WO2023171492A1 - Hot-stamp-formed article - Google Patents

Hot-stamp-formed article Download PDF

Info

Publication number
WO2023171492A1
WO2023171492A1 PCT/JP2023/007562 JP2023007562W WO2023171492A1 WO 2023171492 A1 WO2023171492 A1 WO 2023171492A1 JP 2023007562 W JP2023007562 W JP 2023007562W WO 2023171492 A1 WO2023171492 A1 WO 2023171492A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
hot
content
martensite
stamped
Prior art date
Application number
PCT/JP2023/007562
Other languages
French (fr)
Japanese (ja)
Inventor
皓大 村澤
真吾 藤中
由梨 戸田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Publication of WO2023171492A1 publication Critical patent/WO2023171492A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor

Definitions

  • the present invention relates to a hot stamp molded article.
  • This application claims priority based on Japanese Patent Application No. 2022-037893 filed in Japan on March 11, 2022, the contents of which are incorporated herein.
  • Patent Document 1 discloses a high-strength hot-dip galvanized steel sheet that has high strength and excellent delayed fracture resistance, and a method for manufacturing the same.
  • Patent Document 2 states that by controlling the internal oxidation depth and the amount of retained austenite after primary annealing, yield strength and ductility are improved, and stable production and provision can be achieved without dent defects occurring during production.
  • a high-strength cold-rolled steel sheet, a plated steel sheet, and a method for manufacturing these are disclosed.
  • Automotive parts are manufactured by press forming, but as the strength of steel plates increases, not only does the forming load increase, but also formability decreases. Therefore, in high-strength steel sheets, formability into members with complex shapes becomes an issue.
  • Hot stamping technology is progressing, in which press forming is performed after heating the steel plate to a high temperature in the austenite region where the steel plate becomes soft.
  • Hot stamping is attracting attention as a technology that achieves both moldability into automobile parts and strength of automobile parts by performing quenching treatment in a mold at the same time as press working.
  • Patent Document 3 discloses a collision reinforcement material such as a bracket-integrated door impact beam, which can be given desired strength by press working, and a method for manufacturing the same.
  • Patent Documents 1 to 3 do not consider the ductility after hot stamping.
  • An object of the present invention is to provide a hot-stamped molded article having high strength and excellent ductility.
  • the gist of the invention is as follows.
  • (1) The hot stamp molded article according to one embodiment of the present invention has a chemical composition in mass %, C: 0.08-0.70%, Si: 0.100-3.000%, Mn: 0.100-3.000%, P: 0.1000% or less, S: 0.0100% or less, N: 0.0200% or less, O: 0.1000% or less, Al: 3.0000% or less, B: 0.0005-0.0200%, Nb: 0 to 0.100%, Ti: 0-0.200%, Cr: 0-1.00%, Mo: 0-1.00%, Co: 0-5.00%, Ni: 0-3.00%, Cu: 0-3.00%, V: 0 to 3.00%, W: 0-3.00%, Ca: 0-1.0000%, Mg: 0 to 1.0000%, REM: 0-1.0000%, Sb: 0 to 1.00%, Zr: 0 to 1.00%, Contains Sn: 0 to 1.00% and As: 0 to 1.0000%, The
  • the half-width of the fresh martensite and the tempered martensite obtained by X-ray diffraction is ⁇ 0
  • the half-width of the fresh martensite and the tempered martensite after the sub-zero treatment obtained by X-ray diffraction is
  • ⁇ S is set
  • ⁇ S / ⁇ 0 is 0.990 to 1.010.
  • the hot-stamped molded article according to (1) above has the chemical composition in mass %, Nb: 0.001 to 0.100%, Ti: 0.001 to 0.200%, Cr: 0.01-1.00%, Mo: 0.01-1.00%, Co: 0.01-5.00%, Ni: 0.01 to 3.00%, Cu: 0.01-3.00%, V: 0.01 to 3.00%, W: 0.01-3.00%, Ca: 0.0001-1.0000%, Mg: 0.0001 to 1.0000%, REM: 0.0001-1.0000%, Sb: 0.01 to 1.00%, Zr: 0.01-1.00%, Sn: 0.01 to 1.00%, and As: 0.0001 to 1.0000% It may contain one or more selected from the group consisting of:
  • the present inventors have studied methods for improving ductility in high-strength hot-stamped molded bodies, and have obtained the following findings.
  • the ductility of the hot-stamped compact is improved due to deformation-induced transformation. Furthermore, the greater the strain at which deformation-induced transformation of retained austenite occurs, the greater the effect of improving ductility can be obtained.
  • deformation-induced transformation when retained austenite, which is less stable among retained austenites, begins to transform, the transformation of surrounding retained austenite is promoted one after another using this transformation as a core. Therefore, by reducing the amount of residual austenite, which has low stability in the metallographic structure of the hot-stamped compact, it becomes difficult for deformation-induced transformation to occur when a small strain is introduced, and the strain at which transformation of retained austenite starts becomes larger. This improves the ductility of the hot stamped product.
  • fresh martensite and tempered martensite have a high density of dislocations, so dislocations caused by plastic deformation are difficult to accumulate. Therefore, fresh martensite and tempered martensite have low work hardenability.
  • fresh martensite and tempered martensite with low dislocation density in the metal structure By including fresh martensite and tempered martensite with low dislocation density in the metal structure, the work hardening ability of fresh martensite and tempered martensite can be increased, and as a result, the ductility of the hot stamped compact can be increased. I can do it.
  • the hot-stamped molded article according to the present embodiment has a chemical composition in mass %: C: 0.08 to 0.70%, Si: 0.100 to 3.000%, Mn: 0.100 to 3.000. %, P: 0.1000% or less, S: 0.0100% or less, N: 0.0200% or less, O: 0.1000% or less, Al: 3.0000% or less, B: 0.0005 to 0. 0200%, and the remainder: contains Fe and impurities.
  • C 0.08 to 0.70%
  • Si 0.100 to 3.000%
  • Mn 0.100 to 3.000. %
  • P 0.1000% or less
  • S 0.0100% or less
  • N 0.0200% or less
  • O 0.1000% or less
  • Al 3.0000% or less
  • B 0.0005 to 0. 0200%
  • the remainder contains Fe and impurities.
  • C 0.08-0.70%
  • C is an element that improves the strength of the hot stamp molded product. If the C content is less than 0.08%, the desired strength cannot be obtained in the hot-stamped molded product. Therefore, the C content is set to 0.08% or more.
  • the C content is preferably 0.10% or more, 0.15% or more, or 0.20% or more.
  • the C content is set to 0.70% or less.
  • the C content is preferably 0.65% or less, 0.60% or less, or 0.50% or less.
  • Si 0.100-3.000% Si is an element that improves the strength of the hot stamp molded product through solid solution strengthening. If the Si content is less than 0.100%, the desired strength cannot be obtained in the hot-stamped molded product. Therefore, the Si content is set to 0.100% or more.
  • the Si content is preferably 0.300% or more, 0.500% or more, 0.800% or more, or 1.000% or more, more preferably more than 1.000% or 1.300% or more.
  • the Si content exceeds 3.000%, excellent ductility cannot be obtained in the hot stamped product. Therefore, the Si content is set to 3.000% or less.
  • the Si content is preferably 2.800% or less, 2.500% or less, or 2.000% or less.
  • Mn 0.100-3.000% Mn is an element that improves the hardenability of steel. If the Mn content is less than 0.100%, the hardenability cannot be sufficiently improved, and the strength of the hot-stamped product decreases. Therefore, the Mn content is set to 0.100% or more. The Mn content is preferably 0.500% or more, 1.000% or more, 1.200% or 1.500% or more. On the other hand, if the Mn content exceeds 3.000%, cracks due to Mn segregation are likely to occur, making it impossible to obtain excellent ductility in the hot stamped product. Therefore, the Mn content is set to 3.000% or less. Preferably, the Mn content is 2.700% or less, 2.500% or less, 2.300% or less or 2.000% or less.
  • P 0.1000% or less
  • P is an element that segregates at grain boundaries and becomes a starting point for fracture. If the P content exceeds 0.1000%, the occurrence of fracture becomes significant and the ductility of the hot stamped product deteriorates. Therefore, the P content is set to 0.1000% or less.
  • the P content is preferably 0.0500% or less or less than 0.0020%.
  • the P content may be 0%, but if the P content is reduced to less than 0.0001%, the cost for removing P will increase significantly, which is economically unfavorable. Therefore, the P content may be set to 0.0001% or more.
  • S 0.0100% or less
  • S is an element that forms inclusions in steel. This inclusion becomes the starting point of destruction.
  • the S content is preferably 0.0080% or less or 0.0050% or less.
  • the S content may be 0%, but if the S content is reduced to less than 0.0001%, the cost for removing S will increase significantly, which is economically unfavorable. Therefore, the S content may be set to 0.0001% or more.
  • N 0.0200% or less
  • N is an element that forms nitrides in steel. This nitride becomes a starting point for destruction. If the N content exceeds 0.0200%, the occurrence of destruction becomes significant. Therefore, the N content is set to 0.0200% or less.
  • the N content is preferably 0.0100% or less or 0.0050% or less.
  • the N content may be 0%, but if it is reduced to less than 0.0001%, the cost for removing N will increase significantly, which is economically unfavorable. Therefore, the N content may be set to 0.0001% or more.
  • O 0.1000% or less
  • O is an element that forms coarse oxides that become the starting point of fracture when contained in large amounts in steel. If the O content exceeds 0.1000%, the occurrence of fracture becomes significant and the ductility of the hot stamped product deteriorates. Therefore, the O content is set to 0.1000% or less.
  • the O content is preferably 0.0800% or less, 0.0500% or less, 0.0100% or less, or less than 0.0020%.
  • the O content may be 0%, but may be set to 0.0005% or more or 0.0010% or more in order to disperse a large number of fine oxides during deoxidation of molten steel.
  • Al 3.0000% or less
  • Al is an element that has the effect of deoxidizing molten steel and making the steel sound (suppressing the occurrence of defects such as blowholes in the steel).
  • the Al content is set to 3.0000% or less.
  • the Al content is preferably 2.5000% or less, 2.0000% or less, 1.5000% or less, or less than 0.0020%.
  • the Al content may be 0%, it may be 0.0001% or more.
  • B 0.0005-0.0200%
  • B is an element that improves the hardenability of steel. If the B content is less than 0.0005%, the desired strength cannot be obtained in the hot stamp molded product. Therefore, the B content is set to 0.0005% or more. The B content is preferably 0.0010% or more or 0.0015% or more. On the other hand, if the B content exceeds 0.0200%, the ductility of the hot-stamped body deteriorates. Therefore, the B content is set to 0.0200% or less. The B content is preferably 0.0150% or less and 0.0100% or less.
  • the remainder of the chemical composition of the hot-stamped molded body may be Fe and impurities.
  • impurities include elements that are unavoidably mixed in from steel raw materials or scraps and/or during the steel manufacturing process and are allowed within a range that does not impede the properties of the hot-stamped molded product according to the present embodiment.
  • the chemical composition of the hot-stamped molded body may contain the following elements as optional elements in place of a part of Fe. When the following arbitrary elements are not included, the content is 0%.
  • Nb 0.001-0.100%
  • Nb is an element that forms carbonitrides in steel and improves the strength of hot stamped products through precipitation strengthening. To ensure this effect, the Nb content is preferably 0.001% or more. On the other hand, if the Nb content exceeds 0.100%, a large amount of carbonitrides will be generated in the steel, resulting in deterioration of the ductility of the hot stamped body. Therefore, the Nb content is set to 0.100% or less.
  • Ti 0.001-0.200%
  • Ti is an element that forms carbonitrides in steel and improves the strength of hot stamped products through precipitation strengthening. To ensure this effect, the Ti content is preferably 0.001% or more. On the other hand, if the Ti content exceeds 0.200%, a large amount of carbonitrides will be generated in the steel, resulting in deterioration of the ductility of the hot stamped body. Therefore, the Ti content is set to 0.200% or less.
  • Cr is an element that increases the strength of the hot-stamped molded product by forming a solid solution in the prior austenite grains during heating before hot-stamping.
  • the Cr content is preferably 0.01% or more.
  • the Cr content is set to 1.00% or less.
  • Mo 0.01 ⁇ 1.00%
  • Mo is an element that increases the strength of the hot-stamped molded product by forming a solid solution in the prior austenite grains during heating before hot-stamping.
  • the Mo content is preferably 0.01% or more.
  • the Mo content is set to 1.00% or less.
  • Co is an element that improves the strength of the hot stamp molded product through solid solution strengthening.
  • the Co content is preferably 0.01% or more.
  • the Co content is set to 5.00% or less.
  • Ni 0.01-3.00%
  • Ni is an element that increases the strength of the hot-stamped molded product by forming a solid solution in the prior austenite grains during heating before hot-stamping.
  • the Ni content is preferably 0.01% or more.
  • the Ni content is 3.00% or less.
  • Cu 0.01 ⁇ 3.00%
  • Cu is an element that increases the strength of the hot-stamped molded product by solidly dissolving in the prior austenite grains during heating before hot-stamping.
  • the Cu content is preferably 0.01% or more.
  • the Cu content is preferably 3.00% or less.
  • V is an element that forms carbonitrides in the steel and improves the strength of the hot stamped product through precipitation strengthening.
  • the V content is preferably 0.01% or more.
  • the V content is set to 3.00% or less.
  • W 0.01 ⁇ 3.00%
  • W is an element that improves the strength of the hot stamp molded product.
  • the W content is preferably 0.01% or more.
  • the W content is set to 3.00% or less.
  • Ca 0.0001-1.0000%
  • Ca is an element that suppresses the formation of oxides that become the starting point of destruction.
  • the Ca content is preferably 0.0001% or more.
  • the Ca content is set to 1.0000% or less.
  • Mg 0.0001-1.0000% Mg forms oxides and sulfides in molten steel, suppresses the formation of coarse MnS, disperses many fine oxides, and has the effect of refining the metal structure.
  • the Mg content is preferably 0.0001% or more.
  • the Mg content is set to 1.0000% or less.
  • REM 0.0001-1.0000% REM is an element that suppresses the formation of oxides that become the starting point of destruction. To ensure this effect, the REM content is preferably 0.0001% or more. On the other hand, since the above effect is saturated even if it is contained in a large amount, the REM content is set to 1.0000% or less.
  • REM refers to a total of 17 elements consisting of Sc, Y, and lanthanoids, and the content of REM refers to the total content of these elements.
  • Sb 0.01-1.00%
  • Sb is an element that improves the ductility of the hot-stamped compact by suppressing the formation of oxides that become a starting point for fracture.
  • the Sb content is preferably 0.01% or more.
  • the Sb content is set to 1.00% or less.
  • Zr 0.01 ⁇ 1.00%
  • Zr is an element that contributes to inclusion control, particularly to fine dispersion of inclusions, and increases the ductility of the hot-stamped compact.
  • the Zr content is preferably 0.01% or more.
  • the Zr content is set to 1.00% or less.
  • Sn 0.01-1.00%
  • Sn is an element that suppresses the formation of oxides that become a starting point of fracture and contributes to improving the ductility of the hot-stamped compact.
  • the Sn content is preferably 0.01% or more.
  • the Sn content is set to 1.00% or less.
  • As 0.0001-1.0000% As is an element that contributes to improving the ductility of the hot-stamped compact by reducing the austenite single-phase temperature, thereby making the prior austenite grains finer.
  • the As content is preferably 0.0001% or more.
  • the As content is set to 1.0000% or less.
  • the chemical composition of the hot-stamped molded article described above may be measured by a general analytical method. For example, it may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). Note that C and S may be measured using a combustion-infrared absorption method, N using an inert gas melting-thermal conductivity method, and O using an inert gas melting-non-dispersive infrared absorption method. When the hot-stamped molded body has a plating layer on its surface, the chemical composition may be analyzed after removing the plating layer by mechanical grinding.
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry
  • the hot-stamped molded article according to the present embodiment has, in terms of area %, fresh martensite and tempered martensite: 60% or more in total, retained austenite: 2 to 30%, bainite: 38% or less, and Ferrite and pearlite: 2% or less in total, and when the number density of the retained austenite is ⁇ 0 and the number density of the retained austenite after sub-zero treatment is ⁇ S , ⁇ S / ⁇ 0 is 0.95 to 0. 1.01, the grain size is 5 to 10 ⁇ m, and the GAM value is 2° or more.
  • the total area ratio of the fresh martensite and the tempered martensite is f 0 , and the grain size is 5 to 10 ⁇ m.
  • the sum of the area ratios of the fresh martensite and the tempered martensite after the sub-zero treatment which are 10 ⁇ m and have a GAM value of 2° or more is fS , fS / f0 is 0.80.
  • the metal structure is defined at a position of 1/4 of the plate thickness from the surface (an area from 1/8 depth of the plate thickness from the surface to 3/8 depth of the plate thickness from the surface). The reason is that the metal structure at this position shows a typical metal structure of a steel plate.
  • the surface here refers to the interface between the plating layer and the base steel plate when the hot-stamped molded body has a plating layer on the surface.
  • the subzero processing herein refers to subzero processing in tissue examination, and specifically refers to the following processing. Note that this is different from sub-zero processing in the manufacturing method described later.
  • the temperature of the hot-stamped molded product In order to bring the temperature of the hot-stamped molded product to room temperature (20-28°C), it is held in the temperature range of 20-28°C for 60 minutes or more. Thereafter, it is cooled to a temperature range of -180 to -196°C at an average cooling rate of 10°C/s or more, and held in the temperature range for 20 to 40 minutes. After that, it is left in the air and the temperature is raised to room temperature.
  • a method for cooling and maintaining the temperature within the above temperature range for example, a method of immersing the hot-stamped molded body in liquid nitrogen can be mentioned.
  • the total area ratio of fresh martensite and tempered martensite is 60% or more. Preferably it is more than 65%, 70% or more, 80% or more, or 90% or more. Although the upper limit is not particularly specified, it may be set to 98% or less in view of the relationship with the area ratio of retained austenite. Note that it is not necessary to contain both fresh martensite and tempered martensite, and it is also possible to contain only one of them, and the area ratio thereof may be 60% or more.
  • Area ratio of retained austenite 2 to 30% If the area ratio of retained austenite is less than 2%, desired ductility cannot be obtained in the hot stamped product. Therefore, the area ratio of retained austenite is set to 2% or more.
  • the area ratio of retained austenite is preferably 5% or more, 10% or more, or 12% or more.
  • the area ratio of retained austenite is set to 30% or less. Preferably it is 25% or less, 20% or less, or 15% or less.
  • the area ratio of bainite is set to 38% or less.
  • the area ratio of bainite is preferably 30% or less, 20% or less, 15% or less, 10% or less, or 5% or less, and more preferably 0%.
  • Ferrite and pearlite 2% or less in total If the total area ratio of ferrite and pearlite exceeds 2%, desired strength and ductility cannot be obtained in the hot-stamped molded product. Therefore, the total area ratio of ferrite and pearlite is 2% or less.
  • the area ratio of ferrite and pearlite is preferably 1% or less, more preferably 0%.
  • the area ratio of each structure of the hot stamp molded body is obtained by the following method.
  • a sample is cut out from an arbitrary position 50 mm or more away from the end face of the hot-stamped molded body (if a sample cannot be taken from this position, a position avoiding the end) so that the plate thickness cross section can be observed.
  • the size of the sample depends on the measuring device, it should be large enough to allow observation of about 10 mm in the direction perpendicular to the plate thickness direction.
  • ferrite, pearlite, and structures other than ferrite and pearlite are distinguished.
  • the area ratio of ferrite is obtained by calculating the average value of the area ratio of regions determined to be ferrite.
  • the area ratio of pearlite is obtained by calculating the average value of the area ratio of regions determined to be pearlite. Note that a structure that is a massive crystal grain and does not include a substructure such as a lath inside the structure is regarded as ferrite.
  • a structure in which plate-shaped ferrite and Fe-based carbide are layered is considered to be pearlite.
  • each tissue is identified as follows.
  • a structure that is an aggregation of lath-shaped crystal grains and contains Fe-based carbides with a major axis of 20 nm or more and extending in different directions inside the structure is considered to be tempered martensite.
  • the structures that are a collection of lath-shaped crystal grains and do not contain Fe-based carbides with a major axis of 20 nm or more inside the structure there are structures in which Fe-based carbides are precipitated between the laths, and structures in which Fe-based carbides are precipitated inside the laths.
  • Fe-based carbide extending in the same direction refers to one in which the difference in the elongation direction of the Fe-based carbide is within 5°.
  • the area ratio of retained austenite is measured in the same photographic field of view as when the photographed photograph was taken.
  • polishing the observation surface of the above sample using #600 to #1500 silicon carbide paper polish it to a mirror surface using a liquid made by dispersing diamond powder with a particle size of 1 to 6 ⁇ m in diluted liquid such as alcohol or pure water. Finish.
  • the sample is polished for 8 minutes using colloidal silica without an alkaline solution at room temperature to remove the strain introduced into the surface layer of the sample. Crystal orientation information is obtained by measuring by electron backscatter diffraction at a measurement interval of 0.4 ⁇ m in the same photographic field of view as when the photograph was taken.
  • an EBSD analysis device consisting of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (DVC5 type detector manufactured by TSL) is used.
  • the degree of vacuum in the EBSD analyzer was 9.6 ⁇ 10 -5 Pa or less
  • the acceleration voltage was 25 kV
  • the irradiation current level was 14
  • the electron beam irradiation level was 62
  • the operating distance was 15 mm
  • the sample inclination angle was The angle shall be 70°.
  • the amount of retained austenite which has low stability, is reduced. Therefore, even if the subzero treatment in the above-mentioned microstructure inspection is performed, the amount of retained austenite hardly changes.
  • ⁇ S / ⁇ 0 When the number density of retained austenite is ⁇ 0 and the number density of retained austenite after sub-zero treatment in the above-mentioned microstructure inspection is ⁇ S , ⁇ S / ⁇ 0 is less than 0.95, which indicates low stability. This indicates that the amount of retained austenite decreased because the amount of retained austenite was large. If the amount of residual austenite with low stability is large, desired ductility cannot be obtained in the hot stamped product. Therefore, ⁇ S / ⁇ 0 is set to 0.95 or more. ⁇ S / ⁇ 0 is preferably 0.96 or more, 0.97 or more, or 0.98 or more. Generally, the amount of retained austenite does not increase due to sub-zero treatment, so ⁇ S / ⁇ 0 becomes 1.01 or less.
  • ⁇ S and ⁇ 0 are obtained by the following method.
  • the retained austenite in the observation area is identified for the sample taken from the hot-stamped molded body using the same method as when measuring the area ratio of each structure described above.
  • the number of retained austenites in the observation area is determined and the number is divided by the area of the observation area to obtain the number density ⁇ 0 of retained austenite.
  • the number density ⁇ S of retained austenite after the sub-zero treatment is obtained by measuring the hot-stamped molded body after the sub-zero treatment in the above-described microstructure inspection using a similar method.
  • fS / f0 0.80 to 1.20
  • retained austenite transforms into fresh martensite and tempered martensite, thereby increasing the amount of fresh martensite and tempered martensite.
  • the sum of the area ratios of fresh martensite and tempered martensite with a grain size of 5 to 10 ⁇ m and a GAM value of 2° or more is f 0 , and a grain size of 5 to 10 ⁇ m and a GAM value is 2° or more.
  • f S the sum of the area ratios of fresh martensite and tempered martensite after sub-zero treatment in the above-mentioned microstructure inspection.
  • f S /f 0 is more than 1.20. This shows that the amount of fresh martensite and tempered martensite transformed from retained austenite is large.
  • the retained austenite transformed into fresh martensite and tempered martensite by the above-mentioned sub-zero treatment is retained austenite with low stability.
  • f S /f 0 exceeding 1.20 indicates that the amount of retained austenite with low stability was large. If the amount of residual austenite with low stability is large, desired ductility cannot be obtained in the hot stamped product. Therefore, f S /f 0 is set to 1.20 or less. f S /f 0 is preferably 1.15 or less, 1.10 or less, 1.05 or less, or 1.01 or less.
  • f S /f 0 of less than 0.80 indicates that the dislocations in fresh martensite and tempered martensite were annihilated by compression due to thermal contraction due to the above-described sub-zero treatment. In other words, the amount of fresh martensite and tempered martensite with high dislocation density was large. Fresh martensite and tempered martensite, which have a high dislocation density, have low work hardening ability, so if their amounts are large, it is impossible to obtain the desired ductility in the hot-stamped compact. Therefore, f S /f 0 is set to 0.80 or more. f S /f 0 is preferably 0.85 or more, 0.90 or more, 0.95 or more, 0.97 or more, 0.98 or more, or 0.99 or more.
  • fresh martensite and tempered martensite with a grain size of 5 to 10 ⁇ m and a GAM value of 2° or more are stipulated if the grain size is less than 5 ⁇ m or the GAM value is less than 2°. This is because fresh martensite and tempered martensite may not be accurately measured by EBSD analysis.
  • fresh martensite and tempered martensite with a grain size of more than 10 ⁇ m have a low dislocation density and are unlikely to undergo structural changes due to sub-zero treatment, so they do not affect the ductility of the hot stamped compact. It is.
  • f S and f 0 are obtained by the following method.
  • Fresh martensite and tempered martensite in the observation region are identified for the sample taken from the hot-stamped molded body using the same method as when measuring the area ratio of each structure described above.
  • the grain size is calculated using the "Grain Size” function installed in the software "OIM Analysis (registered trademark)" attached to the EBSD analyzer. From these, fresh martensite and tempered martensite with a particle size of 5 to 10 ⁇ m are specified.
  • the fresh marten after the sub-zero treatment has a grain size of 5 to 10 ⁇ m and a GAM value of 2° or more.
  • the sum of the area fractions of site and tempered martensite f S is obtained.
  • ⁇ S / ⁇ 0 0.990 to 1.010
  • the half-width of fresh martensite and tempered martensite obtained by X-ray diffraction is ⁇ 0
  • the half-width of fresh martensite and tempered martensite obtained by X-ray diffraction after sub-zero treatment in the above-mentioned structure inspection is
  • ⁇ S is defined as ⁇ S
  • the fact that ⁇ S / ⁇ 0 is more than 1.010 indicates that the amount of fresh martensite and tempered martensite transformed from retained austenite is large.
  • the retained austenite transformed into fresh martensite and tempered martensite by the above-mentioned sub-zero treatment is retained austenite with low stability.
  • ⁇ S / ⁇ 0 exceeding 1.010 indicates that the amount of retained austenite with low stability was large. If the amount of residual austenite with low stability is large, desired ductility cannot be obtained in the hot stamped product. Therefore, ⁇ S / ⁇ 0 is set to 1.010 or less. ⁇ S / ⁇ 0 is preferably 1.005 or less or 1.001 or less.
  • ⁇ S / ⁇ 0 is set to 0.990 or more.
  • ⁇ S / ⁇ 0 is preferably 0.995 or more, 0.997 or more, or 0.998 or more.
  • ⁇ S and ⁇ 0 are obtained by the following method. Observe a cross section perpendicular to the plate thickness direction (a cross section parallel to the plate surface) from any position 50 mm or more away from the edge of the hot stamped product (if a sample cannot be collected from this position, avoid the edge) Cut out a square sample about 10 mm square. Next, by chemical polishing, the thickness of the sample was reduced so that a cross section parallel to the plate surface could be observed at any position from 1/8 depth of the plate thickness from the surface to 3/8 depth of the plate thickness from the surface. Reduce the thickness. Chemical polishing may be performed, for example, by immersing the sample in an aqueous solution of phosphoric acid and hydrogen peroxide at room temperature.
  • an X-ray diffraction profile is obtained by performing X-ray diffraction on the cross section parallel to the plate surface.
  • the three peaks of bcc-Fe (110), (200), and (211) are fitted with the Voigt function, and fresh martensite and tempered martensite are determined.
  • the half width ⁇ 0 (hkl) ( ⁇ 0 (110) , ⁇ 0 (200) and ⁇ 0 (211) ) are obtained.
  • the half-width ⁇ S (hkl) ( ⁇ S (110 ) , ⁇ S (200) and ⁇ S (211) ) are obtained.
  • that is closest to 1.000 is defined as ⁇ s / ⁇ 0 .
  • Tensile strength 700 MPa or more
  • the hot stamp molded article according to the present embodiment may have a tensile strength of 700 MPa or more. If the tensile strength is 700 MPa or more, it can contribute to reducing the weight of the vehicle body. Although the upper limit is not particularly specified, it may be 4000 MPa or less.
  • the hot-stamped molded article according to the present embodiment may have a uniform elongation, which is an index of ductility, of 3.0% or more.
  • the upper limit is not particularly limited, but may be 40.0% or less.
  • the tensile strength and uniform elongation are measured by performing a tensile test in accordance with JIS Z 2241:2011 using a No. 5 test piece of JIS Z 2241:2011.
  • the tensile test piece is taken at the center of the plate surface of the hot-stamped body (avoiding the edges), and the test piece is taken with the direction parallel to the longitudinal direction of the hot-stamped body considered as the longitudinal direction.
  • uniform elongation refers to "full elongation at maximum test force" as defined in JIS Z 2241:2011.
  • the hot stamp molded article according to this embodiment may have a plating layer on the surface.
  • a plating layer By having a plating layer on the surface, corrosion resistance can be improved after hot stamping.
  • the plating layer include an aluminum plating layer, an aluminum-zinc plating layer, an aluminum-silicon plating layer, a hot-dip galvanizing layer, an electrogalvanizing layer, an alloyed hot-dip galvanizing layer, and the like.
  • the hot stamping steel plate has the above-mentioned chemical composition.
  • the metal structure of the steel sheet for hot stamping is not particularly limited as long as desired strength and ductility can be obtained after hot stamping, but for example, in terms of area ratio, ferrite: 0 to 90%, bainite and martensite: 0 to 100%, It may consist of pearlite: 0 to 80% and retained austenite: 0 to 5%.
  • the steel plate for hot stamping may have a plating layer on the surface.
  • a plating layer By having a plating layer on the surface, corrosion resistance can be improved after hot stamping.
  • the plating layer include an aluminum plating layer, an aluminum-zinc plating layer, an aluminum-silicon plating layer, a hot-dip galvanizing layer, an electrogalvanizing layer, an alloyed hot-dip galvanizing layer, and the like.
  • the method for manufacturing a steel plate for hot stamping to obtain a hot stamping molded body according to the present embodiment is not particularly limited, and may be manufactured under normal conditions.
  • a hot-stamped molded body according to this embodiment is obtained by hot-stamping a hot-stamping steel plate and then performing subzero treatment. Note that the subzero treatment in the manufacturing method is different from the subzero treatment in the tissue inspection described above. Note that all temperatures mentioned below refer to the surface temperature of the steel plate.
  • Hot Stamping Conditions for hot stamping are not particularly limited, but for example, it is preferable to heat a steel plate for hot stamping to a temperature range of 800 to 1000°C, hold it in this temperature range for 60 to 1200 seconds, and then hot stamp. After hot stamping, it is preferable to adopt, for example, any one of the following conditions (I) to (IV).
  • Examples of methods for cooling and holding under the above conditions include methods using dry ice, carbon dioxide, or liquid nitrogen as a solvent.
  • the solvent in order to further increase the cooling rate or to uniformly cool the inside of the hot-stamped body, the solvent may be stirred or the hot-stamped body may be caused to migrate in the solvent.
  • Other methods for cooling and maintaining under the above conditions include, for example, a method using a cryogenic freezer.
  • the air within the refrigerator may be circulated or the hot-stamped molded product may be caused to migrate within the refrigerator.
  • the average cooling rate By setting the average cooling rate to a cooling stop temperature of Mf (°C) or higher and lower than 500°C to a critical cooling rate of Vc90 (°C/s) or higher, the generation of ferrite and pearlite can be suppressed.
  • the cooling stop temperature of cooling in which the average cooling rate is equal to or higher than the critical cooling rate Vc90 (°C/s) to a temperature range of Mf (°C) or higher and lower than 500°C, the generation of bainite can be suppressed. .
  • the subzero processing in this case is preferably performed using the following method. After hot stamping, it is cooled to a temperature range of -50 to -196°C at an average cooling rate of 5°C/s or more. After maintaining the temperature range for 1 minute or more, leave it in the atmosphere.
  • the average cooling rate to the above temperature range is more preferably 10°C/s or more, 30°C/s or more, or 50°C/s or more.
  • Vc90 (°C/s) can be expressed by the following formula (1).
  • Vc90 (°C/s) 10 2.94-0.75 ⁇ (2.7 ⁇ C+0.4 ⁇ Si+Mn+0.45 ⁇ Ni+0.8 ⁇ Cr+2 ⁇ Mo)-1 ⁇ ...
  • the element symbol in the above formula (1) indicates the content in mass % of each element, and when the element is not contained, 0 is substituted.
  • the subzero processing here is preferably performed under the same conditions as the subzero processing of condition (II) described above.
  • condition (II) condition (II) described above.
  • the temperature When maintaining the temperature in the temperature range of Ms (°C) to Mf (°C), the temperature may be kept constant or may be varied within this temperature range.
  • the subzero processing here is preferably performed under the same conditions as the subzero processing of condition (II) described above.
  • condition (II) condition (II) described above.
  • the amount of residual austenite with low stability can be reduced, and the metal structure can include fresh martensite and tempered martensite with low dislocation density. be able to.
  • ⁇ S / ⁇ 0 , f S /f 0 and ⁇ S / ⁇ 0 can be controlled within desired ranges.
  • a desired amount of retained austenite can be obtained.
  • reheating to a higher temperature than the temperature during intermediate holding and setting the holding temperature during reheating to a temperature range of Mf (°C) or more and less than 600°C a desired amount of retained austenite can be obtained.
  • setting the holding time during reheating to 1200 seconds or less a desired amount of retained austenite can be obtained.
  • the temperature When maintaining the temperature in the temperature range of Ms (°C) to Mf (°C), the temperature may be kept constant or may be varied within this temperature range.
  • Ms (°C) can be represented by the following formula (2)
  • Mf (°C) can be represented by the following formula (3).
  • Ms(°C) 539-423 ⁇ C-30 ⁇ Mn-12 ⁇ Cr-17 ⁇ Ni-7.5 ⁇ Mo...(2)
  • Mf (°C) Ms-209...(3)
  • the element symbol in the above formula (2) indicates the content in mass % of each element, and when the element is not contained, 0 is substituted.
  • Examples of cooling in which the average cooling rate is equal to or higher than the critical cooling rate Vc90 (° C./s) include mold cooling, gas cooling, and water cooling.
  • the average cooling rate refers to a value obtained by dividing the range of temperature drop of the steel plate from the start of cooling to the time of completion of cooling by the time required from the start of cooling to the time of completion of cooling.
  • the hot-stamped molded article according to the present embodiment can be stably manufactured by the manufacturing method described above.
  • the conditions in the example are examples of conditions adopted to confirm the feasibility and effects of the present invention, and the present invention is based on this example of conditions. It is not limited.
  • the present invention can adopt various conditions as long as the purpose of the present invention is achieved without departing from the gist of the present invention.
  • a steel plate for hot stamping was manufactured under normal conditions using a steel piece manufactured by casting molten steel having the chemical composition shown in Table 1.
  • the content described using " ⁇ ” in the table indicates that the content was less than that value and more than 0.
  • the content described as " ⁇ 0.0020" in the table indicates that the content was more than 0% and less than 0.0020%.
  • the obtained steel plate for hot stamping is heated to a temperature range of 800 to 1000°C, held in this temperature range for 60 to 1200 seconds, and then hot stamped, and then subjected to the above-mentioned conditions (I) to (IV) or Under different conditions, hot-stamped molded bodies shown in Table 3A and Table 3B were obtained.
  • production No. In No. 42 subzero processing was performed before hot stamping, and subzero processing was not performed after hot stamping.
  • Manufacturing No. Sub-zero treatment at 42 is performed by cooling a steel plate for hot stamping to a temperature range of -50 to -196°C at an average cooling rate of 5°C/s or more, holding it in the temperature range for at least 1 minute, and then exposing it to air. The condition was that it be left inside.
  • subzero treatment under conditions (I) to (IV), the cooling under condition (II), the intermediate holding under condition (III), and the intermediate holding and reheating under condition (IV) are performed under the conditions shown in Table 2A and Table 2B.
  • I went there.
  • cooling under condition (II) after cooling to the cooling stop temperature listed in the table, cooling to a temperature range of 50 ° C or less at the average cooling rate listed in the table, and then performing sub-zero treatment. Ta. Note that cooling to a temperature range of 50° C. or lower was performed to room temperature (20 to 28° C.).
  • intermediate holding was performed under condition (III)
  • the material was cooled to a temperature range of 50° C.
  • condition (IV) in which intermediate holding and reheating were performed, after being held at the holding temperature for reheating, it was cooled to a temperature range of 50°C or less at an average cooling rate of 0.5°C/s or more. From this, subzero processing was performed. Note that cooling to a temperature range of 50° C. or lower was performed to room temperature (20 to 28° C.).
  • the underline in the table indicates that it is outside the scope of the present invention, that it falls outside the preferred manufacturing conditions, or that the characteristic value is unfavorable.
  • the metallographic structure of the hot-stamped molded product was measured by the above-mentioned measurement method.
  • the mechanical properties of the hot-stamped molded product were measured by the method described above.
  • the tensile strength was 700 MPa or more, it was determined that the hot stamp molded product had high strength and passed. On the other hand, when the tensile strength was less than 700 MPa, it was determined that the hot stamp molded product did not have high strength and was rejected.
  • the hot-stamped molded articles that are examples of the present invention have higher strength and superior ductility than the hot-stamped molded articles that are comparative examples.
  • Manufacturing No. Production No. 2 is an example of the present invention.
  • Tensile strength ⁇ uniform elongation (MPa ⁇ %) was inferior compared to No. 1.
  • Manufacturing No. Production No. 4 is an example of the present invention. Compared to No. 3, the tensile strength x uniform elongation (MPa.%) was inferior.
  • Manufacturing No. Production No. 6 is an example of the present invention. Compared to No. 5, tensile strength x uniform elongation (MPa.%) was inferior. Also, production No. 8 is production No. 8 in which cooling under condition (II) was not performed. Compared to No. 7, the amount of retained austenite was large and the uniform elongation was improved.
  • the tensile strength x uniform elongation (MPa ⁇ %) was inferior. Moreover, the tensile strength did not meet the acceptance criteria.
  • Manufacturing No. Production No. 13 is an example of the present invention. Compared to No. 12, the tensile strength x uniform elongation (MPa ⁇ %) was inferior.
  • Manufacturing No. 15 to 17 are production Nos. 15 to 17, which are examples of the present invention. Compared to No. 14, the tensile strength x uniform elongation (MPa ⁇ %) was inferior. Also, production No. In samples No. 16 and 17, the tensile strength did not meet the acceptance criteria.
  • Manufacturing No. Production No. 19 is an example of the present invention. Compared to No. 18, the tensile strength x uniform elongation (MPa ⁇ %) was inferior. Manufacturing No. 21 and 23 are production Nos. 21 and 23, which are examples of the present invention. Compared to No. 20, the tensile strength x uniform elongation (MPa ⁇ %) was inferior. Also, production No. In samples No. 21 and No. 22, the tensile strength did not meet the acceptance criteria.
  • Manufacturing No. 25 is production No. 25, which is an example of the present invention. Compared to No. 24, the tensile strength x uniform elongation (MPa ⁇ %) was inferior. Manufacturing No. Production No. 27 is an example of the present invention. Compared to No. 26, the tensile strength x uniform elongation (MPa ⁇ %) was inferior.
  • Manufacturing No. Production No. 29 is an example of the present invention. Compared to No. 28, the tensile strength x uniform elongation (MPa ⁇ %) was inferior. Manufacturing No. Samples 30 to 32, 34, and 35 did not meet the acceptance criteria for tensile strength or uniform elongation. Also, production No. Production No. 33 is an example of the present invention having a similar chemical composition and production conditions. Compared to No. 18, the tensile strength x uniform elongation (MPa ⁇ %) was inferior.

