of the brake operation member BP. As the braking operation amount Ba, a detection signal Sp (operation displacement) of the operation displacement sensor SP and a detection signal Pz (simulator pressure) of the simulator pressure sensor PZ are directly input from the braking operation amount sensor BA to the upper controller EA. Further, the supply pressure Pm and the like are input to the upper controller EA via the communication bus BS. "Supply pressure Pm" is the output pressure of the upper actuator YA. The supply pressure Pm is detected by a supply pressure sensor PM provided in the lower actuator YB, and is transmitted from the lower controller EB.
 上部コントローラEA(特に、マイクロプロセッサMP)には、調圧制御のアルゴリズムがプログラムされている。「調圧制御」は、供給圧Pm(最終的にはホイール圧Pw)を調節するための制御である。調圧制御は、制動操作量Ba(操作変位Sp、シミュレータ圧Pz)、供給圧Pm等に基づいて実行される。具体的には、調圧制御のアルゴリズムに基づいて、駆動回路DRによって、上部アクチュエータYAを構成する電気モータMA、及び、各種電磁弁(UA等)が駆動される。駆動回路DRには、電気モータMAを駆動するよう、スイッチング素子(例えば、MOS-FET)にてHブリッジ回路が構成される。また、駆動回路DRには、各種電磁弁(UA等)を駆動するよう、スイッチング素子が備えられる。加えて、駆動回路DRには、電気モータMAへの供給電流Im(「モータ電流」という)を検出するモータ電流センサ(非図示)、及び、調圧弁UAへの供給電流Ia(「調圧弁電流」という)を検出する調圧弁電流センサ(非図示)が含まれる。なお、電気モータMAには、その回転子(ロータ)の回転角Ka(「モータ回転角」という)を検出する回転角センサ(非図示)が設けられる。そして、モータ回転角Kaに基づいて、モータ回転数Naが演算される。 A pressure regulation control algorithm is programmed into the upper controller EA (particularly the microprocessor MP). "Pressure adjustment control" is control for adjusting the supply pressure Pm (ultimately the wheel pressure Pw). The pressure regulation control is executed based on the braking operation amount Ba (operation displacement Sp, simulator pressure Pz), supply pressure Pm, and the like. Specifically, based on the pressure regulation control algorithm, the drive circuit DR drives the electric motor MA that constitutes the upper actuator YA and various electromagnetic valves (UA, etc.). The drive circuit DR includes an H-bridge circuit using switching elements (eg, MOS-FET) to drive the electric motor MA. The drive circuit DR is also equipped with switching elements to drive various electromagnetic valves (UA, etc.). In addition, the drive circuit DR includes a motor current sensor (not shown) that detects a current Im supplied to the electric motor MA (referred to as "motor current"), and a motor current sensor (not shown) that detects a current Ia supplied to the pressure regulating valve UA (referred to as "pressure regulating valve current"). A pressure regulating valve current sensor (not shown) is included to detect the current. Note that electric motor MA is provided with a rotation angle sensor (not shown) that detects rotation angle Ka (referred to as "motor rotation angle") of its rotor. Then, the motor rotation speed Na is calculated based on the motor rotation angle Ka.
 上部コントローラEAでは、制動操作量Baに基づいて、調圧弁電流Ia(実際値)に対応する目標電流It(目標値)が演算される。そして、調圧弁UAの制御では、調圧弁電流Iaが、目標電流Itに近付き、一致するように制御される。また、上部コントローラEAでは、制動操作量Baに基づいて、モータ回転数Na(実際値)に対応する目標回転数Nt(目標値)が演算される。そして、電気モータMAの制御では、実際の回転数Naが、目標回転数Ntに近付き、一致するように、モータ電流Imが制御される。具体的には、「Nt>Na」であれば、モータ回転数Naが増加するようにモータ電流Imが増加され、「Nt<Na」であれば、モータ回転数Naが減少するようにモータ電流Imが減少される。これらの制御アルゴリズムに基づいて、電気モータMAを制御するための駆動信号Ma、及び、各種電磁弁UA、VA、VBを制御するための駆動信号Ua、Va、Vbが演算される。そして、駆動信号(Ma等)に応じて、駆動回路DRのスイッチング素子が駆動され、電気モータMA、及び、電磁弁UA、VA、VBが制御される。 In the upper controller EA, a target current It (target value) corresponding to the pressure regulating valve current Ia (actual value) is calculated based on the braking operation amount Ba. The pressure regulating valve UA is controlled so that the pressure regulating valve current Ia approaches and matches the target current It. Further, in the upper controller EA, a target rotational speed Nt (target value) corresponding to the motor rotational speed Na (actual value) is calculated based on the braking operation amount Ba. In controlling the electric motor MA, the motor current Im is controlled so that the actual rotational speed Na approaches and matches the target rotational speed Nt. Specifically, if "Nt>Na", the motor current Im is increased so that the motor rotation speed Na increases, and if "Nt<Na", the motor current Im is increased so that the motor rotation speed Na is decreased. Im is decreased. Based on these control algorithms, a drive signal Ma for controlling the electric motor MA and drive signals Ua, Va, Vb for controlling the various electromagnetic valves UA, VA, VB are calculated. Then, the switching elements of the drive circuit DR are driven according to the drive signal (Ma, etc.), and the electric motor MA and the solenoid valves UA, VA, and VB are controlled.
<下部制動ユニットSB>
 図3の概略図を参照して、制動制御装置SCの下部制動ユニットSBの構成例について説明する。下部制動ユニットSBは、アンチロックブレーキ制御、トラクション制御、横滑り防止制御等を実行するための汎用のユニット(装置)である。トラクション制御、及び、横滑り防止制御では、各ホイールシリンダCWのホイール圧Pwが、制動操作部材BPの操作とは独立して自動的に増加される。また、これら制御では、各ホイール圧Pwが個別に調整される。従って、トラクション制御、横滑り防止制御のようにホイール圧Pwが自動的且つ個別に増加される制御が「自動加圧制御」と総称される。
<Lower braking unit SB>
An example of the configuration of the lower brake unit SB of the brake control device SC will be described with reference to the schematic diagram of FIG. 3. The lower braking unit SB is a general-purpose unit (device) for performing anti-lock brake control, traction control, skid prevention control, etc. In the traction control and the skid prevention control, the wheel pressure Pw of each wheel cylinder CW is automatically increased independently of the operation of the brake operation member BP. Furthermore, in these controls, each wheel pressure Pw is adjusted individually. Therefore, controls in which the wheel pressure Pw is automatically and individually increased, such as traction control and skid prevention control, are collectively referred to as "automatic pressurization control."
 下部制動ユニットSBには、上部制動ユニットSAから、前輪、後輪供給圧Pmf、Pmr(=Pm)が供給される。そして、下部制動ユニットSBにて、前輪、後輪供給圧Pmf、Pmrが調整(増減)され、最終的には、前輪、後輪ホイールシリンダCWf、CWrの液圧Pwf、Pwr(前輪、後輪ホイール圧)として出力される。下部制動ユニットSBは、下部アクチュエータYB、及び、下部コントローラEBにて構成される。 The lower brake unit SB is supplied with front wheel and rear wheel supply pressures Pmf and Pmr (=Pm) from the upper brake unit SA. Then, the lower braking unit SB adjusts (increases or decreases) the front wheel and rear wheel supply pressures Pmf and Pmr, and finally the hydraulic pressures Pwf and Pwr of the front and rear wheel cylinders CWf and CWr (front and rear wheel output as wheel pressure). The lower braking unit SB includes a lower actuator YB and a lower controller EB.
≪下部アクチュエータYB≫
 下部アクチュエータYBは、連絡路HSにおいて、上部アクチュエータYAとホイールシリンダCWとの間に設けられる。下部アクチュエータYBは、供給圧センサPM、制御弁UB、下部流体ポンプQB、下部電気モータMB、調圧リザーバRB、インレット弁VI、及び、アウトレット弁VOにて構成される。
≪Lower actuator YB≫
The lower actuator YB is provided between the upper actuator YA and the wheel cylinder CW in the communication path HS. The lower actuator YB includes a supply pressure sensor PM, a control valve UB, a lower fluid pump QB, a lower electric motor MB, a pressure regulating reservoir RB, an inlet valve VI, and an outlet valve VO.
 前輪、後輪制御弁UBf、UBr(=UB)が、前輪、後輪連絡路HSf、HSr(=HS)に設けられる。制御弁UBは、調圧弁UAと同様に、常開型のリニア電磁弁(差圧弁)である。制御弁UBによって、ホイール圧Pwは、供給圧Pmから、前後車輪系統で個別に増加されることが可能である。 Front wheel and rear wheel control valves UBf and UBr (=UB) are provided in the front and rear wheel communication paths HSf and HSr (=HS). The control valve UB is a normally open linear solenoid valve (differential pressure valve) like the pressure regulating valve UA. The control valve UB allows the wheel pressure Pw to be increased individually for the front and rear wheel systems from the supply pressure Pm.
 前輪、後輪供給圧センサPMf、PMr(=PM)が、上部アクチュエータYA(特に、前輪、後輪マスタ室Rmf、Rmr)から供給される実際の液圧Pmf、Pmr(前輪、後輪供給圧)を検出するために設けられる。供給圧センサPMは、「マスタ圧センサ」とも称呼され、下部アクチュエータYBに内蔵される。前輪、後輪供給圧Pmf、Pmr(=Pm)の信号は、下部コントローラEBに直接入力され、通信バスBSに出力される。なお、前輪供給圧Pmfと後輪供給圧Pmrとは実質的には同じであるため、前輪、後輪供給圧センサPMf、PMrのうちの何れか一方は省略されてもよい。例えば、後輪供給圧センサPMrが省略される構成では、前輪供給圧センサPMfによって前輪供給圧Pmfのみが検出される。 The front wheel and rear wheel supply pressure sensors PMf and PMr (=PM) detect the actual hydraulic pressures Pmf and Pmr (front and rear wheel supply pressures) supplied from the upper actuator YA (especially the front and rear wheel master chambers Rmf and Rmr). ) is provided to detect. The supply pressure sensor PM is also called a "master pressure sensor" and is built into the lower actuator YB. Signals of front wheel and rear wheel supply pressures Pmf and Pmr (=Pm) are directly input to the lower controller EB and output to the communication bus BS. Note that since the front wheel supply pressure Pmf and the rear wheel supply pressure Pmr are substantially the same, either one of the front wheel and rear wheel supply pressure sensors PMf and PMr may be omitted. For example, in a configuration where the rear wheel supply pressure sensor PMr is omitted, only the front wheel supply pressure Pmf is detected by the front wheel supply pressure sensor PMf.
 前輪、後輪戻し路HLf、HLr(=HL)によって、前輪、後輪制御弁UBf、UBrの上部(上部アクチュエータYAに近い側の連絡路HSの部位)と、前輪、後輪制御弁UBf、UBrの下部(ホイールシリンダCWに近い側の連絡路HSの部位)とが接続される。前輪、後輪戻し路HLf、HLrには、前輪、後輪下部流体ポンプQBf、QBr(=QB)、及び、前輪、後輪調圧リザーバRBf、RBr(=RB)が設けられる。下部流体ポンプQBは、下部電気モータMBによって駆動される。 The front wheel and rear wheel return paths HLf and HLr (=HL) connect the upper part of the front wheel and rear wheel control valves UBf and UBr (the part of the communication path HS on the side closer to the upper actuator YA), the front wheel and rear wheel control valves UBf, The lower part of the UBr (the part of the communication path HS on the side closer to the wheel cylinder CW) is connected. The front wheel and rear wheel return paths HLf and HLr are provided with front wheel and rear wheel lower fluid pumps QBf and QBr (=QB), and front and rear wheel pressure regulating reservoirs RBf and RBr (=RB). The lower fluid pump QB is driven by the lower electric motor MB.
