WO2023171635A1 - Sulfide-based solid electrolyte powder used in lithium-ion secondary battery, method for producing same, solid electrolyte layer, and lithium-ion secondary battery - Google Patents

Sulfide-based solid electrolyte powder used in lithium-ion secondary battery, method for producing same, solid electrolyte layer, and lithium-ion secondary battery Download PDF

Info

Publication number
WO2023171635A1
WO2023171635A1 PCT/JP2023/008432 JP2023008432W WO2023171635A1 WO 2023171635 A1 WO2023171635 A1 WO 2023171635A1 JP 2023008432 W JP2023008432 W JP 2023008432W WO 2023171635 A1 WO2023171635 A1 WO 2023171635A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
sulfide
fluorine
based solid
electrolyte powder
Prior art date
Application number
PCT/JP2023/008432
Other languages
French (fr)
Japanese (ja)
Inventor
駿一 石黒
公章 赤塚
真弓 福峯
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023171635A1 publication Critical patent/WO2023171635A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sulfide-based solid electrolyte powder used in a lithium ion secondary battery, a method for producing the same, a solid electrolyte layer, and a lithium ion secondary battery.
  • Lithium ion secondary batteries are widely used in portable electronic devices such as mobile phones and notebook computers.
  • Lithium ion secondary batteries are widely used in portable electronic devices such as mobile phones and notebook computers.
  • improvements have been made to the discharge capacity per unit mass, cycle characteristics, rate characteristics, and stability as batteries. Further performance improvements are desired.
  • Patent Document 1 discloses a solid electrolyte material containing fluorine for the purpose of suppressing the formation of a high resistance site at the interface with an electrode active material.
  • This solid electrolyte material is obtained by adding fluoride to a raw material composition containing constituent elements and then performing an amorphization treatment.
  • Patent Document 2 discloses a solid electrolyte containing an alkali metal element, phosphorus, sulfur, and halogen for the purpose of being difficult to hydrolyze and having high ionic conductivity.
  • This solid electrolyte can be obtained by a melt quenching method, a mechanical milling method, a slurry method, a solid phase method, or the like.
  • Patent Document 3 includes particles having a layer whose surface is fluorinated, the fluorine content on the outermost surface of the fluorinated layer is 95% by mass or more, and the fluorine content in the entire sulfide-based solid electrolyte powder is A sulfide-based solid electrolyte powder having a fluorine content of 10% by mass or less is disclosed.
  • Patent Document 3 aims at suppressing the formation of high resistance sites at the interface between the positive electrode active material and the solid electrolyte and improving hydrolysis resistance by using the above-mentioned sulfide-based solid electrolyte powder.
  • Patent Documents 1 and 2 hydrolysis resistance is improved by including halogens such as fluorine, chlorine, and bromine in the solid electrolyte, and high resistance sites are formed at the interface between the positive electrode active material and the solid electrolyte during charging and discharging. can also be suppressed.
  • halogens such as fluorine, chlorine, and bromine are introduced by mechanical milling. Therefore, halogens such as fluorine, chlorine, and bromine are uniformly dispersed on the surface and inside of the solid electrolyte, and halides are also uniformly present.
  • halogen a small amount of halogen to the entire solid electrolyte improves ionic conductivity, but adding a large amount of halogen to the entire particle, which is sufficient to improve hydrolysis resistance and suppress the formation of high-resistance sites, increases the insulating properties. Lithium halide precipitates, leading to a decrease in the ionic conductivity of the solid electrolyte. That is, there is a trade-off relationship between improving hydrolysis resistance and suppressing the formation of high resistance sites using halogens such as fluorine, chlorine, and bromine, and improving the ionic conductivity of the solid electrolyte, and it has been difficult to achieve both. Furthermore, although introducing fluorine by mechanical milling is simple, there is a limit to the amount of solid electrolyte that can be produced at one time, and productivity is low.
  • Patent Document 3 fluorine is introduced into the surface layer of sulfide-based solid electrolyte particles to suppress the formation of high-resistance sites at the interface between the positive electrode active material and the solid electrolyte and to improve hydrolysis resistance.
  • sulfide-based solid electrolytes have a relatively narrow potential window and tend to react with positive electrode active materials and negative electrode active materials and deteriorate when used as battery materials. Therefore, in addition to improving the above characteristics, sulfide-based solid electrolytes are also required to have improved oxidation-reduction resistance.
  • an object of the present invention is to provide a sulfide-based solid electrolyte powder for lithium ion secondary batteries that improves battery characteristics. Specifically, by specifically containing components different from those inside the particles at the interface of the sulfide-based solid electrolyte particles in a predetermined state, the oxidation resistance and hydrolysis resistance of the sulfide-based solid electrolyte can be improved. The purpose is to maintain the excellent ionic conductivity of the sulfide-based solid electrolyte powder itself. Thereby, performance deterioration due to side reactions during battery operation can be suppressed while maintaining relatively high lithium ion conductivity within the grains.
  • a sulfide-based solid electrolyte powder used in lithium ion secondary batteries includes particles having an amorphous fluorine-containing layer on the surface.
  • the sulfide-based solid electrolyte powder according to [1] wherein the particles contain a halogen element inside the fluorine-containing layer.
  • a solid electrolyte layer comprising the sulfide-based solid electrolyte powder according to any one of [1] to [7] above.
  • a lithium ion secondary battery comprising the sulfide-based solid electrolyte powder according to any one of [1] to [7] above.
  • the surface of the particles contained in the powder is selectively fluorinated and contains an amorphous fluorine-containing layer on the surface, so that the sulfide-based solid electrolyte can be hydrolyzed.
  • the resistance and oxidation resistance can be improved, and the excellent lithium ion conductivity of the sulfide-based solid electrolyte powder itself can be maintained. Thereby, the battery characteristics of the lithium ion secondary battery can be improved.
  • FIG. 1 is a diagram showing the results of transmission electron energy loss spectroscopy, in which (a) is a diagram showing the Li-K edge, and (b) is a diagram showing the FK edge.
  • FIG. 2 is an enlarged view of the results near the particle surface in FIG. 1(a).
  • FIG. 3 is a cross-sectional image (bright field image) of particles observed using a transmission electron microscope (TEM).
  • FIG. 4 is a diagram showing the results of electron beam diffraction measurement, in which (a) is a diagram showing the measurement results for region 1, and (b) is a diagram showing the measurement results for region 2.
  • FIG. 5 is a flowchart illustrating an example of the method for manufacturing the sulfide-based solid electrolyte powder according to the present embodiment.
  • the sulfide-based solid electrolyte powder according to this embodiment is used in a lithium ion secondary battery.
  • the sulfide-based solid electrolyte powder includes particles having an amorphous fluorine-containing layer on the surface.
  • the amorphous fluorine-containing layer may be simply referred to as the fluorine-containing layer.
  • the fluorine content at the outermost surface of the fluorine-containing layer refers to the proportion of fluorine atoms contained in the elements constituting the layer at a depth of less than 10 nm from the surface of the fluorine-containing layer. That's a thing.
  • the oxidation resistance and hydrolysis resistance of the sulfide solid electrolyte are improved by specifically containing a component different from that inside the grain in a predetermined state at the interface of the sulfide solid electrolyte particle.
  • the excellent ionic conductivity of the sulfide-based solid electrolyte powder itself can be maintained.
  • the surface of the particles contained in the sulfide-based solid electrolyte powder has an amorphous fluorine-containing layer by selectively introducing fluorine. It is thought that due to the formation of lithium chloride, the upper end of the valence band of the corresponding portion shifts to the lower energy side, thereby increasing the oxidative decomposition potential. It is presumed that this suppresses side reactions due to oxidative decomposition of the solid electrolyte at the interface with the positive electrode active material exposed to high potential.
  • the fluorine forms amorphous lithium fluoride, and the sulfide system inside the particles It is thought that the lithium ion conductivity of the solid electrolyte is not easily impaired and can be maintained in an excellent state.
  • the sulfide-based solid electrolyte powder according to the present embodiment has excellent hydrolysis resistance, which improves handling properties and can suppress its deterioration. Furthermore, by having excellent oxidation resistance, deterioration when used in lithium ion batteries can be suppressed. That is, the sulfide-based solid electrolyte powder according to the present embodiment has excellent hydrolysis resistance and oxidation resistance, and can maintain excellent lithium ion conductivity inside the particles, so it can be used in lithium ion secondary batteries. It is expected that the battery characteristics will improve when the battery is used.
  • the sulfide-based solid electrolyte powder according to the present embodiment includes sulfide-based solid electrolyte particles having an amorphous fluorine-containing layer on the surface.
  • the components constituting the particles that is, the components other than those introduced by the fluorination treatment described below, are not particularly limited as long as they are sulfide-based solid electrolytes, contain sulfur (S), and have lithium ion conductivity. Those having the following can be suitably used.
  • the sulfide-based solid electrolyte constituting such particles include, for example, a sulfide-based solid electrolyte containing Li, P, and S, a sulfide-based solid electrolyte containing Li, P, S, and Ha, and the like.
  • Ha represents at least one element selected from halogen elements.
  • Ha is, for example, at least one element selected from the group consisting of F, Cl, Br, and I.
  • the sulfide-based solid electrolyte constituting the particles preferably contains Ha from the viewpoint of improving lithium ion conductivity.
  • the sulfide-based solid electrolyte particles having a fluorine-containing layer on the surface contain Ha inside the fluorine-containing layer.
  • Ha preferably contains at least one of Cl and Br, even more preferably contains Cl, and even more preferably Cl alone or a mixture of Cl and Br.
  • the sulfide-based solid electrolyte may be an amorphous sulfide-based solid electrolyte or a sulfide-based solid electrolyte with a specific crystal structure, depending on its purpose, and may have a crystalline phase and an amorphous solid electrolyte.
  • a sulfide-based solid electrolyte containing a solid phase may also be used.
  • the sulfide-based solid electrolyte preferably includes a crystal structure from the viewpoint of improving lithium ion conductivity.
  • the crystals contained in the sulfide-based solid electrolyte are preferably ion-conductive crystals.
  • the ion conductive crystal is a crystal whose lithium ion conductivity is preferably greater than 10 ⁇ 4 S/cm, more preferably greater than 10 ⁇ 3 S/cm.
  • sulfide-based solid electrolytes include sulfide-based solid electrolytes containing LGPS-type crystals such as Li 10 GeP 2 S 12 , and sulfide-based solids containing argyrodite-type crystals such as Li 6 PS 5 Cl 1 .
  • LGPS-type crystals such as Li 10 GeP 2 S 12
  • sulfide-based solids containing argyrodite-type crystals such as Li 6 PS 5 Cl 1
  • Examples include electrolyte, Li-P-S-Ha type crystallized glass, and LPS crystallized glass such as Li 7 P 3 S 11 .
  • the sulfide-based solid electrolyte may be a combination of these or may contain multiple types of crystals with different compositions and crystal structures.
  • a sulfide-based solid electrolyte containing argyrodite-type crystals is preferable because of its excellent lithium ion conductivity.
  • the crystal structure includes an argyrodite type from the viewpoint of symmetry of the crystal structure. Crystals with high symmetry tend to spread the lithium ion conduction path three-dimensionally, which is preferable when molding powder.
  • the crystal phase contains Ha in addition to Li, P, and S.
  • Ha more preferably contains at least one of Cl and Br, still more preferably contains Cl, and even more preferably Cl alone or a mixture of Cl and Br.
  • composition of the sulfide-based solid electrolyte is determined by composition analysis using, for example, ICP emission spectrometry, atomic absorption spectrometry, ion chromatography, or the like. Further, the type of crystal contained in the sulfide-based solid electrolyte can be analyzed from an X-ray powder diffraction (XRD) pattern.
  • XRD X-ray powder diffraction
  • the shape of the particles contained in the sulfide-based solid electrolyte powder according to the present embodiment may be primary particles, secondary particles formed by agglomeration of primary particles, or primary particles and secondary particles. It may be a combination of secondary particles.
  • the surface of the primary particle may be fluorinated
  • the surface of the secondary particle formed by agglomeration of the primary particles may be fluorinated.
  • it is preferable that the surfaces of the primary particles are fluorinated from the viewpoint of suitably obtaining the effects of the present invention.
  • the fluorine-containing layer preferably has a fluorine content of 0.5% by mass or more and less than 95% by mass, and 3% by mass or more and less than 80% by mass. % or less, more preferably 10% by mass or more and 80% by mass or less.
  • the content of fluorine on the outermost surface is 0.5% by mass or more, the particle surface is covered with fluoride, and stability to the positive electrode active material and atmospheric components is further improved.
  • the content of fluorine on the outermost surface is preferably 0.5% by mass or more, more preferably 3% by mass or more, and even more preferably 10% by mass or more.
  • the content of fluorine on the outermost surface is preferably less than 95% by mass, and is preferably 80% by mass or less, from the viewpoint of easily maintaining the excellent ion conductivity of the sulfide-based solid electrolyte powder itself by not inhibiting Li ion conduction. is more preferable.
  • the fluorine-containing layer contains amorphous fluorine.
  • the amorphous fluorine-containing layer refers to a layer containing amorphous fluorine.
  • Amorphous fluorine refers to a fluorine compound in an amorphous state, and includes, for example, amorphous lithium fluoride.
  • the fluorine-containing layer contains amorphous fluorine such as amorphous lithium fluoride, the relevant part becomes poorly soluble in water and chemically stable, resulting in excellent hydrolysis resistance and oxidation resistance as described above. It is presumed that sex can be obtained.
  • Whether the fluorine-containing layer is amorphous or contains lithium fluoride can be determined, for example, by a method using electron beam diffraction measurement and transmission electron energy loss spectroscopy, which will be described later in Examples.
  • the fluorine-containing layer contains amorphous lithium fluoride
  • all of the F elements contained in the fluorine-containing layer may form amorphous lithium fluoride. may be contained in.
  • the F element may be incorporated into the crystal lattice or amorphous of the sulfide-based solid electrolyte by element substitution, or may react with elements other than Li to form fluoride etc. on the surface. It's okay.
  • the fluorine content on the outermost surface of the fluorine-containing layer is measured by the following method. That is, 10 nm from the surface of the fluorine-containing layer is determined by elemental mapping using a transmission electron microscope (TEM) or electron energy loss spectroscopy, or by depth elemental profile analysis from the particle surface to the grain interior using ESCA (X-ray photoelectron spectroscopy). Evaluate the content ratio of fluorine element and the chemical bonding state of fluorine at a depth below .
  • TEM transmission electron microscope
  • ESCA X-ray photoelectron spectroscopy
  • the fluorine content per surface area of the particles is preferably 1 ⁇ 10 ⁇ 7 mol/m 2 or more and 1 ⁇ 10 ⁇ 2 mol/m 2 or less, and 1 ⁇ 10 ⁇ 6 mol/m 2 or more and 8 ⁇ 10 -3 mol/m 2 or less is more preferable, and 1 ⁇ 10 ⁇ 5 mol/m 2 or more and 5 ⁇ 10 ⁇ 3 mol/m 2 or less is even more preferable.
  • the particle has an amorphous fluorine-containing layer on its surface.
  • the fluorine content per particle surface area is preferably 1 ⁇ 10 ⁇ 7 mol/m 2 or more, more preferably 1 ⁇ 10 ⁇ 6 mol/m 2 or more, and 1 ⁇ More preferably, it is 10 ⁇ 5 mol/m 2 or more.
  • the fluorine content per particle surface area is preferably 1 ⁇ 10 ⁇ 2 mol/m 2 or less, more preferably 8 ⁇ 10 ⁇ 3 mol/m 2 or less from the viewpoint of maintaining the excellent Li ion conductivity inherent in the sulfide solid electrolyte. It is preferably 5 ⁇ 10 ⁇ 3 mol/m 2 or less, and more preferably 5 ⁇ 10 ⁇ 3 mol/m 2 or less.
  • the fluorine content per surface area of particles is determined by measuring the fluorine content (mol/g) of the powder using a fluoride ion composite electrode, and converting this to the specific surface area (m 2 /g) of the powder obtained by BET measurement. ) is calculated by dividing by
  • the fluorine content in the entire sulfide-based solid electrolyte powder according to this embodiment is preferably 50% by mass or less.
  • the smaller the fluorine content in the entire powder the relatively smaller the amount of fluorine present inside the particles tends to be. This can reduce the decrease in lithium ion conductivity caused by deterioration of crystallinity or excessive presence of low ion conductivity components.
  • the fluorine content in the entire sulfide-based solid electrolyte powder is more preferably 40% by mass or less, and more preferably 30% by mass or less.
  • the fluorine content in the entire powder is preferably 0.01% by mass or more in order to form a fluorine-containing layer on the surface of the particles, more preferably 0.1% by mass or more, and 0.5% by mass or more. is even more preferable. That is, the fluorine content in the entire sulfide-based solid electrolyte powder is preferably 0.01% by mass to 50% by mass, more preferably 0.1% to 40% by mass, and even more preferably 0.5% to 30% by mass. preferable. Note that the fluorine content in the entire sulfide-based solid electrolyte powder is determined from the results of analysis using a fluoride ion composite electrode as described in Examples below.
  • the thickness of the fluorine-containing layer is preferably 1 nm or more, more preferably 1.25 nm or more, even more preferably 1.5 nm or more, and even more preferably 2 nm or more, from the viewpoint of making the effects of the present invention more sufficient. Further, the thickness of the fluorine-containing layer is preferably 100 nm or less, more preferably 50 nm or less, and even more preferably 30 nm or less, from the viewpoint of suppressing a decrease in lithium ion conductivity.
  • the thickness of the fluorine-containing layer is preferably 1 nm to 100 nm, more preferably 1.25 nm to 50 nm, even more preferably 1.5 nm to 30 nm, even more preferably 2 nm to 30 nm.
  • the thickness of the fluorine-containing layer is determined by analysis such as X-ray photoelectron spectroscopy, elemental mapping from a particle cross section, and electron energy loss spectroscopy. Further, evaluation of the crystallinity of the entire particle is obtained by analysis such as X-ray diffraction and TEM electron beam diffraction.
  • the average particle diameter of the particles having a fluorine-containing layer is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more from the viewpoint of improving handleability. Further, from the viewpoint of ease of movement of lithium ions, the average particle diameter is preferably 100 ⁇ m or less, more preferably 20 ⁇ m or less, and even more preferably 10 ⁇ m or less. That is, the average particle size of particles having a fluorine-containing layer is preferably 0.1 ⁇ m to 100 ⁇ m, more preferably 0.5 ⁇ m to 20 ⁇ m, and even more preferably 0.5 ⁇ m to 10 ⁇ m.
  • the average particle size of particles with a fluorine-containing layer can be reduced, for example, by grinding the particles before fluorination.
  • particles within a specific particle size range may be selected by classification. Classification may be performed before or after fluorinating the particles.
  • the average particle size of particles having a fluorine-containing layer on the surface includes the thickness of the fluorine-containing layer, and is determined by a particle size distribution measuring device.
  • a D50 average particle diameter (median diameter: particle diameter at which the cumulative frequency is 50%) can be adopted.
  • sulfide-based solid electrolyte powder is placed in a non-aqueous solvent, sufficiently dispersed by ultrasonication, and the particles are measured using a laser diffraction/scattering particle size distribution measuring device.
  • a volume-based particle size distribution is obtained by obtaining a frequency distribution and a cumulative volume distribution curve, and the particle size at a point of 50% on the cumulative volume distribution curve is defined as the D50 average particle size.
  • the oxidation potential of the sulfide-based solid electrolyte powder is evaluated, for example, by cyclic voltammetry (CV) measurement using a potentiogalvanostat.
  • CV cyclic voltammetry
  • the electrochemical cell used for the measurement for example, an all-solid-state cell using stainless steel foil as the working electrode, the sulfide-based solid electrolyte to be evaluated as the solid electrolyte layer, and Li metal foil as the counter electrode and reference electrode is used. Can be mentioned. It is preferable to insert a mixture of electron conductor powder such as carbon powder and solid electrolyte powder between the working electrode and the solid electrolyte layer.
  • the hydrolysis resistance (water resistance) of the above sulfide-based solid electrolyte powder can be evaluated, for example, by exposing the sulfide-based solid electrolyte powder to a gas atmosphere with controlled humidity for a certain period of time and measuring the amount of hydrogen sulfide gas generated.
  • the gas species used include air, nitrogen, argon, etc., and from the viewpoint of evaluating only the reactivity with water, inert gases such as nitrogen and argon are preferred.
  • the humidity of the gas may be adjusted by using a cylinder gas whose humidity has been adjusted in advance, or by mixing dry gas and gas moistened by bubbling in water in any ratio. , a desired moisture concentration gas may be obtained.
  • the method of exposing sulfide-based solid electrolyte powder to gas may be to seal it in a container with a certain volume and measure the hydrogen sulfide concentration inside the container after a certain period of time has passed, or to expose the powder to gas at a constant flow rate. You can apply the gas with a flow and monitor the hydrogen sulfide concentration in the gas that comes out at any time.
  • a gas flow method is preferable from the viewpoints of checking changes in the amount of hydrogen sulfide generated with respect to exposure time and of not changing the humidity of the exposure atmosphere even if it reacts with moisture.
  • the lithium ion conductivity of the sulfide-based solid electrolyte powder is not particularly limited as it varies depending on its composition, etc., but from the viewpoint of improving battery characteristics when used in a lithium ion secondary battery, it is 0.5 at 25°C. It is preferably at least ⁇ 10 ⁇ 3 S/cm, more preferably at least 1.0 ⁇ 10 ⁇ 3 S/cm, and even more preferably at least 2.0 ⁇ 10 ⁇ 3 S/cm. Lithium ion conductivity can be measured by the AC impedance method described later in Examples.
  • the method for producing the sulfide-based solid electrolyte powder according to the present embodiment is not particularly limited, but for example, as shown in FIG. ) is a method for producing a sulfide-based solid electrolyte powder containing particles having a fluorine-containing layer on the surface according to the above embodiment.
  • the fluorine-containing layer according to the above embodiment is formed by appropriately adjusting the volume ratio of the component containing the fluorine element in the gas containing the fluorine element, the partial pressure of the gas containing the fluorine element, the temperature, and the contact time.
  • Sulfide-based solid electrolyte powder can be produced.
  • the fluorine-containing layer contains amorphous fluorine.
  • the fluorinable gas is a gas containing elemental fluorine, and more specifically, a gas containing a component containing elemental fluorine.
  • the component containing elemental fluorine include fluorine gas (F 2 gas), hydrogen fluoride gas (HF gas), BF 3 gas, NF 3 gas, PF 5 gas, SiF 4 gas, SF 6 gas, and the like.
  • F 2 gas fluorine gas
  • HF gas hydrogen fluoride gas
  • BF 3 gas BF 3 gas
  • NF 3 gas NF 3 gas
  • PF 5 gas SiF 4 gas
  • SF 6 gas SF 6 gas
  • a mixed gas of an inert gas such as nitrogen gas or argon gas
  • the fluorine-containing layer in this embodiment may contain these gas constituents as impurities as long as the effects of the present invention are not impaired.
  • fluorine gas F 2 gas
  • HF gas hydrogen fluoride gas
  • F 2 gas fluorine gas
  • HF gas hydrogen fluoride gas
  • the volume percentage of the component containing elemental fluorine is 80% or less. This is preferable because it makes it easier to control the reaction with the sulfide-based solid electrolyte.
  • the volume ratio of the component containing elemental fluorine is preferably 50% or less, more preferably 20% or less.
  • the volume percentage of the component containing elemental fluorine is more than 0%, and from the viewpoint of promoting reaction and economics, it is preferably 0.01% or more, and more preferably 0.1% or more. That is, the volume percentage of the component containing elemental fluorine is more than 0% to 80%, preferably 0.01% to 50%, and more preferably 0.1% to 20%.
  • the time for contacting the particles of the sulfide-based solid electrolyte with the gas containing elemental fluorine is preferably 10 seconds or more, more preferably 1 minute or more, and preferably 240 minutes or less, and more preferably 150 minutes or less.
  • a fluorine-containing layer with a controlled concentration can be formed on the surface of the particles with high precision. That is, the time for contacting the particles of the sulfide-based solid electrolyte with the gas containing elemental fluorine is preferably 10 seconds to 240 minutes, more preferably 1 minute to 150 minutes.
  • the temperature range is preferably in the range of -50 to 600°C.
  • the fluorine concentration on the particle surface it is also preferable to increase the reactivity between the particle surface and fluorine by increasing the temperature. Thereby, the fluorine-containing layer can be formed reliably and efficiently.
  • the pressure is preferably 1.0 MPa (gauge pressure) or less, and more preferably 0.5 MPa (gauge pressure) or less.
  • the pressure is preferably -0.1 MPa (gauge pressure) or higher, more preferably -0.098 MPa (gauge pressure) or higher. That is, the pressure is preferably -0.1 to 1.0 MPa, more preferably -0.098 to 0.5 MPa.
  • the gas containing elemental fluorine when the particles are brought into contact with the gas containing elemental fluorine, it is preferable that the gas containing elemental fluorine is brought into contact with the particles in an atmosphere in which the partial pressure of the component containing elemental fluorine is 0.1 MPa or less.
  • the present inventors have successfully controlled the amount and state of fluorine introduced at the outermost surface of the resulting particles by appropriately controlling the partial pressure of the component containing the fluorine element when it comes into contact with the gas containing the fluorine element. I found out what I can do.
  • the partial pressure of the component containing elemental fluorine is preferably 0.1 MPa or less, more preferably 0.05 MPa or less, and even more preferably 0.02 MPa or less, from the viewpoint of suppressing excessive reaction.
  • such partial pressure is preferably 0.01 kPa or more, more preferably 0.1 kPa or more, and even more preferably 0.5 kPa or more from the viewpoint of promoting the reaction. That is, the partial pressure is preferably 0.01 kPa to 0.1 MPa, more preferably 0.1 kPa to 0.05 MPa, and even more preferably 0.5 kPa to 0.02 MPa.
  • the fluorine partial pressure refers to a value determined by (volume ratio of a fluorine-containing component in a fluorine-containing gas) x (pressure at the time of contact between particles and a fluorine-containing gas). Furthermore, in the case of a batch reaction, it refers to the value at the time of charging, and in the case where the gas containing the fluorine element is continuously supplied, it refers to the value at the time of supply.
  • the contact between the particles and the gas containing elemental fluorine is preferably carried out by a flow method or a batch method.
  • the particles are placed in a stationary state in a reaction vessel, and a gas containing fluorine at a predetermined concentration is continuously supplied into the open type reaction vessel to mix the particles and the gas containing fluorine.
  • a method of contact is preferred.
  • a reactor equipped with a fluidized bed in which the particles are placed and fluidized, or a kiln such as a tube furnace can also be used. It is particularly preferable to use a fluidized bed because it can shorten the fluorination treatment time, suppress excessive fluorination, and achieve more uniform fluorination.
  • a fluidized bed because it can shorten the fluorination treatment time, suppress excessive fluorination, and achieve more uniform fluorination.
  • it can also be carried out while stirring and mixing the particles in order to uniformly contact the gas containing the fluorine element to the particles.
  • the solid electrolyte layer according to this embodiment includes the sulfide-based solid electrolyte powder and is used in a lithium ion secondary battery. Further, the solid electrolyte layer may further contain additives such as a binder, if necessary.
  • the content of the sulfide-based solid electrolyte powder in the solid electrolyte layer is not particularly limited, and may be appropriately determined depending on the intended performance of the battery. For example, the content of the sulfide-based solid electrolyte powder is preferably 80% by mass or more, more preferably 90% by mass or more with respect to the entire sulfide-based solid electrolyte layer.
  • binder examples include butadiene rubber (BR), acrylate butadiene rubber (ABR), styrene butadiene rubber (SBR), polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), and the like. It will be done.
  • the content of the binder in the solid electrolyte layer may be the same as the conventional one.
  • the thickness of the solid electrolyte layer is not particularly limited, and may be appropriately determined depending on the intended performance of the battery.
  • the thickness is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more.
  • the thickness of the solid electrolyte layer is preferably 1000 ⁇ m or less, more preferably 200 ⁇ m or less.
  • the thickness of the solid electrolyte layer is preferably 10 to 1000 ⁇ m, more preferably 15 to 200 ⁇ m.
  • the method of forming the solid electrolyte layer is not particularly limited.
  • the solid electrolyte layer can be formed by dispersing or dissolving the components constituting the solid electrolyte layer described above in a solvent to form a slurry, coating it in a layered form (sheet form), drying it, and optionally pressing it. If necessary, heat may be applied to remove the binder. By adjusting the coating amount of the slurry, etc., the thickness of the solid electrolyte layer can be easily adjusted.
  • the solid electrolyte layer may be formed by dry press molding a solid electrolyte powder or the like on the surface of the object (positive electrode, negative electrode, etc.) on which the solid electrolyte layer is to be formed.
  • the solid electrolyte layer may be formed on another base material and transferred onto the surface of the object on which the solid electrolyte layer is to be formed. From the viewpoint of industrially and stably forming a strong solid electrolyte layer on the surface of the object on which the solid electrolyte layer is to be formed, it is preferable to form the solid electrolyte layer on the surface of the object by wet molding using a solvent. .
  • the lithium ion secondary battery according to this embodiment includes the sulfide-based solid electrolyte powder according to this embodiment.
  • Such a lithium ion secondary battery includes, for example, the solid electrolyte layer, a positive electrode, and a negative electrode, but is not limited to the exemplified form. Conventionally known positive electrodes and negative electrodes are used. Specific examples are shown below, but the invention is not limited to these.
  • the positive electrode contains at least a positive electrode current collector and a positive electrode active material.
  • the positive electrode current collector may be any conductive plate material, and for example, a thin metal plate (metal foil) such as aluminum or an alloy thereof, or stainless steel can be used. These are preferable because they have excellent electrolyte resistance and oxidation resistance.
  • the positive electrode active material can reversibly absorb and release lithium ions, desorb and insert (intercalate) lithium ions, or dope and dedope counter anions (for example, PF 6 - ) of lithium ions.
  • the positive electrode active material include lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMnO 2 ), lithium nickel manganate, and Li( Nix Co y Mn z M a )O.
  • M is selected from Al, Mg, Nb, Ti, Cu, Zn and Cr Li a M b (PO 4 ) c (1 ⁇ a ⁇ 4, 1 ⁇ b ⁇ 2, 1 ⁇ c ⁇ 3, where M is Fe, V, Co , Mn, Ni, and VO), and the like.
  • the positive electrode may include a binder that binds the positive electrode active materials together and also binds the positive electrode active material and the positive electrode current collector.
  • the binder conventionally known binders can be used.
  • the positive electrode may include a known conductive additive for positive electrodes, such as carbon-based materials such as graphite and carbon black, metals such as copper, nickel, stainless steel, and iron, indium tin oxide (ITO), etc. conductive oxides.
  • the positive electrode may contain the above-mentioned sulfide-based solid electrolyte powder in addition to the above-mentioned positive electrode active material.
  • the negative electrode contains at least a negative electrode current collector and a negative electrode active material.
  • the negative electrode current collector may be any conductive plate material, for example, a thin metal plate (metal foil) made of copper, aluminum, or the like. These are preferable because they have excellent electrolyte resistance and oxidation resistance.
  • the negative electrode active material is not particularly limited, and any material capable of intercalating and deintercalating lithium ions may be used.
  • lithium metal, carbon-based materials, silicon, silicon alloys, tin, etc. can be used.
  • the negative electrode active material can reversibly absorb and release lithium ions, desorb and insert (intercalate) lithium ions, or dope and dedope counter anions (for example, PF 6 - ) of the lithium ions.
  • dope and dedope counter anions for example, PF 6 -
  • Examples of the negative electrode active material include carbon-based materials such as graphite, hard carbon, and soft carbon, metals that can form alloys with lithium such as aluminum, silicon, and tin, and amorphous materials such as silicon oxide and tin oxide. , lithium titanate (Li 4 Ti 5 O 12 ), and the like.
  • the negative electrode may include a binder that binds the negative electrode active materials together and also binds the negative electrode active material and the negative electrode current collector.
  • the binder conventionally known binders can be used.
  • the negative electrode may include a known conductive additive for negative electrodes, and the same conductive additive as the above-mentioned conductive additive for positive electrodes can be used.
  • the negative electrode may contain the above-mentioned sulfide-based solid electrolyte powder in addition to the above-mentioned negative electrode active material.
  • the components of the lithium ion secondary battery such as the solid electrolyte layer, positive electrode, and negative electrode, are stored in the battery exterior.
  • Conventionally known materials can be used for the battery exterior, and specific examples include nickel-plated iron, stainless steel, aluminum or alloys thereof, nickel, titanium, resin materials, film materials, and the like.
  • the shape of the lithium ion secondary battery includes a coin shape, a sheet shape (film shape), a folded shape, a wound type bottomed cylindrical shape, a button shape, etc., and can be appropriately selected depending on the purpose.
  • the contained sulfide-based solid electrolyte powder has excellent hydrolysis resistance and oxidation resistance, and maintains excellent ionic conductivity, resulting in good battery characteristics. can be realized.
  • Examples 1 to 5 are examples, and example 6 is a comparative example.
  • Example 1 Fluorinated sulfide solid electrolyte powder 0.500 g of sulfide-based solid electrolyte powder (Li 6 PS 5 Cl, manufactured by Ampcera) containing argyrodite-type crystals was placed in a Hastelloy reactor having an internal volume of 0.3 L. Note that the average particle diameter (D50) of the sulfide-based solid electrolyte powder used was 2.9 ⁇ m. Although this average particle diameter is the value before the fluorination treatment, it has been confirmed through scanning electron microscopy and the like that the average particle diameter hardly changes before and after the fluorination treatment of this example.
  • Fluorination treatment was performed by contacting the particles with a mixed gas at .001 MPa and room temperature for 30 minutes to obtain a sulfide-based solid electrolyte powder containing argyrodite-type crystals and having an amorphous fluorine-containing layer on the particle surface. .
  • Example 2 Fluorinated sulfide solid electrolyte powder
  • the process was carried out in the same manner as in Example 1, except that the pressure in the reactor was -0.098 MPa (gauge pressure) and the partial pressure of the component containing elemental fluorine was 0.0004 MPa, and an amorphous fluorine-containing layer was formed on the particle surface.
  • a sulfide-based solid electrolyte powder containing argyrodite-type crystals was obtained.
  • Example 3 Fluorinated sulfide solid electrolyte powder
  • the process was carried out in the same manner as in Example 1, except that the pressure in the reactor was -0.099 MPa (gauge pressure) and the partial pressure of the component containing elemental fluorine was 0.0002 MPa, and an amorphous fluorine-containing layer was formed on the particle surface.
  • a sulfide-based solid electrolyte powder containing argyrodite-type crystals was obtained.
  • Example 4 Fluorinated sulfide solid electrolyte powder
  • the process was carried out in the same manner as in Example 1, except that the pressure in the reactor was -0.085 MPa (gauge pressure) and the partial pressure of the component containing elemental fluorine was 0.003 MPa, and an amorphous fluorine-containing layer was formed on the particle surface.
  • a sulfide-based solid electrolyte powder containing argyrodite-type crystals was obtained.
  • Example 5 Fluorinated sulfide solid electrolyte powder
  • the process was carried out in the same manner as in Example 1, except that the pressure in the reactor was -0.055 MPa (gauge pressure) and the partial pressure of the component containing elemental fluorine was 0.009 MPa, and an amorphous fluorine-containing layer was formed on the particle surface.
  • a sulfide-based solid electrolyte powder containing argyrodite-type crystals was obtained.
  • Example 6 Fluorinated untreated sulfide solid electrolyte powder
  • a sulfide-based solid electrolyte powder containing argyrodite-type crystals similar to that in Example 1 was used as it was without fluorination treatment.
  • the sulfide-based solid electrolyte powder obtained above was evaluated as follows. (Fluorine content on the outermost surface) As X-ray photoelectron spectroscopy, the abundance ratio of each element on the outermost surface of the particle (depth less than 10 nm from the surface) was quantitatively analyzed using PHI VersaProbe III (trade name) manufactured by ULVAC-PHI. The results are shown in Table 1.
  • FIG. 1 to 4 are diagrams showing the results of the above measurements on the sulfide-based solid electrolyte powder obtained in Example 1, respectively.
  • FIG. 1 is a diagram showing the results of transmission electron energy loss spectrometry, in which (a) is a diagram showing the Li-K edge, and (b) is a diagram showing the FK edge.
  • FIG. 2 is an enlarged view of the results near the particle surface in FIG. 1(a).
  • FIGS. 1 and 2 graphs with the horizontal axis representing loss energy (eV) and the vertical axis representing intensity are shown for each distance (depth) from the particle surface. From the results shown in Figures 1 and 2, Li exists regardless of the distance from the particle surface, but the chemical bond state changes specifically near the surface, and F exists only near the particle surface. I can see that there is. That is, it was confirmed that in the sulfide-based solid electrolyte powder obtained in Example 1, F was introduced to a depth of 10 nm from the surface, causing Li-F bonds (ACS Nano, 5 (2), 2011 , 1190).
  • eV loss energy
  • FIG. 3 is a cross-sectional observation image (bright field image) using a transmission electron microscope (TEM).
  • region 1 corresponds to the center of the particle
  • region 2 corresponds to the vicinity of the particle surface.
  • FIG. 4 is a diagram showing the results of electron diffraction measurement, in which (a) is a diagram showing the measurement results for region 1, and (b) is a diagram showing the measurement results for region 2.
  • the diffraction patterns whose indices are indicated only by numbers are derived from the argyrodite-type crystals constituting the particles.
  • the diffraction patterns shown next to the numbers as Li 2 O or LiOH are derived from Li 2 O or LiOH, respectively.
  • Example 1 contains particles having an amorphous fluorine-containing layer on the surface.
  • the fluorination treatment was performed under the same conditions as in Example 1, except that the partial pressure of the component containing the fluorine element was different by adjusting the pressure inside the reactor. Therefore, in these examples, although the fluorine content per surface area of the particles is different from each other as shown later, it is considered that they are the same as Example 1 in that an amorphous fluorine-containing layer is formed on the particle surface. .
  • the sulfide-based solid electrolyte powder was exposed to a humidified N 2 atmosphere with a dew point of -30°C, and hydrolysis resistance was evaluated by detecting changes over time in the amount of hydrogen sulfide generated and the total amount generated. 10 mg of each sample was weighed out, placed in a sample tube, and humidified N 2 gas was passed through it. The total amount of hydrogen sulfide generated was calculated by monitoring the hydrogen sulfide concentration in the flowing gas until hydrogen sulfide generation stopped. As the detection tube, a hydrogen sulfide concentration meter (Model 3000RS, manufactured by Techne Keizoku Co., Ltd.) was used.
  • Table 2 shows the results of the hydrolysis resistance test for each example. However, an example where the column "Hydrogen sulfide generation amount" is blank means that it has not been evaluated. Note that it can be said that the smaller the amount of H 2 S generated, the better the hydrolysis resistance.
  • Lithium ion conductivity was measured using the AC impedance method.
  • the lithium ion conductivity was measured using a potentiogalvanostat VSP manufactured by Bio-Logic.
  • 100 mg of powder was placed in a compact powder conductivity measurement jig consisting of an insulating die and a pair of electrode plates, and a pressure of 30 kN was applied to compact the powder into a pellet, and the applied voltage was 100 mV.
  • the measurement was conducted at a temperature of 25° C. and a measurement frequency range of 1 MHz to 1 mHz.
  • the movement resistance of Li ions was determined, and the Li ion conductivity was calculated from the area and thickness of the pellet sample used for measurement. Note that the measured value was the average value of a total of three measurements.
  • Oxidation resistance was evaluated by potential window measurement using cyclic voltammetry (CV). 225 mg of sulfide-based solid electrolyte powder was used as the solid electrolyte layer, a composite material consisting of sulfide-based solid electrolyte powder and carbon black mixed at a weight ratio of 3:1 was used as the working electrode, and Li metal was used as the counter electrode, for potential window measurement. An electrochemical cell was created (Chem. Mater. 2019, 31, 707-713). For CV measurement, a potentiogalvanostat VSP manufactured by Bio-Logic was used, and the measurement was performed five times in the range of 2.5-5V at a potential sweep rate of 0.1 mV/s.
  • a sulfide-based solid electrolyte powder used in lithium ion secondary batteries includes particles having an amorphous fluorine-containing layer on the surface.
  • a solid electrolyte layer comprising the sulfide-based solid electrolyte powder according to any one of [1] to [7] above.
  • a lithium ion secondary battery comprising the sulfide-based solid electrolyte powder according to any one of [1] to [7] above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention pertains to a sulfide-based solid electrolyte powder which is used in a lithium-ion secondary battery, said sulfide-based solid electrolyte powder containing particles which have an amorphous fluorine-containing layer on the surface thereof.