Abstract

This hot-stamp-formed article has a specific chemical composition, with the metal structure being, by area%: at least 60% in total of fresh martensite and tempered martensite; 2 to 30% retained austenite; 38% or less of bainite; and 2% or less in total of ferrite and pearlite. The metal structure is configured so so that ρS/ρO is 0.95 to 1.01; fS/fO is 0.80 to 1.20; and βS/βO is 0.990 to 1.010.

Description

ホットスタンプ成形体hot stamp molded body
 本発明は、ホットスタンプ成形体に関する。
 本願は、2022年3月11日に、日本に出願された特願2022-037893号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a hot stamp molded article.
This application claims priority based on Japanese Patent Application No. 2022-037893 filed in Japan on March 11, 2022, the contents of which are incorporated herein.
 近年、環境保護及び省資源化の観点から自動車車体の軽量化が求められており、自動車部材へ高強度鋼板が適用されている。 In recent years, there has been a demand for lighter automobile bodies from the viewpoint of environmental protection and resource conservation, and high-strength steel plates are being applied to automobile parts.
 例えば、特許文献1には、高強度であって耐遅れ破壊特性に優れる高強度溶融亜鉛めっき鋼板およびその製造方法が開示されている。 For example, Patent Document 1 discloses a high-strength hot-dip galvanized steel sheet that has high strength and excellent delayed fracture resistance, and a method for manufacturing the same.
 特許文献2には、内部酸化深さ及び1次焼鈍後の残留オーステナイト量を制御することにより、降伏強度及び延性が向上し、生産時にデント欠陥が発生することなく、安定的に生産及び提供することができる高強度冷延鋼板、めっき鋼板、及びこれらの製造方法が開示されている。 Patent Document 2 states that by controlling the internal oxidation depth and the amount of retained austenite after primary annealing, yield strength and ductility are improved, and stable production and provision can be achieved without dent defects occurring during production. A high-strength cold-rolled steel sheet, a plated steel sheet, and a method for manufacturing these are disclosed.
 自動車部材はプレス成形によって製造されるが、鋼板の高強度化に伴い成形荷重が増加するだけでなく、成形性が低下する。そのため、高強度鋼板においては、複雑な形状の部材への成形性が課題となる。 Automotive parts are manufactured by press forming, but as the strength of steel plates increases, not only does the forming load increase, but also formability decreases. Therefore, in high-strength steel sheets, formability into members with complex shapes becomes an issue.
 上記のような課題を解決するため、鋼板が軟質化するオーステナイト域の高温まで加熱した後にプレス成形を実施するホットスタンプ技術の適用が進められている。ホットスタンプは、プレス加工と同時に、金型内において焼入れ処理を実施することで、自動車部材への成形性と自動車部材の強度とを両立する技術として注目されている。 In order to solve the above-mentioned problems, the application of hot stamping technology is progressing, in which press forming is performed after heating the steel plate to a high temperature in the austenite region where the steel plate becomes soft. Hot stamping is attracting attention as a technology that achieves both moldability into automobile parts and strength of automobile parts by performing quenching treatment in a mold at the same time as press working.
 例えば、特許文献3には、プレス加工によって所望の強度を付与することが可能な、ブラケット一体型ドアインパクトビーム等の衝突補強材及びその製造方法が開示されている。 For example, Patent Document 3 discloses a collision reinforcement material such as a bracket-integrated door impact beam, which can be given desired strength by press working, and a method for manufacturing the same.
国際公開第2020/136990号International Publication No. 2020/136990 日本国特表2019-512608号公報Japan Special Table No. 2019-512608 日本国特開2002-102980号公報Japanese Patent Application Publication No. 2002-102980
 しかしながら、特許文献1~3では、ホットスタンプ後の延性については考慮されていない。 However, Patent Documents 1 to 3 do not consider the ductility after hot stamping.
 本発明は、上記課題に鑑みてなされたものである。本発明は、高い強度および優れた延性を有するホットスタンプ成形体を提供することを課題とする。 The present invention has been made in view of the above problems. An object of the present invention is to provide a hot-stamped molded article having high strength and excellent ductility.
 本発明の要旨は以下の通りである。
(1)本発明の一態様に係るホットスタンプ成形体は、化学組成が、質量%で、
C :0.08~0.70%、
Si:0.100~3.000%、
Mn:0.100~3.000%、
P :0.1000%以下、
S :0.0100%以下、
N :0.0200%以下、
O :0.1000%以下、
Al:3.0000%以下、
B :0.0005~0.0200%、
Nb:0~0.100%、
Ti:0~0.200%、
Cr:0~1.00%、
Mo:0~1.00%、
Co:0~5.00%、
Ni:0~3.00%、
Cu:0~3.00%、
V :0~3.00%、
W :0~3.00%、
Ca:0~1.0000%、
Mg:0~1.0000%、
REM:0~1.0000%、
Sb:0~1.00%、
Zr:0~1.00%、
Sn:0~1.00%、および
As:0~1.0000%を含有し、
 残部がFeおよび不純物からなり、
 金属組織において、
 面積%で、
  フレッシュマルテンサイトおよび焼き戻しマルテンサイト:合計で60%以上、
  残留オーステナイト:2~30%、
  ベイナイト:38%以下、並びに、
  フェライトおよびパーライト:合計で2%以下であり、
 前記残留オーステナイトの個数密度をρとし、サブゼロ処理後の前記残留オーステナイトの個数密度をρとしたとき、ρ/ρが0.95~1.01であり、
 粒径が5~10μmであり、且つ、GAM値が2°以上である前記フレッシュマルテンサイトおよび前記焼き戻しマルテンサイトの面積率の合計をfとし、粒径が5~10μmであり、且つ、GAM値が2°以上である前記サブゼロ処理後の前記フレッシュマルテンサイトおよび前記焼き戻しマルテンサイトの面積率の合計をfとしたとき、f/fが0.80~1.20であり、
 X線回折により得られる、前記フレッシュマルテンサイトおよび前記焼き戻しマルテンサイトの半値幅をβとし、X線回折により得られる前記サブゼロ処理後の前記フレッシュマルテンサイトおよび前記焼き戻しマルテンサイトの半値幅をβとしたとき、β/βが0.990~1.010である。
(2)上記(1)に記載のホットスタンプ成形体は、前記化学組成が、質量%で、
Nb:0.001~0.100%、
Ti:0.001~0.200%、
Cr:0.01~1.00%、
Mo:0.01~1.00%、
Co:0.01~5.00%、
Ni:0.01~3.00%、
Cu:0.01~3.00%、
V :0.01~3.00%、
W :0.01~3.00%、
Ca:0.0001~1.0000%、
Mg:0.0001~1.0000%、
REM:0.0001~1.0000%、
Sb:0.01~1.00%、
Zr:0.01~1.00%、
Sn:0.01~1.00%、および
As:0.0001~1.0000%
からなる群から選択される1種または2種以上を含有してもよい。
The gist of the invention is as follows.
(1) The hot stamp molded article according to one embodiment of the present invention has a chemical composition in mass %,
C: 0.08-0.70%,
Si: 0.100-3.000%,
Mn: 0.100-3.000%,
P: 0.1000% or less,
S: 0.0100% or less,
N: 0.0200% or less,
O: 0.1000% or less,
Al: 3.0000% or less,
B: 0.0005-0.0200%,
Nb: 0 to 0.100%,
Ti: 0-0.200%,
Cr: 0-1.00%,
Mo: 0-1.00%,
Co: 0-5.00%,
Ni: 0-3.00%,
Cu: 0-3.00%,
V: 0 to 3.00%,
W: 0-3.00%,
Ca: 0-1.0000%,
Mg: 0 to 1.0000%,
REM: 0-1.0000%,
Sb: 0 to 1.00%,
Zr: 0 to 1.00%,
Contains Sn: 0 to 1.00% and As: 0 to 1.0000%,
The remainder consists of Fe and impurities,
In metallographic structure,
In area%,
Fresh martensite and tempered martensite: 60% or more in total,
Retained austenite: 2-30%,
Bainite: 38% or less, and
Ferrite and pearlite: 2% or less in total,
When the number density of the retained austenite is ρ 0 , and the number density of the retained austenite after sub-zero treatment is ρ S , ρ S0 is 0.95 to 1.01,
The total area ratio of the fresh martensite and the tempered martensite having a grain size of 5 to 10 μm and a GAM value of 2° or more is f0 , and the grain size is 5 to 10 μm, and When the sum of the area ratios of the fresh martensite and the tempered martensite after the sub-zero treatment with a GAM value of 2° or more is f S , f S /f 0 is 0.80 to 1.20. ,
The half-width of the fresh martensite and the tempered martensite obtained by X-ray diffraction is β 0 , and the half-width of the fresh martensite and the tempered martensite after the sub-zero treatment obtained by X-ray diffraction is When β S is set, β S0 is 0.990 to 1.010.
(2) The hot-stamped molded article according to (1) above has the chemical composition in mass %,
Nb: 0.001 to 0.100%,
Ti: 0.001 to 0.200%,
Cr: 0.01-1.00%,
Mo: 0.01-1.00%,
Co: 0.01-5.00%,
Ni: 0.01 to 3.00%,
Cu: 0.01-3.00%,
V: 0.01 to 3.00%,
W: 0.01-3.00%,
Ca: 0.0001-1.0000%,
Mg: 0.0001 to 1.0000%,
REM: 0.0001-1.0000%,
Sb: 0.01 to 1.00%,
Zr: 0.01-1.00%,
Sn: 0.01 to 1.00%, and As: 0.0001 to 1.0000%
It may contain one or more selected from the group consisting of:
 本発明に係る上記態様によれば、高い強度および優れた延性を有するホットスタンプ成形体を提供することができる。 According to the above aspect of the present invention, it is possible to provide a hot-stamped molded article having high strength and excellent ductility.
 本発明者らは、高強度のホットスタンプ成形体において延性を向上する方法について検討した結果、以下の知見を得た。 The present inventors have studied methods for improving ductility in high-strength hot-stamped molded bodies, and have obtained the following findings.
 金属組織に所定量の残留オーステナイトを含ませることで、加工誘起変態により、ホットスタンプ成形体の延性が向上する。また、残留オーステナイトの加工誘起変態が起きる歪みが大きくなるほど、より高い延性向上の効果を得ることができる。加工誘起変態では、残留オーステナイトの中でも安定度の低い残留オーステナイトの変態が始まると、この変態を核として、周囲の残留オーステナイトの変態が次々に促進される。そこで、ホットスタンプ成形体の金属組織において安定度の低い残留オーステナイト量を低減することで、小さい歪みの導入時に加工誘起変態が発生し難くなり、残留オーステナイトの変態が開始する歪みをより大きくすることができ、ホットスタンプ成形体の延性が向上する。 By including a predetermined amount of retained austenite in the metal structure, the ductility of the hot-stamped compact is improved due to deformation-induced transformation. Furthermore, the greater the strain at which deformation-induced transformation of retained austenite occurs, the greater the effect of improving ductility can be obtained. In deformation-induced transformation, when retained austenite, which is less stable among retained austenites, begins to transform, the transformation of surrounding retained austenite is promoted one after another using this transformation as a core. Therefore, by reducing the amount of residual austenite, which has low stability in the metallographic structure of the hot-stamped compact, it becomes difficult for deformation-induced transformation to occur when a small strain is introduced, and the strain at which transformation of retained austenite starts becomes larger. This improves the ductility of the hot stamped product.
 一般的に、フレッシュマルテンサイトおよび焼き戻しマルテンサイトには高密度の転位が導入されているため、塑性変形により生じた転位が蓄積され難い。そのため、フレッシュマルテンサイトおよび焼き戻しマルテンサイトは加工硬化能が低い。金属組織に転位密度の低いフレッシュマルテンサイトおよび焼き戻しマルテンサイトを含ませることで、フレッシュマルテンサイトおよび焼き戻しマルテンサイトの加工硬化能を高めることができ、結果としてホットスタンプ成形体の延性を高めることができる。 In general, fresh martensite and tempered martensite have a high density of dislocations, so dislocations caused by plastic deformation are difficult to accumulate. Therefore, fresh martensite and tempered martensite have low work hardenability. By including fresh martensite and tempered martensite with low dislocation density in the metal structure, the work hardening ability of fresh martensite and tempered martensite can be increased, and as a result, the ductility of the hot stamped compact can be increased. I can do it.
 上記ホットスタンプ成形体を得るためには、所望の条件でホットスタンプを行った後、-50℃以下の温度域まで冷却する、サブゼロ処理を行うことが効果的である。 In order to obtain the above-mentioned hot-stamped molded product, it is effective to perform sub-zero treatment, which involves hot-stamping under desired conditions and then cooling to a temperature range of −50° C. or lower.
 以下、本実施形態に係るホットスタンプ成形体について詳細に説明する。まず、本実施形態に係るホットスタンプ成形体の化学組成の限定理由について説明する。 Hereinafter, the hot stamp molded article according to this embodiment will be described in detail. First, the reason for limiting the chemical composition of the hot-stamped molded article according to this embodiment will be explained.
 なお、以下に記載する「~」を挟んで記載される数値限定範囲には、下限値および上限値がその範囲に含まれる。「未満」、「超」と示す数値には、その値が数値範囲に含まれない。化学組成についての%は全て質量%を示す。 Note that the numerically limited ranges described below with "~" in between include the lower limit and the upper limit. Numerical values indicated as "less than" or "greater than" do not include the value within the numerical range. All percentages regarding chemical composition indicate mass %.
 本実施形態に係るホットスタンプ成形体は、化学組成が、質量%で、C:0.08~0.70%、Si:0.100~3.000%、Mn:0.100~3.000%、P:0.1000%以下、S:0.0100%以下、N:0.0200%以下、O:0.1000%以下、Al:3.0000%以下、B:0.0005~0.0200%、並びに、残部:Feおよび不純物を含有する。
 以下、各元素について説明する。
The hot-stamped molded article according to the present embodiment has a chemical composition in mass %: C: 0.08 to 0.70%, Si: 0.100 to 3.000%, Mn: 0.100 to 3.000. %, P: 0.1000% or less, S: 0.0100% or less, N: 0.0200% or less, O: 0.1000% or less, Al: 3.0000% or less, B: 0.0005 to 0. 0200%, and the remainder: contains Fe and impurities.
Each element will be explained below.
 C:0.08~0.70%
 Cは、ホットスタンプ成形体の強度を向上させる元素である。C含有量が0.08%未満では、ホットスタンプ成形体において所望の強度を得ることができない。そのため、C含有量は0.08%以上とする。C含有量は、好ましくは0.10%以上、0.15%以上または0.20%以上である。
 一方、C含有量が0.70%超では、ホットスタンプ成形体において優れた延性を得ることができない。そのため、C含有量は0.70%以下とする。C含有量は、好ましくは0.65%以下、0.60%以下または0.50%以下である。
C: 0.08-0.70%
C is an element that improves the strength of the hot stamp molded product. If the C content is less than 0.08%, the desired strength cannot be obtained in the hot-stamped molded product. Therefore, the C content is set to 0.08% or more. The C content is preferably 0.10% or more, 0.15% or more, or 0.20% or more.
On the other hand, if the C content exceeds 0.70%, excellent ductility cannot be obtained in the hot stamped product. Therefore, the C content is set to 0.70% or less. The C content is preferably 0.65% or less, 0.60% or less, or 0.50% or less.
 Si:0.100~3.000%
 Siは、固溶強化により、ホットスタンプ成形体の強度を向上する元素である。Si含有量が0.100%未満では、ホットスタンプ成形体において所望の強度を得ることができない。そのため、Si含有量は0.100%以上とする。Si含有量は、好ましくは0.300%以上、0.500%以上、0.800%以上または1.000%以上であり、より好ましくは1.000%超または1.300%以上である。
 一方、Si含有量が3.000%超では、ホットスタンプ成形体において優れた延性を得ることができない。そのため、Si含有量は3.000%以下とする。Si含有量は、好ましくは2.800%以下、2.500%以下または2.000%以下である。
Si: 0.100-3.000%
Si is an element that improves the strength of the hot stamp molded product through solid solution strengthening. If the Si content is less than 0.100%, the desired strength cannot be obtained in the hot-stamped molded product. Therefore, the Si content is set to 0.100% or more. The Si content is preferably 0.300% or more, 0.500% or more, 0.800% or more, or 1.000% or more, more preferably more than 1.000% or 1.300% or more.
On the other hand, if the Si content exceeds 3.000%, excellent ductility cannot be obtained in the hot stamped product. Therefore, the Si content is set to 3.000% or less. The Si content is preferably 2.800% or less, 2.500% or less, or 2.000% or less.
 Mn:0.100~3.000%
 Mnは、鋼の焼入れ性を向上させる元素である。Mn含有量が0.100%未満であると、焼入れ性を十分に向上させることができず、ホットスタンプ成形体の強度が低下する。そのため、Mn含有量は0.100%以上とする。Mn含有量は、好ましくは0.500%以上、1.000%以上、1.200%または1.500%以上である。
 一方、Mn含有量が3.000%超であると、Mn偏析に起因する割れが発生しやすくなり、ホットスタンプ成形体において優れた延性を得ることができない。そのため、Mn含有量は3.000%以下とする。好ましくは、Mn含有量は2.700%以下、2.500%以下、2.300%以下または2.000%以下である。
Mn: 0.100-3.000%
Mn is an element that improves the hardenability of steel. If the Mn content is less than 0.100%, the hardenability cannot be sufficiently improved, and the strength of the hot-stamped product decreases. Therefore, the Mn content is set to 0.100% or more. The Mn content is preferably 0.500% or more, 1.000% or more, 1.200% or 1.500% or more.
On the other hand, if the Mn content exceeds 3.000%, cracks due to Mn segregation are likely to occur, making it impossible to obtain excellent ductility in the hot stamped product. Therefore, the Mn content is set to 3.000% or less. Preferably, the Mn content is 2.700% or less, 2.500% or less, 2.300% or less or 2.000% or less.
 P:0.1000%以下
 Pは、粒界に偏析することで破壊の起点となる元素である。P含有量が0.1000%超であると、破壊の発生が顕著となり、ホットスタンプ成形体の延性が劣化する。そのため、P含有量は0.1000%以下とする。P含有量は、好ましくは0.0500%以下または0.0020%未満である。
 P含有量は0%であってもよいが、P含有量を0.0001%未満に低減すると脱Pコストが大幅に上昇し、経済的に好ましくない。そのため、P含有量は0.0001%以上としてもよい。
P: 0.1000% or less P is an element that segregates at grain boundaries and becomes a starting point for fracture. If the P content exceeds 0.1000%, the occurrence of fracture becomes significant and the ductility of the hot stamped product deteriorates. Therefore, the P content is set to 0.1000% or less. The P content is preferably 0.0500% or less or less than 0.0020%.
The P content may be 0%, but if the P content is reduced to less than 0.0001%, the cost for removing P will increase significantly, which is economically unfavorable. Therefore, the P content may be set to 0.0001% or more.
 S:0.0100%以下
 Sは、鋼中に介在物を形成する元素である。この介在物は破壊の起点となる。S含有量が0.0100%超であると破壊の発生が顕著となり、ホットスタンプ成形体の延性が劣化する。そのため、S含有量は0.0100%以下とする。S含有量は、好ましくは0.0080%以下または0.0050%以下である。
 S含有量は0%であってもよいが、S含有量を0.0001%未満に低減すると脱Sコストが大幅に上昇し、経済的に好ましくない。そのため、S含有量は0.0001%以上としてもよい。
S: 0.0100% or less S is an element that forms inclusions in steel. This inclusion becomes the starting point of destruction. When the S content exceeds 0.0100%, the occurrence of fracture becomes significant and the ductility of the hot-stamped molded product deteriorates. Therefore, the S content is set to 0.0100% or less. The S content is preferably 0.0080% or less or 0.0050% or less.
The S content may be 0%, but if the S content is reduced to less than 0.0001%, the cost for removing S will increase significantly, which is economically unfavorable. Therefore, the S content may be set to 0.0001% or more.
 N:0.0200%以下
 Nは、鋼中に窒化物を形成する元素である。この窒化物は破壊の起点となる。N含有量が0.0200%超であると破壊の発生が顕著となる。そのため、N含有量は0.0200%以下とする。N含有量は、好ましくは0.0100%以下または0.0050%以下である。
 N含有量は0%であってもよいが、0.0001%未満に低減すると脱Nコストが大幅に上昇し、経済的に好ましくない。そのため、N含有量は0.0001%以上としてもよい。
N: 0.0200% or less N is an element that forms nitrides in steel. This nitride becomes a starting point for destruction. If the N content exceeds 0.0200%, the occurrence of destruction becomes significant. Therefore, the N content is set to 0.0200% or less. The N content is preferably 0.0100% or less or 0.0050% or less.
The N content may be 0%, but if it is reduced to less than 0.0001%, the cost for removing N will increase significantly, which is economically unfavorable. Therefore, the N content may be set to 0.0001% or more.
 O:0.1000%以下
 Oは、鋼中に多く含まれると破壊の起点となる粗大な酸化物を形成する元素である。O含有量が0.1000%超であると、破壊の発生が顕著となり、ホットスタンプ成形体の延性が劣化する。そのため、O含有量は0.1000%以下とする。O含有量は、0.0800%以下、0.0500%以下、0.0100%以下または0.0020%未満とすることが好ましい。
 O含有量は0%であってもよいが、溶鋼の脱酸時に微細な酸化物を多数分散させるために、0.0005%以上または0.0010%以上としてもよい。
O: 0.1000% or less O is an element that forms coarse oxides that become the starting point of fracture when contained in large amounts in steel. If the O content exceeds 0.1000%, the occurrence of fracture becomes significant and the ductility of the hot stamped product deteriorates. Therefore, the O content is set to 0.1000% or less. The O content is preferably 0.0800% or less, 0.0500% or less, 0.0100% or less, or less than 0.0020%.