 下部電気モータMB(単に、「電気モータ」ともいう)が駆動されると、下部流体ポンプQB(単に、「流体ポンプ」ともいう)によって、制動液BFが、制御弁UBの上部から吸い込まれ、制御弁UBの下部に吐出される。これにより、連絡路HS、及び、戻し路HLには、流体ポンプQB、制御弁UB、及び、調圧リザーバRBを含んだ、制動液BFの循環流KL(即ち、前輪、後輪循環流KLf、KLrであり、破線矢印で示す)が発生する。制御弁UBによって、連絡路HSの流路が狭められ、制動液BFの循環流KLが絞られると、その際のオリフィス効果によって、制御弁UBの下部の液圧Pq(「調整圧」という)が、制御弁UBの上部の液圧Pm(供給圧)から増加される。換言すれば、循環流KLにおいて、制御弁UBに対して、下流側の液圧Pm(供給圧)と上流側の液圧Pq(調整圧)との液圧差(差圧)が、制御弁UBによって調整される。なお、供給圧Pmと調整圧Pqとの大小関係では、調整圧Pqは供給圧Pm以上である(即ち、「Pq≧Pm」)。以上で説明したように、下部アクチュエータYBでの調整圧Pqの発生メカニズムは、上部アクチュエータYAでのサーボ圧Puの発生メカニズムと同じである。 When the lower electric motor MB (also simply referred to as the "electric motor") is driven, the brake fluid BF is sucked in from the upper part of the control valve UB by the lower fluid pump QB (also simply referred to as the "fluid pump"). It is discharged to the lower part of the control valve UB. As a result, the communication path HS and the return path HL have a circulating flow KL of the brake fluid BF (i.e., a circulating flow KLf of the brake fluid BF including the fluid pump QB, the control valve UB, and the pressure regulating reservoir RB). , KLr (indicated by the dashed arrow) occurs. When the flow path of the communication passage HS is narrowed by the control valve UB and the circulation flow KL of the brake fluid BF is throttled, the hydraulic pressure Pq (referred to as "adjustment pressure") at the lower part of the control valve UB is reduced due to the orifice effect at that time. is increased from the hydraulic pressure Pm (supply pressure) above the control valve UB. In other words, in the circulating flow KL, the hydraulic pressure difference (differential pressure) between the downstream hydraulic pressure Pm (supply pressure) and the upstream hydraulic pressure Pq (adjustment pressure) with respect to the control valve UB is adjusted by. Note that in terms of the magnitude relationship between the supply pressure Pm and the adjustment pressure Pq, the adjustment pressure Pq is greater than or equal to the supply pressure Pm (that is, "Pq≧Pm"). As explained above, the mechanism for generating the adjustment pressure Pq in the lower actuator YB is the same as the mechanism for generating the servo pressure Pu in the upper actuator YA.
 下部アクチュエータYBの内部にて、前輪、後輪連絡路HSf、HSrは、夫々、2つに分岐されて、前輪、後輪ホイールシリンダCWf、CWrに接続される。各ホイール圧Pwを個別に調節できるよう、ホイールシリンダCW毎に、常開型のインレット弁VI、及び、常閉型のアウトレット弁VOが設けられる。具体的には、インレット弁VIは、分岐された連絡路HS(即ち、連絡路HSの分岐部に対してホイールシリンダCWに近い側)に設けられる。連絡路HSは、インレット弁VIの下部(ホイールシリンダCWに近い側の連絡路HSの部位)にて、減圧路HG(流体路)を介して、調圧リザーバRBに接続される。そして、減圧路HGには、アウトレット弁VOが配置される。インレット弁VI、及び、アウトレット弁VOとして、オン・オフ型の電磁弁が採用される。インレット弁VI、及び、アウトレット弁VOによって、ホイール圧Pwは、各車輪で調整圧Pq(又は、供給圧Pm)から個別に減少されることが可能である。これにより、アンチロックブレーキ制御、トラクション制御、横滑り防止制御等が実行される。 Inside the lower actuator YB, the front wheel and rear wheel connecting paths HSf and HSr are branched into two, respectively, and connected to the front wheel and rear wheel cylinders CWf and CWr. A normally open inlet valve VI and a normally closed outlet valve VO are provided for each wheel cylinder CW so that each wheel pressure Pw can be adjusted individually. Specifically, the inlet valve VI is provided in the branched communication path HS (that is, on the side closer to the wheel cylinder CW with respect to the branched portion of the communication path HS). The communication path HS is connected to the pressure regulating reservoir RB via the pressure reduction path HG (fluid path) at the lower part of the inlet valve VI (the portion of the communication path HS on the side closer to the wheel cylinder CW). An outlet valve VO is arranged in the pressure reduction path HG. On-off type solenoid valves are employed as the inlet valve VI and outlet valve VO. By means of the inlet valve VI and the outlet valve VO, the wheel pressure Pw can be individually reduced from the regulation pressure Pq (or supply pressure Pm) at each wheel. As a result, anti-lock brake control, traction control, sideslip prevention control, etc. are executed.
 インレット弁VI、及び、アウトレット弁VOに給電が行われず、それらの作動が停止している場合には、インレット弁VIは開弁され、アウトレット弁VOは閉弁される。この状態では、ホイール圧Pwは、調整圧Pqに等しい。インレット弁VI、及び、アウトレット弁VOの駆動によって、ホイール圧Pwが、ホイールシリンダCW毎に独立して調整される。ホイール圧Pwを減少するためには、インレット弁VIが閉弁され、アウトレット弁VOが開弁される。ホイールシリンダCWへの制動液BFの流入が阻止されるとともに、ホイールシリンダCW内の制動液BFが調圧リザーバRBに流出するので、ホイール圧Pwは減少される。ホイール圧Pwを増加するためには、インレット弁VIが開弁され、アウトレット弁VOが閉弁される。制動液BFの調圧リザーバRBへの流出が阻止され、調圧弁UBからの調整圧PqがホイールシリンダCWに供給されるので、ホイール圧Pwが増加される。ここで、ホイール圧Pwの増加の上限は調整圧Pqである。ホイール圧Pwを保持するためには、インレット弁VI、及び、アウトレット弁VOが共に閉弁される。ホイールシリンダCWは流体的に封止されるので、ホイール圧Pwが一定に維持される。 If power is not supplied to the inlet valve VI and outlet valve VO and their operation is stopped, the inlet valve VI is opened and the outlet valve VO is closed. In this state, wheel pressure Pw is equal to adjustment pressure Pq. By driving the inlet valve VI and the outlet valve VO, the wheel pressure Pw is adjusted independently for each wheel cylinder CW. In order to reduce the wheel pressure Pw, the inlet valve VI is closed and the outlet valve VO is opened. The brake fluid BF is prevented from flowing into the wheel cylinder CW, and the brake fluid BF in the wheel cylinder CW flows out to the pressure regulating reservoir RB, so that the wheel pressure Pw is reduced. In order to increase the wheel pressure Pw, the inlet valve VI is opened and the outlet valve VO is closed. The brake fluid BF is prevented from flowing into the pressure regulating reservoir RB, and the regulating pressure Pq from the pressure regulating valve UB is supplied to the wheel cylinder CW, so that the wheel pressure Pw is increased. Here, the upper limit of increase in wheel pressure Pw is adjustment pressure Pq. In order to maintain the wheel pressure Pw, both the inlet valve VI and the outlet valve VO are closed. Since the wheel cylinder CW is fluidly sealed, the wheel pressure Pw is maintained constant.
≪下部コントローラEB≫
 下部コントローラEBによって、下部アクチュエータYBが制御される。下部コントローラEBは、上部コントローラEAと同様に、マイクロプロセッサMP、及び、駆動回路DRにて構成される。下部コントローラEBは、通信バスBSに接続されるので、上部コントローラEAと下部コントローラEBとは、通信バスBSを介して信号を共有することができる。
≪Lower controller EB≫
The lower actuator YB is controlled by the lower controller EB. Like the upper controller EA, the lower controller EB includes a microprocessor MP and a drive circuit DR. The lower controller EB is connected to the communication bus BS, so that the upper controller EA and the lower controller EB can share signals via the communication bus BS.
 下部コントローラEB(特に、マイクロプロセッサMP)には、車輪速度Vw、操舵操作量Sk、ヨーレイトYr、前後加速度Gx、及び、横加速度Gyが入力される。下部コントローラEBにて、車輪速度Vwに基づいて、車体速度Vxが演算される。下部コントローラEBでは、自動加圧制御が実行される。具体的には、自動加圧制御として、駆動車輪の空転を抑制するトラクション制御、及び、アンダステアやオーバステアを抑制して車両の方向安定性を向上する横滑り防止制御(ESC)のうちの少なくとも1つが実行される。 Wheel speed Vw, steering operation amount Sk, yaw rate Yr, longitudinal acceleration Gx, and lateral acceleration Gy are input to the lower controller EB (particularly the microprocessor MP). The lower controller EB calculates the vehicle speed Vx based on the wheel speed Vw. Automatic pressurization control is executed in the lower controller EB. Specifically, the automatic pressurization control includes at least one of traction control, which suppresses the spinning of the drive wheels, and electronic stability control (ESC), which suppresses understeer and oversteer to improve the directional stability of the vehicle. executed.
 下部コントローラEBによって、下部アクチュエータYBを構成する下部電気モータMB、及び、各種電磁弁(UB等)が駆動される。下部コントローラEBの駆動回路DRには、下部電気モータMBを駆動するよう、スイッチング素子(例えば、MOS-FET)にてHブリッジ回路が構成される。また、駆動回路DRには、各種電磁弁(UB等)を駆動するよう、スイッチング素子が備えられる。マイクロプロセッサMPにプログラムされた制御アルゴリズムに基づいて、制御弁UBの駆動信号Ub、インレット弁VIの駆動信号Vi、アウトレット弁VOの駆動信号Vo、下部電気モータMBの駆動信号Mbが演算される。そして、駆動信号(Ub等)に基づいて、駆動回路DRによって、下部電気モータMB、及び、電磁弁UB、VI、VOが制御される。 The lower electric motor MB and various electromagnetic valves (UB, etc.) that constitute the lower actuator YB are driven by the lower controller EB. The drive circuit DR of the lower controller EB includes an H-bridge circuit using switching elements (eg, MOS-FET) to drive the lower electric motor MB. Further, the drive circuit DR is equipped with switching elements to drive various electromagnetic valves (UB, etc.). Based on a control algorithm programmed in the microprocessor MP, a drive signal Ub for the control valve UB, a drive signal Vi for the inlet valve VI, a drive signal Vo for the outlet valve VO, and a drive signal Mb for the lower electric motor MB are calculated. The lower electric motor MB and the solenoid valves UB, VI, and VO are controlled by the drive circuit DR based on the drive signal (Ub, etc.).
<調圧弁UAの制御>
 図4のブロック図を参照して、調圧弁UAの制御処理例について説明する。調圧弁UAによって、サーボ圧Puが調節され、最終的には、供給圧Pm(=Pw)が調節される。調圧弁UAの制御は、必要圧演算ブロックPO、要求圧演算ブロックPE、指示圧演算ブロックPS、目標圧演算ブロックPT、指示電流演算ブロックIS、液圧偏差演算ブロックPH、補償電流演算ブロックIH、及び、電流フィードバック制御ブロックIFにて構成される。例えば、必要圧演算ブロックPO、及び、要求圧演算ブロックPEの処理は、下部コントローラEBにて実行され、それら以外の処理(PS、PT等)は、上部コントローラEAにて実行される。
<Control of pressure regulating valve UA>
An example of control processing of the pressure regulating valve UA will be described with reference to the block diagram of FIG. 4. The pressure regulating valve UA regulates the servo pressure Pu, and finally the supply pressure Pm (=Pw). The pressure regulating valve UA is controlled by a required pressure calculation block PO, a required pressure calculation block PE, a command pressure calculation block PS, a target pressure calculation block PT, a command current calculation block IS, a hydraulic pressure deviation calculation block PH, a compensation current calculation block IH, and a current feedback control block IF. For example, the processes of the required pressure calculation block PO and the required pressure calculation block PE are executed by the lower controller EB, and other processes (PS, PT, etc.) are executed by the upper controller EA.
 必要圧演算ブロックPOにて、車輪速度Vw、操舵操作量Sk、ヨーレイトYr、横加速度Gy等に基づいて、各ホイールシリンダCWのホイール圧Pwに対応する必要圧Poが演算される。「必要圧Po」は、自動加圧制御の実行に必要とされる、ホイールシリンダCW毎の目標値である。ここで、自動加圧制御は、トラクション制御、及び、横滑り防止制御の総称であり、各ホイール圧Pwを、自動的且つ個別に増加するものである。 In the required pressure calculation block PO, the required pressure Po corresponding to the wheel pressure Pw of each wheel cylinder CW is calculated based on the wheel speed Vw, steering operation amount Sk, yaw rate Yr, lateral acceleration Gy, etc. “Required pressure Po” is a target value for each wheel cylinder CW that is required to execute automatic pressurization control. Here, automatic pressurization control is a general term for traction control and skid prevention control, and increases each wheel pressure Pw automatically and individually.
 必要圧演算ブロックPOでは、トラクション制御において、車輪速度Vwから演算された車体速度Vxと、駆動車輪の車輪速度Vwとの比較結果に基づいて、該駆動車輪の空転状態(例えば、駆動車輪の車輪速度Vwと車体速度Vxとの差である加速スリップ)が演算される。そして、駆動車輪の空転状態が抑制されるように、駆動車輪毎に、必要圧Poが決定される。従って、車両JVが2輪駆動車の場合には、2つの必要圧Poが演算される。また、車両JVが4輪駆動車の場合には、4つの必要圧Poが演算される。 In the required pressure calculation block PO, in traction control, based on the comparison result between the vehicle body speed Vx calculated from the wheel speed Vw and the wheel speed Vw of the driving wheel, the idle state of the driving wheel (for example, the wheel speed of the driving wheel) is determined. Acceleration slip, which is the difference between speed Vw and vehicle speed Vx, is calculated. Then, the required pressure Po is determined for each drive wheel so that the idle state of the drive wheels is suppressed. Therefore, if the vehicle JV is a two-wheel drive vehicle, two required pressures Po are calculated. Furthermore, if the vehicle JV is a four-wheel drive vehicle, four required pressures Po are calculated.
