WO2023171545A1 - Antenna unit and windowpane - Google Patents

Antenna unit and windowpane Download PDF

Info

Publication number
WO2023171545A1
WO2023171545A1 PCT/JP2023/007963 JP2023007963W WO2023171545A1 WO 2023171545 A1 WO2023171545 A1 WO 2023171545A1 JP 2023007963 W JP2023007963 W JP 2023007963W WO 2023171545 A1 WO2023171545 A1 WO 2023171545A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductor
antenna unit
pseudo
dielectric layer
Prior art date
Application number
PCT/JP2023/007963
Other languages
French (fr)
Japanese (ja)
Inventor
まゆ 小川
龍太 園田
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023171545A1 publication Critical patent/WO2023171545A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support

Definitions

  • the present invention relates to an antenna unit and window glass.
  • Patent Document 1 An antenna unit that includes a mesh antenna conductor and a mesh ground conductor that is used for window glass of buildings, automobiles, etc. is known (for example, Patent Document 1).
  • the present invention aims to provide an antenna unit and window glass with excellent design.
  • One aspect of the present invention provides an antenna unit having the following configurations [1] to [13].
  • at least a portion of the pseudo layer is arranged around the second conductor layer,
  • each of a first region of the pseudo layer that does not overlap with the second conductor layer and a second region of the second conductor layer that does not overlap with the pseudo layer is determined at a resolution of 400 dpi.
  • the first conductor layer includes a radiation conductor
  • the second conductor layer includes a ground conductor
  • the antenna unit according to any one of [1] to [3], wherein the second conductor layer is provided on the second main surface side of the dielectric layer with respect to the dielectric layer.
  • the first conductor layer includes a radiation conductor
  • the second conductor layer includes a ground conductor
  • the antenna unit according to any one of [1] to [3], wherein the second conductor layer is provided on the first main surface side of the dielectric layer with respect to the dielectric layer.
  • the first conductor layer includes a ground conductor
  • the second conductor layer includes a radiating conductor
  • the antenna unit according to any one of [1] to [3], wherein the second conductor layer is provided on the second main surface side of the dielectric layer with respect to the dielectric layer.
  • the first conductor layer includes a radiation conductor
  • the second conductor layer includes a waveguide element that guides radio waves radiated by the radiation conductor in a predetermined direction
  • the second conductor layer is provided on the second main surface side of the dielectric layer with respect to the dielectric layer
  • the antenna unit according to any one of [1] to [3], further including a ground conductor layer provided on the opposite side of the dielectric layer with respect to the first conductor layer.
  • the shape of the array element is circular,
  • the antenna unit according to [9], wherein the average diameter of the array element is ⁇ 0 /2 or less, where ⁇ 0 is the free space wavelength of radio waves transmitted and received by the antenna unit.
  • the shape of the array element is rectangular
  • the pseudo layer of the antenna unit according to [9], wherein the length of the long side of the array element is ⁇ 0 /2 or less, where ⁇ 0 is the free space wavelength of radio waves transmitted and received by the antenna unit. is composed of an insulator, The antenna unit according to any one of [1] to [7], wherein the insulator has a conductivity of less than 1 ⁇ 10 6 (S/m).
  • One aspect of the present invention provides a window glass including an antenna unit having the configuration of any one of [1] to [13].
  • FIG. 3 is a top view of the window glass according to the first embodiment.
  • FIG. 2 is a top view of the antenna unit according to the first embodiment.
  • FIG. 2 is a plan view of the antenna unit according to the first embodiment.
  • FIG. 3 is a plan view showing a radiating element layer, a ground conductor layer, and a pseudo layer formed on a dielectric layer of the antenna unit according to the first embodiment.
  • FIG. 3 is an enlarged plan view of a boundary area A1 according to the first embodiment.
  • FIG. 3 is a diagram for explaining an example of homogenization processing according to the first embodiment.
  • FIG. 3 is a diagram for explaining an example of homogenization processing according to the first embodiment.
  • FIG. 7 is a top view of the antenna unit according to Configuration Example 1 of Embodiment 2; FIG.
  • FIG. 7 is a plan view showing a radiating element layer, a ground conductor layer, and a pseudo layer formed in a dielectric layer of an antenna unit according to Configuration Example 1 of Embodiment 2;
  • FIG. 7 is a plan view showing a radiating element layer, a ground conductor layer, and a pseudo layer formed in a dielectric layer of an antenna unit according to Configuration Example 2 of Embodiment 2;
  • FIG. 7 is a top view of an antenna unit according to configuration example 3 of embodiment 2;
  • FIG. 7 is a cross-sectional view of an antenna unit according to a third embodiment.
  • FIG. 7 is a plan view of an antenna unit according to a third embodiment.
  • FIG. 7 is a plan view of an antenna unit according to a third embodiment.
  • FIG. 7 is a plan view showing a radiating element layer, a waveguide layer, and a pseudo layer formed in a dielectric layer of an antenna unit according to a third embodiment.
  • FIG. 7 is a cross-sectional view of a modification of the antenna unit according to Embodiment 3.
  • FIG. 7 is a top view of an antenna unit according to a fourth embodiment.
  • FIG. 7 is a plan view of an antenna unit according to a fifth embodiment.
  • FIG. 7 is a cross-sectional view of an antenna unit according to a fifth embodiment.
  • FIG. 7 is a cross-sectional view of an antenna unit according to a fifth embodiment.
  • FIG. 3 is a diagram showing the relationship between (dot diameter/dot pitch) and gradation value.
  • FIG. 3 is a diagram showing the relationship between (line width of mesh/pitch of mesh) and gradation value.
  • the X-axis direction, Y-axis direction, and Z-axis direction are orthogonal to each other.
  • the XY plane, YZ plane, and ZX plane are, respectively, a plane parallel to the X-axis direction and the Y-axis direction, a plane parallel to the Y-axis direction and the Z-axis direction, and a plane parallel to the Z-axis direction and the X-axis direction. .
  • Plant view and “plan view” in this embodiment refer to viewing the XY plane or the XY plane itself, respectively. Furthermore, “top view” and “top view” in this embodiment refer to viewing the ZX plane or the ZX plane itself, respectively.
  • the “antenna unit” in this embodiment is used to propagate signals in a predetermined frequency band.
  • the predetermined frequency band may be referred to as a target frequency band.
  • the target frequency band may be from 4G LTE (Long Term Evolution) to 5G frequency band, for example, may be a frequency band from 700 MHz to 6 GHz (so-called sub6), but is not limited to these. That is, the target frequency band may be a frequency band below 700 MHz, a frequency band above 6 GHz, for example, a 28 GHz band, or a frequency band above 30 GHz called millimeter waves, such as a 79 GHz band.
  • 4G LTE Long Term Evolution
  • 5G frequency band for example, may be a frequency band from 700 MHz to 6 GHz (so-called sub6), but is not limited to these. That is, the target frequency band may be a frequency band below 700 MHz, a frequency band above 6 GHz, for example, a 28 GHz band, or a frequency band
  • the antenna unit may be used, for example, in wireless communication standards such as 5G and Bluetooth (registered trademark), and wireless LAN (Local Area Network) standards such as IEEE802.11ac. Furthermore, when used in a vehicle, the antenna unit may be used in an on-vehicle radar system, a V2X communication system, or a dedicated narrowband communication system called DSRC (Dedicated Short Range Communications). Furthermore, the antenna unit may be compatible with standards other than these.
  • the antenna unit according to this embodiment includes a dielectric layer through which visible light passes, a first conductor layer, a pseudo layer, and a second conductor layer.
  • the first conductor layer is a layer provided on the first main surface side of the dielectric layer with respect to the dielectric layer.
  • the second conductor layer is a layer provided apart from the first conductor layer by a predetermined distance when viewed from above.
  • the second conductor layer is provided on the first main surface side or the second main surface side of the dielectric layer with the dielectric layer as a reference.
  • the second main surface is a main surface of the dielectric layer that is opposite to the first main surface.
  • At least a portion of the pseudo layer is arranged around the second conductor layer in plan view.
  • a region of the pseudo layer where the pseudo layer exists without overlapping with the second conductor layer is defined as a first region.
  • a region of the second conductor layer where the second conductor layer exists without overlapping with the pseudo layer is defined as a second region.
  • the pseudo layer is arranged around the second conductor layer, and the difference in gradation value between the first region and the second region is small, so that the second conductor layer is arranged around the second conductor layer.
  • the pseudo layer makes it less noticeable. Therefore, the design quality can be improved.
  • the antenna unit will be specifically explained in Embodiments 1 to 5 below.
  • FIG. 1 is a top view of a window glass 1 according to a first embodiment.
  • the window glass 1 is a window glass attached to a building or a vehicle.
  • the window glass 1 includes a window glass main body 200, an antenna unit 100, and support parts 300a and 300b.
  • the window glass body 200 is a transparent plate-like member through which visible light passes.
  • the main surface of the window glass body 200 is parallel to the XY plane, and the thickness direction is parallel to the Z-axis direction. Note that the positive direction of the Z-axis is the indoor side, and the negative direction of the Z-axis is the outdoor side.
  • the window glass body 200 is a dielectric member whose main component is dielectric.
  • the material of the window glass body 200 is glass, but may also be resin.
  • the antenna unit 100 is a plate-shaped, sheet-shaped, or film-shaped member provided on the main surface of the window glass body 200 on the indoor side via supporting parts 300a and 300b. In this figure, the antenna unit 100 is provided along the main surface of the window glass body 200.
  • the antenna unit 100 transmits and receives radio waves in a target frequency band.
  • the antenna unit 100 is a planar antenna, such as a patch antenna, a microstrip antenna, or a slot antenna.
  • the support parts 300a and 300b are members that support the antenna unit 100 with respect to the window glass main body 200.
  • the support parts 300a and 300b support the antenna unit 100 so that a space is formed between the window glass main body 200 and the antenna unit 100.
  • the support parts 300a and 300b may support the antenna unit 100 so that the window glass main body 200 is in contact with the main surface of the antenna unit 100, but in order to reduce the risk of thermal cracking, it is preferable to support the antenna unit 100 as shown in FIG. Support so that a space is formed between the In this case, the support parts 300a and 300b may be spacers for securing a space between the window glass main body 200 and the antenna unit 100, or may be a casing of the antenna unit 100.
  • the material of the supports 300a, 300b may be dielectric.
  • the material of the support parts 300a and 300b may be a resin such as silicone resin, polysulfide resin, or acrylic resin.
  • the material of the support parts 300a and 300b may be metal such as aluminum.
  • FIG. 2 is a top view of the antenna unit 100 according to the first embodiment.
  • FIG. 3 is a plan view of the antenna unit 100 according to the first embodiment.
  • FIG. 3 shows the XY plane when viewed from the Z-axis negative direction side.
  • the antenna unit 100 includes a dielectric layer 10, a radiating element layer 20, a pseudo layer 60, and a ground conductor layer as examples of the dielectric layer, first conductor layer, pseudo layer, and second conductor layer described in the overview. 40.
  • FIG. 4 is a plan view showing the radiating element layer 20, the ground conductor layer 40, and the pseudo layer 60 formed on the dielectric layer 10 of the antenna unit 100 according to the first embodiment.
  • FIG. 4 shows a plan view seen from the first main surface side and a plan view seen from the second main surface side.
  • the dielectric layer 10 is a transparent plate-like, sheet-like, or film-like member through which visible light passes.
  • the dielectric layer 10 has a dielectric as a main component.
  • the material of the dielectric layer 10 may be glass, ceramics, or resin.
  • Examples of the dielectric layer 10 include a glass substrate, acrylic, polycarbonate, PVB (polyvinyl butyral), COP (cycloolefin polymer), PET (polyethylene terephthalate), polyimide, ceramics, or sapphire.
  • examples of the material include alkali-free glass, quartz glass, soda lime glass, borosilicate glass, alkali borosilicate glass, or aluminosilicate glass.
  • the visible light transmittance of the dielectric layer 10 is preferably 30% or more, more preferably 50% or more, even more preferably 70% or more, particularly preferably 80% or more, and most preferably 90% or more.
  • the visible light transmittance is measured in accordance with JIS R 3106 (1998).
  • the dielectric layer 10 has a main surface parallel to the XY plane like the window glass main body 200, and a thickness direction parallel to the Z axis.
  • the main surface of the dielectric layer 10 on the negative side of the Z-axis will be referred to as a first main surface 10(1)
  • the main surface of the dielectric layer 10 on the positive side of the Z-axis will be referred to as a second main surface 10(2).
  • the second main surface 10(2) is a main surface opposite to the first main surface 10(1).
  • the radiating element layer 20 is a layer that includes a radiating conductor that is formed to be able to transmit and receive radio waves in the target frequency band described above.
  • the radiating element layer 20 is provided on the first main surface 10(1) side of the dielectric layer 10 with the dielectric layer 10 as a reference, that is, on the negative Z-axis side with the dielectric layer 10 as a reference.
  • the radiating element layer 20 is specifically formed on at least a part of the first main surface 10(1) of the dielectric layer 10 so that its surface is parallel to the XY plane. is formed.
  • the ground conductor layer 40 is a layer containing a ground conductor that forms a ground plane.
  • the ground conductor layer 40 is provided corresponding to the radiating element layer 20. Since the ground conductor layer 40 may be visually noticeable, in the first embodiment, the ground conductor layer 40 is camouflaged to make it less noticeable.
  • the ground conductor layer 40 is arranged on the second main surface 10(2) side of the dielectric layer 10 with the dielectric layer 10 as a reference, that is, on the positive Z-axis side with the dielectric layer 10 as a reference. provided. Specifically, the ground conductor layer 40 is formed on at least a portion of the second main surface 10(2) of the dielectric layer 10 so that its surface is parallel to the XY plane.
  • the pseudo layer 60 is a camouflage layer formed to make the ground conductor layer 40 less noticeable. Similar to the ground conductor layer 40, the pseudo layer 60 is provided on the second main surface 10(2) side of the dielectric layer 10 with the dielectric layer 10 as a reference. More specifically, pseudo layer 60 is formed on the same plane as ground conductor layer 40 . That is, the pseudo layer 60 is formed on at least a part of the second main surface 10(2) of the dielectric layer 10 so that its surface is parallel to the XY plane.
  • FIG. 3 and 4 show, as an example, a configuration in which two antenna elements 20a and 20b are formed in the radiation element layer 20 shown in FIG. 2 (see the first main surface side in FIG. 4). Further, a configuration is shown in which two ground conductors 40a and 40b are formed on the ground conductor layer 40 shown in FIG. 2 (see the second main surface side in FIG. 4). Ground conductors 40a and 40b are provided corresponding to antenna elements 20a and 20b, respectively.
  • the antenna element 20a and the ground conductor 40a and the antenna element 20b and the ground conductor 40b are arranged apart from each other by a predetermined distance in the X-axis direction. Note that the number of antenna elements and ground conductors included in the antenna unit 100 is not limited to two, but may be one, or may be three or more.
  • antenna element 20a As antenna element 20a, details of the antenna element 20a will be explained. Note that the antenna element 20b is the same as the antenna element 20a, so a description thereof will be omitted.
  • the antenna element 20a is a planar conductor pattern formed on the first main surface 10(1) side.
  • Examples of the conductor material used for the antenna element 20a include gold, silver, copper, platinum, aluminum, and chromium.
  • the antenna element 20a may be formed by plating the above-mentioned material. By plating, it is possible to form the antenna element 20a which is resistant to corrosion and has a good design. Further, the antenna element 20a may be formed by sintering a pattern formed by screen printing a paste of silver, copper, or the like on the first main surface 10(1).
  • the antenna element 20a may be formed directly on the first main surface 10(1), or may be formed indirectly.
  • the antenna element 20a may be formed on the first main surface 10(1) of the dielectric layer 10 with a resin layer interposed therebetween.
  • a resin layer for example, an intermediate film such as polyvinyl butyral or ethylene vinyl acetate, polyethylene terephthalate, or optically transparent adhesive (OCA) can be used.
  • the antenna element 20a has a radiation conductor 21a and a feed line 30a.
  • the radiation conductor 21a includes at least one patch conductor.
  • the radiation conductor 21a includes four patch conductors 22a, 23a, 24a, and 25a.
  • Patch conductors 22a, 23a, 24a, and 25a may be composed of solid planar conductors.
  • the present invention is not limited thereto, and the patch conductors 22a, 23a, 24a, and 25a may be configured with a mesh-like conductor pattern formed so that gaps are formed in a plan view. In this case, the field of view can be secured and the design can be improved.
  • the power supply line 30a is a conductor pattern formed on the first main surface 10(1) side.
  • the power supply line 30a functions as a signal wiring.
  • the power supply line 30a is a strip conductor extending in the Y-axis direction.
  • the power supply line 30a may be composed of a solid planar conductor.
  • the present invention is not limited thereto, and the power supply line 30a may be configured with a mesh-like conductor pattern formed so that gaps are formed in a plan view. In this case, the field of view can be secured and the design can be improved.
  • the power supply line 30a is formed integrally with the radiation conductor 21a.
  • the feed line 30a is connected to the radiation conductor 21a at one end 32a. More specifically, the power supply line 30a has a branch path to the patch conductors 22a, 23a, a branch path to the patch conductor 24a, and the patch conductor 25a, and these branch paths are connected to each other at one end 32a. It has a branch point 36a. Further, the power supply line 30a is connected to a wireless device such as a transmitter at the other end 33a. The end 33a of the power supply line 30a functions as a power supply end.
  • the end portion 33a coincides with the end portion of the dielectric layer 10 in the Y-axis positive direction, but it is previously aligned in the Y-axis negative direction from the end portion of the dielectric layer 10 in the Y-axis positive direction. They may be separated by a predetermined distance.
  • ground conductor 40a As below, details of the ground conductor 40a will be explained. Note that since the ground conductor 40b is similar to the ground conductor 40a, the description thereof will be omitted.
  • the ground conductor 40a is a planar conductor pattern formed on the second main surface 10(2) side.
  • Examples of the conductor material used for the ground conductor 40a include gold, silver, copper, platinum, aluminum, and chromium.
  • the ground conductor 40a may be formed by plating the above-mentioned material. By plating, it is possible to form a ground conductor 40a that is resistant to corrosion and has a good design. Further, the ground conductor 40a may be formed by sintering a pattern formed by screen printing a paste such as silver or copper on the second main surface 10(2).
  • the ground conductor 40a may be formed directly on the second main surface 10(2), or may be formed indirectly.
  • the ground conductor 40a may be formed on the second main surface 10(2) of the dielectric layer 10 via a resin layer.
  • a resin layer for example, an interlayer film of polyvinyl butyral or ethylene vinyl acetate, polyethylene terephthalate, OCA, or the like can be used.
  • the ground conductor 40a includes a linear ground conductor 41a formed so as to create a gap in plan view, and a planar ground conductor 50a connected to the linear ground conductor 41a.
  • the linear ground conductor 41a is a continuous pattern, specifically a mesh-like conductor pattern, in which linear conductors are electrically connected to each other.
  • the area where the linear ground conductor 41a is formed includes a grid-like gap when viewed from above. This secures the field of view and improves the design.
  • the linear ground conductor 41a exists on the second main surface 10(2) side so that at least a portion thereof overlaps the antenna element 20a in a plan view.
  • the linear ground conductor 41a is formed in a rectangular area.
  • the shape of the region where the linear ground conductor 41a is formed is not limited to this, and may be other polygonal or circular shapes.
  • the end of the linear ground conductor 41a in the Y-axis positive direction coincides with the end of the dielectric layer 10 in the Y-axis positive direction. may be spaced apart by a predetermined distance from the end of the Y-axis in the negative direction of the Y-axis.
  • the angle between the linear conductors of the linear ground conductor 41a is approximately 90°, but is not limited to this, and may be an acute angle or an obtuse angle. That is, the mesh may be rectangular or diamond-shaped. When the mesh is rectangular, it is preferably square from the viewpoint of design. The mesh may also have other polygonal shapes, such as hexagonal shapes. When the mesh is hexagonal, a regular hexagonal shape is preferred from the viewpoint of design. The mesh may also have a random shape created by a self-organization method.
  • the planar ground conductor 50a is a ground electrode corresponding to the end portion 33a that functions as a power feeding end. Specifically, the planar ground conductor 50a is formed on the second main surface 10(2) side at a position overlapping the end portion 33a in plan view. In Embodiment 1, the planar ground conductor 50a is formed at the end of the dielectric layer 10 in the positive Y-axis direction. They may be formed at positions separated by a predetermined distance. The planar ground conductor 50a is formed in a solid pattern.
  • the pseudo layer 60 is arranged around the region where the ground conductor 40a is formed, without overlapping the region where the ground conductor 40a is formed. "Disposed around” indicates that the ground conductor 40a is disposed so as to be in contact with at least a portion of the outer edge of the region where the ground conductor 40a is formed in a plan view.
  • the pseudo layer 60 is arranged so as to be in contact with and surround the three sides of the rectangle excluding the end edge in the Y-axis positive direction, as shown in FIG. It's fine.
  • the present invention is not limited thereto, and the pseudo layer 60 may be arranged so as to be in contact with and surround all four sides of the rectangle. Alternatively, the pseudo layer 60 may be arranged so as to be in contact with one side or two sides of the rectangle. Note that "contacting" may mean direct contact, but there may be a gap that does not impair the effect. If the gap is large, the boundary between the pseudo layer 60 and the ground conductor 40a becomes noticeable.
  • the pseudo layer 60 does not affect the antenna performance, but the size of the gap may affect the antenna performance.
  • the gap may be 20 ⁇ m or more and 300 ⁇ m or less. If the gap is 20 ⁇ m or more, the influence of the pseudo layer 60 on antenna performance will be small. Further, if the gap is 300 ⁇ m or less, the boundary between the pseudo layer 60 and the ground conductor 40a becomes less noticeable. As an example, the gap is 30 ⁇ m.
  • the gap may be more than 0 ⁇ m and not more than 300 ⁇ m.
  • a conductor is a conductive material with a conductivity ⁇ of 1 ⁇ 10 6 (S/m) or more
  • an insulator is a dielectric material with a conductivity ⁇ of less than 1 ⁇ 10 6 (S/m). It is.
  • the ground conductor layer 40 includes ground conductors 40a and 40b spaced apart from each other in the X-axis direction, and the pseudo layer 60 is also arranged around the ground conductor 40b in plan view.
  • the pseudo layer 60 may be arranged around the plurality of ground conductors 40a, 40b so as to integrally connect the plurality of ground conductors 40a, 40b in plan view.
  • the ground conductor layer 40 can be camouflaged. This improves the design.
  • the ground conductor layer 40 of the antenna unit 100 is formed with a plurality of ground conductors 40a, 40b separated from each other, the plurality of ground conductors 40a, 40b are integrated. It has a particularly remarkable effect because it looks like an object.
  • the shape of the pseudo layer 60 is designed to be a rectangular area as a whole together with the area where the ground conductor layer 40 is formed, but the shape is not limited to this, and may be circular or It may also be designed to have other shapes.
  • the shape of the pseudo layer 60 may be designed to have an arbitrary pattern together with the area where the ground conductor layer 40 is formed. Thereby, the design quality can be further improved.
  • the end of the pseudo layer 60 in the X-axis direction may coincide with the end of the dielectric layer 10 in the X-axis direction; They may be separated by a distance. The same applies to the ends in the Y-axis direction.
  • FIG. 5 is an enlarged plan view of area A1 according to the first embodiment.
  • the region A1 is a region including the boundary between the pseudo layer 60 and the ground conductor layer 40, as shown in FIGS. 3 and 4.
  • the pseudo layer 60 has a structure in which scattering by radio waves is sufficiently small and does not affect antenna performance.
  • the pseudo layer 60 may be formed of a conductor or an insulator. If the pseudo layer 60 is an insulator, the scattering of radio waves by the pseudo layer 60 can be sufficiently reduced, and the influence on antenna characteristics can be reduced. Furthermore, when the pseudo layer 60 is composed of a conductor, scattering of radio waves by the pseudo layer 60 can be reduced by making the conductors spatially separated, that is, composed of a plurality of conductors that are not electrically conductive. The effect on antenna characteristics can be reduced.
  • the pseudo layer 60 includes a pattern in which conductor array elements 61 are arranged at a predetermined pitch and spaced apart from each other.
  • the array element 61 is circular and may be called a dot. It is preferable that the diameter of the array element 61 is ⁇ 0 /2 or less because scattering caused by radio waves can be reduced. The diameter of the array element 61 is more preferably ⁇ 0 /5 or less, and even more preferably ⁇ 0 /10 or less.
  • the array element 61 may be arranged at a position where a predetermined gap is created between the array element 61 and the ground conductor layer 40 in a plan view. As an example, the distance from the outer edge of the ground conductor layer 40 to the array element 61 is 30 ⁇ m.
  • the array element 61 may have a rectangular shape.
  • the length of one side, especially the length of the long side be ⁇ 0 /2 or less because scattering by radio waves can be reduced.
  • the length of one side of the rectangle, particularly the length of the long side is more preferably ⁇ 0 /5 or less, and even more preferably ⁇ 0 /10 or less.
  • ⁇ 0 is the wavelength of radio waves transmitted and received by the antenna unit 100 in free space.
  • the term "rectangle" includes not only rectangles and squares, but also shapes with chamfered corners of rectangles and squares.
  • the shape of the array element 61 may be a rhombus, a triangle, a hexagon, another polygon, a star, or other shapes.
  • Examples of the conductor material used for the array element 61 include gold, silver, copper, platinum, aluminum, or chromium. From the viewpoint of manufacturing cost, the material of the conductor used for the array element 61 is preferably the same material as the second conductor layer described in the overview, that is, the same material as the ground conductor layer 40 in the first embodiment.
  • the pseudo layer 60 may be formed by plating the above-mentioned material. By plating, it is possible to form a pseudo layer 60 that is resistant to corrosion and has a good design. Further, the pseudo layer 60 may be formed by sintering a pattern formed by screen printing a paste of silver, copper, or the like on the second main surface 10(2).
  • the pseudo layer 60 may be formed directly on the second main surface 10(2), or may be formed indirectly.
  • the pseudo layer 60 may be formed on the second main surface 10(2) side of the dielectric layer 10 via a resin layer.
  • a resin layer for example, an intermediate film such as polyvinyl butyral or ethylene vinyl acetate, polyethylene terephthalate, or an optically transparent adhesive can be used.
  • the region where the pseudo layer 60 exists without overlapping with the ground conductor layer 40, which is the second conductor layer is defined as a first region.
  • a region where the ground conductor layer 40, which is the second conductor layer, exists without overlapping with the pseudo layer 60 is defined as a second region.
  • the first region is an arbitrary region of the pseudo layer 60
  • the second region is an arbitrary region of the ground conductor layer 40. It is.
  • the first area and the second area will be homogenized from the human eye. It looks like a solid color. This phenomenon occurs particularly when the resolution of the human eye is lower than the resolution at which the patterns included in the first and second regions can be recognized.
  • the density of color visible to the human eye changes depending on the diameter, line width, or pitch of the pattern. For example, the larger the diameter of the dots, the larger the line width, or the smaller the pitch, the darker the color of the area appears. Further, for example, the smaller the diameter of the dots, the smaller the line width, or the larger the pitch, the lighter the color of the area appears.
  • the above-mentioned phenomenon is utilized to reduce the difference in shading between the color of the first area when homogenized and the color of the second area when homogenized.
  • the first area and the second area appear continuous and integrated to the human eye, making the second area less noticeable.
  • N is a natural number
  • F is expressed by the following formula (1).
  • F
  • the gradation difference index F can be obtained by substituting the gradation value n 1 of the first region and the gradation value n 2 of the second region into equation (1).
  • the above-mentioned gradation difference index F is preferably 0 or more and 1.09 ⁇ 10 ⁇ 1 or less, more preferably 0 or more and 6.25 ⁇ 10 ⁇ 2 or less, even more preferably 0 or more and 3.52 ⁇ 10 ⁇ 2 or less, and 0 or more. Particularly preferred is 1.56 ⁇ 10 ⁇ 2 or less.
  • F is 0 or more and 1.09 ⁇ 10 ⁇ 1 or less
  • the difference in shading becomes small and the second region becomes less noticeable.
  • F is 0 or more and 6.25 ⁇ 10 ⁇ 2 or less
  • the difference in shading becomes smaller and the second region becomes less noticeable.
  • F is 0 or more and 3.52 ⁇ 10 ⁇ 2 or less
  • the difference in shading becomes even smaller, making the second region even less noticeable.
  • the shade difference index F is a value when the resolution of the imaging unit is 400 dpi.
  • the gradation value n 1 of the first area and the gradation value n 2 of the second area can be calculated from an image obtained by homogenizing the patterns included in each of the first area and the second area.
  • 6A and 6B are diagrams for explaining an example of the homogenization process according to the first embodiment.
  • the dot pattern of the first region included in the pseudo layer 60 is shown.
  • a dot pattern in a first area is photographed using an imaging section set to a predetermined resolution.
  • an imaging section included in an optical reading device such as a digital camera or a scanner may be used.
  • the captured image shown on the right side of FIG. 6A can be obtained.
  • the resolution indicates relative resolution.
  • the captured image includes a homogenized pattern 70 that is a homogenized image area.
  • the gradation value n1 of the first region can be obtained.
  • the measurement of gradation values can be performed using any image processing software.
  • the gradation value n 1 may be the gradation value of one point in the homogenization pattern 70, or may be the average of the gradation values of multiple points in the homogenization pattern 70.
  • the resolution of the imaging unit is preferably 100 dpi or more and 500 dpi or less, more preferably 200 dpi or more and 400 dpi or less, and even more preferably 300 dpi or more and 400 dpi or less.
  • the resolution of the imaging unit is 100 dpi or more, the difference in patterns is reflected in the gradation values, so the reliability of the gradation values is improved.
  • the resolution of the imaging unit is 200 dpi or more, the reliability of the gradation values is further improved because differences in gradation values become noticeable depending on the pattern.
  • the resolution of the imaging unit is 300 dpi or more, a photographed image equivalent to that of the human eye can be obtained, so that gradation values can be calculated in accordance with the actual situation. Further, when the resolution of the imaging unit is 700 dpi or less, a captured image with less unevenness can be obtained, so that gradation values can be calculated. Further, when the resolution of the imaging unit is 600 dpi or less, a captured image with less unevenness can be obtained, so that the accuracy of calculating gradation values is improved. Note that the resolution of the human eye is said to be 300 dpi or less, or 400 dpi or less.
  • a homogenized pattern 72 can be obtained by performing homogenization processing on the mesh pattern in the second region in the same manner as the dot pattern on the pseudo layer 60. Then, by measuring the gradation value of the homogenized pattern 72, the gradation value n2 of the second region can be obtained.
  • the dot pattern of the first area included in the pseudo layer 60 is photographed using an imaging section set to a predetermined resolution, and the captured image obtained by photographing is
  • the homogenized pattern 70 may be obtained by performing image processing. Then, by measuring the gradation value of the homogenized pattern 70, the gradation value n1 of the first region can be obtained.
  • the measurement of gradation values can be performed using any image processing software.
  • an imaging section included in an optical reading device such as an optical microscope, a digital camera, or a scanner may be used.
  • the resolution of the imaging unit in this case may be higher than the resolution that allows the pattern to be recognized.
  • the gradation value n2 of the second area may take into consideration the gradation value near the boundary with the first area, and may increase or decrease as the distance from the first area increases.
  • n 1 -261.40x 1 +321.02...(2)
  • n2 is preferably 246 or less, more preferably 240 or less, even more preferably 232 or less, and 217 The following is particularly preferable, and 211 or less is most preferable.
  • n2 is 246 or less, the line width of the mesh or the pitch of the mesh becomes a preferable size, making it difficult for radio waves to pass through.
  • n2 is preferably 150 or more, more preferably 173 or more, and even more preferably 190 or more.
  • a preferable range of (line width of mesh/pitch of mesh) x 2 can be derived from the above equation (3).
