WO2023171714A1 - Pharmaceutical composition and dendritic cell - Google Patents

Pharmaceutical composition and dendritic cell Download PDF

Info

Publication number
WO2023171714A1
WO2023171714A1 PCT/JP2023/008865 JP2023008865W WO2023171714A1 WO 2023171714 A1 WO2023171714 A1 WO 2023171714A1 JP 2023008865 W JP2023008865 W JP 2023008865W WO 2023171714 A1 WO2023171714 A1 WO 2023171714A1
Authority
WO
WIPO (PCT)
Prior art keywords
mice
cells
antibody
lung
hdm
Prior art date
Application number
PCT/JP2023/008865
Other languages
French (fr)
Japanese (ja)
Inventor
勇三 鈴木
祐也 青野
隆文 須田
Original Assignee
国立大学法人浜松医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人浜松医科大学 filed Critical 国立大学法人浜松医科大学
Publication of WO2023171714A1 publication Critical patent/WO2023171714A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/15Cells of the myeloid line, e.g. granulocytes, basophils, eosinophils, neutrophils, leucocytes, monocytes, macrophages or mast cells; Myeloid precursor cells; Antigen-presenting cells, e.g. dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues

Definitions

  • the present disclosure relates to pharmaceutical compositions and dendritic cells.
  • Non-Patent Documents 1-4 The prevalence of bronchial asthma is approximately 10% and is still on the rise. Bronchial asthma is defined by airway hyperresponsiveness and eosinophilic airway inflammation.
  • innate immunity and acquired immunity interact, and Th2 type immune responses are activated.
  • type 2 innate lymphocytes ILC2s
  • eosinophil inflammation In a pathway mediated by innate immunity, type 2 innate lymphocytes (ILC2s) strongly induce eosinophil inflammation.
  • ILC2s type 2 innate lymphocytes
  • DCs dendritic cells
  • ILC2s and DCs which are located upstream of the immune cascade in the pathology of bronchial asthma, and discover new therapeutic targets common to asthma patients of various phenotypes, as well as new treatments targeting them. It was hoped that the law would be developed.
  • CD109 is a GPI-anchored glycoprotein present on the cell surface, and belongs to the ⁇ 2 macroglobulin superfamily based on its amino acid sequence (Non-Patent Document 7). CD109 suppresses and controls signals mediated by TGF- ⁇ by binding to the TGF- ⁇ receptor (Non-Patent Document 8). CD109 is a molecule that has not received much attention so far, and its action and mechanism of action have not been fully elucidated. For example, the relationship between the CD109 molecule and allergic inflammation was unknown. In view of this background, there are expectations for the discovery of unknown functions and the possibility of CD109 as a therapeutic target.
  • the inventors conducted intensive studies on the significance of the CD109 molecule in allergic inflammation, particularly bronchial asthma, using CD109 gene-modified mice.
  • One aspect of the present disclosure is to provide a novel therapeutic agent for bronchial asthma that focuses on CD109.
  • One aspect of the present disclosure is a pharmaceutical composition containing as an active ingredient a drug that improves airway hyperresponsiveness and/or eosinophilic airway inflammation caused by CD109.
  • CD109 is induced on dendritic cells cCD2, B cells, or type 2 innate lymphocytes.
  • improvement of airway hyperresponsiveness and/or eosinophilic airway inflammation is due to suppression of production of IL-4, IL-5, IL-13, and/or IL-33. In one aspect of the present disclosure, the improvement of airway hyperresponsiveness and/or eosinophilic airway inflammation is due to activation of RUNX3 and/or phosphorylation of Smad2/3.
  • the agent is an anti-CD109 antibody.
  • the anti-CD109 antibody is an anti-mouse monoclonal antibody.
  • dendritic cell cDC2s derived from a subject deficient in CD109 which is used to improve airway hyperresponsiveness and/or eosinophilic airway inflammation.
  • dendritic cells are used for transfer.
  • the dendritic cells are anti-inflammatory dendritic cells.
  • the improvement of airway hyperresponsiveness and/or eosinophilic airway inflammation is caused by suppressing the production of IL-6, IL-13, IL-17A, TNF, and/or IFN- ⁇ . do.
  • the improvement of airway hyperresponsiveness and/or eosinophilic airway inflammation is due to activation of RUNX3 and/or phosphorylation of Smad2/3.
  • the dendritic cells have CCL24, CCL26, IL-4, IL-5, IL-13, and/or IL- 33 and increased expression of IL-18, IL-12, and/or CXCL9.
  • the present disclosure reveals the importance of CD109 for asthma and provides new asthma treatment strategies that include drugs targeting CD109.
  • the present disclosure contributes to the realization of treatments for airway hyperresponsiveness and eosinophilic airway inflammation.
  • the present disclosure contributes to the realization of treatments for airway hyperresponsiveness and eosinophilic airway inflammation that are superior to existing drugs.
  • FIG. 1 Shows the experimental timeline of Example 1. Wild type (WT) mice and CD109 ⁇ / ⁇ mice were intranasally administered with tick antigen (HDM).
  • the horizontal axis of each graph indicates the concentration (mg/ml) of methacholine administered.
  • Cytokine (IL-4, IL-5, IL-13, IL-25, IL-33, TSLP) levels in lung homogenates in WT HDM, CD109 ⁇ / ⁇ HDM, WT PBS, and CD109 ⁇ / ⁇ PBS (each n 6).
  • the vertical axis of each graph shows the relative proportion of each cytokine standardized with GAPDH.
  • each data is shown as a representative example of at least 5 independent experiments.
  • the error bars of the bar graphs in each figure represent the mean value ⁇ SEM.
  • the P value was calculated by Student's t test and one-way analysis of variance after Turkey's multiple comparison test. * indicates P ⁇ 0.05, ** indicates P ⁇ 0.01, *** indicates P ⁇ 0.001.
  • B WT mice were sensitized as shown in FIG. 1(A), and surface cell markers in CD109+ and CD109 ⁇ lung DCs were analyzed. The gating strategy for CD109+ and CD109- lung DCs is shown.
  • FIG. 1 Shows the experimental timeline of Example 3. WT mice and CD109 ⁇ / ⁇ mice were sensitized with OVA+Alum on days 1 and 8, and intranasally challenged with OVA for 3 consecutive days on days 18 to 20. Subsequently, lung DCs subsets were isolated. Sorted lung DCs subsets were co-cultured with na ⁇ ve CD4+ T cells isolated from OT-II mice in the presence of OVA 323-339 peptide.
  • BMDCs derived from WT mice and CD109 ⁇ / ⁇ mice were stimulated with tick antigen (HDM) for 6 hours and administered intravenously to WT mice. Then, BMDCs cultured and stimulated with HDM in the same manner were intranasally administered on the 8th and 13th day.
  • B Mice in which BMDCs were collected and cultured from WT mice and BMDCs sensitized with HDM were administered (WT BMDCs HDM), BMDCs were collected and cultured from CD109 ⁇ / ⁇ mice, and BMDCs sensitized with HDM were administered.
  • BMDCs were collected and cultured from mice administered with PBS (WT BMDCs PBS), and WT mice as a control group (CD109 ⁇ / ⁇ BMDCs HDM), and BMDCs were collected and cultured from CD109 ⁇ / ⁇ mice and treated with PBS.
  • the horizontal axis of each graph indicates the concentration (mg/ml) of methacholine administered.
  • the vertical axis of the graph on the left shows the total cell number in BAL, and the vertical axis of the graph on the right shows the number of eosinophils (Eos) in BAL.
  • WT mice were immunized as shown in Figure 1A, and anti-CD109 monoclonal antibody and IgG isotype were intranasally administered the day before HDM challenge.
  • B Pulmonary airway resistance of WT mice administered with anti-CD109 monoclonal antibody (HDM Anti-CD109 Ab), WT mice administered with IgG isotype (HDM Isotype IgG), and WT mice administered with PBS as a control group (PBS).
  • the vertical axis of the graph on the left shows the total cell number in BAL, and the vertical axis of the graph on the right shows the number of eosinophils (Eos) in BAL.
  • each data is shown as a representative example of two independent experiments.
  • the error bars of the bar graphs in each figure represent the mean value ⁇ SEM.
  • the P value was calculated by Student's t test and one-way analysis of variance after Turkey's multiple comparison test. * indicates P ⁇ 0.05, ** indicates P ⁇ 0.01, *** indicates P ⁇ 0.001.
  • the vertical axis of the graph on the left shows the total number of cells in the BAL, and the vertical axis of the graph on the right shows the number of eosinophils in the BAL.
  • the horizontal axis of each graph indicates the concentration (mg/ml) of methacholine administered.
  • the error bars of the bar graphs in each figure represent the mean value ⁇ SEM.
  • the P value was calculated by Student's t test and one-way analysis of variance after Turkey's multiple comparison test. * indicates P ⁇ 0.05, ** indicates P ⁇ 0.01, *** indicates P ⁇ 0.001.
  • Airway hyperresponsiveness and eosinophilic airway inflammation are characterized as the underlying pathology of bronchial asthma.
  • Airway hyperresponsiveness is a condition in which the airways and trachea are more sensitive than in a normal person, making bronchoconstriction more likely.
  • Airway hyperresponsiveness is characterized by increased pulmonary airway resistance and decreased pulmonary dynamic compliance. In other words, the state of airway hyperresponsiveness can be evaluated by measuring these parameters.
  • lung dynamic compliance indicates changes in lung volume due to constant pressure changes.
  • a large lung dynamic compliance indicates a large change in lung volume in response to a unit pressure change, indicating that the lungs are easy to inflate.
  • eosinophilic airway inflammation is a condition in which the number of eosinophils in the body increases, causing inflammation in the airways and trachea.
  • Eosinophilic airway inflammation can be evaluated by measuring changes in the number of eosinophils in vivo. For example, this evaluation can be performed by performing bronchoalveolar lavage (BAL), which involves injecting and collecting physiological saline into a part of the lung, and measuring the number of eosinophils in the collected BAL. can.
  • BAL bronchoalveolar lavage
  • histological changes associated with airway hyperresponsiveness and eosinophilic airway inflammation include increased inflammation around the airways, PAS-positive cells, bronchial wall thickness, and/or peribronchial cell infiltration.
  • airway hyperresponsiveness and eosinophilic airway inflammation are regulated by CD109.
  • CD109 is a glycosylphosphatidylinositol (GPI)-anchored glycoprotein and a cell surface antigen belonging to the ⁇ 2-macroglobulin/C3, C4, C5 family of thioester-containing proteins (Lin, M. et al. Blood 99, 1683-1691, (2002). and Mii, S. et al. Pathol Int 69, 249-259, (2019).).
  • the main function of CD109 is to bind to the transforming growth factor- ⁇ (TGF- ⁇ ) receptor, TGF- ⁇ , activin receptor-like kinase 1 (ALK1), and 78-kDa glucose-related protein (GRP78).
  • TGF- ⁇ transforming growth factor- ⁇
  • ALK1 activin receptor-like kinase 1
  • GFP78 78-kDa glucose-related protein
  • TGF- ⁇ It is known to suppress signals mediated by TGF- ⁇ (Bizet, A.A. et al. Biochim Biophys Acta 1813, 742-753, (2011)., Li, C. et al. Biochem J 473, 537-547, (2016)., Vorstenbosch, J. et al. J Invest Dermatol 137, 641-649, d (2017). , and Tsai, Y. L. et al. Proceedings of the National Academy of Sciences of the United States of America 115, E4245-e4254, (2016). ).
  • a drug that improves airway hyperresponsiveness and/or eosinophilic airway inflammation caused by CD109 refers to a drug that can weaken or eliminate airway hyperresponsiveness and/or eosinophilic airway inflammation caused by CD109. means. Typically, it is a CD109 inhibitor.
  • CD109 inhibitors include siRNA molecules such as CD109 dsRNA or shRNA, CD109 antisense, anti-CD109 antibodies, or aptamers for CD109. Preferably it is an anti-CD109 antibody.
  • the term "antibody” refers to the ability to specifically bind to a target such as a carbohydrate, polynucleotide, lipid, or antibody through at least one antigen recognition site located in the variable region of an immunoglobulin molecule. It is an immunoglobulin molecule.
  • antibodies include whole polyclonal or monoclonal antibodies as well as fragments thereof. It is known that the variable regions (particularly CDRs) of antibodies confer binding properties, and it is widely known to those skilled in the art that even antibody fragments that are not complete antibodies can utilize their binding properties.
  • a "fragment” or “antigen-binding fragment” of an antibody is a protein or peptide that includes a part (partial fragment) of an antibody, and is a protein or peptide that has an effect (immunoreactivity/binding ability) on the antigen of the antibody.
  • immunoreactive fragments include, for example, F(ab') 2 , Fab', Fab, Fab 3 , single chain Fv (hereinafter referred to as "scFv"), (tandem) bispecific single chain Fv ( sc(Fv) 2 ), single chain triple body, nanobody, divalent VHH, pentavalent VHH, minibody, (double chain) diabody, tandem diabody, bispecific tribody, bispecific bibody, dual affinity body Targeting molecule (DART), triabody (or tribody), tetrabody (or [sc(Fv) 2 ] 2 , or (scFv-SA) 4 ), disulfide-bonded Fv (hereinafter referred to as "dsFv”), compact IgG, Heavy chain antibodies or polymers thereof can be mentioned.
  • scFv single chain Fv
  • dsFv disulfide-bonded Fv
  • immunoreactive fragments may be monospecific, bispecific, trispecific, or multispecific. Fragments of antibodies may also include fragments that are at least about 10 amino acids, at least about 25 amino acids, at least about 50 amino acids, at least about 75 amino acids, or at least about 100 amino acids in length.
  • Antibodies include any class of antibody, such as IgG, IgA, or IgM (or subclasses thereof), and need not be of any particular class.
  • immunoglobulins are divided into different classes. There are five major immunoglobulin classes: IgA, IgD, IgE, IgG, and IgM, and some of these are further subdivided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA1, and IgA2. sell.
  • the corresponding heavy chain constant domains of different classes of immunoglobulins are called ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ , respectively.
  • the subunit structures and three-dimensional structures of different classes of immunoglobulins are well known.
  • the antibody may be an IgG antibody, especially an IgG1 or IgG2 antibody, and may also be a human IgG antibody.
  • the antibodies in the present disclosure can be monoclonal antibodies or polyclonal antibodies, and are preferably monoclonal antibodies.
  • “monoclonal antibody” refers to an antibody obtained from a cell population that produces substantially homogeneous antibodies. That is, the individual antibodies contained in the cell population are identical except for some possible natural mutants. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to typical polyclonal antibodies, which include different antigens that target different determinants (epitopes), each monoclonal antibody targets a single determinant on the antigen.
  • the modifier "monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibody-producing cells, and is not to be construed as requiring production of the antibody by any particular method. It should be noted that monoclonal antibodies used in accordance with the present disclosure may be prepared by recombinant DNA methods, such as those described in US Pat. No. 4,816,567. Monoclonal antibodies used in accordance with the present disclosure may also be used, for example, by McCafferty. et al. Nature, 348:552-554 (1990). Monoclonal antibodies used in accordance with the present disclosure may also be used in accordance with the present disclosure. KOHLER&C. MILSTEIN. It may be prepared with reference to the hybridoma method described in Nature, 256:495-497 (1975).
  • the antibodies in this disclosure can be chimeric antibodies, humanized antibodies, fully human antibodies, or animalized antibodies adapted to any non-human animal to be treated.
  • animals other than humans to be treated include mice, rats, hamsters, guinea pigs, rabbits, dogs, monkeys, sheep, goats, camels, chickens, ducks, etc., and preferably mice and rats. Or a rabbit.
  • the antibody is a human chimeric antibody, see, for example, Morrison, S. et al. L. Proc. Natl. Acad. Sci.
  • the antibody can be produced with reference to USA, 81, 6851-6855 (1984).
  • the antibody of the present disclosure is a humanized antibody, for example, L. Rieohmannet al. Nature, 332, 323-7 (1988); Kettleborough, C. A. et al. Protein Eng, 4, 773-783 (1991); and Clark M. Immunol.
  • the antibody can be produced with reference to Today, 21, 397-402
  • the "drug that improves airway hyperresponsiveness and/or eosinophilic airway inflammation caused by CD109" in the present disclosure may be an anti-CD109 monoclonal antibody, and specifically, an anti-CD109 mouse monoclonal antibody.
  • Anti-CD109 mouse monoclonal antibodies can be prepared by, for example, producing hybridomas by cell fusion of antibody-producing cells obtained from non-human animals immunized with antigens and myeloma cells, and then producing the desired antibody (i.e., anti-CD109 mouse monoclonal antibodies) from the resulting hybridomas. ) can be obtained by selecting hybridomas that produce antibodies and allowing the selected hybridomas to produce antibodies.
  • an antigen is administered to a non-human animal.
  • Non-human animals include, for example, mice, rats, hamsters, guinea pigs, rabbits, dogs, monkeys, sheep, goats, camels, chickens, etc., and are preferably mice, rats, or rabbits.
  • the immunogen is not particularly limited as long as it can produce the anti-CD109 antibody of the present disclosure in non-human animals, and may be polypeptides or peptides including proteins, protein fragments, fusion proteins, etc. .
  • the immunogen may include an epitope of CD109.
  • the antigen may be administered alone or together with an adjuvant, carrier, or diluent. Any adjuvant can be used as the adjuvant, such as complete Freund's adjuvant, incomplete Freund's adjuvant, or aluminum hydroxide.
  • the route of administration of the immunogen includes any route such as intraperitoneal administration, intravenous administration, nasal administration, subcutaneous administration, intradermal administration, transpulmonary administration, and intrarectal administration.
  • the number of immunizations (antigen administration) to non-human animals may be single or multiple times (e.g., 2, 3, 4, or 5 or more times), but it is preferable to immunize the non-human animal multiple times. .
  • the administration may be repeated, for example, once every 1 to 5 or 6 weeks.
  • the administration route may be the same, or two or more administration routes may be combined.
  • the amount of immunogen administered in one immunization can be appropriately determined depending on the non-human animal used, and may be, for example, 1-1000 ⁇ g per non-human animal.
  • antibody-producing cells are collected from the non-human animal.
  • Examples of antibody-producing cells include splenocytes, lymph node cells, peripheral lymphocytes, and the like.
  • the time to collect antibody-producing cells can be set arbitrarily, and may be, for example, 1 to 7 days after the final administration of the immunogen.
  • the antibody-producing cells and myeloma cells are fused to create a hybridoma.
  • cell fusion methods include a method using polyethylene glycol (PEG), an electric pulse method, and the like.
  • Myeloma cells that can be used for cell fusion include, for example, P3-X63Ag8-U1 (P3-U1), SP2/0-Ag14 (SP2/0), P3-X63-Ag8653 (653), P3-X63-Ag8 ( X63), P3/NS1/1-Ag4-1 (NS1), and the like.
  • the antibody may be obtained by screening for a specific antibody using the Dot plot method, which is a general protein quantitative method, and extracting and purifying the protein from a clone with the lowest reaction threshold.
  • the Dot plot method is a method in which proteins are immobilized on a membrane such as a nitrocellulose membrane without being separated by electrophoresis, and the amount of protein is specifically quantified using an enzyme-labeled antibody. may also be used to screen the binding ability of antibodies.
  • a target antigen-specific monoclonal antibody ie, anti-CD109 mouse monoclonal antibody
  • a target antigen-specific monoclonal antibody ie, anti-CD109 mouse monoclonal antibody
  • the anti-CD109 mouse monoclonal antibody may be a monoclonal antibody directed against the amino acid sequence "RKYQPNIDVQESIH” (SEQ ID NO: 1), which is one of the epitopes of CD109.
  • the antibody includes one or more constant regions.
  • the constant region can be a heavy chain constant region and/or a light chain constant region.
  • the antibody may comprise a constant region that has at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, or 100% identity to a human constant region. good.
  • the antibody may include an Fc region, eg, a human Fc region.
  • the antibody may comprise an Fc region that has at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, or 100% identity to a human Fc region. good.
  • Antibodies used in this disclosure specifically bind to target molecules.
  • the binding affinity of the antibody used in the present disclosure to the antigen is less than 1 ⁇ 10 ⁇ 5 M, less than 5 ⁇ 10 ⁇ 5 M, less than 1 ⁇ 10 ⁇ 6 M, less than 5 ⁇ 10 ⁇ 7 M, 1 ⁇ Less than 10 -7 M, less than 5 x 10 -8 M, less than 1 x 10 -8 M, less than 5 x 10 -9 M, less than 1 x 10 -9 M, less than 5 x 10 -10 M, 1 x 10 - Affinities having dissociation constants (ie, Kd) of less than 10 M, less than 5 ⁇ 10 ⁇ 11 M, or less than 1 ⁇ 10 ⁇ 11 M are included.
  • the dissociation constant is also 1 ⁇ 10 ⁇ 15 M or more, 5 ⁇ 10 ⁇ 15 M or more, 1 ⁇ 10 ⁇ 14 M or more, 5 ⁇ 10 ⁇ 14 M or more, 1 ⁇ 10 ⁇ 13 M or more, 5 ⁇ 10 ⁇ 13 M or more, 1 x 10 -12 M or more, 5 x 10 -12 M or more, 1 x 10 -11 M or more, 5 x 10 -11 M or more, 1 x 10 -10 M or more, or 5 x 10 -10 M It may be more than that. Methods for determining affinity are known in the art.
  • binding affinity may be determined using a BIAcore biosensor, KinExA biosensor, scintillation proximity assay, ELISA, ORIGEN immunoassay (IGEN), fluorescence quenching, fluorescence transfer, and/or yeast display. . Affinity may be screened using appropriate bioassays.
  • the antibodies described in this disclosure may be modified; examples of such modifications include functionally equivalent antibodies and enhanced or attenuated activities that do not significantly affect the properties of the antibody. Examples include mutants with Modification of antibodies is a routine procedure in the art and need not be described in detail in this disclosure. Examples of modifications include conservative substitutions of amino acid residues, insertions, additions, or deletions of one or more amino acids that do not significantly impair functional activity, or the use of chemical analogs.