 また、必要圧演算ブロックPOでは、横滑り防止制御において、車体速度Vx、操舵操作量Sk、ヨーレイトYr、及び、横加速度Gyに基づいて、車両JVの安定性の程度(度合い)が演算される。具体的には、車体速度Vxと操舵操作量Skとから演算される目標挙動、及び、ヨーレイトYrと横加速度Gyとから演算される実挙動の比較結果(例えば、目標挙動と実挙動との差)に基づいて、車両JVのステア特性(アンダステア/オーバステアの度合い)が演算される。そして、アンダステア及びオーバステアが抑制されるように、各ホイール圧Pwに対応する必要圧Poが決定される。即ち、横滑り防止制御では、4つの必要圧Poが演算される。 Further, in the required pressure calculation block PO, the degree of stability of the vehicle JV is calculated in the skid prevention control based on the vehicle body speed Vx, the steering operation amount Sk, the yaw rate Yr, and the lateral acceleration Gy. Specifically, the comparison result of the target behavior calculated from the vehicle body speed Vx and the steering operation amount Sk and the actual behavior calculated from the yaw rate Yr and the lateral acceleration Gy (for example, the difference between the target behavior and the actual behavior ), the steering characteristics (degree of understeer/oversteer) of the vehicle JV is calculated. Then, the required pressure Po corresponding to each wheel pressure Pw is determined so that understeer and oversteer are suppressed. That is, in the sideslip prevention control, four required pressures Po are calculated.
 要求圧演算ブロックPEにて、必要圧Poに基づいて、要求圧Peが演算される。「要求圧Pe」は、自動加圧制御の実行に要求される目標値である。具体的には、複数の必要圧Poのうちで、最大のものが、要求圧Peとして決定される(即ち、「Pe=MAX(Po)」)。或いは、複数の必要圧Poのうちの最大値に所定圧peが加算されて、要求圧Peが決定されてもよい(即ち、「Pe=MAX(Po)+pe」)。ここで、「所定圧pe」は、予め設定された所定値(定数)である。何れにしても、要求圧Peは、必要圧Poの最大値に基づいて決定される。要求圧Peは、下部コントローラEBから通信バスBSに送信され、上部コントローラEAにて受信される。 In the required pressure calculation block PE, the required pressure Pe is calculated based on the required pressure Po. "Required pressure Pe" is a target value required to execute automatic pressurization control. Specifically, among the plurality of required pressures Po, the maximum one is determined as the required pressure Pe (that is, "Pe=MAX(Po)"). Alternatively, the required pressure Pe may be determined by adding the predetermined pressure pe to the maximum value of the plurality of required pressures Po (ie, "Pe=MAX(Po)+pe"). Here, the "predetermined pressure pe" is a preset predetermined value (constant). In any case, the required pressure Pe is determined based on the maximum value of the required pressure Po. The required pressure Pe is transmitted from the lower controller EB to the communication bus BS and received by the upper controller EA.
 指示圧演算ブロックPSにて、制動操作量Baに基づいて、指示圧Psが演算される。「指示圧Ps」は、供給圧Pmに対応する目標値であり、最終的な目標値である目標圧Ptを演算するための中間的な目標値である。指示圧Psは、予め設定された演算マップZpsに応じて、制動操作量Baの増加に従い、増加するように演算される。 In the command pressure calculation block PS, the command pressure Ps is calculated based on the braking operation amount Ba. "Instruction pressure Ps" is a target value corresponding to supply pressure Pm, and is an intermediate target value for calculating target pressure Pt, which is the final target value. The command pressure Ps is calculated to increase as the braking operation amount Ba increases according to a preset calculation map Zps.
 目標圧演算ブロックPTにて、指示圧Ps、及び、要求圧Peに基づいて、目標圧Ptが演算される。「目標圧Pt」は、供給圧Pm(結果、ホイール圧Pw)に対応する最終的な目標値である。具体的には、指示圧Ps、及び、要求圧Peのうちで大きい方が、目標圧Ptとして決定される(即ち、「Pt=MAX(Ps,Pe)」)。従って、「Ps>Pe」であり、目標圧Ptとして、指示圧Psが採用される場合には、目標圧Ptは、制動操作量Baに応じて達成されるべきホイール圧Pwに対応する目標値である。また、「Ps<Pe」であり、目標圧Ptとして、要求圧Peが採用される場合には、目標圧Ptは、自動加圧制御に要求されるホイール圧Pwに対応する目標値である。 In the target pressure calculation block PT, the target pressure Pt is calculated based on the command pressure Ps and the required pressure Pe. "Target pressure Pt" is the final target value corresponding to supply pressure Pm (resultingly, wheel pressure Pw). Specifically, the larger of the command pressure Ps and the required pressure Pe is determined as the target pressure Pt (ie, "Pt=MAX(Ps, Pe)"). Therefore, when "Ps>Pe" and the command pressure Ps is adopted as the target pressure Pt, the target pressure Pt is the target value corresponding to the wheel pressure Pw that should be achieved according to the braking operation amount Ba. It is. Further, when "Ps<Pe" and the required pressure Pe is adopted as the target pressure Pt, the target pressure Pt is a target value corresponding to the wheel pressure Pw required for automatic pressurization control.
 指示電流演算ブロックISでは、目標圧Pt、及び、予め設定された演算マップZisに基づいて、指示電流Isが演算される。「指示電流Is」は、目標圧Ptが達成されるために必要な、調圧弁UAの供給電流Iaに対応する目標値である。演算マップZisに応じて、目標圧Ptの増加に従って、指示電流Isが増加するように決定される。指示電流演算ブロックISは、目標圧Ptに基づくフィードフォワード制御に相当する。 In the instruction current calculation block IS, the instruction current Is is calculated based on the target pressure Pt and a preset calculation map Zis. The "instruction current Is" is a target value corresponding to the supply current Ia of the pressure regulating valve UA, which is necessary for achieving the target pressure Pt. According to the calculation map Zis, the instruction current Is is determined to increase as the target pressure Pt increases. The command current calculation block IS corresponds to feedforward control based on the target pressure Pt.
 液圧偏差演算ブロックPHでは、目標圧Ptと供給圧Pmとの偏差hP(液圧偏差)が演算される。具体的には、目標圧Ptから供給圧Pmが減算されて、液圧偏差hPが決定される(即ち、「hP=Pt-Pm」)。 In the hydraulic pressure deviation calculation block PH, a deviation hP (hydraulic pressure deviation) between the target pressure Pt and the supply pressure Pm is calculated. Specifically, the supply pressure Pm is subtracted from the target pressure Pt to determine the hydraulic pressure deviation hP (ie, "hP=Pt-Pm").
 補償電流演算ブロックIHでは、液圧偏差hP、及び、予め設定された演算マップZihに基づいて、補償電流Ihが演算される。指示電流Isは、目標圧Ptに対応して演算されるが、目標圧Ptと供給圧Pmとの間に誤差が生じる場合がある。「補償電流Ih」は、この誤差を補償(減少)するためのものである。補償電流Ihは、演算マップZihに応じて、液圧偏差hPの増加に従って、増加するように決定される。詳細には、目標圧Ptが供給圧Pmよりも大きく、液圧偏差hPが正符号の場合には、指示電流Isが増加されるよう、正符号の補償電流Ihが決定される。一方、目標圧Ptが供給圧Pmよりも小さく、液圧偏差hPが負符号の場合には、指示電流Isが減少されるよう、負符号の補償電流Ihが決定される。ここで、演算マップZihには、不感帯が設けられる。補償電流演算ブロックIHは、供給圧Pmに基づくフィードバック制御に相当する。 In the compensation current calculation block IH, the compensation current Ih is calculated based on the hydraulic pressure deviation hP and a preset calculation map Zih. Although the instruction current Is is calculated in accordance with the target pressure Pt, an error may occur between the target pressure Pt and the supply pressure Pm. "Compensation current Ih" is for compensating for (reducing) this error. The compensation current Ih is determined to increase according to the calculation map Zih as the hydraulic pressure deviation hP increases. Specifically, when the target pressure Pt is larger than the supply pressure Pm and the hydraulic pressure deviation hP has a positive sign, a positive compensation current Ih is determined so that the instruction current Is is increased. On the other hand, when the target pressure Pt is smaller than the supply pressure Pm and the hydraulic pressure deviation hP has a negative sign, a negative compensation current Ih is determined so that the instruction current Is is decreased. Here, a dead zone is provided in the calculation map Zih. The compensation current calculation block IH corresponds to feedback control based on the supply pressure Pm.
 指示電流Isに対して、補償電流Ihが加えられて、目標電流Itが演算される(即ち、「It=Is+Ih」)。「目標電流It」は、調圧弁UAに供給される電流の最終的な目標値である。つまり、目標電流Itは、フィードフォワード項である指示電流Isとフィードバック項である補償電流Ihとの和として決定される。従って、調圧弁UAの駆動制御は、液圧において、フィードフォワード制御(指示電流演算ブロックISの処理)、及び、フィードバック制御(補償電流演算ブロックIHの処理)によって構成される。 A compensation current Ih is added to the instruction current Is to calculate a target current It (ie, "It=Is+Ih"). "Target current It" is the final target value of the current supplied to the pressure regulating valve UA. That is, the target current It is determined as the sum of the instruction current Is, which is a feedforward term, and the compensation current Ih, which is a feedback term. Therefore, drive control of the pressure regulating valve UA is configured by feedforward control (processing of the instruction current calculation block IS) and feedback control (processing of the compensation current calculation block IH) in the hydraulic pressure.
 電流フィードバック制御ブロックIFでは、目標電流It(目標値)、及び、供給電流Ia(実際値)に基づいて、供給電流Iaが、目標電流Itに近付き、一致するように、駆動信号Uaが演算される。ここで、供給電流Iaは、駆動回路DRに設けられた調圧弁電流センサIAによって検出される。電流フィードバック制御ブロックIFでは、「It>Ia」であれば、供給電流Iaが増加するように駆動信号Uaが決定される。一方、「It<Ia」であれば、供給電流Iaが減少するように駆動信号Uaが決定される。つまり、電流フィードバック制御ブロックIFでは、電流に係るフィードバック制御が実行される。従って、調圧弁UAの駆動制御では、液圧に係るフィードバック制御に加え、電流に係るフィードバック制御が備えられる。 In the current feedback control block IF, the drive signal Ua is calculated based on the target current It (target value) and the supply current Ia (actual value) so that the supply current Ia approaches and matches the target current It. Ru. Here, the supply current Ia is detected by a pressure regulating valve current sensor IA provided in the drive circuit DR. In the current feedback control block IF, if "It>Ia", the drive signal Ua is determined so that the supply current Ia increases. On the other hand, if "It<Ia", the drive signal Ua is determined so that the supply current Ia decreases. That is, in the current feedback control block IF, feedback control regarding current is executed. Therefore, the drive control of the pressure regulating valve UA includes feedback control related to current in addition to feedback control related to hydraulic pressure.
 制動制御装置SCには、2つの制動ユニットSA、SBが備えられる。1つは、上部制動ユニットSAであり、制動操作部材BPの操作量Baに応じて供給圧Pmを出力する。もう1つは、下部制動ユニットSBであり、供給圧Pmを、複数のホイールシリンダCWの夫々に対して個別調整してホイール圧Pwを出力する。下部制動ユニットSBは、上部制動ユニットSAと複数のホイールシリンダCWとの間に設けられる。 The brake control device SC is equipped with two brake units SA and SB. One is the upper brake unit SA, which outputs the supply pressure Pm according to the operation amount Ba of the brake operation member BP. The other one is the lower braking unit SB, which individually adjusts the supply pressure Pm to each of the plurality of wheel cylinders CW and outputs the wheel pressure Pw. The lower braking unit SB is provided between the upper braking unit SA and the plurality of wheel cylinders CW.
 下部制動ユニットSBには、下部電気モータMB、下部流体ポンプQB、複数の電磁弁(VI、VO等)、及び、下部コントローラEBが備えられる。下部コントローラEBによって、電気モータMB、及び、複数の電磁弁が制御されることによって、自動加圧制御が実行される。自動加圧制御は、ホイール圧Pwを自動的且つ個別に増加する制御であり、例えば、トラクション制御、横滑り防止制御等が該当する。下部コントローラEBでは、自動加圧制御を実行する場合に、自動加圧制御における要求圧Peが演算される。要求圧Peは、自動加圧制御を行うために要求される、ホイール圧Pwの最大圧に対応する目標値である。例えば、下部コントローラEBでは、自動加圧制御において、複数のホイールシリンダCWの夫々に対する必要圧Poが演算され、それらのうちの最大値が、要求圧Peとして決定される。或いは、この最大値に、所定圧pe(予め設定された定数)が加えられて、要求圧Peが決定されてもよい。何れにしても、要求圧Peは、必要圧Poの最大値に基づいて演算される。 The lower braking unit SB includes a lower electric motor MB, a lower fluid pump QB, a plurality of electromagnetic valves (VI, VO, etc.), and a lower controller EB. Automatic pressurization control is executed by controlling the electric motor MB and a plurality of electromagnetic valves by the lower controller EB. The automatic pressurization control is a control that automatically and individually increases the wheel pressure Pw, and includes, for example, traction control, skid prevention control, and the like. In the lower controller EB, when performing automatic pressurization control, a required pressure Pe for automatic pressurization control is calculated. The required pressure Pe is a target value corresponding to the maximum wheel pressure Pw required to perform automatic pressurization control. For example, in the automatic pressurization control, the lower controller EB calculates the required pressure Po for each of the plurality of wheel cylinders CW, and the maximum value thereof is determined as the required pressure Pe. Alternatively, the required pressure Pe may be determined by adding a predetermined pressure pe (a preset constant) to this maximum value. In any case, the required pressure Pe is calculated based on the maximum value of the required pressure Po.