  • x 2 is preferably 5.47 ⁇ 10 ⁇ 3 or more, more preferably 1.24 ⁇ 10 ⁇ 2 or more, even more preferably 2.17 ⁇ 10 ⁇ 2 or more, particularly preferably 3.91 ⁇ 10 ⁇ 2 or more, The most preferable value is 4.61 ⁇ 10 ⁇ 2 or more.
  • x 2 is preferably 1.17 ⁇ 10 ⁇ 1 or less, more preferably 9.02 ⁇ 10 ⁇ 2 or less, and even more preferably 7.05 ⁇ 10 ⁇ 2 or less.
  • the line width of the mesh may be 5 ⁇ m or more and 30 ⁇ m or less, and may be 6 ⁇ m or more and 15 ⁇ m or less.
  • the mesh pitch may be 50 ⁇ m or more and 500 ⁇ m or less, and may be 100 ⁇ m or more and 300 ⁇ m or less.
  • n 1 is preferably 246 or less, more preferably 240 or less, even more preferably 232 or less, particularly preferably 217 or less, and most preferably 211 or less. Further, n 1 is preferably 150 or more, more preferably 173 or more, and even more preferably 190 or more.
  • x 1 is preferably 2.87 ⁇ 10 ⁇ 1 or more, more preferably 3.10 ⁇ 10 ⁇ 1 or more, even more preferably 3.41 ⁇ 10 ⁇ 1 or more, particularly preferably 3.98 ⁇ 10 ⁇ 1 or more, Most preferably, it is 4.21 ⁇ 10 ⁇ 1 or more. Furthermore, x 1 is preferably 6.54 ⁇ 10 ⁇ 1 or less, more preferably 5.66 ⁇ 10 ⁇ 1 or less, and even more preferably 5.01 ⁇ 10 ⁇ 1 or less.
  • the diameter of the dots may be 50 ⁇ m or more and 500 ⁇ m or less.
  • the pseudo layer 60 is arranged around the ground conductor layer 40, and by adjusting the difference in gradation value or color difference between the first region and the second region within a suitable range, An antenna unit and window glass with excellent design can be provided. Further, by adjusting the gradation value of the second region or the size of the dots of the first region within a suitable range, antenna performance can be suitably ensured.
  • the pattern included in the pseudo layer 60 is a pattern in which the conductor array elements 61 are arranged at a predetermined pitch and spaced apart from each other, but the pattern is made of an insulator such as resin. It may be a pattern in which In this case, the pattern may be a pattern in which circular insulators are arranged spaced apart from each other at a predetermined pitch, a continuous pattern in which linear insulators are connected to each other, or a specific It may also be a mesh pattern.
  • the shape of the pattern may be diamond, triangle, hexagon, star, or other shapes.
  • the pseudo layer 60 may be made of an insulator without containing a conductor.
  • the pseudo layer 60 may be a solid planar insulator without a pattern.
  • Insulator materials include acrylic, polycarbonate, PVB (polyvinyl butyral), COP (cycloolefin polymer), PET (polyethylene terephthalate), polyimide, ceramics, or resins such as sapphire silicone resin, polysulfide resin, acrylic resin, Or glass etc. are mentioned.
  • the pseudo layer 60 may be formed by printing ink (pigment) on these materials.
  • the ground conductor layer 40 has a mesh pattern, but the ground conductor layer 40 may be a solid planar conductor.
  • the conductor material used for the ground conductor layer 40 may be a transparent material such as ITO (Indium Tin Oxide).
  • the pseudo layer 60 was on the same plane as the ground conductor layer 40 of the antenna unit 100. In the second embodiment, the pseudo layer 60 is on a different plane from the ground conductor layer 40.
  • FIG. 7 is a top view of the antenna unit 100A according to Configuration Example 1 of Embodiment 2.
  • FIG. 8 is a plan view showing the radiating element layer 20, the ground conductor layer 40, and the pseudo layer 60A formed on the dielectric layer 10 of the antenna unit 100A according to the second embodiment.
  • the antenna unit 100A includes a dielectric layer 10, a radiating element layer 20, a pseudo layer 60A, and a ground conductor layer, as examples of the dielectric layer, first conductor layer, pseudo layer, and second conductor layer described in the overview. 40.
  • the radiation element layer 20 is provided on the first main surface 10(1) side of the dielectric layer 10 with the dielectric layer 10 as a reference.
  • the ground conductor layer 40 is a layer to be camouflaged, similar to Embodiment 1.
  • the ground conductor layer 40 is provided on the second main surface 10(2) side of the dielectric layer 10 with respect to the dielectric layer 10.
  • the pseudo layer 60A is a camouflage layer for making the ground conductor layer 40, which is the second conductor layer, less noticeable. Therefore, like the pseudo layer 60, the pseudo layer 60A is arranged around the ground conductor layer 40 in plan view. However, the pseudo layer 60A is different from the pseudo layer 60 in that the pseudo layer 60A is provided on the first main surface 10(1) side of the dielectric layer 10 with respect to the dielectric layer 10. More specifically, the pseudo layer 60A is formed on the same plane as the radiation element layer 20.
  • the first region is an arbitrary region of the pseudo layer 60A
  • the second region is an arbitrary region of the ground conductor layer 40.
  • the preferred ranges of F, x 2 , n 2 and D are the same as in the first embodiment.
  • the pseudo layer 60A is arranged around the ground conductor layer 40 in plan view, and the difference in gradation value between the first region and the second region is Alternatively, the same effects as in the first embodiment can be achieved by adjusting the color difference within a suitable range.
  • the pseudo layer 60A is a camouflage layer for making the radiating element layer 20 inconspicuous in place of making the ground conductor layer 40 inconspicuous.
  • the conductor used for the ground conductor layer 40 is a transparent material such as ITO
  • the conductor used for the radiating element layer 20 is an opaque material such as gold, silver, copper, etc.
  • the radiating element layer 20 is likely to be noticeable. .
  • this can be avoided by camouflaging the radiation element layer 20 with the pseudo layer 60A.
  • the arrangement of the radiation element layer 20, the ground conductor layer 40, and the pseudo layer 60A in the Z-axis direction is the same as in Configuration Example 1 of Embodiment 2.
  • the radiating element layer 20 is formed on the first main surface 10(1) with the dielectric layer 10 as a reference
  • the ground conductor layer 40 is formed on the second main surface 10(2) with the dielectric layer 10 as a reference. be done.
  • the antenna unit 100A in configuration example 2 differs from configuration example 1 in that the radiating element layer 20 is the second conductor layer described in the outline, and the ground conductor layer 40 is the first conductor layer described in the outline.
  • the ground conductor layer 40 may have a continuous pattern, specifically a mesh pattern, similar to the ground conductor layer 40 of Embodiment 1, or may have a solid planar conductor.
  • the radiating element layer 20 may have a continuous pattern, specifically a mesh pattern, similarly to the ground conductor layer 40 of Embodiment 1.
  • the pseudo layer 60A is formed on the same plane as the radiation element layer 20.
  • FIG. 9 is a plan view showing the radiating element layer 20, the ground conductor layer 40, and the pseudo layer 60A formed on the dielectric layer 10 of the antenna unit 100A according to Configuration Example 2 of Embodiment 2.
  • the pseudo layer 60A is arranged around the radiating element layer 20 in plan view. Specifically, it is arranged so as to be in contact with at least a portion of the outer edge of the radiation conductor 21 a included in the radiation element layer 20 and the outer edge of the power supply line 30 .
  • the first region is an arbitrary region of the pseudo layer 60A
  • the second region is an arbitrary region of the radiation element layer 20.
  • the preferred ranges of F, x 2 , n 2 and D are the same as in the first embodiment.
  • the pseudo layer 60A is arranged around the radiating element layer 20 in plan view, and the difference in tone value or color difference between the first region and the second region is kept within a suitable range. By adjusting this, you can achieve optimal camouflage. This improves the design.
  • the pseudo layer is formed on the same plane as the ground conductor layer 40 as in the first embodiment, or the pseudo layer is formed on the same plane as the radiating element layer 20 as in the second embodiment. It is preferable. Further, from the viewpoint of parallax, the pseudo layer is preferably formed on the same plane as the second conductor layer to be camouflaged. However, the pseudo layer may be formed on a plane different from both the radiating element layer 20 and the ground conductor layer 40.
  • the antenna unit 100B has the same configuration as Configuration Example 1 or Configuration Example 2 in plan view, but the configuration in top view is different.
  • FIG. 10 is a top view of an antenna unit 100B according to a third configuration example of the second embodiment.
  • Antenna unit 100B differs from antenna unit 100A in that it includes a dielectric layer 11 and a pseudo layer 60B instead of pseudo layer 60A.
  • the antenna unit 100B includes a dielectric layer 10 in addition to the dielectric layer 11, and the dielectric layer described in the overview is the dielectric layer 10.
  • the second conductor layer described in the overview may be the ground conductor layer 40 or the radiating element layer 20.
  • the dielectric layer 11 is a transparent plate-like, sheet-like, or film-like member through which visible light passes.
  • Dielectric layer 11 functions as a support substrate for pseudo layer 60B.
  • the dielectric layer 11 is provided on the negative side of the Z-axis with respect to the radiation element layer 20 so as to be parallel to the XY plane. As an example, the dielectric layer 11 is placed in contact with the radiating element layer 20. The rest of the description of the dielectric layer 11 is the same as that of the dielectric layer 10, so it will be omitted.
  • the pseudo layer 60B is provided on the negative Z-axis side with respect to the dielectric layer 11.
  • the pseudo layer 60B is arranged on the surface of the dielectric layer 11 so that its surface is parallel to the XY plane.
  • the shape and position of the pseudo layer 60B in plan view may be the same as the pseudo layer 60A of the first or second configuration example.
  • the first region is an arbitrary region of the pseudo layer 60B
  • the second region is an arbitrary region of the radiating element layer 20 or the ground conductor layer 40.
  • the preferred ranges of F, x 2 , n 2 and D are the same as in the first embodiment.
  • the dielectric layer 11 may be provided on the positive Z-axis side with respect to the ground conductor layer 40.
  • the pseudo layer 60B is provided on the positive Z-axis side with respect to the dielectric layer 11.
  • the pseudo layer 60B is arranged around the second conductor layer to be camouflaged in a plan view, and the difference in gradation value or color difference between the first region and the second region is adjusted within a suitable range. The same effects as in configuration example 1 or configuration example 2 are achieved.
  • Embodiment 3 of the present invention will be described.
  • the indoor side is the Z-axis positive direction side.
  • an antenna unit is known in which a waveguide layer is provided on the outdoor side of the radiating element layer.
  • the antenna unit according to the third embodiment corresponds to such an antenna unit.
  • the object to be camouflaged is the waveguide layer in addition to the ground conductor layer.
  • FIG. 11 is a cross-sectional view of an antenna unit 100C according to the third embodiment. Specifically, FIG. 11 is a cross-sectional view taken along line XIV-XIV' of the antenna unit 100C shown in FIG. 12.
  • FIG. 12 is a plan view of an antenna unit 100C according to the third embodiment.
  • FIG. 13 is a plan view showing the radiation element layer 20C, the waveguide layer 80, and the pseudo layer 60C formed on the dielectric layer 12 according to the third embodiment.
  • FIG. 13 shows a plan view of the dielectric layer 12 as seen from the first main surface side and a plan view of the dielectric layer 12 as seen from the second main surface side.
  • the dielectric layer, first conductor layer, pseudo layer, and second conductor layer described in the overview are the dielectric layer 12, the radiating element layer 20C, the pseudo layer 60C, and the waveguide layer 80.
  • FIG. 12 and 13 show, as an example, a configuration in which two antenna elements 20Ca and 20Cb are formed in the radiation element layer 20 shown in FIG. 11 (see the first main surface side in FIG. 13). Further, a configuration is shown in which two waveguide parts 80a and 80b are formed in the waveguide layer 80 shown in FIG. 11 (see the second main surface side in FIG. 13). Regarding the ground conductor layer 40, two ground conductors 40a and 40b are also formed. Note that the number of radiating elements, ground conductor layers, and waveguide sections included in the antenna unit 100C is not limited to two, and may be one, or may be three or more.
  • the dielectric layer 12 is a transparent plate-like, sheet-like, or film-like member that transmits visible light.
  • the dielectric layer 12 functions as a spacer to prevent the radiation element layer 20C and the waveguide layer 80 from coming into contact with each other.
  • the main surface of the dielectric layer 12 is parallel to the XY plane, and the thickness direction is parallel to the Z-axis direction. The rest of the description of the dielectric layer 12 is the same as that of the dielectric layer 10, so it will be omitted.
  • the main surface of the dielectric layer 12 in the positive Z-axis direction will be referred to as a first main surface 12(1)
  • the main surface of the dielectric layer 12 in the negative Z-axis direction will be referred to as a second main surface 12(2).
  • the second main surface 12(2) is a main surface opposite to the first main surface 12(1).
  • the radiating element layer 20C is a layer including a radiating conductor 21C formed to be able to transmit and receive radio waves in the target frequency band.
  • the radiating element layer 20C like the radiating element layer 20, is provided on the first main surface 10(1) side of the dielectric layer 10 with the dielectric layer 10 as a reference. Specifically, the radiation element layer 20C is formed on at least a portion of the first main surface 10(1) of the dielectric layer 10 so that its surface is parallel to the XY plane.
  • the radiation element layer 20 is provided on the first main surface 12(1) side of the dielectric layer 12 with the dielectric layer 12 as a reference. Specifically, the radiation element layer 20C contacts at least a portion of the first main surface 12(1) of the dielectric layer 12 at the end face in the negative Z-axis direction.
  • antenna elements 20Ca and 20Cb basically have the same configuration and function as antenna elements 20a and 20b, but antenna elements 20Ca and 20Cb are rectangular planar conductors. Note that the shape of the antenna elements 20Ca and 20Cb is not limited to a rectangle, but may be a circle or any other arbitrary shape.
  • the waveguide layer 80 has a function of guiding the radio waves radiated by the radiating element layer 20C in a predetermined direction. Specifically, the waveguide layer 80 has a function of guiding the radio waves emitted by the radiation element layer 20C toward the window glass body 200 to the outside. This improves the FB ratio.
  • the waveguide layer 80 is provided on the outdoor side with respect to the dielectric layer 12, that is, on the second main surface 12(2) side of the dielectric layer 12. Specifically, the waveguide layer 80 is formed on at least a portion of the second main surface 12(2) of the dielectric layer 12 so that its surface is parallel to the XY plane.
  • Examples of the material of the conductor used in the waveguide layer 80 include gold, silver, copper, platinum, aluminum, or chromium.
  • the waveguide layer 80 may be formed by plating the above-mentioned material. By plating, it is possible to form a waveguide layer 80 that is resistant to corrosion and has a good design. Further, the waveguide layer 80 may be formed by sintering a pattern formed by screen printing a paste of silver, copper, or the like on the second main surface 12 (2).
  • the waveguide layer 80 may be formed directly on the second main surface 12(2), or may be formed indirectly.
  • the waveguide layer 80 may be formed on the second main surface 12(2) of the dielectric layer 12 via a resin layer.
  • a resin layer for example, an interlayer film of polyvinyl butyral or ethylene vinyl acetate, polyethylene terephthalate, OCA, or the like can be used.
  • the waveguide section 80a included in the waveguide layer 80 includes conductor elements 81a, 82a, 83a, and 84a.
  • Each of the conductor elements 81a, 82a, 83a, and 84a is a strip-shaped conductor element arranged parallel to and spaced apart from each other.
  • conductor elements 81a, 82a, 83a, and 84a extend in the Y-axis direction.
  • the conductor elements 81a, 82a, 83a, and 84a are arranged in order from the negative direction of the X-axis, separated by a predetermined distance in the X-axis direction.
  • the distance between conductor element 82a and conductor element 83a is larger than the distance between conductor element 81a and conductor element 82a and the distance between conductor element 83a and conductor element 84a.
  • Antenna element 20Ca is arranged between conductor element 82a and conductor element 83a in plan view.
  • Each of the conductor elements 81a, 82a, 83a, and 84a may be composed of a conductor pattern formed so as to create a gap in plan view, similarly to the linear ground conductor 41 of the ground conductor layer 40. That is, each of the conductor elements 81a, 82a, 83a, and 84a is constituted by a continuous pattern in which linear conductors are electrically connected to each other, specifically, a mesh-like conductor pattern.
  • the waveguide section 80b has the same configuration as the waveguide section 80a, so a description thereof will be omitted.
  • the pseudo layer 60C is a camouflage layer for making the waveguide layer 80, which is the second conductor layer in the third embodiment, less noticeable. Similar to the waveguide layer 80, the pseudo layer 60C is provided on the second main surface 12(2) side of the dielectric layer 12 with the dielectric layer 12 as a reference. More specifically, the pseudo layer 60C is formed on the same plane as the waveguide layer 80. That is, the waveguide layer 80 is formed on at least a part of the second main surface 10(2) of the dielectric layer 10 so that its surface is parallel to the XY plane.
  • the pseudo layer 60C is arranged around the waveguide layer 80 in plan view.
  • the pseudo layer 60C may be placed so as to entirely surround each of the conductor elements 81a to 84a, or may be placed so as to be in contact with a portion of each of the conductive elements 81a to 84a. Further, the pseudo layer 60C does not need to be arranged between the adjacent conductor elements 81a and 82a, and between the adjacent conductor elements 83a and 84a.
  • the end of the pseudo layer 60C in the X-axis direction may coincide with the end of the dielectric layer 12 in the X-axis direction; They may be separated by just that. The same applies to the ends in the Y-axis direction.
  • the waveguide layer 80 can be camouflaged. This improves the design. Particularly remarkable effects are achieved when the antenna unit 100C has a plurality of waveguide sections 80a and 80b that are spaced apart from each other.
  • the region A2 shown in FIGS. 12 and 13 is a region including the boundary between the pseudo layer 60C and the waveguide layer 80.
  • area A2 in the description of area A1, the pseudo layer 60, the ground conductor layer 40, the first main surface 10(1), and the second main surface 10(2) are respectively replaced by the pseudo layer 60C, the waveguide layer 80, The explanations will be omitted by replacing them with the first principal surface 12(1) and the second principal surface 12(2).
  • the first region is an arbitrary region of the pseudo layer 60C
  • the second region is an arbitrary region of the waveguide layer 80
  • the specific configuration of the pattern of the waveguide layer 80 and the pseudo layer 60C , F, x 2 , n 2 and suitable ranges of D are the same as in the first embodiment.
  • the antenna unit 100C further includes a ground conductor layer 40 provided through the dielectric layer 10 on the opposite side of the dielectric layer 12 with respect to the radiating element layer 20C, and a pseudo layer 60 that camouflages the ground conductor layer 40. Be prepared.
  • the configurations of the dielectric layer 10, the ground conductor layer 40, and the pseudo layer 60 are the same as in the first embodiment.
  • the radiating element layer 20C is powered by a power feeding point (not shown) corresponding to a ground electrode (not shown) of the ground conductor layer 40.
  • the pseudo layer 60C is provided around the waveguide layer 80 in a plan view, and the difference in gradation value or color difference between the first region and the second region is adjusted within a suitable range. Therefore, the waveguide layer 80 can be suitably made inconspicuous. Therefore, it is possible to provide an antenna unit and window glass with excellent design.
  • the dielectric layer 12 between the waveguide layer 80 and the radiation element layer 20C may be a space instead of a transparent member.
  • the medium of the space may be air or other gas, but the space may also be a vacuum.
  • FIG. 14 shows an example of a case where the dielectric layer 12 is replaced with a space 12A.
  • the antenna unit 100C may include a dielectric layer 12B that supports the waveguide layer 80 on the Z-axis negative direction side with respect to the waveguide layer 80.
  • the presence of the space 12A between the waveguide layer 80 and the radiation element layer 20C makes the resonance frequency less susceptible to the influence of the transparent member, improving the FB ratio.
  • a waveguide layer 80C may be further provided on the Z-axis negative direction side of the layer 12B. In this case, it may further include a pseudo layer 60D that camouflages the waveguide layer 80C.
  • the pseudo layer 60C was on the same plane as the waveguide layer 80 of the antenna unit 100C. However, the pseudo layer 60C may be on a different plane from the waveguide layer 80. Note that in the fourth embodiment, as in the third embodiment, the dielectric layer, first conductor layer, pseudo layer, and second conductor layer described in the overview are the dielectric layer 12, the radiation element layer 20C, and the pseudo layer 60C. , and a waveguide layer 80.
  • FIG. 15 is a top view of the antenna unit 100D according to the fourth embodiment.
  • the pseudo layer 60C is formed on a different plane from the radiating element layer 20 and the waveguide layer 80.
  • the antenna unit 100D further includes a dielectric layer 11 that functions as a support substrate for the pseudo layer 60C.
  • the dielectric layer 11 is provided on the negative Z-axis side with respect to the waveguide layer 80 so as to be parallel to the XY plane.
  • the dielectric layer 11 is placed in contact with the waveguide layer 80 .
  • the other explanations of the dielectric layer 11 are the same as those of the dielectric layer 11 of the third configuration example of the second embodiment.
  • the pseudo layer 60C is provided on the negative Z-axis side with respect to the dielectric layer 11.
  • the pseudo layer 60C is arranged on the surface of the dielectric layer 11 so that its surface is parallel to the XY plane.
  • the shape and position of the pseudo layer 60C in plan view may be the same as the pseudo layer 60C of the third embodiment.
  • the first region is an arbitrary region of the pseudo layer 60C
  • the second region is an arbitrary region of the waveguide layer 80.
  • the preferred ranges of F, x 2 , n 2 and D are the same as in the first embodiment.
  • the pseudo layer 60C is placed on a plane different from the waveguide layer 80, it is arranged around the waveguide layer 80 in a plan view, and the difference in gradation value or color difference between the first region and the second region is preferably adjusted. By adjusting within this range, the same effects as in the third embodiment can be achieved.
  • Embodiment 5 is a modification of Embodiment 1.
  • the radiating element layer 20 and the ground conductor layer 40 were formed to face each other with the dielectric layer 10 in between.
  • the radiating element layer and the ground conductor layer are formed on the same main surface side with the dielectric layer 10 as a reference.
  • FIG. 16 is a plan view of an antenna unit 100E according to the fifth embodiment.
  • FIG. 17 is a cross-sectional view of an antenna unit 100E according to the fifth embodiment. Specifically, FIG. 17 is a cross-sectional view of the antenna unit 100E shown in FIG. 16 along the line XVII-XVII.
  • FIG. 18 is a cross-sectional view of an antenna unit 100E according to the fifth embodiment. Specifically, FIG. 18 is a cross-sectional view of the antenna unit 100E shown in FIG. 16 along the line XVIII-XVIII.
  • the dielectric layer, first conductor layer, pseudo layer, and second conductor layer described in the overview are the dielectric layer 10, the radiating element layer 20E, the ground conductor layer 40E, and the pseudo layer 60E.
  • the radiating element layer 20E, the ground conductor layer 40E, and the pseudo layer 60E have basically the same configuration and function as the radiating element layer 20, the ground conductor layer 40, and the pseudo layer 60, but are different in shape and arrangement.
  • the radiating element layer 20E, the ground conductor layer 40E, and the pseudo layer 60E are all located on the first main surface 10(1) side of the dielectric layer 10 with respect to the dielectric layer 10. provided.
  • the radiating element layer 20E and the pseudo layer 60E are arranged on at least a portion of the first main surface 10(1) of the dielectric layer 10, with their surfaces parallel to the XY plane. It is formed to become.
  • the ground conductor layer 40E is formed on at least a portion of the first main surface 10(1) of the dielectric layer 10 so that its surface is parallel to the XY plane. .
  • a cable 92 shown in FIG. 18 and the like is a member that electrically connects the radiation element layer 20E and the ground conductor layer 40E, and includes a conductive wire 91, an insulator 93, an outer conductor 94, and a sheath 95.
  • an insulator 93 covers a conductive wire 91
  • an outer conductor 94 covers the insulator 93
  • a sheath 95 covers the outer conductor 94.
  • the cable 92 is arranged to bridge the radiating element layer 20E and the ground conductor layer 40E.
  • the outer conductor 94 of the cable 92 is exposed at a location adjacent to the ground conductor layer 40E, and is electrically connected by contacting or soldering to the ground conductor layer 40E. In the example shown in FIG. 18, the outer conductor 94 is electrically connected to the ground conductor layer 40E by solder 96. Further, the conductive wire 91 included in the cable 92 is exposed at a location adjacent to the radiating element layer 20E, and is electrically connected by contacting or soldering to the radiating element layer 20E. In the example shown in FIG. 18, conductive wire 91 is electrically connected to radiation element layer 20E by solder 97. In the example shown in FIG.
  • the radiating element layer 20E is a rectangular planar conductor. Note that the shape of the radiation element layer 20E is not limited to this, and may be circular or any other arbitrary shape.
  • the radiating element layer 20E is arranged in a portion of the dielectric layer 10 on the negative side of the Y-axis with respect to the center of the first main surface 10(1).
  • the radiating element layer 20E includes a mesh-like conductor pattern.
  • the ground conductor layer 40E is a planar conductor pattern.
  • the ground conductor layer 40E is arranged in a portion on the positive side of the Y-axis with respect to the center of the first principal surface 10(1) so as not to overlap with the radiating element layer 20E in a plan view.
  • the end of the ground conductor layer 40E in the Y-axis positive direction coincides with the end of the first main surface 10(1) of the dielectric layer 10 in the Y-axis positive direction.
  • 10(1) may be separated by a predetermined distance in the Y-axis negative direction from the end in the Y-axis positive direction.
  • the conductor pattern of the ground conductor layer 40E is the same as that of the ground conductor layer 40, so a description thereof will be omitted.
  • the pseudo layer 60E is an example of the pseudo layer described above.
  • the pseudo layer 60E is a camouflage layer for making the radiation element layer 20E, which is the first conductor layer, and the ground conductor layer 40E, which is the second conductor layer, less noticeable.
  • the pseudo layer 60E is a planar layer.
  • the pseudo layer 60E is arranged around the ground conductor layer 40 and the radiating element layer 20E in plan view. This makes it possible to make the radiating element layer 20E and the ground conductor layer 40E, which were conspicuous due to being spaced apart, less conspicuous.
  • Region A3 shown in FIG. 16 is a region including the boundary between pseudo layer 60E and ground conductor layer 40E. Further, a region A4 shown in FIG. 16 is a region including the boundary between the pseudo layer 60E and the radiation element layer 20E. Regarding region A3, in the description of region A1, pseudo layer 60 and ground conductor layer 40 are replaced with pseudo layer 60E and ground conductor layer 40E, respectively, and the explanation is omitted. Regarding the region A4, in the description of the region A1, the pseudo layer 60 and the ground conductor layer 40 are replaced with the pseudo layer 60E and the radiating element layer 20E, respectively, and the explanation is omitted.
  • the specific configuration of the patterns of the waveguide layer 80 and the pseudo layer 60C, the preferable ranges of F, x 2 , n 2 and D, etc. are the same as in the first embodiment.
  • the ground conductor layer and the radiating element layer are formed on the same main surface side, it is possible to provide an antenna unit and window glass with excellent design.
  • the pseudo layer 60E may be a camouflage layer for making either the radiation element layer 20E, which is the first conductor layer, or the ground conductor layer 40E, which is the second conductor layer, less noticeable.
  • the pseudo layer 60E is arranged around the layer to be camouflaged in plan view.
  • Example 1 Indicator F of the difference in shading and inconspicuousness
  • the inventors conducted the following Experimental Example 1 in order to verify the influence of the above-mentioned index F of the difference in density between the first region and the second region on the inconspicuousness of the second region.
  • Examples 1 to 10 are examples, and Examples 11 to 13 are comparative examples.
  • Experimental Example 1 below as an example of the gradation value, a gray scale gradation value in which the number N of gradations is 256 was used.
  • sample A sheet with a mesh pattern (mesh pattern) measuring 500 mm long x 600 mm wide x 0.14 mm thick was used as a sample corresponding to the first region.
  • the meshes of the samples of Examples 1 to 6, 11, and 12 were regular hexagons, the distance between the centers of adjacent regular hexagons was 274 ⁇ m, and the width of the mesh was 14 ⁇ m.
  • the meshes of the samples of Examples 7 to 10 and 13 were regular hexagons, the distance between the centers of adjacent regular hexagons was 548 ⁇ m, and the width of the mesh was 14 ⁇ m.
  • a sheet having a dot pattern with a diameter of 70 ⁇ m to 120 ⁇ m and a pitch of 150 ⁇ m to 280 ⁇ m was used as a sample corresponding to the second region. Note that the dots were approximately circular.
  • a sample corresponding to the first region was selected from a plurality of samples having different mesh patterns, and a sample corresponding to the second region was selected from a plurality of samples having different dot patterns.
  • each sample was photographed using iR-ADV C5235F manufactured by Canon Inc. as an optical reader to obtain photographed images. At this time, the reading resolution was set to 400 dpi.
  • the gradation values at three randomly selected locations in the photographed image were measured. Then, the average of the gradation values at three randomly selected locations was taken as the gradation value n 1 of the first region or the gradation value n 2 of the second region corresponding to the sample.
  • the tone value n 1 of the first region was 201,
  • r was 2.70% or more, and the inconspicuousness was good or excellent.
  • is 9 or less, F is 3.52 ⁇ 10 -2 or less, r is 58.11% or more, and the inconspicuousness is excellent.
  • n 1 of the first region was 201,
  • the tone value n 1 of the first region was 232,
  • r was 13.51% or more, and the inconspicuousness was good or excellent.
  • is 4 or less, F is 1.56 ⁇ 10 -2 or less, r is 72.97% or more, and the inconspicuousness is excellent.
  • Example 13 the tone value n 1 of the first region was 232,
  • F is preferably 0 or more and 1.09 ⁇ 10 ⁇ 1 or less, more preferably 0 or more and 6.25 ⁇ 10 ⁇ 2 or less. , more preferably 0 or more and 3.52 ⁇ 10 ⁇ 2 or less, particularly preferably 0 or more and 1.56 ⁇ 10 ⁇ 2 or less.
  • F is preferably 0 or more and 4.69 ⁇ 10 ⁇ 2 or less, more preferably 0 or more and 1.56 ⁇ 10 ⁇ 2 or less.
  • FIG. 19 is a diagram showing the relationship between (dot diameter/dot pitch) and gradation value. Assuming that (dot diameter/dot pitch) is x 1 , the relationship between the diameter/pitch x 1 and the gradation value n 1 was expressed approximately linearly, as shown in FIG. 19 . When a regression line was determined, the above equation (2) was obtained as the regression line. Note that the broken line shown in FIG. 19 represents a regression line of gradation value with respect to (dot diameter/dot pitch).
  • the tone value n1 of the second region included in the pseudo layer can be expressed by the ratio of the dot diameter to the pitch.
  • FIG. 20 is a diagram showing the relationship between (line width of mesh/pitch of mesh) and gradation value. Assuming that (line width of mesh/pitch of mesh) is x 2 , the relationship between (line width of mesh/pitch of mesh) x 2 and gradation value n 2 is approximately linear, as shown in FIG. Ta. When a regression line was determined, the above equation (3) was obtained as the regression line. Note that the broken line shown in FIG. 20 represents a regression line of the gradation value with respect to (line width of mesh/pitch of mesh).
  • the inventors have discovered that the gradation value n2 of the second region included in the second conductor layer can be expressed by the ratio of the mesh line width to the mesh pitch.
  • Example 4 Regarding gradation value and antenna performance
  • the inventors evaluated the antenna performance for the gradation value n 2 of the second region in order to find a preferable range of the gradation value n 2 of the second region from the viewpoint of antenna performance.
  • FB ratio Front Back ratio
  • Example 14 of Experimental Example 4 A sheet with a mesh pattern measuring 500 mm long x 600 mm wide x 0.14 mm thick was used as a sample.
  • mesh patterned sheets with different gradation values n2 were used as samples.
  • the sample used in Example 14 of Experimental Example 4 was the same as the sample used in Example 1 of Experimental Example 1.
  • the FB ratio was calculated from the directivity measurement results using an anechoic chamber. The frequency condition was 4550MHz. The antenna performance was evaluated by classifying the measured values according to the following evaluation criteria. The results are shown in Table 2. ⁇ Antenna performance evaluation criteria ⁇ Good ( ⁇ ): The measured value of the FB ratio is 10 dB or more. Acceptable ( ⁇ ): The measured value of the FB ratio is 8 dB or more and less than 10 dB. Poor ( ⁇ ): The measured value of the FB ratio is less than 8 dB.
  • x 2 was 3.91 ⁇ 10 ⁇ 2 or more, the gradation value n 2 was 211 or more, and the FB ratio was 10 dB or more. Furthermore, in Examples 16 and 17, x 2 was 1.24 ⁇ 10 ⁇ 2 or more, the gradation value n 2 was 232 or more, and the FB ratio was 8 dB or more.
  • Example 18 On the other hand, in Example 18, x 2 was 3.15 ⁇ 10 ⁇ 3 , n 2 was 248, and the FB ratio was poor.
  • x 2 is preferably 5.47 ⁇ 10 ⁇ 3 or more, more preferably 1.24 ⁇ 10 ⁇ 2 or more, even more preferably 2.17 ⁇ 10 ⁇ 2 or more, and 3.91 ⁇ It is particularly preferably 10 -2 or more, and most preferably 4.61 ⁇ 10 -2 or more.
  • n 2 is preferably 246 or less, more preferably 240 or less, even more preferably 232 or less, particularly preferably 217 or less, and most preferably 211 or less. If n2 is 246 or less, particularly 217 or less, the FB ratio will be 8 dB or more, and antenna performance can be ensured.
  • the present invention is not limited to the above embodiments, and can be modified as appropriate without departing from the spirit.
  • the pseudo layer is arranged so that the entirety thereof does not overlap with the second conductor layer, but a portion thereof may overlap with the second conductor layer.