  • a conservative substitution is the replacement of an amino acid residue with an amino acid residue with a similar side chain.
  • Families of amino acid residues with similar side chains include: amino acids with basic side chains (e.g., lysine, arginine, histidine), amino acids with acidic side chains (e.g., aspartic acid, glutamic acid). ), amino acids with uncharged polar side chains (e.g. glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), amino acids with nonpolar side chains (e.g.
  • Insertions or additions of amino acid sequences include additions of amino acids to the amino and/or carboxyl termini, and insertions of single or multiple amino acid residues within the sequence.
  • Examples of terminal insertions include antibodies with an N-terminal methionyl residue or antibodies fused to epitope tags.
  • Other insertional variants of antibody molecules include fusions of enzymes or antibodies to the N-terminus or C-terminus of the antibody that increase the serum half-life of the antibody.
  • Sites where substitutional mutagenesis is most effective include CDRs, but changes in FRs are also contemplated.
  • Non-conservative substitutions are made by exchanging a member of one of these classes with another. More conservative substitutions involve exchanging one member of a class with another member of the same class.
  • Amino acid substitutions in the variable region can alter binding affinity and/or specificity. For example, no more than 1-5 conservative amino acid substitutions are made within a CDR domain.
  • the antibodies described in this disclosure also include glycosylated and non-glycosylated antibodies, as well as antibodies with other post-translational modifications, such as glycosylation on different sugars, acetylation, and phosphorylation.
  • Antibodies are glycosylated at conserved positions in their constant regions.
  • the control of airway hyperresponsiveness and/or eosinophilic airway inflammation by CD109 may involve the production of cytokines secreted by Th2 cells (Th2 cytokines). That is, in the present disclosure, improvement of airway hyperresponsiveness and/or eosinophilic airway inflammation may be due to suppression of production of cytokines secreted by Th2 cells (Th2 cytokines). Examples of Th2 cytokines include IL-4, IL-5, IL-13, IL-33, and the like.
  • improvement of airway hyperresponsiveness and/or eosinophilic airway inflammation may be due to activation of RUNX3.
  • RUNX3 is a protein belonging to the Runt family of transcription factors. RUNX3 is known to be conjugated with Smad2/3 and involved in TGF- ⁇ . Therefore, in the present disclosure, improvement of airway hyperresponsiveness and/or eosinophilic airway inflammation may be due to phosphorylation of Smad2/3.
  • the pharmaceutical composition of the present disclosure may have an effect of activating RUNX3 and an effect of phosphorylating Smad2/3. Furthermore, the pharmaceutical composition of the present disclosure may contain pharmaceutically acceptable additives as necessary.
  • a "pharmaceutically acceptable excipient" is one that, when combined with an active ingredient, allows the active ingredient to remain biologically active, is non-reactive with the subject's immune system when delivered, and Contains any material that is non-toxic to the body. Examples include, but are not limited to, all standard pharmaceutical carriers such as phosphate buffered saline, water, emulsions such as oil/water emulsions, and wetting agents of various types.
  • a preferred diluent for nebulized or parenteral administration is phosphate buffered saline or saline (0.9%).
  • Targets for administration include mammals such as humans, rats, mice, cows, horses, dogs, cats, pigs, and sheep, and preferably humans.
  • the pharmaceutical composition of the present disclosure may be in any oral or parenteral formulation as long as it can be administered to a patient. Examples of compositions for parenteral administration include injections, nasal drops, and the like. Preferably, it is a nasal spray.
  • the dosage form of the pharmaceutical composition of the present disclosure can include, for example, a liquid preparation.
  • Effective doses and schedules for administering the pharmaceutical compositions of the present disclosure can be determined empirically, and methods for such determination are within the common general knowledge in the art.
  • the dose of the pharmaceutical composition of the present disclosure to be administered will vary depending on, for example, the mammal receiving the pharmaceutical composition of the present disclosure, the route of administration, the specific type of drug used, etc. You will understand that.
  • a typical daily dosage of a pharmaceutical composition of the present disclosure may range, for example, from about 1 ⁇ g/kg body weight to 100 mg/kg body weight or more per day.
  • any of the following dosages may be used: at least about 50 mg/kg body weight; at least about 10 mg/kg body weight; at least about 3 mg/kg body weight; at least about 1 mg/kg body weight; at least about 750 ⁇ g/kg body weight; At least about 500 ⁇ g/kg body weight; At least about 250 ⁇ g/kg body weight; At least about 100 ⁇ g/kg body weight; At least about 50 ⁇ g/kg body weight; At least about 10 ⁇ g/kg body weight; At least about 1 ⁇ g/kg body weight, or more. amount is administered.
  • one aspect of the present disclosure relates to dendritic cells derived from a subject deficient in CD109, which are used to improve airway hyperresponsiveness and/or eosinophilic airway inflammation.
  • Dendritic cells of the present disclosure may be derived from various tissues (eg, lung, bone marrow, etc.).
  • the subject may be a human, a rat, a mouse, or other mammal.
  • dendritic cells are classified into DC1s and DC2s as standard subsets. These are also described as classical dendritic cells (ie, cDC1s and cDC2s).
  • CD109 is selectively induced in dendritic cells (cDC2s) by allergen exposure. Note that CD109 is selectively induced in type 2 innate lymphocytes and B cells in addition to cDC2s by exposure to allergens.
  • cDCs2a are a subset of the anti-inflammatory system with high expression of RUNX3 and T-bet
  • cDCs2b are a subset of the inflammatory protective system with high expression of ROR ⁇ t. Since cDC2s derived from subjects deficient in CD109 showed an expression pattern similar to that of cDCs2a, cDC2s derived from subjects deficient in CD109 were considered to be a subset of the anti-inflammatory system.
  • cDC2s derived from subjects deficient in CD109 have decreased expression of eotaxin and Th2-related cytokines, and Th1 Increased expression of relevant cytokines is obtained.
  • eotaxin include CCL24 and CCL26.
  • Th2 include IL-4, IL-5, IL-13, and IL-33.
  • Th1-related cytokines include IL-18, IL-12, and CXCL9.
  • cytokines are induced by co-expressing cDC2s with naive T cells.
  • examples of such cytokines include IL-6, IL-13, IL-17A, TNF, and IFN- ⁇ .
  • cDC2s derived from a subject deficient in CD109 exhibit reduced expression of the cytokine, for example, compared to cDC2s derived from a subject not deficient in CD109.
  • the dendritic cells of the present disclosure may be used for various purposes.
  • dendritic cells eg, cDC2s
  • dendritic cells eg, cDC2s
  • cDC2s may be included in the drug as an active ingredient.
  • mice used in the experiment Female C57BL/6 mice and BALB/c mice (8-10 weeks old) were purchased from Japan SLC Co., Ltd. (Shizuoka, Japan), and OVA-specific T cell receptor (TCR) ) Transgenic mice (OT-II) were purchased from Kumamoto University Animal Resources Development Research Institute (Kumamoto, Japan). CD109 ⁇ / ⁇ mice lacking CD109 were generated according to a previous report (Mii, S. et al. Am J Pathol 181, 1180-1189, (2012).). CD109 ⁇ / ⁇ mice and OT-II mice were bred in the inventor's laboratory at Hamamatsu University School of Medicine according to protocols approved by the Institutional Animal Care and Use Committee (29-045).
  • anti-mouse CD109 monoclonal antibody in., 5 ⁇ g/mouse, anti-CD109 antibody, clone 4A13, Abmart
  • IgG isotype FJIFILM, 140-09511
  • the anti-mouse CD109 monoclonal antibody was designed and prepared by Abmart as a monoclonal antibody against the amino acid sequence "RKYQPNIDVQESIH" (SEQ ID NO: 1), which is an epitope of CD109.
  • OVA mice were immunized intraperitoneally with OVA (50 ⁇ g, Sigma-Aldrch, St.
  • mice were challenged intranasally with 50 ⁇ g of OVA on days 19 to 21 of the experiment. Two days after HDM challenge and one day after OVA challenge, 300 ⁇ l of ketamine (10 mg/ml) and xylazine (1 mg/ml) were administered i.p. p. Mice were anesthetized by injection. Airway resistance and pulmonary dynamic compliance have been previously reported (Galle-Treger, L. et al. Nature communications 7, (2016)., Suzuki, Y. et al. The Journal of allergy and clinical i mmunology 137, 1382-1389 (2016)., and Suzuki, Y. et al.
  • mice were mechanically ventilated using a Fine Point RC system (Buxco Research Systems). did. Mice were treated with aerosolized PBS (baseline), increasing concentrations of methacholine (2.5 mg/ml, 5.0 mg/ml, 10 mg/ml, 20 mg/ml, 40 mg/ml; Sigma- Aldrich, A2251) were successively challenged. R L and C dyn values were recorded for 3 minutes after each methacholine challenge.
  • a cannula was inserted into the trachea, the lungs were washed three times with 1 ml of PBS, and BAL cells were collected. Transcardial perfusion of the lungs was performed with cold PBS, and the lungs were subsequently fixed in 4% paraformaldehyde buffered in PBS for histology. After fixation, the lungs were embedded in paraffin, cut into 4 ⁇ m sections, and stained with hematoxylin and eosin (HE) and periodic acid Schiff (PAS).
  • HE hematoxylin and eosin
  • PAS periodic acid Schiff
  • Inflammation scores were assigned in a blinded manner according to a previous report (Tong, J. et al. J Exp Med 203, 1173-1184, (2006).).
  • the score of peribronchial inflammation by HE staining was determined as follows. 0: normal, 1: a small number of cells, 2: aggregation of inflammatory cells at a depth of 1 cell layer, 3: aggregation of inflammatory cells at a depth of 2 to 4 cell layers, 4: aggregation of inflammatory cells at a depth of 4 or more cells. Layer-depth collection of inflammatory cells.
  • PAS staining was performed by examining at least 20 consecutive areas. A numerical score of the abundance of PAS-positive goblet cells in each airway was counted and expressed as a percentage of the total number of epithelial cells in that airway.
  • Lung DCs were defined as deletion of classical lineage markers (CD3 ⁇ , NK1.1, CD19, CD45R) and CD45+CD64-F4/80-IA/IE+CD11c+ cells. .
  • lung DCs subsets based on the expression of XCR1 and CD172a (cDC1s; XCR1+CD172a- and cDC2s; 2014).
  • Sakurai S. et al. al. Allergology international:official journal of the Japanese Society of Allergology 70, 351-359, (2021). ).
  • Peridinin-chlorophyll-protein complex-Cy5.5 (PerCP-Cy5.5) labeled lineage markers (CD3e (clone 17A2, BioLegend), NK1.1 (clone PK136, BioLegend), CD19 (clone 6D5, BioLegend) , CD45R (clone RA-3-6B2)), PE-Cy7 labeled CD64 (clone X54-5/7.1, BioLegend), allophycocyamine-Cy7 (APC-Cy7) labeled F4/80 (clone BM8, BioLegend), Alexa Flour 700-labeled anti-IA/IE (clone M5/114.15.2, BioLegend), brilliant violet 510-labeled anti-CD45 (clone 30-F11, BioLegend), FITC labeled Anti-CD11c (clone N418, BioLegend), PE-labeled XCR1 (clone ZET, BioLegend
  • Bone Marrow (BM) cells were collected from femurs and tibias. BM cells were grown at 4 ⁇ 10 5 cells in RPMI1640 supplemented with 10% fetal calf serum (FCS), 1000 U/ml recombinant mouse GM-CSF (R&D), and 400 U/ml recombinant mouse IL-4 (R&D). /ml. Cells were collected on the 8th day of culture and incubated with HDM (20 ⁇ g/ml) for 6 hours.
  • FCS fetal calf serum
  • R&D U/ml recombinant mouse GM-CSF
  • R&D human IL-4
  • BM-derived DCSs (BMDCs) (2.0 ⁇ 10 5 ) were intravenously transferred into C57BL/6 mice (day 1), and BMDCs (2.0 ⁇ 10 5 ) were transferred on days 8 and 13. was administered intratracheally, and analysis was performed on the 15th day.
  • BAL cells were treated with surface phycoerythrin (PE)-labeled anti-Singlec-F (clone E50-2440, BD Pharmingen, San Diego), APC-labeled anti-Ly-6G/Ly- 6C (clone RB6-8C5, BioLegend), PE-Cy (PE-Cy7) labeled anti-CD45 (clone 30-F11, BioLegend), APC-Cy7 labeled anti-CD11c (clone N418, BioLegend), PerCP-Cy5.
  • PE surface phycoerythrin
  • the cells were stained with 5-labeled anti-CD3e (clone 17A2, BioLegend), FITC-labeled anti-CD19 (clone MB19-1, BioLegend), and Pacific blue-labeled anti-CD11b (clone M1/70, BioLegend).
  • FITC-labeled anti-EpiCAM (clone G8.8, BioLegend), APC-labeled anti-CD31 (clone 390, BioLegend), PECy7-labeled anti-CD45 (clone 30-F11, BioLegend), BV510-labeled anti-CD45 (clone 30-F11, BioLegend), FITC-labeled anti-CD11c (clone N418, BioLegend), APC-labeled anti-IA/IE (clone M5/114.15.2, BioLegend), APC-Cy7-labeled anti-F4/80 (clone BM8, BioLegend) ), Pacific blue labeled anti-CD11b (clone M1/70, BioLegend), PE-Cy7 labeled anti-CD103 (clone 2E7, BioLegend), FITC-labeled anti-CD19 (clone
  • PE-Cy7 labeled anti-CD40 (clone 3/23, BioLegend), APC-labeled anti-CD86 (clone GL-1, BioLegend), Pacific blue-labeled anti-CD80 (clone 16-10A1, BioLegend), Biotin-labeled anti-ICOS Ligand (clone HK5.3, BioLegend), brilliant violet 421-labeled anti-streptavidin (BioLegend), PECy7-labeled anti-PD-L2 (clone TY25, BioLegend), and APC-labeled anti-PD-L1 (clone 10F.9G2, BioLegend Inc.).
  • PE-labeled anti-Runx3 (clone R3-5G4, BD Bioscience), BDCSytofix/Cytoperm kit (BD Bioscience), Alexa Fluor 647-labeled anti-phosphorylated Smad2 (pS465/pS467)/Smad3 (pS 423/pS425 ) (Clone O72-670, BD Bioscience Inc.), BDCSytofix TM FixationBuffer and BDPhosflow TM PermBuffer III were used according to the manufacturer's instructions.
  • RT-PCR Reverse Transcription Polymerase Chain Reaction
  • -IL-4 forward 5'-GGTCTCAACCCCAGCTAGT-3' (SEQ ID NO: 2) and reverse 5'-GCCGATGATCTCTCTCCAAGTGAT-3' (SEQ ID NO: 3)
  • -IL-5 forward 5'-CTCTGTTGACAAGCAATGAGACG-3' (SEQ ID NO: 4) and reverse 5'-TCTTCAGTATGTCTAGCCCCTG-3' (SEQ ID NO: 5)
  • -IL-13 forward 5'-CCTGGCTCTTGCTTGCCTT-3' (SEQ ID NO: 6) and reverse 5'-GGTCTTGTGTGATGTTGCTCA-3' (SEQ ID NO: 7)
  • -IL-25 forward 5'-ACAGGGACTTGAATCGGGTC-3' (SEQ ID NO: 8) and reverse 5'-TGGTAAAGTGGGAGAGAGTTG-3' (SEQ ID NO: 9)
  • -IL-33 forward 5'-TCCAAACTCCAAG
  • Example 1 Improvement of airway hyperresponsiveness and eosinophilic airway inflammation due to CD109 deficiency>
  • CD109 ⁇ / ⁇ mice and wild-type (WT) mice were sensitized and challenged with HDM ( Figure 1A ).
  • Two days after the final HDM challenge pulmonary airway resistance (R L ) and pulmonary dynamic compliance (C dyn ) were directly measured to assess lung function.
  • HDM-challenged CD109 ⁇ / ⁇ mice exhibited well-reduced airway hyperresponsiveness, lower pulmonary airway resistance, and higher pulmonary dynamic compliance compared to HDM-challenged WT mice (FIG.
  • HDM-challenged CD109 ⁇ / ⁇ mice also showed lower eosinophil counts in bronchoalveolar lavage (BAL) compared to HDM-challenged WT mice (FIG. 1C). Additionally, histological analysis showed that in HDM-challenged CD109 ⁇ / ⁇ mice, there was a decrease in the number of PAS+ cells, as well as a decrease in bronchial wall thickness and peribronchial cell infiltration compared to HDM-challenged WT mice. confirmed (Fig. 1D).
  • Example 2 Induction of allergen sensitization in WT mice by CD109 expression>
  • CD109 expression was induced in cDC2s, B cells, and type 2 innate lymphocytes (ILC2s), but in the lungs, CD109 expression was not induced in cDC1s (FIG. 2A).
  • Figure 2B CD109+ DCs and CD109-DCs were sorted based on cell surface markers, and phenotypically, CD109 expression in lung DCs was compared to cases where CD109 was not expressed.
  • the expression of PD-L1, ICOS-L, and CD80 was increased, but the expression of CD86 was decreased (Fig. 2C).
  • Example 3 Improved induction of cytokine production when lung cDC2s from CD109 ⁇ / ⁇ mice are co-cultured with naive T cells Since CD109 is induced only in lung cDC2s and not in lung cDC1s, we investigated whether lung cDC2s from CD109 ⁇ / ⁇ mice alter their function with respect to Th responses. Previous studies have shown different functions of lung DCs subsets in immune responses (Murphy, T.L. et al. Annual review of immunology 34, 93-119, (2016)., Guilliams, M. et al. . Nature Reviews IMMUNOLOGY 14,571-578, (2014). BROWN, C.C.Et Al. Cell 179,846-863, (2019).
  • Lung cDC2s were purified from OVA-challenged CD109 ⁇ / ⁇ mice and WT mice (FIGS. 3A and 3B). Subsequently, lung cDC2s were co-cultured with naive CD4+ T cells isolated from OT-II mice in the presence of OVA 323-339 peptide. Large amounts of IL-2, IL-6, IL-13, IL-17A, TNF, and IFN- ⁇ were detected in co-culture with lung cDC2s from WT mice.
  • lung cDC2s from CD109 ⁇ / ⁇ mice Comparing lung cDC2s from CD109 ⁇ / ⁇ mice with lung cDC2s from WT mice, the concentration of IL-13 in lung cDC2s from CD109 ⁇ / ⁇ mice was significantly lower than that in lung cDC2s from WT mice. (Fig. 3C), and IL-6, IL-17A, TNF, and IFN- ⁇ were also significantly low.
  • Example 4 Induction of asthmatic phenotype by CD109 expression in DC2s> Lung cDC2s from CD109 ⁇ / ⁇ mice had improved induction of several cytokines, including IL-13, when co-cultured with na ⁇ ve T cells, indicating that the absence of CD109 in DCs was associated with airway hyperresponsiveness and We investigated whether this is a direct factor in attenuating eosinophilic airway inflammation.
  • WT mice were immunized intravenously and then challenged intrabronchically with HDM-loaded bone marrow-derived DCs (BMDCs) from CD109 ⁇ / ⁇ mice or WT mice (FIG. 4A).
  • BMDCs bone marrow-derived DCs
  • Example 5 Gene expression analysis in lung DCs from CD109 ⁇ / ⁇ mice> Since there is a functional difference in cytokine production induced in lung cDC2s from CD109 ⁇ / ⁇ mice and WT mice, we used Nanostring technology to identify genes in lung cDC2s from CD109 ⁇ / ⁇ mice and WT mice. The expression profile was investigated. In lung cDC2s from CD109 ⁇ / ⁇ mice, eotaxin (CCL24 and CCL26) and Th2-related cytokines (IL-4, IL-5, IL-13, and IL- 33) and increased expression of Th1-related cytokines (IL-18, IL-12, and CXCL9) (Figure 5A). Regarding transcription factors, lung cDC2s from CD109 ⁇ / ⁇ mice showed increased expression of RUNX3 and decreased expression of ROR ⁇ t compared to lung cDC2s from WT mice.
  • eotaxin CCL24 and CCL26
  • Th2-related cytokines IL-4, IL-5,
  • cDCs2a anti-inflammatory phenotype
  • cDCs2b pro-inflammatory phenotype
  • RUNK3 is one of the transcription factors characteristic of the anti-inflammatory phenotype of cDCs2a. Consistent with the array data, significantly increased expression of RUNX3 protein was observed in lung cDC2s from CD109 ⁇ / ⁇ mice compared to lung cDC2s from WT mice (FIG. 5B).
  • CD109 is known to negatively regulate TGF- ⁇ signaling
  • RUNX3 is known to bind to intracellular signaling factors Smad2 and Smad3 (Mii, S. et al. al. Pathol Int 69, 249-259, (2019).). Therefore, when we investigated phosphorylated Smad2/3, we found that phosphorylated Smad2/3 was also significantly increased in lung cDC2s from CD109 ⁇ / ⁇ mice compared to lung cDC2s from WT mice. (Fig. 5C, Fig. 5D).
  • Example 6 Effect of anti-CD109 monoclonal antibody on improving airway hyperresponsiveness and eosinophilic airway inflammation in HDM-challenged mice>
  • anti-CD109 monoclonal antibodies mAbs
  • WT mice were sensitized with HDM, and anti-CD109 mAb or IgG isotype was intranasally administered one day before HDM challenge (Figure 6A).
  • Example 7 Effect of CD109 on airway hyperresponsiveness and eosinophilic airway inflammation in OVA-challenged mice>
  • CD109 ⁇ / ⁇ mice and wild-type (WT) mice were exposed and sensitized using OVA ( Figure 7A ).
  • OVA OVA
  • R L pulmonary airway resistance
  • C dyn pulmonary dynamic compliance
  • OVA-challenged CD109 ⁇ / ⁇ mice had well-reduced airway hyperresponsiveness and exhibited lower lung airway resistance and higher pulmonary dynamic compliance compared to HDM-challenged WT mice (FIG. 7B). OVA-challenged CD109 ⁇ / ⁇ mice also showed lower eosinophil counts in the bronchoalveolar lavage (BAL) compared to OVA-challenged WT mice (FIG. 7C). Histological analysis also showed that in OVA-challenged CD109 ⁇ / ⁇ mice, there was a decrease in the number of PAS+ cells, as well as a decrease in bronchial wall thickness and peribronchial cell infiltration compared to OVA-challenged WT mice.
  • Example 8 Effect on Smad2/3 by lung DCs from CD109 ⁇ / ⁇ mice in OVA-challenged mice> Furthermore, when we investigated phosphorylated Smad2/3, we found that lung cDC2s from OVA-challenged CD109 ⁇ / ⁇ mice had lower levels of phosphorylated Smad2/3 compared to lung cDC2s from OVA-challenged WT mice. It was shown that there was a significant increase (Fig. 8).
  • mAbs monoclonal antibodies
  • existing asthma treatment drugs include anti-IL-33 antibody (R&D Co., clone 396118, catalog number MAB555), anti-thymic stromal lymphopoietic factor (TSLP) antibody (R&D Co., clone 152614, catalog number AF3626), and Dexamethasone (Dex) (Sigma-Aldric, catalog number D4902-25MG), a type of steroid, was used.
  • the dosage of anti-CD109 mAb is previously reported (Song G. et al. Ann Rheum Dis, 78, 1632-1641 (2019)).
  • the doses of anti-IL-33 antibody, anti-TSLP antibody, and Dex were set based on a previous report (Suzuki Y. et al. Autophagy, 18, 2216-2228 (2022)).
  • anti-CD109 mAb was found to sufficiently suppress eosinophils and significantly improve airway hyperresponsiveness compared to existing therapeutic agents including steroids and other antibody preparations. Therefore, it was suggested that anti-CD109 mAb may be more useful as a therapeutic agent for asthma than existing therapeutic agents.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Genetics & Genomics (AREA)
  • Public Health (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • Epidemiology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Virology (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mycology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

[Problem] To provide a novel therapeutic agent, for bronchial asthma, that focuses on CD109. [Solution] This pharmaceutical composition contains, as an active component, a drug that improves bronchial hypersensitivity and/or eosinophilic airway inflammation caused by CD109.