The O content may be 0%, but may be set to 0.0005% or more or 0.0010% or more in order to disperse a large number of fine oxides during deoxidation of molten steel.
 Al:3.0000%以下
 Alは、溶鋼を脱酸して鋼を健全化する(鋼にブローホールなどの欠陥が生じることを抑制する)作用を有する元素である。しかし、Al含有量が3.0000%超であると、鋼中に粗大な酸化物が生成することで、ホットスタンプ成形体の延性が劣化する。そのため、Al含有量は3.0000%以下とする。Al含有量は、好ましくは2.5000%以下、2.0000%以下、1.5000%以下または0.0020%未満である。
 Al含有量は0%であってもよいが、0.0001%以上としてもよい。
Al: 3.0000% or less Al is an element that has the effect of deoxidizing molten steel and making the steel sound (suppressing the occurrence of defects such as blowholes in the steel). However, when the Al content exceeds 3.0000%, coarse oxides are generated in the steel, resulting in deterioration of the ductility of the hot stamped body. Therefore, the Al content is set to 3.0000% or less. The Al content is preferably 2.5000% or less, 2.0000% or less, 1.5000% or less, or less than 0.0020%.
Although the Al content may be 0%, it may be 0.0001% or more.
 B:0.0005~0.0200%
 Bは、鋼の焼き入れ性を向上させる元素である。B含有量が0.0005%未満であると、ホットスタンプ成形体において所望の強度を得ることができない。そのため、B含有量は0.0005%以上とする。B含有量は、好ましくは0.0010%以上または0.0015%以上とする。
 一方、B含有量が0.0200%超であると、ホットスタンプ成形体の延性が劣化する。そのため、B含有量は0.0200%以下とする。B含有量は、好ましくは0.0150%以下、0.0100%以下である。
B: 0.0005-0.0200%
B is an element that improves the hardenability of steel. If the B content is less than 0.0005%, the desired strength cannot be obtained in the hot stamp molded product. Therefore, the B content is set to 0.0005% or more. The B content is preferably 0.0010% or more or 0.0015% or more.
On the other hand, if the B content exceeds 0.0200%, the ductility of the hot-stamped body deteriorates. Therefore, the B content is set to 0.0200% or less. The B content is preferably 0.0150% or less and 0.0100% or less.
 ホットスタンプ成形体の化学組成の残部は、Fe及び不純物であってもよい。不純物としては、鋼原料もしくはスクラップから及び/又は製鋼過程で不可避的に混入し、本実施形態に係るホットスタンプ成形体の特性を阻害しない範囲で許容される元素が例示される。 The remainder of the chemical composition of the hot-stamped molded body may be Fe and impurities. Examples of impurities include elements that are unavoidably mixed in from steel raw materials or scraps and/or during the steel manufacturing process and are allowed within a range that does not impede the properties of the hot-stamped molded product according to the present embodiment.
 ホットスタンプ成形体の化学組成は、Feの一部に代えて、任意元素として、以下の元素を含有してもよい。以下の任意元素を含有しない場合の含有量は0%である。 The chemical composition of the hot-stamped molded body may contain the following elements as optional elements in place of a part of Fe. When the following arbitrary elements are not included, the content is 0%.
 Nb:0.001~0.100%
 Nbは、鋼中に炭窒化物を形成して、析出強化によりホットスタンプ成形体の強度を向上する元素である。この効果を確実に得る場合、Nb含有量は0.001%以上とすることが好ましい。
 一方、Nb含有量が0.100%超であると、鋼中に多量に炭窒化物が生成してホットスタンプ成形体の延性が劣化する。そのため、Nb含有量は0.100%以下とする。
Nb: 0.001-0.100%
Nb is an element that forms carbonitrides in steel and improves the strength of hot stamped products through precipitation strengthening. To ensure this effect, the Nb content is preferably 0.001% or more.
On the other hand, if the Nb content exceeds 0.100%, a large amount of carbonitrides will be generated in the steel, resulting in deterioration of the ductility of the hot stamped body. Therefore, the Nb content is set to 0.100% or less.
 Ti:0.001~0.200%
 Tiは、鋼中に炭窒化物を形成して、析出強化によりホットスタンプ成形体の強度を向上する元素である。この効果を確実に得る場合、Ti含有量は0.001%以上とすることが好ましい。
 一方、Ti含有量が0.200%超であると、鋼中に多量に炭窒化物が生成してホットスタンプ成形体の延性が劣化する。そのため、Ti含有量は0.200%以下とする。
Ti: 0.001-0.200%
Ti is an element that forms carbonitrides in steel and improves the strength of hot stamped products through precipitation strengthening. To ensure this effect, the Ti content is preferably 0.001% or more.
On the other hand, if the Ti content exceeds 0.200%, a large amount of carbonitrides will be generated in the steel, resulting in deterioration of the ductility of the hot stamped body. Therefore, the Ti content is set to 0.200% or less.
 Cr:0.01~1.00%
 Crは、ホットスタンプ前の加熱時に旧オーステナイト粒に固溶することで、ホットスタンプ成形体の強度を高める元素である。この効果を確実に得る場合、Cr含有量は0.01%以上とすることが好ましい。
 一方、Cr含有量が1.00%超であると、ホットスタンプ成形体の延性が劣化する。そのため、Cr含有量は1.00%以下とする。
Cr:0.01~1.00%
Cr is an element that increases the strength of the hot-stamped molded product by forming a solid solution in the prior austenite grains during heating before hot-stamping. To ensure this effect, the Cr content is preferably 0.01% or more.
On the other hand, if the Cr content is more than 1.00%, the ductility of the hot-stamped body will deteriorate. Therefore, the Cr content is set to 1.00% or less.
 Mo:0.01~1.00%
 Moは、ホットスタンプ前の加熱時に旧オーステナイト粒に固溶することで、ホットスタンプ成形体の強度を高める元素である。この効果を確実に得る場合、Mo含有量は0.01%以上とすることが好ましい。
 一方、Mo含有量が1.00%超であると、ホットスタンプ成形体の延性が劣化する。そのため、Mo含有量は1.00%以下とする。
Mo: 0.01~1.00%
Mo is an element that increases the strength of the hot-stamped molded product by forming a solid solution in the prior austenite grains during heating before hot-stamping. To ensure this effect, the Mo content is preferably 0.01% or more.
On the other hand, if the Mo content exceeds 1.00%, the ductility of the hot-stamped compact will deteriorate. Therefore, the Mo content is set to 1.00% or less.
 Co:0.01~5.00%
 Coは、固溶強化により、ホットスタンプ成形体の強度を向上させる元素である。この効果を確実に得る場合、Co含有量は0.01%以上とすることが好ましい。
 一方、多量に含有させても上記効果は飽和するため、Co含有量は5.00%以下とする。
Co:0.01~5.00%
Co is an element that improves the strength of the hot stamp molded product through solid solution strengthening. To ensure this effect, the Co content is preferably 0.01% or more.
On the other hand, since the above effect is saturated even if it is contained in a large amount, the Co content is set to 5.00% or less.
 Ni:0.01~3.00%
 Niは、ホットスタンプ前の加熱時に旧オーステナイト粒に固溶することで、ホットスタンプ成形体の強度を高める元素である。この効果を確実に得る場合、Ni含有量は0.01%以上とすることが好ましい。
 一方、多量に含有させても上記効果は飽和するため、Ni含有量は3.00%以下とすることが好ましい。
Ni: 0.01-3.00%
Ni is an element that increases the strength of the hot-stamped molded product by forming a solid solution in the prior austenite grains during heating before hot-stamping. To ensure this effect, the Ni content is preferably 0.01% or more.
On the other hand, since the above effect is saturated even if Ni is contained in a large amount, it is preferable that the Ni content is 3.00% or less.
 Cu:0.01~3.00%
 Cuは、ホットスタンプ前の加熱時に旧オーステナイト粒に固溶することで、ホットスタンプ成形体の強度を高める元素である。この効果を確実に得る場合、Cu含有量は0.01%以上とすることが好ましい。
 一方、多量に含有させても上記効果は飽和するため、Cu含有量は3.00%以下とすることが好ましい。
Cu: 0.01~3.00%
Cu is an element that increases the strength of the hot-stamped molded product by solidly dissolving in the prior austenite grains during heating before hot-stamping. To ensure this effect, the Cu content is preferably 0.01% or more.
On the other hand, since the above effects are saturated even if Cu is contained in a large amount, the Cu content is preferably 3.00% or less.
 V:0.01~3.00%
 Vは、鋼中に炭窒化物を形成して、析出強化によりホットスタンプ成形体の強度を向上する元素である。この効果を確実に得る場合、V含有量は0.01%以上とすることが好ましい。
 一方、V含有量が3.00%超であると、鋼中に多量に炭窒化物が生成してホットスタンプ成形体の延性が劣化する。そのため、V含有量は3.00%以下とする。
V:0.01~3.00%
V is an element that forms carbonitrides in the steel and improves the strength of the hot stamped product through precipitation strengthening. To ensure this effect, the V content is preferably 0.01% or more.
On the other hand, if the V content exceeds 3.00%, a large amount of carbonitrides will be generated in the steel, resulting in deterioration of the ductility of the hot stamped body. Therefore, the V content is set to 3.00% or less.
 W:0.01~3.00%
 Wは、ホットスタンプ成形体の強度を向上する元素である。この効果を確実に得る場合、W含有量は0.01%以上とすることが好ましい。
 一方、多量に含有させても上記効果は飽和するため、W含有量は3.00%以下とする。
W: 0.01~3.00%
W is an element that improves the strength of the hot stamp molded product. To ensure this effect, the W content is preferably 0.01% or more.
On the other hand, since the above effect is saturated even if it is contained in a large amount, the W content is set to 3.00% or less.
 Ca:0.0001~1.0000%
 Caは、破壊の起点となる酸化物の生成を抑制する元素である。この効果を確実に得る場合、Ca含有量は0.0001%以上とすることが好ましい。
 一方、多量に含有させても上記効果は飽和するため、Ca含有量は1.0000%以下とする。
Ca: 0.0001-1.0000%
Ca is an element that suppresses the formation of oxides that become the starting point of destruction. To ensure this effect, the Ca content is preferably 0.0001% or more.
On the other hand, since the above effect is saturated even if it is contained in a large amount, the Ca content is set to 1.0000% or less.
 Mg:0.0001~1.0000%
 Mgは、溶鋼中に酸化物や硫化物を形成して、粗大なMnSの形成を抑制し、微細な酸化物を多数分散させ、金属組織を微細化する効果を有する。これらの効果を確実に得る場合、Mg含有量は0.0001%以上とすることが好ましい。
 一方、Mg含有量が1.0000%超であると、鋼中の酸化物が増加し、ホットスタンプ成形体の延性が劣化する。そのため、Mg含有量は1.0000%以下とする。
Mg: 0.0001-1.0000%
Mg forms oxides and sulfides in molten steel, suppresses the formation of coarse MnS, disperses many fine oxides, and has the effect of refining the metal structure. To ensure these effects, the Mg content is preferably 0.0001% or more.
On the other hand, if the Mg content exceeds 1.0000%, oxides in the steel increase and the ductility of the hot stamped product deteriorates. Therefore, the Mg content is set to 1.0000% or less.
 REM:0.0001~1.0000%
 REMは、破壊の起点となる酸化物の生成を抑制する元素である。この効果を確実に得る場合、REM含有量は0.0001%以上とすることが好ましい。
 一方、多量に含有させても上記効果は飽和するため、REM含有量は1.0000%以下とする。
 なお、本実施形態においてREMとは、Sc、Y及びランタノイドからなる合計17元素を指し、REMの含有量とはこれらの元素の合計含有量を指す。
REM: 0.0001-1.0000%
REM is an element that suppresses the formation of oxides that become the starting point of destruction. To ensure this effect, the REM content is preferably 0.0001% or more.
On the other hand, since the above effect is saturated even if it is contained in a large amount, the REM content is set to 1.0000% or less.
In this embodiment, REM refers to a total of 17 elements consisting of Sc, Y, and lanthanoids, and the content of REM refers to the total content of these elements.
 Sb:0.01~1.00%
 Sbは、破壊の起点となる酸化物の生成を抑制することで、ホットスタンプ成形体の延性を向上する元素である。この効果を確実に得る場合、Sb含有量は0.01%以上とすることが好ましい。
 一方、多量に含有させても上記効果は飽和するため、Sb含有量は1.00%以下とする。
Sb: 0.01-1.00%
Sb is an element that improves the ductility of the hot-stamped compact by suppressing the formation of oxides that become a starting point for fracture. To ensure this effect, the Sb content is preferably 0.01% or more.
On the other hand, since the above effect is saturated even if it is contained in a large amount, the Sb content is set to 1.00% or less.
 Zr:0.01~1.00%
 Zrは、介在物制御、特に介在物の微細分散化に寄与し、ホットスタンプ成形体の延性を高める元素である。この効果を確実に得る場合、Zr含有量は0.01%以上とすることが好ましい。
 一方、Zrを多量に含有すると、表面性状が顕著に劣化する場合がある。そのため、Zr含有量は1.00%以下とする。
Zr: 0.01~1.00%
Zr is an element that contributes to inclusion control, particularly to fine dispersion of inclusions, and increases the ductility of the hot-stamped compact. To ensure this effect, the Zr content is preferably 0.01% or more.
On the other hand, if a large amount of Zr is contained, the surface quality may deteriorate significantly. Therefore, the Zr content is set to 1.00% or less.
 Sn:0.01~1.00%
 Snは、破壊の起点となる酸化物の生成を抑制し、ホットスタンプ成形体の延性の向上に寄与する元素である。この効果を確実に得る場合、Sn含有量は0.01%以上とすることが好ましい。
 一方、多量に含有させても上記効果は飽和するため、Sn含有量は1.00%以下とする。
Sn: 0.01-1.00%
Sn is an element that suppresses the formation of oxides that become a starting point of fracture and contributes to improving the ductility of the hot-stamped compact. To ensure this effect, the Sn content is preferably 0.01% or more.
On the other hand, since the above effect is saturated even if it is contained in a large amount, the Sn content is set to 1.00% or less.
 As:0.0001~1.0000%
 Asは、オーステナイト単相化温度を低下させることにより、旧オーステナイト粒を細粒化させて、ホットスタンプ成形体の延性の向上に寄与する元素である。この効果を確実に得る場合、As含有量は0.0001%以上とすることが好ましい。
 一方、多量に含有させても上記効果は飽和するため、As含有量は1.0000%以下とする。
As: 0.0001-1.0000%
As is an element that contributes to improving the ductility of the hot-stamped compact by reducing the austenite single-phase temperature, thereby making the prior austenite grains finer. To ensure this effect, the As content is preferably 0.0001% or more.
On the other hand, since the above effect is saturated even if it is contained in a large amount, the As content is set to 1.0000% or less.
 上述したホットスタンプ成形体の化学組成は、一般的な分析方法によって測定すればよい。例えば、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用い、Oは不活性ガス融解-非分散型赤外線吸収法を用いて測定すればよい。
 ホットスタンプ成形体が表面にめっき層を備える場合は、機械研削によりめっき層を除去してから化学組成の分析を行えばよい。
The chemical composition of the hot-stamped molded article described above may be measured by a general analytical method. For example, it may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). Note that C and S may be measured using a combustion-infrared absorption method, N using an inert gas melting-thermal conductivity method, and O using an inert gas melting-non-dispersive infrared absorption method.
When the hot-stamped molded body has a plating layer on its surface, the chemical composition may be analyzed after removing the plating layer by mechanical grinding.
 次に、本実施形態に係るホットスタンプ成形体の金属組織について説明する。
 本実施形態に係るホットスタンプ成形体は、金属組織において、面積%で、フレッシュマルテンサイトおよび焼き戻しマルテンサイト:合計で60%以上、残留オーステナイト:2~30%、ベイナイト:38%以下、並びに、フェライトおよびパーライト:合計で2%以下であり、前記残留オーステナイトの個数密度をρとし、サブゼロ処理後の前記残留オーステナイトの個数密度をρとしたとき、ρ/ρが0.95~1.01であり、粒径が5~10μmであり、且つ、GAM値が2°以上である前記フレッシュマルテンサイトおよび前記焼き戻しマルテンサイトの面積率の合計をfとし、粒径が5~10μmであり、且つ、GAM値が2°以上である前記サブゼロ処理後の前記フレッシュマルテンサイトおよび前記焼き戻しマルテンサイトの面積率の合計をfとしたとき、f/fが0.80~1.20であり、X線回折により得られる、前記フレッシュマルテンサイトおよび前記焼き戻しマルテンサイトの半値幅をβとし、X線回折により得られる、前記サブゼロ処理後の前記フレッシュマルテンサイトおよび前記焼き戻しマルテンサイトの半値幅をβとしたとき、β/βが0.990~1.010である。
Next, the metallographic structure of the hot-stamped molded body according to this embodiment will be explained.
The hot-stamped molded article according to the present embodiment has, in terms of area %, fresh martensite and tempered martensite: 60% or more in total, retained austenite: 2 to 30%, bainite: 38% or less, and Ferrite and pearlite: 2% or less in total, and when the number density of the retained austenite is ρ 0 and the number density of the retained austenite after sub-zero treatment is ρ S , ρ S0 is 0.95 to 0. 1.01, the grain size is 5 to 10 μm, and the GAM value is 2° or more. The total area ratio of the fresh martensite and the tempered martensite is f 0 , and the grain size is 5 to 10 μm. When the sum of the area ratios of the fresh martensite and the tempered martensite after the sub-zero treatment which are 10 μm and have a GAM value of 2° or more is fS , fS / f0 is 0.80. ~1.20, and the half-width of the fresh martensite and the tempered martensite obtained by X-ray diffraction is β 0 , and the fresh martensite after the sub-zero treatment and the tempered martensite obtained by X-ray diffraction are When the half width of tempered martensite is β S , β S0 is 0.990 to 1.010.
 本実施形態では、表面から板厚1/4位置(表面から板厚の1/8深さ~表面から板厚の3/8深さの領域)における金属組織を規定する。その理由は、この位置における金属組織が、鋼板の代表的な金属組織を示すからである。
 なお、ここでいう表面とは、ホットスタンプ成形体が表面にめっき層を備える場合には、めっき層と母材鋼板との界面のことをいう。
In this embodiment, the metal structure is defined at a position of 1/4 of the plate thickness from the surface (an area from 1/8 depth of the plate thickness from the surface to 3/8 depth of the plate thickness from the surface). The reason is that the metal structure at this position shows a typical metal structure of a steel plate.
In addition, the surface here refers to the interface between the plating layer and the base steel plate when the hot-stamped molded body has a plating layer on the surface.
 また、ここでいうサブゼロ処理とは、組織検査におけるサブゼロ処理のことをいい、具体的には以下の処理のことをいう。なお、後述する製造方法におけるサブゼロ処理とは異なるものである。
 ホットスタンプ成形体の温度を室温(20~28℃)とするために、20~28℃の温度域にて60分以上保持する。その後、10℃/s以上の平均冷却速度で-180~-196℃の温度域まで冷却し、当該温度域にて20~40分間保持する。その後、大気中に放置して室温まで温度を上昇させる。
 上記温度域まで冷却して保持する方法としては、例えば、ホットスタンプ成形体を液体窒素に浸漬する方法が挙げられる。
Furthermore, the subzero processing herein refers to subzero processing in tissue examination, and specifically refers to the following processing. Note that this is different from sub-zero processing in the manufacturing method described later.
In order to bring the temperature of the hot-stamped molded product to room temperature (20-28°C), it is held in the temperature range of 20-28°C for 60 minutes or more. Thereafter, it is cooled to a temperature range of -180 to -196°C at an average cooling rate of 10°C/s or more, and held in the temperature range for 20 to 40 minutes. After that, it is left in the air and the temperature is raised to room temperature.
As a method for cooling and maintaining the temperature within the above temperature range, for example, a method of immersing the hot-stamped molded body in liquid nitrogen can be mentioned.
 フレッシュマルテンサイトおよび焼き戻しマルテンサイトの面積率:合計で60%以上
 フレッシュマルテンサイトおよび焼き戻しマルテンサイトの面積率が合計で60%未満であると、ホットスタンプ成形体において所望の強度を得ることができない。そのため、フレッシュマルテンサイトおよび焼き戻しマルテンサイトの面積率は合計で60%以上とする。好ましくは65%超、70%以上、80%以上または90%以上である。
 上限は特に規定しないが、残留オーステナイトの面積率との関係から、98%以下としてもよい。
 なお、フレッシュマルテンサイトおよび焼き戻しマルテンサイトの両方を含んでいる必要はなく、いずれか1種のみを含み、その面積率が60%以上であってもよい。
Area ratio of fresh martensite and tempered martensite: 60% or more in total When the area ratio of fresh martensite and tempered martensite is less than 60% in total, it is difficult to obtain the desired strength in the hot-stamped molded product. Can not. Therefore, the total area ratio of fresh martensite and tempered martensite is 60% or more. Preferably it is more than 65%, 70% or more, 80% or more, or 90% or more.
Although the upper limit is not particularly specified, it may be set to 98% or less in view of the relationship with the area ratio of retained austenite.
Note that it is not necessary to contain both fresh martensite and tempered martensite, and it is also possible to contain only one of them, and the area ratio thereof may be 60% or more.
 残留オーステナイトの面積率:2~30%
 残留オーステナイトの面積率が2%未満であると、ホットスタンプ成形体において所望の延性を得ることができない。そのため、残留オーステナイトの面積率は2%以上とする。残留オーステナイトの面積率は、好ましくは5%以上、10%以上または12%以上である。