Landscapes

  • Details Of Aerials (AREA)

Abstract

Provided are an antenna unit with excellent design properties, and a windowpane. An antenna unit (100) comprises a dielectric layer (10) that transmits visible light, a first conductor layer, a pseudo layer (60), and a second conductor layer that is spaced apart from the first conductor layer. The first conductor layer is provided to a first main surface side of the dielectric layer using the dielectric layer as a reference, and the second conductor layer is provided to the first main surface side or a second main surface side opposite to the first main surface of the dielectric layer using the dielectric layer (10) as a reference. In a plan view, at least part of the pseudo layer (60) is disposed around the second conductor layer. If n1 and n2 (where n1 and n2 are integers of 0 or more) respectively are gradation values of an N-th level (where N is a natural number) when read at a resolution of 400 dpi of a first region of the pseudo layer (60) that does not overlap with the second conductor layer and a second region of the second conductor layer that does not overlap with the pseudo layer (60) in a plan view, then |n1-n2|/N≦1.09×10-1.

Description

アンテナユニット及び窓ガラスAntenna unit and window glass
 本発明はアンテナユニット及び窓ガラスに関する。 The present invention relates to an antenna unit and window glass.
 建物又は自動車等の窓ガラスに用いられる網目状のアンテナ導体と網目状の接地導体とを備えるアンテナユニットが知られている(例えば、特許文献1)。 An antenna unit that includes a mesh antenna conductor and a mesh ground conductor that is used for window glass of buildings, automobiles, etc. is known (for example, Patent Document 1).
国際公開第2020/095786号International Publication No. 2020/095786
 ここで、上述の特許文献1に記載のアンテナ導体及び接地導体の網目状のパターンは、基板の一部分に形成されるため、基板を視認した場合に網目状のパターンが目立ちやすい。したがって、パターンが目立たず意匠性が向上したアンテナユニットが求められている。 Here, since the mesh pattern of the antenna conductor and the ground conductor described in Patent Document 1 mentioned above is formed on a portion of the board, the mesh pattern is easily noticeable when the board is visually recognized. Therefore, there is a need for an antenna unit with an inconspicuous pattern and improved design.
 本発明は、上述した課題に鑑み、意匠性に優れたアンテナユニット及び窓ガラスを提供することを目的とする。 In view of the above-mentioned problems, the present invention aims to provide an antenna unit and window glass with excellent design.
 本発明の一態様は、以下の[1]~[13]の構成を有するアンテナユニットを提供する。
[1]可視光が透過する誘電体層と、
 第1導体層と、
 擬似層と、
 前記第1導体層と離隔して設けられる第2導体層と、
 を備え、
 前記第1導体層は、前記誘電体層を基準として前記誘電体層の第1主面の側に設けられ、
 前記第2導体層は、前記誘電体層を基準として前記誘電体層の前記第1主面の側又は前記第1主面と反対の第2主面の側に設けられ、
 平面視において、前記擬似層は少なくとも一部が前記第2導体層の周囲に配置され、
 前記平面視において、前記擬似層の前記第2導体層と重複しないで存在する第1領域、及び前記第2導体層の前記擬似層と重複しないで存在する第2領域の各々を、解像度400dpiで読み取った場合のN(Nは自然数)段階の階調値を、n,n(n及びnは0以上の整数)とすると、
 |n‐n|/N≦1.09×10-1である
 アンテナユニット。
[2]|n‐n|/N≦6.25×10-2である[1]に記載のアンテナユニット。
[3]N=256であり、n≦246である[1]又は[2]に記載のアンテナユニット。
[4]前記第1導体層は、放射導体を含み、
 前記第2導体層は、接地導体を含み、
 前記第2導体層は、前記誘電体層を基準として前記誘電体層の前記第2主面の側に設けられる
 [1]から[3]のいずれか一項に記載のアンテナユニット。
[5]前記第1導体層は、放射導体を含み、
 前記第2導体層は、接地導体を含み、
 前記第2導体層は、前記誘電体層を基準として前記誘電体層の前記第1主面の側に設けられる
 [1]から[3]のいずれか一項に記載のアンテナユニット。
[6]前記第1導体層は、接地導体を含み、
 前記第2導体層は、放射導体を含み、
 前記第2導体層は、前記誘電体層を基準として前記誘電体層の前記第2主面の側に設けられる
 [1]から[3]のいずれか一項に記載のアンテナユニット。
[7]前記第1導体層は、放射導体を含み、
 前記第2導体層は、前記放射導体が放射する電波を予め定められた方向に導く導波素子を含み、
 前記第2導体層は、前記誘電体層を基準として前記誘電体層の前記第2主面の側に設けられ、
 前記アンテナユニットは、前記第1導体層を基準として前記誘電体層と反対側に設けられる接地導体層をさらに備える
 [1]から[3]のいずれか一項に記載のアンテナユニット。
[8]前記擬似層は、配列要素を互いに離隔して配列させたパターンを含む[1]から[7]のいずれか一項に記載のアンテナユニット。
[9]前記配列要素の導電率は、1×10(S/m)以上である[8]に記載のアンテナユニット。
[10]前記配列要素の形状は円形であり、
 前記配列要素の平均直径は、前記アンテナユニットによって送受される電波の自由空間波長をλとすると、λ/2以下である
 [9]に記載のアンテナユニット。
[11]前記配列要素の形状は矩形であり、
 前記配列要素の長辺の長さは、前記アンテナユニットによって送受される電波の自由空間波長をλとすると、λ/2以下である
 [9]に記載のアンテナユニット
[12]前記擬似層は、絶縁体から構成され、
 前記絶縁体の導電率は、1×10(S/m)未満である
 [1]から[7]のいずれか一項にアンテナユニット。
[13]前記第2導体層は、網目状の導体パターンを含む[1]から[12]のいずれか一項に記載のアンテナユニット。
One aspect of the present invention provides an antenna unit having the following configurations [1] to [13].
[1] A dielectric layer through which visible light passes;
a first conductor layer;
a pseudo layer;
a second conductor layer provided apart from the first conductor layer;
Equipped with
The first conductor layer is provided on the first main surface side of the dielectric layer with respect to the dielectric layer,
The second conductor layer is provided on a side of the first main surface of the dielectric layer or a second main surface opposite to the first main surface of the dielectric layer, with the dielectric layer as a reference,
In plan view, at least a portion of the pseudo layer is arranged around the second conductor layer,
In the planar view, each of a first region of the pseudo layer that does not overlap with the second conductor layer and a second region of the second conductor layer that does not overlap with the pseudo layer is determined at a resolution of 400 dpi. Assuming that the gradation values of N (N is a natural number) stages when read are n 1 and n 2 (n 1 and n 2 are integers of 0 or more),
|n 1 -n 2 |/N≦1.09×10 −1 Antenna unit.
[2] The antenna unit according to [1], wherein |n 1 -n 2 |/N≦6.25×10 −2 .
[3] The antenna unit according to [1] or [2], wherein N=256 and n 2 ≦246.
[4] The first conductor layer includes a radiation conductor,
The second conductor layer includes a ground conductor,
The antenna unit according to any one of [1] to [3], wherein the second conductor layer is provided on the second main surface side of the dielectric layer with respect to the dielectric layer.
[5] The first conductor layer includes a radiation conductor,
The second conductor layer includes a ground conductor,
The antenna unit according to any one of [1] to [3], wherein the second conductor layer is provided on the first main surface side of the dielectric layer with respect to the dielectric layer.
[6] The first conductor layer includes a ground conductor,
The second conductor layer includes a radiating conductor,
The antenna unit according to any one of [1] to [3], wherein the second conductor layer is provided on the second main surface side of the dielectric layer with respect to the dielectric layer.
[7] The first conductor layer includes a radiation conductor,
The second conductor layer includes a waveguide element that guides radio waves radiated by the radiation conductor in a predetermined direction,
The second conductor layer is provided on the second main surface side of the dielectric layer with respect to the dielectric layer,
The antenna unit according to any one of [1] to [3], further including a ground conductor layer provided on the opposite side of the dielectric layer with respect to the first conductor layer.
[8] The antenna unit according to any one of [1] to [7], wherein the pseudo layer includes a pattern in which array elements are arranged spaced apart from each other.
[9] The antenna unit according to [8], wherein the array element has a conductivity of 1×10 6 (S/m) or more.
[10] The shape of the array element is circular,
The antenna unit according to [9], wherein the average diameter of the array element is λ 0 /2 or less, where λ 0 is the free space wavelength of radio waves transmitted and received by the antenna unit.
[11] The shape of the array element is rectangular,
[12] The pseudo layer of the antenna unit according to [9], wherein the length of the long side of the array element is λ 0 /2 or less, where λ 0 is the free space wavelength of radio waves transmitted and received by the antenna unit. is composed of an insulator,
The antenna unit according to any one of [1] to [7], wherein the insulator has a conductivity of less than 1×10 6 (S/m).
[13] The antenna unit according to any one of [1] to [12], wherein the second conductor layer includes a mesh conductor pattern.
 本発明の一態様は、[1]~[13]のいずれかの構成を有するアンテナユニットを備える窓ガラスを提供する。 One aspect of the present invention provides a window glass including an antenna unit having the configuration of any one of [1] to [13].
 本発明の一態様によれば、意匠性に優れたアンテナユニット及び窓ガラスを提供できる。 According to one aspect of the present invention, it is possible to provide an antenna unit and window glass with excellent design.
実施形態1にかかる窓ガラスの上面図である。FIG. 3 is a top view of the window glass according to the first embodiment. 実施形態1にかかるアンテナユニットの上面図である。FIG. 2 is a top view of the antenna unit according to the first embodiment. 実施形態1にかかるアンテナユニットの平面図である。FIG. 2 is a plan view of the antenna unit according to the first embodiment. 実施形態1にかかるアンテナユニットの誘電体層に形成される放射素子層、接地導体層及び擬似層を平面視で示す図である。FIG. 3 is a plan view showing a radiating element layer, a ground conductor layer, and a pseudo layer formed on a dielectric layer of the antenna unit according to the first embodiment. 実施形態1にかかる境界領域A1の拡大平面図である。FIG. 3 is an enlarged plan view of a boundary area A1 according to the first embodiment. 実施形態1にかかる均質化処理の一例を説明するための図である。FIG. 3 is a diagram for explaining an example of homogenization processing according to the first embodiment. 実施形態1にかかる均質化処理の一例を説明するための図である。FIG. 3 is a diagram for explaining an example of homogenization processing according to the first embodiment. 実施形態2の構成例1にかかるアンテナユニットの上面図である。FIG. 7 is a top view of the antenna unit according to Configuration Example 1 of Embodiment 2; 実施形態2の構成例1にかかるアンテナユニットの誘電体層に形成される放射素子層、接地導体層及び擬似層を平面視で示す図である。FIG. 7 is a plan view showing a radiating element layer, a ground conductor layer, and a pseudo layer formed in a dielectric layer of an antenna unit according to Configuration Example 1 of Embodiment 2; 実施形態2の構成例2にかかるアンテナユニットの誘電体層に形成される放射素子層、接地導体層及び擬似層を平面視で示す図である。FIG. 7 is a plan view showing a radiating element layer, a ground conductor layer, and a pseudo layer formed in a dielectric layer of an antenna unit according to Configuration Example 2 of Embodiment 2; 実施形態2の構成例3にかかるアンテナユニットの上面図である。FIG. 7 is a top view of an antenna unit according to configuration example 3 of embodiment 2; 実施形態3にかかるアンテナユニットの断面図である。FIG. 7 is a cross-sectional view of an antenna unit according to a third embodiment. 実施形態3にかかるアンテナユニットの平面図である。FIG. 7 is a plan view of an antenna unit according to a third embodiment. 実施形態3にかかるアンテナユニットの誘電体層に形成される放射素子層、導波層及び擬似層を平面視で示す図である。FIG. 7 is a plan view showing a radiating element layer, a waveguide layer, and a pseudo layer formed in a dielectric layer of an antenna unit according to a third embodiment. 実施形態3にかかるアンテナユニットの変形例の断面図である。FIG. 7 is a cross-sectional view of a modification of the antenna unit according to Embodiment 3. 実施形態4にかかるアンテナユニットの上面図である。FIG. 7 is a top view of an antenna unit according to a fourth embodiment. 実施形態5にかかるアンテナユニットの平面図である。FIG. 7 is a plan view of an antenna unit according to a fifth embodiment. 実施形態5にかかるアンテナユニットの断面図である。FIG. 7 is a cross-sectional view of an antenna unit according to a fifth embodiment. 実施形態5にかかるアンテナユニットの断面図である。FIG. 7 is a cross-sectional view of an antenna unit according to a fifth embodiment. (ドット直径/ドットピッチ)と階調値との関係を示す図である。FIG. 3 is a diagram showing the relationship between (dot diameter/dot pitch) and gradation value. (網目の線幅/網目のピッチ)と階調値との関係を示す図である。FIG. 3 is a diagram showing the relationship between (line width of mesh/pitch of mesh) and gradation value.
 以下、本発明を適用した具体的な実施形態について、図面を参照しながら詳細に説明する。説明を明確にするため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。なお、各実施形態において、平行、水平、垂直などの方向には、本発明の効果を損なわない程度のずれが許容される。また、X軸方向、Y軸方向及びZ軸方向は、それぞれ、X軸に平行な方向、Y軸に平行な方向及びZ軸に平行な方向である。X軸方向、Y軸方向及びZ軸方向は、互いに直交する。XY平面、YZ平面、ZX平面は、それぞれ、X軸方向及びY軸方向に平行な平面、Y軸方向及びZ軸方向に平行な平面、並びにZ軸方向及びX軸方向に平行な平面である。 Hereinafter, specific embodiments to which the present invention is applied will be described in detail with reference to the drawings. For clarity of explanation, the following description and drawings are omitted and simplified as appropriate. In each drawing, the same elements are denoted by the same reference numerals, and redundant explanation will be omitted as necessary. In each embodiment, deviations in parallel, horizontal, vertical, etc. directions are allowed to an extent that does not impair the effects of the present invention. Moreover, the X-axis direction, the Y-axis direction, and the Z-axis direction are a direction parallel to the X-axis, a direction parallel to the Y-axis, and a direction parallel to the Z-axis, respectively. The X-axis direction, Y-axis direction, and Z-axis direction are orthogonal to each other. The XY plane, YZ plane, and ZX plane are, respectively, a plane parallel to the X-axis direction and the Y-axis direction, a plane parallel to the Y-axis direction and the Z-axis direction, and a plane parallel to the Z-axis direction and the X-axis direction. .
 本実施形態における「平面視」及び「平面図」は、それぞれ、XY平面を見ること又はXY平面自体を指す。また本実施形態における「上面視」及び「上面図」は、それぞれ、ZX平面を見ること又はZX平面自体を指す。 "Plan view" and "plan view" in this embodiment refer to viewing the XY plane or the XY plane itself, respectively. Furthermore, "top view" and "top view" in this embodiment refer to viewing the ZX plane or the ZX plane itself, respectively.
 本実施形態において「同一平面」は、本発明の効果を損なわない程度のずれが許容される。 In this embodiment, the term "same plane" allows deviations to the extent that the effects of the present invention are not impaired.
 本実施形態における「アンテナユニット」は、所定の周波数帯域の信号の伝搬に使用される。以下では、所定の周波数帯域を、対象周波数帯域ということがある。対象周波数帯域は、4G LTE(Long Term Evolution)から5Gの周波数帯域まででもよく、例えば、700MHzから6GHz(いわゆる、sub6)の周波数帯域でもよいがこれらに限定されない。つまり、対象周波数帯域とは、700MHz未満の周波数帯域でもよく、6GHz超の周波数帯、例えば、28GHz帯域やミリ波と言われる30GHz超の周波数帯、例えば79GHz帯域でもよい。アンテナユニットは、例えば、5G、Bluetooth(登録商標)等の無線通信規格、IEEE802.11ac等の無線LAN(Local Area Network)規格で使用されてもよい。またアンテナユニットは、車両で使用される場合には、車載レーダーシステム、V2X通信システム、又はDSRC(Dedicated Short Range Communications)と呼ばれる専用狭帯通信システムで使用されてもよい。またアンテナユニットは、これら以外の規格に対応可能であってもよい。 The "antenna unit" in this embodiment is used to propagate signals in a predetermined frequency band. Hereinafter, the predetermined frequency band may be referred to as a target frequency band. The target frequency band may be from 4G LTE (Long Term Evolution) to 5G frequency band, for example, may be a frequency band from 700 MHz to 6 GHz (so-called sub6), but is not limited to these. That is, the target frequency band may be a frequency band below 700 MHz, a frequency band above 6 GHz, for example, a 28 GHz band, or a frequency band above 30 GHz called millimeter waves, such as a 79 GHz band. The antenna unit may be used, for example, in wireless communication standards such as 5G and Bluetooth (registered trademark), and wireless LAN (Local Area Network) standards such as IEEE802.11ac. Furthermore, when used in a vehicle, the antenna unit may be used in an on-vehicle radar system, a V2X communication system, or a dedicated narrowband communication system called DSRC (Dedicated Short Range Communications). Furthermore, the antenna unit may be compatible with standards other than these.
 <実施形態の概要>
 まず、後述する実施形態の概要について説明する。本実施形態にかかるアンテナユニットは、可視光が透過する誘電体層と、第1導体層と、擬似層と、第2導体層とを備える。
<Overview of embodiment>
First, an overview of the embodiment described later will be explained. The antenna unit according to this embodiment includes a dielectric layer through which visible light passes, a first conductor layer, a pseudo layer, and a second conductor layer.
 第1導体層は、誘電体層を基準として上記誘電体層の第1主面の側に設けられる層である。
 第2導体層は、上面視において、第1導体層と予め定められた距離だけ離隔して設けられる層である。第2導体層は、誘電体層を基準として誘電体層の第1主面の側又は第2主面の側に設けられる。第2主面は、誘電体層の主面のうち、第1主面と反対の主面である。
The first conductor layer is a layer provided on the first main surface side of the dielectric layer with respect to the dielectric layer.
The second conductor layer is a layer provided apart from the first conductor layer by a predetermined distance when viewed from above. The second conductor layer is provided on the first main surface side or the second main surface side of the dielectric layer with the dielectric layer as a reference. The second main surface is a main surface of the dielectric layer that is opposite to the first main surface.
 擬似層は、平面視において、少なくとも一部が第2導体層の周囲に配置される。
 ここで平面視において、擬似層の領域であって、擬似層が第2導体層と重複しないで存在する領域を第1領域とする。また、第2導体層の領域であって、第2導体層が擬似層と重複しないで存在する領域を第2領域とする。そして第1領域及び第2領域をいずれも解像度400dpiで読み取った場合における第1領域及び第2領域の、N段階の階調値をそれぞれ、n,nとする。但し、Nは自然数であり、n及びnは0以上の整数である。このとき階調値の差の絶対値を規格化した値、つまり|n‐n|/Nは、0以上1.09×10-1以下である。
At least a portion of the pseudo layer is arranged around the second conductor layer in plan view.
Here, in a plan view, a region of the pseudo layer where the pseudo layer exists without overlapping with the second conductor layer is defined as a first region. Further, a region of the second conductor layer where the second conductor layer exists without overlapping with the pseudo layer is defined as a second region. Then, when both the first area and the second area are read at a resolution of 400 dpi, the N-level gradation values of the first area and the second area are set as n 1 and n 2 , respectively. However, N is a natural number, and n 1 and n 2 are integers of 0 or more. At this time, the value obtained by normalizing the absolute value of the difference in gradation values, that is, |n 1 -n 2 |/N is 0 or more and 1.09×10 −1 or less.
 本実施形態にかかるアンテナユニットによれば、擬似層の少なくとも一部が第2導体層の周囲に配置され、第1領域及び第2領域の階調値の差が小さいため、第2導体層を擬似層によって目立たなくできる。したがって、意匠性を向上できる。 According to the antenna unit according to the present embodiment, at least a part of the pseudo layer is arranged around the second conductor layer, and the difference in gradation value between the first region and the second region is small, so that the second conductor layer is arranged around the second conductor layer. The pseudo layer makes it less noticeable. Therefore, the design quality can be improved.
 以下の実施形態1~5で、アンテナユニットを具体的に説明する。 The antenna unit will be specifically explained in Embodiments 1 to 5 below.
 <実施形態1>
 まず本発明の実施形態1について説明する。図1は、実施形態1にかかる窓ガラス1の上面図である。窓ガラス1は、建物又は車両に取り付けられる窓ガラスである。窓ガラス1は、窓ガラス本体200と、アンテナユニット100と、支持部300a,300bとを備える。
<Embodiment 1>
First, Embodiment 1 of the present invention will be described. FIG. 1 is a top view of a window glass 1 according to a first embodiment. The window glass 1 is a window glass attached to a building or a vehicle. The window glass 1 includes a window glass main body 200, an antenna unit 100, and support parts 300a and 300b.
 窓ガラス本体200は、可視光が透過する透明な板状部材である。図1では、窓ガラス本体200は、主面がXY平面に平行であり、厚み方向がZ軸方向に平行である。尚、Z軸正方向は屋内側であり、Z軸負方向は屋外側である。窓ガラス本体200は、誘電体を主成分とする誘電体部材である。窓ガラス本体200の材料は、ガラスであるが、樹脂であってもよい。 The window glass body 200 is a transparent plate-like member through which visible light passes. In FIG. 1, the main surface of the window glass body 200 is parallel to the XY plane, and the thickness direction is parallel to the Z-axis direction. Note that the positive direction of the Z-axis is the indoor side, and the negative direction of the Z-axis is the outdoor side. The window glass body 200 is a dielectric member whose main component is dielectric. The material of the window glass body 200 is glass, but may also be resin.
 アンテナユニット100は、窓ガラス本体200の屋内側の主面に、支持部300a,300bを介して設けられる板状、シート状又はフィルム状の部材である。本図では、アンテナユニット100は、窓ガラス本体200の主面に沿って設けられている。アンテナユニット100は、対象周波数帯域の電波を送受信する。アンテナユニット100は、平面アンテナであり、例えばパッチアンテナ、マイクロストリップアンテナ又はスロットアンテナである。 The antenna unit 100 is a plate-shaped, sheet-shaped, or film-shaped member provided on the main surface of the window glass body 200 on the indoor side via supporting parts 300a and 300b. In this figure, the antenna unit 100 is provided along the main surface of the window glass body 200. The antenna unit 100 transmits and receives radio waves in a target frequency band. The antenna unit 100 is a planar antenna, such as a patch antenna, a microstrip antenna, or a slot antenna.
 支持部300a,300bは、アンテナユニット100を窓ガラス本体200に対して支持する部材である。支持部300a,300bは、窓ガラス本体200とアンテナユニット100との間に空間が形成されるようにアンテナユニット100を支持する。尚、支持部300a,300bは、窓ガラス本体200がアンテナユニット100の主面に接するようにアンテナユニット100を支持してもよいが、熱割れのリスク軽減のため、好ましくは、図1のように空間が形成されるように支持する。この場合、支持部300a,300bは、窓ガラス本体200とアンテナユニット100との間の空間を確保するためのスペーサであってもよいし、アンテナユニット100の筐体であってもよい。
 支持部300a,300bの材料は誘電体であってよい。例えば支持部300a,300bの材料は、シリコーン系樹脂、ポリサルファイド系樹脂又はアクリル系樹脂等の樹脂であってよい。また支持部300a,300bの材料は、アルミニウム等の金属であってもよい。
The support parts 300a and 300b are members that support the antenna unit 100 with respect to the window glass main body 200. The support parts 300a and 300b support the antenna unit 100 so that a space is formed between the window glass main body 200 and the antenna unit 100. Note that the support parts 300a and 300b may support the antenna unit 100 so that the window glass main body 200 is in contact with the main surface of the antenna unit 100, but in order to reduce the risk of thermal cracking, it is preferable to support the antenna unit 100 as shown in FIG. Support so that a space is formed between the In this case, the support parts 300a and 300b may be spacers for securing a space between the window glass main body 200 and the antenna unit 100, or may be a casing of the antenna unit 100.
The material of the supports 300a, 300b may be dielectric. For example, the material of the support parts 300a and 300b may be a resin such as silicone resin, polysulfide resin, or acrylic resin. Further, the material of the support parts 300a and 300b may be metal such as aluminum.
 図2は、実施形態1にかかるアンテナユニット100の上面図である。図3は、実施形態1にかかるアンテナユニット100の平面図である。図3は、Z軸負方向側から見た場合のXY平面を示している。アンテナユニット100は、概要で説明した誘電体層、第1導体層、擬似層、及び第2導体層の一例として、それぞれ、誘電体層10、放射素子層20、擬似層60、及び接地導体層40を備える。また図4は、実施形態1にかかるアンテナユニット100の誘電体層10に形成される放射素子層20、接地導体層40及び擬似層60を平面視で示す図である。図4では、第1主面側からみた平面図と第2主面側からみた平面図を示している。 FIG. 2 is a top view of the antenna unit 100 according to the first embodiment. FIG. 3 is a plan view of the antenna unit 100 according to the first embodiment. FIG. 3 shows the XY plane when viewed from the Z-axis negative direction side. The antenna unit 100 includes a dielectric layer 10, a radiating element layer 20, a pseudo layer 60, and a ground conductor layer as examples of the dielectric layer, first conductor layer, pseudo layer, and second conductor layer described in the overview. 40. Further, FIG. 4 is a plan view showing the radiating element layer 20, the ground conductor layer 40, and the pseudo layer 60 formed on the dielectric layer 10 of the antenna unit 100 according to the first embodiment. FIG. 4 shows a plan view seen from the first main surface side and a plan view seen from the second main surface side.
 図2に示すように、誘電体層10は、可視光が透過する透明な板状、シート状又はフィルム状の部材である。誘電体層10は、誘電体を主成分とする。誘電体層10の材料は、ガラスでもよく、セラミックスでもよく、樹脂でもよい。誘電体層10としては、例えば、ガラス基板、アクリル、ポリカーボネート、PVB(ポリビニルブチラール)、COP(シクロオレフィンポリマー)、PET(ポリエチレンテレフタレート)、ポリイミド、セラミックス又はサファイアが挙げられる。誘電体層10がガラス基板である場合は、その材質は、一例として、無アルカリガラス、石英ガラス、ソーダライムガラス、ホウケイ酸ガラス、アルカリホウケイ酸ガラス又はアルミノシリケートガラスが挙げられる。 As shown in FIG. 2, the dielectric layer 10 is a transparent plate-like, sheet-like, or film-like member through which visible light passes. The dielectric layer 10 has a dielectric as a main component. The material of the dielectric layer 10 may be glass, ceramics, or resin. Examples of the dielectric layer 10 include a glass substrate, acrylic, polycarbonate, PVB (polyvinyl butyral), COP (cycloolefin polymer), PET (polyethylene terephthalate), polyimide, ceramics, or sapphire. When the dielectric layer 10 is a glass substrate, examples of the material include alkali-free glass, quartz glass, soda lime glass, borosilicate glass, alkali borosilicate glass, or aluminosilicate glass.
 誘電体層10の可視光透過率は、例えば30%以上が好ましく、50%以上がより好ましく、70%以上がさらに好ましく、80%以上が特に好ましく、90%以上が最も好ましい。可視光透過率は、JIS R 3106(1998年)に準拠して測定される。 The visible light transmittance of the dielectric layer 10 is preferably 30% or more, more preferably 50% or more, even more preferably 70% or more, particularly preferably 80% or more, and most preferably 90% or more. The visible light transmittance is measured in accordance with JIS R 3106 (1998).
 誘電体層10は、主面が窓ガラス本体200と同様にXY平面に平行であり、厚み方向がZ軸に平行である。以下では、誘電体層10のZ軸負方向側の主面を第1主面10(1)といい、誘電体層10のZ軸正方向側の主面を第2主面10(2)という場合がある。
 つまり、第2主面10(2)は、第1主面10(1)と反対の主面である。
The dielectric layer 10 has a main surface parallel to the XY plane like the window glass main body 200, and a thickness direction parallel to the Z axis. Hereinafter, the main surface of the dielectric layer 10 on the negative side of the Z-axis will be referred to as a first main surface 10(1), and the main surface of the dielectric layer 10 on the positive side of the Z-axis will be referred to as a second main surface 10(2). There are cases where this happens.
That is, the second main surface 10(2) is a main surface opposite to the first main surface 10(1).
 放射素子層20は、上述した対象周波数帯域の電波を送受可能に形成される放射導体を含む層である。放射素子層20は、誘電体層10を基準として誘電体層10の第1主面10(1)の側に、つまり誘電体層10を基準としてZ軸負方向側に設けられる。本実施形態1では、放射素子層20は、具体的には、誘電体層10の第1主面10(1)のうち少なくとも一部の領域上に、その表面がXY平面に平行になるように形成される。 The radiating element layer 20 is a layer that includes a radiating conductor that is formed to be able to transmit and receive radio waves in the target frequency band described above. The radiating element layer 20 is provided on the first main surface 10(1) side of the dielectric layer 10 with the dielectric layer 10 as a reference, that is, on the negative Z-axis side with the dielectric layer 10 as a reference. In the first embodiment, the radiating element layer 20 is specifically formed on at least a part of the first main surface 10(1) of the dielectric layer 10 so that its surface is parallel to the XY plane. is formed.