Description

医薬組成物及び樹状細胞Pharmaceutical composition and dendritic cells 関連出願の相互参照Cross-reference of related applications
 本国際出願は,2022年3月9日に日本国特許庁に出願された日本国特許出願第2022-036500号に基づく優先権を主張するものであり,日本国特許出願第2022-036500号の全内容を本国際出願に参照により援用する。 This international application claims priority based on Japanese Patent Application No. 2022-036500 filed with the Japan Patent Office on March 9, 2022, and is based on Japanese Patent Application No. 2022-036500. The entire contents are incorporated by reference into this international application.
 本開示は,医薬組成物及び樹状細胞に関する。 The present disclosure relates to pharmaceutical compositions and dendritic cells.
 気管支喘息の有病率は概ね10%にも上り,今なお増加傾向を示している。気管支喘息は,気道過敏性及び好酸球性気道炎症により定義付けられる(非特許文献1-4)。気管支喘息の病態において,自然免疫及び獲得免疫が相互に関わり,Th2型免疫反応が賦活化されている。自然免疫を介する経路では,2型自然リンパ球(ILC2s)が強力に好酸球炎症を誘導する。一方で,獲得免疫を介する経路では,樹状細胞(DCs)がTh2反応の誘導に中心的な役割を果たしている(非特許文献5,6)。現在までに,主として重症喘息患者を対象として,IL-5,IL-4R(IL-4及びIL-13),IgE等を標的とした生物学的製剤(抗体製剤)が開発されてきた。これらの生物学的製剤は,自然免疫及び獲得免疫の下流に位置する機能的分子を標的とする。しかし,その一方で,気管支喘息には様々なフェノタイプが存在し,それぞれのフェノタイプによって重要な機能的分子が異なっている。したがって,各生物学的製剤の特性にあった患者選択が必要であるが,その判別は容易ではなく,期待された効果が得られないことも少なくなかった。つまり,既存の薬剤を用いてもなお,コントロール困難な重症喘息に対する治療課題は未だに解決されていなかった。そのため,気管支喘息の病態における免疫カスケードのより上流に位置するILC2sやDCsを直接的に制御し,様々なフェノタイプの喘息患者に共通した新たな治療標的の発見,及びそれを標的とした新規治療法の開発が望まれていた。 The prevalence of bronchial asthma is approximately 10% and is still on the rise. Bronchial asthma is defined by airway hyperresponsiveness and eosinophilic airway inflammation (Non-Patent Documents 1-4). In the pathology of bronchial asthma, innate immunity and acquired immunity interact, and Th2 type immune responses are activated. In a pathway mediated by innate immunity, type 2 innate lymphocytes (ILC2s) strongly induce eosinophil inflammation. On the other hand, in the pathway mediated by acquired immunity, dendritic cells (DCs) play a central role in inducing Th2 responses (Non-Patent Documents 5, 6). To date, biological preparations (antibody preparations) targeting IL-5, IL-4R (IL-4 and IL-13), IgE, etc. have been developed mainly for severe asthma patients. These biologics target functional molecules located downstream of innate and adaptive immunity. However, on the other hand, there are various phenotypes of bronchial asthma, and each phenotype has different important functional molecules. Therefore, it is necessary to select patients according to the characteristics of each biological drug, but this is not easy and the expected effects are often not achieved. In other words, even with existing drugs, the problem of treating severe asthma that is difficult to control remains unsolved. Therefore, we aim to directly control ILC2s and DCs, which are located upstream of the immune cascade in the pathology of bronchial asthma, and discover new therapeutic targets common to asthma patients of various phenotypes, as well as new treatments targeting them. It was hoped that the law would be developed.
 ここで,CD109は,細胞表面に存在するGPIアンカー型糖タンパクであり,そのアミノ酸配列からα2マクログロブリンスーパーファミリーに属する(非特許文献7)。CD109はTGF-β受容体に結合することにより,TGF-βを介するシグナルを抑制的に制御している(非特許文献8)。CD109は,これまで注目されてこなかった分子であり,その作用や作用機序は十分には解明されておらず,例えば,CD109分子とアレルギー炎症との関わりは知られていなかった。このような背景に鑑み,CD109に関して,未知の機能の発見や治療標的としての可能性が期待されている。 Here, CD109 is a GPI-anchored glycoprotein present on the cell surface, and belongs to the α2 macroglobulin superfamily based on its amino acid sequence (Non-Patent Document 7). CD109 suppresses and controls signals mediated by TGF-β by binding to the TGF-β receptor (Non-Patent Document 8). CD109 is a molecule that has not received much attention so far, and its action and mechanism of action have not been fully elucidated. For example, the relationship between the CD109 molecule and allergic inflammation was unknown. In view of this background, there are expectations for the discovery of unknown functions and the possibility of CD109 as a therapeutic target.
 発明者らは,CD109遺伝子改変マウスを用いて,アレルギー炎症,特に気管支喘息におけるCD109分子の意義について鋭意検討を行った。
 本開示の一局面は,CD109に着目した新規な気管支喘息の治療薬を提供することが望ましい。
The inventors conducted intensive studies on the significance of the CD109 molecule in allergic inflammation, particularly bronchial asthma, using CD109 gene-modified mice.
One aspect of the present disclosure is to provide a novel therapeutic agent for bronchial asthma that focuses on CD109.
 本開示の一態様は,医薬組成物であって,CD109による気道過敏性症及び/又は好酸球性気道炎症を改善する薬剤を有効成分として含有する。
 本開示の一態様では,CD109が,樹状細胞cCD2,B細胞,又は2型自然リンパ球に誘導される。
One aspect of the present disclosure is a pharmaceutical composition containing as an active ingredient a drug that improves airway hyperresponsiveness and/or eosinophilic airway inflammation caused by CD109.
In one aspect of the disclosure, CD109 is induced on dendritic cells cCD2, B cells, or type 2 innate lymphocytes.
 本開示の一態様では,気道過敏性症及び/又は好酸球性気道炎症の改善が,IL-4,IL-5,IL-13,及び/又はIL-33の産生抑制に起因する。
 本開示の一態様では,気道過敏性症及び/又は好酸球性気道炎症の改善が,RUNX3の活性化及び/又はSmad2/3のリン酸化に起因する。
In one aspect of the present disclosure, improvement of airway hyperresponsiveness and/or eosinophilic airway inflammation is due to suppression of production of IL-4, IL-5, IL-13, and/or IL-33.
In one aspect of the present disclosure, the improvement of airway hyperresponsiveness and/or eosinophilic airway inflammation is due to activation of RUNX3 and/or phosphorylation of Smad2/3.
 本開示の一態様では,薬剤が,抗CD109抗体である。
 本開示の一態様では,抗CD109抗体が,抗マウスモノクローナル抗体である。
 本開示の一態様は,CD109を欠損させた対象由来の樹状細胞cDC2sであって,気道過敏性症及び/又は好酸球性気道炎症を改善するために用いられる。
In one aspect of the disclosure, the agent is an anti-CD109 antibody.
In one aspect of the disclosure, the anti-CD109 antibody is an anti-mouse monoclonal antibody.
One aspect of the present disclosure is dendritic cell cDC2s derived from a subject deficient in CD109, which is used to improve airway hyperresponsiveness and/or eosinophilic airway inflammation.
 本開示の一態様では,樹状細胞が,移入のために使用される。
 本開示の一態様では,樹状細胞が,抗炎症性の樹状細胞である。
 本開示の一態様では,気道過敏性症及び/又は好酸球性気道炎症の改善が,IL-6,IL-13,IL-17A,TNF,及び/又はIFN-γの産生の抑制に起因する。
In one aspect of the disclosure, dendritic cells are used for transfer.
In one aspect of the disclosure, the dendritic cells are anti-inflammatory dendritic cells.
In one aspect of the present disclosure, the improvement of airway hyperresponsiveness and/or eosinophilic airway inflammation is caused by suppressing the production of IL-6, IL-13, IL-17A, TNF, and/or IFN-γ. do.
 本開示の一態様では,気道過敏性症及び/又は好酸球性気道炎症の改善が,RUNX3の活性化及び/又はSmad2/3のリン酸化に起因する。
 本開示の一態様では,樹状細胞が,CD109を欠損させていない対象由来の樹状細胞と比較して,CCL24,CCL26,IL-4,IL-5,IL-13,及び/又はIL-33の発現が低下し,IL-18,IL-12,及び/又はCXCL9の発現が増加している遺伝子プロファイリングを有する。
In one aspect of the present disclosure, the improvement of airway hyperresponsiveness and/or eosinophilic airway inflammation is due to activation of RUNX3 and/or phosphorylation of Smad2/3.
In one aspect of the present disclosure, the dendritic cells have CCL24, CCL26, IL-4, IL-5, IL-13, and/or IL- 33 and increased expression of IL-18, IL-12, and/or CXCL9.
 本開示は,喘息に対するCD109の重要性を明らかにするものであり,CD109を標的とした薬剤を含む新しい喘息の治療戦略を提供するものである。特に,本開示は,気道過敏性及び好酸球性気道炎症の治療の実現に貢献するものである。また,本開示は,既存の薬剤よりも優れた気道過敏性及び好酸球性気道炎症の治療の実現に貢献するものである。 The present disclosure reveals the importance of CD109 for asthma and provides new asthma treatment strategies that include drugs targeting CD109. In particular, the present disclosure contributes to the realization of treatments for airway hyperresponsiveness and eosinophilic airway inflammation. Furthermore, the present disclosure contributes to the realization of treatments for airway hyperresponsiveness and eosinophilic airway inflammation that are superior to existing drugs.
(A)実施例1の実験タイムラインを示す。野生型(WT)マウス及びCD109-/-マウスに対して,ダニ抗原(HDM)を経鼻投与した。(B)HDMで感作させたWTマウス(WT HDM),HDMで感作させたCD109-/-マウス(CD109-/- HDM),及び対照群としてPBSを投与したWTマウス(WT PBS),PBSを投与したCD109-/-マウス(CD109-/- PBS)の肺気道抵抗(R)及び肺動的コンプライアンス(Cdyn)を示す(各n=5-7)。各グラフの横軸は,投与されたメサコリンの濃度(mg/ml)を示す。(C)WT HDM,CD109-/- HDM,WT PBS,及びCD109-/- PBSのBAL(各n=5-7)における細胞数の違いを示す。左側のグラフの縦軸は,BALにおける総細胞数を示し,右側のグラフの縦軸は,BALにおける好酸球(Eos)の数を示す。(D)WT HDM,CD109-/- HDMにおけるヘマトキシリン・エオシン染色及びPAS染色の肺組織学的検査の切片写真及びその定量結果を示す(各n=6)。倍率は100倍とし,スケールバーは,50μmとした。(E)WT HDM,CD109-/- HDM,WT PBS,及びCD109-/- PBSにおける肺ホモジネートにおけるサイトカイン(IL-4,IL-5,IL-13,IL-25,IL-33,TSLP)量を示す(各n=6)。各グラフの縦軸は,GAPDHで標準化した各サイトカインの相対的な割合を示す。なお,各図において,各データは,少なくとも5回の独立した実験の代表例として示した。各図における棒グラフのエラーバーは,平均値±SEMで表す。また,P値は,Studentのt検定と,Turkeyの複数の比較テストの後の一元配置分散分析により算出した。*は,P<0.05を示し,**は,P<0.01を示し,***は,P<0.001を示す。(A) Shows the experimental timeline of Example 1. Wild type (WT) mice and CD109 −/− mice were intranasally administered with tick antigen (HDM). (B) WT mice sensitized with HDM (WT HDM), CD109 −/− mice sensitized with HDM (CD109 −/− HDM), and WT mice administered with PBS as a control group (WT PBS), Pulmonary airway resistance (R L ) and pulmonary dynamic compliance (C dyn ) of CD109 −/ − mice administered PBS (CD109 −/− PBS) are shown (n=5-7 each). The horizontal axis of each graph indicates the concentration (mg/ml) of methacholine administered. (C) Differences in cell numbers in BAL of WT HDM, CD109 −/− HDM, WT PBS, and CD109 −/− PBS (n=5-7 each) are shown. The vertical axis of the graph on the left shows the total cell number in BAL, and the vertical axis of the graph on the right shows the number of eosinophils (Eos) in BAL. (D) Section photographs and quantitative results of lung histological examination of hematoxylin and eosin staining and PAS staining in WT HDM and CD109 −/− HDM are shown (n=6 each). The magnification was 100 times, and the scale bar was 50 μm. (E) Cytokine (IL-4, IL-5, IL-13, IL-25, IL-33, TSLP) levels in lung homogenates in WT HDM, CD109 − /− HDM, WT PBS, and CD109 −/− PBS (each n=6). The vertical axis of each graph shows the relative proportion of each cytokine standardized with GAPDH. In each figure, each data is shown as a representative example of at least 5 independent experiments. The error bars of the bar graphs in each figure represent the mean value ± SEM. Moreover, the P value was calculated by Student's t test and one-way analysis of variance after Turkey's multiple comparison test. * indicates P<0.05, ** indicates P<0.01, *** indicates P<0.001. (A)WTマウスに対し,1日目及び8日目にオボアルブミン(OVA)+アラムアジュバント塩(Alum)で感作させ,18~20日目に3日間連続してOVAでチャレンジした。続いて,肺免疫細胞におけるCD109発現を21日目に分析した。対照として,PBSを投与したWTマウスを用いた。代表的なフローサイトメトリー(FACS)のヒストグラム及びCD109の平均蛍光強度(MFI)を示す(各n=3~4)。(B)WTマウスを図1(A)に示すように感作させ,CD109+肺DCs及びCD109-肺DCsにおける表面細胞マーカーを分析した。CD109+肺DCS及びCD109-肺DCsのゲーティング戦略を示す。(C)CD109+肺DCs及びCD109-肺DCsにおける代表的なFACSヒストグラム及び平均蛍光強度を示す(各n=6)。なお,各図において,*は,P<0.05を示し,***は,P<0.001を示す。(A) WT mice were sensitized with ovalbumin (OVA) + alum adjuvant salt (Alum) on days 1 and 8, and challenged with OVA for 3 consecutive days on days 18 to 20. Subsequently, CD109 expression in lung immune cells was analyzed on day 21. As a control, WT mice administered with PBS were used. Representative flow cytometry (FACS) histograms and mean fluorescence intensity (MFI) of CD109 are shown (n=3-4 each). (B) WT mice were sensitized as shown in FIG. 1(A), and surface cell markers in CD109+ and CD109− lung DCs were analyzed. The gating strategy for CD109+ and CD109- lung DCs is shown. (C) Representative FACS histograms and mean fluorescence intensity in CD109+ and CD109− lung DCs are shown (n=6 each). In each figure, * indicates P<0.05, and *** indicates P<0.001. (A)実施例3の実験タイムラインを示す。WTマウス及びCD109-/-マウスを1日目及び8日目にOVA+Alumで感作させ,18~20日目に3日間連続してOVAを鼻腔内からチャレンジした。続いて,肺DCsサブセットを分離した。選別された肺DCsサブセットは,OVA323-339ペプチドの存在下で,OT-IIマウスより単離したナイーブCD4+T細胞と共培養した。(B)肺DCsサブセット(cDC1s及びcDC2s)の同定結果を示し,各サブセットにおける代表的なFACSプロットを示す。(C)WTマウス及びCD109-/-マウス由来のcDC2sを共培養した上清中のサイトカイン(IL-2,IL-6,IL-10,IL-13,IL-17A,TNF,IFN-γ)の濃度を示す(各n=9)。なお,各図において,各データは,2回の独立した実験の代表例として示した。各図における棒グラフのエラーバーは,平均値±SEMで表す。また,P値は,Studentのt検定により算出した。*は,P<0.05を示し,***は,P<0.001を示す。(A) Shows the experimental timeline of Example 3. WT mice and CD109 −/− mice were sensitized with OVA+Alum on days 1 and 8, and intranasally challenged with OVA for 3 consecutive days on days 18 to 20. Subsequently, lung DCs subsets were isolated. Sorted lung DCs subsets were co-cultured with naïve CD4+ T cells isolated from OT-II mice in the presence of OVA 323-339 peptide. (B) Identification results of lung DCs subsets (cDC1s and cDC2s) are shown, and representative FACS plots for each subset are shown. (C) Cytokines (IL-2, IL-6, IL-10, IL-13, IL-17A, TNF, IFN-γ) in the supernatant of co-cultured cDC2s from WT mice and CD109 −/− mice. (each n=9). In each figure, each data is shown as a representative example of two independent experiments. The error bars of the bar graphs in each figure represent the mean value ± SEM. Moreover, the P value was calculated by Student's t test. * indicates P<0.05, *** indicates P<0.001. (A)実施例4の実験タイムラインを示す。培養したWTマウス及びCD109-/-マウス由来のBMDCをダニ抗原(HDM)により6時間刺激し,WTマウスに静脈内投与した。そして,同様に培養及びHDM刺激を行ったBMDCを8日目及び13日目に経鼻投与した。(B)WTマウスからBMDCsを採取及び培養し,HDM感作させたBMDCを投与したマウス(WT BMDCs HDM),CD109-/-マウスからBMDCsを採取及び培養し,HDM感作させたBMDCを投与したマウス(CD109-/- BMDCs HDM),及び対照群としてWTマウスからBMDCsを採取及び培養し,PBSを投与したマウス(WT BMDCs PBS),CD109-/-マウスからBMDCsを採取及び培養し,PBSを投与したマウス(CD109-/- BMDCs PBS)の肺気道抵抗性(R)及び肺動的コンプライアンス(Cdyn)を示す(各n=6-7)。各グラフの横軸は,投与されたメサコリンの濃度(mg/ml)を示す。(C)WT BMDCs HDM,CD109-/- BMDCs HDM,WT BMDCs PBS,及びCD109-/- BMDCs PBSのBAL(各n=7)における細胞数の違いを示す。左側のグラフの縦軸は,BALにおける総細胞数を示し,右側のグラフの縦軸は,BALにおける好酸球(Eos)の数を示す。(D)WT BMDCs HDM,CD109-/- BMDCs HDMにおけるヘマトキシリン・エオシン染色及びPAS染色の肺組織学的検査の切片写真及びその定量結果を示す(各n=7)。倍率は100倍とし,スケールバーは,50μmとした。なお,各図において,各データは,2回の独立した実験の代表例として示した。各図における棒グラフのエラーバーは,平均値±SEMで表す。また,P値は,Studentのt検定と,Turkeyの複数の比較テストの後の一元配置分散分析により算出した。*は,P<0.05を示し,**は,P<0.01を示す。(A) Shows the experimental timeline of Example 4. Cultured BMDCs derived from WT mice and CD109 −/− mice were stimulated with tick antigen (HDM) for 6 hours and administered intravenously to WT mice. Then, BMDCs cultured and stimulated with HDM in the same manner were intranasally administered on the 8th and 13th day. (B) Mice in which BMDCs were collected and cultured from WT mice and BMDCs sensitized with HDM were administered (WT BMDCs HDM), BMDCs were collected and cultured from CD109 −/− mice, and BMDCs sensitized with HDM were administered. BMDCs were collected and cultured from mice administered with PBS (WT BMDCs PBS), and WT mice as a control group (CD109 −/− BMDCs HDM), and BMDCs were collected and cultured from CD109 −/− mice and treated with PBS. The lung airway resistance (R L ) and lung dynamic compliance (C dyn ) of mice administered with (CD109 −/− BMDCs PBS) are shown (n=6-7 each). The horizontal axis of each graph indicates the concentration (mg/ml) of methacholine administered. (C) Shows the difference in cell numbers in BAL of WT BMDCs HDM, CD109 −/− BMDCs HDM, WT BMDCs PBS, and CD109 −/− BMDCs PBS (n=7 each). The vertical axis of the graph on the left shows the total cell number in BAL, and the vertical axis of the graph on the right shows the number of eosinophils (Eos) in BAL. (D) Section photographs and quantitative results of lung histological examination of hematoxylin and eosin staining and PAS staining in WT BMDCs HDM and CD109 −/− BMDCs HDM are shown (n=7 for each). The magnification was 100 times, and the scale bar was 50 μm. In each figure, each data is shown as a representative example of two independent experiments. The error bars of the bar graphs in each figure represent the mean value ± SEM. Moreover, the P value was calculated by Student's t test and one-way analysis of variance after Turkey's multiple comparison test. * indicates P<0.05, ** indicates P<0.01. WTマウス及びCD109-/-マウスを図1(A)に示すように免疫化し,肺cDC2sを図3(B)に示すように単離した。(A)WTマウス及びCD109-/-マウス(各n=3)からの肺cDC2sにおける遺伝子の発現変動を示すヒートプロットである。(B)WTマウス及びCD109-/-マウス(各n=3)からの肺cDC2sにおけるRUNX3の代表的なFACSヒストグラム及び平均蛍光強度(MFI)を示す。(C)WTマウス及びCD109-/-マウスからの肺cDC2sにおけるリン酸化Smad2/3の代表的なFACSヒストグラム及び平均蛍光強度(MFI)を示す(各n=5)。なお,各図における棒グラフのエラーバーは,平均値±SEMで表す。また,P値は,Studentのt検定により算出した。*は,P<0.05を示し,**は,P<0.01を示す。WT and CD109 −/− mice were immunized as shown in FIG. 1(A), and lung cDC2s were isolated as shown in FIG. 3(B). (A) Heat plot showing gene expression changes in lung cDC2s from WT and CD109 −/− mice (n=3 each). (B) Representative FACS histograms and mean fluorescence intensity (MFI) of RUNX3 in lung cDC2s from WT and CD109 −/− mice (n=3 each) are shown. (C) Representative FACS histograms and mean fluorescence intensity (MFI) of phosphorylated Smad2/3 in lung cDC2s from WT and CD109 −/− mice (n=5 each) are shown. In addition, the error bar of the bar graph in each figure is expressed as the average value ± SEM. Moreover, the P value was calculated by Student's t test. * indicates P<0.05, ** indicates P<0.01. (A)実施例6の実験タイムラインを示す。WTマウスを図1Aに示すように免疫化し,HDMチャレンジの前日に抗CD109モノクローナル抗体及びIgGアイソタイプを経鼻投与した。(B)抗CD109モノクローナル抗体を投与したWTマウス(HDM Anti-CD109 Ab),IgGアイソタイプを投与したWTマウス(HDM Isotype IgG),及び対照群としてPBSを投与したWTマウス(PBS)の肺気道抵抗性(R)及び肺動的コンプライアンス(Cdyn)を示す(各n=6-7)。各グラフの横軸は,投与されたメサコリンの濃度(mg/ml)を示す。(C)HDM Anti-CD109 Ab,HDM Isotype IgG,PBSのBAL(各n=6-7)における細胞数の違いを示す。左側のグラフの縦軸は,BALにおける総細胞数を示し,右側のグラフの縦軸は,BALにおける好酸球(Eos)の数を示す。(D)HDM Anti-CD109 Ab,HDM Isotype IgGにおけるヘマトキシリン・エオシン染色及びPAS染色の肺組織学的検査の切片写真及びその定量結果を示す(各n=6)。倍率は100倍とし,スケールバーは,50μmとした。なお,各図において,各データは,2回の独立した実験の代表例として示した。各図における棒グラフのエラーバーは,平均値±SEMで表す。また,P値は,Studentのt検定と,Turkeyの複数の比較テストの後の一元配置分散分析により算出した。*は,P<0.05を示し,**は,P<0.01を示し,***は,P<0.001を示す。(A) Shows the experimental timeline of Example 6. WT mice were immunized as shown in Figure 1A, and anti-CD109 monoclonal antibody and IgG isotype were intranasally administered the day before HDM challenge. (B) Pulmonary airway resistance of WT mice administered with anti-CD109 monoclonal antibody (HDM Anti-CD109 Ab), WT mice administered with IgG isotype (HDM Isotype IgG), and WT mice administered with PBS as a control group (PBS). (R L ) and pulmonary dynamic compliance (C dyn ) (n=6-7 each). The horizontal axis of each graph indicates the concentration (mg/ml) of methacholine administered. (C) Shows the difference in cell numbers in BAL (each n=6-7) of HDM Anti-CD109 Ab, HDM Isotype IgG, and PBS. The vertical axis of the graph on the left shows the total cell number in BAL, and the vertical axis of the graph on the right shows the number of eosinophils (Eos) in BAL. (D) Section photographs and quantitative results of lung histological examination of hematoxylin and eosin staining and PAS staining for HDM Anti-CD109 Ab and HDM Isotype IgG are shown (n=6 each). The magnification was 100 times, and the scale bar was 50 μm. In each figure, each data is shown as a representative example of two independent experiments. The error bars of the bar graphs in each figure represent the mean value ± SEM. Moreover, the P value was calculated by Student's t test and one-way analysis of variance after Turkey's multiple comparison test. * indicates P<0.05, ** indicates P<0.01, *** indicates P<0.001. (A)実施例7の実験タイムラインを示す。WTマウス及びCD109-/-マウスを1日目及び8日目にOVA+Alumで感作させ,18~20日目に3日間連続してOVAを鼻腔内からチャレンジした。(B)OVAで感作させたWTマウス(WT OVA),OVAで感作させたCD109-/-マウス(CD109-/- OVA),及び対照群としてPBSを投与したWTマウス(WT PBS),PBSを投与したCD109-/-マウス(CD109-/- PBS)の肺気道抵抗性(R)及び肺動的コンプライアンス(Cdyn)を示す(各n=6)。各グラフの横軸は,投与されたメサコリンの濃度(mg/ml)を示す。(C)WT OVA,CD109-/- OVA,WT PBS,及びCD109-/- PBSのBAL(各n=6)における細胞数の違いを示す。左側のグラフの縦軸は,BALにおける総細胞数を示し,右側のグラフの縦軸は,BALにおける好酸球(Eos)の数を示す。(D)WT OVA,CD109-/- OVAにおけるヘマトキシリン・エオシン染色及びPAS染色の肺組織学的検査の切片写真及びその定量結果を示す(各n=6)。倍率は100倍とし,スケールバーは,50μmとした。なお,各図において,各データは,少なくとも2回の独立した実験の代表例として示した。各図における棒グラフのエラーバーは,平均値±SEMで表す。また,P値は,Studentのt検定と,Turkeyの複数の比較テストの後の一元配置分散分析により算出した。*は,P<0.05を示し,**は,P<0.01を示し,***は,P<0.001を示す。