Description

リチウムイオン二次電池に用いられる硫化物系固体電解質粉末、その製造方法、固体電解質層、及びリチウムイオン二次電池Sulfide solid electrolyte powder used in lithium ion secondary batteries, manufacturing method thereof, solid electrolyte layer, and lithium ion secondary batteries
 本発明はリチウムイオン二次電池に用いられる硫化物系固体電解質粉末、その製造方法、固体電解質層、及びリチウムイオン二次電池に関する。 The present invention relates to a sulfide-based solid electrolyte powder used in a lithium ion secondary battery, a method for producing the same, a solid electrolyte layer, and a lithium ion secondary battery.
 リチウムイオン二次電池は、携帯電話やノート型パソコン等の携帯型電子機器に広く用いられている。
 近年、このような携帯型電子機器や車載用のリチウムイオン二次電池として小型化・軽量化が求められ、単位質量あたりの放電容量、サイクル特性、レート特性、及び電池としての安定性等の更なる性能向上が望まれている。
Lithium ion secondary batteries are widely used in portable electronic devices such as mobile phones and notebook computers.
In recent years, there has been a demand for smaller and lighter lithium-ion secondary batteries for portable electronic devices and vehicles, and improvements have been made to the discharge capacity per unit mass, cycle characteristics, rate characteristics, and stability as batteries. Further performance improvements are desired.
 従来、リチウムイオン二次電池においては液体の電解質が使用されてきたが、安全性の向上や高速充放電が期待できる点から、固体電解質をリチウムイオン二次電池の電解質として用いる全固体型リチウムイオン二次電池が注目されている。 Conventionally, liquid electrolytes have been used in lithium-ion secondary batteries, but all-solid-state lithium-ion batteries use solid electrolytes as the electrolyte for lithium-ion secondary batteries because of the potential for improved safety and high-speed charging and discharging. Secondary batteries are attracting attention.
 例えば、特許文献1には、電極活物質との界面にて高抵抗部位の生成を抑制することを目的として、フッ素を含有する固体電解質材料が開示されている。この固体電解質材料は、構成元素を含む原料組成物にフッ化物を添加した後、非晶質化処理を行うことで得られる。
 特許文献2には、加水分解しにくく、高いイオン伝導度を有することを目的として、アルカリ金属元素、リン、硫黄及びハロゲンを含む固体電解質が開示されている。この固体電解質は、溶融急冷法、メカニカルミリング法、スラリー法又は固相法等により得られる。
 特許文献3には、表面がフッ素化された層を有する粒子を含み、前記フッ素化された層の最表面におけるフッ素の含有量が95質量%以上であり、前記硫化物系固体電解質粉末全体におけるフッ素の含有量が10質量%以下である、硫化物系固体電解質粉末が開示されている。特許文献3は、上記の硫化物系固体電解質粉末により、正極活物質と固体電解質の界面への高抵抗部位形成の抑制や加水分解耐性の向上を目的とする。
For example, Patent Document 1 discloses a solid electrolyte material containing fluorine for the purpose of suppressing the formation of a high resistance site at the interface with an electrode active material. This solid electrolyte material is obtained by adding fluoride to a raw material composition containing constituent elements and then performing an amorphization treatment.
Patent Document 2 discloses a solid electrolyte containing an alkali metal element, phosphorus, sulfur, and halogen for the purpose of being difficult to hydrolyze and having high ionic conductivity. This solid electrolyte can be obtained by a melt quenching method, a mechanical milling method, a slurry method, a solid phase method, or the like.
Patent Document 3 includes particles having a layer whose surface is fluorinated, the fluorine content on the outermost surface of the fluorinated layer is 95% by mass or more, and the fluorine content in the entire sulfide-based solid electrolyte powder is A sulfide-based solid electrolyte powder having a fluorine content of 10% by mass or less is disclosed. Patent Document 3 aims at suppressing the formation of high resistance sites at the interface between the positive electrode active material and the solid electrolyte and improving hydrolysis resistance by using the above-mentioned sulfide-based solid electrolyte powder.
日本国特開2010-282948号公報Japanese Patent Application Publication No. 2010-282948 日本国特開2013-201110号公報Japanese Patent Application Publication No. 2013-201110 日本国特開2021-86796号公報Japanese Patent Application Publication No. 2021-86796
 特許文献1および特許文献2では、固体電解質にフッ素、塩素、臭素等のハロゲンを含むことにより、加水分解耐性が向上し、充放電に伴う正極活物質と固体電解質の界面での高抵抗部位形成も抑制できる。一方で、フッ素、塩素、臭素等のハロゲンをメカニカルミリング法によって導入している。そのため、固体電解質の表面及び内部にフッ素、塩素、臭素等のハロゲンが均一に分散して、ハロゲン化物も均一に存在することとなる。固体電解質全体にハロゲンを少量添加するとイオン伝導性が向上するが、加水分解耐性の向上及び高抵抗部位形成の抑制の効果発現に十分量である多量のハロゲンを粒子全体に添加すると、絶縁性のハロゲン化リチウムが析出し、固体電解質のイオン伝導性低下につながる。すなわち、フッ素、塩素、臭素等のハロゲンを用いた加水分解耐性の向上及び高抵抗部位形成の抑制と、固体電解質のイオン伝導性の向上とはトレードオフの関係にあり、両立が難しかった。さらに、メカニカルミリング法によるフッ素の導入は簡易的ではあるものの、一度に製造できる固体電解質の量に限界があり、生産性も低い。 In Patent Documents 1 and 2, hydrolysis resistance is improved by including halogens such as fluorine, chlorine, and bromine in the solid electrolyte, and high resistance sites are formed at the interface between the positive electrode active material and the solid electrolyte during charging and discharging. can also be suppressed. On the other hand, halogens such as fluorine, chlorine, and bromine are introduced by mechanical milling. Therefore, halogens such as fluorine, chlorine, and bromine are uniformly dispersed on the surface and inside of the solid electrolyte, and halides are also uniformly present. Adding a small amount of halogen to the entire solid electrolyte improves ionic conductivity, but adding a large amount of halogen to the entire particle, which is sufficient to improve hydrolysis resistance and suppress the formation of high-resistance sites, increases the insulating properties. Lithium halide precipitates, leading to a decrease in the ionic conductivity of the solid electrolyte. That is, there is a trade-off relationship between improving hydrolysis resistance and suppressing the formation of high resistance sites using halogens such as fluorine, chlorine, and bromine, and improving the ionic conductivity of the solid electrolyte, and it has been difficult to achieve both. Furthermore, although introducing fluorine by mechanical milling is simple, there is a limit to the amount of solid electrolyte that can be produced at one time, and productivity is low.
 これに対し、特許文献3では、硫化物系固体電解質粒子の表層にフッ素を導入することで、正極活物質と固体電解質の界面への高抵抗部位形成の抑制や加水分解耐性の向上を図っているものの、これらの特性の両立という観点では不十分な場合があった。加えて、硫化物系固体電解質は比較的電位窓が狭く、電池材料として用いられる際に正極活物質や負極活物質と反応して劣化しやすい傾向がある。そのため、硫化物系固体電解質においては、上記特性の向上とともに、耐酸化還元性の向上も求められている。 On the other hand, in Patent Document 3, fluorine is introduced into the surface layer of sulfide-based solid electrolyte particles to suppress the formation of high-resistance sites at the interface between the positive electrode active material and the solid electrolyte and to improve hydrolysis resistance. However, in some cases it was insufficient in terms of achieving both of these characteristics. In addition, sulfide-based solid electrolytes have a relatively narrow potential window and tend to react with positive electrode active materials and negative electrode active materials and deteriorate when used as battery materials. Therefore, in addition to improving the above characteristics, sulfide-based solid electrolytes are also required to have improved oxidation-reduction resistance.
 そこで本発明は、電池特性が向上するリチウムイオン二次電池用の硫化物系固体電解質粉末を提供することを目的とする。具体的には、硫化物系固体電解質粒子の界面に粒内とは異なる成分を特異的に所定の状態で含有させることにより、硫化物系固体電解質の耐酸化性や加水分解耐性を向上しつつ、硫化物系固体電解質粉末そのものの優れたイオン伝導性を保持することを目的とする。これにより、比較的高いリチウムイオン伝導性を粒内に保持しつつ電池動作時の副反応による性能劣化を抑制できる。 Therefore, an object of the present invention is to provide a sulfide-based solid electrolyte powder for lithium ion secondary batteries that improves battery characteristics. Specifically, by specifically containing components different from those inside the particles at the interface of the sulfide-based solid electrolyte particles in a predetermined state, the oxidation resistance and hydrolysis resistance of the sulfide-based solid electrolyte can be improved. The purpose is to maintain the excellent ionic conductivity of the sulfide-based solid electrolyte powder itself. Thereby, performance deterioration due to side reactions during battery operation can be suppressed while maintaining relatively high lithium ion conductivity within the grains.
 本発明者らは、鋭意検討を重ねた結果、粒子表層に特異的にアモルファスなフッ素含有層を存在させることにより、上記課題を解決できることを見出し、本発明を完成させた。 As a result of extensive studies, the present inventors have discovered that the above problem can be solved by specifically providing an amorphous fluorine-containing layer on the particle surface layer, and have completed the present invention.
 すなわち、本発明は、下記[1]~[10]に関するものである。
[1]リチウムイオン二次電池に用いられる硫化物系固体電解質粉末であって、
 前記硫化物系固体電解質粉末は、表面にアモルファスなフッ素含有層を有する粒子を含む、硫化物系固体電解質粉末。
[2]前記粒子は、前記フッ素含有層より内部にハロゲン元素を含有する、前記[1]に記載の硫化物系固体電解質粉末。
[3]前記粒子の表面積当たりのフッ素含有量が1×10-7mol/m以上1×10-2mol/m以下である、前記[1]に記載の硫化物系固体電解質粉末。
[4]前記フッ素含有層の最表面におけるフッ素の含有量が0.5質量%以上95質量%未満である、前記[1]に記載の硫化物系固体電解質粉末。
[5]前記硫化物系固体電解質粉末全体におけるフッ素の含有量が0.01質量%以上50質量%以下である、前記[1]に記載の硫化物系固体電解質粉末。
[6]前記粒子の平均粒径が0.1~100μmである、前記[1]に記載の硫化物系固体電解質粉末。
[7]前記フッ素含有層の厚みが1~100nmである、前記[1]に記載の硫化物系固体電解質粉末。
[8]硫化物系固体電解質の粒子に、フッ素元素を含む気体を接触させることにより、表面にフッ素含有層を有する粒子を含む硫化物系固体電解質粉末を製造する方法であって、
 前記フッ素元素を含む気体において、フッ素元素を含む成分の体積割合は80%以下であり、
 前記フッ素含有層はアモルファスなフッ素を含む、
 硫化物系固体電解質粉末の製造方法。
[9]前記[1]~[7]のいずれか1に記載の硫化物系固体電解質粉末を含む、固体電解質層。
[10]前記[1]~[7]のいずれか1に記載の硫化物系固体電解質粉末を含む、リチウムイオン二次電池。
That is, the present invention relates to the following [1] to [10].
[1] A sulfide-based solid electrolyte powder used in lithium ion secondary batteries,
The sulfide-based solid electrolyte powder includes particles having an amorphous fluorine-containing layer on the surface.
[2] The sulfide-based solid electrolyte powder according to [1], wherein the particles contain a halogen element inside the fluorine-containing layer.
[3] The sulfide-based solid electrolyte powder according to [1] above, wherein the fluorine content per surface area of the particles is 1×10 −7 mol/m 2 or more and 1×10 −2 mol/m 2 or less.
[4] The sulfide-based solid electrolyte powder according to [1] above, wherein the fluorine content on the outermost surface of the fluorine-containing layer is 0.5% by mass or more and less than 95% by mass.
[5] The sulfide-based solid electrolyte powder according to [1] above, wherein the fluorine content in the entire sulfide-based solid electrolyte powder is 0.01% by mass or more and 50% by mass or less.
[6] The sulfide-based solid electrolyte powder according to [1] above, wherein the particles have an average particle size of 0.1 to 100 μm.
[7] The sulfide-based solid electrolyte powder according to [1] above, wherein the fluorine-containing layer has a thickness of 1 to 100 nm.
[8] A method for producing sulfide-based solid electrolyte powder containing particles having a fluorine-containing layer on the surface by contacting sulfide-based solid electrolyte particles with a gas containing elemental fluorine, the method comprising:
In the gas containing the fluorine element, the volume ratio of the component containing the fluorine element is 80% or less,
The fluorine-containing layer contains amorphous fluorine.
A method for producing sulfide-based solid electrolyte powder.
[9] A solid electrolyte layer comprising the sulfide-based solid electrolyte powder according to any one of [1] to [7] above.
[10] A lithium ion secondary battery comprising the sulfide-based solid electrolyte powder according to any one of [1] to [7] above.
 本発明に係る硫化物系固体電解質粉末によれば、当該粉末に含まれる粒子の表面が選択的にフッ素化され、表面にアモルファスなフッ素含有層を含むことにより、硫化物系固体電解質の加水分解耐性及び耐酸化性を向上でき、かつ、硫化物系固体電解質粉末そのものの優れたリチウムイオン伝導性を保持できる。これにより、リチウムイオン二次電池における電池特性を向上できる。 According to the sulfide-based solid electrolyte powder according to the present invention, the surface of the particles contained in the powder is selectively fluorinated and contains an amorphous fluorine-containing layer on the surface, so that the sulfide-based solid electrolyte can be hydrolyzed. The resistance and oxidation resistance can be improved, and the excellent lithium ion conductivity of the sulfide-based solid electrolyte powder itself can be maintained. Thereby, the battery characteristics of the lithium ion secondary battery can be improved.
図1は、透過電子エネルギー損失分光測定の結果を示す図であり、(a)はLi-Kエッジを示す図であり、(b)はF-Kエッジを示す図である。FIG. 1 is a diagram showing the results of transmission electron energy loss spectroscopy, in which (a) is a diagram showing the Li-K edge, and (b) is a diagram showing the FK edge. 図2は、図1の(a)において、粒子表面付近の結果を拡大した図である。FIG. 2 is an enlarged view of the results near the particle surface in FIG. 1(a). 図3は、透過型電子顕微鏡(TEM)による粒子の断面観察画像(明視野像)である。FIG. 3 is a cross-sectional image (bright field image) of particles observed using a transmission electron microscope (TEM). 図4は、電子線回折測定の結果を示す図であり、(a)は領域1の測定結果を示す図であり、(b)は領域2の測定結果を示す図である。FIG. 4 is a diagram showing the results of electron beam diffraction measurement, in which (a) is a diagram showing the measurement results for region 1, and (b) is a diagram showing the measurement results for region 2. 図5は、本実施形態に係る硫化物系固体電解質粉末の製造方法の一例を示すフローチャートである。FIG. 5 is a flowchart illustrating an example of the method for manufacturing the sulfide-based solid electrolyte powder according to the present embodiment.
 以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施できる。また、数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。 The present invention will be described in detail below, but the present invention is not limited to the following embodiments, and can be implemented with arbitrary modifications within the scope of the gist of the present invention. In addition, "~" indicating a numerical range is used to include the numerical values written before and after it as a lower limit value and an upper limit value.
 <硫化物系固体電解質粉末>
 本実施形態に係る硫化物系固体電解質粉末は、リチウムイオン二次電池に用いられる。前記硫化物系固体電解質粉末は、表面にアモルファスなフッ素含有層を有する粒子を含む。以下、アモルファスなフッ素含有層を、単にフッ素含有層という場合がある。
 本明細書において、「フッ素含有層の最表面におけるフッ素の含有量」とは、フッ素含有層の表面から10nm未満の深さにおける、かかる層を構成する元素中に含まれるフッ素原子の占める割合の事である。
<Sulfide-based solid electrolyte powder>
The sulfide-based solid electrolyte powder according to this embodiment is used in a lithium ion secondary battery. The sulfide-based solid electrolyte powder includes particles having an amorphous fluorine-containing layer on the surface. Hereinafter, the amorphous fluorine-containing layer may be simply referred to as the fluorine-containing layer.
In this specification, "the fluorine content at the outermost surface of the fluorine-containing layer" refers to the proportion of fluorine atoms contained in the elements constituting the layer at a depth of less than 10 nm from the surface of the fluorine-containing layer. That's a thing.
 本実施形態においては、硫化物系固体電解質粒子の界面に粒内とは異なる成分を特異的に所定の状態で含有させることにより、硫化物系固体電解質の耐酸化性や加水分解耐性を向上しつつ、硫化物系固体電解質粉末そのものの優れたイオン伝導性を保持できる。 In this embodiment, the oxidation resistance and hydrolysis resistance of the sulfide solid electrolyte are improved by specifically containing a component different from that inside the grain in a predetermined state at the interface of the sulfide solid electrolyte particle. At the same time, the excellent ionic conductivity of the sulfide-based solid electrolyte powder itself can be maintained.
 この理由については明らかではないが、以下のように推測される。
 まず、加水分解耐性の向上については、硫化物系固体電解質粉末に含まれる粒子の表面が高濃度にフッ素化されることでアモルファスなフッ素含有層を有し、例えばそのフッ素が安定性の高い非晶質のフッ化リチウムの状態で一部存在することにより、該粒子表面が安定化すると考えられる。その結果、加水分解耐性が向上するものと推察される。
Although the reason for this is not clear, it is assumed as follows.
First, regarding the improvement of hydrolysis resistance, the surface of the particles contained in the sulfide-based solid electrolyte powder is highly fluorinated, resulting in an amorphous fluorine-containing layer. It is thought that the particle surface is stabilized by partially existing in the state of crystalline lithium fluoride. As a result, it is presumed that hydrolysis resistance is improved.
 また、耐酸化性の向上については、硫化物系固体電解質粉末に含まれる粒子の表面が選択的にフッ素導入されることでアモルファスなフッ素含有層を有し、例えばそのフッ素が非晶質のフッ化リチウムを形成していることにより、該当部分の価電子帯上端が低エネルギー側にシフトすることで、酸化分解電位が高くなると考えられる。これにより、高電位に晒される正極活物質との界面における固体電解質の酸化分解による副反応が抑制されるものと推察される。 In addition, regarding the improvement of oxidation resistance, the surface of the particles contained in the sulfide-based solid electrolyte powder has an amorphous fluorine-containing layer by selectively introducing fluorine. It is thought that due to the formation of lithium chloride, the upper end of the valence band of the corresponding portion shifts to the lower energy side, thereby increasing the oxidative decomposition potential. It is presumed that this suppresses side reactions due to oxidative decomposition of the solid electrolyte at the interface with the positive electrode active material exposed to high potential.
 また、粒子の表面に選択的にフッ素を導入し、アモルファスなフッ素含有層を形成することで、例えばそのフッ素が非晶質のフッ化リチウムを形成していることにより、粒子内部の硫化物系固体電解質が有するリチウムイオン伝導性を損ないにくく、優れた状態で保持できると考えられる。 In addition, by selectively introducing fluorine to the surface of the particles to form an amorphous fluorine-containing layer, for example, the fluorine forms amorphous lithium fluoride, and the sulfide system inside the particles It is thought that the lithium ion conductivity of the solid electrolyte is not easily impaired and can be maintained in an excellent state.