 上部制動ユニットSAには、上部電気モータMA、上部流体ポンプQA、調圧弁UA、及び、上部コントローラEAが備えられる。上部コントローラEAによって、電気モータMA、及び、調圧弁UAが制御される。そして、電気モータMAによって駆動される流体ポンプQAが吐出する循環流KN(「上部循環流」ともいう)が、調圧弁UAによって絞られることで供給圧Pmが調整される。下部制動ユニットSBにて自動加圧制御が実行される場合には、上部コントローラEAでは、要求圧Peに基づいて調圧弁UAが制御される。つまり、上部コントローラEAでは、供給圧Pmが、要求圧Peに近付き、一致するように、調圧弁UAが駆動される。 The upper braking unit SA includes an upper electric motor MA, an upper fluid pump QA, a pressure regulating valve UA, and an upper controller EA. Upper controller EA controls electric motor MA and pressure regulating valve UA. Then, the circulating flow KN (also referred to as "upper circulating flow") discharged by the fluid pump QA driven by the electric motor MA is throttled by the pressure regulating valve UA, thereby adjusting the supply pressure Pm. When automatic pressurization control is executed in the lower brake unit SB, the upper controller EA controls the pressure regulating valve UA based on the required pressure Pe. That is, in the upper controller EA, the pressure regulating valve UA is driven so that the supply pressure Pm approaches and matches the required pressure Pe.
 詳細には、自動加圧制御の実行に要求される要求圧Peが、制動操作量Baから算出される指示圧Psよりも大きい場合に、要求圧Pe(=Pt)に基づいて目標電流Itが演算され、調圧弁電流Iaが目標電流Itに近付き、一致するように制御される。典型例として、制動操作部材BPが操作されていない場合(即ち、制動操作量Baが「0」である場合)には、要求圧Peに基づいて、調圧弁UAが制御される。なお、指示圧Psは、制動操作量Baが大きいほど、大きくなるように決定されている。 Specifically, when the required pressure Pe required to execute automatic pressurization control is larger than the command pressure Ps calculated from the braking operation amount Ba, the target current It is set based on the required pressure Pe (=Pt). The pressure regulating valve current Ia approaches and is controlled to match the target current It. As a typical example, when the brake operation member BP is not operated (that is, when the brake operation amount Ba is "0"), the pressure regulating valve UA is controlled based on the required pressure Pe. Note that the command pressure Ps is determined to increase as the braking operation amount Ba increases.
 制動制御装置SCでは、自動加圧制御に必要な要求圧Peは、上部制動ユニットSAによって発生される。上部制動ユニットSAは、制動操作部材BPの急操作にも対応しているので、その定格出力は、自動加圧制御においても十分に満足し得るものである。自動加圧制御に必要な要求圧Peは上部制動ユニットSAから供給されるので、下部制動ユニットSBには、自動加圧制御において、然程の応答性は要求されない。このため、下部制動ユニットSB(特に、電気モータMB、流体ポンプQB)が小型化される。なお、自動加圧制御の個別制御(各ホイールPwの調整)は、下部制動ユニットSB(特に、インレット弁VI、及び、アウトレット弁VO)によって行われる。また、自動加圧制御でのホイール圧Pwの減少は、制動液BFが、ホイールシリンダCWから調圧リザーバRBに移動されることで実現されるが、調圧リザーバRBの容積は有限であるため、制動液BFがインレット弁VIの上部(制御弁UBとインレット弁VIとの間)に戻されるよう、電気モータMBが駆動される。従って、自動加圧制御の実行中は、下部電気モータMBと下部流体ポンプQBとによって、循環流KL(「下部循環流」ともいう)が発生される。 In the brake control device SC, the required pressure Pe necessary for automatic pressurization control is generated by the upper brake unit SA. Since the upper brake unit SA can also handle sudden operation of the brake operation member BP, its rated output is sufficiently satisfactory even in automatic pressurization control. Since the required pressure Pe necessary for the automatic pressurization control is supplied from the upper braking unit SA, the lower braking unit SB is not required to have a considerable level of responsiveness in the automatic pressurization control. Therefore, the lower braking unit SB (particularly the electric motor MB and the fluid pump QB) is downsized. Note that individual control of the automatic pressurization control (adjustment of each wheel Pw) is performed by the lower braking unit SB (particularly the inlet valve VI and the outlet valve VO). Furthermore, the reduction in wheel pressure Pw during automatic pressurization control is achieved by moving the brake fluid BF from the wheel cylinder CW to the pressure regulating reservoir RB, but since the volume of the pressure regulating reservoir RB is finite, , the electric motor MB is driven so that the brake fluid BF is returned to the upper part of the inlet valve VI (between the control valve UB and the inlet valve VI). Therefore, during execution of automatic pressurization control, a circulating flow KL (also referred to as a "lower circulating flow") is generated by the lower electric motor MB and the lower fluid pump QB.
 要求圧Peが、上部制動ユニットSAによって実現される場合(即ち、供給圧Pmが要求圧Peに達する場合)には、下部制動ユニットSBでは、制御弁UBに給電が行われず、その全開状態が維持される。一方、上部制動ユニットSAからの供給圧Pmが、要求圧Peに対して不足する場合には、制御弁UBに給電が行われ、下部循環流KLが絞られることで、この不足分(即ち、液圧「Pe-Pm(=hP)」)が、下部制動ユニットSBによって補われる。 When the required pressure Pe is realized by the upper braking unit SA (that is, when the supply pressure Pm reaches the required pressure Pe), in the lower braking unit SB, power is not supplied to the control valve UB, and its fully open state is maintained. maintained. On the other hand, if the supply pressure Pm from the upper braking unit SA is insufficient with respect to the required pressure Pe, power is supplied to the control valve UB and the lower circulation flow KL is throttled to compensate for this shortage (i.e. The hydraulic pressure "Pe-Pm (=hP)" is supplemented by the lower braking unit SB.
<電気モータMAの制御>
 図5のブロック図を参照して、上部電気モータMAの制御処理例について説明する。例えば、電気モータMAは、予め設定された所定の回転数naで駆動されてもよい。しかしながら、以下で説明するように、制動液BFの流量に基づいて、電気モータMAが駆動されると、その省電力化が達成される。
<Control of electric motor MA>
An example of control processing for upper electric motor MA will be described with reference to the block diagram in FIG. 5 . For example, electric motor MA may be driven at a predetermined rotation speed na. However, as explained below, when the electric motor MA is driven based on the flow rate of the brake fluid BF, power saving is achieved.
 電気モータMAの制御は、必要圧勾配演算ブロックKP、要求流量演算ブロックQE、液量換算ブロックPR、液量偏差演算ブロックRH、指示流量演算ブロックQS、補償流量演算ブロックQH、目標流量演算ブロックQT、目標回転数演算ブロックNT、及び、回転数フィードバック制御ブロックNFにて構成される。例えば、必要圧勾配演算ブロックKP、及び、要求流量演算ブロックQEの処理は、下部コントローラEBにて実行され、その他の処理(PR、RH等)は、上部コントローラEAにて実行される。 The electric motor MA is controlled by a required pressure gradient calculation block KP, a required flow rate calculation block QE, a liquid volume conversion block PR, a liquid volume deviation calculation block RH, a commanded flow rate calculation block QS, a compensation flow rate calculation block QH, and a target flow rate calculation block QT. , a target rotational speed calculation block NT, and a rotational speed feedback control block NF. For example, the processes of the required pressure gradient calculation block KP and the required flow rate calculation block QE are executed by the lower controller EB, and other processes (PR, RH, etc.) are executed by the upper controller EA.
 必要圧勾配演算ブロックKPにて、必要圧Poに基づいて、増加勾配kP(「目標増加勾配」ともいう)が演算される。具体的には、各ホイールシリンダCWにおける必要圧Poが時間微分されて、夫々の増加勾配(単位時間当たりの必要圧Poの増加量)が、増加勾配kPとして決定される。従って、「増加勾配kP」は、実際のホイール圧Pwの増加勾配(単位時間当たりの増加量)に対応する目標値である。なお、必要圧Poが一定値に維持される場合、又は、必要圧Poが減少される場合には、増加勾配kPは「0」に決定される。 In the required pressure gradient calculation block KP, an increasing gradient kP (also referred to as "target increasing gradient") is calculated based on the required pressure Po. Specifically, the required pressure Po in each wheel cylinder CW is differentiated with respect to time, and each increasing slope (the amount of increase in the required pressure Po per unit time) is determined as the increasing slope kP. Therefore, "increase gradient kP" is a target value corresponding to the actual increase gradient (increase amount per unit time) of wheel pressure Pw. Note that when the necessary pressure Po is maintained at a constant value or when the necessary pressure Po is decreased, the increasing gradient kP is determined to be "0".
 要求流量演算ブロックQEにて、各ホイールシリンダCWに対応する増加勾配kP(目標増加勾配)に基づいて、要求流量Qeが演算される。「要求流量Qe」は、自動加圧制御の実行に必要な制動液BFの流量である。具体的には、要求流量Qeは、各ホイールシリンダCWの増加勾配kPの総和ΣkP(合計値)に基づいて決定される。具体的には、要求流量演算ブロックQEでは、増加勾配kPの夫々が加算されて、合計値ΣkPが演算される。そして、予め設定された演算マップZqeに従って、要求流量Qeは、合計値ΣkPが大きいほど、大きくなるように決定される。要求流量Qeは、下部コントローラEBから通信バスBSに送信され、上部コントローラEAにて受信される。 In the required flow rate calculation block QE, the required flow rate Qe is calculated based on the increasing slope kP (target increasing slope) corresponding to each wheel cylinder CW. The "required flow rate Qe" is the flow rate of the brake fluid BF necessary to execute automatic pressurization control. Specifically, the required flow rate Qe is determined based on the sum ΣkP (total value) of the increasing gradient kP of each wheel cylinder CW. Specifically, the required flow rate calculation block QE adds each of the increasing gradients kP to calculate the total value ΣkP. Then, according to a preset calculation map Zqe, the required flow rate Qe is determined to increase as the total value ΣkP increases. The requested flow rate Qe is transmitted from the lower controller EB to the communication bus BS and received by the upper controller EA.
 液量換算ブロックPRにて、目標圧Pt、及び、供給圧Pmに基づいて、目標液量Rt、及び、実液量Rjが演算される。液量換算ブロックPRでは、予め設定された演算マップZprに基づいて、目標圧Ptが目標液量Rtに換算され、供給圧Pmが実液量Rjに換算される。ここで、「目標液量Rt」は、目標圧Ptを達成するために必要な液量(ホイールシリンダCWに移動されるべき制動液BFの体積)である。また、「実液量Rj」は、供給圧Pm(結果、ホイール圧Pw)を発生させるために、既にホイールシリンダCWに流入された液量である。 In the liquid volume conversion block PR, the target liquid volume Rt and the actual liquid volume Rj are calculated based on the target pressure Pt and the supply pressure Pm. In the liquid amount conversion block PR, the target pressure Pt is converted into a target liquid amount Rt, and the supply pressure Pm is converted into an actual liquid amount Rj, based on a preset calculation map Zpr. Here, the "target fluid amount Rt" is the fluid amount (volume of the brake fluid BF to be transferred to the wheel cylinder CW) necessary to achieve the target pressure Pt. Moreover, the "actual liquid amount Rj" is the amount of liquid that has already flowed into the wheel cylinder CW in order to generate the supply pressure Pm (resultingly, the wheel pressure Pw).
 液量偏差演算ブロックRHにて、目標液量Rtと実液量Rjとの偏差hR(「液量偏差」という)が演算される。具体的には、目標液量Rtから実液量Rjが減算されて、液量偏差hRが決定される(即ち、「hR=Rt-Rj」)。「液量偏差hR」は、目標圧Ptを達成するために、今後、ホイールシリンダCWに流入されるべき液量(体積)の目標値である。 In the liquid volume deviation calculation block RH, a deviation hR (referred to as "liquid volume deviation") between the target liquid volume Rt and the actual liquid volume Rj is calculated. Specifically, the actual liquid amount Rj is subtracted from the target liquid amount Rt to determine the liquid amount deviation hR (ie, "hR=Rt-Rj"). “Liquid amount deviation hR” is a target value of the amount of liquid (volume) that should flow into the wheel cylinder CW in the future in order to achieve the target pressure Pt.