 一方、残留オーステナイトの面積率が30%超であると、ホットスタンプ成形体において所望の強度を得ることができない。そのため、残留オーステナイトの面積率は30%以下とする。好ましくは25%以下、20%以下または15%以下である。
Area ratio of retained austenite: 2 to 30%
If the area ratio of retained austenite is less than 2%, desired ductility cannot be obtained in the hot stamped product. Therefore, the area ratio of retained austenite is set to 2% or more. The area ratio of retained austenite is preferably 5% or more, 10% or more, or 12% or more.
On the other hand, if the area ratio of retained austenite exceeds 30%, desired strength cannot be obtained in the hot-stamped molded product. Therefore, the area ratio of retained austenite is set to 30% or less. Preferably it is 25% or less, 20% or less, or 15% or less.
 ベイナイトの面積率:38%以下
 ベイナイトの面積率が38%超であると、ホットスタンプ成形体において所望の強度を得ることができない。そのため、ベイナイトの面積率は38%以下とする。ベイナイトの面積率は、好ましくは30%以下、20%以下、15%以下、10%以下または5%以下であり、より好ましくは0%である。
Area ratio of bainite: 38% or less If the area ratio of bainite exceeds 38%, desired strength cannot be obtained in the hot-stamped molded product. Therefore, the area ratio of bainite is set to 38% or less. The area ratio of bainite is preferably 30% or less, 20% or less, 15% or less, 10% or less, or 5% or less, and more preferably 0%.
 フェライトおよびパーライト:合計で2%以下
 フェライトおよびパーライトの面積率が合計で2%超であると、ホットスタンプ成形体において所望の強度および延性を得ることができない。そのため、フェライトおよびパーライトの面積率は合計で2%以下とする。フェライトおよびパーライトの面積率は、好ましくは1%以下であり、より好ましくは0%である。
Ferrite and pearlite: 2% or less in total If the total area ratio of ferrite and pearlite exceeds 2%, desired strength and ductility cannot be obtained in the hot-stamped molded product. Therefore, the total area ratio of ferrite and pearlite is 2% or less. The area ratio of ferrite and pearlite is preferably 1% or less, more preferably 0%.
 ホットスタンプ成形体の各組織の面積率は以下の方法により得る。
 ホットスタンプ成形体の端面から50mm以上離れた任意の位置(この位置からサンプルを採取できない場合は、端部を避けた位置)から板厚断面が観察できるようにサンプルを切り出す。サンプルの大きさは、測定装置にもよるが、板厚方向と垂直方向に10mm程度観察できる大きさとする。
The area ratio of each structure of the hot stamp molded body is obtained by the following method.
A sample is cut out from an arbitrary position 50 mm or more away from the end face of the hot-stamped molded body (if a sample cannot be taken from this position, a position avoiding the end) so that the plate thickness cross section can be observed. Although the size of the sample depends on the measuring device, it should be large enough to allow observation of about 10 mm in the direction perpendicular to the plate thickness direction.
 サンプルの板厚断面を観察面として鏡面研磨した後、撮影視野を特定するため、表面から板厚の1/8深さ~表面から板厚の3/8深さの領域について、マイクロビッカース硬度計を用いて、圧痕荷重100gfで圧痕を10か所打つ。次に、観察面表面をアセチルアセトン系電解液に浸漬し、電解エッチングを行う。これにより、組織中に含まれる鉄系炭化物の形態を鮮明化させるとともに、結晶粒界のコントラストを明瞭にする。 After mirror-polishing the cross-section of the sample plate as an observation surface, in order to specify the photographic field of view, measure the area from 1/8 depth of the plate thickness from the surface to 3/8 depth of the plate thickness from the surface using a micro Vickers hardness tester. Make impressions at 10 locations using an indentation load of 100 gf. Next, the observation surface is immersed in an acetylacetone-based electrolytic solution to perform electrolytic etching. As a result, the morphology of iron-based carbides contained in the structure becomes clearer, and the contrast of grain boundaries becomes clearer.
 次に、2次電子検出器を装備した電界放射型走査型電子顕微鏡(FE-SEM:Field Emission Scanning Electron Microsope)を用いて、圧痕を打った10か所の撮影視野について、5000倍の倍率で2次電子像を撮影する。得られた撮影写真において、フェライトと、パーライトと、フェライトおよびパーライト以外の組織とを判別する。フェライトと判別された領域の面積率の平均値を算出することで、フェライトの面積率を得る。同様に、パーライトと判別された領域の面積率の平均値を算出することで、パーライトの面積率を得る。
 なお、塊状の結晶粒であって、組織の内部にラス等の下部組織を含まない組織をフェライトとみなす。板状のフェライトとFe系炭化物とが層状に重なっている組織をパーライトとみなす。
Next, using a field emission scanning electron microscope (FE-SEM) equipped with a secondary electron detector, the field of view of the 10 locations where the indentation was made was imaged at a magnification of 5000x. Take a secondary electron image. In the obtained photographs, ferrite, pearlite, and structures other than ferrite and pearlite are distinguished. The area ratio of ferrite is obtained by calculating the average value of the area ratio of regions determined to be ferrite. Similarly, the area ratio of pearlite is obtained by calculating the average value of the area ratio of regions determined to be pearlite.
Note that a structure that is a massive crystal grain and does not include a substructure such as a lath inside the structure is regarded as ferrite. A structure in which plate-shaped ferrite and Fe-based carbide are layered is considered to be pearlite.
 同じ撮影視野について、10000倍の倍率で2次電子像を撮影する。得られた撮影写真において、各組織を以下のように判別する。
 ラス状の結晶粒の集合であり、組織の内部に長径が20nm以上かつ異なる方向に伸長したFe系炭化物を含む組織を焼き戻しマルテンサイトとみなす。
 ラス状の結晶粒の集合であり、組織の内部に長径20nm以上のFe系炭化物を含まない組織のうち、ラス間にFe系炭化物が析出している組織、およびラス内部にFe炭化物が析出しており、そのFe系炭化物が同一の方向に伸長している組織をベイナイトとみなす。
 ここで、同一方向に伸長しているFe系炭化物とは、Fe系炭化物の伸長方向の差異が5°以内であるものをいう。
 焼き戻しマルテンサイトまたはベイナイトと判別された領域の面積率を算出することで、焼き戻しマルテンサイトの面積率およびベイナイトの面積率を得る。
A secondary electron image is photographed at a magnification of 10,000 times for the same photographic field of view. In the obtained photographs, each tissue is identified as follows.
A structure that is an aggregation of lath-shaped crystal grains and contains Fe-based carbides with a major axis of 20 nm or more and extending in different directions inside the structure is considered to be tempered martensite.
Among the structures that are a collection of lath-shaped crystal grains and do not contain Fe-based carbides with a major axis of 20 nm or more inside the structure, there are structures in which Fe-based carbides are precipitated between the laths, and structures in which Fe-based carbides are precipitated inside the laths. A structure in which Fe-based carbides extend in the same direction is regarded as bainite.
Here, Fe-based carbide extending in the same direction refers to one in which the difference in the elongation direction of the Fe-based carbide is within 5°.
By calculating the area ratio of the region determined to be tempered martensite or bainite, the area ratio of tempered martensite and the area ratio of bainite are obtained.
 上記撮影写真を得たときと同じ撮影視野における、残留オーステナイトの面積率を測定する。上記サンプルの観察面を#600から#1500の炭化珪素ペーパーを使用して研磨した後、粒度1~6μmのダイヤモンドパウダーをアルコール等の希釈液や純水に分散させた液体を使用して鏡面に仕上げる。次に、室温においてアルカリ性溶液を含まないコロイダルシリカを用いて8分間研磨し、サンプルの表層に導入されたひずみを除去する。上記撮影写真を得たときと同じ撮影視野において、0.4μmの測定間隔で電子後方散乱回折法により測定して結晶方位情報を得る。測定には、サーマル電界放射型走査電子顕微鏡(JEOL製JSM-7001F)とEBSD検出器(TSL製DVC5型検出器)とで構成されたEBSD解析装置を用いる。この際、EBSD解析装置内の真空度は9.6×10-5Pa以下、加速電圧は25kV、照射電流レベルは14、電子線の照射レベルは62、動作距離は15mm、サンプルの傾斜角度は70°とする。 The area ratio of retained austenite is measured in the same photographic field of view as when the photographed photograph was taken. After polishing the observation surface of the above sample using #600 to #1500 silicon carbide paper, polish it to a mirror surface using a liquid made by dispersing diamond powder with a particle size of 1 to 6 μm in diluted liquid such as alcohol or pure water. Finish. Next, the sample is polished for 8 minutes using colloidal silica without an alkaline solution at room temperature to remove the strain introduced into the surface layer of the sample. Crystal orientation information is obtained by measuring by electron backscatter diffraction at a measurement interval of 0.4 μm in the same photographic field of view as when the photograph was taken. For the measurement, an EBSD analysis device consisting of a thermal field emission scanning electron microscope (JSM-7001F manufactured by JEOL) and an EBSD detector (DVC5 type detector manufactured by TSL) is used. At this time, the degree of vacuum in the EBSD analyzer was 9.6 × 10 -5 Pa or less, the acceleration voltage was 25 kV, the irradiation current level was 14, the electron beam irradiation level was 62, the operating distance was 15 mm, and the sample inclination angle was The angle shall be 70°.
 得られた結晶方位情報から、EBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」に搭載された「Phase Map」機能を用いて、結晶構造がfccである領域を残留オーステナイトと判断する。この残留オーステナイトの領域の面積率を算出することで、残留オーステナイトの面積率を得る。
 100%から、上述の方法により得たフェライト、パーライト、焼き戻しマルテンサイト、ベイナイトおよび残留オーステナイトの面積率を差し引くことで、フレッシュマルテンサイトの面積率を得る。
From the obtained crystal orientation information, using the "Phase Map" function installed in the software "OIM Analysis (registered trademark)" attached to the EBSD analyzer, a region whose crystal structure is fcc is determined to be retained austenite. By calculating the area ratio of this retained austenite region, the area ratio of retained austenite is obtained.
The area ratio of fresh martensite is obtained by subtracting the area ratio of ferrite, pearlite, tempered martensite, bainite, and retained austenite obtained by the above method from 100%.
 ρ/ρ:0.95~1.01
 本実施形態に係るホットスタンプ成形体は、安定度の低い残留オーステナイト量が低減されている。そのため、上述の組織検査におけるサブゼロ処理を行っても、残留オーステナイト量がほとんど変化しない。
ρ S0 : 0.95 to 1.01
In the hot-stamped molded article according to this embodiment, the amount of retained austenite, which has low stability, is reduced. Therefore, even if the subzero treatment in the above-mentioned microstructure inspection is performed, the amount of retained austenite hardly changes.
 残留オーステナイトの個数密度をρとし、上述した組織検査におけるサブゼロ処理後の残留オーステナイトの個数密度をρとしたとき、ρ/ρが0.95未満であることは、安定度の低い残留オーステナイト量が多かったため、残留オーステナイト量が減少したことを示す。安定度の低い残留オーステナイト量が多いと、ホットスタンプ成形体において所望の延性を得ることができない。そのため、ρ/ρは0.95以上とする。ρ/ρは、好ましくは0.96以上、0.97以上または0.98以上である。
 一般的に、サブゼロ処理によって残留オーステナイト量は増加しないため、ρ/ρは1.01以下となる。
When the number density of retained austenite is ρ 0 and the number density of retained austenite after sub-zero treatment in the above-mentioned microstructure inspection is ρ S , ρ S0 is less than 0.95, which indicates low stability. This indicates that the amount of retained austenite decreased because the amount of retained austenite was large. If the amount of residual austenite with low stability is large, desired ductility cannot be obtained in the hot stamped product. Therefore, ρ S0 is set to 0.95 or more. ρ S0 is preferably 0.96 or more, 0.97 or more, or 0.98 or more.
Generally, the amount of retained austenite does not increase due to sub-zero treatment, so ρ S0 becomes 1.01 or less.
 ρおよびρは以下の方法により得る。
 上述した各組織の面積率を測定するときと同様の方法により、ホットスタンプ成形体から採取したサンプルについて、観察領域内の残留オーステナイトを特定する。観察領域内の残留オーステナイトの個数を求め、その個数を観察領域の面積で除することで、残留オーステナイトの個数密度ρを得る。
 同様の方法により、上述した組織検査におけるサブゼロ処理後のホットスタンプ成形体について測定を行うことで、サブゼロ処理後の残留オーステナイトの個数密度ρを得る。
ρ S and ρ 0 are obtained by the following method.
The retained austenite in the observation area is identified for the sample taken from the hot-stamped molded body using the same method as when measuring the area ratio of each structure described above. The number of retained austenites in the observation area is determined and the number is divided by the area of the observation area to obtain the number density ρ 0 of retained austenite.
The number density ρ S of retained austenite after the sub-zero treatment is obtained by measuring the hot-stamped molded body after the sub-zero treatment in the above-described microstructure inspection using a similar method.
 f/f:0.80~1.20
 一般的に、ホットスタンプ成形体にサブゼロ処理を施すと、残留オーステナイトがフレッシュマルテンサイトおよび焼き戻しマルテンサイトに変態することで、フレッシュマルテンサイトおよび焼き戻しマルテンサイト量が増加する。
fS / f0 : 0.80 to 1.20
Generally, when a hot-stamped molded body is subjected to sub-zero treatment, retained austenite transforms into fresh martensite and tempered martensite, thereby increasing the amount of fresh martensite and tempered martensite.
 粒径が5~10μmであり、且つ、GAM値が2°以上であるフレッシュマルテンサイトおよび焼き戻しマルテンサイトの面積率の合計をfとし、粒径が5~10μmであり、且つ、GAM値が2°以上である上述した組織検査におけるサブゼロ処理後のフレッシュマルテンサイトおよび焼き戻しマルテンサイトの面積率の合計をfとしたとき、f/fが1.20超であることは、残留オーステナイトから変態したフレッシュマルテンサイトおよび焼き戻しマルテンサイト量が多いことを示す。上述のサブゼロ処理によりフレッシュマルテンサイトおよび焼き戻しマルテンサイトに変態する残留オーステナイトは、安定度が低い残留オーステナイトである。つまり、f/fが1.20超であることは、安定度の低い残留オーステナイト量が多かったことを示す。安定度の低い残留オーステナイト量が多いと、ホットスタンプ成形体において所望の延性を得ることができない。そのため、f/fは1.20以下とする。f/fは、好ましくは1.15以下、1.10以下、1.05以下または1.01以下である。 The sum of the area ratios of fresh martensite and tempered martensite with a grain size of 5 to 10 μm and a GAM value of 2° or more is f 0 , and a grain size of 5 to 10 μm and a GAM value is 2° or more. When the sum of the area ratios of fresh martensite and tempered martensite after sub-zero treatment in the above-mentioned microstructure inspection is f S , f S /f 0 is more than 1.20. This shows that the amount of fresh martensite and tempered martensite transformed from retained austenite is large. The retained austenite transformed into fresh martensite and tempered martensite by the above-mentioned sub-zero treatment is retained austenite with low stability. In other words, f S /f 0 exceeding 1.20 indicates that the amount of retained austenite with low stability was large. If the amount of residual austenite with low stability is large, desired ductility cannot be obtained in the hot stamped product. Therefore, f S /f 0 is set to 1.20 or less. f S /f 0 is preferably 1.15 or less, 1.10 or less, 1.05 or less, or 1.01 or less.
 一方、f/fが0.80未満であることは、上述のサブゼロ処理によりフレッシュマルテンサイトおよび焼き戻しマルテンサイトの転位が熱収縮による圧縮によって対消滅したことを示す。つまり、転位密度の高いフレッシュマルテンサイトおよび焼き戻しマルテンサイト量が多かったことを示す。転位密度の高いフレッシュマルテンサイトおよび焼き戻しマルテンサイトは加工硬化能が低いため、これらの量が多いとホットスタンプ成形体において所望の延性を得ることができない。そのため、f/fは0.80以上とする。f/fは、好ましくは0.85以上、0.90以上0.95以上、0.97以上、0.98以上または0.99以上である。 On the other hand, f S /f 0 of less than 0.80 indicates that the dislocations in fresh martensite and tempered martensite were annihilated by compression due to thermal contraction due to the above-described sub-zero treatment. In other words, the amount of fresh martensite and tempered martensite with high dislocation density was large. Fresh martensite and tempered martensite, which have a high dislocation density, have low work hardening ability, so if their amounts are large, it is impossible to obtain the desired ductility in the hot-stamped compact. Therefore, f S /f 0 is set to 0.80 or more. f S /f 0 is preferably 0.85 or more, 0.90 or more, 0.95 or more, 0.97 or more, 0.98 or more, or 0.99 or more.
 ここで、粒径が5~10μmであり、且つ、GAM値が2°以上であるフレッシュマルテンサイトおよび焼き戻しマルテンサイトについて規定するのは、粒径が5μm未満、あるいは、GAM値が2°未満であるフレッシュマルテンサイトおよび焼き戻しマルテンサイトは、EBSD解析により精度よく測定ができない場合があるためである。また、粒径が10μm超であるフレッシュマルテンサイトおよび焼き戻しマルテンサイトは、それらが有する転位密度が小さく、サブゼロ処理による組織変化が起こりにくいために、ホットスタンプ成形体の延性に影響を及ぼさないためである。 Here, fresh martensite and tempered martensite with a grain size of 5 to 10 μm and a GAM value of 2° or more are stipulated if the grain size is less than 5 μm or the GAM value is less than 2°. This is because fresh martensite and tempered martensite may not be accurately measured by EBSD analysis. In addition, fresh martensite and tempered martensite with a grain size of more than 10 μm have a low dislocation density and are unlikely to undergo structural changes due to sub-zero treatment, so they do not affect the ductility of the hot stamped compact. It is.
 fおよびfは以下の方法により得る。
 上述した各組織の面積率を測定するときと同様の方法により、ホットスタンプ成形体から採取したサンプルについて、観察領域内のフレッシュマルテンサイトおよび焼き戻しマルテンサイトを特定する。観察領域内の各フレッシュマルテンサイトおよび各焼き戻しマルテンサイトについて、EBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」に搭載された「Grain Size」機能を用いて粒径を算出する。これらにより、粒径が5~10μmであるフレッシュマルテンサイトおよび焼き戻しマルテンサイトを特定する。
f S and f 0 are obtained by the following method.
Fresh martensite and tempered martensite in the observation region are identified for the sample taken from the hot-stamped molded body using the same method as when measuring the area ratio of each structure described above. For each fresh martensite and each tempered martensite in the observation area, the grain size is calculated using the "Grain Size" function installed in the software "OIM Analysis (registered trademark)" attached to the EBSD analyzer. From these, fresh martensite and tempered martensite with a particle size of 5 to 10 μm are specified.
 次に、観察領域内の粒径が5~10μmであるフレッシュマルテンサイトおよび焼き戻しマルテンサイトについて、EBSD解析装置に付属のソフトウェア「OIM Analysis(登録商標)」に搭載された「Phase Map」機能を用いて、結晶粒内の方位差(GAM値:Grain Average Misorientation)が2°以上である領域を特定する。特定された領域の面積率を算出することで、粒径が5~10μmであり、且つ、GAM値が2°以上であるフレッシュマルテンサイトおよび焼き戻しマルテンサイトの面積率の合計fを得る。
 同様の方法により、上述した組織検査におけるサブゼロ処理後のホットスタンプ成形体について測定を行うことで、粒径が5~10μmであり、且つ、GAM値が2°以上であるサブゼロ処理後のフレッシュマルテンサイトおよび焼き戻しマルテンサイトの面積率の合計fを得る。
Next, for fresh martensite and tempered martensite with a grain size of 5 to 10 μm in the observation area, we used the "Phase Map" function installed in the software "OIM Analysis (registered trademark)" that comes with the EBSD analysis device. A region in which the orientation difference (GAM value: Grain Average Misorientation) within a crystal grain is 2° or more is specified using the method. By calculating the area ratio of the specified region, the total area ratio f S of fresh martensite and tempered martensite having a grain size of 5 to 10 μm and a GAM value of 2° or more is obtained.
By measuring the hot-stamped molded product after the sub-zero treatment in the above-mentioned microstructure inspection using the same method, it was found that the fresh marten after the sub-zero treatment has a grain size of 5 to 10 μm and a GAM value of 2° or more. The sum of the area fractions of site and tempered martensite f S is obtained.
 β/β:0.990~1.010
 X線回折により得られるフレッシュマルテンサイトおよび焼き戻しマルテンサイトの半値幅をβとし、X線回折により得られる、上述した組織検査におけるサブゼロ処理後のフレッシュマルテンサイトおよび焼き戻しマルテンサイトの半値幅をβとしたとき、β/βが1.010超であることは、残留オーステナイトから変態したフレッシュマルテンサイトおよび焼き戻しマルテンサイト量が多いことを示す。上述のサブゼロ処理によりフレッシュマルテンサイトおよび焼き戻しマルテンサイトに変態する残留オーステナイトは、安定度が低い残留オーステナイトである。つまり、β/βが1.010超であることは、安定度の低い残留オーステナイト量が多かったことを示す。安定度の低い残留オーステナイト量が多いと、ホットスタンプ成形体において所望の延性を得ることができない。そのため、β/βは1.010以下とする。β/βは、好ましくは1.005以下または1.001以下である。