 本実施形態に係る硫化物系固体電解質粉末は、加水分解耐性に優れることで取り扱い性が向上するとともにその劣化を抑制できる。そして、耐酸化性に優れることで、リチウムイオン電池に用いた際の劣化を抑制できる。すなわち、本実施形態に係る硫化物系固体電解質粉末によれば、加水分解耐性及び耐酸化性に優れ、かつ、粒子内部の優れたリチウムイオン伝導性を保持できるので、リチウムイオン二次電池に用いた際に電池特性の向上が期待される。 The sulfide-based solid electrolyte powder according to the present embodiment has excellent hydrolysis resistance, which improves handling properties and can suppress its deterioration. Furthermore, by having excellent oxidation resistance, deterioration when used in lithium ion batteries can be suppressed. That is, the sulfide-based solid electrolyte powder according to the present embodiment has excellent hydrolysis resistance and oxidation resistance, and can maintain excellent lithium ion conductivity inside the particles, so it can be used in lithium ion secondary batteries. It is expected that the battery characteristics will improve when the battery is used.
 本実施形態に係る硫化物系固体電解質粉末は、表面にアモルファスなフッ素含有層を有する硫化物系固体電解質の粒子を含む。当該粒子を構成する成分、すなわち後述のフッ素化処理により導入される成分を除いた成分は、硫化物系固体電解質であれば特に限定されず、硫黄(S)を含有し、かつリチウムイオン伝導性を有するものを好適に使用できる。かかる粒子を構成する硫化物系固体電解質として、具体的には、例えばLi、P及びSを含む硫化物系固体電解質、Li、P、S及びHaを含む硫化物系固体電解質等が挙げられる。ここで、Haはハロゲン元素から選ばれる少なくとも1種の元素を表す。Haは、具体的には、例えば、F、Cl、Br及びIからなる群より選ばれる少なくとも1種の元素である。粒子を構成する硫化物系固体電解質は、リチウムイオン伝導度を向上させる観点からHaを含むことが好ましい。この場合、表面にフッ素含有層を有する硫化物系固体電解質の粒子は、フッ素含有層より内部にHaを含有する。 The sulfide-based solid electrolyte powder according to the present embodiment includes sulfide-based solid electrolyte particles having an amorphous fluorine-containing layer on the surface. The components constituting the particles, that is, the components other than those introduced by the fluorination treatment described below, are not particularly limited as long as they are sulfide-based solid electrolytes, contain sulfur (S), and have lithium ion conductivity. Those having the following can be suitably used. Specific examples of the sulfide-based solid electrolyte constituting such particles include, for example, a sulfide-based solid electrolyte containing Li, P, and S, a sulfide-based solid electrolyte containing Li, P, S, and Ha, and the like. Here, Ha represents at least one element selected from halogen elements. Specifically, Ha is, for example, at least one element selected from the group consisting of F, Cl, Br, and I. The sulfide-based solid electrolyte constituting the particles preferably contains Ha from the viewpoint of improving lithium ion conductivity. In this case, the sulfide-based solid electrolyte particles having a fluorine-containing layer on the surface contain Ha inside the fluorine-containing layer.
 Haを含む硫化物系固体電解質の中でも、後述するアルジロダイト型の結晶を含む硫化物系固体電解質がより好ましい。アルジロダイト型の結晶構造を取るためには、Haとして、Cl及びBrの少なくとも一方を含むことがより好ましく、Clを含むことがさらに好ましく、Cl単体又はCl及びBrの混合体がよりさらに好ましい。 Among sulfide-based solid electrolytes containing Ha, sulfide-based solid electrolytes containing argyrodite-type crystals, which will be described later, are more preferred. In order to obtain an argyrodite crystal structure, Ha preferably contains at least one of Cl and Br, even more preferably contains Cl, and even more preferably Cl alone or a mixture of Cl and Br.
 硫化物系固体電解質は、その目的に応じて、非晶質の硫化物系固体電解質であってもよく、特定の結晶構造を有する硫化物系固体電解質であってもよく、結晶相と非晶質相とを含む硫化物系固体電解質であってもよい。 The sulfide-based solid electrolyte may be an amorphous sulfide-based solid electrolyte or a sulfide-based solid electrolyte with a specific crystal structure, depending on its purpose, and may have a crystalline phase and an amorphous solid electrolyte. A sulfide-based solid electrolyte containing a solid phase may also be used.
 硫化物系固体電解質は、リチウムイオン伝導性を向上する観点から結晶構造を含むことが好ましい。硫化物系固体電解質が結晶構造を含む場合、硫化物系固体電解質に含有される結晶は、好ましくはイオン伝導性結晶である。イオン伝導性結晶とは、具体的には、リチウムイオン伝導率が好ましくは10-4S/cmより大きく、より好ましくは10-3S/cmより大きい結晶である。 The sulfide-based solid electrolyte preferably includes a crystal structure from the viewpoint of improving lithium ion conductivity. When the sulfide-based solid electrolyte includes a crystal structure, the crystals contained in the sulfide-based solid electrolyte are preferably ion-conductive crystals. Specifically, the ion conductive crystal is a crystal whose lithium ion conductivity is preferably greater than 10 −4 S/cm, more preferably greater than 10 −3 S/cm.
 硫化物系固体電解質として、より具体的にはLi10GeP12等のLGPS型の結晶を含む硫化物系固体電解質、LiPSCl等のアルジロダイト型の結晶を含む硫化物系固体電解質、Li-P-S-Ha系の結晶化ガラス、並びにLi11等のLPS結晶化ガラス等が挙げられる。硫化物系固体電解質はこれらを組み合わせたものや、組成や結晶構造が異なる複数種の結晶を含有するものであってもよい。リチウムイオン伝導性に優れる点から、硫化物系固体電解質としてはアルジロダイト型の結晶を含む硫化物系固体電解質が好ましい。 More specifically, sulfide-based solid electrolytes include sulfide-based solid electrolytes containing LGPS-type crystals such as Li 10 GeP 2 S 12 , and sulfide-based solids containing argyrodite-type crystals such as Li 6 PS 5 Cl 1 . Examples include electrolyte, Li-P-S-Ha type crystallized glass, and LPS crystallized glass such as Li 7 P 3 S 11 . The sulfide-based solid electrolyte may be a combination of these or may contain multiple types of crystals with different compositions and crystal structures. As the sulfide-based solid electrolyte, a sulfide-based solid electrolyte containing argyrodite-type crystals is preferable because of its excellent lithium ion conductivity.
 硫化物系固体電解質が結晶を含む場合、その結晶構造は、アルジロダイト型を含むことが結晶構造の対称性の観点から好ましい。対称性が高い結晶は、リチウムイオン伝導のパスが三次元に広がりやすく、粉体を成型した際に好ましい。 When the sulfide-based solid electrolyte includes crystals, it is preferable that the crystal structure includes an argyrodite type from the viewpoint of symmetry of the crystal structure. Crystals with high symmetry tend to spread the lithium ion conduction path three-dimensionally, which is preferable when molding powder.
 アルジロダイト型の結晶構造を取るためには、結晶相はLi、P及びSに加えてHaを含む。Haは、Cl及びBrの少なくとも一方を含むことがより好ましく、Clを含むことがさらに好ましく、Cl単体又はCl及びBrの混合体がよりさらに好ましい。 In order to have an argyrodite-type crystal structure, the crystal phase contains Ha in addition to Li, P, and S. Ha more preferably contains at least one of Cl and Br, still more preferably contains Cl, and even more preferably Cl alone or a mixture of Cl and Br.
 アルジロダイト型の結晶は、Li、P、S及びHaを含み、X線粉末回折(XRD)パターンにおいて、2θ=15.7±0.5°及び30.2±0.5°の位置にピークを有するものであると定義できる。XRDパターンは上記に加え、さらに2θ=18.0±0.5°の位置にもピークを有することが好ましく、さらに2θ=25.7±0.5°の位置にもピークを有することがより好ましい。 Argyrodite-type crystals contain Li, P, S, and Ha, and have peaks at 2θ = 15.7 ± 0.5° and 30.2 ± 0.5° in the X-ray powder diffraction (XRD) pattern. It can be defined as something that has. In addition to the above, the XRD pattern preferably has a peak at 2θ = 18.0 ± 0.5°, and more preferably also at 2θ = 25.7 ± 0.5°. preferable.
 硫化物系固体電解質の組成は、例えばICP発光分析、原子吸光法、イオンクロマトグラフ法などを用いた組成分析により求められる。また、硫化物系固体電解質に含有される結晶の種類は、X線粉末回折(XRD)パターンから解析できる。 The composition of the sulfide-based solid electrolyte is determined by composition analysis using, for example, ICP emission spectrometry, atomic absorption spectrometry, ion chromatography, or the like. Further, the type of crystal contained in the sulfide-based solid electrolyte can be analyzed from an X-ray powder diffraction (XRD) pattern.
 本実施形態に係る硫化物系固体電解質粉末に含まれる粒子の形状は、一次粒子であってもよいし、一次粒子が凝集してなる二次粒子であってもよいし、または一次粒子及び二次粒子の組み合わせであってもよい。粒子形状が一次粒子である場合はその一次粒子の表面がフッ素化されていてもよく、粒子形状が二次粒子である場合は、一次粒子が凝集して形成される二次粒子の表面がフッ素化されていてもよい。本実施形態に係る硫化物系固体電解質粉末は、1次粒子の表面がフッ素化されていることが、本発明の効果を好適に得る観点から好ましい。 The shape of the particles contained in the sulfide-based solid electrolyte powder according to the present embodiment may be primary particles, secondary particles formed by agglomeration of primary particles, or primary particles and secondary particles. It may be a combination of secondary particles. When the particle shape is a primary particle, the surface of the primary particle may be fluorinated, and when the particle shape is a secondary particle, the surface of the secondary particle formed by agglomeration of the primary particles may be fluorinated. may be In the sulfide-based solid electrolyte powder according to the present embodiment, it is preferable that the surfaces of the primary particles are fluorinated from the viewpoint of suitably obtaining the effects of the present invention.
 本実施形態に係る硫化物系固体電解質粉末において、上記フッ素含有層は、その最表面のフッ素の含有量が0.5質量%以上95質量%未満であることが好ましく、3質量%以上80質量%以下がより好ましく、10質量%以上80質量%以下がさらに好ましい。最表面のフッ素の含有量が0.5質量%以上であることにより、粒子表面がフッ化物に覆われ正極活物質や大気中成分への安定性がより向上する。最表面のフッ素の含有量は0.5質量%以上が好ましく、3質量%以上がより好ましく、10質量%以上がさらに好ましい。また、Liイオン伝導を阻害しないことにより、硫化物系固体電解質粉末そのものの優れたイオン伝導性をより保持しやすい観点から最表面のフッ素の含有量は95質量%未満が好ましく、80質量%以下がより好ましい。 In the sulfide-based solid electrolyte powder according to the present embodiment, the fluorine-containing layer preferably has a fluorine content of 0.5% by mass or more and less than 95% by mass, and 3% by mass or more and less than 80% by mass. % or less, more preferably 10% by mass or more and 80% by mass or less. When the content of fluorine on the outermost surface is 0.5% by mass or more, the particle surface is covered with fluoride, and stability to the positive electrode active material and atmospheric components is further improved. The content of fluorine on the outermost surface is preferably 0.5% by mass or more, more preferably 3% by mass or more, and even more preferably 10% by mass or more. In addition, the content of fluorine on the outermost surface is preferably less than 95% by mass, and is preferably 80% by mass or less, from the viewpoint of easily maintaining the excellent ion conductivity of the sulfide-based solid electrolyte powder itself by not inhibiting Li ion conduction. is more preferable.
 上記フッ素含有層は、アモルファスなフッ素を含む。換言すれば、アモルファスなフッ素含有層とは、アモルファスなフッ素を含む層のことをいう。アモルファスなフッ素とは、アモルファス状態のフッ素化合物のことをいい、例えば非晶質なフッ化リチウムなどが挙げられる。フッ素含有層が例えば非晶質のフッ化リチウムといったアモルファスなフッ素を含むことにより、当該部位が水に対し難溶性かつ化学的に安定化するため、上述したような優れた加水分解耐性や耐酸化性が得られると推測される。フッ素含有層が非晶質であることやフッ化リチウムを含むことは、例えば実施例において後述する電子線回折測定および透過電子エネルギー損失分光測定を用いる方法により特定できる。 The fluorine-containing layer contains amorphous fluorine. In other words, the amorphous fluorine-containing layer refers to a layer containing amorphous fluorine. Amorphous fluorine refers to a fluorine compound in an amorphous state, and includes, for example, amorphous lithium fluoride. When the fluorine-containing layer contains amorphous fluorine such as amorphous lithium fluoride, the relevant part becomes poorly soluble in water and chemically stable, resulting in excellent hydrolysis resistance and oxidation resistance as described above. It is presumed that sex can be obtained. Whether the fluorine-containing layer is amorphous or contains lithium fluoride can be determined, for example, by a method using electron beam diffraction measurement and transmission electron energy loss spectroscopy, which will be described later in Examples.
 フッ素含有層が例えば非晶質のフッ化リチウムを含む場合、フッ素含有層に含まれるF元素は全てが非晶質のフッ化リチウムを形成していてもよいが、その他の形態でフッ素含有層に含有されていてもよい。具体的には、F元素は、硫化物系固体電解質の結晶格子または非晶質中に元素置換により取り込まれていてもよいし、Li以外の元素と反応しフッ化物等を表面に形成していてもよい。 For example, when the fluorine-containing layer contains amorphous lithium fluoride, all of the F elements contained in the fluorine-containing layer may form amorphous lithium fluoride. may be contained in. Specifically, the F element may be incorporated into the crystal lattice or amorphous of the sulfide-based solid electrolyte by element substitution, or may react with elements other than Li to form fluoride etc. on the surface. It's okay.
 フッ素含有層の最表面におけるフッ素の含有量は、以下の方法で測定する。すなわち、透過型電子顕微鏡(TEM)による元素マッピングまたは電子エネルギー損失分光法、またはESCA(X線光電子分光法)による粒子表面から粒内方向への深度元素プロファイル分析により、フッ素含有層の表面から10nm未満の深さにおける、フッ素元素の含有割合や、フッ素の化学結合状態を評価する。 The fluorine content on the outermost surface of the fluorine-containing layer is measured by the following method. That is, 10 nm from the surface of the fluorine-containing layer is determined by elemental mapping using a transmission electron microscope (TEM) or electron energy loss spectroscopy, or by depth elemental profile analysis from the particle surface to the grain interior using ESCA (X-ray photoelectron spectroscopy). Evaluate the content ratio of fluorine element and the chemical bonding state of fluorine at a depth below .
 本実施形態において、粒子の表面積当たりのフッ素含有量は1×10-7mol/m以上1×10-2mol/m以下が好ましく、1×10-6mol/m以上8×10-3mol/m以下がより好ましく、1×10-5mol/m以上5×10-3mol/m以下がさらに好ましい。本実施形態においては、粒子の表面にアモルファスなフッ素含有層を有する。すなわち、硫化物系固体電解質粉末全体におけるフッ素の含有量(含有割合)が同程度である場合、当該粉末が含む粒子表面でのフッ素の濃度は、粉末における粒子の表面積によっても変化し得る。したがって、粒子の表面積当たりのフッ素含有量により、粒子表面におけるフッ素濃度を評価し得る。粒子の表面積当たりのフッ素含有量は加水分解耐性および耐酸化性を向上させる観点から1×10-7mol/m以上が好ましく、1×10-6mol/m以上がより好ましく、1×10-5mol/m以上がさらに好ましい。粒子の表面積当たりのフッ素含有量は硫化物固体電解質本来の優れたLiイオン伝導性を保つ観点から1×10-2mol/m以下が好ましく、8×10-3mol/m以下がより好ましく、5×10-3mol/m以下がさらに好ましい。粒子の表面積当たりのフッ素含有量は、フッ化物イオン複合電極による測定により粉末のフッ素含有量(mol/g)を測定して、これを、BET測定により得られる粉末の比表面積(m/g)で除することで求められる。 In this embodiment, the fluorine content per surface area of the particles is preferably 1×10 −7 mol/m 2 or more and 1×10 −2 mol/m 2 or less, and 1×10 −6 mol/m 2 or more and 8×10 -3 mol/m 2 or less is more preferable, and 1×10 −5 mol/m 2 or more and 5×10 −3 mol/m 2 or less is even more preferable. In this embodiment, the particle has an amorphous fluorine-containing layer on its surface. That is, when the content (content ratio) of fluorine in the entire sulfide-based solid electrolyte powder is approximately the same, the concentration of fluorine on the surface of the particles contained in the powder can also vary depending on the surface area of the particles in the powder. Therefore, the fluorine concentration on the particle surface can be evaluated based on the fluorine content per particle surface area. From the viewpoint of improving hydrolysis resistance and oxidation resistance, the fluorine content per particle surface area is preferably 1×10 −7 mol/m 2 or more, more preferably 1×10 −6 mol/m 2 or more, and 1× More preferably, it is 10 −5 mol/m 2 or more. The fluorine content per particle surface area is preferably 1×10 −2 mol/m 2 or less, more preferably 8×10 −3 mol/m 2 or less from the viewpoint of maintaining the excellent Li ion conductivity inherent in the sulfide solid electrolyte. It is preferably 5×10 −3 mol/m 2 or less, and more preferably 5×10 −3 mol/m 2 or less. The fluorine content per surface area of particles is determined by measuring the fluorine content (mol/g) of the powder using a fluoride ion composite electrode, and converting this to the specific surface area (m 2 /g) of the powder obtained by BET measurement. ) is calculated by dividing by
 本実施形態に係る硫化物系固体電解質粉末全体におけるフッ素含有量は、50質量%以下が好ましい。表面がフッ素含有層を有する粒子を含む粉末において、粉末全体におけるフッ素含有量が少ないほど、粒子内部に存在するフッ素量が比較的少なくなる傾向がある。これにより、結晶性の悪化や低イオン伝導性成分が過剰に存在することに起因するリチウムイオン伝導性の低下を軽減できる。硫化物系固体電解質粉末全体におけるフッ素含有量は、40質量%以下がより好ましく、30質量%以下がより好ましい。また、粉末全体におけるフッ素含有量は0.01質量%以上であることが、粒子の表面にフッ素含有層を形成する上で好ましく、0.1質量%以上がより好ましく、0.5質量%以上がさらに好ましい。すなわち、硫化物系固体電解質粉末全体におけるフッ素含有量は0.01質量%~50質量%が好ましく、0.1質量%~40質量%がより好ましく、0.5質量%~30質量%がさらに好ましい。
 なお、硫化物系固体電解質粉末全体におけるフッ素含有量は、後述する実施例に記載のようにフッ化物イオン複合電極を用いた分析の結果から求められる。
The fluorine content in the entire sulfide-based solid electrolyte powder according to this embodiment is preferably 50% by mass or less. In a powder containing particles having a fluorine-containing layer on the surface, the smaller the fluorine content in the entire powder, the relatively smaller the amount of fluorine present inside the particles tends to be. This can reduce the decrease in lithium ion conductivity caused by deterioration of crystallinity or excessive presence of low ion conductivity components. The fluorine content in the entire sulfide-based solid electrolyte powder is more preferably 40% by mass or less, and more preferably 30% by mass or less. Further, the fluorine content in the entire powder is preferably 0.01% by mass or more in order to form a fluorine-containing layer on the surface of the particles, more preferably 0.1% by mass or more, and 0.5% by mass or more. is even more preferable. That is, the fluorine content in the entire sulfide-based solid electrolyte powder is preferably 0.01% by mass to 50% by mass, more preferably 0.1% to 40% by mass, and even more preferably 0.5% to 30% by mass. preferable.
Note that the fluorine content in the entire sulfide-based solid electrolyte powder is determined from the results of analysis using a fluoride ion composite electrode as described in Examples below.
 フッ素含有層の厚みは、本発明の効果をより十分なものとする観点から1nm以上が好ましく、1.25nm以上がより好ましく、1.5nm以上がさらに好ましく、2nm以上がよりさらに好ましい。また、フッ素含有層の厚みは、リチウムイオン伝導性の低下を抑制する点から、100nm以下が好ましく、50nm以下がより好ましく、30nm以下がさらに好ましい。すなわち、フッ素含有層の厚みは1nm~100nmが好ましく、1.25nm~50nmがより好ましく、1.5nm~30nmがさらに好ましく、2nm~30nmがよりさらに好ましい。
 なお、フッ素含有層の厚みはX線光電子分光法や粒子断面からの元素マッピング、電子エネルギー損失分光法等の分析により求められる。
 また、粒子全体の結晶性の評価は、X線回折やTEMの電子線回折等の分析により求められる。