 接地導体層40は、グランド面を形成する接地導体を含む層である。接地導体層40は、放射素子層20に対応して設けられる。接地導体層40は外観上目立つ場合があるため、本実施形態1では、接地導体層40をカモフラージュして、目立ちにくくする。本実施形態1では、接地導体層40は、誘電体層10を基準として誘電体層10の第2主面10(2)の側に、つまり誘電体層10を基準としてZ軸正方向側に設けられる。具体的には、接地導体層40は、誘電体層10の第2主面10(2)のうち少なくとも一部の領域上に、その表面がXY平面に平行になるように形成される。 The ground conductor layer 40 is a layer containing a ground conductor that forms a ground plane. The ground conductor layer 40 is provided corresponding to the radiating element layer 20. Since the ground conductor layer 40 may be visually noticeable, in the first embodiment, the ground conductor layer 40 is camouflaged to make it less noticeable. In the first embodiment, the ground conductor layer 40 is arranged on the second main surface 10(2) side of the dielectric layer 10 with the dielectric layer 10 as a reference, that is, on the positive Z-axis side with the dielectric layer 10 as a reference. provided. Specifically, the ground conductor layer 40 is formed on at least a portion of the second main surface 10(2) of the dielectric layer 10 so that its surface is parallel to the XY plane.
 擬似層60は、接地導体層40を目立たなくするために形成されるカモフラージュ層である。擬似層60は、接地導体層40と同様に、誘電体層10を基準として誘電体層10の第2主面10(2)の側に設けられる。より具体的には、擬似層60は、接地導体層40と同一平面上に形成される。すなわち擬似層60は、誘電体層10の第2主面10(2)の少なくとも一部の領域上に、その表面がXY平面に平行になるように形成される。 The pseudo layer 60 is a camouflage layer formed to make the ground conductor layer 40 less noticeable. Similar to the ground conductor layer 40, the pseudo layer 60 is provided on the second main surface 10(2) side of the dielectric layer 10 with the dielectric layer 10 as a reference. More specifically, pseudo layer 60 is formed on the same plane as ground conductor layer 40 . That is, the pseudo layer 60 is formed on at least a part of the second main surface 10(2) of the dielectric layer 10 so that its surface is parallel to the XY plane.
 図3及び図4では、一例として、図2に示した放射素子層20に2つのアンテナ素子20a,20bが形成されている構成(図4の第1主面側参照)を示している。また、図2に示した接地導体層40に2つの接地導体40a,40bが形成されている構成(図4の第2主面側参照)を示している。接地導体40a,40bは、それぞれアンテナ素子20a,20bに対応して設けられる。アンテナ素子20a及び接地導体40aと、アンテナ素子20b及び接地導体40bとは、X軸方向において予め定められた距離だけ離隔して配列されている。尚、アンテナユニット100に含まれるアンテナ素子及び接地導体の数は2に限らず、1であってもよいし、3以上であってもよい。 3 and 4 show, as an example, a configuration in which two antenna elements 20a and 20b are formed in the radiation element layer 20 shown in FIG. 2 (see the first main surface side in FIG. 4). Further, a configuration is shown in which two ground conductors 40a and 40b are formed on the ground conductor layer 40 shown in FIG. 2 (see the second main surface side in FIG. 4). Ground conductors 40a and 40b are provided corresponding to antenna elements 20a and 20b, respectively. The antenna element 20a and the ground conductor 40a and the antenna element 20b and the ground conductor 40b are arranged apart from each other by a predetermined distance in the X-axis direction. Note that the number of antenna elements and ground conductors included in the antenna unit 100 is not limited to two, but may be one, or may be three or more.
 [アンテナ素子20a]
 以下では、アンテナ素子20aの詳細を説明する。尚、アンテナ素子20bはアンテナ素子20aと同様であるため、説明を省略する。
[Antenna element 20a]
Below, details of the antenna element 20a will be explained. Note that the antenna element 20b is the same as the antenna element 20a, so a description thereof will be omitted.
 アンテナ素子20aは、第1主面10(1)の側に形成される面状の導体パターンである。アンテナ素子20aに使用される導体の材料としては、金、銀、銅、白金、アルミニウム又はクロム等が挙げられる。アンテナ素子20aは、上述した材料をメッキにより成膜したものであってもよい。メッキ化することにより、腐食しにくく、意匠性がよいアンテナ素子20aを形成可能である。またアンテナ素子20aは、銀又は銅等のペーストを第1主面10(1)にスクリーン印刷を用いて形成されるパターンを、焼結したものであってもよい。 The antenna element 20a is a planar conductor pattern formed on the first main surface 10(1) side. Examples of the conductor material used for the antenna element 20a include gold, silver, copper, platinum, aluminum, and chromium. The antenna element 20a may be formed by plating the above-mentioned material. By plating, it is possible to form the antenna element 20a which is resistant to corrosion and has a good design. Further, the antenna element 20a may be formed by sintering a pattern formed by screen printing a paste of silver, copper, or the like on the first main surface 10(1).
 アンテナ素子20aは、第1主面10(1)に直接的に形成されてよいが、間接的に形成されてもよい。例えばアンテナ素子20aは、誘電体層10の第1主面10(1)に、樹脂層を介して形成されてもよい。樹脂層は、一例としてポリビニルブチラール若しくはエチレン酢酸ビニル等の中間膜、ポリエチレンテレフタレート又は光学透明接着剤(OCA)等を用いることができる。 The antenna element 20a may be formed directly on the first main surface 10(1), or may be formed indirectly. For example, the antenna element 20a may be formed on the first main surface 10(1) of the dielectric layer 10 with a resin layer interposed therebetween. For the resin layer, for example, an intermediate film such as polyvinyl butyral or ethylene vinyl acetate, polyethylene terephthalate, or optically transparent adhesive (OCA) can be used.
 アンテナ素子20aは、放射導体21aと、給電ライン30aとを有する。 The antenna element 20a has a radiation conductor 21a and a feed line 30a.
 放射導体21aは、少なくとも1つのパッチ導体を含む。本実施形態1では、放射導体21aは、4つのパッチ導体22a,23a,24a,25aを含む。パッチ導体22a,23a,24a,25aは、ソリッドな面状導体から構成されていてよい。しかしこれに限らず、パッチ導体22a,23a,24a,25aは、平面視で隙間が生じるように形成される網目状の導体パターンで構成されてもよい。この場合、視野を確保し、意匠性を向上できる。 The radiation conductor 21a includes at least one patch conductor. In the first embodiment, the radiation conductor 21a includes four patch conductors 22a, 23a, 24a, and 25a. Patch conductors 22a, 23a, 24a, and 25a may be composed of solid planar conductors. However, the present invention is not limited thereto, and the patch conductors 22a, 23a, 24a, and 25a may be configured with a mesh-like conductor pattern formed so that gaps are formed in a plan view. In this case, the field of view can be secured and the design can be improved.
 給電ライン30aは、第1主面10(1)の側に形成される導体パターンである。給電ライン30aは、信号配線として機能する。本実施形態1では、給電ライン30aは、Y軸方向に延伸するストリップ導体である。給電ライン30aは、ソリッドな面状導体から構成されていてよい。しかしこれに限らず、給電ライン30aは、平面視で隙間が生じるように形成される網目状の導体パターンで構成されてもよい。この場合、視野を確保し、意匠性を向上できる。 The power supply line 30a is a conductor pattern formed on the first main surface 10(1) side. The power supply line 30a functions as a signal wiring. In the first embodiment, the power supply line 30a is a strip conductor extending in the Y-axis direction. The power supply line 30a may be composed of a solid planar conductor. However, the present invention is not limited thereto, and the power supply line 30a may be configured with a mesh-like conductor pattern formed so that gaps are formed in a plan view. In this case, the field of view can be secured and the design can be improved.
 本実施形態1では、給電ライン30aは、放射導体21aと一体的に形成される。給電ライン30aは、一方の端部32aにおいて放射導体21aに接続される。より具体的には、給電ライン30aは、一方の端部32aにおいて、パッチ導体22a,23aへの分岐路と、パッチ導体24a,パッチ導体25aへの分岐路と、これらの分岐路が互いに接続される分岐箇所36aとを有する。また給電ライン30aは、他方の端部33aにおいて送信機等の無線装置に接続される。給電ライン30aの端部33aは給電端として機能する。尚、本実施形態1では端部33aは、誘電体層10のY軸正方向の端部と一致しているが、誘電体層10のY軸正方向の端部からY軸負方向に予め定められた距離だけ離隔していてもよい。 In the first embodiment, the power supply line 30a is formed integrally with the radiation conductor 21a. The feed line 30a is connected to the radiation conductor 21a at one end 32a. More specifically, the power supply line 30a has a branch path to the patch conductors 22a, 23a, a branch path to the patch conductor 24a, and the patch conductor 25a, and these branch paths are connected to each other at one end 32a. It has a branch point 36a. Further, the power supply line 30a is connected to a wireless device such as a transmitter at the other end 33a. The end 33a of the power supply line 30a functions as a power supply end. Note that in the first embodiment, the end portion 33a coincides with the end portion of the dielectric layer 10 in the Y-axis positive direction, but it is previously aligned in the Y-axis negative direction from the end portion of the dielectric layer 10 in the Y-axis positive direction. They may be separated by a predetermined distance.
 [接地導体40a]
 以下では、接地導体40aの詳細を説明する。尚、接地導体40bは接地導体40aと同様であるため、説明を省略する。
[Grounding conductor 40a]
Below, details of the ground conductor 40a will be explained. Note that since the ground conductor 40b is similar to the ground conductor 40a, the description thereof will be omitted.
 接地導体40aは、第2主面10(2)側に形成される面状の導体パターンである。 The ground conductor 40a is a planar conductor pattern formed on the second main surface 10(2) side.
 接地導体40aに使用される導体の材料としては、金、銀、銅、白金、アルミニウム又はクロム等が挙げられる。接地導体40aは、上述した材料をメッキにより成膜したものであってもよい。メッキ化することにより、腐食しにくく、意匠性がよい接地導体40aを形成可能である。また接地導体40aは、銀又は銅等のペーストを第2主面10(2)にスクリーン印刷を用いて形成されるパターンを、焼結したものであってもよい。 Examples of the conductor material used for the ground conductor 40a include gold, silver, copper, platinum, aluminum, and chromium. The ground conductor 40a may be formed by plating the above-mentioned material. By plating, it is possible to form a ground conductor 40a that is resistant to corrosion and has a good design. Further, the ground conductor 40a may be formed by sintering a pattern formed by screen printing a paste such as silver or copper on the second main surface 10(2).
 接地導体40aは、第2主面10(2)に直接的に形成されてよいが、間接的に形成されてもよい。例えば接地導体40aは、誘電体層10の第2主面10(2)に、樹脂層を介して形成されてもよい。樹脂層は、一例としてポリビニルブチラール若しくはエチレン酢酸ビニル等の中間膜、ポリエチレンテレフタレート又はOCA等を用いることができる。 The ground conductor 40a may be formed directly on the second main surface 10(2), or may be formed indirectly. For example, the ground conductor 40a may be formed on the second main surface 10(2) of the dielectric layer 10 via a resin layer. For the resin layer, for example, an interlayer film of polyvinyl butyral or ethylene vinyl acetate, polyethylene terephthalate, OCA, or the like can be used.
 接地導体40aは、平面視で隙間が生じるように形成される線状接地導体41aと、線状接地導体41aに接続される面状接地導体50aとを有する。 The ground conductor 40a includes a linear ground conductor 41a formed so as to create a gap in plan view, and a planar ground conductor 50a connected to the linear ground conductor 41a.
 線状接地導体41aは、線状導体と線状導体とが互いに電気的に接続されている連続パターン、具体的には網目状の導体パターンである。換言すると、線状接地導体41aが形成される領域は、平面視で格子状の隙間を含んでいる。これにより視野を確保し、意匠性を向上できる。線状接地導体41aは、平面視で少なくとも一部がアンテナ素子20aに重複するように、第2主面10(2)の側に存在している。例えば本実施形態1では、線状接地導体41aは矩形の領域に形成される。しかし線状接地導体41aが形成される領域の形状は、これに限らず、その他の多角形又は円形であってもよい。尚、本実施形態1では線状接地導体41aのY軸正方向の端部は、誘電体層10のY軸正方向の端部と一致しているが、誘電体層10のY軸正方向の端部からY軸負方向に予め定められた距離だけ離隔していてもよい。 The linear ground conductor 41a is a continuous pattern, specifically a mesh-like conductor pattern, in which linear conductors are electrically connected to each other. In other words, the area where the linear ground conductor 41a is formed includes a grid-like gap when viewed from above. This secures the field of view and improves the design. The linear ground conductor 41a exists on the second main surface 10(2) side so that at least a portion thereof overlaps the antenna element 20a in a plan view. For example, in the first embodiment, the linear ground conductor 41a is formed in a rectangular area. However, the shape of the region where the linear ground conductor 41a is formed is not limited to this, and may be other polygonal or circular shapes. In the first embodiment, the end of the linear ground conductor 41a in the Y-axis positive direction coincides with the end of the dielectric layer 10 in the Y-axis positive direction. may be spaced apart by a predetermined distance from the end of the Y-axis in the negative direction of the Y-axis.
 一例として、線状接地導体41aの線状導体と線状導体とがなす角度は略90°であるが、これに限らず、鋭角であってもよいし、鈍角であってもよい。つまり網目は矩形であってもよいし、菱形であってもよい。網目が矩形である場合は、意匠性の観点から正方形が好ましい。また網目は、その他の多角形、例えば六角形であってもよい。網目が六角形である場合は、意匠性の観点から正六角形が好ましい。また網目は、自己組織化法によるランダム形状であってもよい。 As an example, the angle between the linear conductors of the linear ground conductor 41a is approximately 90°, but is not limited to this, and may be an acute angle or an obtuse angle. That is, the mesh may be rectangular or diamond-shaped. When the mesh is rectangular, it is preferably square from the viewpoint of design. The mesh may also have other polygonal shapes, such as hexagonal shapes. When the mesh is hexagonal, a regular hexagonal shape is preferred from the viewpoint of design. The mesh may also have a random shape created by a self-organization method.
 面状接地導体50aは、給電端として機能する端部33aに対応するグランド電極である。具体的には、面状接地導体50aは、第2主面10(2)の側において、平面視で端部33aと重複する位置に形成される。本実施形態1では、面状接地導体50aは、誘電体層10のY軸正方向の端部に形成されるが、誘電体層10のY軸正方向の端部からY軸負方向に予め定められた距離だけ離隔した位置に形成されてもよい。面状接地導体50aはソリッドなパターンで形成される。 The planar ground conductor 50a is a ground electrode corresponding to the end portion 33a that functions as a power feeding end. Specifically, the planar ground conductor 50a is formed on the second main surface 10(2) side at a position overlapping the end portion 33a in plan view. In Embodiment 1, the planar ground conductor 50a is formed at the end of the dielectric layer 10 in the positive Y-axis direction. They may be formed at positions separated by a predetermined distance. The planar ground conductor 50a is formed in a solid pattern.
 [擬似層60]
 擬似層60は、平面視において、接地導体40aが形成される領域の周囲に、接地導体40aが形成される領域と重複しないで配置される。「周囲に配置される」とは、平面視で接地導体40aが形成される領域の外縁の少なくとも一部と接するように配置されることを示す。例えば接地導体40aが形成される領域が矩形である場合、擬似層60は、図4のように矩形のY軸正方向の端辺を除く3辺に接して、3辺を取り囲むように配置されてよい。しかしこれに限らず擬似層60は、矩形の4辺全てに接して、4辺を取り囲むように配置されてもよい。または擬似層60は、矩形の1辺又は2辺に接するように配置されてもよい。尚、「接する」とは、直接的に接することであってよいが、効果を損なわない程度の隙間が介在していてもよい。隙間が大きい場合は、擬似層60と接地導体40aとの境界が目立ちやすくなる。
[Pseudo layer 60]
In plan view, the pseudo layer 60 is arranged around the region where the ground conductor 40a is formed, without overlapping the region where the ground conductor 40a is formed. "Disposed around" indicates that the ground conductor 40a is disposed so as to be in contact with at least a portion of the outer edge of the region where the ground conductor 40a is formed in a plan view. For example, when the region where the ground conductor 40a is formed is rectangular, the pseudo layer 60 is arranged so as to be in contact with and surround the three sides of the rectangle excluding the end edge in the Y-axis positive direction, as shown in FIG. It's fine. However, the present invention is not limited thereto, and the pseudo layer 60 may be arranged so as to be in contact with and surround all four sides of the rectangle. Alternatively, the pseudo layer 60 may be arranged so as to be in contact with one side or two sides of the rectangle. Note that "contacting" may mean direct contact, but there may be a gap that does not impair the effect. If the gap is large, the boundary between the pseudo layer 60 and the ground conductor 40a becomes noticeable.
 ここで擬似層60は、アンテナ性能への影響を与えないことが好ましいところ、隙間の大きさがアンテナ性能に与えることがある。例えば図2~図4に示すように擬似層60が接地導体40aと同一平面に形成され、かつ擬似層60が導体で形成される場合は、隙間の大きさによってアンテナ性能が変化する。この場合、隙間が介在するときの隙間は20μm以上300μm以下であってよい。隙間が20μm以上であれば擬似層60がアンテナ性能に与える影響は小さくなる。また隙間が300μm以下であれば、擬似層60と接地導体40aとの境界が目立ちにくくなる。一例として隙間は30μmである。 Here, it is preferable that the pseudo layer 60 does not affect the antenna performance, but the size of the gap may affect the antenna performance. For example, as shown in FIGS. 2 to 4, when the pseudo layer 60 is formed on the same plane as the ground conductor 40a and is made of a conductor, the antenna performance changes depending on the size of the gap. In this case, when a gap exists, the gap may be 20 μm or more and 300 μm or less. If the gap is 20 μm or more, the influence of the pseudo layer 60 on antenna performance will be small. Further, if the gap is 300 μm or less, the boundary between the pseudo layer 60 and the ground conductor 40a becomes less noticeable. As an example, the gap is 30 μm.
 一方、擬似層60が接地導体40aとは異なる平面に形成される場合、又は擬似層60が絶縁体で形成されている場合は、隙間の大きさに関わらずアンテナ性能への影響は十分に小さい。したがってこの場合は、隙間が介在するときの隙間は0μm超300μm以下であってよい。 On the other hand, if the pseudo layer 60 is formed on a different plane from the ground conductor 40a, or if the pseudo layer 60 is made of an insulator, the effect on antenna performance is sufficiently small regardless of the size of the gap. . Therefore, in this case, when a gap exists, the gap may be more than 0 μm and not more than 300 μm.
 尚、導体とは、導電率σが1×10(S/m)以上の導電性物質であり、絶縁体とは、導電率σが1×10(S/m)未満の誘電体物質である。 Note that a conductor is a conductive material with a conductivity σ of 1×10 6 (S/m) or more, and an insulator is a dielectric material with a conductivity σ of less than 1×10 6 (S/m). It is.
 図3及び図4では、接地導体層40は、互いにX軸方向に離隔した接地導体40a,40bを含んでおり、擬似層60は、平面視において、接地導体40bの周囲にも配置される。例えば擬似層60は、平面視において、複数の接地導体40a,40bを一体的につなぎ合わせるように、複数の接地導体40a,40bの周囲に配置されてよい。 In FIGS. 3 and 4, the ground conductor layer 40 includes ground conductors 40a and 40b spaced apart from each other in the X-axis direction, and the pseudo layer 60 is also arranged around the ground conductor 40b in plan view. For example, the pseudo layer 60 may be arranged around the plurality of ground conductors 40a, 40b so as to integrally connect the plurality of ground conductors 40a, 40b in plan view.
 このように擬似層60が少なくとも一部で、平面視において、接地導体層40の周囲に配置されることで、接地導体層40をカモフラージュできる。これにより意匠性を向上できる。図3及び図4に示すように、アンテナユニット100の接地導体層40に、互いに離隔している複数の接地導体40a,40bが形成されている場合には、複数の接地導体40a,40bが一体的に見えるため、特に顕著な効果を奏する。 By arranging at least a portion of the pseudo layer 60 around the ground conductor layer 40 in plan view in this way, the ground conductor layer 40 can be camouflaged. This improves the design. As shown in FIGS. 3 and 4, when the ground conductor layer 40 of the antenna unit 100 is formed with a plurality of ground conductors 40a, 40b separated from each other, the plurality of ground conductors 40a, 40b are integrated. It has a particularly remarkable effect because it looks like an object.
 また図3及び図4では、擬似層60の形状は、接地導体層40が形成される領域と合わせて、全体として矩形の領域になるように設計されているが、これに限らず、円形又はその他の形状になるように設計されてもよい。例えば擬似層60の形状は、接地導体層40が形成される領域と合わせて、任意の模様になるように設計されてもよい。これにより、意匠性をより向上できる。 In addition, in FIGS. 3 and 4, the shape of the pseudo layer 60 is designed to be a rectangular area as a whole together with the area where the ground conductor layer 40 is formed, but the shape is not limited to this, and may be circular or It may also be designed to have other shapes. For example, the shape of the pseudo layer 60 may be designed to have an arbitrary pattern together with the area where the ground conductor layer 40 is formed. Thereby, the design quality can be further improved.
 尚、擬似層60のX軸方向の端部は、誘電体層10のX軸方向の端部と一致していてもよいが、誘電体層10のX軸方向の端部から予め定められた距離だけ離隔していてもよい。Y軸方向の端部についても同様である。 Note that the end of the pseudo layer 60 in the X-axis direction may coincide with the end of the dielectric layer 10 in the X-axis direction; They may be separated by a distance. The same applies to the ends in the Y-axis direction.
 図5は、実施形態1にかかる領域A1の拡大平面図である。領域A1は、図3及び図4に示されるように、擬似層60と接地導体層40との間の境界を含む領域である。 FIG. 5 is an enlarged plan view of area A1 according to the first embodiment. The region A1 is a region including the boundary between the pseudo layer 60 and the ground conductor layer 40, as shown in FIGS. 3 and 4.
 擬似層60は、電波による散乱が十分に小さい構造であり、アンテナ性能への影響を与えないことが好ましい。擬似層60は導体で形成されてもよく、絶縁体で形成されてもよい。擬似層60が絶縁体であれば、擬似層60による電波の散乱を十分に小さくでき、アンテナ特性への影響を小さくできる。また、擬似層60が導体で構成される場合、導体が空間的に離れている、すなわち直流的に導通していない複数の導体で構成されることで擬似層60による電波の散乱を小さくでき、アンテナ特性への影響を小さくできる。 It is preferable that the pseudo layer 60 has a structure in which scattering by radio waves is sufficiently small and does not affect antenna performance. The pseudo layer 60 may be formed of a conductor or an insulator. If the pseudo layer 60 is an insulator, the scattering of radio waves by the pseudo layer 60 can be sufficiently reduced, and the influence on antenna characteristics can be reduced. Furthermore, when the pseudo layer 60 is composed of a conductor, scattering of radio waves by the pseudo layer 60 can be reduced by making the conductors spatially separated, that is, composed of a plurality of conductors that are not electrically conductive. The effect on antenna characteristics can be reduced.
 本実施形態1では、擬似層60は、導体の配列要素61を、予め定められたピッチで互いに離隔して配列させたパターンを含む。図5では、配列要素61は、円形であり、ドットという場合がある。配列要素61の直径がλ/2以下であれば、電波による散乱が小さくできるため好ましい。配列要素61の直径はλ/5以下がより好ましく、λ/10以下がさらに好ましい。図5に示すように、配列要素61は、平面視において接地導体層40との間に所定の隙間が生じる位置に配置されてもよい。一例として、接地導体層40の外縁から配列要素61までの距離は、30μmである。 In the first embodiment, the pseudo layer 60 includes a pattern in which conductor array elements 61 are arranged at a predetermined pitch and spaced apart from each other. In FIG. 5, the array element 61 is circular and may be called a dot. It is preferable that the diameter of the array element 61 is λ 0 /2 or less because scattering caused by radio waves can be reduced. The diameter of the array element 61 is more preferably λ 0 /5 or less, and even more preferably λ 0 /10 or less. As shown in FIG. 5, the array element 61 may be arranged at a position where a predetermined gap is created between the array element 61 and the ground conductor layer 40 in a plan view. As an example, the distance from the outer edge of the ground conductor layer 40 to the array element 61 is 30 μm.
 尚、配列要素61の形状は矩形であってもよい。配列要素61の形状が矩形の場合、1辺の長さ、特に長辺の長さが、λ/2以下であれば、電波による散乱が小さくできるため好ましい。矩形の1辺の長さ、特に長辺の長さはλ/5以下がより好ましく、λ/10以下がさらに好ましい。ここで、λとはアンテナユニット100によって送受される電波の自由空間中における波長である。また、矩形とは、長方形や正方形の他、長方形や正方形の角を面取りした形を含む。 Note that the array element 61 may have a rectangular shape. When the shape of the array element 61 is rectangular, it is preferable that the length of one side, especially the length of the long side, be λ 0 /2 or less because scattering by radio waves can be reduced. The length of one side of the rectangle, particularly the length of the long side, is more preferably λ 0 /5 or less, and even more preferably λ 0 /10 or less. Here, λ 0 is the wavelength of radio waves transmitted and received by the antenna unit 100 in free space. Furthermore, the term "rectangle" includes not only rectangles and squares, but also shapes with chamfered corners of rectangles and squares.
 また配列要素61の形状は、菱形、三角形、六角形、その他の多角形、星型、又はその他の形状であってもよい。 Further, the shape of the array element 61 may be a rhombus, a triangle, a hexagon, another polygon, a star, or other shapes.
 配列要素61に使用される導体の材料としては、金、銀、銅、白金、アルミニウム又はクロム等が挙げられる。製造コストの観点から、配列要素61に使用される導体の材料は、概要で説明した第2導体層と同様の材料、つまり本実施形態1では接地導体層40と同様の材料が好ましい。擬似層60は、上述した材料をメッキにより成膜したものであってもよい。メッキ化することにより、腐食しにくく、意匠性がよい擬似層60を形成可能である。また擬似層60は、銀又は銅等のペーストを第2主面10(2)にスクリーン印刷を用いて形成されるパターンを、焼結したものであってもよい。 Examples of the conductor material used for the array element 61 include gold, silver, copper, platinum, aluminum, or chromium. From the viewpoint of manufacturing cost, the material of the conductor used for the array element 61 is preferably the same material as the second conductor layer described in the overview, that is, the same material as the ground conductor layer 40 in the first embodiment. The pseudo layer 60 may be formed by plating the above-mentioned material. By plating, it is possible to form a pseudo layer 60 that is resistant to corrosion and has a good design. Further, the pseudo layer 60 may be formed by sintering a pattern formed by screen printing a paste of silver, copper, or the like on the second main surface 10(2).
 擬似層60は、第2主面10(2)に直接的に形成されてよいが、間接的に形成されてもよい。例えば擬似層60は、誘電体層10の第2主面10(2)の側に、樹脂層を介して形成されてもよい。樹脂層は、一例としてポリビニルブチラール若しくはエチレン酢酸ビニル等の中間膜、ポリエチレンテレフタレート又は光学透明接着剤等を用いることができる。 The pseudo layer 60 may be formed directly on the second main surface 10(2), or may be formed indirectly. For example, the pseudo layer 60 may be formed on the second main surface 10(2) side of the dielectric layer 10 via a resin layer. For the resin layer, for example, an intermediate film such as polyvinyl butyral or ethylene vinyl acetate, polyethylene terephthalate, or an optically transparent adhesive can be used.
 ここで平面視において、擬似層60が第2導体層である接地導体層40と重複しないで存在する領域を第1領域とする。また第2導体層である接地導体層40が擬似層60と重複しないで存在する領域を第2領域とする。本実施形態1では、擬似層60及び接地導体層40が平面視において重複していないため、第1領域は擬似層60の任意の領域であり、第2領域は接地導体層40の任意の領域である。 Here, in plan view, the region where the pseudo layer 60 exists without overlapping with the ground conductor layer 40, which is the second conductor layer, is defined as a first region. Further, a region where the ground conductor layer 40, which is the second conductor layer, exists without overlapping with the pseudo layer 60 is defined as a second region. In the first embodiment, since the pseudo layer 60 and the ground conductor layer 40 do not overlap in plan view, the first region is an arbitrary region of the pseudo layer 60, and the second region is an arbitrary region of the ground conductor layer 40. It is.
 [濃淡差の指標Fと目立ちにくさ]
 第1領域及び第2領域に含まれるパターンが微細である場合、又は人間が遠くから第1領域及び第2領域を見る場合は、第1領域及び第2領域は、人間の目からは均質化された単色に見える。特に、人間の目の解像度が第1領域及び第2領域に含まれるパターンを認識できる解像度よりも低い場合は、その現象は顕著に生じる。パターンの直径若しくは線幅又はピッチによって、人間の目から見える色の濃度が変わる。例えばドットの直径が大きいほど、若しくは線幅が大きいほど、又はピッチが小さいほど、その領域の色は濃く見える。また例えばドットの直径が小さいほど、若しくは線幅が小さいほど、又はピッチが大きいほど、その領域の色は薄く見える。
[Difference index F and inconspicuousness]
If the patterns included in the first area and the second area are minute, or if a person views the first area and the second area from a distance, the first area and the second area will be homogenized from the human eye. It looks like a solid color. This phenomenon occurs particularly when the resolution of the human eye is lower than the resolution at which the patterns included in the first and second regions can be recognized. The density of color visible to the human eye changes depending on the diameter, line width, or pitch of the pattern. For example, the larger the diameter of the dots, the larger the line width, or the smaller the pitch, the darker the color of the area appears. Further, for example, the smaller the diameter of the dots, the smaller the line width, or the larger the pitch, the lighter the color of the area appears.