(A) Shows the experimental timeline of Example 7. WT mice and CD109 −/− mice were sensitized with OVA+Alum on days 1 and 8, and intranasally challenged with OVA for 3 consecutive days on days 18 to 20. (B) WT mice sensitized with OVA (WT OVA), CD109 −/− mice sensitized with OVA (CD109 −/− OVA), and WT mice administered with PBS as a control group (WT PBS), Pulmonary airway resistance (R L ) and pulmonary dynamic compliance (C dyn ) of CD109 −/ − mice administered PBS (CD109 −/− PBS) are shown (n=6 each). The horizontal axis of each graph indicates the concentration (mg/ml) of methacholine administered. (C) Shows the difference in cell numbers in BAL of WT OVA, CD109 −/− OVA, WT PBS, and CD109 −/− PBS (n=6 each). The vertical axis of the graph on the left shows the total cell number in BAL, and the vertical axis of the graph on the right shows the number of eosinophils (Eos) in BAL. (D) Section photographs and quantitative results of lung histological examination of hematoxylin and eosin staining and PAS staining in WT OVA, CD109 −/− OVA are shown (n=6 each). The magnification was 100 times, and the scale bar was 50 μm. In each figure, each data is shown as a representative example of at least two independent experiments. The error bars of the bar graphs in each figure represent the mean value ± SEM. Moreover, the P value was calculated by Student's t test and one-way analysis of variance after Turkey's multiple comparison test. * indicates P<0.05, ** indicates P<0.01, *** indicates P<0.001. WTマウス及びCD109-/-マウスを図7に示すように感作させ,WTマウス及びCD109-/-マウス(各n=6)から単離した肺cDC2sにおけるリン酸化Smad2/3の代表的なFACSヒストグラム及び平均蛍光強度(MFI)を示す。WT and CD109 −/− mice were sensitized as shown in Figure 7. Representative FACS of phosphorylated Smad2/3 in lung cDC2s isolated from WT and CD109 −/− mice (n=6 each). Histograms and mean fluorescence intensity (MFI) are shown. (A)IgGアイソタイプを投与したWTマウス(HDM Isotype IgG),抗IL-33モノクローナル抗体を投与したWTマウス(HDM Anti-IL-33 Ab),抗胸腺間質性リンパ球新生因子(TSLP)抗体を投与したWTマウス(HDM Anti-TSLP Ab),デキサメサゾンを投与したWTマウス(HDM Dex),抗CD109モノクローナル抗体を投与したWTマウス(HDM Anti-CD109 Ab),及び対照群としてPBSを投与したWTマウス(PBS)のBAL(各n=4-5)における細胞数の違いを示す。左側のグラフの縦軸は,BALにおける総細胞数を示し,右側のグラフの縦軸は,BALにおける好酸球の数を示す。(B)HDM Isotype IgG,HDM Anti-IL-33 Ab,HDM Anti-TSLP Ab,HDM Dex,HDM Anti-CD109 Ab,及び対照群としてPBSの肺気道抵抗性(R)及び肺動的コンプライアンス(Cdyn)を示す(各n=4-5)。各グラフの横軸は,投与されたメサコリンの濃度(mg/ml)を示す。各図における棒グラフのエラーバーは,平均値±SEMで表す。また,P値は,Studentのt検定と,Turkeyの複数の比較テストの後の一元配置分散分析により算出した。*は,P<0.05を示し,**は,P<0.01を示し,***は,P<0.001を示す。(A) WT mice administered with IgG isotype (HDM Isotype IgG), WT mice administered with anti-IL-33 monoclonal antibody (HDM Anti-IL-33 Ab), anti-thymic stromal lymphopoietic factor (TSLP) antibody (HDM Anti-TSLP Ab), WT mice administered dexamethasone (HDM Dex), WT mice administered anti-CD109 monoclonal antibody (HDM Anti-CD109 Ab), and WT mice administered PBS as a control group. Differences in cell numbers in BAL (each n=4-5) of mice (PBS) are shown. The vertical axis of the graph on the left shows the total number of cells in the BAL, and the vertical axis of the graph on the right shows the number of eosinophils in the BAL. (B) Pulmonary airway resistance (R L ) and pulmonary dynamic compliance ( C dyn ) (each n=4-5). The horizontal axis of each graph indicates the concentration (mg/ml) of methacholine administered. The error bars of the bar graphs in each figure represent the mean value ± SEM. Moreover, the P value was calculated by Student's t test and one-way analysis of variance after Turkey's multiple comparison test. * indicates P<0.05, ** indicates P<0.01, *** indicates P<0.001.
 本開示の一態様は,CD109による気道過敏性及び/又は好酸球性気道炎症を改善する薬剤を有効成分として含有する医薬組成物に関する。
 気道過敏性及び好酸球性気道炎症は,気管支喘息の根幹の病態として特徴付けられる。気道過敏性は,気道・気管が通常の人よりも過敏になっており,気管支収縮が起こりやすい状態をいう。気道過敏性の特徴として,肺気道抵抗性の増加,肺動的コンプライアンスの低下等がみられる。すなわち,これらのパラメータ測定することで気道過敏性の状態を評価できる。肺気道抵抗性について,肺の中を空気が出入りする際の,空気と肺の壁との間に働く粘性によって,空気の流れを阻止しようとする働きが生じ,抵抗が大きい一定の流れを得るのに大きな圧力を必要とする。すなわち,肺気道抵抗性が大きいとは,空気が流れにくいことを意味する。また,肺動的コンプライアンスは,一定の圧変化による肺気量の変化を示す。肺動的コンプライアンスが大きいということは,単位圧変化に対する肺の容積変化が大きいことを示し,肺が膨らみやすいことを示す。
One aspect of the present disclosure relates to a pharmaceutical composition containing as an active ingredient a drug that improves airway hyperresponsiveness and/or eosinophilic airway inflammation caused by CD109.
Airway hyperresponsiveness and eosinophilic airway inflammation are characterized as the underlying pathology of bronchial asthma. Airway hyperresponsiveness is a condition in which the airways and trachea are more sensitive than in a normal person, making bronchoconstriction more likely. Airway hyperresponsiveness is characterized by increased pulmonary airway resistance and decreased pulmonary dynamic compliance. In other words, the state of airway hyperresponsiveness can be evaluated by measuring these parameters. With regard to pulmonary airway resistance, when air moves in and out of the lungs, the viscosity that acts between the air and the lung wall acts to block the flow of air, resulting in a constant flow with high resistance. requires a lot of pressure. In other words, high pulmonary airway resistance means that it is difficult for air to flow. In addition, lung dynamic compliance indicates changes in lung volume due to constant pressure changes. A large lung dynamic compliance indicates a large change in lung volume in response to a unit pressure change, indicating that the lungs are easy to inflate.
 また,好酸球性気道炎性は,生体内における好酸球の数が増加し,気道・気管に炎症を引き起こす状態をいう。好酸球性気道炎症は,生体内における好酸球数の変化を測定することにより評価できる。例えば,肺の一部に生理食塩水等を注入して回収する,気管支肺胞洗浄(BAL:Bronchoalveolar Lavage)を行い,回収したBALにおける好酸球数を計測することにより該評価を行うことができる。 Additionally, eosinophilic airway inflammation is a condition in which the number of eosinophils in the body increases, causing inflammation in the airways and trachea. Eosinophilic airway inflammation can be evaluated by measuring changes in the number of eosinophils in vivo. For example, this evaluation can be performed by performing bronchoalveolar lavage (BAL), which involves injecting and collecting physiological saline into a part of the lung, and measuring the number of eosinophils in the collected BAL. can.
 また,気道過敏性及び好酸球性気道炎症における組織学的変化として,気道周辺の炎症,PAS陽性細胞,気管支壁の厚み,及び/又は気管支周囲の細胞浸潤の増加等がみられる。
 本開示において,気道過敏性及び好酸球性気道炎症は,CD109により制御される。
In addition, histological changes associated with airway hyperresponsiveness and eosinophilic airway inflammation include increased inflammation around the airways, PAS-positive cells, bronchial wall thickness, and/or peribronchial cell infiltration.
In the present disclosure, airway hyperresponsiveness and eosinophilic airway inflammation are regulated by CD109.
 CD109は,グリコシルホスファチジルイノシトール(GPI)に固定された糖タンパク質であり,チオエステル含有タンパク質のα2マクログロブリン/C3,C4,C5ファミリーに属する細胞表面抗原である(Lin,M.et al.Blood 99,1683-1691,(2002).及びMii,S.et al.Pathol Int 69,249-259,(2019).)。CD109の主な機能として,トランスフォーミング増殖因子β(TGF-β)受容体,TGF-β,アクチビン受容体様キナーゼ1(ALK1),及び78-kDaグルコース関連タンパク質(GRP78)に結合することにより,TGF-βを介するシグナルを抑制的に制御することが知られている(Bizet,A.A.et al.Biochim Biophys Acta 1813,742-753,(2011).,Li,C.et al.Biochem J 473,537-547,(2016).,Vorstenbosch,J.et al.J
 Invest Dermatol 137,641-649,d(2017).,及びTsai,Y.L.et al.Proceedings of the National Academy of Sciences of the United States of America 115,E4245-e4254,(2018).)。
CD109 is a glycosylphosphatidylinositol (GPI)-anchored glycoprotein and a cell surface antigen belonging to the α2-macroglobulin/C3, C4, C5 family of thioester-containing proteins (Lin, M. et al. Blood 99, 1683-1691, (2002). and Mii, S. et al. Pathol Int 69, 249-259, (2019).). The main function of CD109 is to bind to the transforming growth factor-β (TGF-β) receptor, TGF-β, activin receptor-like kinase 1 (ALK1), and 78-kDa glucose-related protein (GRP78). It is known to suppress signals mediated by TGF-β (Bizet, A.A. et al. Biochim Biophys Acta 1813, 742-753, (2011)., Li, C. et al. Biochem J 473, 537-547, (2016)., Vorstenbosch, J. et al. J
Invest Dermatol 137, 641-649, d (2017). , and Tsai, Y. L. et al. Proceedings of the National Academy of Sciences of the United States of America 115, E4245-e4254, (2018). ).
 本願実施例に記載されている通り,本発明者らはCD109の存在が気道過敏性及び/又は好酸球性気道炎症を制御することを見出したことから,気道過敏性及び/又は好酸球性気道炎症は,CD109を標的とした処置により改善され得ると考えられる。本開示において,「CD109による気道過敏性及び/又は好酸球性気道炎症を改善する薬剤」とは,CD109による気道過敏性及び/又は好酸球性気道炎症を弱め又は失わせることができる薬剤を意味する。代表的には,CD109阻害剤である。CD109阻害剤としては,CD109 dsRNA又はshRNAなどのsiRNA分子,CD109アンチセンス,抗CD109抗体,又はCD109に対するアプタマーなどを挙げることができる。好ましくは,抗CD109抗体である。 As described in the Examples of this application, the present inventors found that the presence of CD109 controls airway hyperresponsiveness and/or eosinophilic airway inflammation. It is believed that airway inflammation can be improved by treatments targeting CD109. In the present disclosure, "a drug that improves airway hyperresponsiveness and/or eosinophilic airway inflammation caused by CD109" refers to a drug that can weaken or eliminate airway hyperresponsiveness and/or eosinophilic airway inflammation caused by CD109. means. Typically, it is a CD109 inhibitor. Examples of CD109 inhibitors include siRNA molecules such as CD109 dsRNA or shRNA, CD109 antisense, anti-CD109 antibodies, or aptamers for CD109. Preferably it is an anti-CD109 antibody.
 ここで,本開示において「抗体」とは,免疫グロブリン分子の可変領域に位置する,少なくとも1つの抗原認識部位を介して,糖質,ポリヌクレオチド,脂質,抗体等の標的に特異的に結合可能な免疫グロブリン分子である。本開示において,抗体には,完全体のポリクローナル抗体又はモノクローナル抗体だけでなく,それらの断片が含まれる。抗体はその可変領域(特には,CDRs)が結合特性を付与していることが知られており,完全抗体でない抗体断片であってもその結合特性を利用可能であることが当業者に広く知られている。本開示において,抗体の「断片」又は「抗原結合性断片」とは,抗体の一部分(部分断片)を含むタンパク質又はペプチドであって,抗体の抗原への作用(免疫反応性・結合性)を保持するタンパク質又はペプチドを意味する。このような免疫反応性断片としては,例えば,F(ab’),Fab’,Fab,Fab,一本鎖Fv(以下,「scFv」という),(タンデム)バイスペシフィック一本鎖Fv(sc(Fv)),一本鎖トリプルボディ,ナノボディ,ダイバレントVHH,ペンタバレントVHH,ミニボディ,(二本鎖)ダイアボディ,タンデムダイアボディ,バイスペシフィックトリボディ,バイスペシフィックバイボディ,デュアルアフィニティリターゲティング分子(DART),トリアボディ(又はトリボディ),テトラボディ(又は[sc(Fv),若しくは(scFv-SA)),ジスルフィド結合Fv(以下,「dsFv」という),コンパクトIgG,重鎖抗体,又はそれらの重合体を挙げることができる。本開示において,免疫反応性断片は,モノスペシフィック,バイスペシフィック(二重特異性),トリスペシフィック(三重特異性),及びマルチスペシフィック(多重特異性)のいずれであってもよい。また,抗体の断片は,少なくとも約10アミノ酸,少なくとも約25アミノ酸,少なくとも約50アミノ酸,少なくとも約75アミノ酸,少なくとも約100アミノ酸の長さの断片を含んでいてもよい。 Here, in the present disclosure, the term "antibody" refers to the ability to specifically bind to a target such as a carbohydrate, polynucleotide, lipid, or antibody through at least one antigen recognition site located in the variable region of an immunoglobulin molecule. It is an immunoglobulin molecule. In this disclosure, antibodies include whole polyclonal or monoclonal antibodies as well as fragments thereof. It is known that the variable regions (particularly CDRs) of antibodies confer binding properties, and it is widely known to those skilled in the art that even antibody fragments that are not complete antibodies can utilize their binding properties. It is being In the present disclosure, a "fragment" or "antigen-binding fragment" of an antibody is a protein or peptide that includes a part (partial fragment) of an antibody, and is a protein or peptide that has an effect (immunoreactivity/binding ability) on the antigen of the antibody. refers to a protein or peptide that retains Such immunoreactive fragments include, for example, F(ab') 2 , Fab', Fab, Fab 3 , single chain Fv (hereinafter referred to as "scFv"), (tandem) bispecific single chain Fv ( sc(Fv) 2 ), single chain triple body, nanobody, divalent VHH, pentavalent VHH, minibody, (double chain) diabody, tandem diabody, bispecific tribody, bispecific bibody, dual affinity body Targeting molecule (DART), triabody (or tribody), tetrabody (or [sc(Fv) 2 ] 2 , or (scFv-SA) 4 ), disulfide-bonded Fv (hereinafter referred to as "dsFv"), compact IgG, Heavy chain antibodies or polymers thereof can be mentioned. In the present disclosure, immunoreactive fragments may be monospecific, bispecific, trispecific, or multispecific. Fragments of antibodies may also include fragments that are at least about 10 amino acids, at least about 25 amino acids, at least about 50 amino acids, at least about 75 amino acids, or at least about 100 amino acids in length.
 抗体は,IgG,IgA,又はIgM(又はこれらのサブクラス)などの抗体の任意のクラスを含み,特定のクラスである必要は無い。重鎖の定常ドメインの抗体アミノ酸配列により,免疫グロブリンは,異なるクラスに分類される。5つの主な免疫グロブリンのクラス:IgA,IgD,IgE,IgG及びIgMがあり,これらの幾つかは,例えば,IgG1,IgG2,IgG3,IgG4,IgA1及びIgA2というサブクラス(アイソタイプ)にさらに細分化されうる。異なるクラスの免疫グロブリンの対応する重鎖の定常ドメインは,それぞれ,α,δ,ε,γ及びμと呼ばれている。異なるクラスの免疫グロブリンごとのサブユニット構造及び3次元構造は,よく知られている。好ましくは,抗体は,IgG抗体,特にIgG1抗体又はIgG2抗体であってもよく,またヒトIgG抗体であってもよい。 Antibodies include any class of antibody, such as IgG, IgA, or IgM (or subclasses thereof), and need not be of any particular class. Depending on the antibody amino acid sequence of the constant domain of the heavy chain, immunoglobulins are divided into different classes. There are five major immunoglobulin classes: IgA, IgD, IgE, IgG, and IgM, and some of these are further subdivided into subclasses (isotypes), e.g., IgG1, IgG2, IgG3, IgG4, IgA1, and IgA2. sell. The corresponding heavy chain constant domains of different classes of immunoglobulins are called α, δ, ε, γ, and μ, respectively. The subunit structures and three-dimensional structures of different classes of immunoglobulins are well known. Preferably, the antibody may be an IgG antibody, especially an IgG1 or IgG2 antibody, and may also be a human IgG antibody.
 本開示における抗体はモノクローナル抗体又はポリクローナル抗体であることができ,好ましくはモノクローナル抗体である。本開示において,「モノクローナル抗体」は,実質的に均一抗体を産生する細胞集団から得られる抗体のことをいう。すなわち,その細胞集団に含まれる個々の抗体は,若干存在しうる可能性のある天然の突然変異体を除いて同一である。モノクローナル抗体は,単一抗原部位に対するものであり,非常に特異的である。さらに,異なる決定基(エピトープ)を標的とする異なる抗原を含む典型的なポリクローナル抗体とは対照的に,各モノクローナル抗体は,抗原の単一の決定基を標的とするものである。修飾語「モノクローナル」は,実質的に均一な抗体産生細胞集団から得られる抗体の特性を示し,特定の方法による抗体の生産を必要とするものとして解されるべきではない。なお,本開示に従って使用されるモノクローナル抗体は,例えば,米国特許第4,816,567号に記載されるような組換えDNA法により調製されてもよい。また,本開示に従って使用されるモノクローナル抗体は,例えば,McCafferty.et al.Nature,348:552-554(1990)に記載の技術を用いて作成されるファージライブラリーから単離されてもよい。また,本開示に従って使用されるモノクローナル抗体は,G.KOHLER&C.MILSTEIN.Nature,256:495-497(1975)に記載されるハイブリドーマ法を参照して調製されてもよい。 The antibodies in the present disclosure can be monoclonal antibodies or polyclonal antibodies, and are preferably monoclonal antibodies. In this disclosure, "monoclonal antibody" refers to an antibody obtained from a cell population that produces substantially homogeneous antibodies. That is, the individual antibodies contained in the cell population are identical except for some possible natural mutants. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to typical polyclonal antibodies, which include different antigens that target different determinants (epitopes), each monoclonal antibody targets a single determinant on the antigen. The modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibody-producing cells, and is not to be construed as requiring production of the antibody by any particular method. It should be noted that monoclonal antibodies used in accordance with the present disclosure may be prepared by recombinant DNA methods, such as those described in US Pat. No. 4,816,567. Monoclonal antibodies used in accordance with the present disclosure may also be used, for example, by McCafferty. et al. Nature, 348:552-554 (1990). Monoclonal antibodies used in accordance with the present disclosure may also be used in accordance with the present disclosure. KOHLER&C. MILSTEIN. It may be prepared with reference to the hybridoma method described in Nature, 256:495-497 (1975).
 本開示における抗体はキメラ抗体,ヒト化抗体,完全ヒト抗体,又はヒト以外の任意の治療対象の動物に適合させた動物化抗体であることができる。ヒト以外の任意の治療対象の動物としては,例えば,マウス,ラット,ハムスター,モルモット,ウサギ,イヌ,サル,ヒツジ,ヤギ,ラクダ,ニワトリ,アヒル等を挙げることができ,好ましくは,マウス,ラット又はウサギである。抗体がヒト型キメラ抗体の場合,例えば,Morrison,S.L.Proc.Natl.Acad.Sci.USA,81,6851-6855(1984)を参照して該抗体を作製することができる。本開示の抗体がヒト化抗体の場合,例えば,L.Rieohmannet al.Nature,332,323-7(1988);Kettleborough,C.A.et al.Protein Eng,4,773-783(1991);及びClark M.Immunol.Today,21,397-402(2000)を参照して該抗体を作製することができる。 The antibodies in this disclosure can be chimeric antibodies, humanized antibodies, fully human antibodies, or animalized antibodies adapted to any non-human animal to be treated. Examples of animals other than humans to be treated include mice, rats, hamsters, guinea pigs, rabbits, dogs, monkeys, sheep, goats, camels, chickens, ducks, etc., and preferably mice and rats. Or a rabbit. When the antibody is a human chimeric antibody, see, for example, Morrison, S. et al. L. Proc. Natl. Acad. Sci. The antibody can be produced with reference to USA, 81, 6851-6855 (1984). When the antibody of the present disclosure is a humanized antibody, for example, L. Rieohmannet al. Nature, 332, 323-7 (1988); Kettleborough, C. A. et al. Protein Eng, 4, 773-783 (1991); and Clark M. Immunol. The antibody can be produced with reference to Today, 21, 397-402 (2000).
 したがって,本開示における「CD109による気道過敏性及び/又は好酸球性気道炎症を改善する薬剤」は,抗CD109モノクローナル抗体であってもよく,具体的には,抗CD109マウスモノクローナル抗体であってもよい。抗CD109マウスモノクローナル抗体は,例えば,抗原で免疫した非ヒト動物から得られる抗体産生細胞とミエローマ細胞との細胞融合によりハイブリドーマを作製し,得られるハイブリドーマから目的の抗体(すなわち,抗CD109マウスモノクローナル抗体)を産生するものを選択し,選択されたハイブリドーマに抗体を産生させることによって得ることができる。 Therefore, the "drug that improves airway hyperresponsiveness and/or eosinophilic airway inflammation caused by CD109" in the present disclosure may be an anti-CD109 monoclonal antibody, and specifically, an anti-CD109 mouse monoclonal antibody. Good too. Anti-CD109 mouse monoclonal antibodies can be prepared by, for example, producing hybridomas by cell fusion of antibody-producing cells obtained from non-human animals immunized with antigens and myeloma cells, and then producing the desired antibody (i.e., anti-CD109 mouse monoclonal antibodies) from the resulting hybridomas. ) can be obtained by selecting hybridomas that produce antibodies and allowing the selected hybridomas to produce antibodies.
 より具体的には,まず,抗原(免疫原)を非ヒト動物に投与する。非ヒト動物は,例えば,マウス,ラット,ハムスター,モルモット,ウサギ,イヌ,サル,ヒツジ,ヤギ,ラクダ,ニワトリ等を挙げることができ,好ましくは,マウス,ラット又はウサギである。 More specifically, first, an antigen (immunogen) is administered to a non-human animal. Non-human animals include, for example, mice, rats, hamsters, guinea pigs, rabbits, dogs, monkeys, sheep, goats, camels, chickens, etc., and are preferably mice, rats, or rabbits.
 免疫原としては,非ヒト動物において本開示の抗CD109抗体を産生し得る免疫原であれば特に制限はなく,タンパク質,タンパク質断片,融合タンパク質等を始めとするポリペプチド又はペプチドであってもよい。一例として,免疫原はCD109のエピトープを含んでいてもよい。また,抗原を単独で投与してもよいし,アジュバント,担体又は希釈剤とともに投与してもよい。アジュバントとしては,完全フロイントアジュバント,不完全フロイントアジュバント,又は水酸化アルミニウム等の任意のアジュバントを使用することができる。 The immunogen is not particularly limited as long as it can produce the anti-CD109 antibody of the present disclosure in non-human animals, and may be polypeptides or peptides including proteins, protein fragments, fusion proteins, etc. . As an example, the immunogen may include an epitope of CD109. Furthermore, the antigen may be administered alone or together with an adjuvant, carrier, or diluent. Any adjuvant can be used as the adjuvant, such as complete Freund's adjuvant, incomplete Freund's adjuvant, or aluminum hydroxide.
 免疫原の投与経路(免疫経路)としては,腹腔内投与,静脈内投与,経鼻投与,皮下投与,皮内投与,経肺投与,直腸内投与等の任意の経路が挙げられる。非ヒト動物に対する免疫(抗原投与)の回数は,単回であっても複数回(例えば,2回,3回,4回又は5回以上)であってもよいが,複数回行うことが好ましい。なお,複数回免疫する場合は,例えば,1-5,6週間に1回の頻度で繰り返し投与してもよい。また,複数回免疫する場合,投与経路は同一であってもよいが,2種以上の投与経路を組み合わせてもよい。また,1回の免疫で投与する免疫原の量は,使用する非ヒト動物によって適宜設定することができ,例えば,非ヒト動物1匹あたり1-1000μgであってもよい。 The route of administration of the immunogen (immunization route) includes any route such as intraperitoneal administration, intravenous administration, nasal administration, subcutaneous administration, intradermal administration, transpulmonary administration, and intrarectal administration. The number of immunizations (antigen administration) to non-human animals may be single or multiple times (e.g., 2, 3, 4, or 5 or more times), but it is preferable to immunize the non-human animal multiple times. . In addition, when immunizing multiple times, the administration may be repeated, for example, once every 1 to 5 or 6 weeks. Furthermore, when immunizing multiple times, the administration route may be the same, or two or more administration routes may be combined. Further, the amount of immunogen administered in one immunization can be appropriately determined depending on the non-human animal used, and may be, for example, 1-1000 μg per non-human animal.