The thickness of the fluorine-containing layer is preferably 1 nm or more, more preferably 1.25 nm or more, even more preferably 1.5 nm or more, and even more preferably 2 nm or more, from the viewpoint of making the effects of the present invention more sufficient. Further, the thickness of the fluorine-containing layer is preferably 100 nm or less, more preferably 50 nm or less, and even more preferably 30 nm or less, from the viewpoint of suppressing a decrease in lithium ion conductivity. That is, the thickness of the fluorine-containing layer is preferably 1 nm to 100 nm, more preferably 1.25 nm to 50 nm, even more preferably 1.5 nm to 30 nm, even more preferably 2 nm to 30 nm.
Note that the thickness of the fluorine-containing layer is determined by analysis such as X-ray photoelectron spectroscopy, elemental mapping from a particle cross section, and electron energy loss spectroscopy.
Further, evaluation of the crystallinity of the entire particle is obtained by analysis such as X-ray diffraction and TEM electron beam diffraction.
 フッ素含有層を有する粒子の平均粒径は、取り扱い性を向上する観点から0.1μm以上が好ましく、0.5μm以上がより好ましい。また、平均粒径はリチウムイオンの移動し易さの観点から100μm以下が好ましく、20μm以下がより好ましく、10μm以下がさらに好ましい。すなわち、フッ素含有層を有する粒子の平均粒径は0.1μm~100μmが好ましく、0.5μm~20μmがより好ましく、0.5μm~10μmがさらに好ましい。フッ素含有層を有する粒子の平均粒径は、例えば、フッ素化する前に粒子を粉砕することで小さくできる。また、分級によって特定の粒径範囲にある粒子を選り分けてもよい。分級は粒子をフッ素化する前に行ってもよいし、フッ素化した後に行ってもよい。
 なお、表面にフッ素含有層を有する粒子の平均粒径とは、フッ素含有層の厚みを含み、粒径分布測定装置により求められる。平均粒径としては、D50平均粒径(メジアン径:頻度の累積が50%になる粒子径)を採用できる。
 具体的には、硫化物系固体電解質粉末を非水溶媒中に入れて超音波処理によって充分に分散させ、レーザ回折/散乱式粒子径分布測定装置にて粒子の測定を行う。頻度分布および累積体積分布曲線を得ることで体積基準の粒度分布を得、累積体積分布曲線において50%となる点の粒子径をD50平均粒径と定義する。
The average particle diameter of the particles having a fluorine-containing layer is preferably 0.1 μm or more, more preferably 0.5 μm or more from the viewpoint of improving handleability. Further, from the viewpoint of ease of movement of lithium ions, the average particle diameter is preferably 100 μm or less, more preferably 20 μm or less, and even more preferably 10 μm or less. That is, the average particle size of particles having a fluorine-containing layer is preferably 0.1 μm to 100 μm, more preferably 0.5 μm to 20 μm, and even more preferably 0.5 μm to 10 μm. The average particle size of particles with a fluorine-containing layer can be reduced, for example, by grinding the particles before fluorination. Alternatively, particles within a specific particle size range may be selected by classification. Classification may be performed before or after fluorinating the particles.
Note that the average particle size of particles having a fluorine-containing layer on the surface includes the thickness of the fluorine-containing layer, and is determined by a particle size distribution measuring device. As the average particle diameter, a D50 average particle diameter (median diameter: particle diameter at which the cumulative frequency is 50%) can be adopted.
Specifically, sulfide-based solid electrolyte powder is placed in a non-aqueous solvent, sufficiently dispersed by ultrasonication, and the particles are measured using a laser diffraction/scattering particle size distribution measuring device. A volume-based particle size distribution is obtained by obtaining a frequency distribution and a cumulative volume distribution curve, and the particle size at a point of 50% on the cumulative volume distribution curve is defined as the D50 average particle size.
 上記硫化物系固体電解質粉末の酸化電位の評価は、例えば、ポテンショガルバノスタットを用いたサイクリックボルタンメトリ(CV)測定により実施される。測定に使用される電気化学セルとしては、例えば、作用極としてステンレス箔、固体電解質層として評価対象の硫化物系固体電解質、対極および参照極としてLi金属箔を用いた全固体セルを用いる手法が挙げられる。カーボン粉等の電子伝導体粉末と固体電解質粉末を混合した合材を作用極と固体電解質層の間に挿入することが好ましい。実効の電極面積を増大させることによりCV測定における微小な酸化電流を測定しやすくするためであり、これは電子伝導体粉末と固体電解質粉末の界面が実質的な作用極表面となるためである。また、実効作用極面積を増やすという効果から、アセチレンブラック等の比表面積が大きなカーボン粉などが、電子伝導体粉末として特に好ましい。本項では酸化電位評価手法の一例を具体的に述べたが、評価手法は上記に限定されない。 The oxidation potential of the sulfide-based solid electrolyte powder is evaluated, for example, by cyclic voltammetry (CV) measurement using a potentiogalvanostat. As the electrochemical cell used for the measurement, for example, an all-solid-state cell using stainless steel foil as the working electrode, the sulfide-based solid electrolyte to be evaluated as the solid electrolyte layer, and Li metal foil as the counter electrode and reference electrode is used. Can be mentioned. It is preferable to insert a mixture of electron conductor powder such as carbon powder and solid electrolyte powder between the working electrode and the solid electrolyte layer. This is to make it easier to measure minute oxidation currents in CV measurements by increasing the effective electrode area, and this is because the interface between the electron conductor powder and the solid electrolyte powder becomes a substantial working electrode surface. Moreover, carbon powder with a large specific surface area, such as acetylene black, is particularly preferable as the electron conductor powder because of the effect of increasing the effective working electrode area. Although this section specifically described an example of the oxidation potential evaluation method, the evaluation method is not limited to the above.
 上記硫化物系固体電解質粉末の加水分解耐性(耐水性)の評価は、例えば、湿度を調節したガス雰囲気に一定時間硫化物系固体電解質粉末を晒し、発生した硫化水素ガス量を測定する事により実施される。使用するガス種としては、例えば空気、窒素、アルゴン等が挙げられ、水との反応性のみを評価する観点から、不活性ガスである窒素やアルゴン等が好ましい。また、ガスの調湿方法としては、事前に調湿されたボンベガスを使用しても良いし、もしくは乾燥したガスと、水にバブリングさせる等で湿潤させたガスを任意の割合で混合することにより、所望の水分濃度ガスを得ても良い。また、硫化物系固体電解質粉末をガスに曝露する手法は、一定の体積の容器に密閉し一定時間経過後の容器内硫化水素濃度を測定しても良いし、もしくは、粉末にガスを一定流速でフローして当て、出てきたガス中の硫化水素濃度を随時モニターしても良い。曝露時間に対する硫化水素発生量の変化の確認や、水分と反応しても暴露雰囲気の湿度が変動しない等の観点から、ガスをフローする手法が好ましい。これらの手法により、一定の湿度雰囲気下における硫化水素の発生量や発生速度を測定でき、水との接触による硫化物系固体電解質の分解耐性すなわち耐水性の評価を行うことが出来る。本項では耐水性評価手法の一例を具体的に述べたが、評価手法は上記に限定されない。 The hydrolysis resistance (water resistance) of the above sulfide-based solid electrolyte powder can be evaluated, for example, by exposing the sulfide-based solid electrolyte powder to a gas atmosphere with controlled humidity for a certain period of time and measuring the amount of hydrogen sulfide gas generated. Implemented. Examples of the gas species used include air, nitrogen, argon, etc., and from the viewpoint of evaluating only the reactivity with water, inert gases such as nitrogen and argon are preferred. In addition, the humidity of the gas may be adjusted by using a cylinder gas whose humidity has been adjusted in advance, or by mixing dry gas and gas moistened by bubbling in water in any ratio. , a desired moisture concentration gas may be obtained. In addition, the method of exposing sulfide-based solid electrolyte powder to gas may be to seal it in a container with a certain volume and measure the hydrogen sulfide concentration inside the container after a certain period of time has passed, or to expose the powder to gas at a constant flow rate. You can apply the gas with a flow and monitor the hydrogen sulfide concentration in the gas that comes out at any time. A gas flow method is preferable from the viewpoints of checking changes in the amount of hydrogen sulfide generated with respect to exposure time and of not changing the humidity of the exposure atmosphere even if it reacts with moisture. By these methods, it is possible to measure the amount and rate of generation of hydrogen sulfide in a constant humidity atmosphere, and it is possible to evaluate the resistance to decomposition of a sulfide-based solid electrolyte due to contact with water, that is, its water resistance. Although this section specifically described an example of a water resistance evaluation method, the evaluation method is not limited to the above.
 硫化物系固体電解質粉末のリチウムイオン伝導率は、その組成等により異なるため特に限定されないが、リチウムイオン二次電池に用いた際に電池特性を良好にする観点からは、25℃において0.5×10-3S/cm以上が好ましく、1.0×10-3S/cm以上がより好ましく、2.0×10-3S/cm以上がさらに好ましい。リチウムイオン伝導率は、実施例において後述する交流インピーダンス法により測定できる。 The lithium ion conductivity of the sulfide-based solid electrolyte powder is not particularly limited as it varies depending on its composition, etc., but from the viewpoint of improving battery characteristics when used in a lithium ion secondary battery, it is 0.5 at 25°C. It is preferably at least ×10 −3 S/cm, more preferably at least 1.0×10 −3 S/cm, and even more preferably at least 2.0×10 −3 S/cm. Lithium ion conductivity can be measured by the AC impedance method described later in Examples.
 <硫化物系固体電解質粉末の製造方法>
 本実施形態に係る硫化物系固体電解質粉末の製造方法は、特に限定されないが、例えば、図5に示すように、硫化物系固体電解質の粒子にフッ素元素を含む気体を接触させること(ステップS11)により、上記実施形態に係る表面にフッ素含有層を有する粒子を含む硫化物系固体電解質粉末を製造する方法である。かかる方法において、フッ素元素を含む気体中のフッ素元素を含む成分の体積割合、フッ素元素を含む気体の分圧、温度、接触時間を適切に調整することにより上記実施形態にかかるフッ素含有層を有する硫化物系固体電解質粉末を製造できる。前記フッ素含有層はアモルファスなフッ素を含む。
<Method for manufacturing sulfide solid electrolyte powder>
The method for producing the sulfide-based solid electrolyte powder according to the present embodiment is not particularly limited, but for example, as shown in FIG. ) is a method for producing a sulfide-based solid electrolyte powder containing particles having a fluorine-containing layer on the surface according to the above embodiment. In this method, the fluorine-containing layer according to the above embodiment is formed by appropriately adjusting the volume ratio of the component containing the fluorine element in the gas containing the fluorine element, the partial pressure of the gas containing the fluorine element, the temperature, and the contact time. Sulfide-based solid electrolyte powder can be produced. The fluorine-containing layer contains amorphous fluorine.
 フッ素化可能な気体とは、フッ素元素を含む気体であり、より詳しくは、フッ素元素を含む成分を含む気体である。フッ素元素を含む成分としては、例えばフッ素ガス(Fガス)、フッ化水素ガス(HFガス)、BFガス、NFガス、PFガス、SiFガス、SFガス等が挙げられる。フッ素元素を含む気体において、フッ素元素を含む成分の体積割合を80%以下とするために、窒素ガスやアルゴンガス等の不活性ガスと、上記フッ素元素を含む成分との混合ガスを用いることが好ましい。本発明の効果を阻害しない範囲であれば、本実施形態におけるフッ素含有層は、これらのガス構成成分を不純物として含有してもよい。 The fluorinable gas is a gas containing elemental fluorine, and more specifically, a gas containing a component containing elemental fluorine. Examples of the component containing elemental fluorine include fluorine gas (F 2 gas), hydrogen fluoride gas (HF gas), BF 3 gas, NF 3 gas, PF 5 gas, SiF 4 gas, SF 6 gas, and the like. In a gas containing elemental fluorine, in order to keep the volume ratio of the component containing elemental fluorine to 80% or less, it is possible to use a mixed gas of an inert gas such as nitrogen gas or argon gas and the above-mentioned component containing elemental fluorine. preferable. The fluorine-containing layer in this embodiment may contain these gas constituents as impurities as long as the effects of the present invention are not impaired.
 フッ素元素を含む成分の中でも、純粋にフッ素のみを反応させるという意味において他の元素を含まないことから、フッ素ガス(Fガス)またはフッ化水素ガス(HFガス)が好ましい。粒子とFガスまたはHFガスとの接触によりフッ素含有層が形成された場合、硫化物系固体電解質粒子の表面には、フッ素原子又は水素原子のみしか含有されないので、少なくとも、粒子表面においてこれらの元素を確認することによって、かかるガスの接触によりフッ素含有層が形成されたと判断できる。また、フッ素含有層が非晶質であることやフッ素の化学結合状態については、上述の方法で確認できる。特に、フッ素含有層を効率的に形成しやすい観点から、フッ素元素を含む成分としてフッ素ガスが好ましい。 Among the components containing the fluorine element, fluorine gas (F 2 gas) or hydrogen fluoride gas (HF gas) is preferable because it does not contain other elements in the sense that only fluorine is reacted. When a fluorine-containing layer is formed by contacting the particles with F2 gas or HF gas, the surface of the sulfide-based solid electrolyte particles contains only fluorine atoms or hydrogen atoms. By confirming the elements, it can be determined that a fluorine-containing layer was formed due to contact with such gas. Further, the fact that the fluorine-containing layer is amorphous and the chemical bonding state of fluorine can be confirmed by the method described above. In particular, from the viewpoint of easily forming the fluorine-containing layer efficiently, fluorine gas is preferable as the component containing elemental fluorine.
 フッ素元素を含む気体において、フッ素元素を含む成分の体積割合は80%以下である。これにより、硫化物系固体電解質との反応を制御しやくすなるため好ましい。フッ素元素を含む成分の体積割合は50%以下が好ましく、20%以下がより好ましい。一方で、フッ素元素を含む成分の体積割合は0%超であり、反応の促進及び経済的な観点から、0.01%以上が好ましく、0.1%以上がより好ましい。すなわち、フッ素元素を含む成分の体積割合は0%超~80%であり、0.01%~50%が好ましく、0.1%~20%がより好ましい。 In the gas containing elemental fluorine, the volume percentage of the component containing elemental fluorine is 80% or less. This is preferable because it makes it easier to control the reaction with the sulfide-based solid electrolyte. The volume ratio of the component containing elemental fluorine is preferably 50% or less, more preferably 20% or less. On the other hand, the volume percentage of the component containing elemental fluorine is more than 0%, and from the viewpoint of promoting reaction and economics, it is preferably 0.01% or more, and more preferably 0.1% or more. That is, the volume percentage of the component containing elemental fluorine is more than 0% to 80%, preferably 0.01% to 50%, and more preferably 0.1% to 20%.
 硫化物系固体電解質の粒子とフッ素元素を含む気体とを接触させる時間は、10秒以上が好ましく、1分以上がより好ましく、また、240分以下が好ましく、150分以下がより好ましい。かかる範囲にすることで、粒子の表面に濃度を制御したフッ素含有層を精度よく形成できる。すなわち、硫化物系固体電解質の粒子とフッ素元素を含む気体とを接触させる時間は10秒~240分が好ましく、1分~150分がより好ましい。 The time for contacting the particles of the sulfide-based solid electrolyte with the gas containing elemental fluorine is preferably 10 seconds or more, more preferably 1 minute or more, and preferably 240 minutes or less, and more preferably 150 minutes or less. By setting it within this range, a fluorine-containing layer with a controlled concentration can be formed on the surface of the particles with high precision. That is, the time for contacting the particles of the sulfide-based solid electrolyte with the gas containing elemental fluorine is preferably 10 seconds to 240 minutes, more preferably 1 minute to 150 minutes.
 硫化物系固体電解質の粒子とフッ素元素を含む気体とを接触させる際は温度制御することが好ましく、温度範囲は、-50~600℃の範囲が好ましい。粒子表面におけるフッ素濃度を高めたい場合には、温度を上げることで粒子表面とフッ素との反応性を高めることも好ましい。これにより、確実にかつ効率よく、フッ素含有層を形成できる。 It is preferable to control the temperature when bringing the particles of the sulfide-based solid electrolyte into contact with the gas containing elemental fluorine, and the temperature range is preferably in the range of -50 to 600°C. When it is desired to increase the fluorine concentration on the particle surface, it is also preferable to increase the reactivity between the particle surface and fluorine by increasing the temperature. Thereby, the fluorine-containing layer can be formed reliably and efficiently.
 粒子とフッ素元素を含む気体とを接触させる際、反応を制御する観点から、フッ素分圧を制御する事が好ましく、反応器内の圧力を制御しながら行うことが好ましい。圧力で制御する場合、具体的には、その圧力は1.0MPa(ゲージ圧)以下が好ましく、0.5MPa(ゲージ圧)以下がより好ましい。一方で、反応を促進する観点から、圧力は-0.1MPa(ゲージ圧)以上が好ましく、-0.098MPa(ゲージ圧)以上がより好ましい。すなわち、圧力は-0.1~1.0MPaが好ましく、-0.098~0.5MPaがより好ましい。 When bringing particles into contact with a gas containing elemental fluorine, it is preferable to control the fluorine partial pressure from the viewpoint of controlling the reaction, and it is preferable to carry out the process while controlling the pressure inside the reactor. When controlling by pressure, specifically, the pressure is preferably 1.0 MPa (gauge pressure) or less, and more preferably 0.5 MPa (gauge pressure) or less. On the other hand, from the viewpoint of promoting the reaction, the pressure is preferably -0.1 MPa (gauge pressure) or higher, more preferably -0.098 MPa (gauge pressure) or higher. That is, the pressure is preferably -0.1 to 1.0 MPa, more preferably -0.098 to 0.5 MPa.
 本実施形態において、粒子とフッ素元素を含む気体との接触の際、フッ素元素を含む成分の分圧が0.1MPa以下の雰囲気下で前記粒子に前記フッ素元素を含む気体を接触させることが好ましい。本発明者らは、フッ素元素を含む気体との接触時における、フッ素元素を含む成分の分圧を適切に制御することで、得られる粒子の最表面におけるフッ素の導入量や状態を好適に制御できることを見出した。フッ素元素を含む成分の分圧は、過剰な反応を抑制する観点から0.1MPa以下が好ましく、0.05MPa以下がより好ましく、0.02MPa以下がさらに好ましい。一方で、かかる分圧は、反応を促進する観点から0.01kPa以上が好ましく、0.1kPa以上がより好ましく、0.5kPa以上がさらに好ましい。すなわち、分圧は0.01kPa~0.1MPaが好ましく、0.1kPa~0.05MPaがより好ましく、0.5kPa~0.02MPaがさらに好ましい。なお、フッ素分圧とは、(フッ素元素を含む気体におけるフッ素を含む成分の体積割合)×(粒子とフッ素元素を含む気体の接触時の圧力)で求められる値をいう。また、バッチ式反応の場合には、仕込み時の値をいい、フッ素元素を含む気体が連続的に供給される場合には、供給時点での値をいう。 In this embodiment, when the particles are brought into contact with the gas containing elemental fluorine, it is preferable that the gas containing elemental fluorine is brought into contact with the particles in an atmosphere in which the partial pressure of the component containing elemental fluorine is 0.1 MPa or less. . The present inventors have successfully controlled the amount and state of fluorine introduced at the outermost surface of the resulting particles by appropriately controlling the partial pressure of the component containing the fluorine element when it comes into contact with the gas containing the fluorine element. I found out what I can do. The partial pressure of the component containing elemental fluorine is preferably 0.1 MPa or less, more preferably 0.05 MPa or less, and even more preferably 0.02 MPa or less, from the viewpoint of suppressing excessive reaction. On the other hand, such partial pressure is preferably 0.01 kPa or more, more preferably 0.1 kPa or more, and even more preferably 0.5 kPa or more from the viewpoint of promoting the reaction. That is, the partial pressure is preferably 0.01 kPa to 0.1 MPa, more preferably 0.1 kPa to 0.05 MPa, and even more preferably 0.5 kPa to 0.02 MPa. Note that the fluorine partial pressure refers to a value determined by (volume ratio of a fluorine-containing component in a fluorine-containing gas) x (pressure at the time of contact between particles and a fluorine-containing gas). Furthermore, in the case of a batch reaction, it refers to the value at the time of charging, and in the case where the gas containing the fluorine element is continuously supplied, it refers to the value at the time of supply.