 本実施形態1では、上述した現象を利用して、均質化した場合の第1領域の色と、均質化した場合の第2領域の色との間の濃淡差を小さくする。これにより人間の目から第1領域と第2領域とが連続して一体的に見えるようになるため、第2領域を目立たなくできる。 In the first embodiment, the above-mentioned phenomenon is utilized to reduce the difference in shading between the color of the first area when homogenized and the color of the second area when homogenized. As a result, the first area and the second area appear continuous and integrated to the human eye, making the second area less noticeable.
 (濃淡差の指標Fの算出方法)
 本実施形態1では、濃淡差の指標として、第1領域及び第2領域をいずれも解像度400dpiで読み取った場合における第1領域と第2領域との間のN(Nは自然数)段階の階調値の差を、階調の数で正規化した値Fを用いる。Fは、以下の式(1)で表される。
 F=|n‐n|/N …(1)
 nは第1領域の階調値であり、nは第2領域の階調値である。
(Calculation method of gradation difference index F)
In the first embodiment, as an index of the difference in shading, N (N is a natural number) gradations between the first area and the second area when both the first area and the second area are read at a resolution of 400 dpi. A value F obtained by normalizing the difference in values by the number of gradations is used. F is expressed by the following formula (1).
F=|n 1 -n 2 |/N...(1)
n 1 is the gradation value of the first area, and n 2 is the gradation value of the second area.
 このように濃淡差の指標Fは、第1領域の階調値nと、第2領域の階調値nとを式(1)に代入することで求めることができる。 In this way, the gradation difference index F can be obtained by substituting the gradation value n 1 of the first region and the gradation value n 2 of the second region into equation (1).
 上記濃淡差の指標Fは0以上1.09×10-1以下が好ましく、0以上6.25×10-2以下がより好ましく、0以上3.52×10-2以下がさらに好ましく、0以上1.56×10-2以下が特に好ましい。Fが0以上1.09×10-1以下であると、濃淡差が小さくなるため第2領域が目立ちにくくなる。またFが0以上6.25×10-2以下であると、濃淡差がより小さくなるため第2領域がより目立ちにくくなる。またFが0以上3.52×10-2以下であると、濃淡差がさらに小さくなるため第2領域がさらに目立ちにくくなる。またFが0以上1.56×10-2以下であると、境界が分からないほど濃淡差が小さくなるため第2領域が特に目立ちにくくなる。ここで、濃淡差の指標Fは、撮像部の解像度が400dpiにおける値である。
 尚、N=256の場合は、|n‐n|は0以上28以下が好ましく、0以上16以下がより好ましく、0以上9以下がさらに好ましく、0以上4以下が特に好ましい。
The above-mentioned gradation difference index F is preferably 0 or more and 1.09×10 −1 or less, more preferably 0 or more and 6.25×10 −2 or less, even more preferably 0 or more and 3.52×10 −2 or less, and 0 or more. Particularly preferred is 1.56×10 −2 or less. When F is 0 or more and 1.09×10 −1 or less, the difference in shading becomes small and the second region becomes less noticeable. Further, when F is 0 or more and 6.25×10 −2 or less, the difference in shading becomes smaller and the second region becomes less noticeable. Furthermore, when F is 0 or more and 3.52×10 −2 or less, the difference in shading becomes even smaller, making the second region even less noticeable. Further, when F is 0 or more and 1.56×10 −2 or less, the difference in shading becomes so small that the boundary is not visible, making the second region particularly difficult to stand out. Here, the shade difference index F is a value when the resolution of the imaging unit is 400 dpi.
In addition, when N=256, |n 1 -n 2 | is preferably 0 or more and 28 or less, more preferably 0 or more and 16 or less, even more preferably 0 or more and 9 or less, and particularly preferably 0 or more and 4 or less.
 (階調値n,nの算出方法)
 第1領域の階調値nと、第2領域の階調値nとは、第1領域及び第2領域の各々に含まれるパターンを均質化した画像から算出できる。
 図6A及び図6Bは、実施形態1にかかる均質化処理の一例を説明するための図である。図6Aの左側には、擬似層60に含まれる第1領域のドットパターンが示される。まず第1領域のドットパターンを、所定の解像度に設定された撮像部を用いて撮影する。撮像部としては、デジタルカメラ又はスキャナ等の光学読取装置に含まれる撮像部を用いてよい。この場合の撮像部の解像度を、人間の目の解像度と同等又はそれよりも低くすることで、図6Aの右側に示す撮影画像を得ることができる。ここでの解像度は、相対解像度を示す。撮影画像は、均質化された画像領域である均質化パターン70を含んでいる。そして均質化パターン70の階調値を測定することで、第1領域の階調値nを得ることができる。階調値の測定は、任意の画像処理ソフトにより実施できる。階調値nは、均質化パターン70における1点の階調値であってもよいし、均質化パターン70における複数点の階調値の平均であってもよい。
(Calculation method of tone values n 1 and n 2 )
The gradation value n 1 of the first area and the gradation value n 2 of the second area can be calculated from an image obtained by homogenizing the patterns included in each of the first area and the second area.
6A and 6B are diagrams for explaining an example of the homogenization process according to the first embodiment. On the left side of FIG. 6A, the dot pattern of the first region included in the pseudo layer 60 is shown. First, a dot pattern in a first area is photographed using an imaging section set to a predetermined resolution. As the imaging section, an imaging section included in an optical reading device such as a digital camera or a scanner may be used. In this case, by setting the resolution of the imaging unit to be equal to or lower than the resolution of the human eye, the captured image shown on the right side of FIG. 6A can be obtained. The resolution here indicates relative resolution. The captured image includes a homogenized pattern 70 that is a homogenized image area. Then, by measuring the gradation value of the homogenized pattern 70, the gradation value n1 of the first region can be obtained. The measurement of gradation values can be performed using any image processing software. The gradation value n 1 may be the gradation value of one point in the homogenization pattern 70, or may be the average of the gradation values of multiple points in the homogenization pattern 70.
 撮像部の解像度は、100dpi以上500dpi以下が好ましく、200dpi以上400dpi以下がより好ましく、300dpi以上400dpi以下がさらに好ましい。撮像部の解像度が100dpi以上であると、パターンの差が階調値に反映されるため、階調値の信頼性が向上する。また撮像部の解像度が200dpi以上であると、パターンによって階調値に差が顕著になるため、階調値の信頼性がより向上する。また撮像部の解像度が300dpi以上であると、人間の目と同等の撮影画像が得られるため、実態に合わせた階調値を算出できる。また撮像部の解像度が700dpi以下であると、ムラの少ない撮影画像が得られるため、階調値を算出できる。また撮像部の解像度が600dpi以下であると、ムラがより少ない撮影画像が得られるため、階調値の算出精度が向上する。尚、人間の目の解像度は、300dpi以下、又は400dpi以下であると言われている。 The resolution of the imaging unit is preferably 100 dpi or more and 500 dpi or less, more preferably 200 dpi or more and 400 dpi or less, and even more preferably 300 dpi or more and 400 dpi or less. When the resolution of the imaging unit is 100 dpi or more, the difference in patterns is reflected in the gradation values, so the reliability of the gradation values is improved. Further, when the resolution of the imaging unit is 200 dpi or more, the reliability of the gradation values is further improved because differences in gradation values become noticeable depending on the pattern. Further, when the resolution of the imaging unit is 300 dpi or more, a photographed image equivalent to that of the human eye can be obtained, so that gradation values can be calculated in accordance with the actual situation. Further, when the resolution of the imaging unit is 700 dpi or less, a captured image with less unevenness can be obtained, so that gradation values can be calculated. Further, when the resolution of the imaging unit is 600 dpi or less, a captured image with less unevenness can be obtained, so that the accuracy of calculating gradation values is improved. Note that the resolution of the human eye is said to be 300 dpi or less, or 400 dpi or less.
 図6Bの左側には、接地導体層40に含まれる第2領域の網目パターンが示される。第2領域の網目パターンについても、擬似層60のドットパターンと同様に均質化処理を行うことで、均質化パターン72を得ることができる。そして均質化パターン72の階調値を測定することで、第2領域の階調値nを得ることができる。 On the left side of FIG. 6B, the mesh pattern of the second region included in the ground conductor layer 40 is shown. A homogenized pattern 72 can be obtained by performing homogenization processing on the mesh pattern in the second region in the same manner as the dot pattern on the pseudo layer 60. Then, by measuring the gradation value of the homogenized pattern 72, the gradation value n2 of the second region can be obtained.
 尚、均質化処理の他の方法としては、擬似層60に含まれる第1領域のドットパターンを所定の解像度に設定された撮像部を用いて撮影し、撮影により得られた撮影画像に対して画像処理を行うことで均質化パターン70を得てもよい。そして均質化パターン70の階調値を測定することで、第1領域の階調値nを得ることができる。階調値の測定は、任意の画像処理ソフトにより実施できる。この場合の撮像部としては、光学顕微鏡、デジタルカメラ又はスキャナ等の光学読取機器に含まれる撮像部を用いてよい。この場合の撮像部の解像度は、パターンを認識できる程度の解像度以上であってよい。
 また、第2領域の階調値nは、第1領域との境界付近の階調値を考慮すればよく、第1領域から離れるにつれ大きくなってもよく、小さくなってもよい。
In addition, as another method of homogenization processing, the dot pattern of the first area included in the pseudo layer 60 is photographed using an imaging section set to a predetermined resolution, and the captured image obtained by photographing is The homogenized pattern 70 may be obtained by performing image processing. Then, by measuring the gradation value of the homogenized pattern 70, the gradation value n1 of the first region can be obtained. The measurement of gradation values can be performed using any image processing software. As the imaging section in this case, an imaging section included in an optical reading device such as an optical microscope, a digital camera, or a scanner may be used. The resolution of the imaging unit in this case may be higher than the resolution that allows the pattern to be recognized.
Further, the gradation value n2 of the second area may take into consideration the gradation value near the boundary with the first area, and may increase or decrease as the distance from the first area increases.
 [パターン寸法と階調値]
 ここでパターンの寸法は、そのパターンが観察された場合の階調値に密接に関連する。
[Pattern dimensions and tone values]
Here, the dimensions of the pattern are closely related to the tone values when the pattern is observed.
 例えば階調値の一例としてグレースケール値(N=256)を用いた場合、第1領域における(ドット直径/ドットピッチ)と第1領域の階調値nとの関係は、(ドット直径/ドットピッチ)をxとして、以下の式で示されてよい。
 n=-261.40x+321.02 …(2)
For example, if a grayscale value (N=256) is used as an example of a gradation value, the relationship between (dot diameter/dot pitch) in the first area and the gradation value n1 of the first area is (dot diameter/dot pitch). The dot pitch) may be expressed by the following equation, where x1 is the dot pitch.
n 1 = -261.40x 1 +321.02...(2)
 また例えば階調値の一例としてグレースケール値(N=256)を用いた場合、第2領域における(網目の線幅/網目のピッチ)と第2領域の階調値nとの関係は、(網目の線幅/網目のピッチ)をxとして、以下の式で示されてよい。
 n=-861.64x+250.71 …(3)
For example, when a gray scale value (N=256) is used as an example of a gradation value, the relationship between (mesh line width/mesh pitch) in the second area and the gradation value n2 of the second area is as follows. It may be expressed by the following formula, where (mesh line width/mesh pitch) is set as x2 .
n 2 = -861.64x 2 +250.71...(3)
 [階調値とアンテナ性能]
 第2領域の網目の線幅が小さい又は網目のピッチが大きい場合、電波が透過しやすくなるため、アンテナ性能は低下する。一方で、第2領域の網目の線幅が大きい又は網目のピッチが小さい場合、電波が透過しにくくなるため、アンテナ性能は向上する。ここで上述の通り、(網目の線幅/網目のピッチ)xは第2領域の階調値nと相関があるため、第2領域の階調値nによってもアンテナ性能は変化する。具体的には、第2領域の階調値nが大きいほどアンテナ性能は低下し、第2領域の階調値nが小さいほどアンテナ性能は向上する。
[Gradation value and antenna performance]
When the line width of the mesh in the second region is small or the pitch of the mesh is large, radio waves are more likely to pass through, resulting in a decrease in antenna performance. On the other hand, when the line width of the mesh in the second region is large or the pitch of the mesh is small, it becomes difficult for radio waves to pass through, so that the antenna performance improves. Here, as mentioned above, (mesh line width/mesh pitch) x 2 has a correlation with the gradation value n 2 of the second area, so the antenna performance also changes depending on the gradation value n 2 of the second area. . Specifically, the larger the gray scale value n 2 of the second region is, the lower the antenna performance is, and the smaller the gray scale value n 2 of the second region is, the better the antenna performance is.
 例えば階調値の一例としてグレースケール値(N=256)を用いた場合、アンテナ性能を向上させるためには、nは246以下が好ましく、240以下がより好ましく、232以下がさらに好ましく、217以下が特に好ましく、211以下が最も好ましい。nが246以下である場合、網目の線幅又は網目のピッチが好ましい大きさとなるため、電波が透過しにくくなる。また、第2領域を目立ちにくくするために、nは150以上が好ましく、173以上がより好ましく、190以上がさらに好ましい。 For example, when a gray scale value (N=256) is used as an example of a gradation value, in order to improve antenna performance, n2 is preferably 246 or less, more preferably 240 or less, even more preferably 232 or less, and 217 The following is particularly preferable, and 211 or less is most preferable. When n2 is 246 or less, the line width of the mesh or the pitch of the mesh becomes a preferable size, making it difficult for radio waves to pass through. Further, in order to make the second region less noticeable, n2 is preferably 150 or more, more preferably 173 or more, and even more preferably 190 or more.
 したがって第2領域の階調値nを上記範囲内に設定し、かつ濃淡差の指標Fを上述の範囲内に設定することで、目立ちにくくかつアンテナ性能が向上するアンテナユニット100を提供できる。 Therefore, by setting the gradation value n2 of the second region within the above range and setting the gradation difference index F within the above range, it is possible to provide the antenna unit 100 that is less noticeable and has improved antenna performance.
 また、上述の式(3)から(網目の線幅/網目のピッチ)xの好ましい範囲が導出できる。xは5.47×10-3以上が好ましく、1.24×10-2以上がより好ましく、2.17×10-2以上がさらに好ましく、3.91×10-2以上が特に好ましく、4.61×10-2以上が最も好ましい。また、xは1.17×10-1以下が好ましく、9.02×10-2以下がより好ましく、7.05×10-2以下がさらに好ましい。したがって(網目の線幅/網目のピッチ)xを当該好ましい範囲内に設定し、かつ濃淡差の指標Fを上述の範囲内に設定することで、目立ちにくくかつアンテナ性能が向上するアンテナユニット100を提供できる。
 網目の線幅は、5μm以上30μm以下であってよく、6μm以上15μm以下であってよい。網目のピッチは、50μm以上500μm以下であってよく、100μm以上300μm以下であってよい。
Further, a preferable range of (line width of mesh/pitch of mesh) x 2 can be derived from the above equation (3). x 2 is preferably 5.47×10 −3 or more, more preferably 1.24×10 −2 or more, even more preferably 2.17×10 −2 or more, particularly preferably 3.91×10 −2 or more, The most preferable value is 4.61×10 −2 or more. Further, x 2 is preferably 1.17×10 −1 or less, more preferably 9.02×10 −2 or less, and even more preferably 7.05×10 −2 or less. Therefore, by setting (mesh line width/mesh pitch) x 2 within the preferable range and setting the shade difference index F within the above-mentioned range, the antenna unit 100 becomes less noticeable and improves antenna performance. can be provided.
The line width of the mesh may be 5 μm or more and 30 μm or less, and may be 6 μm or more and 15 μm or less. The mesh pitch may be 50 μm or more and 500 μm or less, and may be 100 μm or more and 300 μm or less.
 濃淡差の指標Fを上述の範囲内に設定するために、nは246以下が好ましく、240以下がより好ましく、232以下がさらに好ましく、217以下が特に好ましく、211以下が最も好ましい。また、nは150以上が好ましく、173以上がより好ましく、190以上がさらに好ましい。 In order to set the shade difference index F within the above range, n 1 is preferably 246 or less, more preferably 240 or less, even more preferably 232 or less, particularly preferably 217 or less, and most preferably 211 or less. Further, n 1 is preferably 150 or more, more preferably 173 or more, and even more preferably 190 or more.
 また、上述の式(2)から(ドット直径/ドットピッチ)xの好ましい範囲が導出できる。xは2.87×10-1以上が好ましく、3.10×10-1以上がより好ましく、3.41×10-1以上がさらに好ましく、3.98×10-1以上が特に好ましく、4.21×10-1以上が最も好ましい。また、xは6.54×10-1以下が好ましく、5.66×10-1以下がより好ましく、5.01×10-1以下がさらに好ましい。したがって(ドット直径/ドットピッチ)xを当該好ましい範囲内に設定し、かつ濃淡差の指標Fを上述の範囲内に設定することで、目立ちにくくかつアンテナ性能が向上するアンテナユニット100を提供できる。
 ドットの直径は、50μm以上500μm以下であってよい。
Further, a preferable range of (dot diameter/dot pitch) x 1 can be derived from the above equation (2). x 1 is preferably 2.87×10 −1 or more, more preferably 3.10×10 −1 or more, even more preferably 3.41×10 −1 or more, particularly preferably 3.98×10 −1 or more, Most preferably, it is 4.21×10 −1 or more. Furthermore, x 1 is preferably 6.54×10 −1 or less, more preferably 5.66×10 −1 or less, and even more preferably 5.01×10 −1 or less. Therefore, by setting (dot diameter/dot pitch) x 1 within the preferable range and setting the gradation difference index F within the above range, it is possible to provide the antenna unit 100 that is less noticeable and has improved antenna performance. .
The diameter of the dots may be 50 μm or more and 500 μm or less.
 このように実施形態1によれば、擬似層60が接地導体層40の周囲に配置され、第1領域及び第2領域の階調値の差又は色差を好適な範囲内に調整することで、意匠性に優れたアンテナユニット及び窓ガラスを提供できる。さらに第2領域の階調値又は第1領域のドットの寸法を好適な範囲内に調整することで、アンテナ性能を好適に確保できる。 As described above, according to the first embodiment, the pseudo layer 60 is arranged around the ground conductor layer 40, and by adjusting the difference in gradation value or color difference between the first region and the second region within a suitable range, An antenna unit and window glass with excellent design can be provided. Further, by adjusting the gradation value of the second region or the size of the dots of the first region within a suitable range, antenna performance can be suitably ensured.
 尚、実施形態1は、以下のように変形を加えることも可能である。例えば上述の実施形態1では、擬似層60に含まれるパターンは、導体の配列要素61を、予め定められたピッチで互いに離隔して配列させたパターンであったが、樹脂等の絶縁体から構成されるパターンであってもよい。この場合、パターンは、円形の絶縁体を予め定められたピッチで互いに離隔して配列させたパターンであってもよいし、絶縁体の線状体同士が互いに接続されている連続パターン、具体的には網目状のパターンであってもよい。パターンの形状は、菱形、三角形、六角形、星型、又はその他の形状であってもよい。 Note that the first embodiment can also be modified as follows. For example, in the first embodiment described above, the pattern included in the pseudo layer 60 is a pattern in which the conductor array elements 61 are arranged at a predetermined pitch and spaced apart from each other, but the pattern is made of an insulator such as resin. It may be a pattern in which In this case, the pattern may be a pattern in which circular insulators are arranged spaced apart from each other at a predetermined pitch, a continuous pattern in which linear insulators are connected to each other, or a specific It may also be a mesh pattern. The shape of the pattern may be diamond, triangle, hexagon, star, or other shapes.
 擬似層60は、導体を含まず絶縁体から構成されてもよい。この場合、擬似層60はパターンを有さず、ソリッドな面状絶縁体であってもよい。
 絶縁体の材料としては、アクリル、ポリカーボネート、PVB(ポリビニルブチラール)、COP(シクロオレフィンポリマー)、PET(ポリエチレンテレフタレート)、ポリイミド、セラミックス又はサファイアシリコーン系樹脂、ポリサルファイド系樹脂、アクリル系樹脂等の樹脂、又はガラス等が挙げられる。擬似層60は、これらの材料にインク(顔料)を印刷したものを用いてもよい。
The pseudo layer 60 may be made of an insulator without containing a conductor. In this case, the pseudo layer 60 may be a solid planar insulator without a pattern.
Insulator materials include acrylic, polycarbonate, PVB (polyvinyl butyral), COP (cycloolefin polymer), PET (polyethylene terephthalate), polyimide, ceramics, or resins such as sapphire silicone resin, polysulfide resin, acrylic resin, Or glass etc. are mentioned. The pseudo layer 60 may be formed by printing ink (pigment) on these materials.
 また実施形態1では、接地導体層40は網目状パターンを有するとしたが、接地導体層40はソリッドな面状導体であってもよい。この場合、接地導体層40に使用される導体の材料は、ITO(Indium Tin Oxide)等の透明材料であってよい。 Furthermore, in the first embodiment, the ground conductor layer 40 has a mesh pattern, but the ground conductor layer 40 may be a solid planar conductor. In this case, the conductor material used for the ground conductor layer 40 may be a transparent material such as ITO (Indium Tin Oxide).
 <実施形態2>
 次に、本発明の実施形態2について説明する。実施形態1では、擬似層60は、アンテナユニット100の接地導体層40と同一平面上にあった。実施形態2では、擬似層60は、接地導体層40とは別の平面上にある。
<Embodiment 2>
Next, a second embodiment of the present invention will be described. In the first embodiment, the pseudo layer 60 was on the same plane as the ground conductor layer 40 of the antenna unit 100. In the second embodiment, the pseudo layer 60 is on a different plane from the ground conductor layer 40.
 [構成例1]
 図7は、実施形態2の構成例1にかかるアンテナユニット100Aの上面図である。図8は、実施形態2にかかるアンテナユニット100Aの誘電体層10に形成される放射素子層20、接地導体層40及び擬似層60Aを平面視で示す図である。
[Configuration example 1]
FIG. 7 is a top view of the antenna unit 100A according to Configuration Example 1 of Embodiment 2. FIG. 8 is a plan view showing the radiating element layer 20, the ground conductor layer 40, and the pseudo layer 60A formed on the dielectric layer 10 of the antenna unit 100A according to the second embodiment.
 アンテナユニット100Aは、概要で説明した誘電体層、第1導体層、擬似層、及び第2導体層の一例として、それぞれ、誘電体層10、放射素子層20、擬似層60A、及び接地導体層40を備える。 The antenna unit 100A includes a dielectric layer 10, a radiating element layer 20, a pseudo layer 60A, and a ground conductor layer, as examples of the dielectric layer, first conductor layer, pseudo layer, and second conductor layer described in the overview. 40.
 構成例1において、放射素子層20は、誘電体層10を基準として誘電体層10の第1主面10(1)の側に設けられる。 In Configuration Example 1, the radiation element layer 20 is provided on the first main surface 10(1) side of the dielectric layer 10 with the dielectric layer 10 as a reference.
 構成例1において、接地導体層40は、実施形態1と同様に、カモフラージュする対象となる層である。そして接地導体層40は、誘電体層10を基準として誘電体層10の第2主面10(2)の側に設けられる。 In Configuration Example 1, the ground conductor layer 40 is a layer to be camouflaged, similar to Embodiment 1. The ground conductor layer 40 is provided on the second main surface 10(2) side of the dielectric layer 10 with respect to the dielectric layer 10.
 構成例1において、擬似層60Aは、実施形態1と同様に、第2導体層である接地導体層40を目立たなくするためのカモフラージュ層である。したがって擬似層60Aは、擬似層60と同様に、平面視において接地導体層40の周囲に配置される。但し、擬似層60Aは、誘電体層10を基準として誘電体層10の第1主面10(1)の側に設けられる点で擬似層60と相違する。より具体的には、擬似層60Aは、放射素子層20と同一平面上に形成される。 In Configuration Example 1, similar to Embodiment 1, the pseudo layer 60A is a camouflage layer for making the ground conductor layer 40, which is the second conductor layer, less noticeable. Therefore, like the pseudo layer 60, the pseudo layer 60A is arranged around the ground conductor layer 40 in plan view. However, the pseudo layer 60A is different from the pseudo layer 60 in that the pseudo layer 60A is provided on the first main surface 10(1) side of the dielectric layer 10 with respect to the dielectric layer 10. More specifically, the pseudo layer 60A is formed on the same plane as the radiation element layer 20.
 尚、構成例1において第1領域は擬似層60Aの任意の領域であり、第2領域は接地導体層40の任意の領域である。F、x、n及びDの好適な範囲等については、実施形態1と同様である。 Note that in configuration example 1, the first region is an arbitrary region of the pseudo layer 60A, and the second region is an arbitrary region of the ground conductor layer 40. The preferred ranges of F, x 2 , n 2 and D are the same as in the first embodiment.
 構成例1において擬似層60Aが接地導体層40と同一平面上でなくても擬似層60Aが平面視において接地導体層40の周囲に配置され、第1領域及び第2領域の階調値の差又は色差を好適な範囲内に調整することで、実施形態1と同様の効果を奏する。 In configuration example 1, even if the pseudo layer 60A is not on the same plane as the ground conductor layer 40, the pseudo layer 60A is arranged around the ground conductor layer 40 in plan view, and the difference in gradation value between the first region and the second region is Alternatively, the same effects as in the first embodiment can be achieved by adjusting the color difference within a suitable range.
 [構成例2]
 構成例2において、擬似層60Aは、接地導体層40を目立たなくすることに代えて放射素子層20を目立たなくするためのカモフラージュ層である。例えば接地導体層40に使用される導体がITO等の透明材料であり、放射素子層20に使用される導体が金、銀、銅等の不透明材料である場合は、放射素子層20が目立ちやすい。しかし擬似層60Aが放射素子層20をカモフラージュすることでこれを回避できる。
[Configuration example 2]
In configuration example 2, the pseudo layer 60A is a camouflage layer for making the radiating element layer 20 inconspicuous in place of making the ground conductor layer 40 inconspicuous. For example, if the conductor used for the ground conductor layer 40 is a transparent material such as ITO, and the conductor used for the radiating element layer 20 is an opaque material such as gold, silver, copper, etc., the radiating element layer 20 is likely to be noticeable. . However, this can be avoided by camouflaging the radiation element layer 20 with the pseudo layer 60A.
 構成例2においては、Z軸方向における放射素子層20、接地導体層40及び擬似層60Aの配置は、実施形態2の構成例1と同様である。換言すると、放射素子層20は、誘電体層10を基準として第1主面10(1)に形成され、接地導体層40は誘電体層10を基準として第2主面10(2)に形成される。しかし構成例2においてアンテナユニット100Aでは、放射素子層20が概要で説明した第2導体層であり、接地導体層40が概要で説明した第1導体層である点で構成例1と異なる。 In Configuration Example 2, the arrangement of the radiation element layer 20, the ground conductor layer 40, and the pseudo layer 60A in the Z-axis direction is the same as in Configuration Example 1 of Embodiment 2. In other words, the radiating element layer 20 is formed on the first main surface 10(1) with the dielectric layer 10 as a reference, and the ground conductor layer 40 is formed on the second main surface 10(2) with the dielectric layer 10 as a reference. be done. However, the antenna unit 100A in configuration example 2 differs from configuration example 1 in that the radiating element layer 20 is the second conductor layer described in the outline, and the ground conductor layer 40 is the first conductor layer described in the outline.
 構成例2において、接地導体層40は、実施形態1の接地導体層40と同様に連続パターン、具体的には網目状パターンを有してよいし、ソリッドな面状導体であってもよい。 In Configuration Example 2, the ground conductor layer 40 may have a continuous pattern, specifically a mesh pattern, similar to the ground conductor layer 40 of Embodiment 1, or may have a solid planar conductor.
 また構成例2において、放射素子層20は、実施形態1の接地導体層40と同様に連続パターン、具体的には網目状パターンを有してよい。 Furthermore, in Configuration Example 2, the radiating element layer 20 may have a continuous pattern, specifically a mesh pattern, similarly to the ground conductor layer 40 of Embodiment 1.
 そして構成例2において、擬似層60Aは、放射素子層20と同一平面上に形成される。 In Configuration Example 2, the pseudo layer 60A is formed on the same plane as the radiation element layer 20.
 図9は、実施形態2の構成例2にかかるアンテナユニット100Aの誘電体層10に形成される放射素子層20、接地導体層40及び擬似層60Aを平面視で示す図である。擬似層60Aは、平面視において、放射素子層20の周囲に配置される。具体的には、放射素子層20に含まれる放射導体21aの外縁及び給電ライン30の外縁の少なくとも一部と接するように配置される。 FIG. 9 is a plan view showing the radiating element layer 20, the ground conductor layer 40, and the pseudo layer 60A formed on the dielectric layer 10 of the antenna unit 100A according to Configuration Example 2 of Embodiment 2. The pseudo layer 60A is arranged around the radiating element layer 20 in plan view. Specifically, it is arranged so as to be in contact with at least a portion of the outer edge of the radiation conductor 21 a included in the radiation element layer 20 and the outer edge of the power supply line 30 .