 指示流量演算ブロックQSにて、目標液量Rtに基づいて、指示流量Qsが演算される。具体的には、目標液量Rtが時間微分されて、指示流量Qsが決定される(即ち、「Qs=d(Rt)/dt」)。指示流量演算ブロックQSは、流量制御におけるフィードフォワード制御に相当する。 In the instructed flow rate calculation block QS, the instructed flow rate Qs is calculated based on the target liquid amount Rt. Specifically, the target liquid amount Rt is differentiated with respect to time, and the commanded flow rate Qs is determined (ie, "Qs=d(Rt)/dt"). The commanded flow rate calculation block QS corresponds to feedforward control in flow rate control.
 補償流量演算ブロックQHにて、液量偏差hRに基づいて、補償流量Qhが演算される。具体的には、液量偏差hRが時間微分されて、補償流量Qhが決定される(即ち、「Qh=d(hR)/dt」)。補償流量演算ブロックQHは、流量制御におけるフィードバック制御に相当する。 A compensation flow rate calculation block QH calculates a compensation flow rate Qh based on the liquid volume deviation hR. Specifically, the liquid volume deviation hR is time-differentiated to determine the compensation flow rate Qh (ie, "Qh=d(hR)/dt"). The compensation flow rate calculation block QH corresponds to feedback control in flow rate control.
 目標流量演算ブロックQTにて、要求流量Qe、指示流量Qs、及び、補償流量Qhに基づいて、目標流量Qtが演算される。「目標流量Qt」は、目標圧Ptを達成するとともに、下部制動ユニットSBでの自動加圧制御を実行するために必要な流量が見込まれた、最終的な目標値である。具体的には、要求流量Qe、指示流量Qs、及び、補償流量Qhが合算されて、目標流量Qtが決定される(即ち、「Qt=Qe+Qs+Qh」)。従って、下部制動ユニットSBにて、自動加圧制御が実行されていない場合には、「Qe=0」であるため、目標流量Qtは、指示流量Qsと補償流量Qhとの和として演算される。 A target flow rate calculation block QT calculates a target flow rate Qt based on the required flow rate Qe, the instructed flow rate Qs, and the compensation flow rate Qh. "Target flow rate Qt" is a final target value in which the flow rate necessary for achieving the target pressure Pt and executing automatic pressurization control in the lower braking unit SB is estimated. Specifically, the required flow rate Qe, the instructed flow rate Qs, and the compensation flow rate Qh are added together to determine the target flow rate Qt (ie, "Qt=Qe+Qs+Qh"). Therefore, when automatic pressurization control is not executed in the lower braking unit SB, since "Qe=0", the target flow rate Qt is calculated as the sum of the commanded flow rate Qs and the compensation flow rate Qh. .
 目標回転数演算ブロックNTでは、目標流量Qtに基づいて、目標回転数Ntが演算される。「目標回転数Nt」は、電気モータMAの回転数Na(実際値)に対応する目標値である。具体的には、流体ポンプQAの吐出量(1回転毎に排出される制動液BFの体積)に基づいて、目標回転数Ntは、目標流量Qtが大きいほど、大きくなるように決定される。目標回転数Ntには、調圧弁UAの最低流量、及び、電気モータMAの最低回転数が考慮される。「最低流量」は、調圧弁UAがサーボ圧Puを調圧するために、最低限必要な流量であり、予め設定されている。また、「最低回転数」は、電気モータMAが安定して回転し続けられる回転数の最小値である。これらのことが考慮されて、目標回転数Ntには、下限回転数nt(予め設定された所定値)が設けられる。従って、目標流量Qtに基づいて演算された目標回転数Ntが下限回転数nt以上の場合には、下限回転数ntによる制限は行われず、演算された目標回転数Ntがそのまま用いられる。一方、目標流量Qtに基づいて演算された目標回転数Ntが下限回転数nt未満である場合には、目標回転数Ntは下限回転数ntに決定される(即ち、「Nt=nt」)。 In the target rotation speed calculation block NT, the target rotation speed Nt is calculated based on the target flow rate Qt. "Target rotation speed Nt" is a target value corresponding to rotation speed Na (actual value) of electric motor MA. Specifically, the target rotation speed Nt is determined to increase as the target flow rate Qt increases, based on the discharge amount of the fluid pump QA (the volume of the brake fluid BF discharged per rotation). The target rotation speed Nt takes into consideration the minimum flow rate of the pressure regulating valve UA and the minimum rotation speed of the electric motor MA. The "minimum flow rate" is the minimum required flow rate for the pressure regulating valve UA to regulate the servo pressure Pu, and is set in advance. Moreover, the "minimum rotation speed" is the minimum value of the rotation speed at which the electric motor MA can continue to rotate stably. Taking these things into consideration, a lower limit rotation speed nt (predetermined value set in advance) is provided for the target rotation speed Nt. Therefore, when the target rotational speed Nt calculated based on the target flow rate Qt is equal to or higher than the lower limit rotational speed nt, the restriction by the lower limit rotational speed nt is not performed, and the calculated target rotational speed Nt is used as is. On the other hand, when the target rotational speed Nt calculated based on the target flow rate Qt is less than the lower limit rotational speed nt, the target rotational speed Nt is determined to be the lower limit rotational speed nt (ie, "Nt=nt").
 回転数フィードバック制御ブロックNFにて、目標回転数Nt(目標値)、及び、モータ回転数Na(実際値)に基づいて、モータ回転数Naが、目標回転数Ntに近付き、一致するように、駆動信号Maが演算される。ここで、モータ回転数Naは、電気モータMAに設けられた回転角センサKAの検出値Ka(回転角)に基づいて演算される。具体的には、モータ回転角Kaが時間微分されて、モータ回転数Naが決定される。回転数フィードバック制御ブロックNFでは、「Nt>Na」であれば、実回転数Naが増加するように駆動信号Maが決定される。一方、「Nt<Na」であれば、実回転数Naが減少するように駆動信号Maが決定される。つまり、回転数フィードバック制御ブロックNFでは、モータ回転数に係るフィードバック制御が実行される。 In the rotation speed feedback control block NF, based on the target rotation speed Nt (target value) and the motor rotation speed Na (actual value), the motor rotation speed Na approaches and matches the target rotation speed Nt. A drive signal Ma is calculated. Here, the motor rotation speed Na is calculated based on a detection value Ka (rotation angle) of a rotation angle sensor KA provided in the electric motor MA. Specifically, the motor rotation angle Ka is time differentiated to determine the motor rotation speed Na. In the rotation speed feedback control block NF, if "Nt>Na", the drive signal Ma is determined so that the actual rotation speed Na increases. On the other hand, if "Nt<Na", the drive signal Ma is determined so that the actual rotational speed Na decreases. That is, in the rotation speed feedback control block NF, feedback control related to the motor rotation speed is executed.
 下部制動ユニットSBでは、自動加圧制御の実行に要求される要求液量Qeが演算される。詳細には、要求流量Qeは、要求圧Peを達成するために必要な制動液BFの流量であり、複数のホイールシリンダCWに移動されるべき単位時間当たりの制動液BFの体積である。例えば、下部制動ユニットSBでは、自動加圧制御の実行に要求される必要圧Poが、ホイールシリンダCW毎に演算される。複数のホイールシリンダCWの夫々において、必要圧Poが増加する際の時間変化量である増加勾配kPが演算される。そして、各ホイールシリンダCWの増加勾配kPの和(合計値ΣkP)が、要求流量Qeとして決定される。 In the lower braking unit SB, a required liquid amount Qe required to execute automatic pressurization control is calculated. Specifically, the required flow rate Qe is the flow rate of the brake fluid BF necessary to achieve the required pressure Pe, and is the volume of the brake fluid BF per unit time to be transferred to the plurality of wheel cylinders CW. For example, in the lower braking unit SB, the necessary pressure Po required to execute automatic pressurization control is calculated for each wheel cylinder CW. In each of the plurality of wheel cylinders CW, an increasing gradient kP, which is the amount of change over time when the required pressure Po increases, is calculated. Then, the sum of the increasing gradients kP of each wheel cylinder CW (total value ΣkP) is determined as the required flow rate Qe.
 上部制動ユニットSAでは、要求流量Qeから算出された目標回転数Ntに基づいて電気モータMAが制御される。具体的には、電気モータMAの実回転数Naが、目標回転数Ntに近付き、一致するように、電気モータMAへの供給電流Imが制御される。即ち、目標回転数Ntが、下部制動ユニットSBでの必要圧Poに基づいて演算されるため、上部制動ユニットSAでは、必要最低限の流量で必要圧Poが達成される。これにより、自動加圧制御の要求圧Peが上部制動ユニットSAで発生される構成であっても、上部制動ユニットSA(特に、電気モータMA)の電力消費は抑制される。 In the upper braking unit SA, the electric motor MA is controlled based on the target rotation speed Nt calculated from the required flow rate Qe. Specifically, the current Im supplied to the electric motor MA is controlled so that the actual rotation speed Na of the electric motor MA approaches and matches the target rotation speed Nt. That is, since the target rotational speed Nt is calculated based on the required pressure Po in the lower braking unit SB, the required pressure Po is achieved in the upper braking unit SA with the minimum necessary flow rate. As a result, even in a configuration in which the required pressure Pe for automatic pressurization control is generated by the upper brake unit SA, the power consumption of the upper brake unit SA (particularly, the electric motor MA) is suppressed.
 なお、上部制動ユニットSAでは、要求圧Peを実現するために、目標回転数Ntが所定回転数na(予め設定された定数)に決定され、電気モータMAの実回転数Naが、所定回転数naに近付き、一致するように駆動されてもよい。しかしながら、目標回転数Ntが必要圧Poに基づいて決定される構成の方が、「Nt=na」の構成に比較して、省電力化の効果は大である。 In the upper braking unit SA, in order to realize the required pressure Pe, the target rotation speed Nt is determined to be a predetermined rotation speed na (a preset constant), and the actual rotation speed Na of the electric motor MA is set to a predetermined rotation speed. It may be driven to approach and match na. However, the configuration in which the target rotational speed Nt is determined based on the required pressure Po has a greater power saving effect than the configuration in which "Nt=na".
 以上で説明したように、制動制御装置SCでは、自動加圧制御のための元となる要求圧Peが上部制動ユニットSAによって発生され、ホイール圧Pwの個別調整は下部制動ユニットSBによって行われる。これにより、制動制御装置SCには、小型の下部制動ユニットSBが採用可能である。結果、装置全体の小型化が図られる。 As explained above, in the brake control device SC, the required pressure Pe, which is the basis for automatic pressurization control, is generated by the upper brake unit SA, and the individual adjustment of the wheel pressure Pw is performed by the lower brake unit SB. Thereby, a small lower brake unit SB can be adopted as the brake control device SC. As a result, the entire device can be made smaller.
 更に、上部制動ユニットSAでは、必要且つ最低限の流量によって、要求圧Peが発生される。これにより、制動制御装置SCでは、下部制動ユニットSBの小型化に加え、上部制動ユニットSAの省電力化が図られる。即ち、制動制御装置SCでは、上部、下部制動ユニットSA、SBの役割分担によって、その全体構成が適正化される。 Further, in the upper braking unit SA, the required pressure Pe is generated using the necessary and minimum flow rate. Thereby, in the brake control device SC, in addition to reducing the size of the lower brake unit SB, it is possible to reduce the power consumption of the upper brake unit SA. That is, in the brake control device SC, the overall configuration is optimized by the division of roles between the upper and lower brake units SA and SB.
<他の実施形態>
 以下、他の実施形態について説明する。他の実施形態においても、上記同様の効果(装置の小型化、省電力化等)を奏する。
<Other embodiments>
Other embodiments will be described below. Other embodiments also provide the same effects as described above (device miniaturization, power saving, etc.).