 粒子とフッ素元素を含む気体との接触は、流通式又はバッチ式が好ましい。
 流通式の場合は、反応容器内に粒子を静置した状態で入れ、所定の濃度のフッ素を含む気体を開放型の反応容器内に連続的に供給して、粒子とフッ素を含む気体とを接触させる方法が好ましい。
 バッチ式の場合は、所定の濃度とされたフッ素元素を含む気体雰囲気の密閉された反応容器内に粒子を収容して、粒子とフッ素元素を含む気体とを接触させる方法が好ましい。
The contact between the particles and the gas containing elemental fluorine is preferably carried out by a flow method or a batch method.
In the case of the flow type, the particles are placed in a stationary state in a reaction vessel, and a gas containing fluorine at a predetermined concentration is continuously supplied into the open type reaction vessel to mix the particles and the gas containing fluorine. A method of contact is preferred.
In the case of a batch method, it is preferable to house the particles in a sealed reaction vessel with a gas atmosphere containing elemental fluorine at a predetermined concentration, and to bring the particles into contact with the gas containing elemental fluorine.
 流通式で行う場合、粒子に対して均一にフッ素元素を含む気体を接触させる観点から、反応容器として粒子を置き流動させる流動床を備えるものや、管状炉などのキルンを用いることもできる。流動床を備える場合には、フッ素化する処理時間の短縮化および過剰なフッ素化を抑制し、より均一なフッ素化を実現できるので特に好ましい。
 バッチ式で行う場合、粒子に対して均一にフッ素元素を含む気体を接触させるために、粒子を撹拌混合しながら行うこともできる。
In the case of a flow-through method, from the viewpoint of uniformly contacting the particles with a gas containing the fluorine element, a reactor equipped with a fluidized bed in which the particles are placed and fluidized, or a kiln such as a tube furnace can also be used. It is particularly preferable to use a fluidized bed because it can shorten the fluorination treatment time, suppress excessive fluorination, and achieve more uniform fluorination.
When carried out in a batch manner, it can also be carried out while stirring and mixing the particles in order to uniformly contact the gas containing the fluorine element to the particles.
<固体電解質層>
 本実施形態に係る固体電解質層は、上記硫化物系固体電解質粉末を含み、リチウムイオン二次電池に用いられる。また、固体電解質層は必要に応じてバインダー等の添加剤をさらに含んでもよい。
 固体電解質層における上記硫化物系固体電解質粉末の含有量は特に制限されるものではなく、目的とする電池の性能に応じて適宜決定すればよい。例えば、硫化物系固体電解質層全体に対して、硫化物系固体電解質粉末の含有量は80質量%以上が好ましく、90質量%以上がより好ましい。
<Solid electrolyte layer>
The solid electrolyte layer according to this embodiment includes the sulfide-based solid electrolyte powder and is used in a lithium ion secondary battery. Further, the solid electrolyte layer may further contain additives such as a binder, if necessary.
The content of the sulfide-based solid electrolyte powder in the solid electrolyte layer is not particularly limited, and may be appropriately determined depending on the intended performance of the battery. For example, the content of the sulfide-based solid electrolyte powder is preferably 80% by mass or more, more preferably 90% by mass or more with respect to the entire sulfide-based solid electrolyte layer.
 固体電解質層に含有しうるバインダーとしては、例えば、ブタジエンゴム(BR)、アクリレートブタジエンゴム(ABR)、スチレンブタジエンゴム(SBR)、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)等が挙げられる。固体電解質層におけるバインダーの含有量は従来と同様とすればよい。 Examples of the binder that can be contained in the solid electrolyte layer include butadiene rubber (BR), acrylate butadiene rubber (ABR), styrene butadiene rubber (SBR), polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), and the like. It will be done. The content of the binder in the solid electrolyte layer may be the same as the conventional one.
 固体電解質層の厚みは、特に制限されるものではなく、目的とする電池の性能に応じて適宜決定すればよい。例えば、10μm以上が好ましく、15μm以上がより好ましい。固体電解質層の厚みを10μm以上とすることで、機械的な強度が上がり、振動や曲げなどの応力に強く、高い信頼性をもった固体電解質層が得られる。
 また、固体電解質層の厚みは、1000μm以下が好ましく、200μm以下がより好ましい。固体電解質層の厚みを1000μm以下とすることで、正負極間のイオン伝導性を高められるとともに、電池のエネルギー密度を高めることもできる。
 すなわち、固体電解質層の厚みは10~1000μmが好ましく、15~200μmがより好ましい。
The thickness of the solid electrolyte layer is not particularly limited, and may be appropriately determined depending on the intended performance of the battery. For example, the thickness is preferably 10 μm or more, more preferably 15 μm or more. By setting the thickness of the solid electrolyte layer to 10 μm or more, it is possible to obtain a solid electrolyte layer that has increased mechanical strength, is resistant to stress such as vibration and bending, and has high reliability.
Moreover, the thickness of the solid electrolyte layer is preferably 1000 μm or less, more preferably 200 μm or less. By setting the thickness of the solid electrolyte layer to 1000 μm or less, the ionic conductivity between the positive and negative electrodes can be increased, and the energy density of the battery can also be increased.
That is, the thickness of the solid electrolyte layer is preferably 10 to 1000 μm, more preferably 15 to 200 μm.
 固体電解質層を形成する方法は特に限定されるものではない。例えば、上記した固体電解質層を構成する成分を溶媒に分散あるいは溶解させてスラリーとし、層状(シート状)に塗工し、乾燥させ、任意にプレスすることで固体電解質層を形成できる。必要に応じて、熱をかけて脱バインダー処理を行ってもよい。当該スラリーの塗工量等を調整することで、固体電解質層の厚みを容易に調整できる。
 なお、上記したような湿式成形ではなく、固体電解質層を形成する対象(正極、負極等)の表面において、固体電解質粉末等を乾式でプレス成形することによって固体電解質層を形成してもよい。あるいは、他の基材に固体電解質層を形成し、これを、固体電解質層を形成する対象の表面に転写してもよい。固体電解質層を形成する対象の表面に強固な固体電解質層を工業的に安定して形成可能である観点から、溶媒を用いた湿式成形によって、対象の表面に固体電解質層を形成することが好ましい。
The method of forming the solid electrolyte layer is not particularly limited. For example, the solid electrolyte layer can be formed by dispersing or dissolving the components constituting the solid electrolyte layer described above in a solvent to form a slurry, coating it in a layered form (sheet form), drying it, and optionally pressing it. If necessary, heat may be applied to remove the binder. By adjusting the coating amount of the slurry, etc., the thickness of the solid electrolyte layer can be easily adjusted.
In addition, instead of the wet molding as described above, the solid electrolyte layer may be formed by dry press molding a solid electrolyte powder or the like on the surface of the object (positive electrode, negative electrode, etc.) on which the solid electrolyte layer is to be formed. Alternatively, the solid electrolyte layer may be formed on another base material and transferred onto the surface of the object on which the solid electrolyte layer is to be formed. From the viewpoint of industrially and stably forming a strong solid electrolyte layer on the surface of the object on which the solid electrolyte layer is to be formed, it is preferable to form the solid electrolyte layer on the surface of the object by wet molding using a solvent. .
<リチウムイオン二次電池>
 本実施形態に係るリチウムイオン二次電池は、本実施形態に係る硫化物系固体電解質粉末を含む。かかるリチウムイオン二次電池は、例えば、上記固体電解質層と、正極と、負極とを含むものであるが、例示した形態に限定されるものではない。正極、及び負極は従来公知の物が用いられる。以下に具体例を示すが、これらに限定されるものではない。
<Lithium ion secondary battery>
The lithium ion secondary battery according to this embodiment includes the sulfide-based solid electrolyte powder according to this embodiment. Such a lithium ion secondary battery includes, for example, the solid electrolyte layer, a positive electrode, and a negative electrode, but is not limited to the exemplified form. Conventionally known positive electrodes and negative electrodes are used. Specific examples are shown below, but the invention is not limited to these.
(正極)
 正極は、少なくとも正極集電体および正極活物質を含有する。
(positive electrode)
The positive electrode contains at least a positive electrode current collector and a positive electrode active material.
 正極集電体は、導電性の板材であればよく、例えば、アルミニウム又はそれらの合金、ステンレス等の金属薄板(金属箔)を使用できる。これらは、耐電解液性、耐酸化性に優れており好ましい。 The positive electrode current collector may be any conductive plate material, and for example, a thin metal plate (metal foil) such as aluminum or an alloy thereof, or stainless steel can be used. These are preferable because they have excellent electrolyte resistance and oxidation resistance.
 正極活物質としては、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、該リチウムイオンのカウンターアニオン(例えば、PF )のドープ及び脱ドープを可逆的に進行させられれば特に限定されず、公知の正極活物質を使用できる。上記正極活物質としては、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、ニッケルマンガン酸リチウム、Li(NiCoMn)O(x+y+z+a=1、0≦x≦1、0≦y≦1、0≦z≦1、0≦a≦1であり、MはAl、Mg、Nb、Ti、Cu、Zn及びCrから選択される少なくとも一種)で表される複合金属酸化物、Li(PO)c(1≦a≦4、1≦b≦2、1≦c≦3であり、MはFe、V、Co、Mn、Ni及びVOから選択される少なくとも一種)で表されるポリアニオンオリビン型正極、等が挙げられる。 The positive electrode active material can reversibly absorb and release lithium ions, desorb and insert (intercalate) lithium ions, or dope and dedope counter anions (for example, PF 6 - ) of lithium ions. There is no particular limitation as long as it is allowed to proceed, and any known positive electrode active material can be used. Examples of the positive electrode active material include lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), lithium manganate (LiMnO 2 ), lithium nickel manganate, and Li( Nix Co y Mn z M a )O. 2 (x+y+z+a=1, 0≦x≦1, 0≦y≦1, 0≦z≦1, 0≦a≦1, M is selected from Al, Mg, Nb, Ti, Cu, Zn and Cr Li a M b (PO 4 ) c (1≦a≦4, 1≦b≦2, 1≦c≦3, where M is Fe, V, Co , Mn, Ni, and VO), and the like.
 正極には、正極活物質同士を結合すると共に、正極活物質と正極集電体とを結合するバインダーを有してもよい。バインダーは従来公知のものを使用できる。
 また、正極は、公知の正極用導電助剤を有してもよく、例えば、黒鉛、カーボンブラック等の炭素系材料や、銅、ニッケル、ステンレス、鉄等の金属、酸化インジウムスズ(ITO)等の導電性酸化物が挙げられる。
 上記の他、正極は、リチウムイオン伝導性の観点から、上記正極活物質の他に、上述の硫化物系固体電解質粉末を含んでもよい。
The positive electrode may include a binder that binds the positive electrode active materials together and also binds the positive electrode active material and the positive electrode current collector. As the binder, conventionally known binders can be used.
Further, the positive electrode may include a known conductive additive for positive electrodes, such as carbon-based materials such as graphite and carbon black, metals such as copper, nickel, stainless steel, and iron, indium tin oxide (ITO), etc. conductive oxides.
In addition to the above, from the viewpoint of lithium ion conductivity, the positive electrode may contain the above-mentioned sulfide-based solid electrolyte powder in addition to the above-mentioned positive electrode active material.
(負極)
 負極は、少なくとも負極集電体および負極活物質を含有する。
(Negative electrode)
The negative electrode contains at least a negative electrode current collector and a negative electrode active material.
 負極集電体は、導電性の板材であればよく、例えば、銅やアルミニウム等の金属薄板(金属箔)を使用できる。これらは、耐電解液性、耐酸化性に優れており好ましい。 The negative electrode current collector may be any conductive plate material, for example, a thin metal plate (metal foil) made of copper, aluminum, or the like. These are preferable because they have excellent electrolyte resistance and oxidation resistance.
 負極活物質としては、特に制限されず、リチウムイオンの挿入及び脱離が可能な材料を用いればよい。例えば、リチウム金属、炭素系材料、シリコン、シリコン合金、スズ等を使用できる。
 負極活物質としては、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、該リチウムイオンのカウンターアニオン(例えば、PF )のドープ及び脱ドープを可逆的に進行させられれば特に限定されず、公知の負極活物質を使用できる。上記負極活物質としては、例えば、黒鉛、ハードカーボン、ソフトカーボン等の炭素系材料、アルミニウム、シリコン、スズ等のリチウムと合金を形成することが出来る金属、酸化シリコン、酸化スズ等の非晶質の酸化物、チタン酸リチウム(LiTi12)等が挙げられる。
The negative electrode active material is not particularly limited, and any material capable of intercalating and deintercalating lithium ions may be used. For example, lithium metal, carbon-based materials, silicon, silicon alloys, tin, etc. can be used.
The negative electrode active material can reversibly absorb and release lithium ions, desorb and insert (intercalate) lithium ions, or dope and dedope counter anions (for example, PF 6 - ) of the lithium ions. There are no particular limitations as long as the process can proceed, and any known negative electrode active material can be used. Examples of the negative electrode active material include carbon-based materials such as graphite, hard carbon, and soft carbon, metals that can form alloys with lithium such as aluminum, silicon, and tin, and amorphous materials such as silicon oxide and tin oxide. , lithium titanate (Li 4 Ti 5 O 12 ), and the like.
 その他、負極は、負極活物質同士を結合すると共に、負極活物質と負極集電体とを結合するバインダーを有してもよい。バインダーは従来公知のものを使用できる。
 また、負極は、公知の負極用導電助剤を有してもよく、上記正極用導電助剤と同様のものを使用できる。
 上記の他、負極は、リチウムイオン伝導性の観点から、上記負極活物質の他に、上述の硫化物系固体電解質粉末を含んでもよい。
In addition, the negative electrode may include a binder that binds the negative electrode active materials together and also binds the negative electrode active material and the negative electrode current collector. As the binder, conventionally known binders can be used.
Further, the negative electrode may include a known conductive additive for negative electrodes, and the same conductive additive as the above-mentioned conductive additive for positive electrodes can be used.
In addition to the above, from the viewpoint of lithium ion conductivity, the negative electrode may contain the above-mentioned sulfide-based solid electrolyte powder in addition to the above-mentioned negative electrode active material.
 上記固体電解質層、正極及び負極等のリチウムイオン二次電池を構成するものは、電池外装体に格納される。電池外装体の材料も、従来公知のものを使用できるが、具体的には、ニッケルメッキを施した鉄、ステンレス、アルミニウムまたはその合金、ニッケル、チタン、樹脂材料、フィルム材料等が挙げられる。 The components of the lithium ion secondary battery, such as the solid electrolyte layer, positive electrode, and negative electrode, are stored in the battery exterior. Conventionally known materials can be used for the battery exterior, and specific examples include nickel-plated iron, stainless steel, aluminum or alloys thereof, nickel, titanium, resin materials, film materials, and the like.
 リチウムイオン二次電池の形状としては、コイン型、シート状(フィルム状)、折り畳み状、巻回型有底円筒型、ボタン型等が挙げられ、用途に応じて適宜選択できる。 The shape of the lithium ion secondary battery includes a coin shape, a sheet shape (film shape), a folded shape, a wound type bottomed cylindrical shape, a button shape, etc., and can be appropriately selected depending on the purpose.
 本実施形態に係るリチウムイオン二次電池によれば、含有する硫化物系固体電解質粉末が加水分解耐性及び耐酸化性に優れ、かつ、優れたイオン伝導性を保持することにより、良好な電池特性を実現し得る。 According to the lithium ion secondary battery according to the present embodiment, the contained sulfide-based solid electrolyte powder has excellent hydrolysis resistance and oxidation resistance, and maintains excellent ionic conductivity, resulting in good battery characteristics. can be realized.
 以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されない。例1~5は実施例であり、例6は比較例である。 The present invention will be specifically described below with reference to Examples, but the present invention is not limited thereto. Examples 1 to 5 are examples, and example 6 is a comparative example.
[例1 フッ素化処理硫化物系固体電解質粉末]
 内容積0.3Lのハステロイ製反応器内にアルジロダイト型の結晶を含む硫化物系固体電解質粉末(LiPSCl、Ampcera社製)を0.500g入れた。なお、用いた硫化物系固体電解質粉末の平均粒径(D50)は2.9μmであった。かかる平均粒径はフッ素化処理前の値であるが、本実施例のフッ素化処理前後において、走査型電子顕微鏡観察等において平均粒径がほとんど変化しない事を確認している。Fガスを20体積%含むNガスとFガスとの混合気体を用いて、容器内圧力-0.095MPa(ゲージ圧)、フッ素元素を含む成分(Fガス)の分圧を0.001MPa、室温で30分、粒子と混合気体とを接触させることでフッ素化処理を行い、粒子表面にアモルファスなフッ素含有層を有する、アルジロダイト型の結晶を含む硫化物系固体電解質粉末を得た。
[Example 1 Fluorinated sulfide solid electrolyte powder]
0.500 g of sulfide-based solid electrolyte powder (Li 6 PS 5 Cl, manufactured by Ampcera) containing argyrodite-type crystals was placed in a Hastelloy reactor having an internal volume of 0.3 L. Note that the average particle diameter (D50) of the sulfide-based solid electrolyte powder used was 2.9 μm. Although this average particle diameter is the value before the fluorination treatment, it has been confirmed through scanning electron microscopy and the like that the average particle diameter hardly changes before and after the fluorination treatment of this example. Using a mixed gas of N 2 gas and F 2 gas containing 20% by volume of F 2 gas, the pressure inside the container was -0.095 MPa (gauge pressure) and the partial pressure of the component containing the fluorine element (F 2 gas) was reduced to 0. Fluorination treatment was performed by contacting the particles with a mixed gas at .001 MPa and room temperature for 30 minutes to obtain a sulfide-based solid electrolyte powder containing argyrodite-type crystals and having an amorphous fluorine-containing layer on the particle surface. .
[例2 フッ素化処理硫化物系固体電解質粉末]
 反応器内の圧力を-0.098MPa(ゲージ圧)とし、フッ素元素を含む成分の分圧を0.0004MPaとした以外は、実施例1と同様に処理し、粒子表面にアモルファスなフッ素含有層を有する、アルジロダイト型の結晶を含む硫化物系固体電解質粉末を得た。
[Example 2 Fluorinated sulfide solid electrolyte powder]
The process was carried out in the same manner as in Example 1, except that the pressure in the reactor was -0.098 MPa (gauge pressure) and the partial pressure of the component containing elemental fluorine was 0.0004 MPa, and an amorphous fluorine-containing layer was formed on the particle surface. A sulfide-based solid electrolyte powder containing argyrodite-type crystals was obtained.