 次いで,非ヒト動物から抗体産生細胞を回収する。抗体産生細胞としては,例えば,脾細胞,リンパ節細胞,末梢リンパ球等が挙げられる。抗体産生細胞を回収する時期は,任意に設定することができ,例えば,最終の免疫原投与から1-7日後であってもよい。 Next, antibody-producing cells are collected from the non-human animal. Examples of antibody-producing cells include splenocytes, lymph node cells, peripheral lymphocytes, and the like. The time to collect antibody-producing cells can be set arbitrarily, and may be, for example, 1 to 7 days after the final administration of the immunogen.
 その後,抗体産生細胞とミエローマ細胞とを細胞融合し,ハイブリドーマを作製する。細胞融合の方法としては,例えば,ポリエチレングリコール(PEG)を用いる方法,電気パルス法等が挙げられる。細胞融合に使用可能なミエローマ細胞としては,例えば,P3-X63Ag8-U1(P3-U1),SP2/0-Ag14(SP2/0),P3-X63-Ag8653(653),P3-X63-Ag8(X63),P3/NS1/1-Ag4-1(NS1)等が挙げられる。 Then, the antibody-producing cells and myeloma cells are fused to create a hybridoma. Examples of cell fusion methods include a method using polyethylene glycol (PEG), an electric pulse method, and the like. Myeloma cells that can be used for cell fusion include, for example, P3-X63Ag8-U1 (P3-U1), SP2/0-Ag14 (SP2/0), P3-X63-Ag8653 (653), P3-X63-Ag8 ( X63), P3/NS1/1-Ag4-1 (NS1), and the like.
 その後,モノクローナル抗体産生ハイブリドーマのスクリーニングは,ELISA法,ウエスタンブロット法,フローサイトメトリー法等の公知の方法で行うことができる。
 本開示において,一般的なタンパク質定量法であるDot plot法を用いて特異抗体のスクリーニングを行い,最も反応閾値が低いクローンからタンパクを抽出・精製することで当該抗体を得てもよい。なお,Dot plot法とは,タンパク質を電気泳動などにより分離することなくニトロセルロース膜等の膜に固定し,酵素標識抗体などでタンパク質量を特異的に定量する方法であるが,例えば,本法は,抗体の結合能力をスクリーニングするため等にも用いられてもよい。
Thereafter, screening for monoclonal antibody-producing hybridomas can be performed using known methods such as ELISA, Western blotting, and flow cytometry.
In the present disclosure, the antibody may be obtained by screening for a specific antibody using the Dot plot method, which is a general protein quantitative method, and extracting and purifying the protein from a clone with the lowest reaction threshold. Note that the Dot plot method is a method in which proteins are immobilized on a membrane such as a nitrocellulose membrane without being separated by electrophoresis, and the amount of protein is specifically quantified using an enzyme-labeled antibody. may also be used to screen the binding ability of antibodies.
 このようにして得られる標的抗原特異的モノクローナル抗体産生ハイブリドーマを細胞培養することにより,標的抗原特異的モノクローナル抗体(すなわち,抗CD109マウスモノクローナル抗体)を,大量に調製することができる。 By culturing the target antigen-specific monoclonal antibody-producing hybridoma thus obtained, a target antigen-specific monoclonal antibody (ie, anti-CD109 mouse monoclonal antibody) can be prepared in large quantities.
 本開示の一態様においては,抗CD109マウスモノクローナル抗体は,CD109のエピトープの一つであるアミノ酸配列「RKYQPNIDVQESIH」(配列番号1)に対するモノクローナル抗体であってもよい。 In one aspect of the present disclosure, the anti-CD109 mouse monoclonal antibody may be a monoclonal antibody directed against the amino acid sequence "RKYQPNIDVQESIH" (SEQ ID NO: 1), which is one of the epitopes of CD109.
 ある実施態様において,抗体は,1つ以上の定常領域を含む。定常領域は,重鎖の定常領域及び/又は軽鎖の定常領域であり得る。抗体は,ヒトの定常領域に対して少なくとも約80%,少なくとも約85%,少なくとも約90%,少なくとも約95%,少なくとも約98%,又は100%の同一性を有する定常領域を含んでいてもよい。抗体は,Fc領域,例えば,ヒトのFc領域を含んでいてもよい。抗体は,ヒトのFc領域に対して少なくとも約80%,少なくとも約85%,少なくとも約90%,少なくとも約95%,少なくとも約98%,又は100%の同一性を有するFc領域を含んでいてもよい。 In some embodiments, the antibody includes one or more constant regions. The constant region can be a heavy chain constant region and/or a light chain constant region. The antibody may comprise a constant region that has at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, or 100% identity to a human constant region. good. The antibody may include an Fc region, eg, a human Fc region. The antibody may comprise an Fc region that has at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 98%, or 100% identity to a human Fc region. good.
 本開示において用いられる抗体は,標的分子に特異的に結合する。本開示において用いられる抗体の抗原への結合親和性としては,1×10-5M未満,5×10-5M未満,1×10-6M未満,5×10-7M未満,1×10-7M未満,5×10-8M未満,1×10-8M未満,5×10-9M未満,1×10-9M未満,5×10-10M未満,1×10-10M未満,5×10-11M未満又は1×10-11M未満の解離定数(即ち,Kd)を有する親和性が挙げられる。解離定数はまた,1×10-15M以上,5×10-15M以上,1×10-14M以上,5×10-14M以上,1×10-13M以上,5×10-13M以上,1×10-12M以上,5×10-12M以上,1×10-11M以上,5×10-11M以上,1×10-10M以上,又は5×10-10M以上であってもよい。親和性を決定するための方法は,当該技術分野で知られている。例えば,結合親和性は,BIAcoreバイオセンサー,KinExAバイオセンサー,シンチレーション近接アッセイ,ELISA,ORIGEN免疫測定法(IGEN社),蛍光消光,蛍光転移,及び/又は酵母ディスプレイを使用して決定してもよい。親和性は,適切なバイオアッセイを用いてスクリーニングされてもよい。 Antibodies used in this disclosure specifically bind to target molecules. The binding affinity of the antibody used in the present disclosure to the antigen is less than 1×10 −5 M, less than 5×10 −5 M, less than 1×10 −6 M, less than 5×10 −7 M, 1× Less than 10 -7 M, less than 5 x 10 -8 M, less than 1 x 10 -8 M, less than 5 x 10 -9 M, less than 1 x 10 -9 M, less than 5 x 10 -10 M, 1 x 10 - Affinities having dissociation constants (ie, Kd) of less than 10 M, less than 5×10 −11 M, or less than 1×10 −11 M are included. The dissociation constant is also 1×10 −15 M or more, 5×10 −15 M or more, 1×10 −14 M or more, 5×10 −14 M or more, 1×10 −13 M or more, 5×10 −13 M or more, 1 x 10 -12 M or more, 5 x 10 -12 M or more, 1 x 10 -11 M or more, 5 x 10 -11 M or more, 1 x 10 -10 M or more, or 5 x 10 -10 M It may be more than that. Methods for determining affinity are known in the art. For example, binding affinity may be determined using a BIAcore biosensor, KinExA biosensor, scintillation proximity assay, ELISA, ORIGEN immunoassay (IGEN), fluorescence quenching, fluorescence transfer, and/or yeast display. . Affinity may be screened using appropriate bioassays.
 本開示中に記載される抗体は修飾されていてもよく,このような修飾の例としては,該抗体の特性に著しく影響を与えない,機能的に等価な抗体及び増強もしくは減弱された活性を有する変異体が挙げられる。抗体の修飾は,当該技術分野においてルーチン操作であり,本開示中に詳細に記載される必要はない。修飾の例は,アミノ酸残基の保存的置換,著しく機能活性を悪化させない1以上のアミノ酸の挿入,付加,若しくは欠失,又は化学的類似体の使用を含む。 The antibodies described in this disclosure may be modified; examples of such modifications include functionally equivalent antibodies and enhanced or attenuated activities that do not significantly affect the properties of the antibody. Examples include mutants with Modification of antibodies is a routine procedure in the art and need not be described in detail in this disclosure. Examples of modifications include conservative substitutions of amino acid residues, insertions, additions, or deletions of one or more amino acids that do not significantly impair functional activity, or the use of chemical analogs.
 保存的置換は,アミノ酸残基を,類似の側鎖をもつアミノ酸残基で置換することである。類似の側鎖をもつアミノ酸残基のファミリーには以下のものが含まれる:塩基性側鎖を有するアミノ酸(例えば,リシン,アルギニン,ヒスチジン),酸性側鎖を有するアミノ酸(例えば,アスパラギン酸,グルタミン酸),非荷電極性側鎖を有するアミノ酸(例えば,グリシン,アスパラギン,グルタミン,セリン,トレオニン,チロシン,システイン),非極性側鎖を有するアミノ酸(例えば,アラニン,バリン,ロイシン,イソロイシン,プロリン,フェニルアラニン,メチオニン,トリプトファン),β-分枝側鎖を有するアミノ酸(例えば,トレオニン,バリン,イソロイシン),及び芳香族側鎖を有するアミノ酸(例えば,チロシン,フェニルアラニン,トリプトファン,ヒスチジン)。 A conservative substitution is the replacement of an amino acid residue with an amino acid residue with a similar side chain. Families of amino acid residues with similar side chains include: amino acids with basic side chains (e.g., lysine, arginine, histidine), amino acids with acidic side chains (e.g., aspartic acid, glutamic acid). ), amino acids with uncharged polar side chains (e.g. glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), amino acids with nonpolar side chains (e.g. alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), amino acids with β-branched side chains (eg, threonine, valine, isoleucine), and amino acids with aromatic side chains (eg, tyrosine, phenylalanine, tryptophan, histidine).
 アミノ酸配列の挿入又は付加は,アミノ末端及び/又はカルボキシル末端へのアミノ酸の付加,及び単一又は複数のアミノ酸残基の配列内のへ挿入を含む。末端の挿入の例は,N末端メチオニル残基を有する抗体又はエピトープタグに融合した抗体を含む。抗体分子の他の挿入変異体は,抗体のN末端又はC末端への,抗体の血清半減期を延長させる酵素もしくは抗体の融合を含む。 Insertions or additions of amino acid sequences include additions of amino acids to the amino and/or carboxyl termini, and insertions of single or multiple amino acid residues within the sequence. Examples of terminal insertions include antibodies with an N-terminal methionyl residue or antibodies fused to epitope tags. Other insertional variants of antibody molecules include fusions of enzymes or antibodies to the N-terminus or C-terminus of the antibody that increase the serum half-life of the antibody.
 置換的変異導入によって最も効果が得られる部位にはCDRが含まれるが,FRの変更も意図される。
 非保存的置換は,これらのクラスの1つのメンバーを他のクラスと交換することによりなされる。より保存的な置換は,あるクラスの1メンバーを同一クラスの他のメンバーと交換することを含む。可変領域におけるアミノ酸置換は,結合親和性及び/又は特異性を変化させることができる。例えば,1~5個以下の保存的なアミノ酸置換がCDRドメイン内でなされる。
Sites where substitutional mutagenesis is most effective include CDRs, but changes in FRs are also contemplated.
Non-conservative substitutions are made by exchanging a member of one of these classes with another. More conservative substitutions involve exchanging one member of a class with another member of the same class. Amino acid substitutions in the variable region can alter binding affinity and/or specificity. For example, no more than 1-5 conservative amino acid substitutions are made within a CDR domain.
 本開示に記載された抗体は,グリコシル化及び非グリコシル化抗体,ならびに,例えば,異なる糖でのグリコシル化,アセチル化,及びリン酸化などの他の翻訳後修飾を有する抗体も含む。抗体は,それらの定常領域における保存された位置でグリコシル化される。 The antibodies described in this disclosure also include glycosylated and non-glycosylated antibodies, as well as antibodies with other post-translational modifications, such as glycosylation on different sugars, acetylation, and phosphorylation. Antibodies are glycosylated at conserved positions in their constant regions.
 本開示において,CD109による気道過敏性及び/又は好酸球性気道炎症の制御は,Th2細胞により分泌させるサイトカイン(Th2サイトカイン)の産生が関与していてもよい。すなわち,本開示において,気道過敏性及び/又は好酸球性気道炎症の改善は,Th2細胞により分泌させるサイトカイン(Th2サイトカイン)の産生抑制に起因していてもよい。Th2サイトカインとしては,例えば,IL-4,IL-5,IL-13,IL-33等が挙げられる。 In the present disclosure, the control of airway hyperresponsiveness and/or eosinophilic airway inflammation by CD109 may involve the production of cytokines secreted by Th2 cells (Th2 cytokines). That is, in the present disclosure, improvement of airway hyperresponsiveness and/or eosinophilic airway inflammation may be due to suppression of production of cytokines secreted by Th2 cells (Th2 cytokines). Examples of Th2 cytokines include IL-4, IL-5, IL-13, IL-33, and the like.
 また,本開示において,気道過敏性及び/又は好酸球性気道炎症の改善は,RUNX3の活性化に起因していてもよい。RUNX3は,Runtファミリー転写因子に属するタンパク質である。RUNX3は,Smad2/3と共役して,TGF-βに関与することが知られている。したがって,本開示において,気道過敏性及び/又は好酸球性気道炎症の改善は,Smad2/3のリン酸化に起因していてもよい。 Furthermore, in the present disclosure, improvement of airway hyperresponsiveness and/or eosinophilic airway inflammation may be due to activation of RUNX3. RUNX3 is a protein belonging to the Runt family of transcription factors. RUNX3 is known to be conjugated with Smad2/3 and involved in TGF-β. Therefore, in the present disclosure, improvement of airway hyperresponsiveness and/or eosinophilic airway inflammation may be due to phosphorylation of Smad2/3.
 よって,本開示における医薬組成物は,RUNX3を活性化させる作用,及びSmad2/3をリン酸化させる作用を有していてもよい。
 また,本開示の医薬組成物は,必要に応じて医薬的に許容される添加物を含んでいてもよい。「医薬的に許容される添加物」は,有効成分と組み合わせた場合に,その有効成分が生物活性を維持可能であり,送達された際に被験体の免疫系と非反応性であり,被験体に対して無毒性である任意の材料を含む。例として,リン酸緩衝食塩水,水,油/水エマルジョン等のエマルジョン,及び様々な種類の湿潤剤などのあらゆる標準的な医薬の担体が含まれるが,これらに限定されるものではない。噴霧投与又は非経口投与のための好ましい希釈剤は,リン酸緩衝食塩水又は生理食塩水(0.9%)である。
Therefore, the pharmaceutical composition of the present disclosure may have an effect of activating RUNX3 and an effect of phosphorylating Smad2/3.
Furthermore, the pharmaceutical composition of the present disclosure may contain pharmaceutically acceptable additives as necessary. A "pharmaceutically acceptable excipient" is one that, when combined with an active ingredient, allows the active ingredient to remain biologically active, is non-reactive with the subject's immune system when delivered, and Contains any material that is non-toxic to the body. Examples include, but are not limited to, all standard pharmaceutical carriers such as phosphate buffered saline, water, emulsions such as oil/water emulsions, and wetting agents of various types. A preferred diluent for nebulized or parenteral administration is phosphate buffered saline or saline (0.9%).
 投与対象は,ヒト,ラット,マウス,ウシ,ウマ,イヌ,ネコ,ブタ,ヒツジなどの哺乳動物を含み,好ましくは,ヒトである。
 本開示の医薬組成物は,患者に投与することができる製剤であれば経口又は非経口のいかなる製剤を採用してもよい。非経口投与のための組成物としては,例えば,注射剤,点鼻剤等を挙げることができる。好ましくは,点鼻剤である。本開示の医薬組成物の剤形は,例えば,液剤を挙げることができる。
Targets for administration include mammals such as humans, rats, mice, cows, horses, dogs, cats, pigs, and sheep, and preferably humans.
The pharmaceutical composition of the present disclosure may be in any oral or parenteral formulation as long as it can be administered to a patient. Examples of compositions for parenteral administration include injections, nasal drops, and the like. Preferably, it is a nasal spray. The dosage form of the pharmaceutical composition of the present disclosure can include, for example, a liquid preparation.
 本開示の医薬組成物を投与するための有効用量及びスケジュールは,経験的に決定され,そのような決定方法は当該技術分野の技術常識の範囲内である。当業者であれば,投与すべき本開示の医薬組成物の用量が,例えば,本開示の医薬組成物を接種する哺乳動物,投与経路,使用する薬剤の具体的な種類等に依存して変わることを理解するであろう。本開示の医薬組成物1日当たりの典型的な投与量は,例えば1日当たり約1μg/体重kgから100mg/体重kg又はそれ以上までの範囲であってもよい。一般に,以下のいずれの投与量が使用されてもよい:少なくとも約50mg/体重kg;少なくとも約10mg/体重kg;少なくとも約3mg/体重kg;少なくとも約1mg/体重kg;少なくとも約750μg/体重kg;少なくとも約500μg/体重kg;少なくとも約250μg/体重kg;少なくとも約100μg/体重kg;少なくとも約50μg/体重kg;少なくとも約10μg/体重kg;少なくとも約1μg/体重kgの投与量,又はこれを上回る投与量が投与される。 Effective doses and schedules for administering the pharmaceutical compositions of the present disclosure can be determined empirically, and methods for such determination are within the common general knowledge in the art. Those skilled in the art will appreciate that the dose of the pharmaceutical composition of the present disclosure to be administered will vary depending on, for example, the mammal receiving the pharmaceutical composition of the present disclosure, the route of administration, the specific type of drug used, etc. You will understand that. A typical daily dosage of a pharmaceutical composition of the present disclosure may range, for example, from about 1 μg/kg body weight to 100 mg/kg body weight or more per day. Generally, any of the following dosages may be used: at least about 50 mg/kg body weight; at least about 10 mg/kg body weight; at least about 3 mg/kg body weight; at least about 1 mg/kg body weight; at least about 750 μg/kg body weight; At least about 500 μg/kg body weight; At least about 250 μg/kg body weight; At least about 100 μg/kg body weight; At least about 50 μg/kg body weight; At least about 10 μg/kg body weight; At least about 1 μg/kg body weight, or more. amount is administered.
 また,本開示の一態様は,CD109を欠損させた対象由来の樹状細胞であって,気道過敏性及び/又は好酸球性気道炎症を改善するために用いられる樹状細胞に関する。本開示の樹状細胞は,様々な組織(例えば,肺,骨髄等)に由来するものであってもよい。また,本開示において,対象とは,ヒト,又はラット,マウスその他の哺乳動物であってもよい。 Further, one aspect of the present disclosure relates to dendritic cells derived from a subject deficient in CD109, which are used to improve airway hyperresponsiveness and/or eosinophilic airway inflammation. Dendritic cells of the present disclosure may be derived from various tissues (eg, lung, bone marrow, etc.). Furthermore, in the present disclosure, the subject may be a human, a rat, a mouse, or other mammal.
 ここで,樹状細胞の標準的なサブセットとして,DC1sとDC2sとに分類されることが知られている。これらは,古典的樹状細胞(すなわち,cDC1s及びcDC2s)とも表現される。CD109は,アレルゲンの曝露により,樹状細胞(cDC2s),選択的に誘導される。なお,CD109は,アレルゲンの曝露により,cDC2sに加えて2型自然リンパ球,B細胞においても選択的に誘導される。 Here, it is known that dendritic cells are classified into DC1s and DC2s as standard subsets. These are also described as classical dendritic cells (ie, cDC1s and cDC2s). CD109 is selectively induced in dendritic cells (cDC2s) by allergen exposure. Note that CD109 is selectively induced in type 2 innate lymphocytes and B cells in addition to cDC2s by exposure to allergens.
 さらに,cDC2sサブセットにおける新たな分類として,近年,転写因子の発現パターンに基づいて,cDCs2aとcDCs2bとに分類されている。cDCs2aは,RUNX3及びT-betの高い発現を伴う,抗炎症系のサブセットであり,cDCs2bは,RORγtの高い発現を伴う,炎症保護系のサブセットである。CD109を欠損させた対象由来のcDC2sはcDCs2aと同様の発現パターンを示すことから,CD109を欠損させた対象由来のcDC2sは抗炎症系のサブセットであると考えられた。 Furthermore, as a new classification of the cDC2s subset, in recent years, it has been classified into cDCs2a and cDCs2b based on the expression pattern of transcription factors. cDCs2a are a subset of the anti-inflammatory system with high expression of RUNX3 and T-bet, and cDCs2b are a subset of the inflammatory protective system with high expression of RORγt. Since cDC2s derived from subjects deficient in CD109 showed an expression pattern similar to that of cDCs2a, cDC2s derived from subjects deficient in CD109 were considered to be a subset of the anti-inflammatory system.
 また,遺伝子プロファイルとして,CD109を欠損させた対象由来のcDC2sは,対照(例えば,CD109を欠いていない対象由来のcDC2s)と比較して,エオタキシン及びTh2関連サイトカインの発現の低下がみられ,Th1関連サイトカインの発現の増加が得られる。エオタキシンとしては,例えば,CCL24及びCCL26等が挙げられる。Th2としては,IL-4,IL-5,IL-13,及びIL-33等が挙げられる。Th1関連サイトカインとしては,IL-18,IL-12,及びCXCL9等が挙げられる。 In addition, as for the genetic profile, cDC2s derived from subjects deficient in CD109 have decreased expression of eotaxin and Th2-related cytokines, and Th1 Increased expression of relevant cytokines is obtained. Examples of eotaxin include CCL24 and CCL26. Examples of Th2 include IL-4, IL-5, IL-13, and IL-33. Th1-related cytokines include IL-18, IL-12, and CXCL9.
 また,樹状細胞は,適応応答を開始して,T細胞の活性化及び分化を誘導することが知られている。本開示において,例えば,cDC2sは,ナイーブT細胞と共発現させることにより,サイトカインが誘導される。そのようなサイトカインとしては,例えば,IL-6,IL-13,IL-17A,TNF,IFN-γ等が挙げられる。そして,CD109を欠損させた対象由来のcDC2sは,例えば,CD109を欠いていない対象由来のcDC2sと比較して,該サイトカインの発現の低下がみられる。 It is also known that dendritic cells initiate adaptive responses and induce T cell activation and differentiation. In the present disclosure, for example, cytokines are induced by co-expressing cDC2s with naive T cells. Examples of such cytokines include IL-6, IL-13, IL-17A, TNF, and IFN-γ. In addition, cDC2s derived from a subject deficient in CD109 exhibit reduced expression of the cytokine, for example, compared to cDC2s derived from a subject not deficient in CD109.
 本開示の樹状細胞は,様々な用途に用いられてもよい。例えば,樹状細胞(例えば,cDC2s)は,移入するために用いられてもよい。また,樹状細胞(例えば,cDC2s)は,有効成分として薬剤に含まれていてもよい。 The dendritic cells of the present disclosure may be used for various purposes. For example, dendritic cells (eg, cDC2s) may be used for transfer. Furthermore, dendritic cells (eg, cDC2s) may be included in the drug as an active ingredient.
 以下,本開示をより詳細に説明するため実施例を示すが,本開示はこれに限定されるものではない。なお,本願全体を通して引用される全文献は参照によりそのまま本願に組み込まれる。 Hereinafter, examples will be shown to explain the present disclosure in more detail, but the present disclosure is not limited thereto. Furthermore, all documents cited throughout this application are incorporated into this application as is by reference.
 <実験方法>
 (1)実験に使用したマウス
 雌性のC57BL/6マウス及びBALB/cマウス(8-10週齢)を日本エスエルシー株式会社(静岡,日本)から購入し,OVA特異的T細胞受容体(TCR)トランスジェニックマウス(OT-II)を熊本大学動物資源開発研究施設(熊本,日本)から購入した。既報(Mii,S.et al.Am J Pathol 181,1180-1189,(2012).)に従い,CD109を欠くCD109-/-マウスを生成した。CD109-/-マウス及びOT-IIマウスは,Institutional Animal Care and Use Committee(29-045)により承認されたプロトコルに基づき,浜松医科大学における発明者の研究室にて飼育された。
<Experimental method>
(1) Mice used in the experiment Female C57BL/6 mice and BALB/c mice (8-10 weeks old) were purchased from Japan SLC Co., Ltd. (Shizuoka, Japan), and OVA-specific T cell receptor (TCR) ) Transgenic mice (OT-II) were purchased from Kumamoto University Animal Resources Development Research Institute (Kumamoto, Japan). CD109 −/− mice lacking CD109 were generated according to a previous report (Mii, S. et al. Am J Pathol 181, 1180-1189, (2012).). CD109 −/− mice and OT-II mice were bred in the inventor's laboratory at Hamamatsu University School of Medicine according to protocols approved by the Institutional Animal Care and Use Committee (29-045).