β S0 : 0.990 to 1.010
The half-width of fresh martensite and tempered martensite obtained by X-ray diffraction is β 0 , and the half-width of fresh martensite and tempered martensite obtained by X-ray diffraction after sub-zero treatment in the above-mentioned structure inspection is When β S is defined as β S , the fact that β S0 is more than 1.010 indicates that the amount of fresh martensite and tempered martensite transformed from retained austenite is large. The retained austenite transformed into fresh martensite and tempered martensite by the above-mentioned sub-zero treatment is retained austenite with low stability. In other words, β S0 exceeding 1.010 indicates that the amount of retained austenite with low stability was large. If the amount of residual austenite with low stability is large, desired ductility cannot be obtained in the hot stamped product. Therefore, β S0 is set to 1.010 or less. β S0 is preferably 1.005 or less or 1.001 or less.
 一方、β/βが0.990未満であることは、上述の組織検査におけるサブゼロ処理によりフレッシュマルテンサイトおよび焼き戻しマルテンサイトの転位が熱収縮による圧縮によって対消滅したことを示す。つまり、転位密度の高いフレッシュマルテンサイトおよび焼き戻しマルテンサイト量が多かったことを示す。転位密度の高いフレッシュマルテンサイトおよび焼き戻しマルテンサイトは加工硬化能が低いため、これらの量が多いとホットスタンプ成形体において所望の延性を得ることができない。そのため、β/βは0.990以上とする。β/βは、好ましくは0.995以上、0.997以上または0.998以上である。 On the other hand, the fact that β S0 is less than 0.990 indicates that the dislocations in fresh martensite and tempered martensite were annihilated by compression due to thermal contraction due to the sub-zero treatment in the above-mentioned structure inspection. In other words, the amount of fresh martensite and tempered martensite with high dislocation density was large. Fresh martensite and tempered martensite, which have a high dislocation density, have low work hardening ability, so if their amounts are large, it is impossible to obtain the desired ductility in the hot-stamped compact. Therefore, β S0 is set to 0.990 or more. β S0 is preferably 0.995 or more, 0.997 or more, or 0.998 or more.
 βおよびβは以下の方法により得る。
 ホットスタンプ成形体の端面から50mm以上離れた任意の位置(この位置からサンプルを採取できない場合は、端部を避けた位置)から板厚方向に垂直な断面(板面と平行な断面)が観察できるように、10mm角程度の正方形状のサンプルを切り出す。続いて、化学研磨により、表面から板厚の1/8深さ~表面から板厚の3/8深さの任意の位置における、板面と平行な断面が観察できるように、サンプルの板厚を減厚する。化学研磨は、例えば室温のリン酸と過酸化水素との水溶液にサンプルを浸漬することで行えばよい。
β S and β 0 are obtained by the following method.
Observe a cross section perpendicular to the plate thickness direction (a cross section parallel to the plate surface) from any position 50 mm or more away from the edge of the hot stamped product (if a sample cannot be collected from this position, avoid the edge) Cut out a square sample about 10 mm square. Next, by chemical polishing, the thickness of the sample was reduced so that a cross section parallel to the plate surface could be observed at any position from 1/8 depth of the plate thickness from the surface to 3/8 depth of the plate thickness from the surface. Reduce the thickness. Chemical polishing may be performed, for example, by immersing the sample in an aqueous solution of phosphoric acid and hydrogen peroxide at room temperature.
 化学研磨後、板面と平行な上記断面に対してX線回折を行うことで、X線回折プロファイルを得る。得られたX線回折プロファイルにおいて、bcc-Feの(110)、(200)および(211)の3つのピークに対して、Voigt関数によるフィッティングを行うことで、フレッシュマルテンサイトおよび焼き戻しマルテンサイトの半値幅β0(hkl)(β0(110)、β0(200)およびβ0(211))を得る。
 同様の方法により、上述した組織検査におけるサブゼロ処理後のホットスタンプ成形体について測定を行うことで、サブゼロ処理後のフレッシュマルテンサイトおよび焼き戻しマルテンサイトの半値幅βS(hkl)(βS(110)、βS(200)およびβS(211))を得る。
 各回折面の半値幅の差の大きさ|βS(hkl)-β0(hkl)|が1.000に最も近い値をβ/βとする。
 測定には、X線回折装置(XRD:リガク社製RINT2500)を用いるとよい。
After chemical polishing, an X-ray diffraction profile is obtained by performing X-ray diffraction on the cross section parallel to the plate surface. In the obtained X-ray diffraction profile, the three peaks of bcc-Fe (110), (200), and (211) are fitted with the Voigt function, and fresh martensite and tempered martensite are determined. The half width β 0 (hkl)0 (110) , β 0 (200) and β 0 (211) ) are obtained.
By measuring the hot stamped compact after the sub-zero treatment in the above-mentioned microstructure inspection using the same method, the half-width β S (hkl)S (110 ) , β S (200) and β S (211) ) are obtained.
The value of the difference in half width of each diffraction surface |β S (hkl) −β 0 (hkl) | that is closest to 1.000 is defined as β s0 .
For the measurement, it is preferable to use an X-ray diffraction device (XRD: RINT2500 manufactured by Rigaku Corporation).
 引張強さ:700MPa以上
 本実施形態に係るホットスタンプ成形体は、引張強さが700MPa以上であってもよい。引張強さが700MPa以上であれば、車体軽量化により貢献することができる。
 上限は特に規定しないが、4000MPa以下としてもよい。
Tensile strength: 700 MPa or more The hot stamp molded article according to the present embodiment may have a tensile strength of 700 MPa or more. If the tensile strength is 700 MPa or more, it can contribute to reducing the weight of the vehicle body.
Although the upper limit is not particularly specified, it may be 4000 MPa or less.
 一様伸び:3.0%以上
 本実施形態に係るホットスタンプ成形体は、延性の指標である一様伸びが3.0%以上であってもよい。上限は特に限定しないが、40.0%以下としてもよい。
Uniform elongation: 3.0% or more The hot-stamped molded article according to the present embodiment may have a uniform elongation, which is an index of ductility, of 3.0% or more. The upper limit is not particularly limited, but may be 40.0% or less.
 引張強さおよび一様伸びは、JIS Z 2241:2011の5号試験片を用いて、JIS Z 2241:2011に準拠して引張試験を行うことで測定する。引張試験片の採取位置はホットスタンプ成形体の板面中央位置(端部を避けた位置)とし、ホットスタンプ成形体の長手方向に平行な方向を長手方向とみなして試験片を採取する。
 なお、一様伸びは、JIS Z 2241:2011でいう「最大試験力時全伸び」のことである。
The tensile strength and uniform elongation are measured by performing a tensile test in accordance with JIS Z 2241:2011 using a No. 5 test piece of JIS Z 2241:2011. The tensile test piece is taken at the center of the plate surface of the hot-stamped body (avoiding the edges), and the test piece is taken with the direction parallel to the longitudinal direction of the hot-stamped body considered as the longitudinal direction.
Note that uniform elongation refers to "full elongation at maximum test force" as defined in JIS Z 2241:2011.
 本実施形態に係るホットスタンプ成形体は、表面にめっき層を有していてもよい。表面にめっき層を有することで、ホットスタンプ後において、耐食性を向上することができる。めっき層としては、アルミめっき層、アルミ-亜鉛めっき層、アルミ-珪素めっき層、溶融亜鉛めっき層、電気亜鉛めっき層、合金化溶融亜鉛めっき層などが例示される。 The hot stamp molded article according to this embodiment may have a plating layer on the surface. By having a plating layer on the surface, corrosion resistance can be improved after hot stamping. Examples of the plating layer include an aluminum plating layer, an aluminum-zinc plating layer, an aluminum-silicon plating layer, a hot-dip galvanizing layer, an electrogalvanizing layer, an alloyed hot-dip galvanizing layer, and the like.
 次に、本実施形態に係るホットスタンプ成形体を得るための、ホットスタンプ用鋼板について説明する。
 ホットスタンプ用鋼板は、上述の化学組成を有する。ホットスタンプ用鋼板の金属組織は、ホットスタンプ後に所望の強度および延性を得ることができれば特に限定されないが、例えば、面積率で、フェライト:0~90%、ベイナイトおよびマルテンサイト:0~100%、パーライト:0~80%および残留オーステナイト:0~5%からなってもよい。
Next, a hot stamping steel plate for obtaining a hot stamping molded article according to the present embodiment will be explained.
The hot stamping steel plate has the above-mentioned chemical composition. The metal structure of the steel sheet for hot stamping is not particularly limited as long as desired strength and ductility can be obtained after hot stamping, but for example, in terms of area ratio, ferrite: 0 to 90%, bainite and martensite: 0 to 100%, It may consist of pearlite: 0 to 80% and retained austenite: 0 to 5%.
 また、ホットスタンプ用鋼板は、表面にめっき層を有していてもよい。表面にめっき層を有することで、ホットスタンプ後において、耐食性を向上することができる。めっき層としては、アルミめっき層、アルミ-亜鉛めっき層、アルミ-珪素めっき層、溶融亜鉛めっき層、電気亜鉛めっき層、合金化溶融亜鉛めっき層などが例示される。 Moreover, the steel plate for hot stamping may have a plating layer on the surface. By having a plating layer on the surface, corrosion resistance can be improved after hot stamping. Examples of the plating layer include an aluminum plating layer, an aluminum-zinc plating layer, an aluminum-silicon plating layer, a hot-dip galvanizing layer, an electrogalvanizing layer, an alloyed hot-dip galvanizing layer, and the like.
 ホットスタンプ用鋼板の製造方法
 以下、本実施形態に係るホットスタンプ成形体を得るための、ホットスタンプ用鋼板の製造方法は特に限定されず、通常の条件により製造すればよい。
Method for manufacturing a steel plate for hot stamping Hereinafter, the method for manufacturing a steel plate for hot stamping to obtain a hot stamping molded body according to the present embodiment is not particularly limited, and may be manufactured under normal conditions.
 ホットスタンプ用鋼板をホットスタンプし、その後にサブゼロ処理を行うことで、本実施形態に係るホットスタンプ成形体を得る。なお、製造方法におけるサブゼロ処理とは、上述した組織検査におけるサブゼロ処理とは異なるものである。
 なお、後述する温度は全て鋼板の表面温度のことである。
A hot-stamped molded body according to this embodiment is obtained by hot-stamping a hot-stamping steel plate and then performing subzero treatment. Note that the subzero treatment in the manufacturing method is different from the subzero treatment in the tissue inspection described above.
Note that all temperatures mentioned below refer to the surface temperature of the steel plate.
 ホットスタンプ
 ホットスタンプの条件は特に限定されないが、例えば、ホットスタンプ用鋼板を800~1000℃の温度域に加熱し、この温度域にて60~1200秒間保持した後、ホットスタンプすることが好ましい。ホットスタンプ後は、例えば下記条件(I)~(IV)のいずれかの条件を採用することが好ましい。
(I)ホットスタンプしてそのままサブゼロ処理を行う。
(II)ホットスタンプして所望の温度域まで急冷した後、残留オーステナイト量を高めるために、30℃/s以下の平均冷却速度で50℃以下の温度域まで冷却してから、サブゼロ処理を行う。
(III)ホットスタンプして所望の温度域まで急冷し、当該温度域にて中間保持を行ってから、サブゼロ処理を行う。
(IV)ホットスタンプして所望の温度域まで急冷し、当該温度域にて中間保持を行った後、再加熱を行ってから、サブゼロ処理を行う。
Hot Stamping Conditions for hot stamping are not particularly limited, but for example, it is preferable to heat a steel plate for hot stamping to a temperature range of 800 to 1000°C, hold it in this temperature range for 60 to 1200 seconds, and then hot stamp. After hot stamping, it is preferable to adopt, for example, any one of the following conditions (I) to (IV).
(I) Hot stamp and perform subzero processing as is.
(II) After hot stamping and rapidly cooling to a desired temperature range, in order to increase the amount of retained austenite, perform sub-zero treatment after cooling to a temperature range of 50°C or less at an average cooling rate of 30°C/s or less. .
(III) After hot stamping and rapidly cooling to a desired temperature range, intermediate holding is performed in the temperature range, and sub-zero treatment is performed.
(IV) After hot-stamping and rapidly cooling to a desired temperature range, and performing intermediate holding in the temperature range, reheating is performed, and then sub-zero treatment is performed.
 (I)ホットスタンプしてそのままサブゼロ処理を行う場合は、以下の方法とすることが好ましい。
 ホットスタンプ後、5℃/s以上の平均冷却速度で-50~-196℃の温度域まで冷却する。当該温度域で1分間以上保持した後、大気中に放置する。ホットスタンプ成形体内を均一に冷却するためには、上記温度域にて5分間以上保持すればよい。サブゼロ処理において、上記温度域までの平均冷却速度は、10℃/s以上、30℃/s以上または50℃/s以上とすることがより好ましい。
 上記条件でサブゼロ処理を行うことで、金属組織に転位密度の低いフレッシュマルテンサイトおよび焼き戻しマルテンサイトを含ませることができ、β/βを好ましい範囲に制御することができる。
(I) When performing subzero processing directly after hot stamping, it is preferable to use the following method.
After hot stamping, it is cooled to a temperature range of -50 to -196°C at an average cooling rate of 5°C/s or more. After maintaining the temperature range for 1 minute or more, leave it in the atmosphere. In order to uniformly cool the inside of the hot-stamped molded product, it is sufficient to hold it in the above temperature range for 5 minutes or more. In the sub-zero treatment, the average cooling rate to the above temperature range is more preferably 10°C/s or more, 30°C/s or more, or 50°C/s or more.
By performing the subzero treatment under the above conditions, fresh martensite and tempered martensite with low dislocation density can be included in the metal structure, and β S0 can be controlled within a preferable range.
 上記条件で冷却・保持する方法としては、例えば、ドライアイス、炭酸ガスまたは液体窒素を溶媒として用いる方法が挙げられる。これらの方法において、冷却速度をより速める、または、ホットスタンプ成形体内を均一に冷却するためには、溶媒を攪拌する、または、溶媒中でホットスタンプ成形体を泳動させればよい。
 上記条件で冷却・保持する他の方法としては、例えば、極低温冷凍庫を用いる方法が挙げられる。この方法において、冷却速度をより速める、または、ホットスタンプ成形体内を均一に冷却するためには、庫内の空気を循環させる、または、庫内でホットスタンプ成形体を泳動させればよい。
Examples of methods for cooling and holding under the above conditions include methods using dry ice, carbon dioxide, or liquid nitrogen as a solvent. In these methods, in order to further increase the cooling rate or to uniformly cool the inside of the hot-stamped body, the solvent may be stirred or the hot-stamped body may be caused to migrate in the solvent.
Other methods for cooling and maintaining under the above conditions include, for example, a method using a cryogenic freezer. In this method, in order to further increase the cooling rate or uniformly cool the inside of the hot-stamped molded product, the air within the refrigerator may be circulated or the hot-stamped molded product may be caused to migrate within the refrigerator.
 (II)ホットスタンプして所望の温度域まで急冷した後、30℃/s以下の平均冷却速度で50℃以下の温度域まで冷却する場合は、以下の方法とすることが好ましい。
 ホットスタンプにより、Mf(℃)以上、500℃未満の冷却停止温度まで臨界冷却速度Vc90(℃/s)以上の平均冷却速度にて冷却した後、50℃以下の温度域まで30℃/s以下の平均冷却速度で冷却する。このとき、50℃以下の温度域までの冷却は、室温(20~28℃)程度まで行えばよい。その後、サブゼロ処理を行う。
 Mf(℃)以上、500℃未満の冷却停止温度までの平均冷却速度を臨界冷却速度Vc90(℃/s)以上とすることで、フェライトおよびパーライトの生成を抑制することができる。また、平均冷却速度が臨界冷却速度Vc90(℃/s)以上である冷却の冷却停止温度をMf(℃)以上、500℃未満の温度域とすることで、ベイナイトの生成を抑制することができる。
(II) When rapidly cooling to a desired temperature range by hot stamping and then cooling to a temperature range of 50°C or less at an average cooling rate of 30°C/s or less, the following method is preferable.
After cooling by hot stamping at an average cooling rate of Vc90 (°C/s) or more to a cooling stop temperature of Mf (°C) or more and less than 500°C, the temperature range is 30°C/s or less to a temperature range of 50°C or less. Cool at an average cooling rate of At this time, cooling to a temperature range of 50° C. or lower may be performed to about room temperature (20 to 28° C.). After that, subzero processing is performed.
By setting the average cooling rate to a cooling stop temperature of Mf (°C) or higher and lower than 500°C to a critical cooling rate of Vc90 (°C/s) or higher, the generation of ferrite and pearlite can be suppressed. In addition, by setting the cooling stop temperature of cooling in which the average cooling rate is equal to or higher than the critical cooling rate Vc90 (°C/s) to a temperature range of Mf (°C) or higher and lower than 500°C, the generation of bainite can be suppressed. .
 この場合におけるサブゼロ処理は、以下の方法とすることが好ましい。ホットスタンプ後、5℃/s以上の平均冷却速度で-50~-196℃の温度域まで冷却する。当該温度域で1分間以上保持した後、大気中に放置する。サブゼロ処理において、上記温度域までの平均冷却速度は、10℃/s以上、30℃/s以上または50℃/s以上とすることがより好ましい。
 冷却後に上記条件でサブゼロ処理を行うことで、安定度の低い残留オーステナイト量を低減することができ、且つ、金属組織に転位密度の低いフレッシュマルテンサイトおよび焼き戻しマルテンサイトを含ませることができる。その結果、ρ/ρ、f/fおよびβ/βを所望の範囲に制御することができる。
The subzero processing in this case is preferably performed using the following method. After hot stamping, it is cooled to a temperature range of -50 to -196°C at an average cooling rate of 5°C/s or more. After maintaining the temperature range for 1 minute or more, leave it in the atmosphere. In the sub-zero treatment, the average cooling rate to the above temperature range is more preferably 10°C/s or more, 30°C/s or more, or 50°C/s or more.
By performing subzero treatment under the above conditions after cooling, the amount of residual austenite with low stability can be reduced, and fresh martensite and tempered martensite with low dislocation density can be included in the metal structure. As a result, ρ S0 , f S /f 0 and β S0 can be controlled within desired ranges.
 Vc90(℃/s)は下記式(1)により表すことができる。
 Vc90(℃/s)=102.94-0.75×{(2.7×C+0.4×Si+Mn+0.45×Ni+0.8×Cr+2×Mo)-1}…(1)
 上記式(1)中の元素記号は各元素の質量%での含有量を示し、当該元素を含有しない場合は0を代入する。
Vc90 (°C/s) can be expressed by the following formula (1).
Vc90 (℃/s)=10 2.94-0.75×{(2.7×C+0.4×Si+Mn+0.45×Ni+0.8×Cr+2×Mo)-1}… (1)
The element symbol in the above formula (1) indicates the content in mass % of each element, and when the element is not contained, 0 is substituted.
 (III)ホットスタンプ後に中間保持を行う場合は、以下の方法とすることが好ましい。
 ホットスタンプ後、Ms(℃)~Mf(℃)の温度域まで臨界冷却速度Vc90(℃/s)以上の平均冷却速度で冷却する。当該温度域にて5秒以上、1200秒間未満保持し、次いで50℃以下の温度域まで0.5℃/s以上の平均冷却速度で冷却する。このとき、50℃以下の温度域までの冷却は、室温(20~28℃)程度まで行えばよい。その後、サブゼロ処理を行う。
(III) When performing intermediate holding after hot stamping, it is preferable to use the following method.
After hot stamping, it is cooled to a temperature range of Ms (°C) to Mf (°C) at an average cooling rate of at least a critical cooling rate of Vc90 (°C/s). It is held in the temperature range for 5 seconds or more and less than 1200 seconds, and then cooled to a temperature range of 50°C or less at an average cooling rate of 0.5°C/s or more. At this time, cooling to a temperature range of 50° C. or lower may be performed to about room temperature (20 to 28° C.). After that, subzero processing is performed.
 ここでのサブゼロ処理は、上述した条件(II)のサブゼロ処理と同様の条件とすることが好ましい。
 中間保持後に上記条件でサブゼロ処理を行うことで、安定度の低い残留オーステナイト量を低減することができ、且つ、金属組織に転位密度の低いフレッシュマルテンサイトおよび焼き戻しマルテンサイトを含ませることができる。その結果、ρ/ρ、f/fおよびβ/βを所望の範囲に制御することができる。
The subzero processing here is preferably performed under the same conditions as the subzero processing of condition (II) described above.
By performing sub-zero treatment under the above conditions after intermediate holding, it is possible to reduce the amount of residual austenite with low stability, and it is possible to include fresh martensite and tempered martensite with low dislocation density in the metal structure. . As a result, ρ S0 , f S /f 0 and β S0 can be controlled within desired ranges.