[例3 フッ素化処理硫化物系固体電解質粉末]
 反応器内の圧力を-0.099MPa(ゲージ圧)とし、フッ素元素を含む成分の分圧を0.0002MPaとした以外は、実施例1と同様に処理し、粒子表面にアモルファスなフッ素含有層を有する、アルジロダイト型の結晶を含む硫化物系固体電解質粉末を得た。
[Example 3 Fluorinated sulfide solid electrolyte powder]
The process was carried out in the same manner as in Example 1, except that the pressure in the reactor was -0.099 MPa (gauge pressure) and the partial pressure of the component containing elemental fluorine was 0.0002 MPa, and an amorphous fluorine-containing layer was formed on the particle surface. A sulfide-based solid electrolyte powder containing argyrodite-type crystals was obtained.
[例4 フッ素化処理硫化物系固体電解質粉末]
 反応器内の圧力を-0.085MPa(ゲージ圧)とし、フッ素元素を含む成分の分圧を0.003MPaとした以外は、実施例1と同様に処理し、粒子表面にアモルファスなフッ素含有層を有する、アルジロダイト型の結晶を含む硫化物系固体電解質粉末を得た。
[Example 4 Fluorinated sulfide solid electrolyte powder]
The process was carried out in the same manner as in Example 1, except that the pressure in the reactor was -0.085 MPa (gauge pressure) and the partial pressure of the component containing elemental fluorine was 0.003 MPa, and an amorphous fluorine-containing layer was formed on the particle surface. A sulfide-based solid electrolyte powder containing argyrodite-type crystals was obtained.
[例5 フッ素化処理硫化物系固体電解質粉末]
 反応器内の圧力を-0.055MPa(ゲージ圧)とし、フッ素元素を含む成分の分圧を0.009MPaとした以外は、実施例1と同様に処理し、粒子表面にアモルファスなフッ素含有層を有する、アルジロダイト型の結晶を含む硫化物系固体電解質粉末を得た。
[Example 5 Fluorinated sulfide solid electrolyte powder]
The process was carried out in the same manner as in Example 1, except that the pressure in the reactor was -0.055 MPa (gauge pressure) and the partial pressure of the component containing elemental fluorine was 0.009 MPa, and an amorphous fluorine-containing layer was formed on the particle surface. A sulfide-based solid electrolyte powder containing argyrodite-type crystals was obtained.
[例6 フッ素化未処理硫化物系固体電解質粉末]
 フッ素化処理を行わず、例1と同様のアルジロダイト型の結晶を含む硫化物系固体電解質粉末をそのまま用いた。
[Example 6 Fluorinated untreated sulfide solid electrolyte powder]
A sulfide-based solid electrolyte powder containing argyrodite-type crystals similar to that in Example 1 was used as it was without fluorination treatment.
[評価]
 上記で得られた硫化物系固体電解質粉末に対し、下記評価を行った。
(最表面のフッ素含有量)
 X線光電子分光法として、アルバック・ファイ社製、PHI VersaProbe III(商品名)を用いて、粒子最表面(表面から深さ10nm未満)の各元素の存在割合を定量分析した。結果を表1に示す。
[evaluation]
The sulfide-based solid electrolyte powder obtained above was evaluated as follows.
(Fluorine content on the outermost surface)
As X-ray photoelectron spectroscopy, the abundance ratio of each element on the outermost surface of the particle (depth less than 10 nm from the surface) was quantitatively analyzed using PHI VersaProbe III (trade name) manufactured by ULVAC-PHI. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(フッ素含有量のデプスプロファイル及び電子線回折測定)
 クライオプラズマ収束イオンビーム加工装置(Thermo Scientific社製 Helios G4 PFIB CXe)を用いて粒子を切断し断面を露出させた後に、透過型電子顕微鏡(日本電子株式会社製、JEM-F200)を用いて、断面観察、電子線回折測定および透過電子エネルギー損失分光測定を実施した。
(Depth profile and electron diffraction measurement of fluorine content)
After cutting the particles using a cryoplasma focused ion beam processing device (Helios G4 PFIB CXe, manufactured by Thermo Scientific) to expose the cross section, using a transmission electron microscope (JEM-F200, manufactured by JEOL Ltd.), Cross-sectional observations, electron beam diffraction measurements, and transmission electron energy loss spectroscopy measurements were performed.
 図1~4は例1で得られた硫化物系固体電解質粉末について、上記測定を実施した結果をそれぞれ示す図である。図1は透過電子エネルギー損失分光測定の結果を示す図であり、(a)はLi-Kエッジを示す図であり、(b)はF-Kエッジを示す図である。図2は、図1の(a)において、粒子表面付近の結果を拡大した図である。 1 to 4 are diagrams showing the results of the above measurements on the sulfide-based solid electrolyte powder obtained in Example 1, respectively. FIG. 1 is a diagram showing the results of transmission electron energy loss spectrometry, in which (a) is a diagram showing the Li-K edge, and (b) is a diagram showing the FK edge. FIG. 2 is an enlarged view of the results near the particle surface in FIG. 1(a).
 図1、2では、横軸を損失エネルギー(eV)、縦軸を強度としたグラフを、粒子表面からの距離(深さ)ごとに示している。図1、2に示す結果から、Liは粒子表面からの距離に関わらず存在しているが表面付近において特異的に化学結合状態が変化しており、またFは粒子表面付近にのみ存在していることが読み取れる。すなわち、例1で得られた硫化物系固体電解質粉末は、表面から10nmの深さまでFが導入され、Li-F結合を生じている事が確認された(ACS Nano, 5 (2), 2011, 1190)。 In FIGS. 1 and 2, graphs with the horizontal axis representing loss energy (eV) and the vertical axis representing intensity are shown for each distance (depth) from the particle surface. From the results shown in Figures 1 and 2, Li exists regardless of the distance from the particle surface, but the chemical bond state changes specifically near the surface, and F exists only near the particle surface. I can see that there is. That is, it was confirmed that in the sulfide-based solid electrolyte powder obtained in Example 1, F was introduced to a depth of 10 nm from the surface, causing Li-F bonds (ACS Nano, 5 (2), 2011 , 1190).
 図3は透過型電子顕微鏡(TEM)による断面観察画像(明視野像)である。図3において、領域1は粒子中心に相当する領域であり、領域2は粒子表面付近に相当する領域である。図4は電子線回折測定の結果を示す図であり、(a)は領域1の測定結果を示す図であり、(b)は領域2の測定結果を示す図である。図4において、数字のみで指数を示した回折パターンは、粒子を構成するアルジロダイト型結晶に由来するものである。また、数字の横にLiO又はLiOHと示した回折パターンは、それぞれLiO又はLiOHに由来するものである。すなわち、図4に示す電子線回折の結果から、粒子の中心付近及び表面付近のいずれにも、結晶性LiFは確認されなかったことがわかる。これらの結果から、非晶質のLiFが粒子表面のフッ素含有層に含まれて存在していると推察できる。すなわち、これらの結果から、例1において得られた硫化物系固体電解質は、表面にアモルファスなフッ素含有層を有する粒子を含むことが確認された。なお、例2~例5も反応器内の圧力を調整することでフッ素元素を含む成分の分圧が異なる以外は例1と同様の条件でフッ素化処理を行ったものである。したがって、これらの例において、後に示すように粒子の表面積あたりのフッ素含有量等は互いに相違するが、粒子表面にアモルファスなフッ素含有層が形成されている点は例1と同様であると考えられる。 FIG. 3 is a cross-sectional observation image (bright field image) using a transmission electron microscope (TEM). In FIG. 3, region 1 corresponds to the center of the particle, and region 2 corresponds to the vicinity of the particle surface. FIG. 4 is a diagram showing the results of electron diffraction measurement, in which (a) is a diagram showing the measurement results for region 1, and (b) is a diagram showing the measurement results for region 2. In FIG. 4, the diffraction patterns whose indices are indicated only by numbers are derived from the argyrodite-type crystals constituting the particles. Moreover, the diffraction patterns shown next to the numbers as Li 2 O or LiOH are derived from Li 2 O or LiOH, respectively. That is, from the electron diffraction results shown in FIG. 4, it can be seen that no crystalline LiF was observed near the center or near the surface of the particle. From these results, it can be inferred that amorphous LiF is contained in the fluorine-containing layer on the particle surface. That is, from these results, it was confirmed that the sulfide-based solid electrolyte obtained in Example 1 contained particles having an amorphous fluorine-containing layer on the surface. In addition, in Examples 2 to 5, the fluorination treatment was performed under the same conditions as in Example 1, except that the partial pressure of the component containing the fluorine element was different by adjusting the pressure inside the reactor. Therefore, in these examples, although the fluorine content per surface area of the particles is different from each other as shown later, it is considered that they are the same as Example 1 in that an amorphous fluorine-containing layer is formed on the particle surface. .
(硫化物系固体電解質粉末全体におけるフッ素含有量)
 各例の硫化物系固体電解質粉末に対しアルカリ抽出処理を行ったのちに、フッ化物イオン複合電極(東亜ディーケーケー株式会社製、F-2021)を用いて、硫化物系固体電解質粉末中のフッ素含有量を定量分析した。結果を表2に示す。
(Fluorine content in the entire sulfide solid electrolyte powder)
After performing alkali extraction treatment on the sulfide-based solid electrolyte powder of each example, a fluoride ion composite electrode (manufactured by DKK Toa Corporation, F-2021) was used to detect the fluorine content in the sulfide-based solid electrolyte powder. The amount was quantitatively analyzed. The results are shown in Table 2.
(粒子の表面積当たりのフッ素含有量)
 クリプトン吸着BET多点法による測定(装置:マイクロメリティクス社製、細孔分布測定装置ASAP-2020)により、各例の硫化物系固体電解質粉末の比表面積(m/g)を測定した。前述の方法で求めた硫化物系固体電解質粉末全体におけるフッ素含有量(mol/g)を、比表面積(m/g)で除することにより、粒子の表面積当たりのフッ素含有量(mol/m)を求めた。結果を表2、表3に示す。
(Fluorine content per particle surface area)
The specific surface area (m 2 /g) of the sulfide-based solid electrolyte powder of each example was measured by the krypton adsorption BET multipoint method (device: Micromeritics, pore distribution measuring device ASAP-2020). The fluorine content per particle surface area ( mol /m 2 ) was calculated. The results are shown in Tables 2 and 3.
(加水分解耐性)
 硫化物系固体電解質粉末を露点-30℃の調湿N雰囲気に曝露し、硫化水素発生量の経時変化および総発生量を検知する事で加水分解耐性の評価を行った。各々の試料を10mg秤量し、サンプル管に入れて調湿Nガスを流通させた。流通させ出てくるガス中の硫化水素濃度を、硫化水素発生が止まるまでモニターする事で、硫化水素発生の総量を算出した。検知管は、硫化水素濃度計(テクネ計測社製、Model 3000RS)を用いた。各例における加水分解耐性試験の結果を表2に示す。ただし、「硫化水素発生量」の列が空欄である例については、未評価であることを意味する。なお、HS発生量が小さいほど加水分解耐性が良好であると言える。
(Hydrolysis resistance)
The sulfide-based solid electrolyte powder was exposed to a humidified N 2 atmosphere with a dew point of -30°C, and hydrolysis resistance was evaluated by detecting changes over time in the amount of hydrogen sulfide generated and the total amount generated. 10 mg of each sample was weighed out, placed in a sample tube, and humidified N 2 gas was passed through it. The total amount of hydrogen sulfide generated was calculated by monitoring the hydrogen sulfide concentration in the flowing gas until hydrogen sulfide generation stopped. As the detection tube, a hydrogen sulfide concentration meter (Model 3000RS, manufactured by Techne Keizoku Co., Ltd.) was used. Table 2 shows the results of the hydrolysis resistance test for each example. However, an example where the column "Hydrogen sulfide generation amount" is blank means that it has not been evaluated. Note that it can be said that the smaller the amount of H 2 S generated, the better the hydrolysis resistance.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 上記の結果から、フッ素化処理した例1、例5の硫化物系固体電解質粉末では、例6の硫化物系固体電解質粉末に比べて加水分解耐性が向上したことが確認された。この結果は、粒子表面がフッ素化され、フッ素含有層が非晶質のフッ化リチウムを含むことで硫化物系固体電解質粉末の表面安定性が向上したためと推察される。 From the above results, it was confirmed that the fluorinated sulfide-based solid electrolyte powders of Examples 1 and 5 had improved hydrolysis resistance compared to the sulfide-based solid electrolyte powder of Example 6. This result is presumed to be because the particle surface was fluorinated and the fluorine-containing layer contained amorphous lithium fluoride, which improved the surface stability of the sulfide-based solid electrolyte powder.
(リチウムイオン伝導率の測定)
 交流インピーダンス法によるリチウムイオン伝導率の測定を行った。
 リチウムイオン伝導率の測定はBio-Logic社製、ポテンショガルバノスタットVSPを用いて行った。測定は、絶縁性ダイスおよび1対の電極プレートからなる圧粉体伝導率測定用治具に粉末100mgを入れ、30kNの圧力を印加しペレット状に圧粉成形した状態にて印加電圧100mV、測定温度25℃、測定周波数域1MHz~1mHzの条件で実施した。交流インピーダンス測定により得られたナイキストプロットを解析することにより、Liイオンの移動抵抗を求め、測定に供したペレット状サンプルの面積、厚みからLiイオン伝導率を算出した。なお測定値は計3回の測定の平均値とした。
(Measurement of lithium ion conductivity)
Lithium ion conductivity was measured using the AC impedance method.
The lithium ion conductivity was measured using a potentiogalvanostat VSP manufactured by Bio-Logic. For the measurement, 100 mg of powder was placed in a compact powder conductivity measurement jig consisting of an insulating die and a pair of electrode plates, and a pressure of 30 kN was applied to compact the powder into a pellet, and the applied voltage was 100 mV. The measurement was conducted at a temperature of 25° C. and a measurement frequency range of 1 MHz to 1 mHz. By analyzing the Nyquist plot obtained by AC impedance measurement, the movement resistance of Li ions was determined, and the Li ion conductivity was calculated from the area and thickness of the pellet sample used for measurement. Note that the measured value was the average value of a total of three measurements.
(耐酸化性評価)
 サイクリックボルタンメトリ(CV)法による電位窓測定により、耐酸化性の評価を行った。
 硫化物系固体電解質粉末225mgを固体電解質層とし、重量比3:1で混合した硫化物系固体電解質粉末とカーボンブラックからなる合材を作用極とし、Li金属を対極に用い、電位窓測定用電気化学セルを作製した(Chem. Mater. 2019, 31, 707-713)。CV測定にはBio-Logic社製、ポテンショガルバノスタットVSPを用い、2.5-5Vの範囲を0.1mV/sの電位掃引速度にて5周測定した。掃引1周目においては複数ピークが確認され、2周目以降は高電位領域において単一ピークが確認される。2周目以降に出現するピークに関して、電流値を電位で微分する事により、酸化開始電位を算出した。結果を表3に示す。
(oxidation resistance evaluation)
Oxidation resistance was evaluated by potential window measurement using cyclic voltammetry (CV).
225 mg of sulfide-based solid electrolyte powder was used as the solid electrolyte layer, a composite material consisting of sulfide-based solid electrolyte powder and carbon black mixed at a weight ratio of 3:1 was used as the working electrode, and Li metal was used as the counter electrode, for potential window measurement. An electrochemical cell was created (Chem. Mater. 2019, 31, 707-713). For CV measurement, a potentiogalvanostat VSP manufactured by Bio-Logic was used, and the measurement was performed five times in the range of 2.5-5V at a potential sweep rate of 0.1 mV/s. Multiple peaks are confirmed in the first sweep, and a single peak is confirmed in the high potential region from the second sweep onward. Regarding the peak that appeared after the second round, the oxidation start potential was calculated by differentiating the current value with respect to the potential. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3の結果から、例1~5においては、酸化開始電位が例6に比べ0.2V以上大きく、大幅に良化しており、耐酸化性の大きな改善が確認された。 From the results in Table 3, in Examples 1 to 5, the oxidation start potential was 0.2 V or more higher than in Example 6, which was a significant improvement, and a large improvement in oxidation resistance was confirmed.
 以上説明した通り、本明細書には次の事項が開示されている。
[1]リチウムイオン二次電池に用いられる硫化物系固体電解質粉末であって、
 前記硫化物系固体電解質粉末は、表面にアモルファスなフッ素含有層を有する粒子を含む、硫化物系固体電解質粉末。
[2]前記粒子は、前記フッ素含有層より内部にハロゲン元素を含有する、前記[1]に記載の硫化物系固体電解質粉末。
[3]前記粒子の表面積当たりのフッ素含有量が1×10-7mol/m以上1×10-2mol/m以下である、前記[1]または[2]に記載の硫化物系固体電解質粉末。
[4]前記フッ素含有層の最表面におけるフッ素の含有量が0.5質量%以上95質量%未満である、前記[1]~[3]のいずれか1に記載の硫化物系固体電解質粉末。
[5]前記硫化物系固体電解質粉末全体におけるフッ素の含有量が0.01質量%以上50質量%以下である、前記[1]~[4]のいずれか1に記載の硫化物系固体電解質粉末。
[6]前記粒子の平均粒径が0.1~100μmである、前記[1]~[5]のいずれか1に記載の硫化物系固体電解質粉末。
[7]前記フッ素含有層の厚みが1~100nmである、前記[1]~[6]のいずれか1に記載の硫化物系固体電解質粉末。
[8]硫化物系固体電解質の粒子に、フッ素元素を含む気体を接触させることにより、表面にフッ素含有層を有する粒子を含む硫化物系固体電解質粉末を製造する方法であって、
 前記フッ素元素を含む気体において、フッ素元素を含む成分の体積割合は80%以下であり、
 前記フッ素含有層はアモルファスなフッ素を含む、
 硫化物系固体電解質粉末の製造方法。
[9]前記[1]~[7]のいずれか1に記載の硫化物系固体電解質粉末を含む、固体電解質層。
[10]前記[1]~[7]のいずれか1に記載の硫化物系固体電解質粉末を含む、リチウムイオン二次電池。
As explained above, the following matters are disclosed in this specification.
[1] A sulfide-based solid electrolyte powder used in lithium ion secondary batteries,
The sulfide-based solid electrolyte powder includes particles having an amorphous fluorine-containing layer on the surface.
[2] The sulfide-based solid electrolyte powder according to [1], wherein the particles contain a halogen element inside the fluorine-containing layer.
[3] The sulfide system according to [1] or [2] above, wherein the fluorine content per surface area of the particles is 1 x 10 -7 mol/m 2 or more and 1 x 10 -2 mol/m 2 or less. Solid electrolyte powder.
[4] The sulfide-based solid electrolyte powder according to any one of [1] to [3] above, wherein the fluorine content on the outermost surface of the fluorine-containing layer is 0.5% by mass or more and less than 95% by mass. .
[5] The sulfide-based solid electrolyte according to any one of [1] to [4] above, wherein the fluorine content in the entire sulfide-based solid electrolyte powder is 0.01% by mass or more and 50% by mass or less. powder.
[6] The sulfide-based solid electrolyte powder according to any one of [1] to [5] above, wherein the particles have an average particle size of 0.1 to 100 μm.
[7] The sulfide-based solid electrolyte powder according to any one of [1] to [6] above, wherein the fluorine-containing layer has a thickness of 1 to 100 nm.
[8] A method for producing sulfide-based solid electrolyte powder containing particles having a fluorine-containing layer on the surface by contacting sulfide-based solid electrolyte particles with a gas containing elemental fluorine, the method comprising:
In the gas containing the fluorine element, the volume ratio of the component containing the fluorine element is 80% or less,
The fluorine-containing layer contains amorphous fluorine.
A method for producing sulfide-based solid electrolyte powder.
[9] A solid electrolyte layer comprising the sulfide-based solid electrolyte powder according to any one of [1] to [7] above.
[10] A lithium ion secondary battery comprising the sulfide-based solid electrolyte powder according to any one of [1] to [7] above.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2022年3月10日出願の日本特許出願(特願2022-037222)に基づくものであり、その内容はここに参照として取り込まれる。 Although the invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application (Japanese Patent Application No. 2022-037222) filed on March 10, 2022, the contents of which are incorporated herein by reference.