 (2)気管支喘息モデルマウスの作成と気道過敏性の測定
 実験初日にマウスに50μgのダニ抗原HDM(Dermatophagoides.Pteronyssinus,Greer Labratories社,XPB82D3A2.5)を,及び実験8日目,13日目に10μgのHDMを鼻腔内(i.n.)から感作させた。
(2) Creation of bronchial asthma model mice and measurement of airway hyperresponsiveness Mice were given 50 μg of tick antigen HDM (Dermatophagoides. Pteronyssinus, Greer Laboratories, XPB82D3A2.5) on the first day of the experiment, and on the 8th and 13th days of the experiment. Sensitization was performed intranasally (i.n.) with 10 μg of HDM.
 後述する実施例6において,HDMチャレンジの前日に,抗マウスCD109モノクローナル抗体(i.n.,5μg/マウス,抗CD109抗体,クローン4A13,Abmart社)又はIgGアイソタイプ(FUJIFILM社,140-09511)をマウスに処置した。抗マウスCD109モノクローナル抗体は,CD109のエピトープであるアミノ酸配列「RKYQPNIDVQESIH」(配列番号1)に対するモノクローナル抗体として,Abmart社にて設計,調製された。OVAモデルにおいて,マウスは,実験1日目,8日目にOVA(50μg,Sigma-Aldrch社,セントルイス,ミズーリ州)及びAlum(2mg,Thermo Fischer Scientific,イリノイ州)を用いて腹腔内から免疫化し,経鼻より実験19-21日目にOVA50μgを用いてチャレンジした。HDMチャレンジの2日後,及びOVAチャレンジの1日後に,ケタミン(10mg/ml)及びキシラジン(1mg/ml)を300μl,i.p.注射することでマウスを麻酔した。気道の抵抗性及び肺動的コンプライアンスは,既報(Galle-Treger,L.et al.Nature communications 7,(2016).,Suzuki,Y.et al.The Journal of allergy and clinical immunology 137,1382-1389.(2016).,及びSuzuki,Y.et al.Autophagy,1-13(2022))の修正版に従って,マウスが機械的に換気されるFine Pointe RC system(Buxco Research Systems社)を用いて測定した。マウスに対して,エアロゾル化したPBS(ベースライン),濃度を段階的に増加させたメサコリン(2.5mg/ml,5.0mg/ml,10mg/ml,20mg/ml,40mg/ml;Sigma-Aldrich社,A2251)を順次チャレンジした。R及びCdynの値は,各メサコリンのチャレンジの後3分間記録された。 In Example 6 described below, anti-mouse CD109 monoclonal antibody (in., 5 μg/mouse, anti-CD109 antibody, clone 4A13, Abmart) or IgG isotype (FUJIFILM, 140-09511) was administered the day before HDM challenge. Mice were treated. The anti-mouse CD109 monoclonal antibody was designed and prepared by Abmart as a monoclonal antibody against the amino acid sequence "RKYQPNIDVQESIH" (SEQ ID NO: 1), which is an epitope of CD109. In the OVA model, mice were immunized intraperitoneally with OVA (50 μg, Sigma-Aldrch, St. Louis, MO) and Alum (2 mg, Thermo Fischer Scientific, IL) on experimental days 1 and 8. The mice were challenged intranasally with 50 μg of OVA on days 19 to 21 of the experiment. Two days after HDM challenge and one day after OVA challenge, 300 μl of ketamine (10 mg/ml) and xylazine (1 mg/ml) were administered i.p. p. Mice were anesthetized by injection. Airway resistance and pulmonary dynamic compliance have been previously reported (Galle-Treger, L. et al. Nature communications 7, (2016)., Suzuki, Y. et al. The Journal of allergy and clinical i mmunology 137, 1382-1389 (2016)., and Suzuki, Y. et al. Autophagy, 1-13 (2022)), the mice were mechanically ventilated using a Fine Point RC system (Buxco Research Systems). did. Mice were treated with aerosolized PBS (baseline), increasing concentrations of methacholine (2.5 mg/ml, 5.0 mg/ml, 10 mg/ml, 20 mg/ml, 40 mg/ml; Sigma- Aldrich, A2251) were successively challenged. R L and C dyn values were recorded for 3 minutes after each methacholine challenge.
 (3)気管支肺胞洗浄(BAL)液の回収及び肺の組織学検査
 気道過敏性を測定した後,既報(Galle-Treger,L.et al.Nature communications 7,(2016).,Suzuki,Y.et
 al.The Journal of allergy and clinical immunology 137,1382-1389,(2016).,及びSuzuki,Y.et al.Autophagy,1-13,(2022))に従い,BAL細胞を取得した。また,肺組織切片及び肺溶解物を得て,定量化した。いくつかの実験では,肺組織及び肺溶解物は,RNA安定化試薬(Qiagen社,バレンシア,カリフォルニア州,米国)に保存した。具体的には,気道過敏性の測定後,気管にカニューレを挿入し,肺を1mlのPBSで3回洗浄して,BAL細胞を収集した。肺の経心的灌流を冷PBSを用いて実施し,続いて肺をPBSで緩衝化した4%パラホルムアルデヒドで組織学検査のために固定した。固定後,肺をパラフィン包埋し,4μmの切片に切断し,ヘマトキシリン及びエオシン(HE)及び過ヨウ素酸シッフ(PAS)で染色した。
(3) Collection of bronchoalveolar lavage (BAL) fluid and histological examination of the lungs After measuring airway hyperresponsiveness, a test was performed as previously reported (Galle-Treger, L. et al. Nature communications 7, (2016)., Suzuki, Y. .et
al. The Journal of allergy and clinical immunology 137, 1382-1389, (2016). , and Suzuki, Y. et al. BAL cells were obtained according to Autophagy, 1-13, (2022)). In addition, lung tissue sections and lung lysates were obtained and quantified. In some experiments, lung tissue and lung lysates were preserved in RNA stabilization reagent (Qiagen, Valencia, CA, USA). Specifically, after measuring airway hyperresponsiveness, a cannula was inserted into the trachea, the lungs were washed three times with 1 ml of PBS, and BAL cells were collected. Transcardial perfusion of the lungs was performed with cold PBS, and the lungs were subsequently fixed in 4% paraformaldehyde buffered in PBS for histology. After fixation, the lungs were embedded in paraffin, cut into 4 μm sections, and stained with hematoxylin and eosin (HE) and periodic acid Schiff (PAS).
 既報(Tong,J.et al.J Exp Med 203,1173-1184,(2006).)に従い,炎症スコアを盲検法で割り当てた。HE染色による気管支周囲の炎症のスコアを以下のように決定した。0:正常,1:少数の細胞,2:1細胞の層の深さの炎症細胞の集簇,3:2~4細胞の層の深さの炎症細胞の集簇,4:4細胞以上の層の深さの炎症細胞の集簇。PAS染色は,少なくとも20の連続した領域を調べることによって実行した。各気道におけるPAS陽性杯細胞の存在量の数値スコアをカウントし,該気道内の上皮細胞の総数のパーセンテージとして表した。 Inflammation scores were assigned in a blinded manner according to a previous report (Tong, J. et al. J Exp Med 203, 1173-1184, (2006).). The score of peribronchial inflammation by HE staining was determined as follows. 0: normal, 1: a small number of cells, 2: aggregation of inflammatory cells at a depth of 1 cell layer, 3: aggregation of inflammatory cells at a depth of 2 to 4 cell layers, 4: aggregation of inflammatory cells at a depth of 4 or more cells. Layer-depth collection of inflammatory cells. PAS staining was performed by examining at least 20 consecutive areas. A numerical score of the abundance of PAS-positive goblet cells in each airway was counted and expressed as a percentage of the total number of epithelial cells in that airway.
 (4)肺DCsサブセットの同定
 肺DCsは,古典的な系統マーカー(CD3ε,NK1.1,CD19,CD45R)及びCD45+CD64-F4/80-I-A/I-E+CD11c+細胞の欠失として定義された。次に,XCR1及びCD172aの発現(cDC1s;XCR1+CD172a-及びcDC2s;XCR1-CD172a+)に基づいて肺DCsサブセットを同定した(Guilliams,M.et al.Nature Reviews Immunology 14,571-578,(2014).,Brown,C.C.et al.Cell 179,846-863,(2019).,Nutt,S.L.&Chopin,M.Immunity 52,942-956,(2020).,及びSakurai,S.et al. Allergology international:official journal of the Japanese Society
 of Allergology 70,351-359,(2021).)。
(4) Identification of lung DCs subsets Lung DCs were defined as deletion of classical lineage markers (CD3ε, NK1.1, CD19, CD45R) and CD45+CD64-F4/80-IA/IE+CD11c+ cells. . Next, we identified lung DCs subsets based on the expression of XCR1 and CD172a (cDC1s; XCR1+CD172a- and cDC2s; 2014). , Brown, C. C. et al. Cell 179, 846-863, (2019)., Nutt, S. L. & Chopin, M. Immunity 52, 942-956, (2020)., and Sakurai, S. et al. al. Allergology international:official journal of the Japanese Society
of Allergology 70, 351-359, (2021). ).
 (5)肺DCsサブセットの調製
 GentleMACSTM解離剤(Miltenyi Biotec社)を使用して,コラゲナーゼ(Roche社,バーゼル,スイス)及びDNase(Roche社)で肺を消化し,単細胞懸濁液を調製した。細胞を抗マウスCD11cコーティング磁気ビーズ(Miltenyi Biotec社)とインキュベートし,磁気セルソーティング(MACS;Miltenyi Biotec社)によってポジティブソーティングした。DCsの分類には,以下の抗体を使用した。ペリジニン-クロロフィル-タンパク質複合体-Cy5.5(PerCP-Cy5.5)標識系統マーカー(CD3e(クローン17A2,BioLegend社),NK1.1(クローンPK136,BioLegend社),CD19(クローン6D5,BioLegend社),CD45R(クローンRA-3-6B2)),PE-Cy7ラベル付きCD64(クローンX54-5/7.1,BioLegend社),アロフィコシアミン-Cy7(APC-Cy7)ラベル付きF4/80(クローンBM8,BioLegend社),Alexa Flour 700-ラベル付き抗IA/IE(クローンM5/114.15.2,BioLegend社),ブリリアントバイオレット510ラベル付き抗CD45(クローン30-F11,BioLegend社),FITCラベル付き抗CD11c(クローンN418,BioLegend社),PEラベル付きXCR1(クローンZET,BioLegend社),及びAPCラベル付きCD172a(クローンP84,BioLegend社)。DCsは,MoFlo Astrios EQ(Beckman Coulter,カリフォルニア州ブレア)を使用してソートされた。ソートされたDCsサブセットは,通常,対象の表面マーカーに対して95%以上陽性であった。
(5) Preparation of lung DCs subset Lungs were digested with collagenase (Roche, Basel, Switzerland) and DNase (Roche) using GentleMACSTM dissociating agent (Miltenyi Biotec) to prepare a single cell suspension. Cells were incubated with anti-mouse CD11c coated magnetic beads (Miltenyi Biotec) and positively sorted by magnetic cell sorting (MACS; Miltenyi Biotec). The following antibodies were used to classify DCs. Peridinin-chlorophyll-protein complex-Cy5.5 (PerCP-Cy5.5) labeled lineage markers (CD3e (clone 17A2, BioLegend), NK1.1 (clone PK136, BioLegend), CD19 (clone 6D5, BioLegend) , CD45R (clone RA-3-6B2)), PE-Cy7 labeled CD64 (clone X54-5/7.1, BioLegend), allophycocyamine-Cy7 (APC-Cy7) labeled F4/80 (clone BM8, BioLegend), Alexa Flour 700-labeled anti-IA/IE (clone M5/114.15.2, BioLegend), brilliant violet 510-labeled anti-CD45 (clone 30-F11, BioLegend), FITC labeled Anti-CD11c (clone N418, BioLegend), PE-labeled XCR1 (clone ZET, BioLegend), and APC-labeled CD172a (clone P84, BioLegend). DCs were sorted using a MoFlo Astrios EQ (Beckman Coulter, Brea, CA). Sorted DCs subsets were typically >95% positive for the surface marker of interest.
 (6)肺DCsサブセット及びCD4+T細胞のインビトロ共培養
 ナイーブCD4+T細胞を,CD4+T Cell Isolation Kit,マウス(Miltenyi Biotec社,オーバーン,カリフォルニア州)を使用してOT-IIマウス脾臓から取得し,精製CD4+T細胞(2x10/ml)を,10μg/m OVA323-339ペプチド(ISQV-HAAHAEINEAGR,Invitrogen社,カールズバッド,カリフォルニア州)の存在下で,肺DCsサブセット(2x10/ml)と7日間共培養した。
(6) In vitro co-culture of lung DCs subset and CD4+ T cells Naive CD4+ T cells were obtained from OT-II mouse spleen using CD4+T Cell Isolation Kit, Mouse (Miltenyi Biotec, Auburn, CA), and purified CD4+T Cells (2x10 /ml) were co-cultured with lung DCs subset ( 2x10 /ml) for 7 days in the presence of 10 μg/m OVA 323-339 peptide (ISQV-HAAHAEINEAGR, Invitrogen, Carlsbad, CA). .
 (7)Nanostring nCounter technologyを用いた遺伝子発現分析
 HDM感作CD109-/-マウス又はWTマウスから精製された肺DCsサブセット間の転写産物の存在量の違いを,Nanostring nCounterテクノロジー(Immunology Panel社)を使用して分析した。また,nSolverソフトウェアを使用してヒートプロットを生成した。
(7) Gene expression analysis using Nanostring nCounter technology Differences in the abundance of transcripts between lung DCs subsets purified from HDM-sensitized CD109 −/− mice or WT mice were analyzed using Nanostring nCounter technology (Immunology Panel). was used for analysis. Heat plots were also generated using nSolver software.
 (8)サイトカイン測定
 DCs-T細胞共培養上清中のIL2,IL6,IL10,IL13,IL17A,TNF及びIFN-γのレベルは,サイトメトリービーズアレイキット(BD Biosciences社,サンノゼ,カリフォルニア州)を使用して,製造元の取扱説明書に従って測定した。
(8) Cytokine measurement The levels of IL2, IL6, IL10, IL13, IL17A, TNF and IFN-γ in the DCs-T cell co-culture supernatant were measured using a cytometry bead array kit (BD Biosciences, San Jose, CA). Measurements were made according to the manufacturer's instructions.
 (9)骨髄由来のDCs及び骨髄由来DCs移入実験
 骨髄(BM:Bone Marrow)細胞は大腿骨及び脛骨から採取した。BM細胞は,10%ウシ胎児血清(FCS),1000U/ml組換えマウスGM-CSF(R&D社)及び400U/ml組換えマウスIL-4(R&D社)を添加したRPMI1640で4×10細胞/mlで培養した。培養8日目に細胞を回収し,HDM(20μg/ml)とともに6時間インキュベートした。BM由来のDCSs(BMDCs)(2.0×10)をC57BL/6マウスに経静脈的に移入し(1日目),8日目及び13日目にBMDCs(2.0×10)を気管内投与し,15日目に解析を行った。
(9) Bone marrow-derived DCs and bone marrow-derived DCs transfer experiment Bone Marrow (BM) cells were collected from femurs and tibias. BM cells were grown at 4×10 5 cells in RPMI1640 supplemented with 10% fetal calf serum (FCS), 1000 U/ml recombinant mouse GM-CSF (R&D), and 400 U/ml recombinant mouse IL-4 (R&D). /ml. Cells were collected on the 8th day of culture and incubated with HDM (20 μg/ml) for 6 hours. BM-derived DCSs (BMDCs) (2.0×10 5 ) were intravenously transferred into C57BL/6 mice (day 1), and BMDCs (2.0×10 5 ) were transferred on days 8 and 13. was administered intratracheally, and analysis was performed on the 15th day.
 (10)BAL液のフローサイトメトリー分析及び細胞内染色
 BAL細胞を,表面フィコエリトリン(PE)標識抗Singlec-F(クローンE50-2440,BD Pharmingen社,サンディエゴ),APC標識抗Ly-6G/Ly-6C(クローンRB6-8C5,BioLegend社),PE-Cy(PE-Cy7)標識抗CD45(クローン30-F11,BioLegend社),APC-Cy7標識抗CD11c(クローンN418,BioLegend社),PerCP-Cy5.5標識抗CD3e(クローン17A2,BioLegend社),FITC標識抗CD19(クローンMB19-1,BioLegend社),パシフィックブルー標識抗CD11b(クローンM1/70,BioLegend社)で染色した。
(10) Flow cytometry analysis and intracellular staining of BAL fluid BAL cells were treated with surface phycoerythrin (PE)-labeled anti-Singlec-F (clone E50-2440, BD Pharmingen, San Diego), APC-labeled anti-Ly-6G/Ly- 6C (clone RB6-8C5, BioLegend), PE-Cy (PE-Cy7) labeled anti-CD45 (clone 30-F11, BioLegend), APC-Cy7 labeled anti-CD11c (clone N418, BioLegend), PerCP-Cy5. The cells were stained with 5-labeled anti-CD3e (clone 17A2, BioLegend), FITC-labeled anti-CD19 (clone MB19-1, BioLegend), and Pacific blue-labeled anti-CD11b (clone M1/70, BioLegend).
 肺細胞におけるCD109発現の分析には,以下の抗体を用いた。FITC標識抗EpiCAM(クローンG8.8,BioLegend社),APC標識抗CD31(クローン390,BioLegend社),PECy7標識抗CD45(クローン30-F11,BioLegend社),BV510標識抗CD45(クローン30-F11,BioLegend社),FITC標識抗CD11c(クローンN418,BioLegend社),APC標識抗IA/IE(クローンM5/114.15.2,BioLegend社),APC-Cy7標識抗F4/80(クローンBM8,BioLegend社),パシフィックブルー標識抗CD11b(クローンM1/70,BioLegend社),PE-Cy7標識抗CD103(クローン2E7,BioLegend社),FITC標識抗CD19(クローンMB19-1,BioLegend社),PerCP-Cy5.5-標識抗CD3(クローン17A2,BioLegend社),APC標識抗CD4(クローンRM4-5,BioLegend社),BV510標識抗CD45(クローン30-F11,BioLegend社),PerCP-Cy5.5標識抗ST2(クローンDIH9,BioLegend社),PECy7標識抗CD127(クローンA7R34,BioLegend社),BV510標識抗CD45(クローン30-F11,BioLegend社),FITC-ストレプトアビジン(BioLegend社),ビオチン化抗マウス系統(CD3e(145-2C11;BioLegend社),CD45R(RA3-6B2;BioLegend社),Ly-6G/Ly-6C(RB6-8C5;BioLegend社),CD11c(N418;BioLegend社),CD11b(M1/70;BioLegend社),Ter119(TER-119;BioLegend社),NK1.1(PK136;BioLegend社),TCR-β(H57-597;BioLegend社),TCR-γδ(BioLegend社,及びFCER1A/FCεRIα(MAR-1;BioLegend社)。次に,PE標識抗CD109(クローン496920,R&D社)を使用してCD109の発現強度を評価した。 The following antibodies were used to analyze CD109 expression in lung cells. FITC-labeled anti-EpiCAM (clone G8.8, BioLegend), APC-labeled anti-CD31 (clone 390, BioLegend), PECy7-labeled anti-CD45 (clone 30-F11, BioLegend), BV510-labeled anti-CD45 (clone 30-F11, BioLegend), FITC-labeled anti-CD11c (clone N418, BioLegend), APC-labeled anti-IA/IE (clone M5/114.15.2, BioLegend), APC-Cy7-labeled anti-F4/80 (clone BM8, BioLegend) ), Pacific blue labeled anti-CD11b (clone M1/70, BioLegend), PE-Cy7 labeled anti-CD103 (clone 2E7, BioLegend), FITC-labeled anti-CD19 (clone MB19-1, BioLegend), PerCP-Cy5.5 - labeled anti-CD3 (clone 17A2, BioLegend), APC-labeled anti-CD4 (clone RM4-5, BioLegend), BV510-labeled anti-CD45 (clone 30-F11, BioLegend), PerCP-Cy5.5-labeled anti-ST2 (clone DIH9, BioLegend), PECy7-labeled anti-CD127 (clone A7R34, BioLegend), BV510-labeled anti-CD45 (clone 30-F11, BioLegend), FITC-streptavidin (BioLegend), biotinylated anti-mouse strain (CD3e (145) -2C11; BioLegend), CD45R (RA3-6B2; BioLegend), Ly-6G/Ly-6C (RB6-8C5; BioLegend), CD11c (N418; BioLegend), CD11b (M1/70; BioLegend) ) , Ter119 (TER-119; BioLegend), NK1.1 (PK136; BioLegend), TCR-β (H57-597; BioLegend), TCR-γδ (BioLegend), and FCER1A/FCεRIα (MAR-1; BioL egend Next, the expression intensity of CD109 was evaluated using PE-labeled anti-CD109 (clone 496920, R&D).
 CD109+DCs及びCD109-DCsの細胞表面には以下の抗体を使用した。PE-Cy7標識抗CD40(クローン3/23,BioLegend社),APC標識抗CD86(クローンGL-1,BioLegend社),パシフィックブルー標識抗CD80(クローン16-10A1,BioLegend社),Biotin-標識抗ICOSリガンド(クローンHK5.3,BioLegend社),ブリリアントバイオレット421標識抗ストレプトアビジン(BioLegend社),PECy7標識抗PD-L2(クローンTY25,BioLegend社),及びAPC標識抗PD-L1(クローン10F.9G2,BioLegend社)。 The following antibodies were used on the cell surfaces of CD109+DCs and CD109-DCs. PE-Cy7 labeled anti-CD40 (clone 3/23, BioLegend), APC-labeled anti-CD86 (clone GL-1, BioLegend), Pacific blue-labeled anti-CD80 (clone 16-10A1, BioLegend), Biotin-labeled anti-ICOS Ligand (clone HK5.3, BioLegend), brilliant violet 421-labeled anti-streptavidin (BioLegend), PECy7-labeled anti-PD-L2 (clone TY25, BioLegend), and APC-labeled anti-PD-L1 (clone 10F.9G2, BioLegend Inc.).
 細胞内染色には,PE標識抗Runx3(クローンR3-5G4,BD Bioscience社),BDCSytofix/Cytopermキット(BD Bioscience社),Alexa Fluor 647標識抗リン酸化Smad2(pS465/pS467)/Smad3(pS423/pS425)(クローンO72-670,BD
 Bioscience社),BDCSytofixTMFixationBuffer及びBDPhosflowTMPermBuffer IIIを,製造元の取扱説明書に従って使用した。
For intracellular staining, PE-labeled anti-Runx3 (clone R3-5G4, BD Bioscience), BDCSytofix/Cytoperm kit (BD Bioscience), Alexa Fluor 647-labeled anti-phosphorylated Smad2 (pS465/pS467)/Smad3 (pS 423/pS425 ) (Clone O72-670, BD
Bioscience Inc.), BDCSytofix FixationBuffer and BDPhosflow PermBuffer III were used according to the manufacturer's instructions.
 Gallios(Beckman Coulter社,ブレア,カリフォルニア州)を使用して,分析フローサイトメトリーを実施した。得られたデータをFlowJoバージョン8.6ソフトウェア(TreeStar社,アシュランド,オレゴン州)を用いて分析した。 Analytical flow cytometry was performed using Gallios (Beckman Coulter, Brea, Calif.). The resulting data were analyzed using FlowJo version 8.6 software (TreeStar, Ashland, OR).
 (11)逆転写ポリメラーゼ連鎖反応(RT-PCR)分析
 逆転写ポリメラーゼ連鎖反応(RT-PCR)アッセイによって,肺溶解物中のIL4,IL5,IL13,IL25,IL33,及びTSLPの発現を測定した。RNAeasyミニキット(Qiagen社,バレンシア,カリフォルニア州)を使用して全RNAを抽出し,次にHigh-Capacity cDNA逆転写キット(Applied Biosystems社,カールズバッド,カリフォルニア州)を使用してRNAからcDNAを調製した。RT-PCRはStepOnePlus(Applied Biosystems社,カールズバッド,カリフォルニア州)を使用して実行され,ΔΔCt法(Suzuki,Y.et al.American journal of respiratory cell and molecular biology 46,773-780,(2012).)を用いてデータ分析を行った。各遺伝子の発現は,ハウスキーピング遺伝子GAPDHの発現で正規化された。
(11) Reverse Transcription Polymerase Chain Reaction (RT-PCR) Analysis The expression of IL4, IL5, IL13, IL25, IL33, and TSLP in lung lysates was measured by reverse transcription polymerase chain reaction (RT-PCR) assay. Total RNA was extracted using the RNAeasy mini kit (Qiagen, Valencia, CA) and then cDNA was prepared from the RNA using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Carlsbad, CA). did. RT-PCR was performed using StepOnePlus (Applied Biosystems, Carlsbad, CA) and ΔΔCt method (Suzuki, Y. et al. American journal of respiratory cell and mol ecular biology 46, 773-780, (2012). ) was used for data analysis. The expression of each gene was normalized with the expression of the housekeeping gene GAPDH.
 RT-PCRの特異的なプライマーペアは以下のとおりである。
・IL-4(フォワード5’-GGTCTCAACCCCCAGCTAGT-3’(配列番号2)及びリバース5’-GCCGATGATCTCTCTCAAGTGAT-3’(配列番号3))
・IL-5(フォワード5’-CTCTGTTGACAAGCAATGAGACG-3’(配列番号4)及びリバース5’-TCTTCAGTATGTCTAGCCCCTG-3’(配列番号5))
・IL-13(フォワード5’-CCTGGCTCTTGCTTGCCTT-3’(配列番号6)及びリバース5’-GGTCTTGTGTGATGTTGCTCA-3’(配列番号7))
・IL-25(フォワード5’-ACAGGGACTTGAATCGGGTC-3’(配列番号8)及びリバース5’-TGGTAAAGTGGGAGAGAGTTG-3’(配列番号9))
・IL-33(フォワード5’-TCCAACTCCAAGATTTCCCCG-3’(配列番号10)及びリバース5’-CATGCAGTAGACATGGCAGAA-3’(配列番号11))
・TSLP(フォワード5’-ACGGATGGGGCTAACTTACAA-3’(配列番号12)及びリバース5’-AGTCCTCGATTTGCTCGAACT-3’(配列番号13))
・GAPDH(フォワード5’-AACTTTGGCATTGTGGAAGG-3’(配列番号14)及びリバース5’-GGATGCAGGGATGATGTTCT-3’(配列番号15))。
 データ分析にはΔΔCt法を使用した。
The specific primer pairs for RT-PCR are as follows.
-IL-4 (forward 5'-GGTCTCAACCCCAGCTAGT-3' (SEQ ID NO: 2) and reverse 5'-GCCGATGATCTCTCTCCAAGTGAT-3' (SEQ ID NO: 3))
-IL-5 (forward 5'-CTCTGTTGACAAGCAATGAGACG-3' (SEQ ID NO: 4) and reverse 5'-TCTTCAGTATGTCTAGCCCCTG-3' (SEQ ID NO: 5))
-IL-13 (forward 5'-CCTGGCTCTTGCTTGCCTT-3' (SEQ ID NO: 6) and reverse 5'-GGTCTTGTGTGATGTTGCTCA-3' (SEQ ID NO: 7))
-IL-25 (forward 5'-ACAGGGACTTGAATCGGGTC-3' (SEQ ID NO: 8) and reverse 5'-TGGTAAAGTGGGAGAGAGTTG-3' (SEQ ID NO: 9))
-IL-33 (forward 5'-TCCAAACTCCAAGATTTCCCCG-3' (SEQ ID NO: 10) and reverse 5'-CATGCAGTAGACATGGCAGAA-3' (SEQ ID NO: 11))
・TSLP (forward 5'-ACGGATGGGGCTAACTTACAA-3' (SEQ ID NO: 12) and reverse 5'-AGTCCTCGATTTGCTCGAACT-3' (SEQ ID NO: 13))
- GAPDH (forward 5'-AACTTTGGCATTGTGGAAGG-3' (SEQ ID NO: 14) and reverse 5'-GGATGCAGGGATGATGTTCT-3' (SEQ ID NO: 15)).
The ΔΔCt method was used for data analysis.
 (12)試薬
 3mMのL-グルタミン(Sigma社,セントルイス,ミズーリ州),1%ペニシリン-ストレプトマイシン(Gibco BRL社,東京,日本),及び10%熱不活化FCS(Gibco BRL社)を添加したRPMI 1640培地(Gibco BRL社)で細胞を培養した。
(12) Reagents RPMI supplemented with 3mM L-glutamine (Sigma, St. Louis, MO), 1% penicillin-streptomycin (Gibco BRL, Tokyo, Japan), and 10% heat-inactivated FCS (Gibco BRL) Cells were cultured in 1640 medium (Gibco BRL).
 (13)統計解析
 各群間の比較には,Studentのt検定,及びTurkeyの複数の比較テストの後の一元配置分散分析を用いた。P<0.05の場合,統計的に有意差があるとした。すべてのデータは平均±SEMとして表した。統計解析は,GraphPad Prismバージョン6(GraphPad Software社,サンディエゴ,カリフォルニア州)を使用して実行した。