 尚、構成例2において第1領域は擬似層60Aの任意の領域であり、第2領域は放射素子層20の任意の領域である。F、x、n及びDの好適な範囲等については、実施形態1と同様である。 Note that in configuration example 2, the first region is an arbitrary region of the pseudo layer 60A, and the second region is an arbitrary region of the radiation element layer 20. The preferred ranges of F, x 2 , n 2 and D are the same as in the first embodiment.
 カモフラージュする対象が放射素子層20であっても、擬似層60Aが平面視において放射素子層20の周囲に配置され、第1領域及び第2領域の階調値の差又は色差を好適な範囲内に調整することで、好適にカモフラージュできる。これにより意匠性を向上できる。 Even if the object to be camouflaged is the radiating element layer 20, the pseudo layer 60A is arranged around the radiating element layer 20 in plan view, and the difference in tone value or color difference between the first region and the second region is kept within a suitable range. By adjusting this, you can achieve optimal camouflage. This improves the design.
 [構成例3]
 製造コストの観点から、実施形態1のように擬似層が接地導体層40と同一平面上に形成されるか、実施形態2のように擬似層が放射素子層20と同一平面上に形成されることが好ましい。また視差の観点から、擬似層は、カモフラージュする対象となる第2導体層と同一平面上に形成されることが好ましい。しかし、擬似層が放射素子層20及び接地導体層40のいずれとも異なる平面上に形成されてもよい。
[Configuration example 3]
From the viewpoint of manufacturing cost, the pseudo layer is formed on the same plane as the ground conductor layer 40 as in the first embodiment, or the pseudo layer is formed on the same plane as the radiating element layer 20 as in the second embodiment. It is preferable. Further, from the viewpoint of parallax, the pseudo layer is preferably formed on the same plane as the second conductor layer to be camouflaged. However, the pseudo layer may be formed on a plane different from both the radiating element layer 20 and the ground conductor layer 40.
 例えばアンテナユニット100Bは、平面視において構成例1又は構成例2と同様の構成を有しているが、上面視の構成が異なる。図10は、実施形態2の構成例3にかかるアンテナユニット100Bの上面図である。アンテナユニット100Bは、擬似層60Aに代えて、誘電体層11及び擬似層60Bを備える点でアンテナユニット100Aと相違する。尚、アンテナユニット100Bでは、誘電体層11の他に誘電体層10を備え、概要で説明した誘電体層は誘電体層10である。またアンテナユニット100Bでは、概要で説明した第2導体層を接地導体層40としてもよいし、放射素子層20としてもよい。 For example, the antenna unit 100B has the same configuration as Configuration Example 1 or Configuration Example 2 in plan view, but the configuration in top view is different. FIG. 10 is a top view of an antenna unit 100B according to a third configuration example of the second embodiment. Antenna unit 100B differs from antenna unit 100A in that it includes a dielectric layer 11 and a pseudo layer 60B instead of pseudo layer 60A. Note that the antenna unit 100B includes a dielectric layer 10 in addition to the dielectric layer 11, and the dielectric layer described in the overview is the dielectric layer 10. Further, in the antenna unit 100B, the second conductor layer described in the overview may be the ground conductor layer 40 or the radiating element layer 20.
 誘電体層11は、可視光が透過する透明な板状、シート状又はフィルム状の部材である。誘電体層11は、擬似層60Bの支持基板として機能する。誘電体層11は、放射素子層20を基準としてZ軸負方向側に、XY平面に平行になるように設けられる。一例として、誘電体層11は、放射素子層20に接するように配置される。誘電体層11のその他の説明は、誘電体層10と同様であるため、省略する。 The dielectric layer 11 is a transparent plate-like, sheet-like, or film-like member through which visible light passes. Dielectric layer 11 functions as a support substrate for pseudo layer 60B. The dielectric layer 11 is provided on the negative side of the Z-axis with respect to the radiation element layer 20 so as to be parallel to the XY plane. As an example, the dielectric layer 11 is placed in contact with the radiating element layer 20. The rest of the description of the dielectric layer 11 is the same as that of the dielectric layer 10, so it will be omitted.
 擬似層60Bは、誘電体層11を基準としてZ軸負方向側に設けられる。一例として、擬似層60Bは、誘電体層11の表面上に、その表面がXY平面に平行になるように配置される。擬似層60Bの平面視における形状及び位置は、構成例1又は構成例2の擬似層60Aと同様であってよい。 The pseudo layer 60B is provided on the negative Z-axis side with respect to the dielectric layer 11. As an example, the pseudo layer 60B is arranged on the surface of the dielectric layer 11 so that its surface is parallel to the XY plane. The shape and position of the pseudo layer 60B in plan view may be the same as the pseudo layer 60A of the first or second configuration example.
 尚、構成例3において第1領域は擬似層60Bの任意の領域であり、第2領域は放射素子層20又は接地導体層40の任意の領域である。F、x、n及びDの好適な範囲等については、実施形態1と同様である。 Note that in configuration example 3, the first region is an arbitrary region of the pseudo layer 60B, and the second region is an arbitrary region of the radiating element layer 20 or the ground conductor layer 40. The preferred ranges of F, x 2 , n 2 and D are the same as in the first embodiment.
 尚、誘電体層11は、接地導体層40を基準としてZ軸正方向側に設けられてもよい。
 この場合、擬似層60Bは、誘電体層11を基準としてZ軸正方向側に設けられる。
Note that the dielectric layer 11 may be provided on the positive Z-axis side with respect to the ground conductor layer 40.
In this case, the pseudo layer 60B is provided on the positive Z-axis side with respect to the dielectric layer 11.
 擬似層60Bが平面視でカモフラージュする対象となる第2導体層の周囲に配置され、第1領域及び第2領域の階調値の差又は色差を好適な範囲内に調整することで、構成例1又は構成例2と同様の効果を奏する。 The pseudo layer 60B is arranged around the second conductor layer to be camouflaged in a plan view, and the difference in gradation value or color difference between the first region and the second region is adjusted within a suitable range. The same effects as in configuration example 1 or configuration example 2 are achieved.
 <実施形態3>
 次に、本発明の実施形態3について説明する。窓ガラス本体200の界面での電波の反射により屋内側への放射が大きくなるため、アンテナユニットのFB比が低下してしまうという問題がある。屋内側は、Z軸正方向側である。この問題を解決するために、放射素子層の屋外側に導波層を設けたアンテナユニットが知られている。実施形態3にかかるアンテナユニットは、このようなアンテナユニットに対応する。そして本実施形態3では、カモフラージュする対象は、接地導体層に加えて導波層である。
<Embodiment 3>
Next, Embodiment 3 of the present invention will be described. There is a problem in that the reflection of radio waves at the interface of the window glass body 200 increases radiation toward the indoor side, resulting in a decrease in the FB ratio of the antenna unit. The indoor side is the Z-axis positive direction side. In order to solve this problem, an antenna unit is known in which a waveguide layer is provided on the outdoor side of the radiating element layer. The antenna unit according to the third embodiment corresponds to such an antenna unit. In the third embodiment, the object to be camouflaged is the waveguide layer in addition to the ground conductor layer.
 図11は、実施形態3にかかるアンテナユニット100Cの断面図である。具体的には、図11は、図12に示されるアンテナユニット100CのXIV-XIV’断面図である。図12は、実施形態3にかかるアンテナユニット100Cの平面図である。図13は、実施形態3にかかる誘電体層12に形成される放射素子層20C、導波層80及び擬似層60Cを平面視で示す図である。図13は、誘電体層12の第1主面側からみた平面図と、誘電体層12の第2主面側からみた平面図とを示している。 FIG. 11 is a cross-sectional view of an antenna unit 100C according to the third embodiment. Specifically, FIG. 11 is a cross-sectional view taken along line XIV-XIV' of the antenna unit 100C shown in FIG. 12. FIG. 12 is a plan view of an antenna unit 100C according to the third embodiment. FIG. 13 is a plan view showing the radiation element layer 20C, the waveguide layer 80, and the pseudo layer 60C formed on the dielectric layer 12 according to the third embodiment. FIG. 13 shows a plan view of the dielectric layer 12 as seen from the first main surface side and a plan view of the dielectric layer 12 as seen from the second main surface side.
 アンテナユニット100Cでは、概要で説明した誘電体層、第1導体層、擬似層、及び第2導体層は、誘電体層12、放射素子層20C、擬似層60C、及び導波層80である。 In the antenna unit 100C, the dielectric layer, first conductor layer, pseudo layer, and second conductor layer described in the overview are the dielectric layer 12, the radiating element layer 20C, the pseudo layer 60C, and the waveguide layer 80.
 図12及び図13では、一例として、図11に示した放射素子層20に2つのアンテナ素子20Ca,20Cbが形成されている構成(図13の第1主面側参照)を示している。また、図11に示した導波層80に2つの導波部80a,80bが形成されている構成(図13の第2主面側参照)を示している。接地導体層40についても、2つの接地導体40a,40bが形成されている。尚、アンテナユニット100Cに含まれる放射素子、接地導体層及び導波部の数は2に限らず、1であってもよいし、3以上であってもよい。 12 and 13 show, as an example, a configuration in which two antenna elements 20Ca and 20Cb are formed in the radiation element layer 20 shown in FIG. 11 (see the first main surface side in FIG. 13). Further, a configuration is shown in which two waveguide parts 80a and 80b are formed in the waveguide layer 80 shown in FIG. 11 (see the second main surface side in FIG. 13). Regarding the ground conductor layer 40, two ground conductors 40a and 40b are also formed. Note that the number of radiating elements, ground conductor layers, and waveguide sections included in the antenna unit 100C is not limited to two, and may be one, or may be three or more.
 (誘電体層12)
 図11に示すように、誘電体層12は、可視光が透過する透明な板状、シート状又はフィルム状の部材である。誘電体層12は、放射素子層20Cと導波層80とが接触しないようにするためのスペーサとして機能する。誘電体層12は、主面がXY平面に平行であり、厚み方向がZ軸方向に平行である。誘電体層12のその他の説明は、誘電体層10と同様であるため、省略する。
(Dielectric layer 12)
As shown in FIG. 11, the dielectric layer 12 is a transparent plate-like, sheet-like, or film-like member that transmits visible light. The dielectric layer 12 functions as a spacer to prevent the radiation element layer 20C and the waveguide layer 80 from coming into contact with each other. The main surface of the dielectric layer 12 is parallel to the XY plane, and the thickness direction is parallel to the Z-axis direction. The rest of the description of the dielectric layer 12 is the same as that of the dielectric layer 10, so it will be omitted.
 以下では、誘電体層12のZ軸正方向側の主面を第1主面12(1)といい、誘電体層12のZ軸負方向の主面を第2主面12(2)という。つまり、第2主面12(2)は、第1主面12(1)と反対の主面である。 Hereinafter, the main surface of the dielectric layer 12 in the positive Z-axis direction will be referred to as a first main surface 12(1), and the main surface of the dielectric layer 12 in the negative Z-axis direction will be referred to as a second main surface 12(2). . That is, the second main surface 12(2) is a main surface opposite to the first main surface 12(1).
 (放射素子層20C)
 放射素子層20Cは、対象周波数帯域の電波を送受可能に形成される放射導体21Cを含む層である。放射素子層20Cは、放射素子層20と同様に、誘電体層10を基準として誘電体層10の第1主面10(1)の側に設けられる。具体的には、放射素子層20Cは、誘電体層10の第1主面10(1)のうち少なくとも一部の領域上に、その表面がXY平面に平行になるように形成される。
(Radiating element layer 20C)
The radiating element layer 20C is a layer including a radiating conductor 21C formed to be able to transmit and receive radio waves in the target frequency band. The radiating element layer 20C, like the radiating element layer 20, is provided on the first main surface 10(1) side of the dielectric layer 10 with the dielectric layer 10 as a reference. Specifically, the radiation element layer 20C is formed on at least a portion of the first main surface 10(1) of the dielectric layer 10 so that its surface is parallel to the XY plane.
 また本実施形態3では、放射素子層20は、誘電体層12を基準として誘電体層12の第1主面12(1)の側に設けられる。具体的には、放射素子層20Cは、Z軸負方向の端面において、誘電体層12の第1主面12(1)のうち少なくとも一部の表面と接する。 Further, in the third embodiment, the radiation element layer 20 is provided on the first main surface 12(1) side of the dielectric layer 12 with the dielectric layer 12 as a reference. Specifically, the radiation element layer 20C contacts at least a portion of the first main surface 12(1) of the dielectric layer 12 at the end face in the negative Z-axis direction.
 図12及び図13に示すように、アンテナ素子20Ca,20Cbは、アンテナ素子20a,20bと基本的に同様の構成及び機能を有するが、アンテナ素子20Ca,20Cbは、矩形の面状導体である。尚、アンテナ素子20Ca,20Cbの形状は矩形に限らず、円形又はその他の任意の形状であってよい。 As shown in FIGS. 12 and 13, antenna elements 20Ca and 20Cb basically have the same configuration and function as antenna elements 20a and 20b, but antenna elements 20Ca and 20Cb are rectangular planar conductors. Note that the shape of the antenna elements 20Ca and 20Cb is not limited to a rectangle, but may be a circle or any other arbitrary shape.
 (導波層80)
 図11に示すように、導波層80は、放射素子層20Cが放射する電波を予め定められた方向に導く機能を有する。具体的には、導波層80は、放射素子層20Cが窓ガラス本体200に向かって放射した電波を屋外側に導く機能を有する。これにより、FB比が向上する。
(Waveguide layer 80)
As shown in FIG. 11, the waveguide layer 80 has a function of guiding the radio waves radiated by the radiating element layer 20C in a predetermined direction. Specifically, the waveguide layer 80 has a function of guiding the radio waves emitted by the radiation element layer 20C toward the window glass body 200 to the outside. This improves the FB ratio.
 導波層80は、誘電体層12を基準として屋外側、つまり誘電体層12の第2主面12(2)の側に設けられる。具体的には、導波層80は、誘電体層12の第2主面12(2)のうち少なくとも一部の領域上に、その表面がXY平面に平行になるように形成される。 The waveguide layer 80 is provided on the outdoor side with respect to the dielectric layer 12, that is, on the second main surface 12(2) side of the dielectric layer 12. Specifically, the waveguide layer 80 is formed on at least a portion of the second main surface 12(2) of the dielectric layer 12 so that its surface is parallel to the XY plane.
 導波層80に使用される導体の材料としては、金、銀、銅、白金、アルミニウム又はクロム等が挙げられる。導波層80は、上述した材料をメッキにより成膜したものであってもよい。メッキ化することにより、腐食しにくく、意匠性がよい導波層80を形成可能である。また導波層80は、銀又は銅等のペーストを第2主面12(2)にスクリーン印刷を用いて形成されるパターンを、焼結したものであってもよい。 Examples of the material of the conductor used in the waveguide layer 80 include gold, silver, copper, platinum, aluminum, or chromium. The waveguide layer 80 may be formed by plating the above-mentioned material. By plating, it is possible to form a waveguide layer 80 that is resistant to corrosion and has a good design. Further, the waveguide layer 80 may be formed by sintering a pattern formed by screen printing a paste of silver, copper, or the like on the second main surface 12 (2).
 導波層80は、第2主面12(2)に直接的に形成されてよいが、間接的に形成されてもよい。例えば導波層80は、誘電体層12の第2主面12(2)に、樹脂層を介して形成されてもよい。樹脂層は、一例としてポリビニルブチラール若しくはエチレン酢酸ビニル等の中間膜、ポリエチレンテレフタレート又はOCA等を用いることができる。 The waveguide layer 80 may be formed directly on the second main surface 12(2), or may be formed indirectly. For example, the waveguide layer 80 may be formed on the second main surface 12(2) of the dielectric layer 12 via a resin layer. For the resin layer, for example, an interlayer film of polyvinyl butyral or ethylene vinyl acetate, polyethylene terephthalate, OCA, or the like can be used.
 図12及び図13に示すように、導波層80に含まれる導波部80aは、導体素子81a,82a,83a,84aを含む。導体素子81a,82a,83a,84aの各々は、互いに平行に、離隔して配置された帯状の導体素子である。本例では、導体素子81a,82a,83a,84aは、Y軸方向に延伸している。また本例では、導体素子81a,82a,83a,84aは、X軸負方向から順に、X軸方向において予め定められた距離だけ離隔して並んでいる。平面視において導体素子82aと導体素子83aとの間の距離は、導体素子81aと導体素子82aとの間の距離及び導体素子83aと導体素子84aとの間の距離よりも大きい。平面視において導体素子82aと導体素子83aとの間には、アンテナ素子20Caが配置されている。 As shown in FIGS. 12 and 13, the waveguide section 80a included in the waveguide layer 80 includes conductor elements 81a, 82a, 83a, and 84a. Each of the conductor elements 81a, 82a, 83a, and 84a is a strip-shaped conductor element arranged parallel to and spaced apart from each other. In this example, conductor elements 81a, 82a, 83a, and 84a extend in the Y-axis direction. Further, in this example, the conductor elements 81a, 82a, 83a, and 84a are arranged in order from the negative direction of the X-axis, separated by a predetermined distance in the X-axis direction. In plan view, the distance between conductor element 82a and conductor element 83a is larger than the distance between conductor element 81a and conductor element 82a and the distance between conductor element 83a and conductor element 84a. Antenna element 20Ca is arranged between conductor element 82a and conductor element 83a in plan view.
 導体素子81a,82a,83a,84aの各々は、接地導体層40の線状接地導体41と同様に、平面視で隙間が生じるように形成される導体パターンから構成されてよい。
 つまり導体素子81a,82a,83a,84aの各々は、線状導体と線状導体とが互いに電気的に接続されている連続パターン、具体的には網目状の導体パターンから構成される。
Each of the conductor elements 81a, 82a, 83a, and 84a may be composed of a conductor pattern formed so as to create a gap in plan view, similarly to the linear ground conductor 41 of the ground conductor layer 40.
That is, each of the conductor elements 81a, 82a, 83a, and 84a is constituted by a continuous pattern in which linear conductors are electrically connected to each other, specifically, a mesh-like conductor pattern.
 尚、導波部80bは、導波部80aと同様の構成であるため、説明を省略する。 Note that the waveguide section 80b has the same configuration as the waveguide section 80a, so a description thereof will be omitted.
 (擬似層60C)
 図11に示すように、擬似層60Cは、実施形態3における第2導体層である導波層80を目立たなくするためのカモフラージュ層である。擬似層60Cは、導波層80と同様に、誘電体層12を基準として誘電体層12の第2主面12(2)の側に設けられる。より具体的には、擬似層60Cは、導波層80と同一平面上に形成される。すなわち導波層80は、誘電体層10の第2主面10(2)の少なくとも一部の領域上に、その表面がXY平面に平行になるように形成される。
(pseudo layer 60C)
As shown in FIG. 11, the pseudo layer 60C is a camouflage layer for making the waveguide layer 80, which is the second conductor layer in the third embodiment, less noticeable. Similar to the waveguide layer 80, the pseudo layer 60C is provided on the second main surface 12(2) side of the dielectric layer 12 with the dielectric layer 12 as a reference. More specifically, the pseudo layer 60C is formed on the same plane as the waveguide layer 80. That is, the waveguide layer 80 is formed on at least a part of the second main surface 10(2) of the dielectric layer 10 so that its surface is parallel to the XY plane.
 図12及び図13に示すように、平面視において、擬似層60Cは、導波層80の周囲に配置される。例えば擬似層60Cは、各導体素子81a~84aの周囲全体を取り囲むように配置されてもよいし、一部に接するように配置されていてもよい。また隣り合う導体素子81aと導体素子82aとの間、及び隣り合う導体素子83aと導体素子84aとの間には、擬似層60Cは配置されなくてもよい。 As shown in FIGS. 12 and 13, the pseudo layer 60C is arranged around the waveguide layer 80 in plan view. For example, the pseudo layer 60C may be placed so as to entirely surround each of the conductor elements 81a to 84a, or may be placed so as to be in contact with a portion of each of the conductive elements 81a to 84a. Further, the pseudo layer 60C does not need to be arranged between the adjacent conductor elements 81a and 82a, and between the adjacent conductor elements 83a and 84a.
 また擬似層60CのX軸方向の端部は、誘電体層12のX軸方向の端部と一致していてもよいが、誘電体層12のX軸方向の端部から予め定められた距離だけ離隔していてもよい。Y軸方向の端部についても同様である。 Furthermore, the end of the pseudo layer 60C in the X-axis direction may coincide with the end of the dielectric layer 12 in the X-axis direction; They may be separated by just that. The same applies to the ends in the Y-axis direction.
 このように擬似層60Cが、平面視において、導波層80の周囲に配置されることで、導波層80をカモフラージュできる。これにより意匠性を向上できる。アンテナユニット100Cが互いに離隔している複数の導波部80a,80bを有している場合には、特に顕著な効果を奏する。 By disposing the pseudo layer 60C around the waveguide layer 80 in a plan view in this way, the waveguide layer 80 can be camouflaged. This improves the design. Particularly remarkable effects are achieved when the antenna unit 100C has a plurality of waveguide sections 80a and 80b that are spaced apart from each other.
 ここで図12及び図13に示す領域A2は、擬似層60Cと導波層80との間の境界を含む領域である。領域A2については、領域A1の説明において、擬似層60、接地導体層40、第1主面10(1)及び第2主面10(2)を、それぞれ、擬似層60C、導波層80、第1主面12(1)及び第2主面12(2)に読み替えて、説明を省略する。換言すると、実施形態3において第1領域は擬似層60Cの任意の領域であり、第2領域は導波層80の任意の領域であり、導波層80及び擬似層60Cのパターンの具体的構成、F、x、n及びDの好適な範囲等については、実施形態1と同様である。 Here, the region A2 shown in FIGS. 12 and 13 is a region including the boundary between the pseudo layer 60C and the waveguide layer 80. Regarding area A2, in the description of area A1, the pseudo layer 60, the ground conductor layer 40, the first main surface 10(1), and the second main surface 10(2) are respectively replaced by the pseudo layer 60C, the waveguide layer 80, The explanations will be omitted by replacing them with the first principal surface 12(1) and the second principal surface 12(2). In other words, in the third embodiment, the first region is an arbitrary region of the pseudo layer 60C, the second region is an arbitrary region of the waveguide layer 80, and the specific configuration of the pattern of the waveguide layer 80 and the pseudo layer 60C , F, x 2 , n 2 and suitable ranges of D are the same as in the first embodiment.
 尚、アンテナユニット100Cは、放射素子層20Cを基準として誘電体層12と反対側に、誘電体層10を介して設けられる接地導体層40と、接地導体層40をカモフラージュする擬似層60をさらに備える。誘電体層10,接地導体層40及び擬似層60の構成は、実施形態1と同様である。放射素子層20Cは、接地導体層40のグランド電極(不図示)に対応する給電点(不図示)により給電される。 The antenna unit 100C further includes a ground conductor layer 40 provided through the dielectric layer 10 on the opposite side of the dielectric layer 12 with respect to the radiating element layer 20C, and a pseudo layer 60 that camouflages the ground conductor layer 40. Be prepared. The configurations of the dielectric layer 10, the ground conductor layer 40, and the pseudo layer 60 are the same as in the first embodiment. The radiating element layer 20C is powered by a power feeding point (not shown) corresponding to a ground electrode (not shown) of the ground conductor layer 40.
 このように実施形態3によれば、擬似層60Cを平面視で導波層80の周囲に設け、第1領域及び第2領域の階調値の差又は色差を好適な範囲内に調整することで、導波層80を好適に目立たないようにできる。したがって意匠性に優れたアンテナユニット及び窓ガラスを提供できる。 According to the third embodiment, the pseudo layer 60C is provided around the waveguide layer 80 in a plan view, and the difference in gradation value or color difference between the first region and the second region is adjusted within a suitable range. Therefore, the waveguide layer 80 can be suitably made inconspicuous. Therefore, it is possible to provide an antenna unit and window glass with excellent design.
 尚、導波層80と放射素子層20Cとの間の誘電体層12は、透明部材に代えて空間であってもよい。空間の媒質は、空気又はその他の気体であってよいが、空間は真空であってもよい。図14に、誘導体層12に代えて空間12Aとする場合の一例を示す。この場合は、図14に示すように、アンテナユニット100Cは、導波層80を基準としてZ軸負方向側に、導波層80を支持する誘電体層12Bを備えてもよい。導波層80と放射素子層20Cとの間に空間12Aが存在することで、共振周波数が透明部材の影響を受けにくく、FB比が向上する。また、誘電体層12に代えて空間12Aとし、導波層80を基準としてZ軸負方向側に導波層80を支持する誘電体層12Bを備える場合、図14に示すように、誘電体層12BのZ軸負方向側に、さらに導波層80Cを備えてもよい。この場合、導波層80Cをカモフラージュする擬似層60Dをさらに備えてもよい。 Note that the dielectric layer 12 between the waveguide layer 80 and the radiation element layer 20C may be a space instead of a transparent member. The medium of the space may be air or other gas, but the space may also be a vacuum. FIG. 14 shows an example of a case where the dielectric layer 12 is replaced with a space 12A. In this case, as shown in FIG. 14, the antenna unit 100C may include a dielectric layer 12B that supports the waveguide layer 80 on the Z-axis negative direction side with respect to the waveguide layer 80. The presence of the space 12A between the waveguide layer 80 and the radiation element layer 20C makes the resonance frequency less susceptible to the influence of the transparent member, improving the FB ratio. In addition, when the dielectric layer 12 is replaced with a space 12A and a dielectric layer 12B is provided that supports the waveguide layer 80 in the negative Z-axis direction with respect to the waveguide layer 80, as shown in FIG. A waveguide layer 80C may be further provided on the Z-axis negative direction side of the layer 12B. In this case, it may further include a pseudo layer 60D that camouflages the waveguide layer 80C.
 <実施形態4>
 次に、本発明の実施形態4について説明する。実施形態3では、擬似層60Cは、アンテナユニット100Cの導波層80と同一平面上にあった。しかし擬似層60Cは、導波層80とは別の平面上にあってもよい。尚、実施形態4でも、実施形態3と同様に、概要で説明した誘電体層、第1導体層、擬似層、及び第2導体層は、誘電体層12、放射素子層20C、擬似層60C、及び導波層80である。
<Embodiment 4>
Next, a fourth embodiment of the present invention will be described. In the third embodiment, the pseudo layer 60C was on the same plane as the waveguide layer 80 of the antenna unit 100C. However, the pseudo layer 60C may be on a different plane from the waveguide layer 80. Note that in the fourth embodiment, as in the third embodiment, the dielectric layer, first conductor layer, pseudo layer, and second conductor layer described in the overview are the dielectric layer 12, the radiation element layer 20C, and the pseudo layer 60C. , and a waveguide layer 80.
 図15は、実施形態4にかかるアンテナユニット100Dの上面図である。アンテナユニット100Dは、擬似層60Cが放射素子層20及び導波層80とは異なる平面上に形成される。例えばアンテナユニット100Dは、擬似層60Cの支持基板として機能する誘電体層11をさらに備える。誘電体層11は、導波層80を基準としてZ軸負方向側に、XY平面に平行になるように設けられる。一例として、誘電体層11は、導波層80に接するように配置される。誘電体層11のその他の説明は、実施形態2の構成例3の誘電体層11と同様である。 FIG. 15 is a top view of the antenna unit 100D according to the fourth embodiment. In the antenna unit 100D, the pseudo layer 60C is formed on a different plane from the radiating element layer 20 and the waveguide layer 80. For example, the antenna unit 100D further includes a dielectric layer 11 that functions as a support substrate for the pseudo layer 60C. The dielectric layer 11 is provided on the negative Z-axis side with respect to the waveguide layer 80 so as to be parallel to the XY plane. As an example, the dielectric layer 11 is placed in contact with the waveguide layer 80 . The other explanations of the dielectric layer 11 are the same as those of the dielectric layer 11 of the third configuration example of the second embodiment.
 擬似層60Cは、誘電体層11を基準としてZ軸負方向側に設けられる。一例として、擬似層60Cは、誘電体層11の表面上に、その表面がXY平面に平行になるように配置される。擬似層60Cの平面視における形状及び位置は、実施形態3の擬似層60Cと同様であってよい。 The pseudo layer 60C is provided on the negative Z-axis side with respect to the dielectric layer 11. As an example, the pseudo layer 60C is arranged on the surface of the dielectric layer 11 so that its surface is parallel to the XY plane. The shape and position of the pseudo layer 60C in plan view may be the same as the pseudo layer 60C of the third embodiment.
 尚、実施形態4において第1領域は擬似層60Cの任意の領域であり、第2領域は導波層80の任意の領域である。F、x、n及びDの好適な範囲等については、実施形態1と同様である。 Note that in the fourth embodiment, the first region is an arbitrary region of the pseudo layer 60C, and the second region is an arbitrary region of the waveguide layer 80. The preferred ranges of F, x 2 , n 2 and D are the same as in the first embodiment.
 擬似層60Cが導波層80とは別の平面上されている場合でも、平面視で導波層80の周囲に配置され、第1領域及び第2領域の階調値の差又は色差を好適な範囲内に調整することで、実施形態3と同様の効果を奏する。 Even when the pseudo layer 60C is placed on a plane different from the waveguide layer 80, it is arranged around the waveguide layer 80 in a plan view, and the difference in gradation value or color difference between the first region and the second region is preferably adjusted. By adjusting within this range, the same effects as in the third embodiment can be achieved.
 <実施形態5>
 次に、本発明の実施形態5について説明する。実施形態5は、実施形態1の変形例である。実施形態1にかかるアンテナユニット100では、放射素子層20及び接地導体層40が誘電体層10を介して対向するように形成されていた。実施形態5にかかるアンテナユニットでは、放射素子層及び接地導体層が誘電体層10を基準として同じ主面の側に形成される。
<Embodiment 5>