Claims (10)

  1.  リチウムイオン二次電池に用いられる硫化物系固体電解質粉末であって、
     前記硫化物系固体電解質粉末は、表面にアモルファスなフッ素含有層を有する粒子を含む、硫化物系固体電解質粉末。
    A sulfide-based solid electrolyte powder used in lithium ion secondary batteries,
    The sulfide-based solid electrolyte powder includes particles having an amorphous fluorine-containing layer on the surface.
  2.  前記粒子は、前記フッ素含有層より内部にハロゲン元素を含有する、請求項1に記載の硫化物系固体電解質粉末。 The sulfide-based solid electrolyte powder according to claim 1, wherein the particles contain a halogen element inside the fluorine-containing layer.
  3.  前記粒子の表面積当たりのフッ素含有量が1×10-7mol/m以上1×10-2mol/m以下である、請求項1に記載の硫化物系固体電解質粉末。 The sulfide-based solid electrolyte powder according to claim 1, wherein the fluorine content per surface area of the particles is 1×10 −7 mol/m 2 or more and 1×10 −2 mol/m 2 or less.
  4.  前記フッ素含有層の最表面におけるフッ素の含有量が0.5質量%以上95質量%未満である、請求項1に記載の硫化物系固体電解質粉末。 The sulfide-based solid electrolyte powder according to claim 1, wherein the fluorine content on the outermost surface of the fluorine-containing layer is 0.5% by mass or more and less than 95% by mass.
  5.  前記硫化物系固体電解質粉末全体におけるフッ素の含有量が0.01質量%以上50質量%以下である、請求項1に記載の硫化物系固体電解質粉末。 The sulfide-based solid electrolyte powder according to claim 1, wherein the fluorine content in the entire sulfide-based solid electrolyte powder is 0.01% by mass or more and 50% by mass or less.
  6.  前記粒子の平均粒径が0.1~100μmである、請求項1に記載の硫化物系固体電解質粉末。 The sulfide-based solid electrolyte powder according to claim 1, wherein the particles have an average particle size of 0.1 to 100 μm.
  7.  前記フッ素含有層の厚みが1~100nmである、請求項1に記載の硫化物系固体電解質粉末。 The sulfide-based solid electrolyte powder according to claim 1, wherein the fluorine-containing layer has a thickness of 1 to 100 nm.
  8.  硫化物系固体電解質の粒子に、フッ素元素を含む気体を接触させることにより、表面にフッ素含有層を有する粒子を含む硫化物系固体電解質粉末を製造する方法であって、
     前記フッ素元素を含む気体において、フッ素元素を含む成分の体積割合は80%以下であり、
     前記フッ素含有層はアモルファスなフッ素を含む、
     硫化物系固体電解質粉末の製造方法。
    A method for producing sulfide-based solid electrolyte powder containing particles having a fluorine-containing layer on the surface by contacting sulfide-based solid electrolyte particles with a gas containing elemental fluorine, the method comprising:
    In the gas containing the fluorine element, the volume ratio of the component containing the fluorine element is 80% or less,
    The fluorine-containing layer contains amorphous fluorine.
    A method for producing sulfide-based solid electrolyte powder.
  9.  請求項1~7のいずれか1項に記載の硫化物系固体電解質粉末を含む、固体電解質層。 A solid electrolyte layer comprising the sulfide-based solid electrolyte powder according to any one of claims 1 to 7.
  10.  請求項1~7のいずれか1項に記載の硫化物系固体電解質粉末を含む、リチウムイオン二次電池。 A lithium ion secondary battery comprising the sulfide solid electrolyte powder according to any one of claims 1 to 7.
PCT/JP2023/008432 2022-03-10 2023-03-06 Sulfide-based solid electrolyte powder used in lithium-ion secondary battery, method for producing same, solid electrolyte layer, and lithium-ion secondary battery WO2023171635A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-037222 2022-03-10
JP2022037222 2022-03-10