(13) Statistical analysis For comparisons between groups, Student's t-test and one-way analysis of variance after Turkey's multiple comparison test were used. When P<0.05, it was considered that there was a statistically significant difference. All data were expressed as mean ± SEM. Statistical analyzes were performed using GraphPad Prism version 6 (GraphPad Software, Inc., San Diego, Calif.).
 <実施例1:CD109の欠損による,気道過敏性及び好酸球性気道炎症の改善>
 気道過敏性及び好酸球性気道炎症の発達におけるCD109の影響を確認するために,CD109-/-マウス及び野生型(WT)マウスに対してHDMを用いて感作及びチャレンジさせた(図1A)。最終のHDMチャレンジの2日後,肺気道抵抗性(R)及び肺動的コンプライアンス(Cdyn)を直接測定して,肺機能を評価した。HDMチャレンジされたCD109-/-マウスは,気道過敏性を十分減少させ,HDMチャレンジされたWTマウスと比較して,低い肺気道抵抗性,及び高い肺動的コンプライアンスを示した(図1B)。また,HDMチャレンジされたCD109-/-マウスは,HDMチャレンジされたWTマウスと比較して,気管支肺胞洗浄(BAL)における低い好酸球数を示した(図1C)。また,組織学的分析により,HDMチャレンジされたCD109-/-マウスにおいて,HDMチャレンジされたWTマウスと比較して,PAS+細胞数の減少とともに,気管支壁の厚み及び気管支周囲の細胞湿潤の減少が確認された(図1D)。このような結果と一致して,HDMチャレンジされたCD109-/-マウスにおいて,HDMチャレンジされたWTマウスと比較して,IL-4,IL-5,IL-13,IL-33の発現の十分な低下が確認された(図1E)。
<Example 1: Improvement of airway hyperresponsiveness and eosinophilic airway inflammation due to CD109 deficiency>
To confirm the influence of CD109 on the development of airway hyperresponsiveness and eosinophilic airway inflammation, CD109 −/− mice and wild-type (WT) mice were sensitized and challenged with HDM (Figure 1A ). Two days after the final HDM challenge, pulmonary airway resistance (R L ) and pulmonary dynamic compliance (C dyn ) were directly measured to assess lung function. HDM-challenged CD109 −/− mice exhibited well-reduced airway hyperresponsiveness, lower pulmonary airway resistance, and higher pulmonary dynamic compliance compared to HDM-challenged WT mice (FIG. 1B). HDM-challenged CD109 −/− mice also showed lower eosinophil counts in bronchoalveolar lavage (BAL) compared to HDM-challenged WT mice (FIG. 1C). Additionally, histological analysis showed that in HDM-challenged CD109 −/− mice, there was a decrease in the number of PAS+ cells, as well as a decrease in bronchial wall thickness and peribronchial cell infiltration compared to HDM-challenged WT mice. confirmed (Fig. 1D). Consistent with these results, expression of IL-4, IL-5, IL-13, and IL-33 was significantly reduced in HDM-challenged CD109 −/− mice compared with HDM-challenged WT mice. A significant decrease was confirmed (Fig. 1E).
 <実施例2:CD109発現によるWTマウスにおけるアレルゲン感作の誘導>
 喘息モデルの肺におけるCD109発現免疫細胞の種類を調査した。定常状態では,肺におけるいかなる免疫細胞もCD109を発現していなかった。OVAチャレンジマウスにおいて,cDC2s,B細胞,2型自然リンパ球(ILC2s)においてCD109の発現が誘導されたが,肺において,cDC1sにおいてはCD109の発現が誘導されなかった(図2A)。また,図2Bに示すように,細胞表面マーカーを元にCD109+DCsとCD109-DCsとを選別し,表現型的に,肺DCsでのCD109発現は,CD109が発現していない場合と比較して,PD-L1,ICOS-L,CD80の発現を増加させたが,CD86の発現を減少させた(図2C)。
<Example 2: Induction of allergen sensitization in WT mice by CD109 expression>
We investigated the types of CD109-expressing immune cells in the lungs of an asthma model. At steady state, no immune cells in the lung expressed CD109. In OVA-challenged mice, CD109 expression was induced in cDC2s, B cells, and type 2 innate lymphocytes (ILC2s), but in the lungs, CD109 expression was not induced in cDC1s (FIG. 2A). In addition, as shown in Figure 2B, CD109+ DCs and CD109-DCs were sorted based on cell surface markers, and phenotypically, CD109 expression in lung DCs was compared to cases where CD109 was not expressed. The expression of PD-L1, ICOS-L, and CD80 was increased, but the expression of CD86 was decreased (Fig. 2C).
 <実施例3:CD109-/-マウスからの肺cDC2sがナイーブT細胞と共培養された場合のサイトカイン産生の誘導の改善>
 CD109は,肺cDC2sにおいてのみ誘導され,肺cDC1sでは誘導されないことから,CD109-/-マウスからの肺cDC2sが,Th応答に関してその機能を変更するか否か調査した。過去の研究において,免疫反応における肺DCsサブセットの異なる機能が示されている(Murphy,T.L.et al.Annual review of immunology 34,93-119,(2016).,Guilliams,M.et al.Nature Reviews Immunology 14,571-578,(2014).,Brown,C.C.et al.Cell 179,846-863,(2019).,Nutt,S.L.&Chopin,M.Immunity 52,942-956,(2020).,Suzuki,Y.et al.American journal of respiratory cell and molecular biology 46,773-780,(2012).,及びFuruhashi,K.et al.American journal of respiratory cell and molecular biology 46,165-172,(2012).)。特に,cDCs2は,定常状態において,好適にTh2局在化を誘導することが報告されている(Furuhashi,K.et al.American journal of respiratory cell and
 molecular biology 46,165-172,(2012).,Gao,Y.et al.Immunity 39,722-732,(2013).,Kumamoto,Y.et al.Immunity 39,733-743,(2013).,及びWilliams,J.W.et al.Nature communications 4,(2013).)。肺cDC2sは,OVAチャレンジCD109-/-マウス及びWTマウスから精製された(図3A及び図3B)。続いて,肺cDC2sを,OVA323-339ペプチドの存在下でOT-IIマウスより単離したナイーブCD4+T細胞と共培養させた。WTマウスからの肺cDC2sとの共培養において,大量のIL-2,IL-6,IL-13,IL-17A,TNF,IFN-γが検出された。CD109-/-マウスからの肺cDC2sとWTマウスからの肺cDC2sとを比較すると,CD109-/-マウスからの肺cDC2sにおけるIL-13の濃度が,WTマウスからの肺cDC2sと比較して,有意に低く(図3C),IL-6,IL-17A,TNF,IFN-γについても同様に有意に低かった。
Example 3: Improved induction of cytokine production when lung cDC2s from CD109 −/− mice are co-cultured with naive T cells
Since CD109 is induced only in lung cDC2s and not in lung cDC1s, we investigated whether lung cDC2s from CD109 −/− mice alter their function with respect to Th responses. Previous studies have shown different functions of lung DCs subsets in immune responses (Murphy, T.L. et al. Annual review of immunology 34, 93-119, (2016)., Guilliams, M. et al. . Nature Reviews IMMUNOLOGY 14,571-578, (2014). BROWN, C.C.Et Al. Cell 179,846-863, (2019). (2019). 52,942 -956, (2020)., Suzuki, Y. et al. American journal of respiratory cell and molecular biology 46, 773-780, (2012)., and Furuhashi, K. et al. American journal of respiratory cell and molecular biology 46, 165-172, (2012).). In particular, cDCs2 has been reported to favorably induce Th2 localization in the steady state (Furuhashi, K. et al. American journal of respiratory cell and
Molecular biology 46, 165-172, (2012). , Gao, Y. et al. Immunity 39, 722-732, (2013). , Kumamoto, Y. et al. Immunity 39, 733-743, (2013). , and Williams, J. W. et al. Nature communications 4, (2013). ). Lung cDC2s were purified from OVA-challenged CD109 −/− mice and WT mice (FIGS. 3A and 3B). Subsequently, lung cDC2s were co-cultured with naive CD4+ T cells isolated from OT-II mice in the presence of OVA 323-339 peptide. Large amounts of IL-2, IL-6, IL-13, IL-17A, TNF, and IFN-γ were detected in co-culture with lung cDC2s from WT mice. Comparing lung cDC2s from CD109 −/− mice with lung cDC2s from WT mice, the concentration of IL-13 in lung cDC2s from CD109 −/− mice was significantly lower than that in lung cDC2s from WT mice. (Fig. 3C), and IL-6, IL-17A, TNF, and IFN-γ were also significantly low.
 これらの結果は,本共培養システムにおいて,CD109-/-マウスからの肺cDC2sのIL-13,IL-17A,IFN-γ誘導能は,WTマウスからの肺cDC2sと比較して,弱いことを示している。 These results indicate that in this co-culture system, the ability of lung cDC2s from CD109 −/− mice to induce IL-13, IL-17A, and IFN-γ is weaker than that of lung cDC2s from WT mice. It shows.
 <実施例4:DC2sにおけるCD109発現による喘息の表現型の誘導>
 CD109-/-マウスからの肺cDC2sは,ナイーブT細胞と共培養された場合に,IL-13を含むいくつかのサイトカインの誘導を改善させたため,DCsにおけるCD109の不存在が,気道過敏性及び好酸球性気道炎症を弱めることに直接的の要因となるか否か調査した。WTマウスに対して,静脈内から免疫化し,続いて,気管支内で,CD109-/-マウス又はWTマウスからのHDM負荷骨髄由来DCs(BMDCs)にてチャレンジした(図4A)。このモデルにおいて,WTマウスからのHDM負荷BMDCsを用いた場合,気道過敏性及び好酸球性気道炎症の増加を示し,喘息の病態的な特徴が特徴付けられた(図4B,図4C,図4D)。しかし,CD109-/-マウスからのHDM負荷BMDCsをチャレンジしたマウスにおける気道過敏性及びBALにおける好酸球の数は,WTマウスからのHDM負荷BMDCsをチャレンジした場合と比べて,有意に低かった(図4B,図4C)。また,組織学的分析によると,CD109-/-マウスからのHDM負荷BMDCsをチャレンジしたマウスにおいて,WTマウスからのHDM負荷BMDCsをチャレンジした場合と比べて,PAS+細胞の数とともに,気管支壁の厚みが薄く,炎症細胞の数も減少していた(図4D)。これのデータより,DCsにおけるCD109の発現は,本モデルにおいて,適切に気道過敏性及び好酸球性気道炎症を誘導するのに必要であることが示唆された。
<Example 4: Induction of asthmatic phenotype by CD109 expression in DC2s>
Lung cDC2s from CD109 −/− mice had improved induction of several cytokines, including IL-13, when co-cultured with naïve T cells, indicating that the absence of CD109 in DCs was associated with airway hyperresponsiveness and We investigated whether this is a direct factor in attenuating eosinophilic airway inflammation. WT mice were immunized intravenously and then challenged intrabronchically with HDM-loaded bone marrow-derived DCs (BMDCs) from CD109 −/− mice or WT mice (FIG. 4A). In this model, when HDM-loaded BMDCs from WT mice were used, they showed increased airway hyperresponsiveness and eosinophilic airway inflammation, characterizing the pathological features of asthma (Fig. 4B, Fig. 4C, Fig. 4D). However, airway hyperresponsiveness and the number of eosinophils in the BAL in mice challenged with HDM-loaded BMDCs from CD109 −/− mice were significantly lower compared to those challenged with HDM-loaded BMDCs from WT mice ( Figure 4B, Figure 4C). Furthermore, histological analysis showed that the number of PAS+ cells and the thickness of the bronchial wall were significantly lower in mice challenged with HDM-loaded BMDCs from CD109 −/− mice than in those challenged with HDM-loaded BMDCs from WT mice. The skin was thinner, and the number of inflammatory cells was also reduced (Figure 4D). These data suggested that expression of CD109 in DCs is required to appropriately induce airway hyperresponsiveness and eosinophilic airway inflammation in this model.
 <実施例5:CD109-/-マウスからの肺DCsにおける遺伝子発現分析>
 CD109-/-マウスとWTマウスとの肺cDC2sにおいて,誘導されるサイトカイン産生の機能的な違いがあることから,Nanostring technologyを用いて,CD109-/-マウスとWTマウスとからの肺cDC2sにおける遺伝子発現プロファイルについて調査した。CD109-/-マウスからの肺cDC2sにおいては,WTマウスからの肺cDC2sと比較して,エオタキシン(CCL24及びCCL26),及びTh2関連サイトカイン(IL-4,IL-5,IL-13,及びIL-33)の発現の低下がみられ,Th1関連サイトカイン(IL-18,IL-12,及びCXCL9)の発現の増加がみられた(図5A)。転写因子に関して,CD109-/-マウスからの肺cDC2sにおいては,WTマウスからの肺cDC2sと比較して,RUNX3の発現増加がみられ,RORγtの発現低下がみられた。
<Example 5: Gene expression analysis in lung DCs from CD109 −/− mice>
Since there is a functional difference in cytokine production induced in lung cDC2s from CD109 −/− mice and WT mice, we used Nanostring technology to identify genes in lung cDC2s from CD109 −/− mice and WT mice. The expression profile was investigated. In lung cDC2s from CD109 −/− mice, eotaxin (CCL24 and CCL26) and Th2-related cytokines (IL-4, IL-5, IL-13, and IL- 33) and increased expression of Th1-related cytokines (IL-18, IL-12, and CXCL9) (Figure 5A). Regarding transcription factors, lung cDC2s from CD109 −/− mice showed increased expression of RUNX3 and decreased expression of RORγt compared to lung cDC2s from WT mice.
 最近の研究において,転写因子に基づいて異なるcDC2sの表現型分類(cDCs2a:抗炎症表現型,及びcDCs2b:炎症促進表現型)が示されている(Brown,C.C.et al.Cell 179,846-863,(2019).,及びNutt,S.L.&Chopin,M.Immunity 52,942-956,(2020).)。RUNK3は,cDCs2aの抗炎症表現型の特徴的な転写因子の1つである。アレイデータと一致して,CD109-/-マウスからの肺cDC2sにおいては,WTマウスからの肺cDC2sと比較して,RUNX3タンパク質の有意な発現増加がみられた(図5B)。また,CD109は,TGF-βシグナル伝達を負に制御することが知られており,RUNX3は,細胞内シグナル伝達因子であるSmad2及びSmad3と結合することが知られている(Mii,S.et al.Pathol Int 69,249-259,(2019).)。したがって,リン酸化Smad2/3について調査したところ,CD109-/-マウスからの肺cDC2sにおいては,WTマウスからの肺cDC2sと比較して,リン酸化Smad2/3についても優位に増加していることが示された(図5C,図5D)。 Recent studies have shown different phenotypic classifications of cDC2s (cDCs2a: anti-inflammatory phenotype, and cDCs2b: pro-inflammatory phenotype) based on transcription factors (Brown, C.C. et al. Cell 179, 846-863, (2019)., and Nutt, S. L. & Chopin, M. Immunity 52, 942-956, (2020).). RUNK3 is one of the transcription factors characteristic of the anti-inflammatory phenotype of cDCs2a. Consistent with the array data, significantly increased expression of RUNX3 protein was observed in lung cDC2s from CD109 −/− mice compared to lung cDC2s from WT mice (FIG. 5B). Furthermore, CD109 is known to negatively regulate TGF-β signaling, and RUNX3 is known to bind to intracellular signaling factors Smad2 and Smad3 (Mii, S. et al. al. Pathol Int 69, 249-259, (2019).). Therefore, when we investigated phosphorylated Smad2/3, we found that phosphorylated Smad2/3 was also significantly increased in lung cDC2s from CD109 −/− mice compared to lung cDC2s from WT mice. (Fig. 5C, Fig. 5D).
 <実施例6:HDMチャレンジマウスにおける抗CD109モノクローナル抗体による気道過敏性及び好酸球性気道炎症の改善効果>
 CD109の遮断が,喘息の新規治療戦略となり得るか否か調査するために,HDMチャレンジマウスにおいて,抗CD109モノクローナル抗体(mAb)が気道過敏性及び好酸球性気道炎症を改善するか否かについて調査した。WTマウスをHDMで感作させ,抗CD109mAb又はIgGアイソタイプをHDMチャレンジ1日前に経鼻投与した(図6A)。図6Bに示すように,IgGアイソタイプを投与したWTマウスと比較して,抗CD109mAbを投与したWTマウスにおいて,気道過敏性の顕著な現象がみられた。また,総細胞における有意な減少及びBALにおける好酸球数の有意な減少がみられた(図6C)。また,抗CD109mAbを投与したWTマウスにおいて,浸潤している炎症細胞数の減少,PAS+細胞数の減少とともに,気管支壁の厚みの減少がみられた(図6D)。
 これにより,抗CD109mAbが,新規な喘息の治療薬として有用である可能性が示唆された。
<Example 6: Effect of anti-CD109 monoclonal antibody on improving airway hyperresponsiveness and eosinophilic airway inflammation in HDM-challenged mice>
To investigate whether blockade of CD109 could be a novel therapeutic strategy for asthma, we investigated whether anti-CD109 monoclonal antibodies (mAbs) ameliorate airway hyperresponsiveness and eosinophilic airway inflammation in HDM-challenged mice. investigated. WT mice were sensitized with HDM, and anti-CD109 mAb or IgG isotype was intranasally administered one day before HDM challenge (Figure 6A). As shown in Figure 6B, a significant phenomenon of airway hyperresponsiveness was observed in WT mice administered with anti-CD109 mAb compared to WT mice administered with IgG isotype. There was also a significant decrease in total cells and a significant decrease in the number of eosinophils in the BAL (Figure 6C). Furthermore, in WT mice administered with anti-CD109 mAb, there was a decrease in the number of infiltrating inflammatory cells, a decrease in the number of PAS+ cells, and a decrease in the thickness of the bronchial wall (FIG. 6D).
This suggested that anti-CD109 mAb may be useful as a novel therapeutic agent for asthma.
<実施例7:OVAチャレンジマウスにおける気道過敏性及び好酸球性気道炎症に対するCD109の影響>
 気道過敏性及び好酸球性気道炎症の発達におけるCD109の影響を確認するために,CD109-/-マウス及び野生型(WT)マウスに対してOVAを用いて曝露及び感作させた(図7A)。最終のOVAチャレンジの1日後,肺気道抵抗性(R)及び肺動的コンプライアンス(Cdyn)を直接測定し,肺機能を評価した。OVAチャレンジされたCD109-/-マウスは,気道過敏性を十分減少させ,HDMチャレンジされたWTマウスと比較して,低い肺気道抵抗性と,高い肺動的コンプライアンスを示した(図7B)。また,OVAチャレンジされたCD109-/-マウスは,OVAチャレンジされたWTマウスと比較して,気管支肺胞洗浄(BAL)における低い好酸球数を示した(図7C)。また,組織学的分析により,OVAチャレンジされたCD109-/-マウスにおいて,OVAチャレンジされたWTマウスと比較して,PAS+細胞数の減少とともに,気管支壁の厚み及び気管支周囲の細胞湿潤の減少が確認された(図7D)。このような結果と一致して,HDMチャレンジされたCD109-/-マウスにおいて,HDMチャレンジされたWTマウスと比較して,IL-4,IL-5,IL-13,IL-33の発現の十分な低下が確認された(図7E)。
<Example 7: Effect of CD109 on airway hyperresponsiveness and eosinophilic airway inflammation in OVA-challenged mice>
To confirm the influence of CD109 on the development of airway hyperresponsiveness and eosinophilic airway inflammation, CD109 −/− mice and wild-type (WT) mice were exposed and sensitized using OVA (Figure 7A ). One day after the final OVA challenge, pulmonary airway resistance (R L ) and pulmonary dynamic compliance (C dyn ) were directly measured to assess lung function. OVA-challenged CD109 −/− mice had well-reduced airway hyperresponsiveness and exhibited lower lung airway resistance and higher pulmonary dynamic compliance compared to HDM-challenged WT mice (FIG. 7B). OVA-challenged CD109 −/− mice also showed lower eosinophil counts in the bronchoalveolar lavage (BAL) compared to OVA-challenged WT mice (FIG. 7C). Histological analysis also showed that in OVA-challenged CD109 −/− mice, there was a decrease in the number of PAS+ cells, as well as a decrease in bronchial wall thickness and peribronchial cell infiltration compared to OVA-challenged WT mice. This was confirmed (Fig. 7D). Consistent with these results, expression of IL-4, IL-5, IL-13, and IL-33 was significantly reduced in HDM-challenged CD109 −/− mice compared with HDM-challenged WT mice. A significant decrease was confirmed (Fig. 7E).
 <実施例8:OVAチャレンジマウスにおけるCD109-/-マウスからの肺DCsによるSmad2/3に対する影響>
 また,リン酸化Smad2/3について調査したところ,OVAチャレンジされたCD109-/-マウスからの肺cDC2sにおいては,OVAチャレンジされたWTマウスからの肺cDC2sと比較して,リン酸化Smad2/3についても優位に増加していることが示された(図8)。
<Example 8: Effect on Smad2/3 by lung DCs from CD109 −/− mice in OVA-challenged mice>
Furthermore, when we investigated phosphorylated Smad2/3, we found that lung cDC2s from OVA-challenged CD109 −/− mice had lower levels of phosphorylated Smad2/3 compared to lung cDC2s from OVA-challenged WT mice. It was shown that there was a significant increase (Fig. 8).
 <実施例9:既存薬との比較>
 気道過敏性及び好酸球性気道炎症の治療における抗CD109モノクローナル抗体(mAb)の有用性を検証するために,抗CD109mAbと既存の喘息治療薬との比較を行った。既存の喘息治療薬として,抗IL-33抗体(R&D社,clone 396118,カタログ番号MAB555),抗胸腺間質性リンパ球新生因子(TSLP)抗体(R&D社,clone 152614,カタログ番号AF3626),及びステロイドの一種であるデキサメサゾン(Dex)(Sigma-Aldric社,カタログ番号D4902-25MG)を用いた。
<Example 9: Comparison with existing drugs>
To examine the utility of anti-CD109 monoclonal antibodies (mAbs) in the treatment of airway hyperresponsiveness and eosinophilic airway inflammation, we compared anti-CD109 mAbs with existing asthma treatments. Existing asthma treatment drugs include anti-IL-33 antibody (R&D Co., clone 396118, catalog number MAB555), anti-thymic stromal lymphopoietic factor (TSLP) antibody (R&D Co., clone 152614, catalog number AF3626), and Dexamethasone (Dex) (Sigma-Aldric, catalog number D4902-25MG), a type of steroid, was used.
 上述の実施例6と同様のスケジュール及び方法により,WTマウスをHDMで感作させ,抗CD109mAb(100μg/匹,n=5),抗IL-33抗体(6μg/匹,n=5),抗TSLP抗体(20μg/匹,n=5),Dex(20μg/匹,n=5),又はIgGアイソタイプ(100μg/匹,n=4)をHDMチャレンジ1日前に経鼻投与した(図6A参照)。なお,抗CD109mAbの投与量については,既報(Song
 G.et al.Ann Rheum Dis,78,1632-1641(2019))をもとに設定した。また,抗IL-33抗体,抗TSLP抗体,Dexの投与量については,既報(Suzuki Y.et al.Autophagy,18,2216-2228(2022))をもとに設定した。
WT mice were sensitized with HDM according to the same schedule and method as in Example 6 above, and anti-CD109 mAb (100 μg/mouse, n=5), anti-IL-33 antibody (6 μg/mouse, n=5), anti- TSLP antibody (20 μg/mouse, n = 5), Dex (20 μg/mouse, n = 5), or IgG isotype (100 μg/mouse, n = 4) was intranasally administered one day before HDM challenge (see Figure 6A). . The dosage of anti-CD109 mAb is previously reported (Song
G. et al. Ann Rheum Dis, 78, 1632-1641 (2019)). In addition, the doses of anti-IL-33 antibody, anti-TSLP antibody, and Dex were set based on a previous report (Suzuki Y. et al. Autophagy, 18, 2216-2228 (2022)).
 図9Aに示すように,IgGアイソタイプを投与したWTマウスと比較して,抗CD109mAbを投与したWTマウスにおいて,BALにおける総細胞数の有意な減少及び好酸球数の有意な減少がみられた。また,抗CD109mAbによるBALにおける総細胞数及び好酸球数の減少は,既存の治療薬と比較して同程度以上であった。また,図9Bに示すように,抗CD109mAbを投与したWTマウスにおいて,気道過敏性の顕著な減少がみられ,既存の治療薬と比較して低い肺気道抵抗性と,既存の治療薬と同等以上の高い肺動的コンプライアンスとを示した。 As shown in Figure 9A, a significant decrease in the total cell number and a significant decrease in the number of eosinophils in the BAL was observed in WT mice treated with anti-CD109 mAb compared to WT mice treated with IgG isotype. . Furthermore, the reduction in total cell count and eosinophil count in BAL by anti-CD109 mAb was at least the same level as in comparison with existing therapeutic agents. Additionally, as shown in Figure 9B, a significant decrease in airway hyperresponsiveness was observed in WT mice administered with anti-CD109 mAb, with lower pulmonary airway resistance compared to existing therapeutic agents and equivalent to existing therapeutic agents. showed higher pulmonary dynamic compliance.
 ここで,臨床使用において,ステロイドは副作用が現れやすいことが問題となっており,抗体製剤のほうが,副作用の出現が少ないと考えられている。そして,上述のように,抗CD109mAbは,ステロイド及び他の抗体製剤を含む既存の治療薬と比較して,好酸球を十分抑制し,気道過敏性を顕著に改善することが分かった。
 よって,抗CD109mAbは,既存の治療薬と比較して,喘息の治療薬として有用である可能性が示唆された。
In clinical use, steroids tend to have side effects, which is a problem, and antibody preparations are thought to have fewer side effects. And, as mentioned above, anti-CD109 mAb was found to sufficiently suppress eosinophils and significantly improve airway hyperresponsiveness compared to existing therapeutic agents including steroids and other antibody preparations.
Therefore, it was suggested that anti-CD109 mAb may be more useful as a therapeutic agent for asthma than existing therapeutic agents.
WIPO標準ST.25形式で記載した配列表を以下の表に示す。 WIPO standard ST. The sequence listing written in 25 format is shown in the table below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004