 Ms(℃)~Mf(℃)の温度域における保持時間を1200秒未満とすることで、所望量の残留オーステナイトを得ることができる。また、Ms(℃)~Mf(℃)の温度域までの平均冷却速度を臨界冷却速度Vc90(℃/s)以上とすることで、フェライトおよびパーライトの生成を抑制することができる。また、平均冷却速度が臨界冷却速度Vc90(℃/s)以上である冷却の冷却停止温度をMs(℃)~Mf(℃)の温度域とすることで、ベイナイトの過剰な生成を抑制し、所望量のフレッシュマルテンサイトおよび焼き戻しマルテンサイトを得ることができる。 By setting the holding time in the temperature range of Ms (°C) to Mf (°C) to less than 1200 seconds, a desired amount of retained austenite can be obtained. Furthermore, by setting the average cooling rate in the temperature range of Ms (°C) to Mf (°C) to a critical cooling rate of Vc90 (°C/s) or more, it is possible to suppress the formation of ferrite and pearlite. In addition, by setting the cooling stop temperature of cooling where the average cooling rate is equal to or higher than the critical cooling rate Vc90 (°C/s) to a temperature range of Ms (°C) to Mf (°C), excessive generation of bainite is suppressed, A desired amount of fresh martensite and tempered martensite can be obtained.
 Ms(℃)~Mf(℃)の温度域での保持においては、温度を一定としてもよく、この温度域にて変動させてもよい。 When maintaining the temperature in the temperature range of Ms (°C) to Mf (°C), the temperature may be kept constant or may be varied within this temperature range.
 (IV)ホットスタンプ後に中間保持および再加熱を行う場合を行う場合は、以下の方法とすることが好ましい。
 ホットスタンプ後、Ms(℃)~Mf(℃)の温度域まで臨界冷却速度Vc90(℃/s)以上の平均冷却速度で冷却し、当該温度域にて5秒以上、1200秒間未満保持する。次いで、Mf(℃)以上、600℃未満の温度域に再加熱してから、当該温度域にて10秒以上、1200秒間未満保持した後、0.5℃/s以上の平均冷却速度で50℃以下の温度域まで冷却する。このとき、50℃以下の温度域までの冷却は、室温(20~28℃)程度まで行えばよい。その後、サブゼロ処理を行う。
(IV) When carrying out intermediate holding and reheating after hot stamping, it is preferable to use the following method.
After hot stamping, it is cooled to a temperature range of Ms (°C) to Mf (°C) at an average cooling rate of at least a critical cooling rate of Vc90 (°C/s), and held in the temperature range for 5 seconds or more and less than 1200 seconds. Next, after reheating to a temperature range of Mf (°C) or more and less than 600°C, and holding in the temperature range for 10 seconds or more but less than 1200 seconds, 50°C at an average cooling rate of 0.5°C/s or more. Cool to a temperature range below ℃. At this time, cooling to a temperature range of 50° C. or lower may be performed to about room temperature (20 to 28° C.). After that, subzero processing is performed.
 ここでのサブゼロ処理は、上述した条件(II)のサブゼロ処理と同様の条件とすることが好ましい。
 中間保持および再加熱後に上記条件でサブゼロ処理を行うことで、安定度の低い残留オーステナイト量を低減することができ、且つ、金属組織に転位密度の低いフレッシュマルテンサイトおよび焼き戻しマルテンサイトを含ませることができる。その結果、ρ/ρ、f/fおよびβ/βを所望の範囲に制御することができる。
The subzero processing here is preferably performed under the same conditions as the subzero processing of condition (II) described above.
By performing sub-zero treatment under the above conditions after intermediate holding and reheating, the amount of residual austenite with low stability can be reduced, and the metal structure can include fresh martensite and tempered martensite with low dislocation density. be able to. As a result, ρ S0 , f S /f 0 and β S0 can be controlled within desired ranges.
 Ms(℃)~Mf(℃)の温度域までの平均冷却速度を臨界冷却速度Vc90(℃/s)以上とすることで、ベイナイト、フェライトおよびパーライトの生成を抑制することができる。また、平均冷却速度が臨界冷却速度Vc90(℃/s)以上である冷却の冷却停止温度をMs(℃)~Mf(℃)の温度域とすることで、ベイナイトの過剰な生成を抑制し、所望量のフレッシュマルテンサイトおよび焼き戻しマルテンサイトを得ることができる。また、中間保持時の、Ms(℃)~Mf(℃)の温度域における保持時間を1200秒未満とすることで、所望量の残留オーステナイトを得ることができる。また、中間保持時の温度よりも高い温度に再加熱し、再加熱時の保持温度をMf(℃)以上、600℃未満の温度域とすることで、所望量の残留オーステナイトを得ることができる。また、再加熱時の保持時間を1200秒以下とすることで、所望量の残留オーステナイトを得ることができる。 By setting the average cooling rate in the temperature range of Ms (°C) to Mf (°C) to a critical cooling rate of Vc90 (°C/s) or higher, the formation of bainite, ferrite, and pearlite can be suppressed. In addition, by setting the cooling stop temperature of cooling where the average cooling rate is equal to or higher than the critical cooling rate Vc90 (°C/s) to a temperature range of Ms (°C) to Mf (°C), excessive generation of bainite is suppressed, A desired amount of fresh martensite and tempered martensite can be obtained. Further, by setting the holding time in the temperature range of Ms (°C) to Mf (°C) during intermediate holding to less than 1200 seconds, a desired amount of retained austenite can be obtained. In addition, by reheating to a higher temperature than the temperature during intermediate holding and setting the holding temperature during reheating to a temperature range of Mf (°C) or more and less than 600°C, a desired amount of retained austenite can be obtained. . Further, by setting the holding time during reheating to 1200 seconds or less, a desired amount of retained austenite can be obtained.
 Ms(℃)~Mf(℃)の温度域での保持においては、温度を一定としてもよく、この温度域にて変動させてもよい。 When maintaining the temperature in the temperature range of Ms (°C) to Mf (°C), the temperature may be kept constant or may be varied within this temperature range.
 なお、Ms(℃)は下記式(2)により表すことができ、Mf(℃)は下記式(3)により表すことができる。
 Ms(℃)=539-423×C-30×Mn-12×Cr-17×Ni-7.5×Mo …(2)
 Mf(℃)=Ms-209 …(3)
 上記式(2)中の元素記号は各元素の質量%での含有量を示し、当該元素を含有しない場合は0を代入する。
Note that Ms (°C) can be represented by the following formula (2), and Mf (°C) can be represented by the following formula (3).
Ms(℃)=539-423×C-30×Mn-12×Cr-17×Ni-7.5×Mo…(2)
Mf (℃)=Ms-209...(3)
The element symbol in the above formula (2) indicates the content in mass % of each element, and when the element is not contained, 0 is substituted.
 平均冷却速度が臨界冷却速度Vc90(℃/s)以上である冷却としては、金型冷却、ガス冷却、水冷却が挙げられる。
 また、本実施形態において平均冷却速度とは、冷却開始時から冷却完了時までの鋼板の温度降下幅を、冷却開始時から冷却完了時までの所要時間で除した値のことをいう。
Examples of cooling in which the average cooling rate is equal to or higher than the critical cooling rate Vc90 (° C./s) include mold cooling, gas cooling, and water cooling.
Furthermore, in the present embodiment, the average cooling rate refers to a value obtained by dividing the range of temperature drop of the steel plate from the start of cooling to the time of completion of cooling by the time required from the start of cooling to the time of completion of cooling.
 上述した製造方法により、本実施形態に係るホットスタンプ成形体を安定的に製造することができる。 The hot-stamped molded article according to the present embodiment can be stably manufactured by the manufacturing method described above.
 次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, an example of the present invention will be described. The conditions in the example are examples of conditions adopted to confirm the feasibility and effects of the present invention, and the present invention is based on this example of conditions. It is not limited. The present invention can adopt various conditions as long as the purpose of the present invention is achieved without departing from the gist of the present invention.
 表1に示す化学組成の溶鋼を鋳造して製造した鋼片を用いて、通常の条件によりホットスタンプ用鋼板を製造した。なお、表中に「<」を用いて記載した含有量は、含有量がその値未満、且つ、0超であったことを示す。例えば、表中に「<0.0020」と記載された含有量は、0%超、0.0020%未満の含有量であったことを示す。 A steel plate for hot stamping was manufactured under normal conditions using a steel piece manufactured by casting molten steel having the chemical composition shown in Table 1. In addition, the content described using "<" in the table indicates that the content was less than that value and more than 0. For example, the content described as "<0.0020" in the table indicates that the content was more than 0% and less than 0.0020%.
 得られたホットスタンプ用鋼板を800~1000℃の温度域に加熱し、この温度域にて60~1200秒間保持してからホットスタンプした後、上述した条件(I)~(IV)あるいはそれらを外れる条件により、表3Aおよび表3Bに示すホットスタンプ成形体を得た。
 なお、製造No.42では、ホットスタンプ前にサブゼロ処理を行い、且つ、ホットスタンプ後にはサブゼロ処理を行わなかった。製造No.42でのサブゼロ処理は、ホットスタンプ用鋼板に対して、5℃/s以上の平均冷却速度で-50~-196℃の温度域まで冷却し、当該温度域で1分間以上保持した後、大気中に放置する条件とした。
The obtained steel plate for hot stamping is heated to a temperature range of 800 to 1000°C, held in this temperature range for 60 to 1200 seconds, and then hot stamped, and then subjected to the above-mentioned conditions (I) to (IV) or Under different conditions, hot-stamped molded bodies shown in Table 3A and Table 3B were obtained.
In addition, production No. In No. 42, subzero processing was performed before hot stamping, and subzero processing was not performed after hot stamping. Manufacturing No. Sub-zero treatment at 42 is performed by cooling a steel plate for hot stamping to a temperature range of -50 to -196°C at an average cooling rate of 5°C/s or more, holding it in the temperature range for at least 1 minute, and then exposing it to air. The condition was that it be left inside.
 なお、条件(I)~(IV)のサブゼロ処理、条件(II)の冷却、条件(III)の中間保持、並びに、条件(IV)の中間保持および再加熱は表2Aおよび表2Bに示す条件で行った。
 条件(II)の冷却を行った例では、表中に記載の冷却停止温度まで冷却した後、表中に記載の平均冷却速度で50℃以下の温度域まで冷却してから、サブゼロ処理を行った。なお、50℃以下の温度域までの冷却は、室温(20~28℃)まで行った。
 条件(III)の中間保持を行った例では、中間保持後は50℃以下の温度域まで0.5℃/s以上の平均冷却速度で冷却してから、サブゼロ処理を行った。なお、50℃以下の温度域までの冷却は、室温(20~28℃)まで行った。
 条件(IV)の中間保持および再加熱を行った例では、再加熱の保持温度にて保持した後は、50℃以下の温度域まで0.5℃/s以上の平均冷却速度で冷却してから、サブゼロ処理を行った。なお、50℃以下の温度域までの冷却は、室温(20~28℃)まで行った。
Note that the subzero treatment under conditions (I) to (IV), the cooling under condition (II), the intermediate holding under condition (III), and the intermediate holding and reheating under condition (IV) are performed under the conditions shown in Table 2A and Table 2B. I went there.
In the example of cooling under condition (II), after cooling to the cooling stop temperature listed in the table, cooling to a temperature range of 50 ° C or less at the average cooling rate listed in the table, and then performing sub-zero treatment. Ta. Note that cooling to a temperature range of 50° C. or lower was performed to room temperature (20 to 28° C.).
In the example in which intermediate holding was performed under condition (III), after intermediate holding, the material was cooled to a temperature range of 50° C. or less at an average cooling rate of 0.5° C./s or more, and then subzero treatment was performed. Note that cooling to a temperature range of 50° C. or lower was performed to room temperature (20 to 28° C.).
In the example of condition (IV) in which intermediate holding and reheating were performed, after being held at the holding temperature for reheating, it was cooled to a temperature range of 50°C or less at an average cooling rate of 0.5°C/s or more. From this, subzero processing was performed. Note that cooling to a temperature range of 50° C. or lower was performed to room temperature (20 to 28° C.).
 なお、表中の下線は、本発明の範囲外であること、好ましい製造条件を外れること、特性値が好ましくないことを示す。
 ホットスタンプ成形体の金属組織の測定は、上述の測定方法により行った。また、ホットスタンプ成形体の機械特性は、上述の方法により測定した。
Note that the underline in the table indicates that it is outside the scope of the present invention, that it falls outside the preferred manufacturing conditions, or that the characteristic value is unfavorable.
The metallographic structure of the hot-stamped molded product was measured by the above-mentioned measurement method. In addition, the mechanical properties of the hot-stamped molded product were measured by the method described above.
 引張強さが700MPa以上であった場合、高い強度を有するホットスタンプ成形体であるとして合格と判定した。一方、引張強さが700MPa未満であった場合、高い強度を有さないホットスタンプ成形体であるとして不合格と判定した。 If the tensile strength was 700 MPa or more, it was determined that the hot stamp molded product had high strength and passed. On the other hand, when the tensile strength was less than 700 MPa, it was determined that the hot stamp molded product did not have high strength and was rejected.
 一様伸びが3.0%以上であった場合、優れた延性を有するホットスタンプ成形体であるとして合格と判定した。一方、一様伸びが3.0%未満であった場合、優れた延性を有さないホットスタンプ成形体であるとして不合格と判定した。 When the uniform elongation was 3.0% or more, it was determined that the hot stamped molded product had excellent ductility and passed. On the other hand, when the uniform elongation was less than 3.0%, it was determined that the hot stamp molded product did not have excellent ductility and was rejected.
 また、本発明例に係るホットスタンプ成形体および比較例に係るホットスタンプ成形体の引張強さと一様伸びとの積(引張強さ×一様伸び)を評価した。 In addition, the product of tensile strength and uniform elongation (tensile strength x uniform elongation) of the hot-stamped molded bodies according to the present invention examples and the hot-stamped molded bodies according to comparative examples was evaluated.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3Aおよび表3Bを見ると、本発明例であるホットスタンプ成形体は、比較例であるホットスタンプ成形体と比較して、高い強度および優れた延性を有することが分かる。 Looking at Tables 3A and 3B, it can be seen that the hot-stamped molded articles that are examples of the present invention have higher strength and superior ductility than the hot-stamped molded articles that are comparative examples.
 製造No.2は、本発明例である製造No.1と比較して引張強さ×一様伸び(MPa・%)が劣った。
 製造No.4は、本発明例である製造No.3と比較して引張強さ×一様伸び(MPa・%)が劣った。
Manufacturing No. Production No. 2 is an example of the present invention. Tensile strength×uniform elongation (MPa·%) was inferior compared to No. 1.
Manufacturing No. Production No. 4 is an example of the present invention. Compared to No. 3, the tensile strength x uniform elongation (MPa.%) was inferior.
 製造No.6は、本発明例である製造No.5と比較して引張強さ×一様伸び(MPa・%)が劣った。
 また、製造No.8は、条件(II)の冷却を行わなかった製造No.7と比較して残留オーステナイト量が多く、一様伸びが向上した。
Manufacturing No. Production No. 6 is an example of the present invention. Compared to No. 5, tensile strength x uniform elongation (MPa.%) was inferior.
Also, production No. 8 is production No. 8 in which cooling under condition (II) was not performed. Compared to No. 7, the amount of retained austenite was large and the uniform elongation was improved.
 製造No.9は、本発明例である製造No.8と比較して引張強さ×一様伸び(MPa・%)が劣った。また、ホットスタンプ前にサブゼロ処理を行い、且つ、ホットスタンプ後にはサブゼロ処理を行わなかった製造No.42では、ホットスタンプ時の加熱により組織がオーステナイト化されたことで、結果的に製造No.9と同様の組織構成となり、本発明例である製造No.8と比較して引張強さ×一様伸び(MPa・%)が劣った。
 製造No.11は、本発明例である製造No.10と比較して引張強さ×一様伸び(MPa・%)が劣った。また、引張強さが合格基準を満たさなかった。
 製造No.13は、本発明例である製造No.12と比較して引張強さ×一様伸び(MPa・%)が劣った。
Manufacturing No. Production No. 9 is an example of the present invention. Compared to No. 8, tensile strength x uniform elongation (MPa·%) was inferior. In addition, the production No. 1 was subjected to sub-zero treatment before hot stamping, but was not subjected to sub-zero treatment after hot stamping. In No. 42, the structure was austenitized by heating during hot stamping, resulting in production No. It has the same structure as Manufacturing No. 9, which is an example of the present invention. Compared to No. 8, tensile strength x uniform elongation (MPa·%) was inferior.
Manufacturing No. Production No. 11 is an example of the present invention. Compared to No. 10, the tensile strength x uniform elongation (MPa·%) was inferior. Moreover, the tensile strength did not meet the acceptance criteria.
Manufacturing No. Production No. 13 is an example of the present invention. Compared to No. 12, the tensile strength x uniform elongation (MPa·%) was inferior.
 製造No.15~17は、本発明例である製造No.14と比較して引張強さ×一様伸び(MPa・%)が劣った。また、製造No.16および17は、引張強さが合格基準を満たさなかった。 Manufacturing No. 15 to 17 are production Nos. 15 to 17, which are examples of the present invention. Compared to No. 14, the tensile strength x uniform elongation (MPa·%) was inferior. Also, production No. In samples No. 16 and 17, the tensile strength did not meet the acceptance criteria.
 製造No.19は、本発明例である製造No.18と比較して引張強さ×一様伸び(MPa・%)が劣った。
 製造No.21および23は、本発明例である製造No.20と比較して引張強さ×一様伸び(MPa・%)が劣った。また、製造No.21および22は、引張強さが合格基準を満たさなかった。
Manufacturing No. Production No. 19 is an example of the present invention. Compared to No. 18, the tensile strength x uniform elongation (MPa·%) was inferior.
Manufacturing No. 21 and 23 are production Nos. 21 and 23, which are examples of the present invention. Compared to No. 20, the tensile strength x uniform elongation (MPa·%) was inferior. Also, production No. In samples No. 21 and No. 22, the tensile strength did not meet the acceptance criteria.
 製造No.25は、本発明例である製造No.24と比較して引張強さ×一様伸び(MPa・%)が劣った。
 製造No.27は、本発明例である製造No.26と比較して引張強さ×一様伸び(MPa・%)が劣った。
Manufacturing No. 25 is production No. 25, which is an example of the present invention. Compared to No. 24, the tensile strength x uniform elongation (MPa·%) was inferior.
Manufacturing No. Production No. 27 is an example of the present invention. Compared to No. 26, the tensile strength x uniform elongation (MPa·%) was inferior.
 製造No.29は、本発明例である製造No.28と比較して引張強さ×一様伸び(MPa・%)が劣った。
 製造No.30~32、34および35は、引張強さまたは一様伸びが合格基準を満たさなかった。また、製造No.33は、化学組成と製造条件が近い本発明例である製造No.18と比較して、引張強さ×一様伸び(MPa・%)が劣った。
Manufacturing No. Production No. 29 is an example of the present invention. Compared to No. 28, the tensile strength x uniform elongation (MPa·%) was inferior.
Manufacturing No. Samples 30 to 32, 34, and 35 did not meet the acceptance criteria for tensile strength or uniform elongation. Also, production No. Production No. 33 is an example of the present invention having a similar chemical composition and production conditions. Compared to No. 18, the tensile strength x uniform elongation (MPa·%) was inferior.
 製造No.37は、本発明例である製造No.36と比較して引張強さ×一様伸び(MPa・%)が劣った。
 製造No.39は、本発明例である製造No.38と比較して引張強さ×一様伸び(MPa・%)が劣った。
 製造No.41は、本発明例である製造No.40と比較して引張強さ×一様伸び(MPa・%)が劣った。
Manufacturing No. 37 is production No. 37, which is an example of the present invention. Compared to No. 36, the tensile strength x uniform elongation (MPa·%) was inferior.
Manufacturing No. Production No. 39 is an example of the present invention. Compared to No. 38, the tensile strength x uniform elongation (MPa·%) was inferior.
Manufacturing No. 41 is production No. 41, which is an example of the present invention. Compared to No. 40, the tensile strength x uniform elongation (MPa·%) was inferior.
 本発明に係る上記態様によれば、高い強度および優れた延性を有するホットスタンプ成形体を提供することができる。 According to the above aspect of the present invention, it is possible to provide a hot-stamped molded article having high strength and excellent ductility.