Next, a fifth embodiment of the present invention will be described. Embodiment 5 is a modification of Embodiment 1. In the antenna unit 100 according to the first embodiment, the radiating element layer 20 and the ground conductor layer 40 were formed to face each other with the dielectric layer 10 in between. In the antenna unit according to the fifth embodiment, the radiating element layer and the ground conductor layer are formed on the same main surface side with the dielectric layer 10 as a reference.
 図16は、実施形態5にかかるアンテナユニット100Eの平面図である。図17は、実施形態5にかかるアンテナユニット100Eの断面図である。具体的には、図17は、図16に示されるアンテナユニット100EのXVII-XVII線に沿う断面図である。図18は、実施形態5にかかるアンテナユニット100Eの断面図である。具体的には、図18は、図16に示されるアンテナユニット100EのXVIII-XVIII線に沿う断面図である。 FIG. 16 is a plan view of an antenna unit 100E according to the fifth embodiment. FIG. 17 is a cross-sectional view of an antenna unit 100E according to the fifth embodiment. Specifically, FIG. 17 is a cross-sectional view of the antenna unit 100E shown in FIG. 16 along the line XVII-XVII. FIG. 18 is a cross-sectional view of an antenna unit 100E according to the fifth embodiment. Specifically, FIG. 18 is a cross-sectional view of the antenna unit 100E shown in FIG. 16 along the line XVIII-XVIII.
 実施形態5では、概要で説明した誘電体層、第1導体層、擬似層、及び第2導体層は、誘電体層10、放射素子層20E、接地導体層40E、及び擬似層60Eである。 In Embodiment 5, the dielectric layer, first conductor layer, pseudo layer, and second conductor layer described in the overview are the dielectric layer 10, the radiating element layer 20E, the ground conductor layer 40E, and the pseudo layer 60E.
 放射素子層20E、接地導体層40E及び擬似層60Eは、放射素子層20、接地導体層40及び擬似層60と基本的に同様の構成及び機能を有するが、形状及び配置が相違する。図17及び図18に示すように、放射素子層20E、接地導体層40E及び擬似層60Eは、いずれも誘電体層10を基準として誘電体層10の第1主面10(1)の側に設けられる。
 具体的には、図17に示すように、放射素子層20E及び擬似層60Eは、誘電体層10の第1主面10(1)の少なくとも一部の上に、その表面がXY平面に平行になるように形成される。また、図18に示すように、接地導体層40Eは、誘電体層10の第1主面10(1)の少なくとも一部の上に、その表面がXY平面に平行になるように形成される。
The radiating element layer 20E, the ground conductor layer 40E, and the pseudo layer 60E have basically the same configuration and function as the radiating element layer 20, the ground conductor layer 40, and the pseudo layer 60, but are different in shape and arrangement. As shown in FIGS. 17 and 18, the radiating element layer 20E, the ground conductor layer 40E, and the pseudo layer 60E are all located on the first main surface 10(1) side of the dielectric layer 10 with respect to the dielectric layer 10. provided.
Specifically, as shown in FIG. 17, the radiating element layer 20E and the pseudo layer 60E are arranged on at least a portion of the first main surface 10(1) of the dielectric layer 10, with their surfaces parallel to the XY plane. It is formed to become. Further, as shown in FIG. 18, the ground conductor layer 40E is formed on at least a portion of the first main surface 10(1) of the dielectric layer 10 so that its surface is parallel to the XY plane. .
 図18等に示すケーブル92は、放射素子層20E及び接地導体層40Eをそれぞれ電気的に接続する部材であり、導電性ワイヤ91、絶縁体93、外部導体94及びシース95を備える。ケーブル92は、導電性ワイヤ91を絶縁体93が被覆し、外部導体94が絶縁体93を被覆し、シース95が外部導体94を被覆している。図18に示すように、ケーブル92は、放射素子層20E及び接地導体層40Eを橋渡すように配置される。尚、ケーブル92が備える外部導体94は、接地導体層40Eに隣接する箇所において露出しており、接地導体層40Eと接触又は半田付けされることによって電気的に接続される。図18に示す例では、外部導体94は半田96によって接地導体層40Eに電気的に接続されている。また、ケーブル92が備える導電性ワイヤ91は、放射素子層20Eに隣接する箇所において露出しており、放射素子層20Eと接触又は半田付けされることによって電気的に接続される。図18に示す例では、導電性ワイヤ91は半田97によって放射素子層20Eに電気的に接続されている。 A cable 92 shown in FIG. 18 and the like is a member that electrically connects the radiation element layer 20E and the ground conductor layer 40E, and includes a conductive wire 91, an insulator 93, an outer conductor 94, and a sheath 95. In the cable 92, an insulator 93 covers a conductive wire 91, an outer conductor 94 covers the insulator 93, and a sheath 95 covers the outer conductor 94. As shown in FIG. 18, the cable 92 is arranged to bridge the radiating element layer 20E and the ground conductor layer 40E. Note that the outer conductor 94 of the cable 92 is exposed at a location adjacent to the ground conductor layer 40E, and is electrically connected by contacting or soldering to the ground conductor layer 40E. In the example shown in FIG. 18, the outer conductor 94 is electrically connected to the ground conductor layer 40E by solder 96. Further, the conductive wire 91 included in the cable 92 is exposed at a location adjacent to the radiating element layer 20E, and is electrically connected by contacting or soldering to the radiating element layer 20E. In the example shown in FIG. 18, conductive wire 91 is electrically connected to radiation element layer 20E by solder 97. In the example shown in FIG.
 図16に示すように、放射素子層20Eは、矩形の面状導体である。尚、放射素子層20Eの形状はこれに限らず、円形又はその他の任意の形状であってよい。放射素子層20Eは、誘電体層10の第1主面10(1)の中心よりもY軸負方向側の部分に配置される。放射素子層20Eは、網目状の導体パターンを含む。 As shown in FIG. 16, the radiating element layer 20E is a rectangular planar conductor. Note that the shape of the radiation element layer 20E is not limited to this, and may be circular or any other arbitrary shape. The radiating element layer 20E is arranged in a portion of the dielectric layer 10 on the negative side of the Y-axis with respect to the center of the first main surface 10(1). The radiating element layer 20E includes a mesh-like conductor pattern.
 接地導体層40Eは、面状の導体パターンである。接地導体層40Eは、第1主面10(1)の中心よりもY軸正方向側の部分に、平面視で放射素子層20Eと重複しないように配置される。本例では、接地導体層40EのY軸正方向の端部は、誘電体層10の第1主面10(1)のY軸正方向の端部と一致しているが、第1主面10(1)のY軸正方向の端部からY軸負方向に予め定められた距離だけ離隔していてもよい。 The ground conductor layer 40E is a planar conductor pattern. The ground conductor layer 40E is arranged in a portion on the positive side of the Y-axis with respect to the center of the first principal surface 10(1) so as not to overlap with the radiating element layer 20E in a plan view. In this example, the end of the ground conductor layer 40E in the Y-axis positive direction coincides with the end of the first main surface 10(1) of the dielectric layer 10 in the Y-axis positive direction. 10(1) may be separated by a predetermined distance in the Y-axis negative direction from the end in the Y-axis positive direction.
 尚、接地導体層40Eの導体パターンは、接地導体層40と同様であるため、説明を省略する。 Note that the conductor pattern of the ground conductor layer 40E is the same as that of the ground conductor layer 40, so a description thereof will be omitted.
 擬似層60Eは、上述した擬似層の一例である。擬似層60Eは、第1導体層である放射素子層20Eと、第2導体層である接地導体層40Eとを目立たなくするためのカモフラージュ層である。擬似層60Eは、面状の層である。擬似層60Eは、平面視において、接地導体層40の周囲及び放射素子層20Eの周囲に配置される。これにより、離隔して配置されることで目立っていた放射素子層20E及び接地導体層40Eを目立たないようにできる。 The pseudo layer 60E is an example of the pseudo layer described above. The pseudo layer 60E is a camouflage layer for making the radiation element layer 20E, which is the first conductor layer, and the ground conductor layer 40E, which is the second conductor layer, less noticeable. The pseudo layer 60E is a planar layer. The pseudo layer 60E is arranged around the ground conductor layer 40 and the radiating element layer 20E in plan view. This makes it possible to make the radiating element layer 20E and the ground conductor layer 40E, which were conspicuous due to being spaced apart, less conspicuous.
 図16に示す領域A3は、擬似層60Eと接地導体層40Eとの間の境界を含む領域である。また図16に示す領域A4は、擬似層60Eと放射素子層20Eとの間の境界を含む領域である。領域A3については、領域A1の説明において、擬似層60及び接地導体層40を、それぞれ、擬似層60E及び接地導体層40Eに読み替えて、説明を省略する。領域A4については、領域A1の説明において、擬似層60及び接地導体層40を、それぞれ、擬似層60E及び放射素子層20Eに読み替えて、説明を省略する。導波層80及び擬似層60Cのパターンの具体的構成、F、x、n及びDの好適な範囲等については、実施形態1と同様である。 Region A3 shown in FIG. 16 is a region including the boundary between pseudo layer 60E and ground conductor layer 40E. Further, a region A4 shown in FIG. 16 is a region including the boundary between the pseudo layer 60E and the radiation element layer 20E. Regarding region A3, in the description of region A1, pseudo layer 60 and ground conductor layer 40 are replaced with pseudo layer 60E and ground conductor layer 40E, respectively, and the explanation is omitted. Regarding the region A4, in the description of the region A1, the pseudo layer 60 and the ground conductor layer 40 are replaced with the pseudo layer 60E and the radiating element layer 20E, respectively, and the explanation is omitted. The specific configuration of the patterns of the waveguide layer 80 and the pseudo layer 60C, the preferable ranges of F, x 2 , n 2 and D, etc. are the same as in the first embodiment.
 このように実施形態5によれば、接地導体層及び放射素子層が同一主面の側に形成される場合であっても、意匠性に優れたアンテナユニット及び窓ガラスを提供できる。 As described above, according to the fifth embodiment, even when the ground conductor layer and the radiating element layer are formed on the same main surface side, it is possible to provide an antenna unit and window glass with excellent design.
 尚、擬似層60Eは、第1導体層である放射素子層20E及び第2導体層である接地導体層40Eのいずれか一方を目立たなくするためのカモフラージュ層であってもよい。この場合、擬似層60Eは、平面視において、カモフラージュする対象となる層の周囲に配置される。 Note that the pseudo layer 60E may be a camouflage layer for making either the radiation element layer 20E, which is the first conductor layer, or the ground conductor layer 40E, which is the second conductor layer, less noticeable. In this case, the pseudo layer 60E is arranged around the layer to be camouflaged in plan view.
 [実験例1:濃淡差の指標Fと目立ちにくさ]
 発明者らは、上述した第1領域と第2領域との間の濃淡差の指標Fが与える、第2領域の目立ちにくさへの影響を検証するために、以下の実験例1を実施した。例1~10は実施例であり、例11~13は比較例である。以下の実験例1では、階調値の一例として、階調の数Nが256であるグレースケールの階調値を用いた。
[Experiment example 1: Indicator F of the difference in shading and inconspicuousness]
The inventors conducted the following Experimental Example 1 in order to verify the influence of the above-mentioned index F of the difference in density between the first region and the second region on the inconspicuousness of the second region. . Examples 1 to 10 are examples, and Examples 11 to 13 are comparative examples. In Experimental Example 1 below, as an example of the gradation value, a gray scale gradation value in which the number N of gradations is 256 was used.
 (試料)
 縦500mm×横600mm×厚さ0.14mmのメッシュパターン(網目状のパターン)付きシートを第1領域に対応する試料として用いた。例1~6、11、12の試料の網目は正六角形であり、隣り合う正六角形の中心間の距離は274μm、網目の幅は14μmであった。例7~10、13の試料の網目は正六角形であり、隣り合う正六角形の中心間の距離は548μm、網目の幅は14μmであった。また、直径が70μm~120μm、ピッチが150μm~280μmのドットパターンを有するシートを第2領域に対応する試料として用いた。尚、ドットは略円形であった。各例において、メッシュパターンが異なる複数の試料から第1領域に対応する試料を選択し、ドットパターンが異なる複数の試料から第2領域に対応する試料を選択した。
(sample)
A sheet with a mesh pattern (mesh pattern) measuring 500 mm long x 600 mm wide x 0.14 mm thick was used as a sample corresponding to the first region. The meshes of the samples of Examples 1 to 6, 11, and 12 were regular hexagons, the distance between the centers of adjacent regular hexagons was 274 μm, and the width of the mesh was 14 μm. The meshes of the samples of Examples 7 to 10 and 13 were regular hexagons, the distance between the centers of adjacent regular hexagons was 548 μm, and the width of the mesh was 14 μm. Further, a sheet having a dot pattern with a diameter of 70 μm to 120 μm and a pitch of 150 μm to 280 μm was used as a sample corresponding to the second region. Note that the dots were approximately circular. In each example, a sample corresponding to the first region was selected from a plurality of samples having different mesh patterns, and a sample corresponding to the second region was selected from a plurality of samples having different dot patterns.
 (階調値の測定)
 まず光学読取装置としてキヤノン社製のiR-ADV C5235Fを用い、各試料を撮影し、撮影画像を得た。このとき読み取り解像度を400dpiとした。次にマイクロソフト社のMicrosoft Paintを用いて、撮影画像のうち無作為に選んだ3箇所の階調値を測定した。そして無作為に選んだ3箇所の階調値の平均を、その試料に対応する第1領域の階調値n又は第2領域の階調値nとした。
(Measurement of gradation value)
First, each sample was photographed using iR-ADV C5235F manufactured by Canon Inc. as an optical reader to obtain photographed images. At this time, the reading resolution was set to 400 dpi. Next, using Microsoft Paint from Microsoft Corporation, the gradation values at three randomly selected locations in the photographed image were measured. Then, the average of the gradation values at three randomly selected locations was taken as the gradation value n 1 of the first region or the gradation value n 2 of the second region corresponding to the sample.
 (濃淡差の指標Fの算出)
 上述の式(1)に第1領域の階調値nと、第2領域の階調値nを代入し、濃淡差の指標Fを求めた。
(Calculation of gradation difference index F)
The gradation value n 1 of the first region and the gradation value n 2 of the second region were substituted into the above-mentioned equation (1) to obtain the index F of the difference in gradation.
 (目立ちにくさの評価)
 各例において、第1領域に対応する試料と、第2領域に対応する試料とを並べ、第2領域に対応する試料の目立ちにくさを目視によって評価した。目立ちにくさの評価は、官能評価である。目立ちにくさの評価は、複数の被験者によって実施された。そして各実験例において、全被験者のうち第2領域に対応する試料が目立たないと評価した被験者の割合rを算出した。結果を表1に示す。
  ≪目立ちにくさの評価基準≫
 優良(◎):rが50%以上である。
 良(〇):rが0%超50%未満である。
 不良(×):rが0%である。
(Evaluation of inconspicuousness)
In each example, a sample corresponding to the first region and a sample corresponding to the second region were lined up, and the inconspicuousness of the sample corresponding to the second region was visually evaluated. The evaluation of inconspicuousness is a sensory evaluation. The inconspicuousness evaluation was conducted by multiple subjects. Then, in each experimental example, the proportion r of subjects who evaluated that the sample corresponding to the second region was not conspicuous among all subjects was calculated. The results are shown in Table 1.
≪Evaluation criteria for inconspicuousness≫
Excellent (◎): r is 50% or more.
Good (○): r is more than 0% and less than 50%.
Bad (x): r is 0%.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 例1~6では、第1領域の階調値nは201であり、|n‐n|は28以下であり、Fは1.09×10-1以下であった。またこの例1~6では、いずれもrが2.70%以上であり、目立ちにくさは良又は優良であった。特に例4~6では、|n‐n|は9以下であり、Fは3.52×10-2以下であり、rが58.11%以上であり、目立ちにくさは優良であった。 In Examples 1 to 6, the tone value n 1 of the first region was 201, |n 1 −n 2 | was 28 or less, and F was 1.09×10 −1 or less. Further, in Examples 1 to 6, r was 2.70% or more, and the inconspicuousness was good or excellent. In particular, in Examples 4 to 6, |n 1 -n 2 | is 9 or less, F is 3.52×10 -2 or less, r is 58.11% or more, and the inconspicuousness is excellent. Ta.
 一方、例11~12では、第1領域の階調値nは201であったが、|n‐n|はそれぞれ30及び33であり、Fは1.29×10-1及び1.17×10-1であった。またこの例11~12では、いずれもrが0であり、目立ちにくさは不良であった。 On the other hand, in Examples 11 and 12, the tone value n 1 of the first region was 201, |n 1 -n 2 | were 30 and 33, respectively, and F was 1.29×10 −1 and 1 It was .17×10 −1 . Furthermore, in Examples 11 and 12, r was 0 and the inconspicuousness was poor.
 例7~10では、第1領域の階調値nは232であり、|n‐n|は12以下であり、Fは4.69×10-2以下であった。またこの例7~10では、いずれもrが13.51%以上であり、目立ちにくさは良又は優良であった。特に例9~10では、|n‐n|は4以下であり、Fは1.56×10-2以下であり、rが72.97%以上であり、目立ちにくさは優良であった。 In Examples 7 to 10, the tone value n 1 of the first region was 232, |n 1 −n 2 | was 12 or less, and F was 4.69×10 −2 or less. Further, in Examples 7 to 10, r was 13.51% or more, and the inconspicuousness was good or excellent. In particular, in Examples 9 and 10, |n 1 -n 2 | is 4 or less, F is 1.56×10 -2 or less, r is 72.97% or more, and the inconspicuousness is excellent. Ta.
 一方、例13では、第1領域の階調値nは232であったが、|n‐n|は15であり、Fは5.86×10-2であった。またこの例13では、rが0であり、目立ちにくさは不良であった。 On the other hand, in Example 13, the tone value n 1 of the first region was 232, |n 1 −n 2 | was 15, and F was 5.86×10 −2 . Further, in this example 13, r was 0, and the inconspicuousness was poor.
 上記実験例1によると、第1領域の階調値nは201である場合、Fは0以上1.09×10-1以下が好ましく、0以上6.25×10-2以下がより好ましく、0以上3.52×10-2以下がさらに好ましく、0以上1.56×10-2以下が特に好ましい。
 また第1領域の階調値nが232である場合、Fは0以上4.69×10-2以下が好ましく、0以上1.56×10-2以下がより好ましい。
According to Experimental Example 1 above, when the gradation value n 1 of the first region is 201, F is preferably 0 or more and 1.09×10 −1 or less, more preferably 0 or more and 6.25×10 −2 or less. , more preferably 0 or more and 3.52×10 −2 or less, particularly preferably 0 or more and 1.56×10 −2 or less.
Further, when the gradation value n 1 of the first region is 232, F is preferably 0 or more and 4.69×10 −2 or less, more preferably 0 or more and 1.56×10 −2 or less.
 [実験例2:第1領域における(ドット直径/ドットピッチ)と階調値との関係]
 発明者らは、第1領域のドットパターンの寸法と階調値との関係を見出すために、実験例2を実施した。
[Experimental example 2: Relationship between (dot diameter/dot pitch) and gradation value in the first region]
The inventors conducted Experimental Example 2 in order to find the relationship between the dimensions of the dot pattern in the first region and the gradation values.
 (試料の作製)
 直径が70μm~120μm、ピッチが150μm~280μmのドットパターンを有する65個の試料を作製した。尚、ドットは略円形であった。
(Preparation of sample)
Sixty-five samples having dot patterns with a diameter of 70 μm to 120 μm and a pitch of 150 μm to 280 μm were prepared. Note that the dots were approximately circular.
 (試料の直径/ピッチの測定)
 電子顕微鏡(オプトサイエンス社製「Dino-Lite Edge AMR Polarizer(偏光)」)を用いて、試料片の平面観察を行い、無作為に選んだ3箇所のドットの直径及びピッチを測定した。
(Measurement of sample diameter/pitch)
Using an electron microscope ("Dino-Lite Edge AMR Polarizer" manufactured by Optoscience), the sample piece was observed in plan, and the diameter and pitch of three randomly selected dots were measured.
 (階調値の測定)
 光学読取装置としてキヤノン社製のiR-ADV C5235Fを用い、各試料を撮影し、撮影画像を得た。このとき読み取り解像度を400dpiとした。次にマイクロソフト社のMicrosoft Paintを用いて、撮影画像のうち無作為に選んだ3箇所の階調値を測定した。そして無作為に選んだ3箇所の階調値の平均を、その試料の階調値とした。
(Measurement of gradation value)
Using iR-ADV C5235F manufactured by Canon Inc. as an optical reader, each sample was photographed to obtain photographed images. At this time, the reading resolution was set to 400 dpi. Next, using Microsoft Paint from Microsoft Corporation, the gradation values at three randomly selected locations in the photographed image were measured. Then, the average of the gradation values at three randomly selected locations was taken as the gradation value of the sample.
 (評価結果)
 実験例2の評価結果を図19に示す。図19は、(ドット直径/ドットピッチ)と階調値との関係を示す図である。(ドット直径/ドットピッチ)をxとすると、図19に示す通り、直径/ピッチxと階調値nとの関係は、略線形で表された。回帰直線を求めたところ、回帰直線として上述の式(2)が得られた。
 尚、図19に示される破線は、(ドット直径/ドットピッチ)に対する階調値の回帰直線を表している。
(Evaluation results)
The evaluation results of Experimental Example 2 are shown in FIG. FIG. 19 is a diagram showing the relationship between (dot diameter/dot pitch) and gradation value. Assuming that (dot diameter/dot pitch) is x 1 , the relationship between the diameter/pitch x 1 and the gradation value n 1 was expressed approximately linearly, as shown in FIG. 19 . When a regression line was determined, the above equation (2) was obtained as the regression line.
Note that the broken line shown in FIG. 19 represents a regression line of gradation value with respect to (dot diameter/dot pitch).
 このように発明者らは、擬似層に含まれる第2領域の階調値nは、ドットの直径とピッチの比で表すことができることを見出した。 In this manner, the inventors have discovered that the tone value n1 of the second region included in the pseudo layer can be expressed by the ratio of the dot diameter to the pitch.
 [実験例3:第2領域における(網目の線幅/網目のピッチ)と階調値との関係]
 発明者らは、第2領域の網目パターンの寸法と階調値との関係を見出すために、実験例3を実施した。
[Experimental example 3: Relationship between (mesh line width/mesh pitch) and gradation value in the second region]
The inventors conducted Experimental Example 3 in order to find the relationship between the dimensions of the mesh pattern in the second region and the gradation values.
 (試料の作製)
 線幅が10μm~28μm、ピッチが274μm~548μmの網目パターンを有する10個の試料を作製した。尚、網目パターンの網目の形状は六角形であった。
(Preparation of sample)
Ten samples having a mesh pattern with a line width of 10 μm to 28 μm and a pitch of 274 μm to 548 μm were prepared. Note that the shape of the mesh in the mesh pattern was hexagonal.
 (試料の線幅/ピッチの測定)
 電子顕微鏡(オプトサイエンス社製「Dino-Lite Edge AMR Polarizer(偏光)」)を用いて、試料片の平面観察を行い、無作為に選んだ3箇所の網目の線幅及びピッチを測定した。
(Measurement of sample line width/pitch)
Using an electron microscope ("Dino-Lite Edge AMR Polarizer" manufactured by Optoscience), the sample piece was observed in plan, and the line width and pitch of the mesh at three randomly selected locations were measured.
 (階調値の測定)
 実験例2と同様に、各試料の階調値を測定した。
(Measurement of gradation value)
As in Experimental Example 2, the gradation value of each sample was measured.
 (評価結果)
 実験例3の評価結果を図20に示す。図20は、(網目の線幅/網目のピッチ)と階調値との関係を示す図である。(網目の線幅/網目のピッチ)をxとすると、図20に示す通り、(網目の線幅/網目のピッチ)xと階調値nとの関係は、略線形で表された。回帰直線を求めたところ、回帰直線として上述の式(3)が得られた。
 尚、図20に示される破線は、(網目の線幅/網目のピッチ)に対する階調値の回帰直線を表している。
(Evaluation results)
The evaluation results of Experimental Example 3 are shown in FIG. FIG. 20 is a diagram showing the relationship between (line width of mesh/pitch of mesh) and gradation value. Assuming that (line width of mesh/pitch of mesh) is x 2 , the relationship between (line width of mesh/pitch of mesh) x 2 and gradation value n 2 is approximately linear, as shown in FIG. Ta. When a regression line was determined, the above equation (3) was obtained as the regression line.
Note that the broken line shown in FIG. 20 represents a regression line of the gradation value with respect to (line width of mesh/pitch of mesh).
 このように発明者らは、第2導体層に含まれる第2領域の階調値nは、網目の線幅と網目のピッチの比で表すことができることを見出した。 In this way, the inventors have discovered that the gradation value n2 of the second region included in the second conductor layer can be expressed by the ratio of the mesh line width to the mesh pitch.
 [実験例4:階調値とアンテナ性能について]
 発明者らは、アンテナ性能の観点から好ましい第2領域の階調値nの範囲を見出すべく、第2領域の階調値nに対するアンテナ性能を評価した。実験例4では、アンテナ性能としてFB比(Front Back ratio)を用いた。
[Experiment example 4: Regarding gradation value and antenna performance]
The inventors evaluated the antenna performance for the gradation value n 2 of the second region in order to find a preferable range of the gradation value n 2 of the second region from the viewpoint of antenna performance. In Experimental Example 4, FB ratio (Front Back ratio) was used as the antenna performance.
 (試料)
 縦500mm×横600mm×厚さ0.14mmのメッシュパターン付きシートを試料として用いた。各例において、階調値nが異なるメッシュパターン付きシートを試料として用いた。尚、本実験例4の例14で用いた試料は、実験例1の例1で用いた試料と同じであった。
(sample)
A sheet with a mesh pattern measuring 500 mm long x 600 mm wide x 0.14 mm thick was used as a sample. In each example, mesh patterned sheets with different gradation values n2 were used as samples. The sample used in Example 14 of Experimental Example 4 was the same as the sample used in Example 1 of Experimental Example 1.
 (階調値nの測定)
 実験例2と同様に、各試料の階調値を測定した。
(Measurement of gradation value n2 )
As in Experimental Example 2, the gradation value of each sample was measured.
 ((網目の線幅/網目のピッチ)xの算出)
 式(3)を用いて、測定したnからxを算出した。
(Calculation of (mesh line width/mesh pitch) x 2 )
x 2 was calculated from the measured n 2 using equation (3).
 (アンテナ性能の測定)
 電波暗室を使用して指向性測定結果からFB比を算出した。周波数条件は、4550MHzであった。測定値を下記評価基準に分類し、アンテナ性能を評価した。結果を表2に示す。
  ≪アンテナ性能の評価基準≫
 良(〇):FB比の測定値が10dB以上である。
 可(△):FB比の測定値が8dB以上10dB未満である。
 不良(×):FB比の測定値が8dB未満である。
(Measurement of antenna performance)
The FB ratio was calculated from the directivity measurement results using an anechoic chamber. The frequency condition was 4550MHz. The antenna performance was evaluated by classifying the measured values according to the following evaluation criteria. The results are shown in Table 2.
≪Antenna performance evaluation criteria≫
Good (○): The measured value of the FB ratio is 10 dB or more.
Acceptable (△): The measured value of the FB ratio is 8 dB or more and less than 10 dB.
Poor (×): The measured value of the FB ratio is less than 8 dB.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 例14~15では、(網目の線幅/網目のピッチ)xが3.91×10-2以上であり、階調値nは211以上であり、FB比は10dB以上であった。また、例16~17では、xが1.24×10-2以上であり、階調値nは232以上であり、FB比は8dB以上であった。 In Examples 14 and 15, (mesh line width/mesh pitch) x 2 was 3.91×10 −2 or more, the gradation value n 2 was 211 or more, and the FB ratio was 10 dB or more. Furthermore, in Examples 16 and 17, x 2 was 1.24×10 −2 or more, the gradation value n 2 was 232 or more, and the FB ratio was 8 dB or more.
 一方、例18では、xが3.15×10-3であり、nは248であり、FB比は不良であった。 On the other hand, in Example 18, x 2 was 3.15×10 −3 , n 2 was 248, and the FB ratio was poor.
 上記実験例4によると、xは、5.47×10-3以上が好ましく、1.24×10-2以上がより好ましく、2.17×10-2以上がさらに好ましく、3.91×10-2以上が特に好ましく、4.61×10-2以上が最も好ましい。また、nは、246以下が好ましく、240以下がより好ましく、232以下がさらに好ましく、217以下が特に好ましく、211以下が最も好ましい。nが246以下、特に217以下であればFB比が8dB以上となり、アンテナ性能を確保できる。 According to Experimental Example 4 above, x 2 is preferably 5.47×10 −3 or more, more preferably 1.24×10 −2 or more, even more preferably 2.17×10 −2 or more, and 3.91× It is particularly preferably 10 -2 or more, and most preferably 4.61×10 -2 or more. Further, n 2 is preferably 246 or less, more preferably 240 or less, even more preferably 232 or less, particularly preferably 217 or less, and most preferably 211 or less. If n2 is 246 or less, particularly 217 or less, the FB ratio will be 8 dB or more, and antenna performance can be ensured.
 本発明は上記実施形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、擬似層は、平面視において、その全部が第2導体層と重複しないで配置されていたが、一部で第2導体層と重複していてもよい。 The present invention is not limited to the above embodiments, and can be modified as appropriate without departing from the spirit. For example, in a plan view, the pseudo layer is arranged so that the entirety thereof does not overlap with the second conductor layer, but a portion thereof may overlap with the second conductor layer.
 この出願は、2022年3月8日に出願された日本出願特願2022-035030を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2022-035030 filed on March 8, 2022, and the entire disclosure thereof is incorporated herein.
 1 窓ガラス
 10,11,12,12B 誘電体層
 10(1) 第1主面
 10(2) 第2主面
 11(1) 第1主面
 11(2) 第2主面
 12(1) 第1主面
 12(2) 第2主面
 12A 空間
 20,20C,20E 放射素子層
 21 放射導体
 22,23,24,25 パッチ導体
 30 給電ライン
 32,33 端部
 36 分岐箇所
 40,40E 接地導体層
 41 線状接地導体
 50 面状接地導体
 60,60A,60B,60C,60D,60E 擬似層
 61 配列要素
 70,72 均質化パターン
 80,80C 導波層
 81,82,83,84 導体素子