 上述の実施形態では、要求圧Peが、下部制動ユニットSBにて演算され、上部制動ユニットSAに送信された。これに代えて、要求圧Peは、上部制動ユニットSAにて演算されてもよい。下部制動ユニットSBには、車輪速度Vw、ヨーレイトYr等の信号が入力されるので、自動加圧制御の開始/終了の判定、及び、各必要圧Poの演算は、下部制動ユニットSBにて行われる。しかし、上部、下部制動ユニットSA、SBでは、通信バスBSにて信号が共有されているので、要求圧Peは、上部制動ユニットSAにて演算され得る。従って、要求圧Peは、必要圧Poに基づいて、上部、下部制動ユニットSA、SBのうちの何れかで演算される。 In the embodiment described above, the required pressure Pe was calculated by the lower braking unit SB and sent to the upper braking unit SA. Alternatively, the required pressure Pe may be calculated by the upper braking unit SA. Since signals such as wheel speed Vw and yaw rate Yr are input to the lower braking unit SB, the determination of the start/end of automatic pressurization control and the calculation of each required pressure Po are performed by the lower braking unit SB. be exposed. However, since the upper and lower braking units SA and SB share the signal via the communication bus BS, the required pressure Pe can be calculated by the upper braking unit SA. Therefore, the required pressure Pe is calculated by either the upper braking unit SA or the lower braking unit SB based on the required pressure Po.
 上述の実施形態では、増加勾配kP、及び、要求流量Qeが、下部制動ユニットSBにて演算され、要求流量Qeが上部制動ユニットSAに送信された。これに代えて、増加勾配kP、及び、要求流量Qeが、上部制動ユニットSAにて演算されてもよい。上記同様に、上部制動ユニットSAと下部制動ユニットSBとは信号共有が行われるので、増加勾配kP、及び、要求流量Qeは、上部、下部制動ユニットSA、SBのうちの何れかで演算される。 In the embodiment described above, the increasing slope kP and the required flow rate Qe were calculated in the lower braking unit SB, and the required flow rate Qe was sent to the upper braking unit SA. Alternatively, the increasing gradient kP and the required flow rate Qe may be calculated by the upper braking unit SA. Similarly to the above, since signals are shared between the upper braking unit SA and the lower braking unit SB, the increased gradient kP and the required flow rate Qe are calculated by either the upper or lower braking unit SA or SB. .
 上述の実施形態では、2系統の制動系統として、前後型のものが採用された。これに代えて、2系統の制動系統として、ダイアゴナル型(「X型」ともいう)のものが採用されてもよい。該構成では、2つのマスタ室Rmのうちの一方が、左前輪ホイールシリンダ、及び、右後輪ホイールシリンダに接続され、2つのマスタ室Rmのうちの他方が、右前輪ホイールシリンダ、及び、左後輪ホイールシリンダに接続される。 In the above-described embodiment, front and rear brake systems were used as the two brake systems. Instead, a diagonal type (also referred to as "X type") may be adopted as the two braking systems. In this configuration, one of the two master chambers Rm is connected to the left front wheel cylinder and the right rear wheel cylinder, and the other of the two master chambers Rm is connected to the right front wheel cylinder and the left rear wheel cylinder. Connected to the rear wheel cylinder.
 上述の実施形態では、マスタシリンダCMとして、タンデム型のものが例示された。これに代えて、シングル型のマスタシリンダCMが採用されてもよい。該構成では、セカンダリマスタピストンNSが省略される。そして、1つのマスタ室Rmが、4つのホイールシリンダCWに接続される。該構成では、マスタシリンダCMから、同一の供給圧Pmf、Pmr(=Pm)が出力される。 In the above-described embodiment, a tandem type master cylinder CM is exemplified. Instead of this, a single type master cylinder CM may be adopted. In this configuration, the secondary master piston NS is omitted. One master chamber Rm is connected to four wheel cylinders CW. In this configuration, the same supply pressures Pmf and Pmr (=Pm) are output from the master cylinder CM.
 シングル型のマスタシリンダCMが採用される構成では、マスタ室Rmが前輪ホイールシリンダCWfに接続され、調圧ユニットCAが後輪ホイールシリンダCWrに直接接続されてもよい。該構成では、マスタシリンダCMから、前輪供給圧Pmfが、前輪ホイールシリンダCWfに対して、前輪ホイール圧Pwfとして出力される。一方、調圧ユニットCAから、サーボ圧Puが、後輪ホイールシリンダCWrに対して、後輪供給圧Pmrとして出力される。 In a configuration in which a single master cylinder CM is employed, the master chamber Rm may be connected to the front wheel cylinder CWf, and the pressure regulating unit CA may be directly connected to the rear wheel cylinder CWr. In this configuration, the master cylinder CM outputs the front wheel supply pressure Pmf to the front wheel cylinder CWf as the front wheel pressure Pwf. On the other hand, the servo pressure Pu is output from the pressure regulating unit CA to the rear wheel cylinder CWr as the rear wheel supply pressure Pmr.
 上述の実施形態では、アプライユニットAPにおいて、マスタ室Rmの受圧面積rm(マスタ面積)とサーボ室Ruの受圧面積ru(サーボ面積)とが等しく設定された。マスタ面積rmとサーボ面積ruとは等しくなくてもよい。マスタ面積rmとサーボ面積ruとが異なる構成では、サーボ面積ruとマスタ面積rmとの比率に基づいて、供給圧Pmとサーボ圧Puとの変換演算が可能である(即ち、「Pm・rm=Pu・ru」に基づく換算)。 In the above embodiment, in the apply unit AP, the pressure receiving area rm (master area) of the master chamber Rm and the pressure receiving area ru (servo area) of the servo chamber Ru are set to be equal. The master area rm and the servo area ru do not have to be equal. In a configuration where the master area rm and the servo area ru are different, it is possible to convert the supply pressure Pm and the servo pressure Pu based on the ratio of the servo area ru and the master area rm (i.e., "Pm・rm= Conversion based on "Pu・ru").
<実施形態のまとめ>
 以下、制動制御装置SCの実施形態についてまとめる。制動制御装置SCには、「電気モータMAによって駆動される流体ポンプQAが吐出する循環流KN(上部循環流)を調圧弁UAによって絞ることで供給圧Pmを出力する上部制動ユニットSA」と、「上部制動ユニットSAと複数のホイールシリンダCWとの間に配置され、供給圧Pmを、複数のホイールシリンダCWの夫々に対して個別調整してホイール圧Pwを出力する下部制動ユニットSB」と、が備えられる。
<Summary of embodiments>
The embodiments of the brake control device SC will be summarized below. The brake control device SC includes "an upper brake unit SA that outputs a supply pressure Pm by throttling a circulating flow KN (upper circulating flow) discharged by a fluid pump QA driven by an electric motor MA with a pressure regulating valve UA";"Lower braking unit SB is arranged between upper braking unit SA and a plurality of wheel cylinders CW, and outputs wheel pressure Pw by individually adjusting supply pressure Pm to each of the plurality of wheel cylinders CW", will be provided.
 下部制動ユニットSBでは、ホイール圧Pwを自動的且つ個別に増加する自動加圧制御(トラクション制御、横滑り防止制御の総称)が実行される。この場合には、上部制動ユニットSAでは、自動加圧制御に要求される要求圧Peに基づいて調圧弁UAが制御される。ここで、要求圧Peは、自動加圧制御に必要とされる、各ホイール圧Pwのうちの最大値に対応する目標値である。例えば、複数のホイールシリンダCWの夫々に要求される必要圧Poが演算され、複数の必要圧Poのうちの最大値に基づいて、要求圧Peが決定される。 In the lower braking unit SB, automatic pressurization control (a general term for traction control and skid prevention control) that increases the wheel pressure Pw automatically and individually is executed. In this case, in the upper brake unit SA, the pressure regulating valve UA is controlled based on the required pressure Pe required for automatic pressurization control. Here, the required pressure Pe is a target value corresponding to the maximum value of each wheel pressure Pw required for automatic pressurization control. For example, the required pressure Po required for each of the plurality of wheel cylinders CW is calculated, and the required pressure Pe is determined based on the maximum value of the plurality of required pressures Po.
 上部制動ユニットSAでの調圧弁UAの制御についてまとめる。上部制動ユニットSAでは、要求圧Peに基づいて、調圧弁UAが制御される。詳細には、要求圧Peが制動操作量Baから演算される指示圧Psよりも大きい場合には、供給圧Pmが要求圧Peに近付き、一致するように制御される。制動制御装置SCでは、自動加圧制御の元となる圧力(即ち、要求圧Pe)は、上部制動ユニットSAにて発生される。上部制動ユニットSAの定格出力は、急制動に対応し得るものであるため、自動加圧制御に対しても十分な応答性を有する。上部制動ユニットSAによって、要求圧Peが供給されるので、下部制動ユニットSBが小型化される。 The control of the pressure regulating valve UA in the upper brake unit SA will be summarized. In the upper brake unit SA, the pressure regulating valve UA is controlled based on the required pressure Pe. Specifically, when the required pressure Pe is larger than the command pressure Ps calculated from the braking operation amount Ba, the supply pressure Pm is controlled to approach and match the required pressure Pe. In the brake control device SC, the pressure (that is, the required pressure Pe) that is the source of automatic pressurization control is generated in the upper brake unit SA. Since the rated output of the upper braking unit SA is capable of responding to sudden braking, it has sufficient responsiveness to automatic pressurization control. Since the required pressure Pe is supplied by the upper brake unit SA, the lower brake unit SB is made smaller.
 自動加圧制御が実行される場合には、調圧リザーバRB内に流入した制動液BFをインレット弁VIの上部に戻すために、下部電気モータMBには給電が行われる。しかし、要求圧Peは、上部制動ユニットSAから供給されるため、下部制動ユニットSBにて、更に、供給圧Pmを増加させる必要がない。このため、下部制動ユニットSBでは、制御弁UBへの電力供給は行われない。但し、上部制動ユニットSAが要求圧Peを供給できない場合には、要求圧Peに対する供給圧Pmの不足分を補うように、制御弁UBに給電が行われる。従って、制御弁UBは、要求圧Peと供給圧Pmとの差hPに基づいて制御される。 When automatic pressurization control is executed, power is supplied to the lower electric motor MB in order to return the brake fluid BF that has flowed into the pressure regulating reservoir RB to the upper part of the inlet valve VI. However, since the required pressure Pe is supplied from the upper braking unit SA, there is no need to further increase the supply pressure Pm at the lower braking unit SB. Therefore, in the lower braking unit SB, power is not supplied to the control valve UB. However, when the upper braking unit SA cannot supply the required pressure Pe, power is supplied to the control valve UB so as to compensate for the shortage of the supply pressure Pm with respect to the required pressure Pe. Therefore, the control valve UB is controlled based on the difference hP between the required pressure Pe and the supply pressure Pm.
 上部制動ユニットSAでの電気モータMAの制御についてまとめる。上部制動ユニットSAでは、流体ポンプQA、及び、調圧弁UAを含む、制動液BFの循環流KNを発生させるために、電気モータMAが駆動される。例えば、電気モータMAは、予め設定された所定回転数naの一定速度で駆動される。或いは、上部制動ユニットSAでは、要求圧Peを達成するための要求流量Qeに基づいて電気モータMAが制御される。具体的には、上記の必要圧Poに基づいて、その増加勾配kP(必要圧Poの単位時間当たりの増加量)が演算され、増加勾配kPに基づいて要求流量Qeが演算される。例えば、各ホイールシリンダCWにおける増加勾配kPの総和ΣkPに基づいて、要求流量Qeが決定される。上部制動ユニットSAでは、要求流量Qeに基づいて目標回転数Ntが演算される。そして、電気モータMAの実回転数Naが、目標回転数Ntに基づいて制御される。電気モータMAは、自動加圧制御に要求される要求流量Qeに基づいて、必要最低限の回転数で制御される。このため、上部制動ユニットSAの消費電力が抑制される。 The control of electric motor MA in upper braking unit SA will be summarized. In the upper brake unit SA, an electric motor MA is driven to generate a circulating flow KN of the brake fluid BF, which includes the fluid pump QA and the pressure regulating valve UA. For example, the electric motor MA is driven at a constant speed of a predetermined rotation speed na. Alternatively, in the upper braking unit SA, the electric motor MA is controlled based on the required flow rate Qe for achieving the required pressure Pe. Specifically, based on the above-mentioned required pressure Po, the increasing slope kP (the amount of increase per unit time of the required pressure Po) is calculated, and the required flow rate Qe is calculated based on the increasing slope kP. For example, the required flow rate Qe is determined based on the sum ΣkP of the increasing gradients kP in each wheel cylinder CW. In the upper braking unit SA, a target rotational speed Nt is calculated based on the required flow rate Qe. Then, the actual rotation speed Na of the electric motor MA is controlled based on the target rotation speed Nt. The electric motor MA is controlled at the minimum necessary rotation speed based on the required flow rate Qe required for automatic pressurization control. Therefore, the power consumption of the upper braking unit SA is suppressed.
 制動制御装置SCで自動加圧制御が実行される場合には、自動加圧制御の要求圧Peが上部制動ユニットSAにて発生され、各ホイール圧Pwは、要求圧Pe以下で、下部制動ユニットSB(特に、インレット弁VI、及び、アウトレット弁VO)によって個別に調整される。このとき、上部制動ユニットSAでは、自動加圧制御に必要な分だけの流量(即ち、要求流量Qe)で、要求圧Peが発生される。例えば、制動操作部材BPが操作されておらず、制動操作量Baが「0」であり、且つ、自動加圧制御が実行されていない場合には、上部、下部制動ユニットSA、SBの両方の作動は停止され、ホイール圧Pwは発生されていない。この状態で、下部制動ユニットSBにて自動加圧制御が実行される場合には、下部制動ユニットSBが作動されるだけではなく、要求圧Peを供給するために上部制動ユニットSAも作動される。制動制御装置SCでは、各種の役割が、上部、下部制動ユニットSA、SBにて分担されるので、装置全体での小型化、省電力化が図られる。
 