Publications (1)

Publication Number Publication Date
WO2023171635A1 true WO2023171635A1 (en) 2023-09-14

Family

ID=87935044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008432 WO2023171635A1 (en) 2022-03-10 2023-03-06 Sulfide-based solid electrolyte powder used in lithium-ion secondary battery, method for producing same, solid electrolyte layer, and lithium-ion secondary battery

Country Status (1)

Country Link
WO (1) WO2023171635A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012048971A (en) * 2010-08-26 2012-03-08 Toyota Motor Corp Sulfide solid electrolyte material, cathode body, and lithium solid-state battery
JP2014056818A (en) * 2013-08-16 2014-03-27 Toyota Motor Corp Sulfide solid electrolyte material, cathode body, and lithium solid cell
JP2015220011A (en) * 2014-05-15 2015-12-07 富士通株式会社 Solid electrolyte structure, method for manufacturing the same, and all-solid battery
JP2016534493A (en) * 2013-09-27 2016-11-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh ELECTRODE MATERIAL HAVING LITHIUM-ALDIRODITE
CN112563567A (en) * 2020-12-17 2021-03-26 上海电气集团股份有限公司 Composite solid electrolyte material, method for producing same, method for producing composite solid electrolyte membrane, and solid battery
JP2021072218A (en) * 2019-10-31 2021-05-06 Agc株式会社 Oxide-based solid electrolyte powder used in lithium-ion secondary battery, manufacturing method thereof, solid electrolyte layer, and lithium-ion secondary battery
JP2021086796A (en) * 2019-11-29 2021-06-03 Agc株式会社 Sulfide-based solid electrolyte powder to be used for lithium ion secondary battery, production method thereof, solid electrolyte layer, and lithium ion secondary battery
JP2021136198A (en) * 2020-02-28 2021-09-13 Agc株式会社 Positive electrode layer used for lithium ion secondary battery, and lithium ion secondary battery
JP2021158098A (en) * 2020-03-30 2021-10-07 Agc株式会社 Negative electrode layer for lithium ion secondary battery, and lithium ion secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012048971A (en) * 2010-08-26 2012-03-08 Toyota Motor Corp Sulfide solid electrolyte material, cathode body, and lithium solid-state battery
JP2014056818A (en) * 2013-08-16 2014-03-27 Toyota Motor Corp Sulfide solid electrolyte material, cathode body, and lithium solid cell
JP2016534493A (en) * 2013-09-27 2016-11-04 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh ELECTRODE MATERIAL HAVING LITHIUM-ALDIRODITE
JP2015220011A (en) * 2014-05-15 2015-12-07 富士通株式会社 Solid electrolyte structure, method for manufacturing the same, and all-solid battery
JP2021072218A (en) * 2019-10-31 2021-05-06 Agc株式会社 Oxide-based solid electrolyte powder used in lithium-ion secondary battery, manufacturing method thereof, solid electrolyte layer, and lithium-ion secondary battery
JP2021086796A (en) * 2019-11-29 2021-06-03 Agc株式会社 Sulfide-based solid electrolyte powder to be used for lithium ion secondary battery, production method thereof, solid electrolyte layer, and lithium ion secondary battery
JP2021136198A (en) * 2020-02-28 2021-09-13 Agc株式会社 Positive electrode layer used for lithium ion secondary battery, and lithium ion secondary battery
JP2021158098A (en) * 2020-03-30 2021-10-07 Agc株式会社 Negative electrode layer for lithium ion secondary battery, and lithium ion secondary battery
CN112563567A (en) * 2020-12-17 2021-03-26 上海电气集团股份有限公司 Composite solid electrolyte material, method for producing same, method for producing composite solid electrolyte membrane, and solid battery

Similar Documents

Publication Publication Date Title
EP3629412B1 (en) Solid electrolyte of lithium secondary battery and sulfide compound for said solid electrolyte
KR102425325B1 (en) Cathode Material for Rechargeable Lithium Ion Batteries
JP6380608B2 (en) Method for producing lithium composite compound particle powder, method for using lithium composite compound particle powder in non-aqueous electrolyte secondary battery
JP7103222B2 (en) Positive electrode active material for non-aqueous electrolyte secondary batteries and its manufacturing method, positive electrode mixture paste for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary batteries
EP2741354B1 (en) Cathode active material for lithium-ion secondary battery
KR101587671B1 (en) Lithium iron phosphate powder manufacturing method, olivine structured lithium iron phosphate powder, cathode sheet using said lithium iron phosphate powder, and non-aqueous solvent secondary battery
WO2015182665A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
EP3553856B1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
WO2018021555A1 (en) Nickel manganese composite hydrhydroxide, production method for nickel manganese composite hydroxide, positive electrode active material for non-aqueous electrolyte secondary battery, production method for positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2017084628A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery
WO2011155523A1 (en) Lithium composite compound particle powder, method for producing same, and nonaqueous electrolyte secondary battery
JPWO2016060105A1 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
WO2019176895A1 (en) Sulfide-based solid electrolyte particles
Ju et al. Electrochemical performance of Li [Co0. 1Ni0. 15Li0. 2Mn0. 55] O2 modified by carbons as cathode materials
JP7412264B2 (en) Positive electrode active material for lithium ion secondary battery and method for manufacturing the same
Qie et al. Cu-doped Li2 ZnTi3 O8 anode material with improved electrochemical performance for lithium-ion batteries
Yin et al. Towards high-performance cathode materials for lithium-ion batteries: Al 2 O 3-coated LiNi 0.8 Co 0.15 Zn 0.05 O 2
JP2021086796A (en) Sulfide-based solid electrolyte powder to be used for lithium ion secondary battery, production method thereof, solid electrolyte layer, and lithium ion secondary battery
Ma et al. Synthesis and electrochemical properties of cubic-like ZnMoO 4 anode materials
Chen et al. On electrochemistry of Al 2 O 3-coated LiCoO 2 composite cathode with improved cycle stability
Şahan et al. Effect of silver coating on electrochemical performance of 0.5 Li 2 MnO 3. 0.5 LiMn 1/3 Ni 1/3 Co 1/3 O 2 cathode material for lithium-ion batteries
JP2021018982A (en) Positive electrode active material for lithium ion secondary battery and method for producing the same
WO2023171635A1 (en) Sulfide-based solid electrolyte powder used in lithium-ion secondary battery, method for producing same, solid electrolyte layer, and lithium-ion secondary battery
JP2021057216A (en) Negative electrode active material powder used in lithium ion secondary battery, negative electrode, and lithium ion secondary battery
WO2019141981A1 (en) Manganese phosphate coated lithium nickel oxide materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766811

Country of ref document: EP

Kind code of ref document: A1