 91 導電性ワイヤ
 92 ケーブル
 93 絶縁体
 94 外部導体
 95 シース
 96,97 半田
 100,100A,100B,100C,100D,100E アンテナユニット
 200 窓ガラス本体
 300 支持部
 A1,A2,A3,A4 境界領域
1 Window glass 10, 11, 12, 12B Dielectric layer 10 (1) First main surface 10 (2) Second main surface 11 (1) First main surface 11 (2) Second main surface 12 (1) 1 main surface 12 (2) 2nd main surface 12A space 20, 20C, 20E radiating element layer 21 radiating conductor 22, 23, 24, 25 patch conductor 30 power supply line 32, 33 end 36 branch point 40, 40E ground conductor layer 41 Linear ground conductor 50 Planar ground conductor 60, 60A, 60B, 60C, 60D, 60E Pseudo layer 61 Array element 70, 72 Homogenization pattern 80, 80C Waveguide layer 81, 82, 83, 84 Conductor element

91 Conductive wire 92 Cable 93 Insulator 94 Outer conductor 95 Sheath 96, 97 Solder 100, 100A, 100B, 100C, 100D, 100E Antenna unit 200 Window glass body 300 Support part A1, A2, A3, A4 Boundary area

Claims (14)

  1.  可視光が透過する誘電体層と、
     第1導体層と、
     擬似層と、
     前記第1導体層と離隔して設けられる第2導体層と
     を備え、
     前記第1導体層は、前記誘電体層を基準として前記誘電体層の第1主面の側に設けられ、
     前記第2導体層は、前記誘電体層を基準として前記誘電体層の前記第1主面の側又は前記第1主面と反対の第2主面の側に設けられ、
     平面視において、前記擬似層は少なくとも一部が前記第2導体層の周囲に配置され、
     前記平面視において、前記擬似層の前記第2導体層と重複しないで存在する第1領域、及び前記第2導体層の前記擬似層と重複しないで存在する第2領域の各々を、解像度400dpiで読み取った場合のN(Nは自然数)段階の階調値を、n,n(n及びnは0以上の整数)とすると、
     |n‐n|/N≦1.09×10-1である
     アンテナユニット。
    a dielectric layer through which visible light passes;
    a first conductor layer;
    a pseudo layer;
    a second conductor layer provided separately from the first conductor layer,
    The first conductor layer is provided on the first main surface side of the dielectric layer with respect to the dielectric layer,
    The second conductor layer is provided on a side of the first main surface of the dielectric layer or a second main surface opposite to the first main surface of the dielectric layer, with the dielectric layer as a reference,
    In plan view, at least a portion of the pseudo layer is arranged around the second conductor layer,
    In the planar view, each of a first region of the pseudo layer that does not overlap with the second conductor layer and a second region of the second conductor layer that does not overlap with the pseudo layer is determined at a resolution of 400 dpi. Assuming that the gradation values of N (N is a natural number) stages when read are n 1 and n 2 (n 1 and n 2 are integers of 0 or more),
    |n 1 -n 2 |/N≦1.09×10 −1 Antenna unit.
  2.  |n‐n|/N≦6.25×10-2である
     請求項1に記載のアンテナユニット。
    The antenna unit according to claim 1, wherein |n 1 -n 2 |/N≦6.25×10 −2 .
  3.  N=256であり、n≦246である
     請求項1又は2に記載のアンテナユニット。
    The antenna unit according to claim 1 or 2, wherein N=256 and n2 ≦246.
  4.  前記第1導体層は、放射導体を含み、
     前記第2導体層は、接地導体を含み、
     前記第2導体層は、前記誘電体層を基準として前記誘電体層の前記第2主面の側に設けられる
     請求項1から3のいずれか一項に記載のアンテナユニット。
    The first conductor layer includes a radiation conductor,
    The second conductor layer includes a ground conductor,
    The antenna unit according to any one of claims 1 to 3, wherein the second conductor layer is provided on the second main surface side of the dielectric layer with respect to the dielectric layer.
  5.  前記第1導体層は、放射導体を含み、
     前記第2導体層は、接地導体を含み、
     前記第2導体層は、前記誘電体層を基準として前記誘電体層の前記第1主面の側に設けられる
     請求項1から3のいずれか一項に記載のアンテナユニット。
    The first conductor layer includes a radiation conductor,
    The second conductor layer includes a ground conductor,
    The antenna unit according to any one of claims 1 to 3, wherein the second conductor layer is provided on the first main surface side of the dielectric layer with respect to the dielectric layer.
  6.  前記第1導体層は、接地導体を含み、
     前記第2導体層は、放射導体を含み、
     前記第2導体層は、前記誘電体層を基準として前記誘電体層の前記第2主面の側に設けられる
     請求項1から3のいずれか一項に記載のアンテナユニット。
    The first conductor layer includes a ground conductor,
    The second conductor layer includes a radiating conductor,
    The antenna unit according to any one of claims 1 to 3, wherein the second conductor layer is provided on the second main surface side of the dielectric layer with respect to the dielectric layer.
  7.  前記第1導体層は、放射導体を含み、
     前記第2導体層は、前記放射導体が放射する電波を予め定められた方向に導く導波素子を含み、
     前記第2導体層は、前記誘電体層を基準として前記誘電体層の前記第2主面の側に設けられ、
     前記アンテナユニットは、前記第1導体層を基準として前記誘電体層と反対側に設けられる接地導体層をさらに備える
     請求項1から3のいずれか一項に記載のアンテナユニット。
    The first conductor layer includes a radiation conductor,
    The second conductor layer includes a waveguide element that guides radio waves radiated by the radiation conductor in a predetermined direction,
    The second conductor layer is provided on the second main surface side of the dielectric layer with respect to the dielectric layer,
    The antenna unit according to any one of claims 1 to 3, further comprising a ground conductor layer provided on the opposite side of the dielectric layer with respect to the first conductor layer.
  8.  前記擬似層は、配列要素を互いに離隔して配列させたパターンを含む
     請求項1から7のいずれか一項に記載のアンテナユニット。
    The antenna unit according to any one of claims 1 to 7, wherein the pseudo layer includes a pattern in which array elements are arranged spaced apart from each other.
  9.  前記配列要素の導電率は、1×10(S/m)以上である
     請求項8に記載のアンテナユニット。
    The antenna unit according to claim 8, wherein the array element has a conductivity of 1×10 6 (S/m) or more.
  10.  前記配列要素の形状は円形であり、
     前記配列要素の平均直径は、前記アンテナユニットによって送受される電波の自由空間波長をλとすると、λ/2以下である
     請求項9に記載のアンテナユニット。
    The shape of the array element is circular;
    The antenna unit according to claim 9, wherein the average diameter of the array element is λ 0 /2 or less, where λ 0 is the free space wavelength of radio waves transmitted and received by the antenna unit.
  11.  前記配列要素の形状は矩形であり、
     前記配列要素の長辺の長さは、前記アンテナユニットによって送受される電波の自由空間波長をλとすると、λ/2以下である
     請求項9に記載のアンテナユニット。
    The shape of the array element is a rectangle,
    The antenna unit according to claim 9, wherein the length of the long side of the array element is λ 0 /2 or less, where λ 0 is the free space wavelength of radio waves transmitted and received by the antenna unit.
  12.  前記擬似層は、絶縁体から構成され、
     前記絶縁体の導電率は、1×10(S/m)未満である
     請求項1から7のいずれか一項に記載のアンテナユニット。
    The pseudo layer is made of an insulator,
    The antenna unit according to any one of claims 1 to 7, wherein the insulator has a conductivity of less than 1×10 6 (S/m).
  13.  前記第2導体層は、網目状の導体パターンを含む
     請求項1から12のいずれか一項に記載のアンテナユニット。
    The antenna unit according to any one of claims 1 to 12, wherein the second conductor layer includes a mesh conductor pattern.
  14.  請求項1から13のいずれか一項に記載のアンテナユニットを備える窓ガラス。 A window glass comprising the antenna unit according to any one of claims 1 to 13.
PCT/JP2023/007963 2022-03-08 2023-03-03 Antenna unit and windowpane WO2023171545A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-035030 2022-03-08
JP2022035030 2022-03-08

Publications (1)

Publication Number Publication Date
WO2023171545A1 true WO2023171545A1 (en) 2023-09-14

Family

ID=87935333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007963 WO2023171545A1 (en) 2022-03-08 2023-03-03 Antenna unit and windowpane

Country Status (1)

Country Link
WO (1) WO2023171545A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142125A1 (en) * 2006-06-02 2007-12-13 Mitsubishi Cable Industries, Ltd. Radio wave shielding partitioning plane material and method for manufacturing same
WO2020071316A1 (en) * 2018-10-03 2020-04-09 Agc株式会社 Planar antenna and window glass
WO2021229994A1 (en) * 2020-05-13 2021-11-18 富士フイルム株式会社 Antenna

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142125A1 (en) * 2006-06-02 2007-12-13 Mitsubishi Cable Industries, Ltd. Radio wave shielding partitioning plane material and method for manufacturing same
WO2020071316A1 (en) * 2018-10-03 2020-04-09 Agc株式会社 Planar antenna and window glass
WO2021229994A1 (en) * 2020-05-13 2021-11-18 富士フイルム株式会社 Antenna

Similar Documents

Publication Publication Date Title
KR101343241B1 (en) Touch panel
US11139579B2 (en) Light-transmissive antenna, window affixing type communication module, and periphery monitoring unit
JP6604552B2 (en) antenna
JP6632634B2 (en) Vehicle window antenna plate
DE102014019899B4 (en) Optically transparent antenna for wireless communication and energy transmission
WO2019107514A1 (en) Antenna unit, and glass board having antenna
KR20140009287A (en) Conductive film and display apparatus provided with same
CN109923734B (en) Window glass
KR20080004556A (en) Transparent antenna for vehicle and vehicle glass with antenna
EP3767745B1 (en) Antenna unit, and antenna unit-attached window glass
US20220021130A1 (en) Transparent antenna stack and assembly
WO2023171545A1 (en) Antenna unit and windowpane
DE112021003477T5 (en) WINDOW GLASS FOR A VEHICLE AND VEHICLE STRUCTURE
JP6948607B2 (en) antenna
JP6761591B2 (en) antenna
JP6768212B2 (en) antenna
CN114498053A (en) Millimeter wave metamaterial hybrid transparent antenna and display unit using same
US20200363908A1 (en) Transparent electrode member, multilayer transparent electrode member, and capacitive sensor
JPWO2020095786A1 (en) substrate
JP3516985B2 (en) Coordinate input device
CN217691637U (en) Display screen module and electronic equipment
KR20210087933A (en) Coaxial connector and board with coaxial connector
CN112864582A (en) Antenna and electronic equipment
WO2023163206A1 (en) Transparent electromagnetic wave control member
CN220752695U (en) Single-layer glass bridging wiring structure, display module, display device and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766721

Country of ref document: EP

Kind code of ref document: A1