When the automatic pressurization control is executed by the brake control device SC, the required pressure Pe for the automatic pressurization control is generated in the upper braking unit SA, and each wheel pressure Pw is equal to or lower than the required pressure Pe, and the required pressure Pe for the automatic pressurization control is generated in the lower braking unit. SB (in particular, inlet valve VI and outlet valve VO) are individually regulated. At this time, in the upper braking unit SA, the required pressure Pe is generated at a flow rate necessary for automatic pressurization control (ie, required flow rate Qe). For example, when the brake operation member BP is not operated, the brake operation amount Ba is "0", and the automatic pressurization control is not executed, both the upper and lower brake units SA and SB are Operation is stopped and wheel pressure Pw is not generated. In this state, when automatic pressurization control is executed in the lower braking unit SB, not only the lower braking unit SB is operated, but also the upper braking unit SA is operated to supply the required pressure Pe. . In the brake control device SC, various roles are shared between the upper and lower brake units SA and SB, so that the entire device can be downsized and save power.

Claims (4)

  1.  電気モータによって駆動される流体ポンプが吐出する循環流を調圧弁によって絞ることで供給圧を出力する上部制動ユニットと、
     前記上部制動ユニットと複数のホイールシリンダとの間に配置され、前記供給圧を、前記複数のホイールシリンダの夫々に対して個別調整してホイール圧を出力する下部制動ユニットと、
     を備える車両の制動制御装置において、
     前記上部制動ユニットは、前記下部制動ユニットが前記ホイール圧を自動的且つ個別に増加する自動加圧制御を実行する場合には、前記自動加圧制御に要求される要求圧に基づいて前記調圧弁を制御する、車両の制動制御装置。
    an upper braking unit that outputs supply pressure by throttling a circulating flow discharged by a fluid pump driven by an electric motor using a pressure regulating valve;
    a lower braking unit that is disposed between the upper braking unit and the plurality of wheel cylinders, and outputs wheel pressure by individually adjusting the supply pressure to each of the plurality of wheel cylinders;
    In a braking control device for a vehicle comprising:
    When the lower braking unit executes automatic pressurization control that increases the wheel pressure automatically and individually, the upper braking unit controls the pressure regulating valve based on the required pressure required for the automatic pressurization control. A vehicle braking control device that controls the
  2.  請求項1に記載される車両の制動制御装置において、
     前記要求圧は、前記複数のホイールシリンダの夫々に要求される必要圧のうちの最大値に基づいて決定される、車両の制動制御装置。
    The braking control device for a vehicle according to claim 1,
    A braking control device for a vehicle, wherein the required pressure is determined based on a maximum value of required pressures required for each of the plurality of wheel cylinders.
  3.  請求項1又は請求項2に記載される車両の制動制御装置において、
     前記上部制動ユニットは、前記要求圧を達成するための要求流量に基づいて前記電気モータを制御する、車両の制動制御装置。
    In the vehicle braking control device according to claim 1 or 2,
    The upper brake unit is a brake control device for a vehicle that controls the electric motor based on a required flow rate to achieve the required pressure.
  4.  請求項3に記載される車両の制動制御装置において、
     前記要求流量は、前記複数のホイールシリンダの夫々に要求される必要圧の増加勾配に基づいて決定される、車両の制動制御装置。
     