 
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
Figure JPOXMLDOC01-appb-I000004



 

Claims (12)

  1.  CD109による気道過敏性及び/又は好酸球性気道炎症を改善する薬剤を有効成分として含有する医薬組成物。 A pharmaceutical composition containing as an active ingredient a drug that improves airway hyperresponsiveness and/or eosinophilic airway inflammation caused by CD109.
  2.  前記CD109が,樹状細胞cCD2,B細胞,又は2型自然リンパ球に誘導される,請求項1に記載の医薬組成物。 The pharmaceutical composition according to claim 1, wherein the CD109 is induced into dendritic cells cCD2, B cells, or type 2 innate lymphocytes.
  3.  前記気道過敏性及び/又は好酸球性気道炎症の改善が,IL-4,IL-5,IL-13,及び/又はIL-33の産生抑制に起因する,請求項1又は請求項2に記載の医薬組成物。 Claim 1 or Claim 2, wherein the improvement in airway hyperresponsiveness and/or eosinophilic airway inflammation is caused by suppression of production of IL-4, IL-5, IL-13, and/or IL-33. Pharmaceutical compositions as described.
  4.  前記気道過敏性及び/又は好酸球性気道炎症の改善が,RUNX3の活性化及び/又はSmad2/3のリン酸化に起因する,請求項1~請求項3のいずれか1項に記載の医薬組成物。 The medicament according to any one of claims 1 to 3, wherein the improvement of airway hyperresponsiveness and/or eosinophilic airway inflammation is caused by activation of RUNX3 and/or phosphorylation of Smad2/3. Composition.
  5.  前記薬剤が,抗CD109抗体である,請求項1~請求項4のいずれか1項に記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 4, wherein the drug is an anti-CD109 antibody.
  6.  前記抗CD109抗体が,抗マウスモノクローナル抗体である,請求項5に記載の医薬組成物。 The pharmaceutical composition according to claim 5, wherein the anti-CD109 antibody is an anti-mouse monoclonal antibody.
  7.  CD109を欠損させた対象由来の樹状細胞cDC2sであって,気道過敏性及び/又は好酸球性気道炎症を改善するために用いられる樹状細胞。 Dendritic cells cDC2s derived from a subject deficient in CD109, which are used to improve airway hyperresponsiveness and/or eosinophilic airway inflammation.
  8.  前記樹状細胞が,移入のために使用される,請求項7に記載の樹状細胞。 The dendritic cell according to claim 7, wherein the dendritic cell is used for transfer.
  9.  前記樹状細胞が,抗炎症性の樹状細胞である,請求項7又は請求項8に記載の樹状細胞。 The dendritic cell according to claim 7 or 8, wherein the dendritic cell is an anti-inflammatory dendritic cell.
  10.  前記気道過敏性及び/又は好酸球性気道炎症の改善が,IL-6,IL-13,IL-17A,TNF,及び/又はIFN-γの産生の抑制に起因する,請求項7~請求項9のいずれか1項に記載の樹状細胞。 The improvement of airway hyperresponsiveness and/or eosinophilic airway inflammation is caused by suppressing the production of IL-6, IL-13, IL-17A, TNF, and/or IFN-γ. The dendritic cell according to any one of Item 9.
  11.  前記気道過敏性及び/又は好酸球性気道炎症の改善が,RUNX3の活性化及び/又はSmad2/3のリン酸化に起因する,請求項7~請求項10のいずれか1項に記載の樹状細胞。 The tree according to any one of claims 7 to 10, wherein the improvement of airway hyperresponsiveness and/or eosinophilic airway inflammation is caused by activation of RUNX3 and/or phosphorylation of Smad2/3. shaped cells.
  12.  前記樹状細胞が,CD109を欠損させていない前記対象由来の樹状細胞と比較して,CCL24,CCL26,IL-4,IL-5,IL-13,及び/又はIL-33の発現が低下し,IL-18,IL-12,及び/又はCXCL9の発現が増加している遺伝子プロファイリングを有する,請求項7~請求項11のいずれか1項に記載の樹状細胞。
     
    The expression of CCL24, CCL26, IL-4, IL-5, IL-13, and/or IL-33 is reduced in the dendritic cells compared to dendritic cells derived from the subject that are not deficient in CD109. The dendritic cell according to any one of claims 7 to 11, which has a genetic profile showing increased expression of IL-18, IL-12, and/or CXCL9.
PCT/JP2023/008865 2022-03-09 2023-03-08 Pharmaceutical composition and dendritic cell WO2023171714A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-036500 2022-03-09
JP2022036500 2022-03-09

Publications (1)

Publication Number Publication Date
WO2023171714A1 true WO2023171714A1 (en) 2023-09-14

Family

ID=87935241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008865 WO2023171714A1 (en) 2022-03-09 2023-03-08 Pharmaceutical composition and dendritic cell

Country Status (1)

Country Link
WO (1) WO2023171714A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020263192A1 (en) * 2019-06-26 2020-12-30 Agency For Science, Technology And Research Method of identifying pro-inflammatory dendritic cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020263192A1 (en) * 2019-06-26 2020-12-30 Agency For Science, Technology And Research Method of identifying pro-inflammatory dendritic cells

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
ALBANE A. BIZET; KAI LIU; NICOLAS TRAN-KHANH; ANSHUMAN SAKSENA; JOSHUA VORSTENBOSCH; KENNETH W. FINNSON; MICHAEL D. BUSCHMANN; ANI: "The TGF- co-receptor, CD109, promotes internalization and degradation of TGF- receptors", BIOCHIMICA ET BIOPHYSICA ACTA, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM., NL, vol. 1813, no. 5, 24 January 2011 (2011-01-24), NL , pages 742 - 753, XP028190491, ISSN: 0167-4889, DOI: 10.1016/j.bbamcr.2011.01.028 *
MO, X-T. ET AL.: "CD 109 mediates tumorigenicity and cancer aggressiveness via regulation of EGFR and STAT3 signalling in cervical squamous cell carcinoma", BRITISH JOURNAL OF CANCER, vol. 123, no. 5, 2020, pages 833 - 843, XP037474248, DOI: 10.1038/s41416-020-0922-7 *
TAKI, TETSURO ET AL.: "P1-86 Mechanistic role of CD 109 in progression of lung adenocarcinoma", PROCEEDINGS OF THE JAPANESE SOCIETY OF PATHOLOGY, JP, vol. 108, no. 1, 30 November 2018 (2018-11-30), JP , pages 351, XP009549215, ISSN: 0300-9181 *
TANABE, M. ET AL.: "The GPI-anchored protein CD 109 protects hematopoietic progenitor cells from undergoing erythroid differentiation induced by TGF-beta", LEUKEMIA, vol. 36, November 2021 (2021-11-01), pages 847 - 855, XP037704364, DOI: 10.1038/s41375-021-01463-3 *
VAN BEEK JASPER J.P., FLÓREZ-GRAU GEORGINA, GORRIS MARK A.J., MATHAN TILL S.M., SCHREIBELT GERTY, BOL KALIJN F., TEXTOR JOHANNES, : "Human pDCs Are Superior to cDC2s in Attracting Cytolytic Lymphocytes in Melanoma Patients Receiving DC Vaccination", CELL REPORTS, ELSEVIER INC, US, vol. 30, no. 4, 1 January 2020 (2020-01-01), US , pages 1027 - 1038.e4, XP093091575, ISSN: 2211-1247, DOI: 10.1016/j.celrep.2019.12.096 *

Similar Documents

Publication Publication Date Title
JP7021153B2 (en) Use of semaphorin-4D inhibitory molecule in combination with immunomodulatory therapy to inhibit tumor growth and metastasis
KR102194568B1 (en) Anti-mcam antibodies and associated methods of use
TW202332696A (en) Methods of treating inflammatory conditions
US11987626B2 (en) Treatment of eosinophil or mast cell related disorders
TW201833326A (en) CD70 binding molecules and methods of use thereof
US10611839B2 (en) Anti CD84 antibodies, compositions comprising same and uses thereof
JP6875683B2 (en) How to determine the application of new treatment for multiple sclerosis (MS) patients
CA2554628A1 (en) Methods of modulating cd200 and cd200r
KR20180053682A (en) Biomarkers related to interleukin-33 (IL-33) -mediated disease and uses thereof
US20080317710A1 (en) Methods For Treating Autoimmune or Demyelinating Diseases
IL292757A (en) Anti-tigit antibodies and uses thereof
JP2022502024A (en) Anti-human CD45RC antibody and its use
WO2023171714A1 (en) Pharmaceutical composition and dendritic cell
TWI730450B (en) Antibody, kit comprising the same, and uses thereof
US10428144B2 (en) DICAM-specific antibodies and uses thereof
WO2021085295A1 (en) Immune response suppressor
JP7475011B2 (en) Treatment or prevention agent for HTLV-1 associated myelopathy (HAM) and treatment method for HAM
EP4393949A1 (en) Pharmaceutical composition containing fusion protein
CN117412767A (en) C-X-C motif chemokine receptor 6 (CXCR 6) binding molecules and methods of use thereof
JP2024095754A (en) Treatment or prevention agent for HTLV-1 associated myelopathy (HAM) and treatment method for HAM
TW202302143A (en) Pharmaceutical composition for treatment or prevention of myasthenia gravis
KR20180135031A (en) Functional firing of ILC2, immunity and COPD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766890

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)