Claims (2)

  1.  化学組成が、質量%で、
    C :0.08~0.70%、
    Si:0.100~3.000%、
    Mn:0.100~3.000%、
    P :0.1000%以下、
    S :0.0100%以下、
    N :0.0200%以下、
    O :0.1000%以下、
    Al:3.0000%以下、
    B :0.0005~0.0200%、
    Nb:0~0.100%、
    Ti:0~0.200%、
    Cr:0~1.00%、
    Mo:0~1.00%、
    Co:0~5.00%、
    Ni:0~3.00%、
    Cu:0~3.00%、
    V :0~3.00%、
    W :0~3.00%、
    Ca:0~1.0000%、
    Mg:0~1.0000%、
    REM:0~1.0000%、
    Sb:0~1.00%、
    Zr:0~1.00%、
    Sn:0~1.00%、および
    As:0~1.0000%を含有し、
     残部がFeおよび不純物からなり、
     金属組織において、
     面積%で、
      フレッシュマルテンサイトおよび焼き戻しマルテンサイト:合計で60%以上、
      残留オーステナイト:2~30%、
      ベイナイト:38%以下、並びに、
      フェライトおよびパーライト:合計で2%以下であり、
     前記残留オーステナイトの個数密度をρとし、サブゼロ処理後の前記残留オーステナイトの個数密度をρとしたとき、ρ/ρが0.95~1.01であり、
     粒径が5~10μmであり、且つ、GAM値が2°以上である前記フレッシュマルテンサイトおよび前記焼き戻しマルテンサイトの面積率の合計をfとし、粒径が5~10μmであり、且つ、GAM値が2°以上である前記サブゼロ処理後の前記フレッシュマルテンサイトおよび前記焼き戻しマルテンサイトの面積率の合計をfとしたとき、f/fが0.80~1.20であり、
     X線回折により得られる、前記フレッシュマルテンサイトおよび前記焼き戻しマルテンサイトの半値幅をβとし、X線回折により得られる前記サブゼロ処理後の前記フレッシュマルテンサイトおよび前記焼き戻しマルテンサイトの半値幅をβとしたとき、β/βが0.990~1.010であることを特徴とするホットスタンプ成形体。
    The chemical composition is in mass%,
    C: 0.08-0.70%,
    Si: 0.100-3.000%,
    Mn: 0.100-3.000%,
    P: 0.1000% or less,
    S: 0.0100% or less,
    N: 0.0200% or less,
    O: 0.1000% or less,
    Al: 3.0000% or less,
    B: 0.0005-0.0200%,
    Nb: 0 to 0.100%,
    Ti: 0-0.200%,
    Cr: 0-1.00%,
    Mo: 0-1.00%,
    Co: 0-5.00%,
    Ni: 0-3.00%,
    Cu: 0-3.00%,
    V: 0 to 3.00%,
    W: 0-3.00%,
    Ca: 0-1.0000%,
    Mg: 0 to 1.0000%,
    REM: 0-1.0000%,
    Sb: 0 to 1.00%,
    Zr: 0 to 1.00%,
    Contains Sn: 0 to 1.00% and As: 0 to 1.0000%,
    The remainder consists of Fe and impurities,
    In metallographic structure,
    In area%,
    Fresh martensite and tempered martensite: 60% or more in total,
    Retained austenite: 2-30%,
    Bainite: 38% or less, and
    Ferrite and pearlite: 2% or less in total,
    When the number density of the retained austenite is ρ 0 , and the number density of the retained austenite after sub-zero treatment is ρ S , ρ S0 is 0.95 to 1.01,
    The total area ratio of the fresh martensite and the tempered martensite having a grain size of 5 to 10 μm and a GAM value of 2° or more is f0 , and the grain size is 5 to 10 μm, and When the sum of the area ratios of the fresh martensite and the tempered martensite after the sub-zero treatment with a GAM value of 2° or more is f S , f S /f 0 is 0.80 to 1.20. ,
    The half-width of the fresh martensite and the tempered martensite obtained by X-ray diffraction is β 0 , and the half-width of the fresh martensite and the tempered martensite after the sub-zero treatment obtained by X-ray diffraction is β0. A hot stamp molded article characterized in that β S0 is 0.990 to 1.010 .
  2.  前記化学組成が、質量%で、
    Nb:0.001~0.100%、
    Ti:0.001~0.200%、
    Cr:0.01~1.00%、
    Mo:0.01~1.00%、
    Co:0.01~5.00%、
    Ni:0.01~3.00%、
    Cu:0.01~3.00%、
    V :0.01~3.00%、
    W :0.01~3.00%、
    Ca:0.0001~1.0000%、
    Mg:0.0001~1.0000%、
    REM:0.0001~1.0000%、
    Sb:0.01~1.00%、
    Zr:0.01~1.00%、
    Sn:0.01~1.00%、および
    As:0.0001~1.0000%
    からなる群から選択される1種または2種以上を含有することを特徴とする請求項1に記載のホットスタンプ成形体。
    The chemical composition is in mass%,
    Nb: 0.001 to 0.100%,
    Ti: 0.001 to 0.200%,
    Cr: 0.01-1.00%,
    Mo: 0.01-1.00%,
    Co: 0.01-5.00%,
    Ni: 0.01 to 3.00%,
    Cu: 0.01-3.00%,
    V: 0.01 to 3.00%,
    W: 0.01-3.00%,
    Ca: 0.0001-1.0000%,
    Mg: 0.0001 to 1.0000%,
    REM: 0.0001-1.0000%,
    Sb: 0.01 to 1.00%,
    Zr: 0.01-1.00%,
    Sn: 0.01 to 1.00%, and As: 0.0001 to 1.0000%
    The hot-stamped molded article according to claim 1, characterized in that it contains one or more selected from the group consisting of:
PCT/JP2023/007562 2022-03-11 2023-03-01 Hot-stamp-formed article WO2023171492A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-037893 2022-03-11
JP2022037893 2022-03-11