    In the vehicle braking control device according to claim 3,
    A braking control device for a vehicle, wherein the required flow rate is determined based on an increasing gradient of required pressure required for each of the plurality of wheel cylinders.
PCT/JP2023/009434 2022-03-10 2023-03-10 Braking control device for vehicles WO2023171813A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-036961 2022-03-10
JP2022036961A JP2023131936A (en) 2022-03-10 2022-03-10 Braking control device of vehicle

Publications (1)

Publication Number Publication Date
WO2023171813A1 true WO2023171813A1 (en) 2023-09-14

Family

ID=87935466

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009434 WO2023171813A1 (en) 2022-03-10 2023-03-10 Braking control device for vehicles

Country Status (2)

Country Link
JP (1) JP2023131936A (en)
WO (1) WO2023171813A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192767A (en) * 2011-03-15 2012-10-11 Toyota Motor Corp Hydraulic brake system for vehicle
JP2014184942A (en) * 2013-03-25 2014-10-02 Toyota Motor Corp Braking force control device
JP2020032834A (en) * 2018-08-29 2020-03-05 株式会社アドヴィックス Brake control device of vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012192767A (en) * 2011-03-15 2012-10-11 Toyota Motor Corp Hydraulic brake system for vehicle
JP2014184942A (en) * 2013-03-25 2014-10-02 Toyota Motor Corp Braking force control device
JP2020032834A (en) * 2018-08-29 2020-03-05 株式会社アドヴィックス Brake control device of vehicle

Also Published As

Publication number Publication date
JP2023131936A (en) 2023-09-22

Similar Documents

Publication Publication Date Title
JP7040316B2 (en) Vehicle braking control device
WO2020004240A1 (en) Brake control device for vehicle
WO2019156035A1 (en) Braking control device for vehicle
WO2020162433A1 (en) Automatic braking device of vehicle
WO2023171813A1 (en) Braking control device for vehicles
CN112313124A (en) Vehicle brake control device
WO2023171812A1 (en) Braking control device for vehicle
WO2023171810A1 (en) Braking control device for vehicle
WO2023171814A1 (en) Braking control device for vehicles
WO2023171811A1 (en) Braking control device for vehicles
WO2023120652A1 (en) Braking control device for vehicle
WO2023120653A1 (en) Braking control device for vehicles
WO2023120650A1 (en) Braking control device for vehicle
WO2023120651A1 (en) Braking control device for vehicle
JP2024033554A (en) Vehicle braking control device
JP2020111115A (en) Automatic braking device of vehicle
JP2023093198A (en) Brake control device for vehicle
JP7091797B2 (en) Vehicle braking control device
WO2023157874A1 (en) Vehicle braking control device
JP7070001B2 (en) Vehicle braking control device
WO2024111655A1 (en) Braking control device for vehicle
WO2021020369A1 (en) Braking control device for vehicle
JP2024063590A (en) Vehicle brake control device
JP2023093200A (en) Vehicle brake control device
JP2024063589A (en) Vehicle brake control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766989

Country of ref document: EP

Kind code of ref document: A1