Publications (1)

Publication Number Publication Date
WO2023171492A1 true WO2023171492A1 (en) 2023-09-14

Family

ID=87935201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007562 WO2023171492A1 (en) 2022-03-11 2023-03-01 Hot-stamp-formed article

Country Status (1)

Country Link
WO (1) WO2023171492A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079441A (en) * 2011-06-10 2013-05-02 Kobe Steel Ltd Hot press molded article, method for producing the same, and thin steel sheet for hot press molding
JP2014508854A (en) * 2010-12-27 2014-04-10 ポスコ Steel sheet for molded member having excellent ductility, molded member, and manufacturing method thereof
JP2014122398A (en) * 2012-12-21 2014-07-03 Nippon Steel & Sumitomo Metal Hot stamp molded article excellent in strength and hydrogen embrittlement resistance and manufacturing method of hot stamp molded article
WO2019208556A1 (en) * 2018-04-23 2019-10-31 日本製鉄株式会社 Steel member and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014508854A (en) * 2010-12-27 2014-04-10 ポスコ Steel sheet for molded member having excellent ductility, molded member, and manufacturing method thereof
JP2013079441A (en) * 2011-06-10 2013-05-02 Kobe Steel Ltd Hot press molded article, method for producing the same, and thin steel sheet for hot press molding
JP2014122398A (en) * 2012-12-21 2014-07-03 Nippon Steel & Sumitomo Metal Hot stamp molded article excellent in strength and hydrogen embrittlement resistance and manufacturing method of hot stamp molded article
WO2019208556A1 (en) * 2018-04-23 2019-10-31 日本製鉄株式会社 Steel member and method for producing same

Similar Documents

Publication Publication Date Title
EP2823905B2 (en) Warm press forming method and automobile frame component
EP2468911B1 (en) Hot pressed member, steel sheet for hot pressed member, and method for producing hot pressed member
EP2823904B1 (en) Warm press forming method for a steel
JP6260676B2 (en) Hot press steel plate and method for manufacturing the same, and hot press member and method for manufacturing the same
WO2017168948A1 (en) Steel sheet for hot pressing and production method therefor, and hot press member and production method therefor
WO2020241258A1 (en) Hot-stamp-molded article
CN115151669B (en) Hot-stamping forming body
JP4324226B1 (en) High-strength cold-rolled steel sheet with excellent yield stress, elongation and stretch flangeability
WO2020195009A1 (en) Hot-stamp-molded article
WO2020195012A1 (en) Steel sheet for hot stamping use
WO2023171492A1 (en) Hot-stamp-formed article
CN115244204A (en) Hot rolled steel plate
JP2010174293A (en) Steel sheet to be die-quenched superior in hot-punchability
JP5316025B2 (en) Die quench steel plate with excellent hot punchability
JP7455112B2 (en) hot stamp molded body
CN114787405B (en) Hot-pressed molded body
KR102658729B1 (en) hot stamp molding body
WO2023074189A1 (en) Hot-stamp-molded object
WO2021141097A1 (en) Hot stamp molded body
WO2020241260A1 (en) Hot-stamp-molded article
JP5316028B2 (en) Die quench steel plate with excellent hot punchability
WO2023073411A1 (en) Cold rolled and heat treated steel sheet and a method of manufacturing thereof
WO2023189174A1 (en) Hot-stamp-formed article
WO2023189183A1 (en) Hot-stamp-formed article
WO2023189175A1 (en) Steel sheet for hot stamping and hot stamp molded body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766668

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024506102

Country of ref document: JP